1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstIterator.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/Cloning.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 45 46 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 47 48 using namespace llvm; 49 50 // Print the liveset found at the insert location 51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 52 cl::init(false)); 53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 54 cl::init(false)); 55 // Print out the base pointers for debugging 56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 57 cl::init(false)); 58 59 // Cost threshold measuring when it is profitable to rematerialize value instead 60 // of relocating it 61 static cl::opt<unsigned> 62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 63 cl::init(6)); 64 65 #ifdef XDEBUG 66 static bool ClobberNonLive = true; 67 #else 68 static bool ClobberNonLive = false; 69 #endif 70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 71 cl::location(ClobberNonLive), 72 cl::Hidden); 73 74 namespace { 75 struct RewriteStatepointsForGC : public ModulePass { 76 static char ID; // Pass identification, replacement for typeid 77 78 RewriteStatepointsForGC() : ModulePass(ID) { 79 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 80 } 81 bool runOnFunction(Function &F); 82 bool runOnModule(Module &M) override { 83 bool Changed = false; 84 for (Function &F : M) 85 Changed |= runOnFunction(F); 86 87 if (Changed) { 88 // stripDereferenceabilityInfo asserts that shouldRewriteStatepointsIn 89 // returns true for at least one function in the module. Since at least 90 // one function changed, we know that the precondition is satisfied. 91 stripDereferenceabilityInfo(M); 92 } 93 94 return Changed; 95 } 96 97 void getAnalysisUsage(AnalysisUsage &AU) const override { 98 // We add and rewrite a bunch of instructions, but don't really do much 99 // else. We could in theory preserve a lot more analyses here. 100 AU.addRequired<DominatorTreeWrapperPass>(); 101 AU.addRequired<TargetTransformInfoWrapperPass>(); 102 } 103 104 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 105 /// dereferenceability that are no longer valid/correct after 106 /// RewriteStatepointsForGC has run. This is because semantically, after 107 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 108 /// heap. stripDereferenceabilityInfo (conservatively) restores correctness 109 /// by erasing all attributes in the module that externally imply 110 /// dereferenceability. 111 /// 112 void stripDereferenceabilityInfo(Module &M); 113 114 // Helpers for stripDereferenceabilityInfo 115 void stripDereferenceabilityInfoFromBody(Function &F); 116 void stripDereferenceabilityInfoFromPrototype(Function &F); 117 }; 118 } // namespace 119 120 char RewriteStatepointsForGC::ID = 0; 121 122 ModulePass *llvm::createRewriteStatepointsForGCPass() { 123 return new RewriteStatepointsForGC(); 124 } 125 126 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 127 "Make relocations explicit at statepoints", false, false) 128 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 129 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 130 "Make relocations explicit at statepoints", false, false) 131 132 namespace { 133 struct GCPtrLivenessData { 134 /// Values defined in this block. 135 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 136 /// Values used in this block (and thus live); does not included values 137 /// killed within this block. 138 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 139 140 /// Values live into this basic block (i.e. used by any 141 /// instruction in this basic block or ones reachable from here) 142 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 143 144 /// Values live out of this basic block (i.e. live into 145 /// any successor block) 146 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 147 }; 148 149 // The type of the internal cache used inside the findBasePointers family 150 // of functions. From the callers perspective, this is an opaque type and 151 // should not be inspected. 152 // 153 // In the actual implementation this caches two relations: 154 // - The base relation itself (i.e. this pointer is based on that one) 155 // - The base defining value relation (i.e. before base_phi insertion) 156 // Generally, after the execution of a full findBasePointer call, only the 157 // base relation will remain. Internally, we add a mixture of the two 158 // types, then update all the second type to the first type 159 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 160 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 161 typedef DenseMap<Instruction *, Value *> RematerializedValueMapTy; 162 163 struct PartiallyConstructedSafepointRecord { 164 /// The set of values known to be live across this safepoint 165 StatepointLiveSetTy liveset; 166 167 /// Mapping from live pointers to a base-defining-value 168 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 169 170 /// The *new* gc.statepoint instruction itself. This produces the token 171 /// that normal path gc.relocates and the gc.result are tied to. 172 Instruction *StatepointToken; 173 174 /// Instruction to which exceptional gc relocates are attached 175 /// Makes it easier to iterate through them during relocationViaAlloca. 176 Instruction *UnwindToken; 177 178 /// Record live values we are rematerialized instead of relocating. 179 /// They are not included into 'liveset' field. 180 /// Maps rematerialized copy to it's original value. 181 RematerializedValueMapTy RematerializedValues; 182 }; 183 } 184 185 /// Compute the live-in set for every basic block in the function 186 static void computeLiveInValues(DominatorTree &DT, Function &F, 187 GCPtrLivenessData &Data); 188 189 /// Given results from the dataflow liveness computation, find the set of live 190 /// Values at a particular instruction. 191 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 192 StatepointLiveSetTy &out); 193 194 // TODO: Once we can get to the GCStrategy, this becomes 195 // Optional<bool> isGCManagedPointer(const Value *V) const override { 196 197 static bool isGCPointerType(Type *T) { 198 if (auto *PT = dyn_cast<PointerType>(T)) 199 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 200 // GC managed heap. We know that a pointer into this heap needs to be 201 // updated and that no other pointer does. 202 return (1 == PT->getAddressSpace()); 203 return false; 204 } 205 206 // Return true if this type is one which a) is a gc pointer or contains a GC 207 // pointer and b) is of a type this code expects to encounter as a live value. 208 // (The insertion code will assert that a type which matches (a) and not (b) 209 // is not encountered.) 210 static bool isHandledGCPointerType(Type *T) { 211 // We fully support gc pointers 212 if (isGCPointerType(T)) 213 return true; 214 // We partially support vectors of gc pointers. The code will assert if it 215 // can't handle something. 216 if (auto VT = dyn_cast<VectorType>(T)) 217 if (isGCPointerType(VT->getElementType())) 218 return true; 219 return false; 220 } 221 222 #ifndef NDEBUG 223 /// Returns true if this type contains a gc pointer whether we know how to 224 /// handle that type or not. 225 static bool containsGCPtrType(Type *Ty) { 226 if (isGCPointerType(Ty)) 227 return true; 228 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 229 return isGCPointerType(VT->getScalarType()); 230 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 231 return containsGCPtrType(AT->getElementType()); 232 if (StructType *ST = dyn_cast<StructType>(Ty)) 233 return std::any_of( 234 ST->subtypes().begin(), ST->subtypes().end(), 235 [](Type *SubType) { return containsGCPtrType(SubType); }); 236 return false; 237 } 238 239 // Returns true if this is a type which a) is a gc pointer or contains a GC 240 // pointer and b) is of a type which the code doesn't expect (i.e. first class 241 // aggregates). Used to trip assertions. 242 static bool isUnhandledGCPointerType(Type *Ty) { 243 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 244 } 245 #endif 246 247 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 248 if (a->hasName() && b->hasName()) { 249 return -1 == a->getName().compare(b->getName()); 250 } else if (a->hasName() && !b->hasName()) { 251 return true; 252 } else if (!a->hasName() && b->hasName()) { 253 return false; 254 } else { 255 // Better than nothing, but not stable 256 return a < b; 257 } 258 } 259 260 // Conservatively identifies any definitions which might be live at the 261 // given instruction. The analysis is performed immediately before the 262 // given instruction. Values defined by that instruction are not considered 263 // live. Values used by that instruction are considered live. 264 static void analyzeParsePointLiveness( 265 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 266 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 267 Instruction *inst = CS.getInstruction(); 268 269 StatepointLiveSetTy liveset; 270 findLiveSetAtInst(inst, OriginalLivenessData, liveset); 271 272 if (PrintLiveSet) { 273 // Note: This output is used by several of the test cases 274 // The order of elements in a set is not stable, put them in a vec and sort 275 // by name 276 SmallVector<Value *, 64> Temp; 277 Temp.insert(Temp.end(), liveset.begin(), liveset.end()); 278 std::sort(Temp.begin(), Temp.end(), order_by_name); 279 errs() << "Live Variables:\n"; 280 for (Value *V : Temp) 281 dbgs() << " " << V->getName() << " " << *V << "\n"; 282 } 283 if (PrintLiveSetSize) { 284 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 285 errs() << "Number live values: " << liveset.size() << "\n"; 286 } 287 result.liveset = liveset; 288 } 289 290 static Value *findBaseDefiningValue(Value *I); 291 292 /// Return a base defining value for the 'Index' element of the given vector 293 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 294 /// 'I'. As an optimization, this method will try to determine when the 295 /// element is known to already be a base pointer. If this can be established, 296 /// the second value in the returned pair will be true. Note that either a 297 /// vector or a pointer typed value can be returned. For the former, the 298 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 299 /// If the later, the return pointer is a BDV (or possibly a base) for the 300 /// particular element in 'I'. 301 static std::pair<Value *, bool> 302 findBaseDefiningValueOfVector(Value *I, Value *Index = nullptr) { 303 assert(I->getType()->isVectorTy() && 304 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 305 "Illegal to ask for the base pointer of a non-pointer type"); 306 307 // Each case parallels findBaseDefiningValue below, see that code for 308 // detailed motivation. 309 310 if (isa<Argument>(I)) 311 // An incoming argument to the function is a base pointer 312 return std::make_pair(I, true); 313 314 // We shouldn't see the address of a global as a vector value? 315 assert(!isa<GlobalVariable>(I) && 316 "unexpected global variable found in base of vector"); 317 318 // inlining could possibly introduce phi node that contains 319 // undef if callee has multiple returns 320 if (isa<UndefValue>(I)) 321 // utterly meaningless, but useful for dealing with partially optimized 322 // code. 323 return std::make_pair(I, true); 324 325 // Due to inheritance, this must be _after_ the global variable and undef 326 // checks 327 if (Constant *Con = dyn_cast<Constant>(I)) { 328 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 329 "order of checks wrong!"); 330 assert(Con->isNullValue() && "null is the only case which makes sense"); 331 return std::make_pair(Con, true); 332 } 333 334 if (isa<LoadInst>(I)) 335 return std::make_pair(I, true); 336 337 // For an insert element, we might be able to look through it if we know 338 // something about the indexes. 339 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(I)) { 340 if (Index) { 341 Value *InsertIndex = IEI->getOperand(2); 342 // This index is inserting the value, look for its BDV 343 if (InsertIndex == Index) 344 return std::make_pair(findBaseDefiningValue(IEI->getOperand(1)), false); 345 // Both constant, and can't be equal per above. This insert is definitely 346 // not relevant, look back at the rest of the vector and keep trying. 347 if (isa<ConstantInt>(Index) && isa<ConstantInt>(InsertIndex)) 348 return findBaseDefiningValueOfVector(IEI->getOperand(0), Index); 349 } 350 351 // We don't know whether this vector contains entirely base pointers or 352 // not. To be conservatively correct, we treat it as a BDV and will 353 // duplicate code as needed to construct a parallel vector of bases. 354 return std::make_pair(IEI, false); 355 } 356 357 if (isa<ShuffleVectorInst>(I)) 358 // We don't know whether this vector contains entirely base pointers or 359 // not. To be conservatively correct, we treat it as a BDV and will 360 // duplicate code as needed to construct a parallel vector of bases. 361 // TODO: There a number of local optimizations which could be applied here 362 // for particular sufflevector patterns. 