1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Statepoint.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 41 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 42 43 using namespace llvm; 44 45 // Print tracing output 46 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 47 cl::init(false)); 48 49 // Print the liveset found at the insert location 50 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 51 cl::init(false)); 52 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", 53 cl::Hidden, cl::init(false)); 54 // Print out the base pointers for debugging 55 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", 56 cl::Hidden, cl::init(false)); 57 58 namespace { 59 struct RewriteStatepointsForGC : public FunctionPass { 60 static char ID; // Pass identification, replacement for typeid 61 62 RewriteStatepointsForGC() : FunctionPass(ID) { 63 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 64 } 65 bool runOnFunction(Function &F) override; 66 67 void getAnalysisUsage(AnalysisUsage &AU) const override { 68 // We add and rewrite a bunch of instructions, but don't really do much 69 // else. We could in theory preserve a lot more analyses here. 70 AU.addRequired<DominatorTreeWrapperPass>(); 71 } 72 }; 73 } // namespace 74 75 char RewriteStatepointsForGC::ID = 0; 76 77 FunctionPass *llvm::createRewriteStatepointsForGCPass() { 78 return new RewriteStatepointsForGC(); 79 } 80 81 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 82 "Make relocations explicit at statepoints", false, false) 83 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 84 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 85 "Make relocations explicit at statepoints", false, false) 86 87 namespace { 88 // The type of the internal cache used inside the findBasePointers family 89 // of functions. From the callers perspective, this is an opaque type and 90 // should not be inspected. 91 // 92 // In the actual implementation this caches two relations: 93 // - The base relation itself (i.e. this pointer is based on that one) 94 // - The base defining value relation (i.e. before base_phi insertion) 95 // Generally, after the execution of a full findBasePointer call, only the 96 // base relation will remain. Internally, we add a mixture of the two 97 // types, then update all the second type to the first type 98 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 99 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 100 101 struct PartiallyConstructedSafepointRecord { 102 /// The set of values known to be live accross this safepoint 103 StatepointLiveSetTy liveset; 104 105 /// Mapping from live pointers to a base-defining-value 106 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 107 108 /// Any new values which were added to the IR during base pointer analysis 109 /// for this safepoint 110 DenseSet<llvm::Value *> NewInsertedDefs; 111 112 /// The *new* gc.statepoint instruction itself. This produces the token 113 /// that normal path gc.relocates and the gc.result are tied to. 114 Instruction *StatepointToken; 115 116 /// Instruction to which exceptional gc relocates are attached 117 /// Makes it easier to iterate through them during relocationViaAlloca. 118 Instruction *UnwindToken; 119 }; 120 } 121 122 // TODO: Once we can get to the GCStrategy, this becomes 123 // Optional<bool> isGCManagedPointer(const Value *V) const override { 124 125 static bool isGCPointerType(const Type *T) { 126 if (const PointerType *PT = dyn_cast<PointerType>(T)) 127 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 128 // GC managed heap. We know that a pointer into this heap needs to be 129 // updated and that no other pointer does. 130 return (1 == PT->getAddressSpace()); 131 return false; 132 } 133 134 /// Return true if the Value is a gc reference type which is potentially used 135 /// after the instruction 'loc'. This is only used with the edge reachability 136 /// liveness code. Note: It is assumed the V dominates loc. 137 static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT, 138 LoopInfo *LI) { 139 if (!isGCPointerType(V.getType())) 140 return false; 141 142 if (V.use_empty()) 143 return false; 144 145 // Given assumption that V dominates loc, this may be live 146 return true; 147 } 148 149 #ifndef NDEBUG 150 static bool isAggWhichContainsGCPtrType(Type *Ty) { 151 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 152 return isGCPointerType(VT->getScalarType()); 153 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 154 return isGCPointerType(AT->getElementType()) || 155 isAggWhichContainsGCPtrType(AT->getElementType()); 156 if (StructType *ST = dyn_cast<StructType>(Ty)) 157 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 158 [](Type *SubType) { 159 return isGCPointerType(SubType) || 160 isAggWhichContainsGCPtrType(SubType); 161 }); 162 return false; 163 } 164 #endif 165 166 // Conservatively identifies any definitions which might be live at the 167 // given instruction. The analysis is performed immediately before the 168 // given instruction. Values defined by that instruction are not considered 169 // live. Values used by that instruction are considered live. 170 // 171 // preconditions: valid IR graph, term is either a terminator instruction or 172 // a call instruction, pred is the basic block of term, DT, LI are valid 173 // 174 // side effects: none, does not mutate IR 175 // 176 // postconditions: populates liveValues as discussed above 177 static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred, 178 DominatorTree &DT, LoopInfo *LI, 179 StatepointLiveSetTy &liveValues) { 180 liveValues.clear(); 181 182 assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator()); 183 184 Function *F = pred->getParent(); 185 186 auto is_live_gc_reference = 187 [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); }; 188 189 // Are there any gc pointer arguments live over this point? This needs to be 190 // special cased since arguments aren't defined in basic blocks. 191 for (Argument &arg : F->args()) { 192 assert(!isAggWhichContainsGCPtrType(arg.getType()) && 193 "support for FCA unimplemented"); 194 195 if (is_live_gc_reference(arg)) { 196 liveValues.insert(&arg); 197 } 198 } 199 200 // Walk through all dominating blocks - the ones which can contain 201 // definitions used in this block - and check to see if any of the values 202 // they define are used in locations potentially reachable from the 203 // interesting instruction. 204 BasicBlock *BBI = pred; 205 while (true) { 206 if (TraceLSP) { 207 errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n"; 208 } 209 assert(DT.dominates(BBI, pred)); 210 assert(isPotentiallyReachable(BBI, pred, &DT) && 211 "dominated block must be reachable"); 212 213 // Walk through the instructions in dominating blocks and keep any 214 // that have a use potentially reachable from the block we're 215 // considering putting the safepoint in 216 for (Instruction &inst : *BBI) { 217 if (TraceLSP) { 218 errs() << "[LSP] Looking at instruction "; 219 inst.dump(); 220 } 221 222 if (pred == BBI && (&inst) == term) { 223 if (TraceLSP) { 224 errs() << "[LSP] stopped because we encountered the safepoint " 225 "instruction.\n"; 226 } 227 228 // If we're in the block which defines the interesting instruction, 229 // we don't want to include any values as live which are defined 230 // _after_ the interesting line or as part of the line itself 231 // i.e. "term" is the call instruction for a call safepoint, the 232 // results of the call should not be considered live in that stackmap 233 break; 234 } 235 236 assert(!isAggWhichContainsGCPtrType(inst.getType()) && 237 "support for FCA unimplemented"); 238 239 if (is_live_gc_reference(inst)) { 240 if (TraceLSP) { 241 errs() << "[LSP] found live value for this safepoint "; 242 inst.dump(); 243 term->dump(); 244 } 245 liveValues.insert(&inst); 246 } 247 } 248 if (!DT.getNode(BBI)->getIDom()) { 249 assert(BBI == &F->getEntryBlock() && 250 "failed to find a dominator for something other than " 251 "the entry block"); 252 break; 253 } 254 BBI = DT.getNode(BBI)->getIDom()->getBlock(); 255 } 256 } 257 258 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 259 if (a->hasName() && b->hasName()) { 260 return -1 == a->getName().compare(b->getName()); 261 } else if (a->hasName() && !b->hasName()) { 262 return true; 263 } else if (!a->hasName() && b->hasName()) { 264 return false; 265 } else { 266 // Better than nothing, but not stable 267 return a < b; 268 } 269 } 270 271 /// Find the initial live set. Note that due to base pointer 272 /// insertion, the live set may be incomplete. 