1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Rewrite call/invoke instructions so as to make potential relocations 10 // performed by the garbage collector explicit in the IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/iterator_range.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/IR/ValueHandle.h" 57 #include "llvm/InitializePasses.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <set> 75 #include <string> 76 #include <utility> 77 #include <vector> 78 79 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 80 81 using namespace llvm; 82 83 // Print the liveset found at the insert location 84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 85 cl::init(false)); 86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 87 cl::init(false)); 88 89 // Print out the base pointers for debugging 90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 91 cl::init(false)); 92 93 // Cost threshold measuring when it is profitable to rematerialize value instead 94 // of relocating it 95 static cl::opt<unsigned> 96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 97 cl::init(6)); 98 99 #ifdef EXPENSIVE_CHECKS 100 static bool ClobberNonLive = true; 101 #else 102 static bool ClobberNonLive = false; 103 #endif 104 105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 106 cl::location(ClobberNonLive), 107 cl::Hidden); 108 109 static cl::opt<bool> 110 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 111 cl::Hidden, cl::init(true)); 112 113 /// The IR fed into RewriteStatepointsForGC may have had attributes and 114 /// metadata implying dereferenceability that are no longer valid/correct after 115 /// RewriteStatepointsForGC has run. This is because semantically, after 116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 117 /// heap. stripNonValidData (conservatively) restores 118 /// correctness by erasing all attributes in the module that externally imply 119 /// dereferenceability. Similar reasoning also applies to the noalias 120 /// attributes and metadata. gc.statepoint can touch the entire heap including 121 /// noalias objects. 122 /// Apart from attributes and metadata, we also remove instructions that imply 123 /// constant physical memory: llvm.invariant.start. 124 static void stripNonValidData(Module &M); 125 126 static bool shouldRewriteStatepointsIn(Function &F); 127 128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 129 ModuleAnalysisManager &AM) { 130 bool Changed = false; 131 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 132 for (Function &F : M) { 133 // Nothing to do for declarations. 134 if (F.isDeclaration() || F.empty()) 135 continue; 136 137 // Policy choice says not to rewrite - the most common reason is that we're 138 // compiling code without a GCStrategy. 139 if (!shouldRewriteStatepointsIn(F)) 140 continue; 141 142 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 143 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 144 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 145 Changed |= runOnFunction(F, DT, TTI, TLI); 146 } 147 if (!Changed) 148 return PreservedAnalyses::all(); 149 150 // stripNonValidData asserts that shouldRewriteStatepointsIn 151 // returns true for at least one function in the module. Since at least 152 // one function changed, we know that the precondition is satisfied. 153 stripNonValidData(M); 154 155 PreservedAnalyses PA; 156 PA.preserve<TargetIRAnalysis>(); 157 PA.preserve<TargetLibraryAnalysis>(); 158 return PA; 159 } 160 161 namespace { 162 163 class RewriteStatepointsForGCLegacyPass : public ModulePass { 164 RewriteStatepointsForGC Impl; 165 166 public: 167 static char ID; // Pass identification, replacement for typeid 168 169 RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() { 170 initializeRewriteStatepointsForGCLegacyPassPass( 171 *PassRegistry::getPassRegistry()); 172 } 173 174 bool runOnModule(Module &M) override { 175 bool Changed = false; 176 for (Function &F : M) { 177 // Nothing to do for declarations. 178 if (F.isDeclaration() || F.empty()) 179 continue; 180 181 // Policy choice says not to rewrite - the most common reason is that 182 // we're compiling code without a GCStrategy. 183 if (!shouldRewriteStatepointsIn(F)) 184 continue; 185 186 TargetTransformInfo &TTI = 187 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 188 const TargetLibraryInfo &TLI = 189 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 190 auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 191 192 Changed |= Impl.runOnFunction(F, DT, TTI, TLI); 193 } 194 195 if (!Changed) 196 return false; 197 198 // stripNonValidData asserts that shouldRewriteStatepointsIn 199 // returns true for at least one function in the module. Since at least 200 // one function changed, we know that the precondition is satisfied. 201 stripNonValidData(M); 202 return true; 203 } 204 205 void getAnalysisUsage(AnalysisUsage &AU) const override { 206 // We add and rewrite a bunch of instructions, but don't really do much 207 // else. We could in theory preserve a lot more analyses here. 208 AU.addRequired<DominatorTreeWrapperPass>(); 209 AU.addRequired<TargetTransformInfoWrapperPass>(); 210 AU.addRequired<TargetLibraryInfoWrapperPass>(); 211 } 212 }; 213 214 } // end anonymous namespace 215 216 char RewriteStatepointsForGCLegacyPass::ID = 0; 217 218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() { 219 return new RewriteStatepointsForGCLegacyPass(); 220 } 221 222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass, 223 "rewrite-statepoints-for-gc", 224 "Make relocations explicit at statepoints", false, false) 225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass, 228 "rewrite-statepoints-for-gc", 229 "Make relocations explicit at statepoints", false, false) 230 231 namespace { 232 233 struct GCPtrLivenessData { 234 /// Values defined in this block. 235 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 236 237 /// Values used in this block (and thus live); does not included values 238 /// killed within this block. 239 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 240 241 /// Values live into this basic block (i.e. used by any 242 /// instruction in this basic block or ones reachable from here) 243 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 244 245 /// Values live out of this basic block (i.e. live into 246 /// any successor block) 247 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 248 }; 249 250 // The type of the internal cache used inside the findBasePointers family 251 // of functions. From the callers perspective, this is an opaque type and 252 // should not be inspected. 253 // 254 // In the actual implementation this caches two relations: 255 // - The base relation itself (i.e. this pointer is based on that one) 256 // - The base defining value relation (i.e. before base_phi insertion) 257 // Generally, after the execution of a full findBasePointer call, only the 258 // base relation will remain. Internally, we add a mixture of the two 259 // types, then update all the second type to the first type 260 using DefiningValueMapTy = MapVector<Value *, Value *>; 261 using StatepointLiveSetTy = SetVector<Value *>; 262 using RematerializedValueMapTy = 263 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 264 265 struct PartiallyConstructedSafepointRecord { 266 /// The set of values known to be live across this safepoint 267 StatepointLiveSetTy LiveSet; 268 269 /// Mapping from live pointers to a base-defining-value 270 MapVector<Value *, Value *> PointerToBase; 271 272 /// The *new* gc.statepoint instruction itself. This produces the token 273 /// that normal path gc.relocates and the gc.result are tied to. 274 GCStatepointInst *StatepointToken; 275 276 /// Instruction to which exceptional gc relocates are attached 277 /// Makes it easier to iterate through them during relocationViaAlloca. 278 Instruction *UnwindToken; 279 280 /// Record live values we are rematerialized instead of relocating. 281 /// They are not included into 'LiveSet' field. 282 /// Maps rematerialized copy to it's original value. 283 RematerializedValueMapTy RematerializedValues; 284 }; 285 286 } // end anonymous namespace 287 288 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) { 289 Optional<OperandBundleUse> DeoptBundle = 290 Call->getOperandBundle(LLVMContext::OB_deopt); 291 292 if (!DeoptBundle.hasValue()) { 293 assert(AllowStatepointWithNoDeoptInfo && 294 "Found non-leaf call without deopt info!"); 295 return None; 296 } 297 298 return DeoptBundle.getValue().Inputs; 299 } 300 301 /// Compute the live-in set for every basic block in the function 302 static void computeLiveInValues(DominatorTree &DT, Function &F, 303 GCPtrLivenessData &Data); 304 305 /// Given results from the dataflow liveness computation, find the set of live 306 /// Values at a particular instruction. 307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 308 StatepointLiveSetTy &out); 309 310 // TODO: Once we can get to the GCStrategy, this becomes 311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 312 313 static bool isGCPointerType(Type *T) { 314 if (auto *PT = dyn_cast<PointerType>(T)) 315 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 316 // GC managed heap. We know that a pointer into this heap needs to be 317 // updated and that no other pointer does. 318 return PT->getAddressSpace() == 1; 319 return false; 320 } 321 322 // Return true if this type is one which a) is a gc pointer or contains a GC 323 // pointer and b) is of a type this code expects to encounter as a live value. 324 // (The insertion code will assert that a type which matches (a) and not (b) 325 // is not encountered.) 326 static bool isHandledGCPointerType(Type *T) { 327 // We fully support gc pointers 328 if (isGCPointerType(T)) 329 return true; 330 // We partially support vectors of gc pointers. The code will assert if it 331 // can't handle something. 332 if (auto VT = dyn_cast<VectorType>(T)) 333 if (isGCPointerType(VT->getElementType())) 334 return true; 335 return false; 336 } 337 338 #ifndef NDEBUG 339 /// Returns true if this type contains a gc pointer whether we know how to 340 /// handle that type or not. 341 static bool containsGCPtrType(Type *Ty) { 342 if (isGCPointerType(Ty)) 343 return true; 344 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 345 return isGCPointerType(VT->getScalarType()); 346 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 347 return containsGCPtrType(AT->getElementType()); 348 if (StructType *ST = dyn_cast<StructType>(Ty)) 349 return llvm::any_of(ST->elements(), containsGCPtrType); 350 return false; 351 } 352 353 // Returns true if this is a type which a) is a gc pointer or contains a GC 354 // pointer and b) is of a type which the code doesn't expect (i.e. first class 355 // aggregates). Used to trip assertions. 356 static bool isUnhandledGCPointerType(Type *Ty) { 357 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 358 } 359 #endif 360 361 // Return the name of the value suffixed with the provided value, or if the 362 // value didn't have a name, the default value specified. 363 static std::string suffixed_name_or(Value *V, StringRef Suffix, 364 StringRef DefaultName) { 365 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 366 } 367 368 // Conservatively identifies any definitions which might be live at the 369 // given instruction. The analysis is performed immediately before the 370 // given instruction. Values defined by that instruction are not considered 371 // live. Values used by that instruction are considered live. 372 static void analyzeParsePointLiveness( 373 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, 374 PartiallyConstructedSafepointRecord &Result) { 375 StatepointLiveSetTy LiveSet; 376 findLiveSetAtInst(Call, OriginalLivenessData, LiveSet); 377 378 if (PrintLiveSet) { 379 dbgs() << "Live Variables:\n"; 380 for (Value *V : LiveSet) 381 dbgs() << " " << V->getName() << " " << *V << "\n"; 382 } 383 if (PrintLiveSetSize) { 384 dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n"; 385 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 386 } 387 Result.LiveSet = LiveSet; 388 } 389 390 // Returns true is V is a knownBaseResult. 391 static bool isKnownBaseResult(Value *V); 392 393 // Returns true if V is a BaseResult that already exists in the IR, i.e. it is 394 // not created by the findBasePointers algorithm. 395 static bool isOriginalBaseResult(Value *V); 396 397 namespace { 398 399 /// A single base defining value - An immediate base defining value for an 400 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 401 /// For instructions which have multiple pointer [vector] inputs or that 402 /// transition between vector and scalar types, there is no immediate base 403 /// defining value. The 'base defining value' for 'Def' is the transitive 404 /// closure of this relation stopping at the first instruction which has no 405 /// immediate base defining value. The b.d.v. might itself be a base pointer, 406 /// but it can also be an arbitrary derived pointer. 407 struct BaseDefiningValueResult { 408 /// Contains the value which is the base defining value. 409 Value * const BDV; 410 411 /// True if the base defining value is also known to be an actual base 412 /// pointer. 413 const bool IsKnownBase; 414 415 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 416 : BDV(BDV), IsKnownBase(IsKnownBase) { 417 #ifndef NDEBUG 418 // Check consistency between new and old means of checking whether a BDV is 419 // a base. 420 bool MustBeBase = isKnownBaseResult(BDV); 421 assert(!MustBeBase || MustBeBase == IsKnownBase); 422 #endif 423 } 424 }; 425 426 } // end anonymous namespace 427 428 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 429 430 /// Return a base defining value for the 'Index' element of the given vector 431 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 432 /// 'I'. As an optimization, this method will try to determine when the 433 /// element is known to already be a base pointer. If this can be established, 434 /// the second value in the returned pair will be true. Note that either a 435 /// vector or a pointer typed value can be returned. For the former, the 436 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 437 /// If the later, the return pointer is a BDV (or possibly a base) for the 438 /// particular element in 'I'. 