363 return std::make_pair(I, false); 364 365 // A PHI or Select is a base defining value. The outer findBasePointer 366 // algorithm is responsible for constructing a base value for this BDV. 367 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 368 "unknown vector instruction - no base found for vector element"); 369 return std::make_pair(I, false); 370 } 371 372 static bool isKnownBaseResult(Value *V); 373 374 /// Helper function for findBasePointer - Will return a value which either a) 375 /// defines the base pointer for the input, b) blocks the simple search 376 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 377 /// from pointer to vector type or back. 378 static Value *findBaseDefiningValue(Value *I) { 379 if (I->getType()->isVectorTy()) 380 return findBaseDefiningValueOfVector(I).first; 381 382 assert(I->getType()->isPointerTy() && 383 "Illegal to ask for the base pointer of a non-pointer type"); 384 385 if (isa<Argument>(I)) 386 // An incoming argument to the function is a base pointer 387 // We should have never reached here if this argument isn't an gc value 388 return I; 389 390 if (isa<GlobalVariable>(I)) 391 // base case 392 return I; 393 394 // inlining could possibly introduce phi node that contains 395 // undef if callee has multiple returns 396 if (isa<UndefValue>(I)) 397 // utterly meaningless, but useful for dealing with 398 // partially optimized code. 399 return I; 400 401 // Due to inheritance, this must be _after_ the global variable and undef 402 // checks 403 if (Constant *Con = dyn_cast<Constant>(I)) { 404 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 405 "order of checks wrong!"); 406 // Note: Finding a constant base for something marked for relocation 407 // doesn't really make sense. The most likely case is either a) some 408 // screwed up the address space usage or b) your validating against 409 // compiled C++ code w/o the proper separation. The only real exception 410 // is a null pointer. You could have generic code written to index of 411 // off a potentially null value and have proven it null. We also use 412 // null pointers in dead paths of relocation phis (which we might later 413 // want to find a base pointer for). 414 assert(isa<ConstantPointerNull>(Con) && 415 "null is the only case which makes sense"); 416 return Con; 417 } 418 419 if (CastInst *CI = dyn_cast<CastInst>(I)) { 420 Value *Def = CI->stripPointerCasts(); 421 // If we find a cast instruction here, it means we've found a cast which is 422 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 423 // handle int->ptr conversion. 424 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 425 return findBaseDefiningValue(Def); 426 } 427 428 if (isa<LoadInst>(I)) 429 return I; // The value loaded is an gc base itself 430 431 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 432 // The base of this GEP is the base 433 return findBaseDefiningValue(GEP->getPointerOperand()); 434 435 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 436 switch (II->getIntrinsicID()) { 437 case Intrinsic::experimental_gc_result_ptr: 438 default: 439 // fall through to general call handling 440 break; 441 case Intrinsic::experimental_gc_statepoint: 442 case Intrinsic::experimental_gc_result_float: 443 case Intrinsic::experimental_gc_result_int: 444 llvm_unreachable("these don't produce pointers"); 445 case Intrinsic::experimental_gc_relocate: { 446 // Rerunning safepoint insertion after safepoints are already 447 // inserted is not supported. It could probably be made to work, 448 // but why are you doing this? There's no good reason. 449 llvm_unreachable("repeat safepoint insertion is not supported"); 450 } 451 case Intrinsic::gcroot: 452 // Currently, this mechanism hasn't been extended to work with gcroot. 453 // There's no reason it couldn't be, but I haven't thought about the 454 // implications much. 455 llvm_unreachable( 456 "interaction with the gcroot mechanism is not supported"); 457 } 458 } 459 // We assume that functions in the source language only return base 460 // pointers. This should probably be generalized via attributes to support 461 // both source language and internal functions. 462 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 463 return I; 464 465 // I have absolutely no idea how to implement this part yet. It's not 466 // necessarily hard, I just haven't really looked at it yet. 467 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 468 469 if (isa<AtomicCmpXchgInst>(I)) 470 // A CAS is effectively a atomic store and load combined under a 471 // predicate. From the perspective of base pointers, we just treat it 472 // like a load. 473 return I; 474 475 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 476 "binary ops which don't apply to pointers"); 477 478 // The aggregate ops. Aggregates can either be in the heap or on the 479 // stack, but in either case, this is simply a field load. As a result, 480 // this is a defining definition of the base just like a load is. 481 if (isa<ExtractValueInst>(I)) 482 return I; 483 484 // We should never see an insert vector since that would require we be 485 // tracing back a struct value not a pointer value. 486 assert(!isa<InsertValueInst>(I) && 487 "Base pointer for a struct is meaningless"); 488 489 // An extractelement produces a base result exactly when it's input does. 490 // We may need to insert a parallel instruction to extract the appropriate 491 // element out of the base vector corresponding to the input. Given this, 492 // it's analogous to the phi and select case even though it's not a merge. 493 if (auto *EEI = dyn_cast<ExtractElementInst>(I)) { 494 Value *VectorOperand = EEI->getVectorOperand(); 495 Value *Index = EEI->getIndexOperand(); 496 std::pair<Value *, bool> pair = 497 findBaseDefiningValueOfVector(VectorOperand, Index); 498 Value *VectorBase = pair.first; 499 if (VectorBase->getType()->isPointerTy()) 500 // We found a BDV for this specific element with the vector. This is an 501 // optimization, but in practice it covers most of the useful cases 502 // created via scalarization. Note: The peephole optimization here is 503 // currently needed for correctness since the general algorithm doesn't 504 // yet handle insertelements. That will change shortly. 505 return VectorBase; 506 else { 507 assert(VectorBase->getType()->isVectorTy()); 508 // Otherwise, we have an instruction which potentially produces a 509 // derived pointer and we need findBasePointers to clone code for us 510 // such that we can create an instruction which produces the 511 // accompanying base pointer. 512 return EEI; 513 } 514 } 515 516 // The last two cases here don't return a base pointer. Instead, they 517 // return a value which dynamically selects from among several base 518 // derived pointers (each with it's own base potentially). It's the job of 519 // the caller to resolve these. 520 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 521 "missing instruction case in findBaseDefiningValing"); 522 return I; 523 } 524 525 /// Returns the base defining value for this value. 526 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 527 Value *&Cached = Cache[I]; 528 if (!Cached) { 529 Cached = findBaseDefiningValue(I); 530 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 531 << Cached->getName() << "\n"); 532 } 533 assert(Cache[I] != nullptr); 534 return Cached; 535 } 536 537 /// Return a base pointer for this value if known. Otherwise, return it's 538 /// base defining value. 539 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 540 Value *Def = findBaseDefiningValueCached(I, Cache); 541 auto Found = Cache.find(Def); 542 if (Found != Cache.end()) { 543 // Either a base-of relation, or a self reference. Caller must check. 544 return Found->second; 545 } 546 // Only a BDV available 547 return Def; 548 } 549 550 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 551 /// is it known to be a base pointer? Or do we need to continue searching. 552 static bool isKnownBaseResult(Value *V) { 553 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && !isa<ExtractElementInst>(V)) { 554 // no recursion possible 555 return true; 556 } 557 if (isa<Instruction>(V) && 558 cast<Instruction>(V)->getMetadata("is_base_value")) { 559 // This is a previously inserted base phi or select. We know 560 // that this is a base value. 561 return true; 562 } 563 564 // We need to keep searching 565 return false; 566 } 567 568 namespace { 569 /// Models the state of a single base defining value in the findBasePointer 570 /// algorithm for determining where a new instruction is needed to propagate 571 /// the base of this BDV. 572 class BDVState { 573 public: 574 enum Status { Unknown, Base, Conflict }; 575 576 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 577 assert(status != Base || b); 578 } 579 explicit BDVState(Value *b) : status(Base), base(b) {} 580 BDVState() : status(Unknown), base(nullptr) {} 581 582 Status getStatus() const { return status; } 583 Value *getBase() const { return base; } 584 585 bool isBase() const { return getStatus() == Base; } 586 bool isUnknown() const { return getStatus() == Unknown; } 587 bool isConflict() const { return getStatus() == Conflict; } 588 589 bool operator==(const BDVState &other) const { 590 return base == other.base && status == other.status; 591 } 592 593 bool operator!=(const BDVState &other) const { return !(*this == other); } 594 595 LLVM_DUMP_METHOD 596 void dump() const { print(dbgs()); dbgs() << '\n'; } 597 598 void print(raw_ostream &OS) const { 599 switch (status) { 600 case Unknown: 601 OS << "U"; 602 break; 603 case Base: 604 OS << "B"; 605 break; 606 case Conflict: 607 OS << "C"; 608 break; 609 }; 610 OS << " (" << base << " - " 611 << (base ? base->getName() : "nullptr") << "): "; 612 } 613 614 private: 615 Status status; 616 Value *base; // non null only if status == base 617 }; 618 } 619 620 #ifndef NDEBUG 621 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 622 State.print(OS); 623 return OS; 624 } 625 #endif 626 627 namespace { 628 typedef DenseMap<Value *, BDVState> ConflictStateMapTy; 629 // Values of type BDVState form a lattice, and this is a helper 630 // class that implementes the meet operation. The meat of the meet 631 // operation is implemented in MeetBDVStates::pureMeet 632 class MeetBDVStates { 633 public: 634 /// Initializes the currentResult to the TOP state so that if can be met with 635 /// any other state to produce that state. 636 MeetBDVStates() {} 637 638 // Destructively meet the current result with the given BDVState 639 void meetWith(BDVState otherState) { 640 currentResult = meet(otherState, currentResult); 641 } 642 643 BDVState getResult() const { return currentResult; } 644 645 private: 646 BDVState currentResult; 647 648 /// Perform a meet operation on two elements of the BDVState lattice. 649 static BDVState meet(BDVState LHS, BDVState RHS) { 650 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 651 "math is wrong: meet does not commute!"); 652 BDVState Result = pureMeet(LHS, RHS); 653 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 654 << " produced " << Result << "\n"); 655 return Result; 656 } 657 658 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 659 switch (stateA.getStatus()) { 660 case BDVState::Unknown: 661 return stateB; 662 663 case BDVState::Base: 664 assert(stateA.getBase() && "can't be null"); 665 if (stateB.isUnknown()) 666 return stateA; 667 668 if (stateB.isBase()) { 669 if (stateA.getBase() == stateB.getBase()) { 670 assert(stateA == stateB && "equality broken!"); 671 return stateA; 672 } 673 return BDVState(BDVState::Conflict); 674 } 675 assert(stateB.isConflict() && "only three states!"); 676 return BDVState(BDVState::Conflict); 677 678 case BDVState::Conflict: 679 return stateA; 680 } 681 llvm_unreachable("only three states!"); 682 } 683 }; 684 } 685 686 687 /// For a given value or instruction, figure out what base ptr it's derived 688 /// from. For gc objects, this is simply itself. On success, returns a value 689 /// which is the base pointer. (This is reliable and can be used for 690 /// relocation.) On failure, returns nullptr. 691 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 692 Value *def = findBaseOrBDV(I, cache); 693 694 if (isKnownBaseResult(def)) { 695 return def; 696 } 697 698 // Here's the rough algorithm: 699 // - For every SSA value, construct a mapping to either an actual base 700 // pointer or a PHI which obscures the base pointer. 701 // - Construct a mapping from PHI to unknown TOP state. Use an 702 // optimistic algorithm to propagate base pointer information. Lattice 703 // looks like: 704 // UNKNOWN 705 // b1 b2 b3 b4 706 // CONFLICT 707 // When algorithm terminates, all PHIs will either have a single concrete 708 // base or be in a conflict state. 709 // - For every conflict, insert a dummy PHI node without arguments. Add 710 // these to the base[Instruction] = BasePtr mapping. For every 711 // non-conflict, add the actual base. 712 // - For every conflict, add arguments for the base[a] of each input 713 // arguments. 714 // 715 // Note: A simpler form of this would be to add the conflict form of all 716 // PHIs without running the optimistic algorithm. This would be 717 // analogous to pessimistic data flow and would likely lead to an 718 // overall worse solution. 