273 static void 274 analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS, 275 PartiallyConstructedSafepointRecord &result) { 276 Instruction *inst = CS.getInstruction(); 277 278 BasicBlock *BB = inst->getParent(); 279 StatepointLiveSetTy liveset; 280 findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset); 281 282 if (PrintLiveSet) { 283 // Note: This output is used by several of the test cases 284 // The order of elemtns in a set is not stable, put them in a vec and sort 285 // by name 286 SmallVector<Value *, 64> temp; 287 temp.insert(temp.end(), liveset.begin(), liveset.end()); 288 std::sort(temp.begin(), temp.end(), order_by_name); 289 errs() << "Live Variables:\n"; 290 for (Value *V : temp) { 291 errs() << " " << V->getName(); // no newline 292 V->dump(); 293 } 294 } 295 if (PrintLiveSetSize) { 296 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 297 errs() << "Number live values: " << liveset.size() << "\n"; 298 } 299 result.liveset = liveset; 300 } 301 302 /// Helper function for findBasePointer - Will return a value which either a) 303 /// defines the base pointer for the input or b) blocks the simple search 304 /// (i.e. a PHI or Select of two derived pointers) 305 static Value *findBaseDefiningValue(Value *I) { 306 assert(I->getType()->isPointerTy() && 307 "Illegal to ask for the base pointer of a non-pointer type"); 308 309 // There are instructions which can never return gc pointer values. Sanity 310 // check that this is actually true. 311 assert(!isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) && 312 !isa<ShuffleVectorInst>(I) && "Vector types are not gc pointers"); 313 314 if (isa<Argument>(I)) 315 // An incoming argument to the function is a base pointer 316 // We should have never reached here if this argument isn't an gc value 317 return I; 318 319 if (isa<GlobalVariable>(I)) 320 // base case 321 return I; 322 323 // inlining could possibly introduce phi node that contains 324 // undef if callee has multiple returns 325 if (isa<UndefValue>(I)) 326 // utterly meaningless, but useful for dealing with 327 // partially optimized code. 328 return I; 329 330 // Due to inheritance, this must be _after_ the global variable and undef 331 // checks 332 if (Constant *Con = dyn_cast<Constant>(I)) { 333 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 334 "order of checks wrong!"); 335 // Note: Finding a constant base for something marked for relocation 336 // doesn't really make sense. The most likely case is either a) some 337 // screwed up the address space usage or b) your validating against 338 // compiled C++ code w/o the proper separation. The only real exception 339 // is a null pointer. You could have generic code written to index of 340 // off a potentially null value and have proven it null. We also use 341 // null pointers in dead paths of relocation phis (which we might later 342 // want to find a base pointer for). 343 assert(isa<ConstantPointerNull>(Con) && 344 "null is the only case which makes sense"); 345 return Con; 346 } 347 348 if (CastInst *CI = dyn_cast<CastInst>(I)) { 349 Value *Def = CI->stripPointerCasts(); 350 // If we find a cast instruction here, it means we've found a cast which is 351 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 352 // handle int->ptr conversion. 353 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 354 return findBaseDefiningValue(Def); 355 } 356 357 if (isa<LoadInst>(I)) 358 return I; // The value loaded is an gc base itself 359 360 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 361 // The base of this GEP is the base 362 return findBaseDefiningValue(GEP->getPointerOperand()); 363 364 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 365 switch (II->getIntrinsicID()) { 366 case Intrinsic::experimental_gc_result_ptr: 367 default: 368 // fall through to general call handling 369 break; 370 case Intrinsic::experimental_gc_statepoint: 371 case Intrinsic::experimental_gc_result_float: 372 case Intrinsic::experimental_gc_result_int: 373 llvm_unreachable("these don't produce pointers"); 374 case Intrinsic::experimental_gc_relocate: { 375 // Rerunning safepoint insertion after safepoints are already 376 // inserted is not supported. It could probably be made to work, 377 // but why are you doing this? There's no good reason. 378 llvm_unreachable("repeat safepoint insertion is not supported"); 379 } 380 case Intrinsic::gcroot: 381 // Currently, this mechanism hasn't been extended to work with gcroot. 382 // There's no reason it couldn't be, but I haven't thought about the 383 // implications much. 384 llvm_unreachable( 385 "interaction with the gcroot mechanism is not supported"); 386 } 387 } 388 // We assume that functions in the source language only return base 389 // pointers. This should probably be generalized via attributes to support 390 // both source language and internal functions. 391 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 392 return I; 393 394 // I have absolutely no idea how to implement this part yet. It's not 395 // neccessarily hard, I just haven't really looked at it yet. 396 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 397 398 if (isa<AtomicCmpXchgInst>(I)) 399 // A CAS is effectively a atomic store and load combined under a 400 // predicate. From the perspective of base pointers, we just treat it 401 // like a load. 402 return I; 403 404 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 405 "binary ops which don't apply to pointers"); 406 407 // The aggregate ops. Aggregates can either be in the heap or on the 408 // stack, but in either case, this is simply a field load. As a result, 409 // this is a defining definition of the base just like a load is. 410 if (isa<ExtractValueInst>(I)) 411 return I; 412 413 // We should never see an insert vector since that would require we be 414 // tracing back a struct value not a pointer value. 415 assert(!isa<InsertValueInst>(I) && 416 "Base pointer for a struct is meaningless"); 417 418 // The last two cases here don't return a base pointer. Instead, they 419 // return a value which dynamically selects from amoung several base 420 // derived pointers (each with it's own base potentially). It's the job of 421 // the caller to resolve these. 422 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 423 "missing instruction case in findBaseDefiningValing"); 424 return I; 425 } 426 427 /// Returns the base defining value for this value. 428 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 429 Value *&Cached = Cache[I]; 430 if (!Cached) { 431 Cached = findBaseDefiningValue(I); 432 } 433 assert(Cache[I] != nullptr); 434 435 if (TraceLSP) { 436 dbgs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() 437 << "\n"; 438 } 439 return Cached; 440 } 441 442 /// Return a base pointer for this value if known. Otherwise, return it's 443 /// base defining value. 444 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 445 Value *Def = findBaseDefiningValueCached(I, Cache); 446 auto Found = Cache.find(Def); 447 if (Found != Cache.end()) { 448 // Either a base-of relation, or a self reference. Caller must check. 449 return Found->second; 450 } 451 // Only a BDV available 452 return Def; 453 } 454 455 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 456 /// is it known to be a base pointer? Or do we need to continue searching. 457 static bool isKnownBaseResult(Value *V) { 458 if (!isa<PHINode>(V) && !isa<SelectInst>(V)) { 459 // no recursion possible 460 return true; 461 } 462 if (isa<Instruction>(V) && 463 cast<Instruction>(V)->getMetadata("is_base_value")) { 464 // This is a previously inserted base phi or select. We know 465 // that this is a base value. 466 return true; 467 } 468 469 // We need to keep searching 470 return false; 471 } 472 473 // TODO: find a better name for this 474 namespace { 475 class PhiState { 476 public: 477 enum Status { Unknown, Base, Conflict }; 478 479 PhiState(Status s, Value *b = nullptr) : status(s), base(b) { 480 assert(status != Base || b); 481 } 482 PhiState(Value *b) : status(Base), base(b) {} 483 PhiState() : status(Unknown), base(nullptr) {} 484 485 Status getStatus() const { return status; } 486 Value *getBase() const { return base; } 487 488 bool isBase() const { return getStatus() == Base; } 489 bool isUnknown() const { return getStatus() == Unknown; } 490 bool isConflict() const { return getStatus() == Conflict; } 491 492 bool operator==(const PhiState &other) const { 493 return base == other.base && status == other.status; 494 } 495 496 bool operator!=(const PhiState &other) const { return !(*this == other); } 497 498 void dump() { 499 errs() << status << " (" << base << " - " 500 << (base ? base->getName() : "nullptr") << "): "; 501 } 502 503 private: 504 Status status; 505 Value *base; // non null only if status == base 506 }; 507 508 typedef DenseMap<Value *, PhiState> ConflictStateMapTy; 509 // Values of type PhiState form a lattice, and this is a helper 510 // class that implementes the meet operation. The meat of the meet 511 // operation is implemented in MeetPhiStates::pureMeet 512 class MeetPhiStates { 513 public: 514 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. 