439 static BaseDefiningValueResult 440 findBaseDefiningValueOfVector(Value *I) { 441 // Each case parallels findBaseDefiningValue below, see that code for 442 // detailed motivation. 443 444 if (isa<Argument>(I)) 445 // An incoming argument to the function is a base pointer 446 return BaseDefiningValueResult(I, true); 447 448 if (isa<Constant>(I)) 449 // Base of constant vector consists only of constant null pointers. 450 // For reasoning see similar case inside 'findBaseDefiningValue' function. 451 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 452 true); 453 454 if (isa<LoadInst>(I)) 455 return BaseDefiningValueResult(I, true); 456 457 if (isa<InsertElementInst>(I)) 458 // We don't know whether this vector contains entirely base pointers or 459 // not. To be conservatively correct, we treat it as a BDV and will 460 // duplicate code as needed to construct a parallel vector of bases. 461 return BaseDefiningValueResult(I, false); 462 463 if (isa<ShuffleVectorInst>(I)) 464 // We don't know whether this vector contains entirely base pointers or 465 // not. To be conservatively correct, we treat it as a BDV and will 466 // duplicate code as needed to construct a parallel vector of bases. 467 // TODO: There a number of local optimizations which could be applied here 468 // for particular sufflevector patterns. 469 return BaseDefiningValueResult(I, false); 470 471 // The behavior of getelementptr instructions is the same for vector and 472 // non-vector data types. 473 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 474 return findBaseDefiningValue(GEP->getPointerOperand()); 475 476 // If the pointer comes through a bitcast of a vector of pointers to 477 // a vector of another type of pointer, then look through the bitcast 478 if (auto *BC = dyn_cast<BitCastInst>(I)) 479 return findBaseDefiningValue(BC->getOperand(0)); 480 481 // We assume that functions in the source language only return base 482 // pointers. This should probably be generalized via attributes to support 483 // both source language and internal functions. 484 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 485 return BaseDefiningValueResult(I, true); 486 487 // A PHI or Select is a base defining value. The outer findBasePointer 488 // algorithm is responsible for constructing a base value for this BDV. 489 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 490 "unknown vector instruction - no base found for vector element"); 491 return BaseDefiningValueResult(I, false); 492 } 493 494 /// Helper function for findBasePointer - Will return a value which either a) 495 /// defines the base pointer for the input, b) blocks the simple search 496 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 497 /// from pointer to vector type or back. 498 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 499 assert(I->getType()->isPtrOrPtrVectorTy() && 500 "Illegal to ask for the base pointer of a non-pointer type"); 501 502 if (I->getType()->isVectorTy()) 503 return findBaseDefiningValueOfVector(I); 504 505 if (isa<Argument>(I)) 506 // An incoming argument to the function is a base pointer 507 // We should have never reached here if this argument isn't an gc value 508 return BaseDefiningValueResult(I, true); 509 510 if (isa<Constant>(I)) { 511 // We assume that objects with a constant base (e.g. a global) can't move 512 // and don't need to be reported to the collector because they are always 513 // live. Besides global references, all kinds of constants (e.g. undef, 514 // constant expressions, null pointers) can be introduced by the inliner or 515 // the optimizer, especially on dynamically dead paths. 516 // Here we treat all of them as having single null base. By doing this we 517 // trying to avoid problems reporting various conflicts in a form of 518 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 519 // See constant.ll file for relevant test cases. 520 521 return BaseDefiningValueResult( 522 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 523 } 524 525 if (CastInst *CI = dyn_cast<CastInst>(I)) { 526 Value *Def = CI->stripPointerCasts(); 527 // If stripping pointer casts changes the address space there is an 528 // addrspacecast in between. 529 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 530 cast<PointerType>(CI->getType())->getAddressSpace() && 531 "unsupported addrspacecast"); 532 // If we find a cast instruction here, it means we've found a cast which is 533 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 534 // handle int->ptr conversion. 535 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 536 return findBaseDefiningValue(Def); 537 } 538 539 if (isa<LoadInst>(I)) 540 // The value loaded is an gc base itself 541 return BaseDefiningValueResult(I, true); 542 543 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 544 // The base of this GEP is the base 545 return findBaseDefiningValue(GEP->getPointerOperand()); 546 547 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 548 switch (II->getIntrinsicID()) { 549 default: 550 // fall through to general call handling 551 break; 552 case Intrinsic::experimental_gc_statepoint: 553 llvm_unreachable("statepoints don't produce pointers"); 554 case Intrinsic::experimental_gc_relocate: 555 // Rerunning safepoint insertion after safepoints are already 556 // inserted is not supported. It could probably be made to work, 557 // but why are you doing this? There's no good reason. 558 llvm_unreachable("repeat safepoint insertion is not supported"); 559 case Intrinsic::gcroot: 560 // Currently, this mechanism hasn't been extended to work with gcroot. 561 // There's no reason it couldn't be, but I haven't thought about the 562 // implications much. 563 llvm_unreachable( 564 "interaction with the gcroot mechanism is not supported"); 565 } 566 } 567 // We assume that functions in the source language only return base 568 // pointers. This should probably be generalized via attributes to support 569 // both source language and internal functions. 570 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 571 return BaseDefiningValueResult(I, true); 572 573 // TODO: I have absolutely no idea how to implement this part yet. It's not 574 // necessarily hard, I just haven't really looked at it yet. 575 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 576 577 if (isa<AtomicCmpXchgInst>(I)) 578 // A CAS is effectively a atomic store and load combined under a 579 // predicate. From the perspective of base pointers, we just treat it 580 // like a load. 581 return BaseDefiningValueResult(I, true); 582 583 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 584 "binary ops which don't apply to pointers"); 585 586 // The aggregate ops. Aggregates can either be in the heap or on the 587 // stack, but in either case, this is simply a field load. As a result, 588 // this is a defining definition of the base just like a load is. 589 if (isa<ExtractValueInst>(I)) 590 return BaseDefiningValueResult(I, true); 591 592 // We should never see an insert vector since that would require we be 593 // tracing back a struct value not a pointer value. 594 assert(!isa<InsertValueInst>(I) && 595 "Base pointer for a struct is meaningless"); 596 597 // An extractelement produces a base result exactly when it's input does. 598 // We may need to insert a parallel instruction to extract the appropriate 599 // element out of the base vector corresponding to the input. Given this, 600 // it's analogous to the phi and select case even though it's not a merge. 601 if (isa<ExtractElementInst>(I)) 602 // Note: There a lot of obvious peephole cases here. This are deliberately 603 // handled after the main base pointer inference algorithm to make writing 604 // test cases to exercise that code easier. 605 return BaseDefiningValueResult(I, false); 606 607 // The last two cases here don't return a base pointer. Instead, they 608 // return a value which dynamically selects from among several base 609 // derived pointers (each with it's own base potentially). It's the job of 610 // the caller to resolve these. 611 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 612 "missing instruction case in findBaseDefiningValing"); 613 return BaseDefiningValueResult(I, false); 614 } 615 616 /// Returns the base defining value for this value. 617 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 618 Value *&Cached = Cache[I]; 619 if (!Cached) { 620 Cached = findBaseDefiningValue(I).BDV; 621 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 622 << Cached->getName() << "\n"); 623 } 624 assert(Cache[I] != nullptr); 625 return Cached; 626 } 627 628 /// Return a base pointer for this value if known. Otherwise, return it's 629 /// base defining value. 630 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 631 Value *Def = findBaseDefiningValueCached(I, Cache); 632 auto Found = Cache.find(Def); 633 if (Found != Cache.end()) { 634 // Either a base-of relation, or a self reference. Caller must check. 635 return Found->second; 636 } 637 // Only a BDV available 638 return Def; 639 } 640 641 /// This value is a base pointer that is not generated by RS4GC, i.e. it already 642 /// exists in the code. 643 static bool isOriginalBaseResult(Value *V) { 644 // no recursion possible 645 return !isa<PHINode>(V) && !isa<SelectInst>(V) && 646 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 647 !isa<ShuffleVectorInst>(V); 648 } 649 650 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 651 /// is it known to be a base pointer? Or do we need to continue searching. 652 static bool isKnownBaseResult(Value *V) { 653 if (isOriginalBaseResult(V)) 654 return true; 655 if (isa<Instruction>(V) && 656 cast<Instruction>(V)->getMetadata("is_base_value")) { 657 // This is a previously inserted base phi or select. We know 658 // that this is a base value. 659 return true; 660 } 661 662 // We need to keep searching 663 return false; 664 } 665 666 // Returns true if First and Second values are both scalar or both vector. 667 static bool areBothVectorOrScalar(Value *First, Value *Second) { 668 return isa<VectorType>(First->getType()) == 669 isa<VectorType>(Second->getType()); 670 } 671 672 namespace { 673 674 /// Models the state of a single base defining value in the findBasePointer 675 /// algorithm for determining where a new instruction is needed to propagate 676 /// the base of this BDV. 677 class BDVState { 678 public: 679 enum StatusTy { 680 // Starting state of lattice 681 Unknown, 682 // Some specific base value -- does *not* mean that instruction 683 // propagates the base of the object 684 // ex: gep %arg, 16 -> %arg is the base value 685 Base, 686 // Need to insert a node to represent a merge. 687 Conflict 688 }; 689 690 BDVState() { 691 llvm_unreachable("missing state in map"); 692 } 693 694 explicit BDVState(Value *OriginalValue) 695 : OriginalValue(OriginalValue) {} 696 explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr) 697 : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) { 698 assert(Status != Base || BaseValue); 699 } 700 701 StatusTy getStatus() const { return Status; } 702 Value *getOriginalValue() const { return OriginalValue; } 703 Value *getBaseValue() const { return BaseValue; } 704 705 bool isBase() const { return getStatus() == Base; } 706 bool isUnknown() const { return getStatus() == Unknown; } 707 bool isConflict() const { return getStatus() == Conflict; } 708 709 bool operator==(const BDVState &Other) const { 710 return OriginalValue == OriginalValue && BaseValue == Other.BaseValue && 711 Status == Other.Status; 712 } 713 714 bool operator!=(const BDVState &other) const { return !(*this == other); } 715 716 LLVM_DUMP_METHOD 717 void dump() const { 718 print(dbgs()); 719 dbgs() << '\n'; 720 } 721 722 void print(raw_ostream &OS) const { 723 switch (getStatus()) { 724 case Unknown: 725 OS << "U"; 726 break; 727 case Base: 728 OS << "B"; 729 break; 730 case Conflict: 731 OS << "C"; 732 break; 733 } 734 OS << " (base " << getBaseValue() << " - " 735 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")" 736 << " for " << OriginalValue->getName() << ":"; 737 } 738 739 private: 740 AssertingVH<Value> OriginalValue; // instruction this state corresponds to 741 StatusTy Status = Unknown; 742 AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base. 743 }; 744 745 } // end anonymous namespace 746 747 #ifndef NDEBUG 748 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 749 State.print(OS); 750 return OS; 751 } 752 #endif 753 754 static BDVState::StatusTy meet(const BDVState::StatusTy &LHS, 755 const BDVState::StatusTy &RHS) { 756 switch (LHS) { 757 case BDVState::Unknown: 758 return RHS; 759 case BDVState::Base: 760 switch (RHS) { 761 case BDVState::Unknown: 762 case BDVState::Base: 763 return BDVState::Base; 764 case BDVState::Conflict: 765 return BDVState::Conflict; 766 }; 767 llvm_unreachable("covered switch"); 768 case BDVState::Conflict: 769 return BDVState::Conflict; 770 } 771 llvm_unreachable("covered switch"); 772 } 773 774 // Values of type BDVState form a lattice, and this function implements the meet 775 // operation. 776 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) { 777 auto NewStatus = meet(LHS.getStatus(), RHS.getStatus()); 778 assert(NewStatus == meet(RHS.getStatus(), LHS.getStatus())); 779 780 Value *BaseValue = LHS.getStatus() == BDVState::Base ? 781 LHS.getBaseValue() : RHS.getBaseValue(); 782 if (LHS.getStatus() == BDVState::Base && RHS.getStatus() == BDVState::Base && 783 LHS.getBaseValue() != RHS.getBaseValue()) { 784 NewStatus = BDVState::Conflict; 785 } 786 if (NewStatus == BDVState::Conflict) 787 BaseValue = nullptr; 788 return BDVState(LHS.getOriginalValue(), NewStatus, BaseValue); 789 } 790 791 /// For a given value or instruction, figure out what base ptr its derived from. 792 /// For gc objects, this is simply itself. On success, returns a value which is 793 /// the base pointer. (This is reliable and can be used for relocation.) On 794 /// failure, returns nullptr. 