719 720 #ifndef NDEBUG 721 auto isExpectedBDVType = [](Value *BDV) { 722 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || isa<ExtractElementInst>(BDV); 723 }; 724 #endif 725 726 // Once populated, will contain a mapping from each potentially non-base BDV 727 // to a lattice value (described above) which corresponds to that BDV. 728 ConflictStateMapTy states; 729 // Recursively fill in all phis & selects reachable from the initial one 730 // for which we don't already know a definite base value for 731 /* scope */ { 732 DenseSet<Value *> Visited; 733 SmallVector<Value*, 16> Worklist; 734 Worklist.push_back(def); 735 Visited.insert(def); 736 while (!Worklist.empty()) { 737 Value *Current = Worklist.pop_back_val(); 738 assert(!isKnownBaseResult(Current) && "why did it get added?"); 739 740 auto visitIncomingValue = [&](Value *InVal) { 741 Value *Base = findBaseOrBDV(InVal, cache); 742 if (isKnownBaseResult(Base)) 743 // Known bases won't need new instructions introduced and can be 744 // ignored safely 745 return; 746 assert(isExpectedBDVType(Base) && "the only non-base values " 747 "we see should be base defining values"); 748 if (Visited.insert(Base).second) 749 Worklist.push_back(Base); 750 }; 751 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 752 for (Value *InVal : Phi->incoming_values()) 753 visitIncomingValue(InVal); 754 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 755 visitIncomingValue(Sel->getTrueValue()); 756 visitIncomingValue(Sel->getFalseValue()); 757 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 758 visitIncomingValue(EE->getVectorOperand()); 759 } else { 760 // There are two classes of instructions we know we don't handle. 761 assert(isa<ShuffleVectorInst>(Current) || 762 isa<InsertElementInst>(Current)); 763 llvm_unreachable("unimplemented instruction case"); 764 } 765 } 766 // The frontier of visited instructions are the ones we might need to 767 // duplicate, so fill in the starting state for the optimistic algorithm 768 // that follows. 769 for (Value *BDV : Visited) { 770 states[BDV] = BDVState(); 771 } 772 } 773 774 #ifndef NDEBUG 775 DEBUG(dbgs() << "States after initialization:\n"); 776 for (auto Pair : states) { 777 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 778 } 779 #endif 780 781 // TODO: come back and revisit the state transitions around inputs which 782 // have reached conflict state. The current version seems too conservative. 783 784 // Return a phi state for a base defining value. We'll generate a new 785 // base state for known bases and expect to find a cached state otherwise. 786 auto getStateForBDV = [&](Value *baseValue) { 787 if (isKnownBaseResult(baseValue)) 788 return BDVState(baseValue); 789 auto I = states.find(baseValue); 790 assert(I != states.end() && "lookup failed!"); 791 return I->second; 792 }; 793 794 bool progress = true; 795 while (progress) { 796 #ifndef NDEBUG 797 size_t oldSize = states.size(); 798 #endif 799 progress = false; 800 // We're only changing keys in this loop, thus safe to keep iterators 801 for (auto Pair : states) { 802 Value *v = Pair.first; 803 assert(!isKnownBaseResult(v) && "why did it get added?"); 804 805 // Given an input value for the current instruction, return a BDVState 806 // instance which represents the BDV of that value. 807 auto getStateForInput = [&](Value *V) mutable { 808 Value *BDV = findBaseOrBDV(V, cache); 809 return getStateForBDV(BDV); 810 }; 811 812 MeetBDVStates calculateMeet; 813 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 814 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 815 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 816 } else if (PHINode *Phi = dyn_cast<PHINode>(v)) { 817 for (Value *Val : Phi->incoming_values()) 818 calculateMeet.meetWith(getStateForInput(Val)); 819 } else { 820 // The 'meet' for an extractelement is slightly trivial, but it's still 821 // useful in that it drives us to conflict if our input is. 822 auto *EE = cast<ExtractElementInst>(v); 823 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 824 } 825 826 827 BDVState oldState = states[v]; 828 BDVState newState = calculateMeet.getResult(); 829 if (oldState != newState) { 830 progress = true; 831 states[v] = newState; 832 } 833 } 834 835 assert(oldSize <= states.size()); 836 assert(oldSize == states.size() || progress); 837 } 838 839 #ifndef NDEBUG 840 DEBUG(dbgs() << "States after meet iteration:\n"); 841 for (auto Pair : states) { 842 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 843 } 844 #endif 845 846 // Insert Phis for all conflicts 847 // We want to keep naming deterministic in the loop that follows, so 848 // sort the keys before iteration. This is useful in allowing us to 849 // write stable tests. Note that there is no invalidation issue here. 850 SmallVector<Value *, 16> Keys; 851 Keys.reserve(states.size()); 852 for (auto Pair : states) { 853 Value *V = Pair.first; 854 Keys.push_back(V); 855 } 856 std::sort(Keys.begin(), Keys.end(), order_by_name); 857 // TODO: adjust naming patterns to avoid this order of iteration dependency 858 for (Value *V : Keys) { 859 Instruction *I = cast<Instruction>(V); 860 BDVState State = states[I]; 861 assert(!isKnownBaseResult(I) && "why did it get added?"); 862 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 863 864 // extractelement instructions are a bit special in that we may need to 865 // insert an extract even when we know an exact base for the instruction. 866 // The problem is that we need to convert from a vector base to a scalar 867 // base for the particular indice we're interested in. 868 if (State.isBase() && isa<ExtractElementInst>(I) && 869 isa<VectorType>(State.getBase()->getType())) { 870 auto *EE = cast<ExtractElementInst>(I); 871 // TODO: In many cases, the new instruction is just EE itself. We should 872 // exploit this, but can't do it here since it would break the invariant 873 // about the BDV not being known to be a base. 874 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 875 EE->getIndexOperand(), 876 "base_ee", EE); 877 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 878 states[I] = BDVState(BDVState::Base, BaseInst); 879 } 880 881 if (!State.isConflict()) 882 continue; 883 884 /// Create and insert a new instruction which will represent the base of 885 /// the given instruction 'I'. 886 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 887 if (isa<PHINode>(I)) { 888 BasicBlock *BB = I->getParent(); 889 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 890 assert(NumPreds > 0 && "how did we reach here"); 891 std::string Name = I->hasName() ? 892 (I->getName() + ".base").str() : "base_phi"; 893 return PHINode::Create(I->getType(), NumPreds, Name, I); 894 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 895 // The undef will be replaced later 896 UndefValue *Undef = UndefValue::get(Sel->getType()); 897 std::string Name = I->hasName() ? 898 (I->getName() + ".base").str() : "base_select"; 899 return SelectInst::Create(Sel->getCondition(), Undef, 900 Undef, Name, Sel); 901 } else { 902 auto *EE = cast<ExtractElementInst>(I); 903 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 904 std::string Name = I->hasName() ? 905 (I->getName() + ".base").str() : "base_ee"; 906 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 907 EE); 908 } 909 }; 910 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 911 // Add metadata marking this as a base value 912 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 913 states[I] = BDVState(BDVState::Conflict, BaseInst); 914 } 915 916 // Fixup all the inputs of the new PHIs 917 for (auto Pair : states) { 918 Instruction *v = cast<Instruction>(Pair.first); 919 BDVState state = Pair.second; 920 921 assert(!isKnownBaseResult(v) && "why did it get added?"); 922 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 923 if (!state.isConflict()) 924 continue; 925 926 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 927 PHINode *phi = cast<PHINode>(v); 928 unsigned NumPHIValues = phi->getNumIncomingValues(); 929 for (unsigned i = 0; i < NumPHIValues; i++) { 930 Value *InVal = phi->getIncomingValue(i); 931 BasicBlock *InBB = phi->getIncomingBlock(i); 932 933 // If we've already seen InBB, add the same incoming value 934 // we added for it earlier. The IR verifier requires phi 935 // nodes with multiple entries from the same basic block 936 // to have the same incoming value for each of those 937 // entries. If we don't do this check here and basephi 938 // has a different type than base, we'll end up adding two 939 // bitcasts (and hence two distinct values) as incoming 940 // values for the same basic block. 941 942 int blockIndex = basephi->getBasicBlockIndex(InBB); 943 if (blockIndex != -1) { 944 Value *oldBase = basephi->getIncomingValue(blockIndex); 945 basephi->addIncoming(oldBase, InBB); 946 #ifndef NDEBUG 947 Value *base = findBaseOrBDV(InVal, cache); 948 if (!isKnownBaseResult(base)) { 949 // Either conflict or base. 950 assert(states.count(base)); 951 base = states[base].getBase(); 952 assert(base != nullptr && "unknown BDVState!"); 953 } 954 955 // In essence this assert states: the only way two 956 // values incoming from the same basic block may be 957 // different is by being different bitcasts of the same 958 // value. A cleanup that remains TODO is changing 959 // findBaseOrBDV to return an llvm::Value of the correct 960 // type (and still remain pure). This will remove the 961 // need to add bitcasts. 962 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 963 "sanity -- findBaseOrBDV should be pure!"); 964 #endif 965 continue; 966 } 967 968 // Find either the defining value for the PHI or the normal base for 969 // a non-phi node 970 Value *base = findBaseOrBDV(InVal, cache); 971 if (!isKnownBaseResult(base)) { 972 // Either conflict or base. 973 assert(states.count(base)); 974 base = states[base].getBase(); 975 assert(base != nullptr && "unknown BDVState!"); 976 } 977 assert(base && "can't be null"); 978 // Must use original input BB since base may not be Instruction 979 // The cast is needed since base traversal may strip away bitcasts 980 if (base->getType() != basephi->getType()) { 981 base = new BitCastInst(base, basephi->getType(), "cast", 982 InBB->getTerminator()); 983 } 984 basephi->addIncoming(base, InBB); 985 } 986 assert(basephi->getNumIncomingValues() == NumPHIValues); 987 } else if (SelectInst *basesel = dyn_cast<SelectInst>(state.getBase())) { 988 SelectInst *sel = cast<SelectInst>(v); 989 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 990 // something more safe and less hacky. 991 for (int i = 1; i <= 2; i++) { 992 Value *InVal = sel->getOperand(i); 993 // Find either the defining value for the PHI or the normal base for 994 // a non-phi node 995 Value *base = findBaseOrBDV(InVal, cache); 996 if (!isKnownBaseResult(base)) { 997 // Either conflict or base. 998 assert(states.count(base)); 999 base = states[base].getBase(); 1000 assert(base != nullptr && "unknown BDVState!"); 1001 } 1002 assert(base && "can't be null"); 1003 // Must use original input BB since base may not be Instruction 1004 // The cast is needed since base traversal may strip away bitcasts 1005 if (base->getType() != basesel->getType()) { 1006 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 1007 } 1008 basesel->setOperand(i, base); 1009 } 1010 } else { 1011 auto *BaseEE = cast<ExtractElementInst>(state.getBase()); 1012 Value *InVal = cast<ExtractElementInst>(v)->getVectorOperand(); 1013 Value *Base = findBaseOrBDV(InVal, cache); 1014 if (!isKnownBaseResult(Base)) { 1015 // Either conflict or base. 1016 assert(states.count(Base)); 1017 Base = states[Base].getBase(); 1018 assert(Base != nullptr && "unknown BDVState!"); 1019 } 1020 assert(Base && "can't be null"); 1021 BaseEE->setOperand(0, Base); 1022 } 1023 } 1024 1025 // Now that we're done with the algorithm, see if we can optimize the 1026 // results slightly by reducing the number of new instructions needed. 1027 // Arguably, this should be integrated into the algorithm above, but 1028 // doing as a post process step is easier to reason about for the moment. 1029 DenseMap<Value *, Value *> ReverseMap; 1030 SmallPtrSet<Instruction *, 16> NewInsts; 1031 SmallSetVector<AssertingVH<Instruction>, 16> Worklist; 1032 for (auto Item : states) { 1033 Value *V = Item.first; 1034 Value *Base = Item.second.getBase(); 1035 assert(V && Base); 1036 assert(!isKnownBaseResult(V) && "why did it get added?"); 1037 assert(isKnownBaseResult(Base) && 1038 "must be something we 'know' is a base pointer"); 1039 if (!Item.second.isConflict()) 1040 continue; 1041 1042 ReverseMap[Base] = V; 1043 if (auto *BaseI = dyn_cast<Instruction>(Base)) { 1044 NewInsts.insert(BaseI); 1045 Worklist.insert(BaseI); 1046 } 1047 } 1048 auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI, 1049 Value *Replacement) { 1050 // Add users which are new instructions (excluding self references) 1051 for (User *U : BaseI->users()) 1052 if (auto *UI = dyn_cast<Instruction>(U)) 1053 if (NewInsts.count(UI) && UI != BaseI) 1054 Worklist.insert(UI); 1055 // Then do the actual replacement 1056 NewInsts.erase(BaseI); 1057 ReverseMap.erase(BaseI); 1058 BaseI->replaceAllUsesWith(Replacement); 1059 BaseI->eraseFromParent(); 1060 assert(states.count(BDV)); 1061 assert(states[BDV].isConflict() && states[BDV].getBase() == BaseI); 1062 states[BDV] = BDVState(BDVState::Conflict, Replacement); 1063 }; 1064 const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout(); 1065 while (!Worklist.empty()) { 1066 Instruction *BaseI = Worklist.pop_back_val(); 1067 assert(NewInsts.count(BaseI)); 1068 Value *Bdv = ReverseMap[BaseI]; 1069 if (auto *BdvI = dyn_cast<Instruction>(Bdv)) 1070 if (BaseI->isIdenticalTo(BdvI)) { 1071 DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n"); 1072 ReplaceBaseInstWith(Bdv, BaseI, Bdv); 1073 continue; 1074 } 1075 if (Value *V = SimplifyInstruction(BaseI, DL)) { 1076 DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n"); 1077 ReplaceBaseInstWith(Bdv, BaseI, V); 1078 continue; 1079 } 1080 } 1081 1082 // Cache all of our results so we can cheaply reuse them 1083 // NOTE: This is actually two caches: one of the base defining value 1084 // relation and one of the base pointer relation! FIXME 1085 for (auto item : states) { 1086 Value *v = item.first; 1087 Value *base = item.second.getBase(); 1088 assert(v && base); 1089 1090 std::string fromstr = 1091 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 1092 : "none"; 1093 DEBUG(dbgs() << "Updating base value cache" 1094 << " for: " << (v->hasName() ? v->getName() : "") 1095 << " from: " << fromstr 1096 << " to: " << (base->hasName() ? base->getName() : "") << "\n"); 1097 1098 if (cache.count(v)) { 1099 // Once we transition from the BDV relation being store in the cache to 1100 // the base relation being stored, it must be stable 1101 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 1102 "base relation should be stable"); 1103 } 1104 cache[v] = base; 1105 } 1106 assert(cache.find(def) != cache.end()); 1107 return cache[def]; 1108 } 1109 1110 // For a set of live pointers (base and/or derived), identify the base 1111 // pointer of the object which they are derived from. This routine will 1112 // mutate the IR graph as needed to make the 'base' pointer live at the 1113 // definition site of 'derived'. This ensures that any use of 'derived' can 1114 // also use 'base'. This may involve the insertion of a number of 1115 // additional PHI nodes. 