515 explicit MeetPhiStates(const ConflictStateMapTy &phiStates) 516 : phiStates(phiStates) {} 517 518 // Destructively meet the current result with the base V. V can 519 // either be a merge instruction (SelectInst / PHINode), in which 520 // case its status is looked up in the phiStates map; or a regular 521 // SSA value, in which case it is assumed to be a base. 522 void meetWith(Value *V) { 523 PhiState otherState = getStateForBDV(V); 524 assert((MeetPhiStates::pureMeet(otherState, currentResult) == 525 MeetPhiStates::pureMeet(currentResult, otherState)) && 526 "math is wrong: meet does not commute!"); 527 currentResult = MeetPhiStates::pureMeet(otherState, currentResult); 528 } 529 530 PhiState getResult() const { return currentResult; } 531 532 private: 533 const ConflictStateMapTy &phiStates; 534 PhiState currentResult; 535 536 /// Return a phi state for a base defining value. We'll generate a new 537 /// base state for known bases and expect to find a cached state otherwise 538 PhiState getStateForBDV(Value *baseValue) { 539 if (isKnownBaseResult(baseValue)) { 540 return PhiState(baseValue); 541 } else { 542 return lookupFromMap(baseValue); 543 } 544 } 545 546 PhiState lookupFromMap(Value *V) { 547 auto I = phiStates.find(V); 548 assert(I != phiStates.end() && "lookup failed!"); 549 return I->second; 550 } 551 552 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { 553 switch (stateA.getStatus()) { 554 case PhiState::Unknown: 555 return stateB; 556 557 case PhiState::Base: 558 assert(stateA.getBase() && "can't be null"); 559 if (stateB.isUnknown()) 560 return stateA; 561 562 if (stateB.isBase()) { 563 if (stateA.getBase() == stateB.getBase()) { 564 assert(stateA == stateB && "equality broken!"); 565 return stateA; 566 } 567 return PhiState(PhiState::Conflict); 568 } 569 assert(stateB.isConflict() && "only three states!"); 570 return PhiState(PhiState::Conflict); 571 572 case PhiState::Conflict: 573 return stateA; 574 } 575 llvm_unreachable("only three states!"); 576 } 577 }; 578 } 579 /// For a given value or instruction, figure out what base ptr it's derived 580 /// from. For gc objects, this is simply itself. On success, returns a value 581 /// which is the base pointer. (This is reliable and can be used for 582 /// relocation.) On failure, returns nullptr. 583 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache, 584 DenseSet<llvm::Value *> &NewInsertedDefs) { 585 Value *def = findBaseOrBDV(I, cache); 586 587 if (isKnownBaseResult(def)) { 588 return def; 589 } 590 591 // Here's the rough algorithm: 592 // - For every SSA value, construct a mapping to either an actual base 593 // pointer or a PHI which obscures the base pointer. 594 // - Construct a mapping from PHI to unknown TOP state. Use an 595 // optimistic algorithm to propagate base pointer information. Lattice 596 // looks like: 597 // UNKNOWN 598 // b1 b2 b3 b4 599 // CONFLICT 600 // When algorithm terminates, all PHIs will either have a single concrete 601 // base or be in a conflict state. 602 // - For every conflict, insert a dummy PHI node without arguments. Add 603 // these to the base[Instruction] = BasePtr mapping. For every 604 // non-conflict, add the actual base. 605 // - For every conflict, add arguments for the base[a] of each input 606 // arguments. 607 // 608 // Note: A simpler form of this would be to add the conflict form of all 609 // PHIs without running the optimistic algorithm. This would be 610 // analougous to pessimistic data flow and would likely lead to an 611 // overall worse solution. 612 613 ConflictStateMapTy states; 614 states[def] = PhiState(); 615 // Recursively fill in all phis & selects reachable from the initial one 616 // for which we don't already know a definite base value for 617 // TODO: This should be rewritten with a worklist 618 bool done = false; 619 while (!done) { 620 done = true; 621 // Since we're adding elements to 'states' as we run, we can't keep 622 // iterators into the set. 623 SmallVector<Value*, 16> Keys; 624 Keys.reserve(states.size()); 625 for (auto Pair : states) { 626 Value *V = Pair.first; 627 Keys.push_back(V); 628 } 629 for (Value *v : Keys) { 630 assert(!isKnownBaseResult(v) && "why did it get added?"); 631 if (PHINode *phi = dyn_cast<PHINode>(v)) { 632 assert(phi->getNumIncomingValues() > 0 && 633 "zero input phis are illegal"); 634 for (Value *InVal : phi->incoming_values()) { 635 Value *local = findBaseOrBDV(InVal, cache); 636 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 637 states[local] = PhiState(); 638 done = false; 639 } 640 } 641 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 642 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 643 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 644 states[local] = PhiState(); 645 done = false; 646 } 647 local = findBaseOrBDV(sel->getFalseValue(), cache); 648 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 649 states[local] = PhiState(); 650 done = false; 651 } 652 } 653 } 654 } 655 656 if (TraceLSP) { 657 errs() << "States after initialization:\n"; 658 for (auto Pair : states) { 659 Instruction *v = cast<Instruction>(Pair.first); 660 PhiState state = Pair.second; 661 state.dump(); 662 v->dump(); 663 } 664 } 665 666 // TODO: come back and revisit the state transitions around inputs which 667 // have reached conflict state. The current version seems too conservative. 668 669 bool progress = true; 670 while (progress) { 671 #ifndef NDEBUG 672 size_t oldSize = states.size(); 673 #endif 674 progress = false; 675 // We're only changing keys in this loop, thus safe to keep iterators 676 for (auto Pair : states) { 677 MeetPhiStates calculateMeet(states); 678 Value *v = Pair.first; 679 assert(!isKnownBaseResult(v) && "why did it get added?"); 680 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 681 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); 682 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); 683 } else 684 for (Value *Val : cast<PHINode>(v)->incoming_values()) 685 calculateMeet.meetWith(findBaseOrBDV(Val, cache)); 686 687 PhiState oldState = states[v]; 688 PhiState newState = calculateMeet.getResult(); 689 if (oldState != newState) { 690 progress = true; 691 states[v] = newState; 692 } 693 } 694 695 assert(oldSize <= states.size()); 696 assert(oldSize == states.size() || progress); 697 } 698 699 if (TraceLSP) { 700 errs() << "States after meet iteration:\n"; 701 for (auto Pair : states) { 702 Instruction *v = cast<Instruction>(Pair.first); 703 PhiState state = Pair.second; 704 state.dump(); 705 v->dump(); 706 } 707 } 708 709 // Insert Phis for all conflicts 710 // We want to keep naming deterministic in the loop that follows, so 711 // sort the keys before iteration. This is useful in allowing us to 712 // write stable tests. Note that there is no invalidation issue here. 713 SmallVector<Value*, 16> Keys; 714 Keys.reserve(states.size()); 715 for (auto Pair : states) { 716 Value *V = Pair.first; 717 Keys.push_back(V); 718 } 719 std::sort(Keys.begin(), Keys.end(), order_by_name); 720 // TODO: adjust naming patterns to avoid this order of iteration dependency 721 for (Value *V : Keys) { 722 Instruction *v = cast<Instruction>(V); 723 PhiState state = states[V]; 724 assert(!isKnownBaseResult(v) && "why did it get added?"); 725 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 726 if (!state.isConflict()) 727 continue; 728 729 if (isa<PHINode>(v)) { 730 int num_preds = 731 std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); 732 assert(num_preds > 0 && "how did we reach here"); 733 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); 734 NewInsertedDefs.insert(phi); 735 // Add metadata marking this as a base value 736 auto *const_1 = ConstantInt::get( 737 Type::getInt32Ty( 738 v->getParent()->getParent()->getParent()->getContext()), 739 1); 740 auto MDConst = ConstantAsMetadata::get(const_1); 741 MDNode *md = MDNode::get( 742 v->getParent()->getParent()->getParent()->getContext(), MDConst); 743 phi->setMetadata("is_base_value", md); 744 states[v] = PhiState(PhiState::Conflict, phi); 745 } else { 746 SelectInst *sel = cast<SelectInst>(v); 747 // The undef will be replaced later 748 UndefValue *undef = UndefValue::get(sel->getType()); 749 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, 750 undef, "base_select", sel); 751 NewInsertedDefs.insert(basesel); 752 // Add metadata marking this as a base value 753 auto *const_1 = ConstantInt::get( 754 Type::getInt32Ty( 755 v->getParent()->getParent()->getParent()->getContext()), 