795 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 796 Value *Def = findBaseOrBDV(I, Cache); 797 798 if (isKnownBaseResult(Def) && areBothVectorOrScalar(Def, I)) 799 return Def; 800 801 // Here's the rough algorithm: 802 // - For every SSA value, construct a mapping to either an actual base 803 // pointer or a PHI which obscures the base pointer. 804 // - Construct a mapping from PHI to unknown TOP state. Use an 805 // optimistic algorithm to propagate base pointer information. Lattice 806 // looks like: 807 // UNKNOWN 808 // b1 b2 b3 b4 809 // CONFLICT 810 // When algorithm terminates, all PHIs will either have a single concrete 811 // base or be in a conflict state. 812 // - For every conflict, insert a dummy PHI node without arguments. Add 813 // these to the base[Instruction] = BasePtr mapping. For every 814 // non-conflict, add the actual base. 815 // - For every conflict, add arguments for the base[a] of each input 816 // arguments. 817 // 818 // Note: A simpler form of this would be to add the conflict form of all 819 // PHIs without running the optimistic algorithm. This would be 820 // analogous to pessimistic data flow and would likely lead to an 821 // overall worse solution. 822 823 #ifndef NDEBUG 824 auto isExpectedBDVType = [](Value *BDV) { 825 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 826 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 827 isa<ShuffleVectorInst>(BDV); 828 }; 829 #endif 830 831 // Once populated, will contain a mapping from each potentially non-base BDV 832 // to a lattice value (described above) which corresponds to that BDV. 833 // We use the order of insertion (DFS over the def/use graph) to provide a 834 // stable deterministic ordering for visiting DenseMaps (which are unordered) 835 // below. This is important for deterministic compilation. 836 MapVector<Value *, BDVState> States; 837 838 #ifndef NDEBUG 839 auto VerifyStates = [&]() { 840 for (auto &Entry : States) { 841 assert(Entry.first == Entry.second.getOriginalValue()); 842 } 843 }; 844 #endif 845 846 auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) { 847 if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 848 for (Value *InVal : PN->incoming_values()) 849 F(InVal); 850 } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 851 F(SI->getTrueValue()); 852 F(SI->getFalseValue()); 853 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 854 F(EE->getVectorOperand()); 855 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) { 856 F(IE->getOperand(0)); 857 F(IE->getOperand(1)); 858 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) { 859 // For a canonical broadcast, ignore the undef argument 860 // (without this, we insert a parallel base shuffle for every broadcast) 861 F(SV->getOperand(0)); 862 if (!SV->isZeroEltSplat()) 863 F(SV->getOperand(1)); 864 } else { 865 llvm_unreachable("unexpected BDV type"); 866 } 867 }; 868 869 870 // Recursively fill in all base defining values reachable from the initial 871 // one for which we don't already know a definite base value for 872 /* scope */ { 873 SmallVector<Value*, 16> Worklist; 874 Worklist.push_back(Def); 875 States.insert({Def, BDVState(Def)}); 876 while (!Worklist.empty()) { 877 Value *Current = Worklist.pop_back_val(); 878 assert(!isOriginalBaseResult(Current) && "why did it get added?"); 879 880 auto visitIncomingValue = [&](Value *InVal) { 881 Value *Base = findBaseOrBDV(InVal, Cache); 882 if (isKnownBaseResult(Base) && areBothVectorOrScalar(Base, InVal)) 883 // Known bases won't need new instructions introduced and can be 884 // ignored safely. However, this can only be done when InVal and Base 885 // are both scalar or both vector. Otherwise, we need to find a 886 // correct BDV for InVal, by creating an entry in the lattice 887 // (States). 888 return; 889 assert(isExpectedBDVType(Base) && "the only non-base values " 890 "we see should be base defining values"); 891 if (States.insert(std::make_pair(Base, BDVState(Base))).second) 892 Worklist.push_back(Base); 893 }; 894 895 visitBDVOperands(Current, visitIncomingValue); 896 } 897 } 898 899 #ifndef NDEBUG 900 VerifyStates(); 901 LLVM_DEBUG(dbgs() << "States after initialization:\n"); 902 for (auto Pair : States) { 903 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 904 } 905 #endif 906 907 // Iterate forward through the value graph pruning any node from the state 908 // list where all of the inputs are base pointers. The purpose of this is to 909 // reuse existing values when the derived pointer we were asked to materialize 910 // a base pointer for happens to be a base pointer itself. (Or a sub-graph 911 // feeding it does.) 912 SmallVector<Value *> ToRemove; 913 do { 914 ToRemove.clear(); 915 for (auto Pair : States) { 916 Value *BDV = Pair.first; 917 auto canPruneInput = [&](Value *V) { 918 Value *BDV = findBaseOrBDV(V, Cache); 919 if (V->stripPointerCasts() != BDV) 920 return false; 921 // The assumption is that anything not in the state list is 922 // propagates a base pointer. 923 return States.count(BDV) == 0; 924 }; 925 926 bool CanPrune = true; 927 visitBDVOperands(BDV, [&](Value *Op) { 928 CanPrune = CanPrune && canPruneInput(Op); 929 }); 930 if (CanPrune) 931 ToRemove.push_back(BDV); 932 } 933 for (Value *V : ToRemove) { 934 States.erase(V); 935 // Cache the fact V is it's own base for later usage. 936 Cache[V] = V; 937 } 938 } while (!ToRemove.empty()); 939 940 // Did we manage to prove that Def itself must be a base pointer? 941 if (!States.count(Def)) 942 return Def; 943 944 // Return a phi state for a base defining value. We'll generate a new 945 // base state for known bases and expect to find a cached state otherwise. 946 auto GetStateForBDV = [&](Value *BaseValue, Value *Input) { 947 auto I = States.find(BaseValue); 948 if (I != States.end()) 949 return I->second; 950 assert(areBothVectorOrScalar(BaseValue, Input)); 951 return BDVState(BaseValue, BDVState::Base, BaseValue); 952 }; 953 954 bool Progress = true; 955 while (Progress) { 956 #ifndef NDEBUG 957 const size_t OldSize = States.size(); 958 #endif 959 Progress = false; 960 // We're only changing values in this loop, thus safe to keep iterators. 961 // Since this is computing a fixed point, the order of visit does not 962 // effect the result. TODO: We could use a worklist here and make this run 963 // much faster. 964 for (auto Pair : States) { 965 Value *BDV = Pair.first; 966 // Only values that do not have known bases or those that have differing 967 // type (scalar versus vector) from a possible known base should be in the 968 // lattice. 969 assert((!isKnownBaseResult(BDV) || 970 !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) && 971 "why did it get added?"); 972 973 BDVState NewState(BDV); 974 visitBDVOperands(BDV, [&] (Value *Op) { 975 Value *BDV = findBaseOrBDV(Op, Cache); 976 auto OpState = GetStateForBDV(BDV, Op); 977 NewState = meetBDVState(NewState, OpState); 978 }); 979 980 BDVState OldState = States[BDV]; 981 if (OldState != NewState) { 982 Progress = true; 983 States[BDV] = NewState; 984 } 985 } 986 987 assert(OldSize == States.size() && 988 "fixed point shouldn't be adding any new nodes to state"); 989 } 990 991 #ifndef NDEBUG 992 VerifyStates(); 993 LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); 994 for (auto Pair : States) { 995 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 996 } 997 #endif 998 999 // Handle all instructions that have a vector BDV, but the instruction itself 1000 // is of scalar type. 1001 for (auto Pair : States) { 1002 Instruction *I = cast<Instruction>(Pair.first); 1003 BDVState State = Pair.second; 1004 auto *BaseValue = State.getBaseValue(); 1005 // Only values that do not have known bases or those that have differing 1006 // type (scalar versus vector) from a possible known base should be in the 1007 // lattice. 1008 assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, BaseValue)) && 1009 "why did it get added?"); 1010 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1011 1012 if (!State.isBase() || !isa<VectorType>(BaseValue->getType())) 1013 continue; 1014 // extractelement instructions are a bit special in that we may need to 1015 // insert an extract even when we know an exact base for the instruction. 1016 // The problem is that we need to convert from a vector base to a scalar 1017 // base for the particular indice we're interested in. 1018 if (isa<ExtractElementInst>(I)) { 1019 auto *EE = cast<ExtractElementInst>(I); 1020 // TODO: In many cases, the new instruction is just EE itself. We should 1021 // exploit this, but can't do it here since it would break the invariant 1022 // about the BDV not being known to be a base. 1023 auto *BaseInst = ExtractElementInst::Create( 1024 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 1025 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1026 States[I] = BDVState(I, BDVState::Base, BaseInst); 1027 } else if (!isa<VectorType>(I->getType())) { 1028 // We need to handle cases that have a vector base but the instruction is 1029 // a scalar type (these could be phis or selects or any instruction that 1030 // are of scalar type, but the base can be a vector type). We 1031 // conservatively set this as conflict. Setting the base value for these 1032 // conflicts is handled in the next loop which traverses States. 1033 States[I] = BDVState(I, BDVState::Conflict); 1034 } 1035 } 1036 1037 #ifndef NDEBUG 1038 VerifyStates(); 1039 #endif 1040 1041 // Insert Phis for all conflicts 1042 // TODO: adjust naming patterns to avoid this order of iteration dependency 1043 for (auto Pair : States) { 1044 Instruction *I = cast<Instruction>(Pair.first); 1045 BDVState State = Pair.second; 1046 // Only values that do not have known bases or those that have differing 1047 // type (scalar versus vector) from a possible known base should be in the 1048 // lattice. 1049 assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, State.getBaseValue())) && 1050 "why did it get added?"); 1051 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1052 1053 // Since we're joining a vector and scalar base, they can never be the 1054 // same. As a result, we should always see insert element having reached 1055 // the conflict state. 1056 assert(!isa<InsertElementInst>(I) || State.isConflict()); 1057 1058 if (!State.isConflict()) 1059 continue; 1060 1061 auto getMangledName = [](Instruction *I) -> std::string { 1062 if (isa<PHINode>(I)) { 1063 return suffixed_name_or(I, ".base", "base_phi"); 1064 } else if (isa<SelectInst>(I)) { 1065 return suffixed_name_or(I, ".base", "base_select"); 1066 } else if (isa<ExtractElementInst>(I)) { 1067 return suffixed_name_or(I, ".base", "base_ee"); 1068 } else if (isa<InsertElementInst>(I)) { 1069 return suffixed_name_or(I, ".base", "base_ie"); 1070 } else { 1071 return suffixed_name_or(I, ".base", "base_sv"); 1072 } 1073 }; 1074 1075 Instruction *BaseInst = I->clone(); 1076 BaseInst->insertBefore(I); 1077 BaseInst->setName(getMangledName(I)); 1078 // Add metadata marking this as a base value 1079 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1080 States[I] = BDVState(I, BDVState::Conflict, BaseInst); 1081 } 1082 1083 #ifndef NDEBUG 1084 VerifyStates(); 1085 #endif 1086 1087 // Returns a instruction which produces the base pointer for a given 1088 // instruction. The instruction is assumed to be an input to one of the BDVs 1089 // seen in the inference algorithm above. As such, we must either already 1090 // know it's base defining value is a base, or have inserted a new 1091 // instruction to propagate the base of it's BDV and have entered that newly 1092 // introduced instruction into the state table. In either case, we are 1093 // assured to be able to determine an instruction which produces it's base 1094 // pointer. 1095 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1096 Value *BDV = findBaseOrBDV(Input, Cache); 1097 Value *Base = nullptr; 1098 if (!States.count(BDV)) { 1099 assert(areBothVectorOrScalar(BDV, Input)); 1100 Base = BDV; 1101 } else { 1102 // Either conflict or base. 1103 assert(States.count(BDV)); 1104 Base = States[BDV].getBaseValue(); 1105 } 1106 assert(Base && "Can't be null"); 1107 // The cast is needed since base traversal may strip away bitcasts 1108 if (Base->getType() != Input->getType() && InsertPt) 1109 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 1110 return Base; 1111 }; 1112 1113 // Fixup all the inputs of the new PHIs. Visit order needs to be 1114 // deterministic and predictable because we're naming newly created 1115 // instructions. 1116 for (auto Pair : States) { 1117 Instruction *BDV = cast<Instruction>(Pair.first); 1118 BDVState State = Pair.second; 1119 1120 // Only values that do not have known bases or those that have differing 1121 // type (scalar versus vector) from a possible known base should be in the 1122 // lattice. 1123 assert((!isKnownBaseResult(BDV) || 1124 !areBothVectorOrScalar(BDV, State.getBaseValue())) && 1125 "why did it get added?"); 1126 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1127 if (!State.isConflict()) 1128 continue; 1129 1130 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1131 PHINode *PN = cast<PHINode>(BDV); 1132 const unsigned NumPHIValues = PN->getNumIncomingValues(); 1133 1134 // The IR verifier requires phi nodes with multiple entries from the 1135 // same basic block to have the same incoming value for each of those 1136 // entries. Since we're inserting bitcasts in the loop, make sure we 1137 // do so at least once per incoming block. 