1116 // 1117 // preconditions: live is a set of pointer type Values 1118 // 1119 // side effects: may insert PHI nodes into the existing CFG, will preserve 1120 // CFG, will not remove or mutate any existing nodes 1121 // 1122 // post condition: PointerToBase contains one (derived, base) pair for every 1123 // pointer in live. Note that derived can be equal to base if the original 1124 // pointer was a base pointer. 1125 static void 1126 findBasePointers(const StatepointLiveSetTy &live, 1127 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 1128 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1129 // For the naming of values inserted to be deterministic - which makes for 1130 // much cleaner and more stable tests - we need to assign an order to the 1131 // live values. DenseSets do not provide a deterministic order across runs. 1132 SmallVector<Value *, 64> Temp; 1133 Temp.insert(Temp.end(), live.begin(), live.end()); 1134 std::sort(Temp.begin(), Temp.end(), order_by_name); 1135 for (Value *ptr : Temp) { 1136 Value *base = findBasePointer(ptr, DVCache); 1137 assert(base && "failed to find base pointer"); 1138 PointerToBase[ptr] = base; 1139 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1140 DT->dominates(cast<Instruction>(base)->getParent(), 1141 cast<Instruction>(ptr)->getParent())) && 1142 "The base we found better dominate the derived pointer"); 1143 1144 // If you see this trip and like to live really dangerously, the code should 1145 // be correct, just with idioms the verifier can't handle. You can try 1146 // disabling the verifier at your own substantial risk. 1147 assert(!isa<ConstantPointerNull>(base) && 1148 "the relocation code needs adjustment to handle the relocation of " 1149 "a null pointer constant without causing false positives in the " 1150 "safepoint ir verifier."); 1151 } 1152 } 1153 1154 /// Find the required based pointers (and adjust the live set) for the given 1155 /// parse point. 1156 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1157 const CallSite &CS, 1158 PartiallyConstructedSafepointRecord &result) { 1159 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 1160 findBasePointers(result.liveset, PointerToBase, &DT, DVCache); 1161 1162 if (PrintBasePointers) { 1163 // Note: Need to print these in a stable order since this is checked in 1164 // some tests. 1165 errs() << "Base Pairs (w/o Relocation):\n"; 1166 SmallVector<Value *, 64> Temp; 1167 Temp.reserve(PointerToBase.size()); 1168 for (auto Pair : PointerToBase) { 1169 Temp.push_back(Pair.first); 1170 } 1171 std::sort(Temp.begin(), Temp.end(), order_by_name); 1172 for (Value *Ptr : Temp) { 1173 Value *Base = PointerToBase[Ptr]; 1174 errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() 1175 << "\n"; 1176 } 1177 } 1178 1179 result.PointerToBase = PointerToBase; 1180 } 1181 1182 /// Given an updated version of the dataflow liveness results, update the 1183 /// liveset and base pointer maps for the call site CS. 1184 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1185 const CallSite &CS, 1186 PartiallyConstructedSafepointRecord &result); 1187 1188 static void recomputeLiveInValues( 1189 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1190 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1191 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1192 // again. The old values are still live and will help it stabilize quickly. 1193 GCPtrLivenessData RevisedLivenessData; 1194 computeLiveInValues(DT, F, RevisedLivenessData); 1195 for (size_t i = 0; i < records.size(); i++) { 1196 struct PartiallyConstructedSafepointRecord &info = records[i]; 1197 const CallSite &CS = toUpdate[i]; 1198 recomputeLiveInValues(RevisedLivenessData, CS, info); 1199 } 1200 } 1201 1202 // When inserting gc.relocate calls, we need to ensure there are no uses 1203 // of the original value between the gc.statepoint and the gc.relocate call. 1204 // One case which can arise is a phi node starting one of the successor blocks. 1205 // We also need to be able to insert the gc.relocates only on the path which 1206 // goes through the statepoint. We might need to split an edge to make this 1207 // possible. 1208 static BasicBlock * 1209 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1210 DominatorTree &DT) { 1211 BasicBlock *Ret = BB; 1212 if (!BB->getUniquePredecessor()) { 1213 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1214 } 1215 1216 // Now that 'ret' has unique predecessor we can safely remove all phi nodes 1217 // from it 1218 FoldSingleEntryPHINodes(Ret); 1219 assert(!isa<PHINode>(Ret->begin())); 1220 1221 // At this point, we can safely insert a gc.relocate as the first instruction 1222 // in Ret if needed. 1223 return Ret; 1224 } 1225 1226 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1227 auto itr = std::find(livevec.begin(), livevec.end(), val); 1228 assert(livevec.end() != itr); 1229 size_t index = std::distance(livevec.begin(), itr); 1230 assert(index < livevec.size()); 1231 return index; 1232 } 1233 1234 // Create new attribute set containing only attributes which can be transferred 1235 // from original call to the safepoint. 1236 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1237 AttributeSet ret; 1238 1239 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1240 unsigned index = AS.getSlotIndex(Slot); 1241 1242 if (index == AttributeSet::ReturnIndex || 1243 index == AttributeSet::FunctionIndex) { 1244 1245 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1246 ++it) { 1247 Attribute attr = *it; 1248 1249 // Do not allow certain attributes - just skip them 1250 // Safepoint can not be read only or read none. 1251 if (attr.hasAttribute(Attribute::ReadNone) || 1252 attr.hasAttribute(Attribute::ReadOnly)) 1253 continue; 1254 1255 ret = ret.addAttributes( 1256 AS.getContext(), index, 1257 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1258 } 1259 } 1260 1261 // Just skip parameter attributes for now 1262 } 1263 1264 return ret; 1265 } 1266 1267 /// Helper function to place all gc relocates necessary for the given 1268 /// statepoint. 1269 /// Inputs: 1270 /// liveVariables - list of variables to be relocated. 1271 /// liveStart - index of the first live variable. 1272 /// basePtrs - base pointers. 1273 /// statepointToken - statepoint instruction to which relocates should be 1274 /// bound. 1275 /// Builder - Llvm IR builder to be used to construct new calls. 1276 static void CreateGCRelocates(ArrayRef<llvm::Value *> LiveVariables, 1277 const int LiveStart, 1278 ArrayRef<llvm::Value *> BasePtrs, 1279 Instruction *StatepointToken, 1280 IRBuilder<> Builder) { 1281 if (LiveVariables.empty()) 1282 return; 1283 1284 // All gc_relocate are set to i8 addrspace(1)* type. We originally generated 1285 // unique declarations for each pointer type, but this proved problematic 1286 // because the intrinsic mangling code is incomplete and fragile. Since 1287 // we're moving towards a single unified pointer type anyways, we can just 1288 // cast everything to an i8* of the right address space. A bitcast is added 1289 // later to convert gc_relocate to the actual value's type. 1290 Module *M = StatepointToken->getModule(); 1291 auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace(); 1292 Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)}; 1293 Value *GCRelocateDecl = 1294 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); 1295 1296 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1297 // Generate the gc.relocate call and save the result 1298 Value *BaseIdx = 1299 Builder.getInt32(LiveStart + find_index(LiveVariables, BasePtrs[i])); 1300 Value *LiveIdx = 1301 Builder.getInt32(LiveStart + find_index(LiveVariables, LiveVariables[i])); 1302 1303 // only specify a debug name if we can give a useful one 1304 CallInst *Reloc = Builder.CreateCall( 1305 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1306 LiveVariables[i]->hasName() ? LiveVariables[i]->getName() + ".relocated" 1307 : ""); 1308 // Trick CodeGen into thinking there are lots of free registers at this 1309 // fake call. 1310 Reloc->setCallingConv(CallingConv::Cold); 1311 } 1312 } 1313 1314 static void 1315 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1316 const SmallVectorImpl<llvm::Value *> &basePtrs, 1317 const SmallVectorImpl<llvm::Value *> &liveVariables, 1318 Pass *P, 1319 PartiallyConstructedSafepointRecord &result) { 1320 assert(basePtrs.size() == liveVariables.size()); 1321 assert(isStatepoint(CS) && 1322 "This method expects to be rewriting a statepoint"); 1323 1324 BasicBlock *BB = CS.getInstruction()->getParent(); 1325 assert(BB); 1326 Function *F = BB->getParent(); 1327 assert(F && "must be set"); 1328 Module *M = F->getParent(); 1329 (void)M; 1330 assert(M && "must be set"); 1331 1332 // We're not changing the function signature of the statepoint since the gc 1333 // arguments go into the var args section. 1334 Function *gc_statepoint_decl = CS.getCalledFunction(); 1335 1336 // Then go ahead and use the builder do actually do the inserts. We insert 1337 // immediately before the previous instruction under the assumption that all 1338 // arguments will be available here. We can't insert afterwards since we may 1339 // be replacing a terminator. 1340 Instruction *insertBefore = CS.getInstruction(); 1341 IRBuilder<> Builder(insertBefore); 1342 // Copy all of the arguments from the original statepoint - this includes the 1343 // target, call args, and deopt args 1344 SmallVector<llvm::Value *, 64> args; 1345 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1346 // TODO: Clear the 'needs rewrite' flag 1347 1348 // add all the pointers to be relocated (gc arguments) 1349 // Capture the start of the live variable list for use in the gc_relocates 1350 const int live_start = args.size(); 1351 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1352 1353 // Create the statepoint given all the arguments 1354 Instruction *token = nullptr; 1355 AttributeSet return_attributes; 1356 if (CS.isCall()) { 1357 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1358 CallInst *call = 1359 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1360 call->setTailCall(toReplace->isTailCall()); 1361 call->setCallingConv(toReplace->getCallingConv()); 1362 1363 // Currently we will fail on parameter attributes and on certain 1364 // function attributes. 1365 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1366 // In case if we can handle this set of attributes - set up function attrs 1367 // directly on statepoint and return attrs later for gc_result intrinsic. 1368 call->setAttributes(new_attrs.getFnAttributes()); 1369 return_attributes = new_attrs.getRetAttributes(); 1370 1371 token = call; 1372 1373 // Put the following gc_result and gc_relocate calls immediately after the 1374 // the old call (which we're about to delete) 1375 BasicBlock::iterator next(toReplace); 1376 assert(BB->end() != next && "not a terminator, must have next"); 1377 next++; 1378 Instruction *IP = &*(next); 1379 Builder.SetInsertPoint(IP); 1380 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1381 1382 } else { 1383 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1384 1385 // Insert the new invoke into the old block. We'll remove the old one in a 1386 // moment at which point this will become the new terminator for the 1387 // original block. 1388 InvokeInst *invoke = InvokeInst::Create( 1389 gc_statepoint_decl, toReplace->getNormalDest(), 1390 toReplace->getUnwindDest(), args, "statepoint_token", toReplace->getParent()); 1391 invoke->setCallingConv(toReplace->getCallingConv()); 1392 1393 // Currently we will fail on parameter attributes and on certain 1394 // function attributes. 