756 1); 757 auto MDConst = ConstantAsMetadata::get(const_1); 758 MDNode *md = MDNode::get( 759 v->getParent()->getParent()->getParent()->getContext(), MDConst); 760 basesel->setMetadata("is_base_value", md); 761 states[v] = PhiState(PhiState::Conflict, basesel); 762 } 763 } 764 765 // Fixup all the inputs of the new PHIs 766 for (auto Pair : states) { 767 Instruction *v = cast<Instruction>(Pair.first); 768 PhiState state = Pair.second; 769 770 assert(!isKnownBaseResult(v) && "why did it get added?"); 771 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 772 if (!state.isConflict()) 773 continue; 774 775 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 776 PHINode *phi = cast<PHINode>(v); 777 unsigned NumPHIValues = phi->getNumIncomingValues(); 778 for (unsigned i = 0; i < NumPHIValues; i++) { 779 Value *InVal = phi->getIncomingValue(i); 780 BasicBlock *InBB = phi->getIncomingBlock(i); 781 782 // If we've already seen InBB, add the same incoming value 783 // we added for it earlier. The IR verifier requires phi 784 // nodes with multiple entries from the same basic block 785 // to have the same incoming value for each of those 786 // entries. If we don't do this check here and basephi 787 // has a different type than base, we'll end up adding two 788 // bitcasts (and hence two distinct values) as incoming 789 // values for the same basic block. 790 791 int blockIndex = basephi->getBasicBlockIndex(InBB); 792 if (blockIndex != -1) { 793 Value *oldBase = basephi->getIncomingValue(blockIndex); 794 basephi->addIncoming(oldBase, InBB); 795 #ifndef NDEBUG 796 Value *base = findBaseOrBDV(InVal, cache); 797 if (!isKnownBaseResult(base)) { 798 // Either conflict or base. 799 assert(states.count(base)); 800 base = states[base].getBase(); 801 assert(base != nullptr && "unknown PhiState!"); 802 assert(NewInsertedDefs.count(base) && 803 "should have already added this in a prev. iteration!"); 804 } 805 806 // In essense this assert states: the only way two 807 // values incoming from the same basic block may be 808 // different is by being different bitcasts of the same 809 // value. A cleanup that remains TODO is changing 810 // findBaseOrBDV to return an llvm::Value of the correct 811 // type (and still remain pure). This will remove the 812 // need to add bitcasts. 813 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 814 "sanity -- findBaseOrBDV should be pure!"); 815 #endif 816 continue; 817 } 818 819 // Find either the defining value for the PHI or the normal base for 820 // a non-phi node 821 Value *base = findBaseOrBDV(InVal, cache); 822 if (!isKnownBaseResult(base)) { 823 // Either conflict or base. 824 assert(states.count(base)); 825 base = states[base].getBase(); 826 assert(base != nullptr && "unknown PhiState!"); 827 } 828 assert(base && "can't be null"); 829 // Must use original input BB since base may not be Instruction 830 // The cast is needed since base traversal may strip away bitcasts 831 if (base->getType() != basephi->getType()) { 832 base = new BitCastInst(base, basephi->getType(), "cast", 833 InBB->getTerminator()); 834 NewInsertedDefs.insert(base); 835 } 836 basephi->addIncoming(base, InBB); 837 } 838 assert(basephi->getNumIncomingValues() == NumPHIValues); 839 } else { 840 SelectInst *basesel = cast<SelectInst>(state.getBase()); 841 SelectInst *sel = cast<SelectInst>(v); 842 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 843 // something more safe and less hacky. 844 for (int i = 1; i <= 2; i++) { 845 Value *InVal = sel->getOperand(i); 846 // Find either the defining value for the PHI or the normal base for 847 // a non-phi node 848 Value *base = findBaseOrBDV(InVal, cache); 849 if (!isKnownBaseResult(base)) { 850 // Either conflict or base. 851 assert(states.count(base)); 852 base = states[base].getBase(); 853 assert(base != nullptr && "unknown PhiState!"); 854 } 855 assert(base && "can't be null"); 856 // Must use original input BB since base may not be Instruction 857 // The cast is needed since base traversal may strip away bitcasts 858 if (base->getType() != basesel->getType()) { 859 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 860 NewInsertedDefs.insert(base); 861 } 862 basesel->setOperand(i, base); 863 } 864 } 865 } 866 867 // Cache all of our results so we can cheaply reuse them 868 // NOTE: This is actually two caches: one of the base defining value 869 // relation and one of the base pointer relation! FIXME 870 for (auto item : states) { 871 Value *v = item.first; 872 Value *base = item.second.getBase(); 873 assert(v && base); 874 assert(!isKnownBaseResult(v) && "why did it get added?"); 875 876 if (TraceLSP) { 877 std::string fromstr = 878 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 879 : "none"; 880 errs() << "Updating base value cache" 881 << " for: " << (v->hasName() ? v->getName() : "") 882 << " from: " << fromstr 883 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 884 } 885 886 assert(isKnownBaseResult(base) && 887 "must be something we 'know' is a base pointer"); 888 if (cache.count(v)) { 889 // Once we transition from the BDV relation being store in the cache to 890 // the base relation being stored, it must be stable 891 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 892 "base relation should be stable"); 893 } 894 cache[v] = base; 895 } 896 assert(cache.find(def) != cache.end()); 897 return cache[def]; 898 } 899 900 // For a set of live pointers (base and/or derived), identify the base 901 // pointer of the object which they are derived from. This routine will 902 // mutate the IR graph as needed to make the 'base' pointer live at the 903 // definition site of 'derived'. This ensures that any use of 'derived' can 904 // also use 'base'. This may involve the insertion of a number of 905 // additional PHI nodes. 906 // 907 // preconditions: live is a set of pointer type Values 908 // 909 // side effects: may insert PHI nodes into the existing CFG, will preserve 910 // CFG, will not remove or mutate any existing nodes 911 // 912 // post condition: PointerToBase contains one (derived, base) pair for every 913 // pointer in live. Note that derived can be equal to base if the original 914 // pointer was a base pointer. 915 static void findBasePointers(const StatepointLiveSetTy &live, 916 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 917 DominatorTree *DT, DefiningValueMapTy &DVCache, 918 DenseSet<llvm::Value *> &NewInsertedDefs) { 919 // For the naming of values inserted to be deterministic - which makes for 920 // much cleaner and more stable tests - we need to assign an order to the 921 // live values. DenseSets do not provide a deterministic order across runs. 922 SmallVector<Value*, 64> Temp; 923 Temp.insert(Temp.end(), live.begin(), live.end()); 924 std::sort(Temp.begin(), Temp.end(), order_by_name); 925 for (Value *ptr : Temp) { 926 Value *base = findBasePointer(ptr, DVCache, NewInsertedDefs); 927 assert(base && "failed to find base pointer"); 928 PointerToBase[ptr] = base; 929 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 930 DT->dominates(cast<Instruction>(base)->getParent(), 931 cast<Instruction>(ptr)->getParent())) && 932 "The base we found better dominate the derived pointer"); 933 934 // If you see this trip and like to live really dangerously, the code should 935 // be correct, just with idioms the verifier can't handle. You can try 936 // disabling the verifier at your own substaintial risk. 937 assert(!isa<ConstantPointerNull>(base) && 938 "the relocation code needs adjustment to handle the relocation of " 939 "a null pointer constant without causing false positives in the " 940 "safepoint ir verifier."); 941 } 942 } 943 944 /// Find the required based pointers (and adjust the live set) for the given 945 /// parse point. 946 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 947 const CallSite &CS, 948 PartiallyConstructedSafepointRecord &result) { 949 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 950 DenseSet<llvm::Value *> NewInsertedDefs; 951 findBasePointers(result.liveset, PointerToBase, &DT, DVCache, NewInsertedDefs); 952 953 if (PrintBasePointers) { 954 // Note: Need to print these in a stable order since this is checked in 955 // some tests. 