1138 DenseMap<BasicBlock *, Value*> BlockToValue; 1139 for (unsigned i = 0; i < NumPHIValues; i++) { 1140 Value *InVal = PN->getIncomingValue(i); 1141 BasicBlock *InBB = PN->getIncomingBlock(i); 1142 if (!BlockToValue.count(InBB)) 1143 BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator()); 1144 else { 1145 #ifndef NDEBUG 1146 Value *OldBase = BlockToValue[InBB]; 1147 Value *Base = getBaseForInput(InVal, nullptr); 1148 // In essence this assert states: the only way two values 1149 // incoming from the same basic block may be different is by 1150 // being different bitcasts of the same value. A cleanup 1151 // that remains TODO is changing findBaseOrBDV to return an 1152 // llvm::Value of the correct type (and still remain pure). 1153 // This will remove the need to add bitcasts. 1154 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 1155 "Sanity -- findBaseOrBDV should be pure!"); 1156 #endif 1157 } 1158 Value *Base = BlockToValue[InBB]; 1159 BasePHI->setIncomingValue(i, Base); 1160 } 1161 } else if (SelectInst *BaseSI = 1162 dyn_cast<SelectInst>(State.getBaseValue())) { 1163 SelectInst *SI = cast<SelectInst>(BDV); 1164 1165 // Find the instruction which produces the base for each input. 1166 // We may need to insert a bitcast. 1167 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1168 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1169 } else if (auto *BaseEE = 1170 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1171 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1172 // Find the instruction which produces the base for each input. We may 1173 // need to insert a bitcast. 1174 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1175 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1176 auto *BdvIE = cast<InsertElementInst>(BDV); 1177 auto UpdateOperand = [&](int OperandIdx) { 1178 Value *InVal = BdvIE->getOperand(OperandIdx); 1179 Value *Base = getBaseForInput(InVal, BaseIE); 1180 BaseIE->setOperand(OperandIdx, Base); 1181 }; 1182 UpdateOperand(0); // vector operand 1183 UpdateOperand(1); // scalar operand 1184 } else { 1185 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1186 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1187 auto UpdateOperand = [&](int OperandIdx) { 1188 Value *InVal = BdvSV->getOperand(OperandIdx); 1189 Value *Base = getBaseForInput(InVal, BaseSV); 1190 BaseSV->setOperand(OperandIdx, Base); 1191 }; 1192 UpdateOperand(0); // vector operand 1193 if (!BdvSV->isZeroEltSplat()) 1194 UpdateOperand(1); // vector operand 1195 else { 1196 // Never read, so just use undef 1197 Value *InVal = BdvSV->getOperand(1); 1198 BaseSV->setOperand(1, UndefValue::get(InVal->getType())); 1199 } 1200 } 1201 } 1202 1203 #ifndef NDEBUG 1204 VerifyStates(); 1205 #endif 1206 1207 // Cache all of our results so we can cheaply reuse them 1208 // NOTE: This is actually two caches: one of the base defining value 1209 // relation and one of the base pointer relation! FIXME 1210 for (auto Pair : States) { 1211 auto *BDV = Pair.first; 1212 Value *Base = Pair.second.getBaseValue(); 1213 assert(BDV && Base); 1214 // Only values that do not have known bases or those that have differing 1215 // type (scalar versus vector) from a possible known base should be in the 1216 // lattice. 1217 assert((!isKnownBaseResult(BDV) || !areBothVectorOrScalar(BDV, Base)) && 1218 "why did it get added?"); 1219 1220 LLVM_DEBUG( 1221 dbgs() << "Updating base value cache" 1222 << " for: " << BDV->getName() << " from: " 1223 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1224 << " to: " << Base->getName() << "\n"); 1225 1226 Cache[BDV] = Base; 1227 } 1228 assert(Cache.count(Def)); 1229 return Cache[Def]; 1230 } 1231 1232 // For a set of live pointers (base and/or derived), identify the base 1233 // pointer of the object which they are derived from. This routine will 1234 // mutate the IR graph as needed to make the 'base' pointer live at the 1235 // definition site of 'derived'. This ensures that any use of 'derived' can 1236 // also use 'base'. This may involve the insertion of a number of 1237 // additional PHI nodes. 1238 // 1239 // preconditions: live is a set of pointer type Values 1240 // 1241 // side effects: may insert PHI nodes into the existing CFG, will preserve 1242 // CFG, will not remove or mutate any existing nodes 1243 // 1244 // post condition: PointerToBase contains one (derived, base) pair for every 1245 // pointer in live. Note that derived can be equal to base if the original 1246 // pointer was a base pointer. 1247 static void 1248 findBasePointers(const StatepointLiveSetTy &live, 1249 MapVector<Value *, Value *> &PointerToBase, 1250 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1251 for (Value *ptr : live) { 1252 Value *base = findBasePointer(ptr, DVCache); 1253 assert(base && "failed to find base pointer"); 1254 PointerToBase[ptr] = base; 1255 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1256 DT->dominates(cast<Instruction>(base)->getParent(), 1257 cast<Instruction>(ptr)->getParent())) && 1258 "The base we found better dominate the derived pointer"); 1259 } 1260 } 1261 1262 /// Find the required based pointers (and adjust the live set) for the given 1263 /// parse point. 1264 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1265 CallBase *Call, 1266 PartiallyConstructedSafepointRecord &result) { 1267 MapVector<Value *, Value *> PointerToBase; 1268 StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet; 1269 // We assume that all pointers passed to deopt are base pointers; as an 1270 // optimization, we can use this to avoid seperately materializing the base 1271 // pointer graph. This is only relevant since we're very conservative about 1272 // generating new conflict nodes during base pointer insertion. If we were 1273 // smarter there, this would be irrelevant. 1274 if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt)) 1275 for (Value *V : Opt->Inputs) { 1276 if (!PotentiallyDerivedPointers.count(V)) 1277 continue; 1278 PotentiallyDerivedPointers.remove(V); 1279 PointerToBase[V] = V; 1280 } 1281 findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache); 1282 1283 if (PrintBasePointers) { 1284 errs() << "Base Pairs (w/o Relocation):\n"; 1285 for (auto &Pair : PointerToBase) { 1286 errs() << " derived "; 1287 Pair.first->printAsOperand(errs(), false); 1288 errs() << " base "; 1289 Pair.second->printAsOperand(errs(), false); 1290 errs() << "\n";; 1291 } 1292 } 1293 1294 result.PointerToBase = PointerToBase; 1295 } 1296 1297 /// Given an updated version of the dataflow liveness results, update the 1298 /// liveset and base pointer maps for the call site CS. 1299 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1300 CallBase *Call, 1301 PartiallyConstructedSafepointRecord &result); 1302 1303 static void recomputeLiveInValues( 1304 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 1305 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1306 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1307 // again. The old values are still live and will help it stabilize quickly. 1308 GCPtrLivenessData RevisedLivenessData; 1309 computeLiveInValues(DT, F, RevisedLivenessData); 1310 for (size_t i = 0; i < records.size(); i++) { 1311 struct PartiallyConstructedSafepointRecord &info = records[i]; 1312 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1313 } 1314 } 1315 1316 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1317 // no uses of the original value / return value between the gc.statepoint and 1318 // the gc.relocate / gc.result call. One case which can arise is a phi node 1319 // starting one of the successor blocks. We also need to be able to insert the 1320 // gc.relocates only on the path which goes through the statepoint. We might 1321 // need to split an edge to make this possible. 1322 static BasicBlock * 1323 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1324 DominatorTree &DT) { 1325 BasicBlock *Ret = BB; 1326 if (!BB->getUniquePredecessor()) 1327 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1328 1329 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1330 // from it 1331 FoldSingleEntryPHINodes(Ret); 1332 assert(!isa<PHINode>(Ret->begin()) && 1333 "All PHI nodes should have been removed!"); 1334 1335 // At this point, we can safely insert a gc.relocate or gc.result as the first 1336 // instruction in Ret if needed. 1337 return Ret; 1338 } 1339 1340 // Create new attribute set containing only attributes which can be transferred 1341 // from original call to the safepoint. 1342 static AttributeList legalizeCallAttributes(LLVMContext &Ctx, 1343 AttributeList AL) { 1344 if (AL.isEmpty()) 1345 return AL; 1346 1347 // Remove the readonly, readnone, and statepoint function attributes. 1348 AttrBuilder FnAttrs = AL.getFnAttributes(); 1349 FnAttrs.removeAttribute(Attribute::ReadNone); 1350 FnAttrs.removeAttribute(Attribute::ReadOnly); 1351 FnAttrs.removeAttribute(Attribute::NoSync); 1352 FnAttrs.removeAttribute(Attribute::NoFree); 1353 for (Attribute A : AL.getFnAttributes()) { 1354 if (isStatepointDirectiveAttr(A)) 1355 FnAttrs.remove(A); 1356 } 1357 1358 // Just skip parameter and return attributes for now 1359 return AttributeList::get(Ctx, AttributeList::FunctionIndex, 1360 AttributeSet::get(Ctx, FnAttrs)); 1361 } 1362 1363 /// Helper function to place all gc relocates necessary for the given 1364 /// statepoint. 1365 /// Inputs: 1366 /// liveVariables - list of variables to be relocated. 1367 /// basePtrs - base pointers. 1368 /// statepointToken - statepoint instruction to which relocates should be 1369 /// bound. 1370 /// Builder - Llvm IR builder to be used to construct new calls. 1371 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1372 ArrayRef<Value *> BasePtrs, 1373 Instruction *StatepointToken, 1374 IRBuilder<> &Builder) { 1375 if (LiveVariables.empty()) 1376 return; 1377 1378 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1379 auto ValIt = llvm::find(LiveVec, Val); 1380 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1381 size_t Index = std::distance(LiveVec.begin(), ValIt); 1382 assert(Index < LiveVec.size() && "Bug in std::find?"); 1383 return Index; 1384 }; 1385 Module *M = StatepointToken->getModule(); 1386 1387 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1388 // element type is i8 addrspace(1)*). We originally generated unique 1389 // declarations for each pointer type, but this proved problematic because 1390 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1391 // towards a single unified pointer type anyways, we can just cast everything 1392 // to an i8* of the right address space. A bitcast is added later to convert 1393 // gc_relocate to the actual value's type. 1394 auto getGCRelocateDecl = [&] (Type *Ty) { 1395 assert(isHandledGCPointerType(Ty)); 1396 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1397 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1398 if (auto *VT = dyn_cast<VectorType>(Ty)) 1399 NewTy = FixedVectorType::get(NewTy, 1400 cast<FixedVectorType>(VT)->getNumElements()); 1401 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1402 {NewTy}); 1403 }; 1404 1405 // Lazily populated map from input types to the canonicalized form mentioned 1406 // in the comment above. This should probably be cached somewhere more 1407 // broadly. 1408 DenseMap<Type *, Function *> TypeToDeclMap; 1409 1410 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1411 // Generate the gc.relocate call and save the result 1412 Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i])); 1413 Value *LiveIdx = Builder.getInt32(i); 1414 1415 Type *Ty = LiveVariables[i]->getType(); 1416 if (!TypeToDeclMap.count(Ty)) 1417 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1418 Function *GCRelocateDecl = TypeToDeclMap[Ty]; 1419 1420 // only specify a debug name if we can give a useful one 1421 CallInst *Reloc = Builder.CreateCall( 1422 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1423 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1424 // Trick CodeGen into thinking there are lots of free registers at this 1425 // fake call. 1426 Reloc->setCallingConv(CallingConv::Cold); 1427 } 1428 } 1429 1430 namespace { 1431 1432 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1433 /// avoids having to worry about keeping around dangling pointers to Values. 1434 class DeferredReplacement { 1435 AssertingVH<Instruction> Old; 1436 AssertingVH<Instruction> New; 1437 bool IsDeoptimize = false; 1438 1439 DeferredReplacement() = default; 1440 1441 public: 1442 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1443 assert(Old != New && Old && New && 1444 "Cannot RAUW equal values or to / from null!"); 1445 1446 DeferredReplacement D; 1447 D.Old = Old; 1448 D.New = New; 1449 return D; 1450 } 1451 1452 static DeferredReplacement createDelete(Instruction *ToErase) { 1453 DeferredReplacement D; 1454 D.Old = ToErase; 1455 return D; 1456 } 1457 1458 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1459 #ifndef NDEBUG 1460 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1461 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1462 "Only way to construct a deoptimize deferred replacement"); 1463 #endif 1464 DeferredReplacement D; 1465 D.Old = Old; 1466 D.IsDeoptimize = true; 1467 return D; 1468 } 1469 1470 /// Does the task represented by this instance. 1471 void doReplacement() { 1472 Instruction *OldI = Old; 1473 Instruction *NewI = New; 1474 1475 assert(OldI != NewI && "Disallowed at construction?!"); 1476 assert((!IsDeoptimize || !New) && 1477 "Deoptimize intrinsics are not replaced!"); 1478 1479 Old = nullptr; 1480 New = nullptr; 1481 1482 if (NewI) 1483 OldI->replaceAllUsesWith(NewI); 1484 1485 if (IsDeoptimize) { 1486 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1487 // not necessarily be followed by the matching return. 1488 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1489 new UnreachableInst(RI->getContext(), RI); 1490 RI->eraseFromParent(); 1491 } 1492 1493 OldI->eraseFromParent(); 1494 } 1495 }; 1496 1497 } // end anonymous namespace 1498 1499 static StringRef getDeoptLowering(CallBase *Call) { 1500 const char *DeoptLowering = "deopt-lowering"; 1501 if (Call->hasFnAttr(DeoptLowering)) { 1502 // FIXME: Calls have a *really* confusing interface around attributes 1503 // with values. 