1395 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1396 // In case if we can handle this set of attributes - set up function attrs 1397 // directly on statepoint and return attrs later for gc_result intrinsic. 1398 invoke->setAttributes(new_attrs.getFnAttributes()); 1399 return_attributes = new_attrs.getRetAttributes(); 1400 1401 token = invoke; 1402 1403 // Generate gc relocates in exceptional path 1404 BasicBlock *unwindBlock = toReplace->getUnwindDest(); 1405 assert(!isa<PHINode>(unwindBlock->begin()) && 1406 unwindBlock->getUniquePredecessor() && 1407 "can't safely insert in this block!"); 1408 1409 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1410 Builder.SetInsertPoint(IP); 1411 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1412 1413 // Extract second element from landingpad return value. We will attach 1414 // exceptional gc relocates to it. 1415 const unsigned idx = 1; 1416 Instruction *exceptional_token = 1417 cast<Instruction>(Builder.CreateExtractValue( 1418 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1419 result.UnwindToken = exceptional_token; 1420 1421 CreateGCRelocates(liveVariables, live_start, basePtrs, 1422 exceptional_token, Builder); 1423 1424 // Generate gc relocates and returns for normal block 1425 BasicBlock *normalDest = toReplace->getNormalDest(); 1426 assert(!isa<PHINode>(normalDest->begin()) && 1427 normalDest->getUniquePredecessor() && 1428 "can't safely insert in this block!"); 1429 1430 IP = &*(normalDest->getFirstInsertionPt()); 1431 Builder.SetInsertPoint(IP); 1432 1433 // gc relocates will be generated later as if it were regular call 1434 // statepoint 1435 } 1436 assert(token); 1437 1438 // Take the name of the original value call if it had one. 1439 token->takeName(CS.getInstruction()); 1440 1441 // The GCResult is already inserted, we just need to find it 1442 #ifndef NDEBUG 1443 Instruction *toReplace = CS.getInstruction(); 1444 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1445 "only valid use before rewrite is gc.result"); 1446 assert(!toReplace->hasOneUse() || 1447 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1448 #endif 1449 1450 // Update the gc.result of the original statepoint (if any) to use the newly 1451 // inserted statepoint. This is safe to do here since the token can't be 1452 // considered a live reference. 1453 CS.getInstruction()->replaceAllUsesWith(token); 1454 1455 result.StatepointToken = token; 1456 1457 // Second, create a gc.relocate for every live variable 1458 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1459 } 1460 1461 namespace { 1462 struct name_ordering { 1463 Value *base; 1464 Value *derived; 1465 bool operator()(name_ordering const &a, name_ordering const &b) { 1466 return -1 == a.derived->getName().compare(b.derived->getName()); 1467 } 1468 }; 1469 } 1470 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1471 SmallVectorImpl<Value *> &livevec) { 1472 assert(basevec.size() == livevec.size()); 1473 1474 SmallVector<name_ordering, 64> temp; 1475 for (size_t i = 0; i < basevec.size(); i++) { 1476 name_ordering v; 1477 v.base = basevec[i]; 1478 v.derived = livevec[i]; 1479 temp.push_back(v); 1480 } 1481 std::sort(temp.begin(), temp.end(), name_ordering()); 1482 for (size_t i = 0; i < basevec.size(); i++) { 1483 basevec[i] = temp[i].base; 1484 livevec[i] = temp[i].derived; 1485 } 1486 } 1487 1488 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1489 // which make the relocations happening at this safepoint explicit. 1490 // 1491 // WARNING: Does not do any fixup to adjust users of the original live 1492 // values. That's the callers responsibility. 1493 static void 1494 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1495 PartiallyConstructedSafepointRecord &result) { 1496 auto liveset = result.liveset; 1497 auto PointerToBase = result.PointerToBase; 1498 1499 // Convert to vector for efficient cross referencing. 1500 SmallVector<Value *, 64> basevec, livevec; 1501 livevec.reserve(liveset.size()); 1502 basevec.reserve(liveset.size()); 1503 for (Value *L : liveset) { 1504 livevec.push_back(L); 1505 assert(PointerToBase.count(L)); 1506 Value *base = PointerToBase[L]; 1507 basevec.push_back(base); 1508 } 1509 assert(livevec.size() == basevec.size()); 1510 1511 // To make the output IR slightly more stable (for use in diffs), ensure a 1512 // fixed order of the values in the safepoint (by sorting the value name). 1513 // The order is otherwise meaningless. 1514 stablize_order(basevec, livevec); 1515 1516 // Do the actual rewriting and delete the old statepoint 1517 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1518 CS.getInstruction()->eraseFromParent(); 1519 } 1520 1521 // Helper function for the relocationViaAlloca. 1522 // It receives iterator to the statepoint gc relocates and emits store to the 1523 // assigned 1524 // location (via allocaMap) for the each one of them. 1525 // Add visited values into the visitedLiveValues set we will later use them 1526 // for sanity check. 1527 static void 1528 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1529 DenseMap<Value *, Value *> &AllocaMap, 1530 DenseSet<Value *> &VisitedLiveValues) { 1531 1532 for (User *U : GCRelocs) { 1533 if (!isa<IntrinsicInst>(U)) 1534 continue; 1535 1536 IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U); 1537 1538 // We only care about relocates 1539 if (RelocatedValue->getIntrinsicID() != 1540 Intrinsic::experimental_gc_relocate) { 1541 continue; 1542 } 1543 1544 GCRelocateOperands RelocateOperands(RelocatedValue); 1545 Value *OriginalValue = 1546 const_cast<Value *>(RelocateOperands.getDerivedPtr()); 1547 assert(AllocaMap.count(OriginalValue)); 1548 Value *Alloca = AllocaMap[OriginalValue]; 1549 1550 // Emit store into the related alloca 1551 // All gc_relocate are i8 addrspace(1)* typed, and it must be bitcasted to 1552 // the correct type according to alloca. 1553 assert(RelocatedValue->getNextNode() && "Should always have one since it's not a terminator"); 1554 IRBuilder<> Builder(RelocatedValue->getNextNode()); 1555 Value *CastedRelocatedValue = 1556 Builder.CreateBitCast(RelocatedValue, cast<AllocaInst>(Alloca)->getAllocatedType(), 1557 RelocatedValue->hasName() ? RelocatedValue->getName() + ".casted" : ""); 1558 1559 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1560 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1561 1562 #ifndef NDEBUG 1563 VisitedLiveValues.insert(OriginalValue); 1564 #endif 1565 } 1566 } 1567 1568 // Helper function for the "relocationViaAlloca". Similar to the 1569 // "insertRelocationStores" but works for rematerialized values. 1570 static void 1571 insertRematerializationStores( 1572 RematerializedValueMapTy RematerializedValues, 1573 DenseMap<Value *, Value *> &AllocaMap, 1574 DenseSet<Value *> &VisitedLiveValues) { 1575 1576 for (auto RematerializedValuePair: RematerializedValues) { 1577 Instruction *RematerializedValue = RematerializedValuePair.first; 1578 Value *OriginalValue = RematerializedValuePair.second; 1579 1580 assert(AllocaMap.count(OriginalValue) && 1581 "Can not find alloca for rematerialized value"); 1582 Value *Alloca = AllocaMap[OriginalValue]; 1583 1584 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1585 Store->insertAfter(RematerializedValue); 1586 1587 #ifndef NDEBUG 1588 VisitedLiveValues.insert(OriginalValue); 1589 #endif 1590 } 1591 } 1592 1593 /// do all the relocation update via allocas and mem2reg 1594 static void relocationViaAlloca( 1595 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1596 ArrayRef<struct PartiallyConstructedSafepointRecord> Records) { 1597 #ifndef NDEBUG 1598 // record initial number of (static) allocas; we'll check we have the same 1599 // number when we get done. 1600 int InitialAllocaNum = 0; 1601 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1602 I++) 1603 if (isa<AllocaInst>(*I)) 1604 InitialAllocaNum++; 1605 #endif 1606 1607 // TODO-PERF: change data structures, reserve 1608 DenseMap<Value *, Value *> AllocaMap; 1609 SmallVector<AllocaInst *, 200> PromotableAllocas; 1610 // Used later to chack that we have enough allocas to store all values 1611 std::size_t NumRematerializedValues = 0; 1612 PromotableAllocas.reserve(Live.size()); 1613 1614 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1615 // "PromotableAllocas" 1616 auto emitAllocaFor = [&](Value *LiveValue) { 1617 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1618 F.getEntryBlock().getFirstNonPHI()); 1619 AllocaMap[LiveValue] = Alloca; 1620 PromotableAllocas.push_back(Alloca); 1621 }; 1622 1623 // emit alloca for each live gc pointer 1624 for (unsigned i = 0; i < Live.size(); i++) { 1625 emitAllocaFor(Live[i]); 1626 } 1627 1628 // emit allocas for rematerialized values 1629 for (size_t i = 0; i < Records.size(); i++) { 1630 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1631 1632 for (auto RematerializedValuePair : Info.RematerializedValues) { 1633 Value *OriginalValue = RematerializedValuePair.second; 1634 if (AllocaMap.count(OriginalValue) != 0) 1635 continue; 1636 1637 emitAllocaFor(OriginalValue); 1638 ++NumRematerializedValues; 1639 } 1640 } 1641 1642 // The next two loops are part of the same conceptual operation. We need to 1643 // insert a store to the alloca after the original def and at each 1644 // redefinition. We need to insert a load before each use. These are split 1645 // into distinct loops for performance reasons. 1646 1647 // update gc pointer after each statepoint 1648 // either store a relocated value or null (if no relocated value found for 1649 // this gc pointer and it is not a gc_result) 1650 // this must happen before we update the statepoint with load of alloca 1651 // otherwise we lose the link between statepoint and old def 1652 for (size_t i = 0; i < Records.size(); i++) { 1653 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1654 Value *Statepoint = Info.StatepointToken; 1655 1656 // This will be used for consistency check 1657 DenseSet<Value *> VisitedLiveValues; 1658 1659 // Insert stores for normal statepoint gc relocates 1660 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1661 1662 // In case if it was invoke statepoint 1663 // we will insert stores for exceptional path gc relocates. 1664 if (isa<InvokeInst>(Statepoint)) { 1665 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1666 VisitedLiveValues); 1667 } 1668 1669 // Do similar thing with rematerialized values 1670 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1671 VisitedLiveValues); 1672 1673 if (ClobberNonLive) { 1674 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1675 // the gc.statepoint. This will turn some subtle GC problems into 1676 // slightly easier to debug SEGVs. Note that on large IR files with 1677 // lots of gc.statepoints this is extremely costly both memory and time 1678 // wise. 1679 SmallVector<AllocaInst *, 64> ToClobber; 1680 for (auto Pair : AllocaMap) { 1681 Value *Def = Pair.first; 1682 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1683 1684 // This value was relocated 1685 if (VisitedLiveValues.count(Def)) { 1686 continue; 1687 } 1688 ToClobber.push_back(Alloca); 1689 } 1690 1691 auto InsertClobbersAt = [&](Instruction *IP) { 1692 for (auto *AI : ToClobber) { 1693 auto AIType = cast<PointerType>(AI->getType()); 1694 auto PT = cast<PointerType>(AIType->getElementType()); 1695 Constant *CPN = ConstantPointerNull::get(PT); 1696 StoreInst *Store = new StoreInst(CPN, AI); 1697 Store->insertBefore(IP); 1698 } 1699 }; 1700 1701 // Insert the clobbering stores. These may get intermixed with the 1702 // gc.results and gc.relocates, but that's fine. 1703 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1704 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1705 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1706 } else { 1707 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1708 Next++; 1709 InsertClobbersAt(Next); 1710 } 1711 } 1712 } 1713 // update use with load allocas and add store for gc_relocated 1714 for (auto Pair : AllocaMap) { 1715 Value *Def = Pair.first; 1716 Value *Alloca = Pair.second; 1717 1718 // we pre-record the uses of allocas so that we dont have to worry about 1719 // later update 1720 // that change the user information. 1721 SmallVector<Instruction *, 20> Uses; 1722 // PERF: trade a linear scan for repeated reallocation 1723 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1724 for (User *U : Def->users()) { 1725 if (!isa<ConstantExpr>(U)) { 1726 // If the def has a ConstantExpr use, then the def is either a 1727 // ConstantExpr use itself or null. In either case 1728 // (recursively in the first, directly in the second), the oop 1729 // it is ultimately dependent on is null and this particular 1730 // use does not need to be fixed up. 1731 Uses.push_back(cast<Instruction>(U)); 1732 } 1733 } 1734 1735 std::sort(Uses.begin(), Uses.end()); 1736 auto Last = std::unique(Uses.begin(), Uses.end()); 1737 Uses.erase(Last, Uses.end()); 1738 1739 for (Instruction *Use : Uses) { 1740 if (isa<PHINode>(Use)) { 1741 PHINode *Phi = cast<PHINode>(Use); 1742 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1743 if (Def == Phi->getIncomingValue(i)) { 1744 LoadInst *Load = new LoadInst( 1745 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1746 Phi->setIncomingValue(i, Load); 1747 } 1748 } 1749 } else { 1750 LoadInst *Load = new LoadInst(Alloca, "", Use); 1751 Use->replaceUsesOfWith(Def, Load); 1752 } 1753 } 1754 1755 // emit store for the initial gc value 1756 // store must be inserted after load, otherwise store will be in alloca's 1757 // use list and an extra load will be inserted before it 1758 StoreInst *Store = new StoreInst(Def, Alloca); 1759 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1760 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1761 // InvokeInst is a TerminatorInst so the store need to be inserted 1762 // into its normal destination block. 