956 errs() << "Base Pairs (w/o Relocation):\n"; 957 SmallVector<Value*, 64> Temp; 958 Temp.reserve(PointerToBase.size()); 959 for (auto Pair : PointerToBase) { 960 Temp.push_back(Pair.first); 961 } 962 std::sort(Temp.begin(), Temp.end(), order_by_name); 963 for (Value *Ptr : Temp) { 964 Value *Base = PointerToBase[Ptr]; 965 errs() << " derived %" << Ptr->getName() << " base %" 966 << Base->getName() << "\n"; 967 } 968 } 969 970 result.PointerToBase = PointerToBase; 971 result.NewInsertedDefs = NewInsertedDefs; 972 } 973 974 /// Check for liveness of items in the insert defs and add them to the live 975 /// and base pointer sets 976 static void fixupLiveness(DominatorTree &DT, const CallSite &CS, 977 const DenseSet<Value *> &allInsertedDefs, 978 PartiallyConstructedSafepointRecord &result) { 979 Instruction *inst = CS.getInstruction(); 980 981 auto liveset = result.liveset; 982 auto PointerToBase = result.PointerToBase; 983 984 auto is_live_gc_reference = 985 [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); }; 986 987 // For each new definition, check to see if a) the definition dominates the 988 // instruction we're interested in, and b) one of the uses of that definition 989 // is edge-reachable from the instruction we're interested in. This is the 990 // same definition of liveness we used in the intial liveness analysis 991 for (Value *newDef : allInsertedDefs) { 992 if (liveset.count(newDef)) { 993 // already live, no action needed 994 continue; 995 } 996 997 // PERF: Use DT to check instruction domination might not be good for 998 // compilation time, and we could change to optimal solution if this 999 // turn to be a issue 1000 if (!DT.dominates(cast<Instruction>(newDef), inst)) { 1001 // can't possibly be live at inst 1002 continue; 1003 } 1004 1005 if (is_live_gc_reference(*newDef)) { 1006 // Add the live new defs into liveset and PointerToBase 1007 liveset.insert(newDef); 1008 PointerToBase[newDef] = newDef; 1009 } 1010 } 1011 1012 result.liveset = liveset; 1013 result.PointerToBase = PointerToBase; 1014 } 1015 1016 static void fixupLiveReferences( 1017 Function &F, DominatorTree &DT, Pass *P, 1018 const DenseSet<llvm::Value *> &allInsertedDefs, 1019 ArrayRef<CallSite> toUpdate, 1020 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1021 for (size_t i = 0; i < records.size(); i++) { 1022 struct PartiallyConstructedSafepointRecord &info = records[i]; 1023 const CallSite &CS = toUpdate[i]; 1024 fixupLiveness(DT, CS, allInsertedDefs, info); 1025 } 1026 } 1027 1028 // Normalize basic block to make it ready to be target of invoke statepoint. 1029 // It means spliting it to have single predecessor. Return newly created BB 1030 // ready to be successor of invoke statepoint. 1031 static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB, 1032 BasicBlock *InvokeParent, 1033 Pass *P) { 1034 BasicBlock *ret = BB; 1035 1036 if (!BB->getUniquePredecessor()) { 1037 ret = SplitBlockPredecessors(BB, InvokeParent, ""); 1038 } 1039 1040 // Another requirement for such basic blocks is to not have any phi nodes. 1041 // Since we just ensured that new BB will have single predecessor, 1042 // all phi nodes in it will have one value. Here it would be naturall place 1043 // to 1044 // remove them all. But we can not do this because we are risking to remove 1045 // one of the values stored in liveset of another statepoint. We will do it 1046 // later after placing all safepoints. 1047 1048 return ret; 1049 } 1050 1051 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1052 auto itr = std::find(livevec.begin(), livevec.end(), val); 1053 assert(livevec.end() != itr); 1054 size_t index = std::distance(livevec.begin(), itr); 1055 assert(index < livevec.size()); 1056 return index; 1057 } 1058 1059 // Create new attribute set containing only attributes which can be transfered 1060 // from original call to the safepoint. 1061 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1062 AttributeSet ret; 1063 1064 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1065 unsigned index = AS.getSlotIndex(Slot); 1066 1067 if (index == AttributeSet::ReturnIndex || 1068 index == AttributeSet::FunctionIndex) { 1069 1070 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1071 ++it) { 1072 Attribute attr = *it; 1073 1074 // Do not allow certain attributes - just skip them 1075 // Safepoint can not be read only or read none. 1076 if (attr.hasAttribute(Attribute::ReadNone) || 1077 attr.hasAttribute(Attribute::ReadOnly)) 1078 continue; 1079 1080 ret = ret.addAttributes( 1081 AS.getContext(), index, 1082 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1083 } 1084 } 1085 1086 // Just skip parameter attributes for now 1087 } 1088 1089 return ret; 1090 } 1091 1092 /// Helper function to place all gc relocates necessary for the given 1093 /// statepoint. 1094 /// Inputs: 1095 /// liveVariables - list of variables to be relocated. 1096 /// liveStart - index of the first live variable. 1097 /// basePtrs - base pointers. 1098 /// statepointToken - statepoint instruction to which relocates should be 1099 /// bound. 1100 /// Builder - Llvm IR builder to be used to construct new calls. 1101 static void CreateGCRelocates(ArrayRef<llvm::Value *> liveVariables, 1102 const int liveStart, 1103 ArrayRef<llvm::Value *> basePtrs, 1104 Instruction *statepointToken, 1105 IRBuilder<> Builder) { 1106 SmallVector<Instruction *, 64> NewDefs; 1107 NewDefs.reserve(liveVariables.size()); 1108 1109 Module *M = statepointToken->getParent()->getParent()->getParent(); 1110 1111 for (unsigned i = 0; i < liveVariables.size(); i++) { 1112 // We generate a (potentially) unique declaration for every pointer type 1113 // combination. This results is some blow up the function declarations in 1114 // the IR, but removes the need for argument bitcasts which shrinks the IR 1115 // greatly and makes it much more readable. 1116 SmallVector<Type *, 1> types; // one per 'any' type 1117 types.push_back(liveVariables[i]->getType()); // result type 1118 Value *gc_relocate_decl = Intrinsic::getDeclaration( 1119 M, Intrinsic::experimental_gc_relocate, types); 1120 1121 // Generate the gc.relocate call and save the result 1122 Value *baseIdx = 1123 ConstantInt::get(Type::getInt32Ty(M->getContext()), 1124 liveStart + find_index(liveVariables, basePtrs[i])); 1125 Value *liveIdx = ConstantInt::get( 1126 Type::getInt32Ty(M->getContext()), 1127 liveStart + find_index(liveVariables, liveVariables[i])); 1128 1129 // only specify a debug name if we can give a useful one 1130 Value *reloc = Builder.CreateCall3( 1131 gc_relocate_decl, statepointToken, baseIdx, liveIdx, 1132 liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" 1133 : ""); 1134 // Trick CodeGen into thinking there are lots of free registers at this 1135 // fake call. 1136 cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold); 1137 1138 NewDefs.push_back(cast<Instruction>(reloc)); 1139 } 1140 assert(NewDefs.size() == liveVariables.size() && 1141 "missing or extra redefinition at safepoint"); 1142 } 1143 1144 static void 1145 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1146 const SmallVectorImpl<llvm::Value *> &basePtrs, 1147 const SmallVectorImpl<llvm::Value *> &liveVariables, 1148 Pass *P, 1149 PartiallyConstructedSafepointRecord &result) { 1150 assert(basePtrs.size() == liveVariables.size()); 1151 assert(isStatepoint(CS) && 1152 "This method expects to be rewriting a statepoint"); 1153 1154 BasicBlock *BB = CS.getInstruction()->getParent(); 1155 assert(BB); 1156 Function *F = BB->getParent(); 1157 assert(F && "must be set"); 1158 Module *M = F->getParent(); 1159 (void)M; 1160 assert(M && "must be set"); 1161 1162 // We're not changing the function signature of the statepoint since the gc 1163 // arguments go into the var args section. 1164 Function *gc_statepoint_decl = CS.getCalledFunction(); 1165 1166 // Then go ahead and use the builder do actually do the inserts. We insert 1167 // immediately before the previous instruction under the assumption that all 1168 // arguments will be available here. We can't insert afterwards since we may 1169 // be replacing a terminator. 1170 Instruction *insertBefore = CS.getInstruction(); 1171 IRBuilder<> Builder(insertBefore); 1172 // Copy all of the arguments from the original statepoint - this includes the 1173 // target, call args, and deopt args 1174 SmallVector<llvm::Value *, 64> args; 1175 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1176 // TODO: Clear the 'needs rewrite' flag 1177 1178 // add all the pointers to be relocated (gc arguments) 1179 // Capture the start of the live variable list for use in the gc_relocates 1180 const int live_start = args.size(); 1181 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1182 1183 // Create the statepoint given all the arguments 1184 Instruction *token = nullptr; 1185 AttributeSet return_attributes; 1186 if (CS.isCall()) { 1187 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1188 CallInst *call = 1189 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1190 call->setTailCall(toReplace->isTailCall()); 1191 call->setCallingConv(toReplace->getCallingConv()); 1192 1193 // Currently we will fail on parameter attributes and on certain 1194 // function attributes. 