1504 const AttributeList &CSAS = Call->getAttributes(); 1505 if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering)) 1506 return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering) 1507 .getValueAsString(); 1508 Function *F = Call->getCalledFunction(); 1509 assert(F && F->hasFnAttribute(DeoptLowering)); 1510 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1511 } 1512 return "live-through"; 1513 } 1514 1515 static void 1516 makeStatepointExplicitImpl(CallBase *Call, /* to replace */ 1517 const SmallVectorImpl<Value *> &BasePtrs, 1518 const SmallVectorImpl<Value *> &LiveVariables, 1519 PartiallyConstructedSafepointRecord &Result, 1520 std::vector<DeferredReplacement> &Replacements) { 1521 assert(BasePtrs.size() == LiveVariables.size()); 1522 1523 // Then go ahead and use the builder do actually do the inserts. We insert 1524 // immediately before the previous instruction under the assumption that all 1525 // arguments will be available here. We can't insert afterwards since we may 1526 // be replacing a terminator. 1527 IRBuilder<> Builder(Call); 1528 1529 ArrayRef<Value *> GCArgs(LiveVariables); 1530 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1531 uint32_t NumPatchBytes = 0; 1532 uint32_t Flags = uint32_t(StatepointFlags::None); 1533 1534 SmallVector<Value *, 8> CallArgs(Call->args()); 1535 Optional<ArrayRef<Use>> DeoptArgs; 1536 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt)) 1537 DeoptArgs = Bundle->Inputs; 1538 Optional<ArrayRef<Use>> TransitionArgs; 1539 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) { 1540 TransitionArgs = Bundle->Inputs; 1541 // TODO: This flag no longer serves a purpose and can be removed later 1542 Flags |= uint32_t(StatepointFlags::GCTransition); 1543 } 1544 1545 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1546 // with a return value, we lower then as never returning calls to 1547 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1548 bool IsDeoptimize = false; 1549 1550 StatepointDirectives SD = 1551 parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1552 if (SD.NumPatchBytes) 1553 NumPatchBytes = *SD.NumPatchBytes; 1554 if (SD.StatepointID) 1555 StatepointID = *SD.StatepointID; 1556 1557 // Pass through the requested lowering if any. The default is live-through. 1558 StringRef DeoptLowering = getDeoptLowering(Call); 1559 if (DeoptLowering.equals("live-in")) 1560 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1561 else { 1562 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1563 } 1564 1565 Value *CallTarget = Call->getCalledOperand(); 1566 if (Function *F = dyn_cast<Function>(CallTarget)) { 1567 auto IID = F->getIntrinsicID(); 1568 if (IID == Intrinsic::experimental_deoptimize) { 1569 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1570 // __llvm_deoptimize symbol. We want to resolve this now, since the 1571 // verifier does not allow taking the address of an intrinsic function. 1572 1573 SmallVector<Type *, 8> DomainTy; 1574 for (Value *Arg : CallArgs) 1575 DomainTy.push_back(Arg->getType()); 1576 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1577 /* isVarArg = */ false); 1578 1579 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1580 // calls to @llvm.experimental.deoptimize with different argument types in 1581 // the same module. This is fine -- we assume the frontend knew what it 1582 // was doing when generating this kind of IR. 1583 CallTarget = F->getParent() 1584 ->getOrInsertFunction("__llvm_deoptimize", FTy) 1585 .getCallee(); 1586 1587 IsDeoptimize = true; 1588 } else if (IID == Intrinsic::memcpy_element_unordered_atomic || 1589 IID == Intrinsic::memmove_element_unordered_atomic) { 1590 // Unordered atomic memcpy and memmove intrinsics which are not explicitly 1591 // marked as "gc-leaf-function" should be lowered in a GC parseable way. 1592 // Specifically, these calls should be lowered to the 1593 // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols. 1594 // Similarly to __llvm_deoptimize we want to resolve this now, since the 1595 // verifier does not allow taking the address of an intrinsic function. 1596 // 1597 // Moreover we need to shuffle the arguments for the call in order to 1598 // accommodate GC. The underlying source and destination objects might be 1599 // relocated during copy operation should the GC occur. To relocate the 1600 // derived source and destination pointers the implementation of the 1601 // intrinsic should know the corresponding base pointers. 1602 // 1603 // To make the base pointers available pass them explicitly as arguments: 1604 // memcpy(dest_derived, source_derived, ...) => 1605 // memcpy(dest_base, dest_offset, source_base, source_offset, ...) 1606 auto &Context = Call->getContext(); 1607 auto &DL = Call->getModule()->getDataLayout(); 1608 auto GetBaseAndOffset = [&](Value *Derived) { 1609 assert(Result.PointerToBase.count(Derived)); 1610 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 1611 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 1612 Value *Base = Result.PointerToBase.find(Derived)->second; 1613 Value *Base_int = Builder.CreatePtrToInt( 1614 Base, Type::getIntNTy(Context, IntPtrSize)); 1615 Value *Derived_int = Builder.CreatePtrToInt( 1616 Derived, Type::getIntNTy(Context, IntPtrSize)); 1617 return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int)); 1618 }; 1619 1620 auto *Dest = CallArgs[0]; 1621 Value *DestBase, *DestOffset; 1622 std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest); 1623 1624 auto *Source = CallArgs[1]; 1625 Value *SourceBase, *SourceOffset; 1626 std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source); 1627 1628 auto *LengthInBytes = CallArgs[2]; 1629 auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]); 1630 1631 CallArgs.clear(); 1632 CallArgs.push_back(DestBase); 1633 CallArgs.push_back(DestOffset); 1634 CallArgs.push_back(SourceBase); 1635 CallArgs.push_back(SourceOffset); 1636 CallArgs.push_back(LengthInBytes); 1637 1638 SmallVector<Type *, 8> DomainTy; 1639 for (Value *Arg : CallArgs) 1640 DomainTy.push_back(Arg->getType()); 1641 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1642 /* isVarArg = */ false); 1643 1644 auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) { 1645 uint64_t ElementSize = ElementSizeCI->getZExtValue(); 1646 if (IID == Intrinsic::memcpy_element_unordered_atomic) { 1647 switch (ElementSize) { 1648 case 1: 1649 return "__llvm_memcpy_element_unordered_atomic_safepoint_1"; 1650 case 2: 1651 return "__llvm_memcpy_element_unordered_atomic_safepoint_2"; 1652 case 4: 1653 return "__llvm_memcpy_element_unordered_atomic_safepoint_4"; 1654 case 8: 1655 return "__llvm_memcpy_element_unordered_atomic_safepoint_8"; 1656 case 16: 1657 return "__llvm_memcpy_element_unordered_atomic_safepoint_16"; 1658 default: 1659 llvm_unreachable("unexpected element size!"); 1660 } 1661 } 1662 assert(IID == Intrinsic::memmove_element_unordered_atomic); 1663 switch (ElementSize) { 1664 case 1: 1665 return "__llvm_memmove_element_unordered_atomic_safepoint_1"; 1666 case 2: 1667 return "__llvm_memmove_element_unordered_atomic_safepoint_2"; 1668 case 4: 1669 return "__llvm_memmove_element_unordered_atomic_safepoint_4"; 1670 case 8: 1671 return "__llvm_memmove_element_unordered_atomic_safepoint_8"; 1672 case 16: 1673 return "__llvm_memmove_element_unordered_atomic_safepoint_16"; 1674 default: 1675 llvm_unreachable("unexpected element size!"); 1676 } 1677 }; 1678 1679 CallTarget = 1680 F->getParent() 1681 ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy) 1682 .getCallee(); 1683 } 1684 } 1685 1686 // Create the statepoint given all the arguments 1687 GCStatepointInst *Token = nullptr; 1688 if (auto *CI = dyn_cast<CallInst>(Call)) { 1689 CallInst *SPCall = Builder.CreateGCStatepointCall( 1690 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1691 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1692 1693 SPCall->setTailCallKind(CI->getTailCallKind()); 1694 SPCall->setCallingConv(CI->getCallingConv()); 1695 1696 // Currently we will fail on parameter attributes and on certain 1697 // function attributes. In case if we can handle this set of attributes - 1698 // set up function attrs directly on statepoint and return attrs later for 1699 // gc_result intrinsic. 1700 SPCall->setAttributes( 1701 legalizeCallAttributes(CI->getContext(), CI->getAttributes())); 1702 1703 Token = cast<GCStatepointInst>(SPCall); 1704 1705 // Put the following gc_result and gc_relocate calls immediately after the 1706 // the old call (which we're about to delete) 1707 assert(CI->getNextNode() && "Not a terminator, must have next!"); 1708 Builder.SetInsertPoint(CI->getNextNode()); 1709 Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); 1710 } else { 1711 auto *II = cast<InvokeInst>(Call); 1712 1713 // Insert the new invoke into the old block. We'll remove the old one in a 1714 // moment at which point this will become the new terminator for the 1715 // original block. 1716 InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( 1717 StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(), 1718 II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, 1719 "statepoint_token"); 1720 1721 SPInvoke->setCallingConv(II->getCallingConv()); 1722 1723 // Currently we will fail on parameter attributes and on certain 1724 // function attributes. In case if we can handle this set of attributes - 1725 // set up function attrs directly on statepoint and return attrs later for 1726 // gc_result intrinsic. 1727 SPInvoke->setAttributes( 1728 legalizeCallAttributes(II->getContext(), II->getAttributes())); 1729 1730 Token = cast<GCStatepointInst>(SPInvoke); 1731 1732 // Generate gc relocates in exceptional path 1733 BasicBlock *UnwindBlock = II->getUnwindDest(); 1734 assert(!isa<PHINode>(UnwindBlock->begin()) && 1735 UnwindBlock->getUniquePredecessor() && 1736 "can't safely insert in this block!"); 1737 1738 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1739 Builder.SetCurrentDebugLocation(II->getDebugLoc()); 1740 1741 // Attach exceptional gc relocates to the landingpad. 1742 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1743 Result.UnwindToken = ExceptionalToken; 1744 1745 CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder); 1746 1747 // Generate gc relocates and returns for normal block 1748 BasicBlock *NormalDest = II->getNormalDest(); 1749 assert(!isa<PHINode>(NormalDest->begin()) && 1750 NormalDest->getUniquePredecessor() && 1751 "can't safely insert in this block!"); 1752 1753 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1754 1755 // gc relocates will be generated later as if it were regular call 1756 // statepoint 1757 } 1758 assert(Token && "Should be set in one of the above branches!"); 1759 1760 if (IsDeoptimize) { 1761 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1762 // transform the tail-call like structure to a call to a void function 1763 // followed by unreachable to get better codegen. 1764 Replacements.push_back( 1765 DeferredReplacement::createDeoptimizeReplacement(Call)); 1766 } else { 1767 Token->setName("statepoint_token"); 1768 if (!Call->getType()->isVoidTy() && !Call->use_empty()) { 1769 StringRef Name = Call->hasName() ? Call->getName() : ""; 1770 CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name); 1771 GCResult->setAttributes( 1772 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1773 Call->getAttributes().getRetAttributes())); 1774 1775 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1776 // live set of some other safepoint, in which case that safepoint's 1777 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1778 // llvm::Instruction. Instead, we defer the replacement and deletion to 1779 // after the live sets have been made explicit in the IR, and we no longer 1780 // have raw pointers to worry about. 1781 Replacements.emplace_back( 1782 DeferredReplacement::createRAUW(Call, GCResult)); 1783 } else { 1784 Replacements.emplace_back(DeferredReplacement::createDelete(Call)); 1785 } 1786 } 1787 1788 Result.StatepointToken = Token; 1789 1790 // Second, create a gc.relocate for every live variable 1791 CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder); 1792 } 1793 1794 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1795 // which make the relocations happening at this safepoint explicit. 1796 // 1797 // WARNING: Does not do any fixup to adjust users of the original live 1798 // values. That's the callers responsibility. 1799 static void 1800 makeStatepointExplicit(DominatorTree &DT, CallBase *Call, 1801 PartiallyConstructedSafepointRecord &Result, 1802 std::vector<DeferredReplacement> &Replacements) { 1803 const auto &LiveSet = Result.LiveSet; 1804 const auto &PointerToBase = Result.PointerToBase; 1805 1806 // Convert to vector for efficient cross referencing. 1807 SmallVector<Value *, 64> BaseVec, LiveVec; 1808 LiveVec.reserve(LiveSet.size()); 1809 BaseVec.reserve(LiveSet.size()); 1810 for (Value *L : LiveSet) { 1811 LiveVec.push_back(L); 1812 assert(PointerToBase.count(L)); 1813 Value *Base = PointerToBase.find(L)->second; 1814 BaseVec.push_back(Base); 1815 } 1816 assert(LiveVec.size() == BaseVec.size()); 1817 1818 // Do the actual rewriting and delete the old statepoint 1819 makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements); 1820 } 1821 1822 // Helper function for the relocationViaAlloca. 1823 // 1824 // It receives iterator to the statepoint gc relocates and emits a store to the 1825 // assigned location (via allocaMap) for the each one of them. It adds the 1826 // visited values into the visitedLiveValues set, which we will later use them 1827 // for sanity checking. 