1763 BasicBlock *NormalDest = Invoke->getNormalDest(); 1764 Store->insertBefore(NormalDest->getFirstNonPHI()); 1765 } else { 1766 assert(!Inst->isTerminator() && 1767 "The only TerminatorInst that can produce a value is " 1768 "InvokeInst which is handled above."); 1769 Store->insertAfter(Inst); 1770 } 1771 } else { 1772 assert(isa<Argument>(Def)); 1773 Store->insertAfter(cast<Instruction>(Alloca)); 1774 } 1775 } 1776 1777 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1778 "we must have the same allocas with lives"); 1779 if (!PromotableAllocas.empty()) { 1780 // apply mem2reg to promote alloca to SSA 1781 PromoteMemToReg(PromotableAllocas, DT); 1782 } 1783 1784 #ifndef NDEBUG 1785 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1786 I++) 1787 if (isa<AllocaInst>(*I)) 1788 InitialAllocaNum--; 1789 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1790 #endif 1791 } 1792 1793 /// Implement a unique function which doesn't require we sort the input 1794 /// vector. Doing so has the effect of changing the output of a couple of 1795 /// tests in ways which make them less useful in testing fused safepoints. 1796 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1797 SmallSet<T, 8> Seen; 1798 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1799 return !Seen.insert(V).second; 1800 }), Vec.end()); 1801 } 1802 1803 /// Insert holders so that each Value is obviously live through the entire 1804 /// lifetime of the call. 1805 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1806 SmallVectorImpl<CallInst *> &Holders) { 1807 if (Values.empty()) 1808 // No values to hold live, might as well not insert the empty holder 1809 return; 1810 1811 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1812 // Use a dummy vararg function to actually hold the values live 1813 Function *Func = cast<Function>(M->getOrInsertFunction( 1814 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1815 if (CS.isCall()) { 1816 // For call safepoints insert dummy calls right after safepoint 1817 BasicBlock::iterator Next(CS.getInstruction()); 1818 Next++; 1819 Holders.push_back(CallInst::Create(Func, Values, "", Next)); 1820 return; 1821 } 1822 // For invoke safepooints insert dummy calls both in normal and 1823 // exceptional destination blocks 1824 auto *II = cast<InvokeInst>(CS.getInstruction()); 1825 Holders.push_back(CallInst::Create( 1826 Func, Values, "", II->getNormalDest()->getFirstInsertionPt())); 1827 Holders.push_back(CallInst::Create( 1828 Func, Values, "", II->getUnwindDest()->getFirstInsertionPt())); 1829 } 1830 1831 static void findLiveReferences( 1832 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1833 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1834 GCPtrLivenessData OriginalLivenessData; 1835 computeLiveInValues(DT, F, OriginalLivenessData); 1836 for (size_t i = 0; i < records.size(); i++) { 1837 struct PartiallyConstructedSafepointRecord &info = records[i]; 1838 const CallSite &CS = toUpdate[i]; 1839 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1840 } 1841 } 1842 1843 /// Remove any vector of pointers from the liveset by scalarizing them over the 1844 /// statepoint instruction. Adds the scalarized pieces to the liveset. It 1845 /// would be preferable to include the vector in the statepoint itself, but 1846 /// the lowering code currently does not handle that. Extending it would be 1847 /// slightly non-trivial since it requires a format change. Given how rare 1848 /// such cases are (for the moment?) scalarizing is an acceptable compromise. 1849 static void splitVectorValues(Instruction *StatepointInst, 1850 StatepointLiveSetTy &LiveSet, 1851 DenseMap<Value *, Value *>& PointerToBase, 1852 DominatorTree &DT) { 1853 SmallVector<Value *, 16> ToSplit; 1854 for (Value *V : LiveSet) 1855 if (isa<VectorType>(V->getType())) 1856 ToSplit.push_back(V); 1857 1858 if (ToSplit.empty()) 1859 return; 1860 1861 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1862 1863 Function &F = *(StatepointInst->getParent()->getParent()); 1864 1865 DenseMap<Value *, AllocaInst *> AllocaMap; 1866 // First is normal return, second is exceptional return (invoke only) 1867 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1868 for (Value *V : ToSplit) { 1869 AllocaInst *Alloca = 1870 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1871 AllocaMap[V] = Alloca; 1872 1873 VectorType *VT = cast<VectorType>(V->getType()); 1874 IRBuilder<> Builder(StatepointInst); 1875 SmallVector<Value *, 16> Elements; 1876 for (unsigned i = 0; i < VT->getNumElements(); i++) 1877 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1878 ElementMapping[V] = Elements; 1879 1880 auto InsertVectorReform = [&](Instruction *IP) { 1881 Builder.SetInsertPoint(IP); 1882 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1883 Value *ResultVec = UndefValue::get(VT); 1884 for (unsigned i = 0; i < VT->getNumElements(); i++) 1885 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1886 Builder.getInt32(i)); 1887 return ResultVec; 1888 }; 1889 1890 if (isa<CallInst>(StatepointInst)) { 1891 BasicBlock::iterator Next(StatepointInst); 1892 Next++; 1893 Instruction *IP = &*(Next); 1894 Replacements[V].first = InsertVectorReform(IP); 1895 Replacements[V].second = nullptr; 1896 } else { 1897 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 1898 // We've already normalized - check that we don't have shared destination 1899 // blocks 1900 BasicBlock *NormalDest = Invoke->getNormalDest(); 1901 assert(!isa<PHINode>(NormalDest->begin())); 1902 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 1903 assert(!isa<PHINode>(UnwindDest->begin())); 1904 // Insert insert element sequences in both successors 1905 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 1906 Replacements[V].first = InsertVectorReform(IP); 1907 IP = &*(UnwindDest->getFirstInsertionPt()); 1908 Replacements[V].second = InsertVectorReform(IP); 1909 } 1910 } 1911 1912 for (Value *V : ToSplit) { 1913 AllocaInst *Alloca = AllocaMap[V]; 1914 1915 // Capture all users before we start mutating use lists 1916 SmallVector<Instruction *, 16> Users; 1917 for (User *U : V->users()) 1918 Users.push_back(cast<Instruction>(U)); 1919 1920 for (Instruction *I : Users) { 1921 if (auto Phi = dyn_cast<PHINode>(I)) { 1922 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 1923 if (V == Phi->getIncomingValue(i)) { 1924 LoadInst *Load = new LoadInst( 1925 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1926 Phi->setIncomingValue(i, Load); 1927 } 1928 } else { 1929 LoadInst *Load = new LoadInst(Alloca, "", I); 1930 I->replaceUsesOfWith(V, Load); 1931 } 1932 } 1933 1934 // Store the original value and the replacement value into the alloca 1935 StoreInst *Store = new StoreInst(V, Alloca); 1936 if (auto I = dyn_cast<Instruction>(V)) 1937 Store->insertAfter(I); 1938 else 1939 Store->insertAfter(Alloca); 1940 1941 // Normal return for invoke, or call return 1942 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 1943 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1944 // Unwind return for invoke only 1945 Replacement = cast_or_null<Instruction>(Replacements[V].second); 1946 if (Replacement) 1947 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1948 } 1949 1950 // apply mem2reg to promote alloca to SSA 1951 SmallVector<AllocaInst *, 16> Allocas; 1952 for (Value *V : ToSplit) 1953 Allocas.push_back(AllocaMap[V]); 1954 PromoteMemToReg(Allocas, DT); 1955 1956 // Update our tracking of live pointers and base mappings to account for the 1957 // changes we just made. 1958 for (Value *V : ToSplit) { 1959 auto &Elements = ElementMapping[V]; 1960 1961 LiveSet.erase(V); 1962 LiveSet.insert(Elements.begin(), Elements.end()); 1963 // We need to update the base mapping as well. 1964 assert(PointerToBase.count(V)); 1965 Value *OldBase = PointerToBase[V]; 1966 auto &BaseElements = ElementMapping[OldBase]; 1967 PointerToBase.erase(V); 1968 assert(Elements.size() == BaseElements.size()); 1969 for (unsigned i = 0; i < Elements.size(); i++) { 1970 Value *Elem = Elements[i]; 1971 PointerToBase[Elem] = BaseElements[i]; 1972 } 1973 } 1974 } 1975 1976 // Helper function for the "rematerializeLiveValues". It walks use chain 1977 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1978 // values are visited (currently it is GEP's and casts). Returns true if it 1979 // successfully reached "BaseValue" and false otherwise. 1980 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1981 // recorded. 1982 static bool findRematerializableChainToBasePointer( 1983 SmallVectorImpl<Instruction*> &ChainToBase, 1984 Value *CurrentValue, Value *BaseValue) { 1985 1986 // We have found a base value 1987 if (CurrentValue == BaseValue) { 1988 return true; 1989 } 1990 1991 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1992 ChainToBase.push_back(GEP); 1993 return findRematerializableChainToBasePointer(ChainToBase, 1994 GEP->getPointerOperand(), 1995 BaseValue); 1996 } 1997 1998 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1999 Value *Def = CI->stripPointerCasts(); 2000 2001 // This two checks are basically similar. First one is here for the 2002 // consistency with findBasePointers logic. 2003 assert(!isa<CastInst>(Def) && "not a pointer cast found"); 2004 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2005 return false; 2006 2007 ChainToBase.push_back(CI); 2008 return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue); 2009 } 2010 2011 // Not supported instruction in the chain 2012 return false; 2013 } 2014 2015 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2016 // chain we are going to rematerialize. 2017 static unsigned 2018 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 2019 TargetTransformInfo &TTI) { 2020 unsigned Cost = 0; 2021 2022 for (Instruction *Instr : Chain) { 2023 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2024 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2025 "non noop cast is found during rematerialization"); 2026 2027 Type *SrcTy = CI->getOperand(0)->getType(); 2028 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 2029 2030 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2031 // Cost of the address calculation 2032 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); 2033 Cost += TTI.getAddressComputationCost(ValTy); 2034 2035 // And cost of the GEP itself 2036 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2037 // allowed for the external usage) 2038 if (!GEP->hasAllConstantIndices()) 2039 Cost += 2; 2040 2041 } else { 2042 llvm_unreachable("unsupported instruciton type during rematerialization"); 2043 } 2044 } 2045 2046 return Cost; 2047 } 2048 2049 // From the statepoint liveset pick values that are cheaper to recompute then to 2050 // relocate. Remove this values from the liveset, rematerialize them after 2051 // statepoint and record them in "Info" structure. Note that similar to 2052 // relocated values we don't do any user adjustments here. 2053 static void rematerializeLiveValues(CallSite CS, 2054 PartiallyConstructedSafepointRecord &Info, 2055 TargetTransformInfo &TTI) { 2056 const unsigned int ChainLengthThreshold = 10; 2057 2058 // Record values we are going to delete from this statepoint live set. 2059 // We can not di this in following loop due to iterator invalidation. 2060 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2061 2062 for (Value *LiveValue: Info.liveset) { 2063 // For each live pointer find it's defining chain 2064 SmallVector<Instruction *, 3> ChainToBase; 2065 assert(Info.PointerToBase.count(LiveValue)); 2066 bool FoundChain = 2067 findRematerializableChainToBasePointer(ChainToBase, 2068 LiveValue, 2069 Info.PointerToBase[LiveValue]); 2070 // Nothing to do, or chain is too long 2071 if (!FoundChain || 2072 ChainToBase.size() == 0 || 2073 ChainToBase.size() > ChainLengthThreshold) 2074 continue; 2075 2076 // Compute cost of this chain 2077 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2078 // TODO: We can also account for cases when we will be able to remove some 2079 // of the rematerialized values by later optimization passes. I.e if 2080 // we rematerialized several intersecting chains. Or if original values 2081 // don't have any uses besides this statepoint. 2082 2083 // For invokes we need to rematerialize each chain twice - for normal and 2084 // for unwind basic blocks. Model this by multiplying cost by two. 2085 if (CS.isInvoke()) { 2086 Cost *= 2; 2087 } 2088 // If it's too expensive - skip it 2089 if (Cost >= RematerializationThreshold) 2090 continue; 2091 2092 // Remove value from the live set 2093 LiveValuesToBeDeleted.push_back(LiveValue); 2094 2095 // Clone instructions and record them inside "Info" structure 2096 2097 // Walk backwards to visit top-most instructions first 2098 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2099 2100 // Utility function which clones all instructions from "ChainToBase" 2101 // and inserts them before "InsertBefore". Returns rematerialized value 2102 // which should be used after statepoint. 