1195 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1196 // In case if we can handle this set of sttributes - set up function attrs 1197 // directly on statepoint and return attrs later for gc_result intrinsic. 1198 call->setAttributes(new_attrs.getFnAttributes()); 1199 return_attributes = new_attrs.getRetAttributes(); 1200 1201 token = call; 1202 1203 // Put the following gc_result and gc_relocate calls immediately after the 1204 // the old call (which we're about to delete) 1205 BasicBlock::iterator next(toReplace); 1206 assert(BB->end() != next && "not a terminator, must have next"); 1207 next++; 1208 Instruction *IP = &*(next); 1209 Builder.SetInsertPoint(IP); 1210 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1211 1212 } else { 1213 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1214 1215 // Insert the new invoke into the old block. We'll remove the old one in a 1216 // moment at which point this will become the new terminator for the 1217 // original block. 1218 InvokeInst *invoke = InvokeInst::Create( 1219 gc_statepoint_decl, toReplace->getNormalDest(), 1220 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1221 invoke->setCallingConv(toReplace->getCallingConv()); 1222 1223 // Currently we will fail on parameter attributes and on certain 1224 // function attributes. 1225 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1226 // In case if we can handle this set of sttributes - set up function attrs 1227 // directly on statepoint and return attrs later for gc_result intrinsic. 1228 invoke->setAttributes(new_attrs.getFnAttributes()); 1229 return_attributes = new_attrs.getRetAttributes(); 1230 1231 token = invoke; 1232 1233 // Generate gc relocates in exceptional path 1234 BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint( 1235 toReplace->getUnwindDest(), invoke->getParent(), P); 1236 1237 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1238 Builder.SetInsertPoint(IP); 1239 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1240 1241 // Extract second element from landingpad return value. We will attach 1242 // exceptional gc relocates to it. 1243 const unsigned idx = 1; 1244 Instruction *exceptional_token = 1245 cast<Instruction>(Builder.CreateExtractValue( 1246 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1247 result.UnwindToken = exceptional_token; 1248 1249 // Just throw away return value. We will use the one we got for normal 1250 // block. 1251 (void)CreateGCRelocates(liveVariables, live_start, basePtrs, 1252 exceptional_token, Builder); 1253 1254 // Generate gc relocates and returns for normal block 1255 BasicBlock *normalDest = normalizeBBForInvokeSafepoint( 1256 toReplace->getNormalDest(), invoke->getParent(), P); 1257 1258 IP = &*(normalDest->getFirstInsertionPt()); 1259 Builder.SetInsertPoint(IP); 1260 1261 // gc relocates will be generated later as if it were regular call 1262 // statepoint 1263 } 1264 assert(token); 1265 1266 // Take the name of the original value call if it had one. 1267 token->takeName(CS.getInstruction()); 1268 1269 // The GCResult is already inserted, we just need to find it 1270 #ifndef NDEBUG 1271 Instruction *toReplace = CS.getInstruction(); 1272 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1273 "only valid use before rewrite is gc.result"); 1274 assert(!toReplace->hasOneUse() || 1275 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1276 #endif 1277 1278 // Update the gc.result of the original statepoint (if any) to use the newly 1279 // inserted statepoint. This is safe to do here since the token can't be 1280 // considered a live reference. 1281 CS.getInstruction()->replaceAllUsesWith(token); 1282 1283 result.StatepointToken = token; 1284 1285 // Second, create a gc.relocate for every live variable 1286 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1287 1288 } 1289 1290 namespace { 1291 struct name_ordering { 1292 Value *base; 1293 Value *derived; 1294 bool operator()(name_ordering const &a, name_ordering const &b) { 1295 return -1 == a.derived->getName().compare(b.derived->getName()); 1296 } 1297 }; 1298 } 1299 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1300 SmallVectorImpl<Value *> &livevec) { 1301 assert(basevec.size() == livevec.size()); 1302 1303 SmallVector<name_ordering, 64> temp; 1304 for (size_t i = 0; i < basevec.size(); i++) { 1305 name_ordering v; 1306 v.base = basevec[i]; 1307 v.derived = livevec[i]; 1308 temp.push_back(v); 1309 } 1310 std::sort(temp.begin(), temp.end(), name_ordering()); 1311 for (size_t i = 0; i < basevec.size(); i++) { 1312 basevec[i] = temp[i].base; 1313 livevec[i] = temp[i].derived; 1314 } 1315 } 1316 1317 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1318 // which make the relocations happening at this safepoint explicit. 1319 // 1320 // WARNING: Does not do any fixup to adjust users of the original live 1321 // values. That's the callers responsibility. 1322 static void 1323 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1324 PartiallyConstructedSafepointRecord &result) { 1325 auto liveset = result.liveset; 1326 auto PointerToBase = result.PointerToBase; 1327 1328 // Convert to vector for efficient cross referencing. 1329 SmallVector<Value *, 64> basevec, livevec; 1330 livevec.reserve(liveset.size()); 1331 basevec.reserve(liveset.size()); 1332 for (Value *L : liveset) { 1333 livevec.push_back(L); 1334 1335 assert(PointerToBase.find(L) != PointerToBase.end()); 1336 Value *base = PointerToBase[L]; 1337 basevec.push_back(base); 1338 } 1339 assert(livevec.size() == basevec.size()); 1340 1341 // To make the output IR slightly more stable (for use in diffs), ensure a 1342 // fixed order of the values in the safepoint (by sorting the value name). 1343 // The order is otherwise meaningless. 1344 stablize_order(basevec, livevec); 1345 1346 // Do the actual rewriting and delete the old statepoint 1347 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1348 CS.getInstruction()->eraseFromParent(); 1349 } 1350 1351 // Helper function for the relocationViaAlloca. 1352 // It receives iterator to the statepoint gc relocates and emits store to the 1353 // assigned 1354 // location (via allocaMap) for the each one of them. 1355 // Add visited values into the visitedLiveValues set we will later use them 1356 // for sanity check. 1357 static void 1358 insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs, 1359 DenseMap<Value *, Value *> &allocaMap, 1360 DenseSet<Value *> &visitedLiveValues) { 1361 1362 for (User *U : gcRelocs) { 1363 if (!isa<IntrinsicInst>(U)) 1364 continue; 1365 1366 IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U); 1367 1368 // We only care about relocates 1369 if (relocatedValue->getIntrinsicID() != 1370 Intrinsic::experimental_gc_relocate) { 1371 continue; 1372 } 1373 1374 GCRelocateOperands relocateOperands(relocatedValue); 1375 Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr()); 1376 assert(allocaMap.count(originalValue)); 1377 Value *alloca = allocaMap[originalValue]; 1378 1379 // Emit store into the related alloca 1380 StoreInst *store = new StoreInst(relocatedValue, alloca); 1381 store->insertAfter(relocatedValue); 1382 1383 #ifndef NDEBUG 1384 visitedLiveValues.insert(originalValue); 1385 #endif 1386 } 1387 } 1388 1389 /// do all the relocation update via allocas and mem2reg 1390 static void relocationViaAlloca( 1391 Function &F, DominatorTree &DT, ArrayRef<Value *> live, 1392 ArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1393 #ifndef NDEBUG 1394 // record initial number of (static) allocas; we'll check we have the same 1395 // number when we get done. 1396 int InitialAllocaNum = 0; 1397 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); 1398 I != E; I++) 1399 if (isa<AllocaInst>(*I)) 1400 InitialAllocaNum++; 1401 #endif 1402 1403 // TODO-PERF: change data structures, reserve 1404 DenseMap<Value *, Value *> allocaMap; 1405 SmallVector<AllocaInst *, 200> PromotableAllocas; 1406 PromotableAllocas.reserve(live.size()); 1407 1408 // emit alloca for each live gc pointer 1409 for (unsigned i = 0; i < live.size(); i++) { 1410 Value *liveValue = live[i]; 1411 AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", 1412 F.getEntryBlock().getFirstNonPHI()); 1413 allocaMap[liveValue] = alloca; 1414 PromotableAllocas.push_back(alloca); 1415 } 1416 1417 // The next two loops are part of the same conceptual operation. We need to 1418 // insert a store to the alloca after the original def and at each 1419 // redefinition. We need to insert a load before each use. These are split 1420 // into distinct loops for performance reasons. 