1828 static void 1829 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1830 DenseMap<Value *, AllocaInst *> &AllocaMap, 1831 DenseSet<Value *> &VisitedLiveValues) { 1832 for (User *U : GCRelocs) { 1833 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1834 if (!Relocate) 1835 continue; 1836 1837 Value *OriginalValue = Relocate->getDerivedPtr(); 1838 assert(AllocaMap.count(OriginalValue)); 1839 Value *Alloca = AllocaMap[OriginalValue]; 1840 1841 // Emit store into the related alloca 1842 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1843 // the correct type according to alloca. 1844 assert(Relocate->getNextNode() && 1845 "Should always have one since it's not a terminator"); 1846 IRBuilder<> Builder(Relocate->getNextNode()); 1847 Value *CastedRelocatedValue = 1848 Builder.CreateBitCast(Relocate, 1849 cast<AllocaInst>(Alloca)->getAllocatedType(), 1850 suffixed_name_or(Relocate, ".casted", "")); 1851 1852 new StoreInst(CastedRelocatedValue, Alloca, 1853 cast<Instruction>(CastedRelocatedValue)->getNextNode()); 1854 1855 #ifndef NDEBUG 1856 VisitedLiveValues.insert(OriginalValue); 1857 #endif 1858 } 1859 } 1860 1861 // Helper function for the "relocationViaAlloca". Similar to the 1862 // "insertRelocationStores" but works for rematerialized values. 1863 static void insertRematerializationStores( 1864 const RematerializedValueMapTy &RematerializedValues, 1865 DenseMap<Value *, AllocaInst *> &AllocaMap, 1866 DenseSet<Value *> &VisitedLiveValues) { 1867 for (auto RematerializedValuePair: RematerializedValues) { 1868 Instruction *RematerializedValue = RematerializedValuePair.first; 1869 Value *OriginalValue = RematerializedValuePair.second; 1870 1871 assert(AllocaMap.count(OriginalValue) && 1872 "Can not find alloca for rematerialized value"); 1873 Value *Alloca = AllocaMap[OriginalValue]; 1874 1875 new StoreInst(RematerializedValue, Alloca, 1876 RematerializedValue->getNextNode()); 1877 1878 #ifndef NDEBUG 1879 VisitedLiveValues.insert(OriginalValue); 1880 #endif 1881 } 1882 } 1883 1884 /// Do all the relocation update via allocas and mem2reg 1885 static void relocationViaAlloca( 1886 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1887 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1888 #ifndef NDEBUG 1889 // record initial number of (static) allocas; we'll check we have the same 1890 // number when we get done. 1891 int InitialAllocaNum = 0; 1892 for (Instruction &I : F.getEntryBlock()) 1893 if (isa<AllocaInst>(I)) 1894 InitialAllocaNum++; 1895 #endif 1896 1897 // TODO-PERF: change data structures, reserve 1898 DenseMap<Value *, AllocaInst *> AllocaMap; 1899 SmallVector<AllocaInst *, 200> PromotableAllocas; 1900 // Used later to chack that we have enough allocas to store all values 1901 std::size_t NumRematerializedValues = 0; 1902 PromotableAllocas.reserve(Live.size()); 1903 1904 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1905 // "PromotableAllocas" 1906 const DataLayout &DL = F.getParent()->getDataLayout(); 1907 auto emitAllocaFor = [&](Value *LiveValue) { 1908 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 1909 DL.getAllocaAddrSpace(), "", 1910 F.getEntryBlock().getFirstNonPHI()); 1911 AllocaMap[LiveValue] = Alloca; 1912 PromotableAllocas.push_back(Alloca); 1913 }; 1914 1915 // Emit alloca for each live gc pointer 1916 for (Value *V : Live) 1917 emitAllocaFor(V); 1918 1919 // Emit allocas for rematerialized values 1920 for (const auto &Info : Records) 1921 for (auto RematerializedValuePair : Info.RematerializedValues) { 1922 Value *OriginalValue = RematerializedValuePair.second; 1923 if (AllocaMap.count(OriginalValue) != 0) 1924 continue; 1925 1926 emitAllocaFor(OriginalValue); 1927 ++NumRematerializedValues; 1928 } 1929 1930 // The next two loops are part of the same conceptual operation. We need to 1931 // insert a store to the alloca after the original def and at each 1932 // redefinition. We need to insert a load before each use. These are split 1933 // into distinct loops for performance reasons. 1934 1935 // Update gc pointer after each statepoint: either store a relocated value or 1936 // null (if no relocated value was found for this gc pointer and it is not a 1937 // gc_result). This must happen before we update the statepoint with load of 1938 // alloca otherwise we lose the link between statepoint and old def. 1939 for (const auto &Info : Records) { 1940 Value *Statepoint = Info.StatepointToken; 1941 1942 // This will be used for consistency check 1943 DenseSet<Value *> VisitedLiveValues; 1944 1945 // Insert stores for normal statepoint gc relocates 1946 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1947 1948 // In case if it was invoke statepoint 1949 // we will insert stores for exceptional path gc relocates. 1950 if (isa<InvokeInst>(Statepoint)) { 1951 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1952 VisitedLiveValues); 1953 } 1954 1955 // Do similar thing with rematerialized values 1956 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1957 VisitedLiveValues); 1958 1959 if (ClobberNonLive) { 1960 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1961 // the gc.statepoint. This will turn some subtle GC problems into 1962 // slightly easier to debug SEGVs. Note that on large IR files with 1963 // lots of gc.statepoints this is extremely costly both memory and time 1964 // wise. 1965 SmallVector<AllocaInst *, 64> ToClobber; 1966 for (auto Pair : AllocaMap) { 1967 Value *Def = Pair.first; 1968 AllocaInst *Alloca = Pair.second; 1969 1970 // This value was relocated 1971 if (VisitedLiveValues.count(Def)) { 1972 continue; 1973 } 1974 ToClobber.push_back(Alloca); 1975 } 1976 1977 auto InsertClobbersAt = [&](Instruction *IP) { 1978 for (auto *AI : ToClobber) { 1979 auto PT = cast<PointerType>(AI->getAllocatedType()); 1980 Constant *CPN = ConstantPointerNull::get(PT); 1981 new StoreInst(CPN, AI, IP); 1982 } 1983 }; 1984 1985 // Insert the clobbering stores. These may get intermixed with the 1986 // gc.results and gc.relocates, but that's fine. 1987 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1988 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1989 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1990 } else { 1991 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1992 } 1993 } 1994 } 1995 1996 // Update use with load allocas and add store for gc_relocated. 1997 for (auto Pair : AllocaMap) { 1998 Value *Def = Pair.first; 1999 AllocaInst *Alloca = Pair.second; 2000 2001 // We pre-record the uses of allocas so that we dont have to worry about 2002 // later update that changes the user information.. 2003 2004 SmallVector<Instruction *, 20> Uses; 2005 // PERF: trade a linear scan for repeated reallocation 2006 Uses.reserve(Def->getNumUses()); 2007 for (User *U : Def->users()) { 2008 if (!isa<ConstantExpr>(U)) { 2009 // If the def has a ConstantExpr use, then the def is either a 2010 // ConstantExpr use itself or null. In either case 2011 // (recursively in the first, directly in the second), the oop 2012 // it is ultimately dependent on is null and this particular 2013 // use does not need to be fixed up. 2014 Uses.push_back(cast<Instruction>(U)); 2015 } 2016 } 2017 2018 llvm::sort(Uses); 2019 auto Last = std::unique(Uses.begin(), Uses.end()); 2020 Uses.erase(Last, Uses.end()); 2021 2022 for (Instruction *Use : Uses) { 2023 if (isa<PHINode>(Use)) { 2024 PHINode *Phi = cast<PHINode>(Use); 2025 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 2026 if (Def == Phi->getIncomingValue(i)) { 2027 LoadInst *Load = 2028 new LoadInst(Alloca->getAllocatedType(), Alloca, "", 2029 Phi->getIncomingBlock(i)->getTerminator()); 2030 Phi->setIncomingValue(i, Load); 2031 } 2032 } 2033 } else { 2034 LoadInst *Load = 2035 new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use); 2036 Use->replaceUsesOfWith(Def, Load); 2037 } 2038 } 2039 2040 // Emit store for the initial gc value. Store must be inserted after load, 2041 // otherwise store will be in alloca's use list and an extra load will be 2042 // inserted before it. 2043 StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false, 2044 DL.getABITypeAlign(Def->getType())); 2045 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 2046 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 2047 // InvokeInst is a terminator so the store need to be inserted into its 2048 // normal destination block. 2049 BasicBlock *NormalDest = Invoke->getNormalDest(); 2050 Store->insertBefore(NormalDest->getFirstNonPHI()); 2051 } else { 2052 assert(!Inst->isTerminator() && 2053 "The only terminator that can produce a value is " 2054 "InvokeInst which is handled above."); 2055 Store->insertAfter(Inst); 2056 } 2057 } else { 2058 assert(isa<Argument>(Def)); 2059 Store->insertAfter(cast<Instruction>(Alloca)); 2060 } 2061 } 2062 2063 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 2064 "we must have the same allocas with lives"); 2065 if (!PromotableAllocas.empty()) { 2066 // Apply mem2reg to promote alloca to SSA 2067 PromoteMemToReg(PromotableAllocas, DT); 2068 } 2069 2070 #ifndef NDEBUG 2071 for (auto &I : F.getEntryBlock()) 2072 if (isa<AllocaInst>(I)) 2073 InitialAllocaNum--; 2074 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 2075 #endif 2076 } 2077 2078 /// Implement a unique function which doesn't require we sort the input 2079 /// vector. Doing so has the effect of changing the output of a couple of 2080 /// tests in ways which make them less useful in testing fused safepoints. 2081 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 2082 SmallSet<T, 8> Seen; 2083 erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }); 2084 } 2085 2086 /// Insert holders so that each Value is obviously live through the entire 2087 /// lifetime of the call. 2088 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values, 2089 SmallVectorImpl<CallInst *> &Holders) { 2090 if (Values.empty()) 2091 // No values to hold live, might as well not insert the empty holder 2092 return; 2093 2094 Module *M = Call->getModule(); 2095 // Use a dummy vararg function to actually hold the values live 2096 FunctionCallee Func = M->getOrInsertFunction( 2097 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); 2098 if (isa<CallInst>(Call)) { 2099 // For call safepoints insert dummy calls right after safepoint 2100 Holders.push_back( 2101 CallInst::Create(Func, Values, "", &*++Call->getIterator())); 2102 return; 2103 } 2104 // For invoke safepooints insert dummy calls both in normal and 2105 // exceptional destination blocks 2106 auto *II = cast<InvokeInst>(Call); 2107 Holders.push_back(CallInst::Create( 2108 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 2109 Holders.push_back(CallInst::Create( 2110 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 2111 } 2112 2113 static void findLiveReferences( 2114 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 2115 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 2116 GCPtrLivenessData OriginalLivenessData; 2117 computeLiveInValues(DT, F, OriginalLivenessData); 2118 for (size_t i = 0; i < records.size(); i++) { 2119 struct PartiallyConstructedSafepointRecord &info = records[i]; 2120 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 2121 } 2122 } 2123 2124 // Helper function for the "rematerializeLiveValues". It walks use chain 2125 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 2126 // the base or a value it cannot process. Only "simple" values are processed 2127 // (currently it is GEP's and casts). The returned root is examined by the 2128 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 2129 // with all visited values. 2130 static Value* findRematerializableChainToBasePointer( 2131 SmallVectorImpl<Instruction*> &ChainToBase, 2132 Value *CurrentValue) { 2133 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2134 ChainToBase.push_back(GEP); 2135 return findRematerializableChainToBasePointer(ChainToBase, 2136 GEP->getPointerOperand()); 2137 } 2138 2139 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2140 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2141 return CI; 2142 2143 ChainToBase.push_back(CI); 2144 return findRematerializableChainToBasePointer(ChainToBase, 2145 CI->getOperand(0)); 2146 } 2147 2148 // We have reached the root of the chain, which is either equal to the base or 2149 // is the first unsupported value along the use chain. 2150 return CurrentValue; 2151 } 2152 2153 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2154 // chain we are going to rematerialize. 2155 static InstructionCost 2156 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain, 2157 TargetTransformInfo &TTI) { 2158 InstructionCost Cost = 0; 2159 2160 for (Instruction *Instr : Chain) { 2161 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2162 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2163 "non noop cast is found during rematerialization"); 2164 2165 Type *SrcTy = CI->getOperand(0)->getType(); 2166 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, 2167 TTI::getCastContextHint(CI), 2168 TargetTransformInfo::TCK_SizeAndLatency, CI); 2169 2170 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2171 // Cost of the address calculation 2172 Type *ValTy = GEP->getSourceElementType(); 2173 Cost += TTI.getAddressComputationCost(ValTy); 2174 2175 // And cost of the GEP itself 2176 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2177 // allowed for the external usage) 2178 if (!GEP->hasAllConstantIndices()) 2179 Cost += 2; 2180 2181 } else { 2182 llvm_unreachable("unsupported instruction type during rematerialization"); 2183 } 2184 } 2185 2186 return Cost; 2187 } 2188 2189 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 2190 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 2191 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 2192 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 2193 return false; 2194 // Map of incoming values and their corresponding basic blocks of 2195 // OrigRootPhi. 2196 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 2197 for (unsigned i = 0; i < PhiNum; i++) 2198 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 2199 OrigRootPhi.getIncomingBlock(i); 2200 2201 // Both current and base PHIs should have same incoming values and 2202 // the same basic blocks corresponding to the incoming values. 