2103 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 2104 Instruction *LastClonedValue = nullptr; 2105 Instruction *LastValue = nullptr; 2106 for (Instruction *Instr: ChainToBase) { 2107 // Only GEP's and casts are suported as we need to be careful to not 2108 // introduce any new uses of pointers not in the liveset. 2109 // Note that it's fine to introduce new uses of pointers which were 2110 // otherwise not used after this statepoint. 2111 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2112 2113 Instruction *ClonedValue = Instr->clone(); 2114 ClonedValue->insertBefore(InsertBefore); 2115 ClonedValue->setName(Instr->getName() + ".remat"); 2116 2117 // If it is not first instruction in the chain then it uses previously 2118 // cloned value. We should update it to use cloned value. 2119 if (LastClonedValue) { 2120 assert(LastValue); 2121 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2122 #ifndef NDEBUG 2123 // Assert that cloned instruction does not use any instructions from 2124 // this chain other than LastClonedValue 2125 for (auto OpValue : ClonedValue->operand_values()) { 2126 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2127 ChainToBase.end() && 2128 "incorrect use in rematerialization chain"); 2129 } 2130 #endif 2131 } 2132 2133 LastClonedValue = ClonedValue; 2134 LastValue = Instr; 2135 } 2136 assert(LastClonedValue); 2137 return LastClonedValue; 2138 }; 2139 2140 // Different cases for calls and invokes. For invokes we need to clone 2141 // instructions both on normal and unwind path. 2142 if (CS.isCall()) { 2143 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2144 assert(InsertBefore); 2145 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2146 Info.RematerializedValues[RematerializedValue] = LiveValue; 2147 } else { 2148 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2149 2150 Instruction *NormalInsertBefore = 2151 Invoke->getNormalDest()->getFirstInsertionPt(); 2152 Instruction *UnwindInsertBefore = 2153 Invoke->getUnwindDest()->getFirstInsertionPt(); 2154 2155 Instruction *NormalRematerializedValue = 2156 rematerializeChain(NormalInsertBefore); 2157 Instruction *UnwindRematerializedValue = 2158 rematerializeChain(UnwindInsertBefore); 2159 2160 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2161 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2162 } 2163 } 2164 2165 // Remove rematerializaed values from the live set 2166 for (auto LiveValue: LiveValuesToBeDeleted) { 2167 Info.liveset.erase(LiveValue); 2168 } 2169 } 2170 2171 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 2172 SmallVectorImpl<CallSite> &toUpdate) { 2173 #ifndef NDEBUG 2174 // sanity check the input 2175 std::set<CallSite> uniqued; 2176 uniqued.insert(toUpdate.begin(), toUpdate.end()); 2177 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 2178 2179 for (size_t i = 0; i < toUpdate.size(); i++) { 2180 CallSite &CS = toUpdate[i]; 2181 assert(CS.getInstruction()->getParent()->getParent() == &F); 2182 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 2183 } 2184 #endif 2185 2186 // When inserting gc.relocates for invokes, we need to be able to insert at 2187 // the top of the successor blocks. See the comment on 2188 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2189 // may restructure the CFG. 2190 for (CallSite CS : toUpdate) { 2191 if (!CS.isInvoke()) 2192 continue; 2193 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 2194 normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(), 2195 DT); 2196 normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(), 2197 DT); 2198 } 2199 2200 // A list of dummy calls added to the IR to keep various values obviously 2201 // live in the IR. We'll remove all of these when done. 2202 SmallVector<CallInst *, 64> holders; 2203 2204 // Insert a dummy call with all of the arguments to the vm_state we'll need 2205 // for the actual safepoint insertion. This ensures reference arguments in 2206 // the deopt argument list are considered live through the safepoint (and 2207 // thus makes sure they get relocated.) 2208 for (size_t i = 0; i < toUpdate.size(); i++) { 2209 CallSite &CS = toUpdate[i]; 2210 Statepoint StatepointCS(CS); 2211 2212 SmallVector<Value *, 64> DeoptValues; 2213 for (Use &U : StatepointCS.vm_state_args()) { 2214 Value *Arg = cast<Value>(&U); 2215 assert(!isUnhandledGCPointerType(Arg->getType()) && 2216 "support for FCA unimplemented"); 2217 if (isHandledGCPointerType(Arg->getType())) 2218 DeoptValues.push_back(Arg); 2219 } 2220 insertUseHolderAfter(CS, DeoptValues, holders); 2221 } 2222 2223 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 2224 records.reserve(toUpdate.size()); 2225 for (size_t i = 0; i < toUpdate.size(); i++) { 2226 struct PartiallyConstructedSafepointRecord info; 2227 records.push_back(info); 2228 } 2229 assert(records.size() == toUpdate.size()); 2230 2231 // A) Identify all gc pointers which are statically live at the given call 2232 // site. 2233 findLiveReferences(F, DT, P, toUpdate, records); 2234 2235 // B) Find the base pointers for each live pointer 2236 /* scope for caching */ { 2237 // Cache the 'defining value' relation used in the computation and 2238 // insertion of base phis and selects. This ensures that we don't insert 2239 // large numbers of duplicate base_phis. 2240 DefiningValueMapTy DVCache; 2241 2242 for (size_t i = 0; i < records.size(); i++) { 2243 struct PartiallyConstructedSafepointRecord &info = records[i]; 2244 CallSite &CS = toUpdate[i]; 2245 findBasePointers(DT, DVCache, CS, info); 2246 } 2247 } // end of cache scope 2248 2249 // The base phi insertion logic (for any safepoint) may have inserted new 2250 // instructions which are now live at some safepoint. The simplest such 2251 // example is: 2252 // loop: 2253 // phi a <-- will be a new base_phi here 2254 // safepoint 1 <-- that needs to be live here 2255 // gep a + 1 2256 // safepoint 2 2257 // br loop 2258 // We insert some dummy calls after each safepoint to definitely hold live 2259 // the base pointers which were identified for that safepoint. We'll then 2260 // ask liveness for _every_ base inserted to see what is now live. Then we 2261 // remove the dummy calls. 2262 holders.reserve(holders.size() + records.size()); 2263 for (size_t i = 0; i < records.size(); i++) { 2264 struct PartiallyConstructedSafepointRecord &info = records[i]; 2265 CallSite &CS = toUpdate[i]; 2266 2267 SmallVector<Value *, 128> Bases; 2268 for (auto Pair : info.PointerToBase) { 2269 Bases.push_back(Pair.second); 2270 } 2271 insertUseHolderAfter(CS, Bases, holders); 2272 } 2273 2274 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2275 // need to rerun liveness. We may *also* have inserted new defs, but that's 2276 // not the key issue. 2277 recomputeLiveInValues(F, DT, P, toUpdate, records); 2278 2279 if (PrintBasePointers) { 2280 for (size_t i = 0; i < records.size(); i++) { 2281 struct PartiallyConstructedSafepointRecord &info = records[i]; 2282 errs() << "Base Pairs: (w/Relocation)\n"; 2283 for (auto Pair : info.PointerToBase) { 2284 errs() << " derived %" << Pair.first->getName() << " base %" 2285 << Pair.second->getName() << "\n"; 2286 } 2287 } 2288 } 2289 for (size_t i = 0; i < holders.size(); i++) { 2290 holders[i]->eraseFromParent(); 2291 holders[i] = nullptr; 2292 } 2293 holders.clear(); 2294 2295 // Do a limited scalarization of any live at safepoint vector values which 2296 // contain pointers. This enables this pass to run after vectorization at 2297 // the cost of some possible performance loss. TODO: it would be nice to 2298 // natively support vectors all the way through the backend so we don't need 2299 // to scalarize here. 2300 for (size_t i = 0; i < records.size(); i++) { 2301 struct PartiallyConstructedSafepointRecord &info = records[i]; 2302 Instruction *statepoint = toUpdate[i].getInstruction(); 2303 splitVectorValues(cast<Instruction>(statepoint), info.liveset, 2304 info.PointerToBase, DT); 2305 } 2306 2307 // In order to reduce live set of statepoint we might choose to rematerialize 2308 // some values instead of relocating them. This is purely an optimization and 2309 // does not influence correctness. 2310 TargetTransformInfo &TTI = 2311 P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2312 2313 for (size_t i = 0; i < records.size(); i++) { 2314 struct PartiallyConstructedSafepointRecord &info = records[i]; 2315 CallSite &CS = toUpdate[i]; 2316 2317 rematerializeLiveValues(CS, info, TTI); 2318 } 2319 2320 // Now run through and replace the existing statepoints with new ones with 2321 // the live variables listed. We do not yet update uses of the values being 2322 // relocated. We have references to live variables that need to 2323 // survive to the last iteration of this loop. (By construction, the 2324 // previous statepoint can not be a live variable, thus we can and remove 2325 // the old statepoint calls as we go.) 2326 for (size_t i = 0; i < records.size(); i++) { 2327 struct PartiallyConstructedSafepointRecord &info = records[i]; 2328 CallSite &CS = toUpdate[i]; 2329 makeStatepointExplicit(DT, CS, P, info); 2330 } 2331 toUpdate.clear(); // prevent accident use of invalid CallSites 2332 2333 // Do all the fixups of the original live variables to their relocated selves 2334 SmallVector<Value *, 128> live; 2335 for (size_t i = 0; i < records.size(); i++) { 2336 struct PartiallyConstructedSafepointRecord &info = records[i]; 2337 // We can't simply save the live set from the original insertion. One of 2338 // the live values might be the result of a call which needs a safepoint. 2339 // That Value* no longer exists and we need to use the new gc_result. 2340 // Thankfully, the liveset is embedded in the statepoint (and updated), so 2341 // we just grab that. 2342 Statepoint statepoint(info.StatepointToken); 2343 live.insert(live.end(), statepoint.gc_args_begin(), 2344 statepoint.gc_args_end()); 2345 #ifndef NDEBUG 2346 // Do some basic sanity checks on our liveness results before performing 2347 // relocation. Relocation can and will turn mistakes in liveness results 2348 // into non-sensical code which is must harder to debug. 2349 // TODO: It would be nice to test consistency as well 2350 assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) && 2351 "statepoint must be reachable or liveness is meaningless"); 2352 for (Value *V : statepoint.gc_args()) { 2353 if (!isa<Instruction>(V)) 2354 // Non-instruction values trivial dominate all possible uses 2355 continue; 2356 auto LiveInst = cast<Instruction>(V); 2357 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2358 "unreachable values should never be live"); 2359 assert(DT.dominates(LiveInst, info.StatepointToken) && 2360 "basic SSA liveness expectation violated by liveness analysis"); 2361 } 2362 #endif 2363 } 2364 unique_unsorted(live); 2365 2366 #ifndef NDEBUG 2367 // sanity check 2368 for (auto ptr : live) { 2369 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 2370 } 2371 #endif 2372 2373 relocationViaAlloca(F, DT, live, records); 2374 return !records.empty(); 2375 } 2376 2377 // Handles both return values and arguments for Functions and CallSites. 2378 template <typename AttrHolder> 2379 static void RemoveDerefAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2380 unsigned Index) { 2381 AttrBuilder R; 2382 if (AH.getDereferenceableBytes(Index)) 2383 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2384 AH.getDereferenceableBytes(Index))); 2385 if (AH.getDereferenceableOrNullBytes(Index)) 2386 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2387 AH.getDereferenceableOrNullBytes(Index))); 2388 2389 if (!R.empty()) 2390 AH.setAttributes(AH.getAttributes().removeAttributes( 2391 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2392 } 2393 2394 void 2395 RewriteStatepointsForGC::stripDereferenceabilityInfoFromPrototype(Function &F) { 2396 LLVMContext &Ctx = F.getContext(); 2397 2398 for (Argument &A : F.args()) 2399 if (isa<PointerType>(A.getType())) 2400 RemoveDerefAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2401 2402 if (isa<PointerType>(F.getReturnType())) 2403 RemoveDerefAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2404 } 2405 2406 void RewriteStatepointsForGC::stripDereferenceabilityInfoFromBody(Function &F) { 2407 if (F.empty()) 2408 return; 2409 2410 LLVMContext &Ctx = F.getContext(); 2411 MDBuilder Builder(Ctx); 2412 2413 for (Instruction &I : instructions(F)) { 2414 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2415 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2416 bool IsImmutableTBAA = 2417 MD->getNumOperands() == 4 && 2418 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2419 2420 if (!IsImmutableTBAA) 2421 continue; // no work to do, MD_tbaa is already marked mutable 2422 2423 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2424 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2425 uint64_t Offset = 2426 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2427 2428 MDNode *MutableTBAA = 2429 Builder.createTBAAStructTagNode(Base, Access, Offset); 2430 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2431 } 2432 2433 if (CallSite CS = CallSite(&I)) { 2434 for (int i = 0, e = CS.arg_size(); i != e; i++) 2435 if (isa<PointerType>(CS.getArgument(i)->getType())) 2436 RemoveDerefAttrAtIndex(Ctx, CS, i + 1); 2437 if (isa<PointerType>(CS.getType())) 2438 RemoveDerefAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2439 } 2440 } 2441 } 2442 2443 /// Returns true if this function should be rewritten by this pass. The main 2444 /// point of this function is as an extension point for custom logic. 