1421 1422 // update gc pointer after each statepoint 1423 // either store a relocated value or null (if no relocated value found for 1424 // this gc pointer and it is not a gc_result) 1425 // this must happen before we update the statepoint with load of alloca 1426 // otherwise we lose the link between statepoint and old def 1427 for (size_t i = 0; i < records.size(); i++) { 1428 const struct PartiallyConstructedSafepointRecord &info = records[i]; 1429 Value *Statepoint = info.StatepointToken; 1430 1431 // This will be used for consistency check 1432 DenseSet<Value *> visitedLiveValues; 1433 1434 // Insert stores for normal statepoint gc relocates 1435 insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues); 1436 1437 // In case if it was invoke statepoint 1438 // we will insert stores for exceptional path gc relocates. 1439 if (isa<InvokeInst>(Statepoint)) { 1440 insertRelocationStores(info.UnwindToken->users(), 1441 allocaMap, visitedLiveValues); 1442 } 1443 1444 #ifndef NDEBUG 1445 // As a debuging aid, pretend that an unrelocated pointer becomes null at 1446 // the gc.statepoint. This will turn some subtle GC problems into slightly 1447 // easier to debug SEGVs 1448 SmallVector<AllocaInst *, 64> ToClobber; 1449 for (auto Pair : allocaMap) { 1450 Value *Def = Pair.first; 1451 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1452 1453 // This value was relocated 1454 if (visitedLiveValues.count(Def)) { 1455 continue; 1456 } 1457 ToClobber.push_back(Alloca); 1458 } 1459 1460 auto InsertClobbersAt = [&](Instruction *IP) { 1461 for (auto *AI : ToClobber) { 1462 auto AIType = cast<PointerType>(AI->getType()); 1463 auto PT = cast<PointerType>(AIType->getElementType()); 1464 Constant *CPN = ConstantPointerNull::get(PT); 1465 StoreInst *store = new StoreInst(CPN, AI); 1466 store->insertBefore(IP); 1467 } 1468 }; 1469 1470 // Insert the clobbering stores. These may get intermixed with the 1471 // gc.results and gc.relocates, but that's fine. 1472 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1473 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1474 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1475 } else { 1476 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1477 Next++; 1478 InsertClobbersAt(Next); 1479 } 1480 #endif 1481 } 1482 // update use with load allocas and add store for gc_relocated 1483 for (auto Pair : allocaMap) { 1484 Value *def = Pair.first; 1485 Value *alloca = Pair.second; 1486 1487 // we pre-record the uses of allocas so that we dont have to worry about 1488 // later update 1489 // that change the user information. 1490 SmallVector<Instruction *, 20> uses; 1491 // PERF: trade a linear scan for repeated reallocation 1492 uses.reserve(std::distance(def->user_begin(), def->user_end())); 1493 for (User *U : def->users()) { 1494 if (!isa<ConstantExpr>(U)) { 1495 // If the def has a ConstantExpr use, then the def is either a 1496 // ConstantExpr use itself or null. In either case 1497 // (recursively in the first, directly in the second), the oop 1498 // it is ultimately dependent on is null and this particular 1499 // use does not need to be fixed up. 1500 uses.push_back(cast<Instruction>(U)); 1501 } 1502 } 1503 1504 std::sort(uses.begin(), uses.end()); 1505 auto last = std::unique(uses.begin(), uses.end()); 1506 uses.erase(last, uses.end()); 1507 1508 for (Instruction *use : uses) { 1509 if (isa<PHINode>(use)) { 1510 PHINode *phi = cast<PHINode>(use); 1511 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 1512 if (def == phi->getIncomingValue(i)) { 1513 LoadInst *load = new LoadInst( 1514 alloca, "", phi->getIncomingBlock(i)->getTerminator()); 1515 phi->setIncomingValue(i, load); 1516 } 1517 } 1518 } else { 1519 LoadInst *load = new LoadInst(alloca, "", use); 1520 use->replaceUsesOfWith(def, load); 1521 } 1522 } 1523 1524 // emit store for the initial gc value 1525 // store must be inserted after load, otherwise store will be in alloca's 1526 // use list and an extra load will be inserted before it 1527 StoreInst *store = new StoreInst(def, alloca); 1528 if (Instruction *inst = dyn_cast<Instruction>(def)) { 1529 if (InvokeInst *invoke = dyn_cast<InvokeInst>(inst)) { 1530 // InvokeInst is a TerminatorInst so the store need to be inserted 1531 // into its normal destination block. 1532 BasicBlock *normalDest = invoke->getNormalDest(); 1533 store->insertBefore(normalDest->getFirstNonPHI()); 1534 } else { 1535 assert(!inst->isTerminator() && 1536 "The only TerminatorInst that can produce a value is " 1537 "InvokeInst which is handled above."); 1538 store->insertAfter(inst); 1539 } 1540 } else { 1541 assert((isa<Argument>(def) || isa<GlobalVariable>(def) || 1542 isa<ConstantPointerNull>(def)) && 1543 "Must be argument or global"); 1544 store->insertAfter(cast<Instruction>(alloca)); 1545 } 1546 } 1547 1548 assert(PromotableAllocas.size() == live.size() && 1549 "we must have the same allocas with lives"); 1550 if (!PromotableAllocas.empty()) { 1551 // apply mem2reg to promote alloca to SSA 1552 PromoteMemToReg(PromotableAllocas, DT); 1553 } 1554 1555 #ifndef NDEBUG 1556 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); 1557 I != E; I++) 1558 if (isa<AllocaInst>(*I)) 1559 InitialAllocaNum--; 1560 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1561 #endif 1562 } 1563 1564 /// Implement a unique function which doesn't require we sort the input 1565 /// vector. Doing so has the effect of changing the output of a couple of 1566 /// tests in ways which make them less useful in testing fused safepoints. 1567 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1568 DenseSet<T> Seen; 1569 SmallVector<T, 128> TempVec; 1570 TempVec.reserve(Vec.size()); 1571 for (auto Element : Vec) 1572 TempVec.push_back(Element); 1573 Vec.clear(); 1574 for (auto V : TempVec) { 1575 if (Seen.insert(V).second) { 1576 Vec.push_back(V); 1577 } 1578 } 1579 } 1580 1581 static Function *getUseHolder(Module &M) { 1582 FunctionType *ftype = 1583 FunctionType::get(Type::getVoidTy(M.getContext()), true); 1584 Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype)); 1585 return Func; 1586 } 1587 1588 /// Insert holders so that each Value is obviously live through the entire 1589 /// liftetime of the call. 1590 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1591 SmallVectorImpl<CallInst *> &holders) { 1592 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1593 Function *Func = getUseHolder(*M); 1594 if (CS.isCall()) { 1595 // For call safepoints insert dummy calls right after safepoint 1596 BasicBlock::iterator next(CS.getInstruction()); 1597 next++; 1598 CallInst *base_holder = CallInst::Create(Func, Values, "", next); 1599 holders.push_back(base_holder); 1600 } else if (CS.isInvoke()) { 1601 // For invoke safepooints insert dummy calls both in normal and 1602 // exceptional destination blocks 1603 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 1604 CallInst *normal_holder = CallInst::Create( 1605 Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt()); 1606 CallInst *unwind_holder = CallInst::Create( 1607 Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt()); 1608 holders.push_back(normal_holder); 1609 holders.push_back(unwind_holder); 1610 } else 1611 llvm_unreachable("unsupported call type"); 1612 } 1613 1614 static void findLiveReferences( 1615 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1616 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1617 for (size_t i = 0; i < records.size(); i++) { 1618 struct PartiallyConstructedSafepointRecord &info = records[i]; 1619 const CallSite &CS = toUpdate[i]; 1620 analyzeParsePointLiveness(DT, CS, info); 1621 } 1622 } 1623 1624 static void addBasesAsLiveValues(StatepointLiveSetTy &liveset, 1625 DenseMap<Value *, Value *> &PointerToBase) { 1626 // Identify any base pointers which are used in this safepoint, but not 1627 // themselves relocated. We need to relocate them so that later inserted 1628 // safepoints can get the properly relocated base register. 1629 DenseSet<Value *> missing; 1630 for (Value *L : liveset) { 1631 assert(PointerToBase.find(L) != PointerToBase.end()); 1632 Value *base = PointerToBase[L]; 1633 assert(base); 1634 if (liveset.find(base) == liveset.end()) { 1635 assert(PointerToBase.find(base) == PointerToBase.end()); 1636 // uniqued by set insert 1637 missing.insert(base); 1638 } 1639 } 1640 1641 // Note that we want these at the end of the list, otherwise 1642 // register placement gets screwed up once we lower to STATEPOINT 1643 // instructions. This is an utter hack, but there doesn't seem to be a 1644 // better one. 1645 for (Value *base : missing) { 1646 assert(base); 1647 liveset.insert(base); 1648 PointerToBase[base] = base; 1649 } 1650 assert(liveset.size() == PointerToBase.size()); 1651 } 1652 1653 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 1654 SmallVectorImpl<CallSite> &toUpdate) { 1655 #ifndef NDEBUG 1656 // sanity check the input 1657 std::set<CallSite> uniqued; 1658 uniqued.insert(toUpdate.begin(), toUpdate.end()); 1659 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 1660 1661 for (size_t i = 0; i < toUpdate.size(); i++) { 1662 CallSite &CS = toUpdate[i]; 1663 assert(CS.getInstruction()->getParent()->getParent() == &F); 1664 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 1665 } 1666 #endif 1667 1668 // A list of dummy calls added to the IR to keep various values obviously 1669 // live in the IR. We'll remove all of these when done. 1670 SmallVector<CallInst *, 64> holders; 1671 1672 // Insert a dummy call with all of the arguments to the vm_state we'll need 1673 // for the actual safepoint insertion. This ensures reference arguments in 1674 // the deopt argument list are considered live through the safepoint (and 1675 // thus makes sure they get relocated.) 