2203 for (unsigned i = 0; i < PhiNum; i++) { 2204 auto CIVI = 2205 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2206 if (CIVI == CurrentIncomingValues.end()) 2207 return false; 2208 BasicBlock *CurrentIncomingBB = CIVI->second; 2209 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2210 return false; 2211 } 2212 return true; 2213 } 2214 2215 // From the statepoint live set pick values that are cheaper to recompute then 2216 // to relocate. Remove this values from the live set, rematerialize them after 2217 // statepoint and record them in "Info" structure. Note that similar to 2218 // relocated values we don't do any user adjustments here. 2219 static void rematerializeLiveValues(CallBase *Call, 2220 PartiallyConstructedSafepointRecord &Info, 2221 TargetTransformInfo &TTI) { 2222 const unsigned int ChainLengthThreshold = 10; 2223 2224 // Record values we are going to delete from this statepoint live set. 2225 // We can not di this in following loop due to iterator invalidation. 2226 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2227 2228 for (Value *LiveValue: Info.LiveSet) { 2229 // For each live pointer find its defining chain 2230 SmallVector<Instruction *, 3> ChainToBase; 2231 assert(Info.PointerToBase.count(LiveValue)); 2232 Value *RootOfChain = 2233 findRematerializableChainToBasePointer(ChainToBase, 2234 LiveValue); 2235 2236 // Nothing to do, or chain is too long 2237 if ( ChainToBase.size() == 0 || 2238 ChainToBase.size() > ChainLengthThreshold) 2239 continue; 2240 2241 // Handle the scenario where the RootOfChain is not equal to the 2242 // Base Value, but they are essentially the same phi values. 2243 if (RootOfChain != Info.PointerToBase[LiveValue]) { 2244 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2245 PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]); 2246 if (!OrigRootPhi || !AlternateRootPhi) 2247 continue; 2248 // PHI nodes that have the same incoming values, and belonging to the same 2249 // basic blocks are essentially the same SSA value. When the original phi 2250 // has incoming values with different base pointers, the original phi is 2251 // marked as conflict, and an additional `AlternateRootPhi` with the same 2252 // incoming values get generated by the findBasePointer function. We need 2253 // to identify the newly generated AlternateRootPhi (.base version of phi) 2254 // and RootOfChain (the original phi node itself) are the same, so that we 2255 // can rematerialize the gep and casts. This is a workaround for the 2256 // deficiency in the findBasePointer algorithm. 2257 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2258 continue; 2259 // Now that the phi nodes are proved to be the same, assert that 2260 // findBasePointer's newly generated AlternateRootPhi is present in the 2261 // liveset of the call. 2262 assert(Info.LiveSet.count(AlternateRootPhi)); 2263 } 2264 // Compute cost of this chain 2265 InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI); 2266 // TODO: We can also account for cases when we will be able to remove some 2267 // of the rematerialized values by later optimization passes. I.e if 2268 // we rematerialized several intersecting chains. Or if original values 2269 // don't have any uses besides this statepoint. 2270 2271 // For invokes we need to rematerialize each chain twice - for normal and 2272 // for unwind basic blocks. Model this by multiplying cost by two. 2273 if (isa<InvokeInst>(Call)) { 2274 Cost *= 2; 2275 } 2276 // If it's too expensive - skip it 2277 if (Cost >= RematerializationThreshold) 2278 continue; 2279 2280 // Remove value from the live set 2281 LiveValuesToBeDeleted.push_back(LiveValue); 2282 2283 // Clone instructions and record them inside "Info" structure 2284 2285 // Walk backwards to visit top-most instructions first 2286 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2287 2288 // Utility function which clones all instructions from "ChainToBase" 2289 // and inserts them before "InsertBefore". Returns rematerialized value 2290 // which should be used after statepoint. 2291 auto rematerializeChain = [&ChainToBase]( 2292 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 2293 Instruction *LastClonedValue = nullptr; 2294 Instruction *LastValue = nullptr; 2295 for (Instruction *Instr: ChainToBase) { 2296 // Only GEP's and casts are supported as we need to be careful to not 2297 // introduce any new uses of pointers not in the liveset. 2298 // Note that it's fine to introduce new uses of pointers which were 2299 // otherwise not used after this statepoint. 2300 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2301 2302 Instruction *ClonedValue = Instr->clone(); 2303 ClonedValue->insertBefore(InsertBefore); 2304 ClonedValue->setName(Instr->getName() + ".remat"); 2305 2306 // If it is not first instruction in the chain then it uses previously 2307 // cloned value. We should update it to use cloned value. 2308 if (LastClonedValue) { 2309 assert(LastValue); 2310 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2311 #ifndef NDEBUG 2312 for (auto OpValue : ClonedValue->operand_values()) { 2313 // Assert that cloned instruction does not use any instructions from 2314 // this chain other than LastClonedValue 2315 assert(!is_contained(ChainToBase, OpValue) && 2316 "incorrect use in rematerialization chain"); 2317 // Assert that the cloned instruction does not use the RootOfChain 2318 // or the AlternateLiveBase. 2319 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2320 } 2321 #endif 2322 } else { 2323 // For the first instruction, replace the use of unrelocated base i.e. 2324 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2325 // live set. They have been proved to be the same PHI nodes. Note 2326 // that the *only* use of the RootOfChain in the ChainToBase list is 2327 // the first Value in the list. 2328 if (RootOfChain != AlternateLiveBase) 2329 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2330 } 2331 2332 LastClonedValue = ClonedValue; 2333 LastValue = Instr; 2334 } 2335 assert(LastClonedValue); 2336 return LastClonedValue; 2337 }; 2338 2339 // Different cases for calls and invokes. For invokes we need to clone 2340 // instructions both on normal and unwind path. 2341 if (isa<CallInst>(Call)) { 2342 Instruction *InsertBefore = Call->getNextNode(); 2343 assert(InsertBefore); 2344 Instruction *RematerializedValue = rematerializeChain( 2345 InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2346 Info.RematerializedValues[RematerializedValue] = LiveValue; 2347 } else { 2348 auto *Invoke = cast<InvokeInst>(Call); 2349 2350 Instruction *NormalInsertBefore = 2351 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2352 Instruction *UnwindInsertBefore = 2353 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2354 2355 Instruction *NormalRematerializedValue = rematerializeChain( 2356 NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2357 Instruction *UnwindRematerializedValue = rematerializeChain( 2358 UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2359 2360 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2361 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2362 } 2363 } 2364 2365 // Remove rematerializaed values from the live set 2366 for (auto LiveValue: LiveValuesToBeDeleted) { 2367 Info.LiveSet.remove(LiveValue); 2368 } 2369 } 2370 2371 static bool insertParsePoints(Function &F, DominatorTree &DT, 2372 TargetTransformInfo &TTI, 2373 SmallVectorImpl<CallBase *> &ToUpdate) { 2374 #ifndef NDEBUG 2375 // sanity check the input 2376 std::set<CallBase *> Uniqued; 2377 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2378 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2379 2380 for (CallBase *Call : ToUpdate) 2381 assert(Call->getFunction() == &F); 2382 #endif 2383 2384 // When inserting gc.relocates for invokes, we need to be able to insert at 2385 // the top of the successor blocks. See the comment on 2386 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2387 // may restructure the CFG. 2388 for (CallBase *Call : ToUpdate) { 2389 auto *II = dyn_cast<InvokeInst>(Call); 2390 if (!II) 2391 continue; 2392 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2393 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2394 } 2395 2396 // A list of dummy calls added to the IR to keep various values obviously 2397 // live in the IR. We'll remove all of these when done. 2398 SmallVector<CallInst *, 64> Holders; 2399 2400 // Insert a dummy call with all of the deopt operands we'll need for the 2401 // actual safepoint insertion as arguments. This ensures reference operands 2402 // in the deopt argument list are considered live through the safepoint (and 2403 // thus makes sure they get relocated.) 2404 for (CallBase *Call : ToUpdate) { 2405 SmallVector<Value *, 64> DeoptValues; 2406 2407 for (Value *Arg : GetDeoptBundleOperands(Call)) { 2408 assert(!isUnhandledGCPointerType(Arg->getType()) && 2409 "support for FCA unimplemented"); 2410 if (isHandledGCPointerType(Arg->getType())) 2411 DeoptValues.push_back(Arg); 2412 } 2413 2414 insertUseHolderAfter(Call, DeoptValues, Holders); 2415 } 2416 2417 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2418 2419 // A) Identify all gc pointers which are statically live at the given call 2420 // site. 2421 findLiveReferences(F, DT, ToUpdate, Records); 2422 2423 // B) Find the base pointers for each live pointer 2424 /* scope for caching */ { 2425 // Cache the 'defining value' relation used in the computation and 2426 // insertion of base phis and selects. This ensures that we don't insert 2427 // large numbers of duplicate base_phis. 2428 DefiningValueMapTy DVCache; 2429 2430 for (size_t i = 0; i < Records.size(); i++) { 2431 PartiallyConstructedSafepointRecord &info = Records[i]; 2432 findBasePointers(DT, DVCache, ToUpdate[i], info); 2433 } 2434 } // end of cache scope 2435 2436 // The base phi insertion logic (for any safepoint) may have inserted new 2437 // instructions which are now live at some safepoint. The simplest such 2438 // example is: 2439 // loop: 2440 // phi a <-- will be a new base_phi here 2441 // safepoint 1 <-- that needs to be live here 2442 // gep a + 1 2443 // safepoint 2 2444 // br loop 2445 // We insert some dummy calls after each safepoint to definitely hold live 2446 // the base pointers which were identified for that safepoint. We'll then 2447 // ask liveness for _every_ base inserted to see what is now live. Then we 2448 // remove the dummy calls. 2449 Holders.reserve(Holders.size() + Records.size()); 2450 for (size_t i = 0; i < Records.size(); i++) { 2451 PartiallyConstructedSafepointRecord &Info = Records[i]; 2452 2453 SmallVector<Value *, 128> Bases; 2454 for (auto Pair : Info.PointerToBase) 2455 Bases.push_back(Pair.second); 2456 2457 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2458 } 2459 2460 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2461 // need to rerun liveness. We may *also* have inserted new defs, but that's 2462 // not the key issue. 2463 recomputeLiveInValues(F, DT, ToUpdate, Records); 2464 2465 if (PrintBasePointers) { 2466 for (auto &Info : Records) { 2467 errs() << "Base Pairs: (w/Relocation)\n"; 2468 for (auto Pair : Info.PointerToBase) { 2469 errs() << " derived "; 2470 Pair.first->printAsOperand(errs(), false); 2471 errs() << " base "; 2472 Pair.second->printAsOperand(errs(), false); 2473 errs() << "\n"; 2474 } 2475 } 2476 } 2477 2478 // It is possible that non-constant live variables have a constant base. For 2479 // example, a GEP with a variable offset from a global. In this case we can 2480 // remove it from the liveset. We already don't add constants to the liveset 2481 // because we assume they won't move at runtime and the GC doesn't need to be 2482 // informed about them. The same reasoning applies if the base is constant. 2483 // Note that the relocation placement code relies on this filtering for 2484 // correctness as it expects the base to be in the liveset, which isn't true 2485 // if the base is constant. 2486 for (auto &Info : Records) 2487 for (auto &BasePair : Info.PointerToBase) 2488 if (isa<Constant>(BasePair.second)) 2489 Info.LiveSet.remove(BasePair.first); 2490 2491 for (CallInst *CI : Holders) 2492 CI->eraseFromParent(); 2493 2494 Holders.clear(); 2495 2496 // In order to reduce live set of statepoint we might choose to rematerialize 2497 // some values instead of relocating them. This is purely an optimization and 2498 // does not influence correctness. 2499 for (size_t i = 0; i < Records.size(); i++) 2500 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2501 2502 // We need this to safely RAUW and delete call or invoke return values that 2503 // may themselves be live over a statepoint. For details, please see usage in 2504 // makeStatepointExplicitImpl. 2505 std::vector<DeferredReplacement> Replacements; 2506 2507 // Now run through and replace the existing statepoints with new ones with 2508 // the live variables listed. We do not yet update uses of the values being 2509 // relocated. We have references to live variables that need to 2510 // survive to the last iteration of this loop. (By construction, the 2511 // previous statepoint can not be a live variable, thus we can and remove 2512 // the old statepoint calls as we go.) 2513 for (size_t i = 0; i < Records.size(); i++) 2514 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2515 2516 ToUpdate.clear(); // prevent accident use of invalid calls. 2517 2518 for (auto &PR : Replacements) 2519 PR.doReplacement(); 2520 2521 Replacements.clear(); 2522 2523 for (auto &Info : Records) { 2524 // These live sets may contain state Value pointers, since we replaced calls 2525 // with operand bundles with calls wrapped in gc.statepoint, and some of 2526 // those calls may have been def'ing live gc pointers. Clear these out to 2527 // avoid accidentally using them. 2528 // 2529 // TODO: We should create a separate data structure that does not contain 2530 // these live sets, and migrate to using that data structure from this point 2531 // onward. 