2445 static bool shouldRewriteStatepointsIn(Function &F) { 2446 // TODO: This should check the GCStrategy 2447 if (F.hasGC()) { 2448 const char *FunctionGCName = F.getGC(); 2449 const StringRef StatepointExampleName("statepoint-example"); 2450 const StringRef CoreCLRName("coreclr"); 2451 return (StatepointExampleName == FunctionGCName) || 2452 (CoreCLRName == FunctionGCName); 2453 } else 2454 return false; 2455 } 2456 2457 void RewriteStatepointsForGC::stripDereferenceabilityInfo(Module &M) { 2458 #ifndef NDEBUG 2459 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2460 "precondition!"); 2461 #endif 2462 2463 for (Function &F : M) 2464 stripDereferenceabilityInfoFromPrototype(F); 2465 2466 for (Function &F : M) 2467 stripDereferenceabilityInfoFromBody(F); 2468 } 2469 2470 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2471 // Nothing to do for declarations. 2472 if (F.isDeclaration() || F.empty()) 2473 return false; 2474 2475 // Policy choice says not to rewrite - the most common reason is that we're 2476 // compiling code without a GCStrategy. 2477 if (!shouldRewriteStatepointsIn(F)) 2478 return false; 2479 2480 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2481 2482 // Gather all the statepoints which need rewritten. Be careful to only 2483 // consider those in reachable code since we need to ask dominance queries 2484 // when rewriting. We'll delete the unreachable ones in a moment. 2485 SmallVector<CallSite, 64> ParsePointNeeded; 2486 bool HasUnreachableStatepoint = false; 2487 for (Instruction &I : instructions(F)) { 2488 // TODO: only the ones with the flag set! 2489 if (isStatepoint(I)) { 2490 if (DT.isReachableFromEntry(I.getParent())) 2491 ParsePointNeeded.push_back(CallSite(&I)); 2492 else 2493 HasUnreachableStatepoint = true; 2494 } 2495 } 2496 2497 bool MadeChange = false; 2498 2499 // Delete any unreachable statepoints so that we don't have unrewritten 2500 // statepoints surviving this pass. This makes testing easier and the 2501 // resulting IR less confusing to human readers. Rather than be fancy, we 2502 // just reuse a utility function which removes the unreachable blocks. 2503 if (HasUnreachableStatepoint) 2504 MadeChange |= removeUnreachableBlocks(F); 2505 2506 // Return early if no work to do. 2507 if (ParsePointNeeded.empty()) 2508 return MadeChange; 2509 2510 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2511 // These are created by LCSSA. They have the effect of increasing the size 2512 // of liveness sets for no good reason. It may be harder to do this post 2513 // insertion since relocations and base phis can confuse things. 2514 for (BasicBlock &BB : F) 2515 if (BB.getUniquePredecessor()) { 2516 MadeChange = true; 2517 FoldSingleEntryPHINodes(&BB); 2518 } 2519 2520 // Before we start introducing relocations, we want to tweak the IR a bit to 2521 // avoid unfortunate code generation effects. The main example is that we 2522 // want to try to make sure the comparison feeding a branch is after any 2523 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2524 // values feeding a branch after relocation. This is semantically correct, 2525 // but results in extra register pressure since both the pre-relocation and 2526 // post-relocation copies must be available in registers. For code without 2527 // relocations this is handled elsewhere, but teaching the scheduler to 2528 // reverse the transform we're about to do would be slightly complex. 2529 // Note: This may extend the live range of the inputs to the icmp and thus 2530 // increase the liveset of any statepoint we move over. This is profitable 2531 // as long as all statepoints are in rare blocks. If we had in-register 2532 // lowering for live values this would be a much safer transform. 2533 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2534 if (auto *BI = dyn_cast<BranchInst>(TI)) 2535 if (BI->isConditional()) 2536 return dyn_cast<Instruction>(BI->getCondition()); 2537 // TODO: Extend this to handle switches 2538 return nullptr; 2539 }; 2540 for (BasicBlock &BB : F) { 2541 TerminatorInst *TI = BB.getTerminator(); 2542 if (auto *Cond = getConditionInst(TI)) 2543 // TODO: Handle more than just ICmps here. We should be able to move 2544 // most instructions without side effects or memory access. 2545 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2546 MadeChange = true; 2547 Cond->moveBefore(TI); 2548 } 2549 } 2550 2551 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); 2552 return MadeChange; 2553 } 2554 2555 // liveness computation via standard dataflow 2556 // ------------------------------------------------------------------- 2557 2558 // TODO: Consider using bitvectors for liveness, the set of potentially 2559 // interesting values should be small and easy to pre-compute. 2560 2561 /// Compute the live-in set for the location rbegin starting from 2562 /// the live-out set of the basic block 2563 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2564 BasicBlock::reverse_iterator rend, 2565 DenseSet<Value *> &LiveTmp) { 2566 2567 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2568 Instruction *I = &*ritr; 2569 2570 // KILL/Def - Remove this definition from LiveIn 2571 LiveTmp.erase(I); 2572 2573 // Don't consider *uses* in PHI nodes, we handle their contribution to 2574 // predecessor blocks when we seed the LiveOut sets 2575 if (isa<PHINode>(I)) 2576 continue; 2577 2578 // USE - Add to the LiveIn set for this instruction 2579 for (Value *V : I->operands()) { 2580 assert(!isUnhandledGCPointerType(V->getType()) && 2581 "support for FCA unimplemented"); 2582 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2583 // The choice to exclude all things constant here is slightly subtle. 2584 // There are two independent reasons: 2585 // - We assume that things which are constant (from LLVM's definition) 2586 // do not move at runtime. For example, the address of a global 2587 // variable is fixed, even though it's contents may not be. 2588 // - Second, we can't disallow arbitrary inttoptr constants even 2589 // if the language frontend does. Optimization passes are free to 2590 // locally exploit facts without respect to global reachability. This 2591 // can create sections of code which are dynamically unreachable and 2592 // contain just about anything. (see constants.ll in tests) 2593 LiveTmp.insert(V); 2594 } 2595 } 2596 } 2597 } 2598 2599 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2600 2601 for (BasicBlock *Succ : successors(BB)) { 2602 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2603 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2604 PHINode *Phi = cast<PHINode>(&*I); 2605 Value *V = Phi->getIncomingValueForBlock(BB); 2606 assert(!isUnhandledGCPointerType(V->getType()) && 2607 "support for FCA unimplemented"); 2608 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2609 LiveTmp.insert(V); 2610 } 2611 } 2612 } 2613 } 2614 2615 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2616 DenseSet<Value *> KillSet; 2617 for (Instruction &I : *BB) 2618 if (isHandledGCPointerType(I.getType())) 2619 KillSet.insert(&I); 2620 return KillSet; 2621 } 2622 2623 #ifndef NDEBUG 2624 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2625 /// sanity check for the liveness computation. 2626 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2627 TerminatorInst *TI, bool TermOkay = false) { 2628 for (Value *V : Live) { 2629 if (auto *I = dyn_cast<Instruction>(V)) { 2630 // The terminator can be a member of the LiveOut set. LLVM's definition 2631 // of instruction dominance states that V does not dominate itself. As 2632 // such, we need to special case this to allow it. 2633 if (TermOkay && TI == I) 2634 continue; 2635 assert(DT.dominates(I, TI) && 2636 "basic SSA liveness expectation violated by liveness analysis"); 2637 } 2638 } 2639 } 2640 2641 /// Check that all the liveness sets used during the computation of liveness 2642 /// obey basic SSA properties. This is useful for finding cases where we miss 2643 /// a def. 2644 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2645 BasicBlock &BB) { 2646 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2647 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2648 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2649 } 2650 #endif 2651 2652 static void computeLiveInValues(DominatorTree &DT, Function &F, 2653 GCPtrLivenessData &Data) { 2654 2655 SmallSetVector<BasicBlock *, 200> Worklist; 2656 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2657 // We use a SetVector so that we don't have duplicates in the worklist. 2658 Worklist.insert(pred_begin(BB), pred_end(BB)); 2659 }; 2660 auto NextItem = [&]() { 2661 BasicBlock *BB = Worklist.back(); 2662 Worklist.pop_back(); 2663 return BB; 2664 }; 2665 2666 // Seed the liveness for each individual block 2667 for (BasicBlock &BB : F) { 2668 Data.KillSet[&BB] = computeKillSet(&BB); 2669 Data.LiveSet[&BB].clear(); 2670 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2671 2672 #ifndef NDEBUG 2673 for (Value *Kill : Data.KillSet[&BB]) 2674 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2675 #endif 2676 2677 Data.LiveOut[&BB] = DenseSet<Value *>(); 2678 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2679 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2680 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2681 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2682 if (!Data.LiveIn[&BB].empty()) 2683 AddPredsToWorklist(&BB); 2684 } 2685 2686 // Propagate that liveness until stable 2687 while (!Worklist.empty()) { 2688 BasicBlock *BB = NextItem(); 2689 2690 // Compute our new liveout set, then exit early if it hasn't changed 2691 // despite the contribution of our successor. 2692 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2693 const auto OldLiveOutSize = LiveOut.size(); 2694 for (BasicBlock *Succ : successors(BB)) { 2695 assert(Data.LiveIn.count(Succ)); 2696 set_union(LiveOut, Data.LiveIn[Succ]); 2697 } 2698 // assert OutLiveOut is a subset of LiveOut 2699 if (OldLiveOutSize == LiveOut.size()) { 2700 // If the sets are the same size, then we didn't actually add anything 2701 // when unioning our successors LiveIn Thus, the LiveIn of this block 2702 // hasn't changed. 2703 continue; 2704 } 2705 Data.LiveOut[BB] = LiveOut; 2706 2707 // Apply the effects of this basic block 2708 DenseSet<Value *> LiveTmp = LiveOut; 2709 set_union(LiveTmp, Data.LiveSet[BB]); 2710 set_subtract(LiveTmp, Data.KillSet[BB]); 2711 2712 assert(Data.LiveIn.count(BB)); 2713 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2714 // assert: OldLiveIn is a subset of LiveTmp 2715 if (OldLiveIn.size() != LiveTmp.size()) { 2716 Data.LiveIn[BB] = LiveTmp; 2717 AddPredsToWorklist(BB); 2718 } 2719 } // while( !worklist.empty() ) 2720 2721 #ifndef NDEBUG 2722 // Sanity check our output against SSA properties. This helps catch any 2723 // missing kills during the above iteration. 2724 for (BasicBlock &BB : F) { 2725 checkBasicSSA(DT, Data, BB); 2726 } 2727 #endif 2728 } 2729 2730 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2731 StatepointLiveSetTy &Out) { 2732 2733 BasicBlock *BB = Inst->getParent(); 2734 2735 // Note: The copy is intentional and required 2736 assert(Data.LiveOut.count(BB)); 2737 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2738 2739 // We want to handle the statepoint itself oddly. It's 2740 // call result is not live (normal), nor are it's arguments 2741 // (unless they're used again later). This adjustment is 2742 // specifically what we need to relocate 2743 BasicBlock::reverse_iterator rend(Inst); 2744 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2745 LiveOut.erase(Inst); 2746 Out.insert(LiveOut.begin(), LiveOut.end()); 2747 } 2748 2749 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2750 const CallSite &CS, 2751 PartiallyConstructedSafepointRecord &Info) { 2752 Instruction *Inst = CS.getInstruction(); 2753 StatepointLiveSetTy Updated; 2754 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2755 2756 #ifndef NDEBUG 2757 DenseSet<Value *> Bases; 2758 for (auto KVPair : Info.PointerToBase) { 2759 Bases.insert(KVPair.second); 2760 } 2761 #endif 2762 // We may have base pointers which are now live that weren't before. We need 2763 // to update the PointerToBase structure to reflect this. 2764 for (auto V : Updated) 2765 if (!Info.PointerToBase.count(V)) { 2766 assert(Bases.count(V) && "can't find base for unexpected live value"); 2767 Info.PointerToBase[V] = V; 2768 continue; 2769 } 2770 2771 #ifndef NDEBUG 2772 for (auto V : Updated) { 2773 assert(Info.PointerToBase.count(V) && 2774 "must be able to find base for live value"); 2775 } 2776 #endif 2777 2778 // Remove any stale base mappings - this can happen since our liveness is 2779 // more precise then the one inherent in the base pointer analysis 2780 DenseSet<Value *> ToErase; 2781 for (auto KVPair : Info.PointerToBase) 2782 if (!Updated.count(KVPair.first)) 2783 ToErase.insert(KVPair.first); 2784 for (auto V : ToErase) 2785 Info.PointerToBase.erase(V); 2786 2787 #ifndef NDEBUG 2788 for (auto KVPair : Info.PointerToBase) 2789 assert(Updated.count(KVPair.first) && "record for non-live value"); 2790 #endif 2791 2792 Info.liveset = Updated; 2793 } 2794