1676 for (size_t i = 0; i < toUpdate.size(); i++) { 1677 CallSite &CS = toUpdate[i]; 1678 Statepoint StatepointCS(CS); 1679 1680 SmallVector<Value *, 64> DeoptValues; 1681 for (Use &U : StatepointCS.vm_state_args()) { 1682 Value *Arg = cast<Value>(&U); 1683 if (isGCPointerType(Arg->getType())) 1684 DeoptValues.push_back(Arg); 1685 } 1686 insertUseHolderAfter(CS, DeoptValues, holders); 1687 } 1688 1689 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 1690 records.reserve(toUpdate.size()); 1691 for (size_t i = 0; i < toUpdate.size(); i++) { 1692 struct PartiallyConstructedSafepointRecord info; 1693 records.push_back(info); 1694 } 1695 assert(records.size() == toUpdate.size()); 1696 1697 // A) Identify all gc pointers which are staticly live at the given call 1698 // site. 1699 findLiveReferences(F, DT, P, toUpdate, records); 1700 1701 // B) Find the base pointers for each live pointer 1702 /* scope for caching */ { 1703 // Cache the 'defining value' relation used in the computation and 1704 // insertion of base phis and selects. This ensures that we don't insert 1705 // large numbers of duplicate base_phis. 1706 DefiningValueMapTy DVCache; 1707 1708 for (size_t i = 0; i < records.size(); i++) { 1709 struct PartiallyConstructedSafepointRecord &info = records[i]; 1710 CallSite &CS = toUpdate[i]; 1711 findBasePointers(DT, DVCache, CS, info); 1712 } 1713 } // end of cache scope 1714 1715 // The base phi insertion logic (for any safepoint) may have inserted new 1716 // instructions which are now live at some safepoint. The simplest such 1717 // example is: 1718 // loop: 1719 // phi a <-- will be a new base_phi here 1720 // safepoint 1 <-- that needs to be live here 1721 // gep a + 1 1722 // safepoint 2 1723 // br loop 1724 DenseSet<llvm::Value *> allInsertedDefs; 1725 for (size_t i = 0; i < records.size(); i++) { 1726 struct PartiallyConstructedSafepointRecord &info = records[i]; 1727 allInsertedDefs.insert(info.NewInsertedDefs.begin(), 1728 info.NewInsertedDefs.end()); 1729 } 1730 1731 // We insert some dummy calls after each safepoint to definitely hold live 1732 // the base pointers which were identified for that safepoint. We'll then 1733 // ask liveness for _every_ base inserted to see what is now live. Then we 1734 // remove the dummy calls. 1735 holders.reserve(holders.size() + records.size()); 1736 for (size_t i = 0; i < records.size(); i++) { 1737 struct PartiallyConstructedSafepointRecord &info = records[i]; 1738 CallSite &CS = toUpdate[i]; 1739 1740 SmallVector<Value *, 128> Bases; 1741 for (auto Pair : info.PointerToBase) { 1742 Bases.push_back(Pair.second); 1743 } 1744 insertUseHolderAfter(CS, Bases, holders); 1745 } 1746 1747 // Add the bases explicitly to the live vector set. This may result in a few 1748 // extra relocations, but the base has to be available whenever a pointer 1749 // derived from it is used. Thus, we need it to be part of the statepoint's 1750 // gc arguments list. TODO: Introduce an explicit notion (in the following 1751 // code) of the GC argument list as seperate from the live Values at a 1752 // given statepoint. 1753 for (size_t i = 0; i < records.size(); i++) { 1754 struct PartiallyConstructedSafepointRecord &info = records[i]; 1755 addBasesAsLiveValues(info.liveset, info.PointerToBase); 1756 } 1757 1758 // If we inserted any new values, we need to adjust our notion of what is 1759 // live at a particular safepoint. 1760 if (!allInsertedDefs.empty()) { 1761 fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records); 1762 } 1763 if (PrintBasePointers) { 1764 for (size_t i = 0; i < records.size(); i++) { 1765 struct PartiallyConstructedSafepointRecord &info = records[i]; 1766 errs() << "Base Pairs: (w/Relocation)\n"; 1767 for (auto Pair : info.PointerToBase) { 1768 errs() << " derived %" << Pair.first->getName() << " base %" 1769 << Pair.second->getName() << "\n"; 1770 } 1771 } 1772 } 1773 for (size_t i = 0; i < holders.size(); i++) { 1774 holders[i]->eraseFromParent(); 1775 holders[i] = nullptr; 1776 } 1777 holders.clear(); 1778 1779 // Now run through and replace the existing statepoints with new ones with 1780 // the live variables listed. We do not yet update uses of the values being 1781 // relocated. We have references to live variables that need to 1782 // survive to the last iteration of this loop. (By construction, the 1783 // previous statepoint can not be a live variable, thus we can and remove 1784 // the old statepoint calls as we go.) 1785 for (size_t i = 0; i < records.size(); i++) { 1786 struct PartiallyConstructedSafepointRecord &info = records[i]; 1787 CallSite &CS = toUpdate[i]; 1788 makeStatepointExplicit(DT, CS, P, info); 1789 } 1790 toUpdate.clear(); // prevent accident use of invalid CallSites 1791 1792 // In case if we inserted relocates in a different basic block than the 1793 // original safepoint (this can happen for invokes). We need to be sure that 1794 // original values were not used in any of the phi nodes at the 1795 // beginning of basic block containing them. Because we know that all such 1796 // blocks will have single predecessor we can safely assume that all phi 1797 // nodes have single entry (because of normalizeBBForInvokeSafepoint). 1798 // Just remove them all here. 1799 for (size_t i = 0; i < records.size(); i++) { 1800 Instruction *I = records[i].StatepointToken; 1801 1802 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 1803 FoldSingleEntryPHINodes(invoke->getNormalDest()); 1804 assert(!isa<PHINode>(invoke->getNormalDest()->begin())); 1805 1806 FoldSingleEntryPHINodes(invoke->getUnwindDest()); 1807 assert(!isa<PHINode>(invoke->getUnwindDest()->begin())); 1808 } 1809 } 1810 1811 // Do all the fixups of the original live variables to their relocated selves 1812 SmallVector<Value *, 128> live; 1813 for (size_t i = 0; i < records.size(); i++) { 1814 struct PartiallyConstructedSafepointRecord &info = records[i]; 1815 // We can't simply save the live set from the original insertion. One of 1816 // the live values might be the result of a call which needs a safepoint. 1817 // That Value* no longer exists and we need to use the new gc_result. 1818 // Thankfully, the liveset is embedded in the statepoint (and updated), so 1819 // we just grab that. 1820 Statepoint statepoint(info.StatepointToken); 1821 live.insert(live.end(), statepoint.gc_args_begin(), 1822 statepoint.gc_args_end()); 1823 } 1824 unique_unsorted(live); 1825 1826 #ifndef NDEBUG 1827 // sanity check 1828 for (auto ptr : live) { 1829 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 1830 } 1831 #endif 1832 1833 relocationViaAlloca(F, DT, live, records); 1834 return !records.empty(); 1835 } 1836 1837 /// Returns true if this function should be rewritten by this pass. The main 1838 /// point of this function is as an extension point for custom logic. 1839 static bool shouldRewriteStatepointsIn(Function &F) { 1840 // TODO: This should check the GCStrategy 1841 if (F.hasGC()) { 1842 const std::string StatepointExampleName("statepoint-example"); 1843 return StatepointExampleName == F.getGC(); 1844 } else 1845 return false; 1846 } 1847 1848 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 1849 // Nothing to do for declarations. 1850 if (F.isDeclaration() || F.empty()) 1851 return false; 1852 1853 // Policy choice says not to rewrite - the most common reason is that we're 1854 // compiling code without a GCStrategy. 1855 if (!shouldRewriteStatepointsIn(F)) 1856 return false; 1857 1858 // Gather all the statepoints which need rewritten. 1859 SmallVector<CallSite, 64> ParsePointNeeded; 1860 for (Instruction &I : inst_range(F)) { 1861 // TODO: only the ones with the flag set! 1862 if (isStatepoint(I)) 1863 ParsePointNeeded.push_back(CallSite(&I)); 1864 } 1865 1866 // Return early if no work to do. 1867 if (ParsePointNeeded.empty()) 1868 return false; 1869 1870 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1871 return insertParsePoints(F, DT, this, ParsePointNeeded); 1872 } 1873