2532 Info.LiveSet.clear(); 2533 Info.PointerToBase.clear(); 2534 } 2535 2536 // Do all the fixups of the original live variables to their relocated selves 2537 SmallVector<Value *, 128> Live; 2538 for (size_t i = 0; i < Records.size(); i++) { 2539 PartiallyConstructedSafepointRecord &Info = Records[i]; 2540 2541 // We can't simply save the live set from the original insertion. One of 2542 // the live values might be the result of a call which needs a safepoint. 2543 // That Value* no longer exists and we need to use the new gc_result. 2544 // Thankfully, the live set is embedded in the statepoint (and updated), so 2545 // we just grab that. 2546 llvm::append_range(Live, Info.StatepointToken->gc_args()); 2547 #ifndef NDEBUG 2548 // Do some basic sanity checks on our liveness results before performing 2549 // relocation. Relocation can and will turn mistakes in liveness results 2550 // into non-sensical code which is must harder to debug. 2551 // TODO: It would be nice to test consistency as well 2552 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2553 "statepoint must be reachable or liveness is meaningless"); 2554 for (Value *V : Info.StatepointToken->gc_args()) { 2555 if (!isa<Instruction>(V)) 2556 // Non-instruction values trivial dominate all possible uses 2557 continue; 2558 auto *LiveInst = cast<Instruction>(V); 2559 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2560 "unreachable values should never be live"); 2561 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2562 "basic SSA liveness expectation violated by liveness analysis"); 2563 } 2564 #endif 2565 } 2566 unique_unsorted(Live); 2567 2568 #ifndef NDEBUG 2569 // sanity check 2570 for (auto *Ptr : Live) 2571 assert(isHandledGCPointerType(Ptr->getType()) && 2572 "must be a gc pointer type"); 2573 #endif 2574 2575 relocationViaAlloca(F, DT, Live, Records); 2576 return !Records.empty(); 2577 } 2578 2579 // Handles both return values and arguments for Functions and calls. 2580 template <typename AttrHolder> 2581 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2582 unsigned Index) { 2583 AttrBuilder R; 2584 if (AH.getDereferenceableBytes(Index)) 2585 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2586 AH.getDereferenceableBytes(Index))); 2587 if (AH.getDereferenceableOrNullBytes(Index)) 2588 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2589 AH.getDereferenceableOrNullBytes(Index))); 2590 if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias)) 2591 R.addAttribute(Attribute::NoAlias); 2592 if (AH.getAttributes().hasAttribute(Index, Attribute::NoFree)) 2593 R.addAttribute(Attribute::NoFree); 2594 2595 if (!R.empty()) 2596 AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R)); 2597 } 2598 2599 static void stripNonValidAttributesFromPrototype(Function &F) { 2600 LLVMContext &Ctx = F.getContext(); 2601 2602 for (Argument &A : F.args()) 2603 if (isa<PointerType>(A.getType())) 2604 RemoveNonValidAttrAtIndex(Ctx, F, 2605 A.getArgNo() + AttributeList::FirstArgIndex); 2606 2607 if (isa<PointerType>(F.getReturnType())) 2608 RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex); 2609 2610 F.removeFnAttr(Attribute::NoSync); 2611 F.removeFnAttr(Attribute::NoFree); 2612 } 2613 2614 /// Certain metadata on instructions are invalid after running RS4GC. 2615 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2616 /// optimize functions. We drop such metadata on the instruction. 2617 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2618 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2619 return; 2620 // These are the attributes that are still valid on loads and stores after 2621 // RS4GC. 2622 // The metadata implying dereferenceability and noalias are (conservatively) 2623 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2624 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2625 // touch the entire heap including noalias objects. Note: The reasoning is 2626 // same as stripping the dereferenceability and noalias attributes that are 2627 // analogous to the metadata counterparts. 2628 // We also drop the invariant.load metadata on the load because that metadata 2629 // implies the address operand to the load points to memory that is never 2630 // changed once it became dereferenceable. This is no longer true after RS4GC. 2631 // Similar reasoning applies to invariant.group metadata, which applies to 2632 // loads within a group. 2633 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2634 LLVMContext::MD_range, 2635 LLVMContext::MD_alias_scope, 2636 LLVMContext::MD_nontemporal, 2637 LLVMContext::MD_nonnull, 2638 LLVMContext::MD_align, 2639 LLVMContext::MD_type}; 2640 2641 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2642 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2643 } 2644 2645 static void stripNonValidDataFromBody(Function &F) { 2646 if (F.empty()) 2647 return; 2648 2649 LLVMContext &Ctx = F.getContext(); 2650 MDBuilder Builder(Ctx); 2651 2652 // Set of invariantstart instructions that we need to remove. 2653 // Use this to avoid invalidating the instruction iterator. 2654 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2655 2656 for (Instruction &I : instructions(F)) { 2657 // invariant.start on memory location implies that the referenced memory 2658 // location is constant and unchanging. This is no longer true after 2659 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2660 // which frees the entire heap and the presence of invariant.start allows 2661 // the optimizer to sink the load of a memory location past a statepoint, 2662 // which is incorrect. 2663 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2664 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2665 InvariantStartInstructions.push_back(II); 2666 continue; 2667 } 2668 2669 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2670 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2671 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2672 } 2673 2674 stripInvalidMetadataFromInstruction(I); 2675 2676 if (auto *Call = dyn_cast<CallBase>(&I)) { 2677 for (int i = 0, e = Call->arg_size(); i != e; i++) 2678 if (isa<PointerType>(Call->getArgOperand(i)->getType())) 2679 RemoveNonValidAttrAtIndex(Ctx, *Call, 2680 i + AttributeList::FirstArgIndex); 2681 if (isa<PointerType>(Call->getType())) 2682 RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex); 2683 } 2684 } 2685 2686 // Delete the invariant.start instructions and RAUW undef. 2687 for (auto *II : InvariantStartInstructions) { 2688 II->replaceAllUsesWith(UndefValue::get(II->getType())); 2689 II->eraseFromParent(); 2690 } 2691 } 2692 2693 /// Returns true if this function should be rewritten by this pass. The main 2694 /// point of this function is as an extension point for custom logic. 2695 static bool shouldRewriteStatepointsIn(Function &F) { 2696 // TODO: This should check the GCStrategy 2697 if (F.hasGC()) { 2698 const auto &FunctionGCName = F.getGC(); 2699 const StringRef StatepointExampleName("statepoint-example"); 2700 const StringRef CoreCLRName("coreclr"); 2701 return (StatepointExampleName == FunctionGCName) || 2702 (CoreCLRName == FunctionGCName); 2703 } else 2704 return false; 2705 } 2706 2707 static void stripNonValidData(Module &M) { 2708 #ifndef NDEBUG 2709 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2710 #endif 2711 2712 for (Function &F : M) 2713 stripNonValidAttributesFromPrototype(F); 2714 2715 for (Function &F : M) 2716 stripNonValidDataFromBody(F); 2717 } 2718 2719 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 2720 TargetTransformInfo &TTI, 2721 const TargetLibraryInfo &TLI) { 2722 assert(!F.isDeclaration() && !F.empty() && 2723 "need function body to rewrite statepoints in"); 2724 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 2725 2726 auto NeedsRewrite = [&TLI](Instruction &I) { 2727 if (const auto *Call = dyn_cast<CallBase>(&I)) { 2728 if (isa<GCStatepointInst>(Call)) 2729 return false; 2730 if (callsGCLeafFunction(Call, TLI)) 2731 return false; 2732 2733 // Normally it's up to the frontend to make sure that non-leaf calls also 2734 // have proper deopt state if it is required. We make an exception for 2735 // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics 2736 // these are non-leaf by default. They might be generated by the optimizer 2737 // which doesn't know how to produce a proper deopt state. So if we see a 2738 // non-leaf memcpy/memmove without deopt state just treat it as a leaf 2739 // copy and don't produce a statepoint. 2740 if (!AllowStatepointWithNoDeoptInfo && 2741 !Call->getOperandBundle(LLVMContext::OB_deopt)) { 2742 assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) && 2743 "Don't expect any other calls here!"); 2744 return false; 2745 } 2746 return true; 2747 } 2748 return false; 2749 }; 2750 2751 // Delete any unreachable statepoints so that we don't have unrewritten 2752 // statepoints surviving this pass. This makes testing easier and the 2753 // resulting IR less confusing to human readers. 2754 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 2755 bool MadeChange = removeUnreachableBlocks(F, &DTU); 2756 // Flush the Dominator Tree. 2757 DTU.getDomTree(); 2758 2759 // Gather all the statepoints which need rewritten. Be careful to only 2760 // consider those in reachable code since we need to ask dominance queries 2761 // when rewriting. We'll delete the unreachable ones in a moment. 2762 SmallVector<CallBase *, 64> ParsePointNeeded; 2763 for (Instruction &I : instructions(F)) { 2764 // TODO: only the ones with the flag set! 2765 if (NeedsRewrite(I)) { 2766 // NOTE removeUnreachableBlocks() is stronger than 2767 // DominatorTree::isReachableFromEntry(). In other words 2768 // removeUnreachableBlocks can remove some blocks for which 2769 // isReachableFromEntry() returns true. 2770 assert(DT.isReachableFromEntry(I.getParent()) && 2771 "no unreachable blocks expected"); 2772 ParsePointNeeded.push_back(cast<CallBase>(&I)); 2773 } 2774 } 2775 2776 // Return early if no work to do. 2777 if (ParsePointNeeded.empty()) 2778 return MadeChange; 2779 2780 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2781 // These are created by LCSSA. They have the effect of increasing the size 2782 // of liveness sets for no good reason. It may be harder to do this post 2783 // insertion since relocations and base phis can confuse things. 2784 for (BasicBlock &BB : F) 2785 if (BB.getUniquePredecessor()) 2786 MadeChange |= FoldSingleEntryPHINodes(&BB); 2787 2788 // Before we start introducing relocations, we want to tweak the IR a bit to 2789 // avoid unfortunate code generation effects. The main example is that we 2790 // want to try to make sure the comparison feeding a branch is after any 2791 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2792 // values feeding a branch after relocation. This is semantically correct, 2793 // but results in extra register pressure since both the pre-relocation and 2794 // post-relocation copies must be available in registers. For code without 2795 // relocations this is handled elsewhere, but teaching the scheduler to 2796 // reverse the transform we're about to do would be slightly complex. 2797 // Note: This may extend the live range of the inputs to the icmp and thus 2798 // increase the liveset of any statepoint we move over. This is profitable 2799 // as long as all statepoints are in rare blocks. If we had in-register 2800 // lowering for live values this would be a much safer transform. 2801 auto getConditionInst = [](Instruction *TI) -> Instruction * { 2802 if (auto *BI = dyn_cast<BranchInst>(TI)) 2803 if (BI->isConditional()) 2804 return dyn_cast<Instruction>(BI->getCondition()); 2805 // TODO: Extend this to handle switches 2806 return nullptr; 2807 }; 2808 for (BasicBlock &BB : F) { 2809 Instruction *TI = BB.getTerminator(); 2810 if (auto *Cond = getConditionInst(TI)) 2811 // TODO: Handle more than just ICmps here. We should be able to move 2812 // most instructions without side effects or memory access. 2813 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2814 MadeChange = true; 2815 Cond->moveBefore(TI); 2816 } 2817 } 2818 2819 // Nasty workaround - The base computation code in the main algorithm doesn't 2820 // consider the fact that a GEP can be used to convert a scalar to a vector. 2821 // The right fix for this is to integrate GEPs into the base rewriting 2822 // algorithm properly, this is just a short term workaround to prevent 2823 // crashes by canonicalizing such GEPs into fully vector GEPs. 2824 for (Instruction &I : instructions(F)) { 2825 if (!isa<GetElementPtrInst>(I)) 2826 continue; 2827 2828 unsigned VF = 0; 2829 for (unsigned i = 0; i < I.getNumOperands(); i++) 2830 if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) { 2831 assert(VF == 0 || 2832 VF == cast<FixedVectorType>(OpndVTy)->getNumElements()); 2833 VF = cast<FixedVectorType>(OpndVTy)->getNumElements(); 2834 } 2835 2836 // It's the vector to scalar traversal through the pointer operand which 2837 // confuses base pointer rewriting, so limit ourselves to that case. 2838 if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { 2839 IRBuilder<> B(&I); 2840 auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); 2841 I.setOperand(0, Splat); 2842 MadeChange = true; 2843 } 2844 } 2845 2846 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2847 return MadeChange; 2848 } 2849 2850 // liveness computation via standard dataflow 2851 // ------------------------------------------------------------------- 2852 2853 // TODO: Consider using bitvectors for liveness, the set of potentially 2854 // interesting values should be small and easy to pre-compute. 2855 2856 /// Compute the live-in set for the location rbegin starting from 2857 /// the live-out set of the basic block 2858 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 2859 BasicBlock::reverse_iterator End, 2860 SetVector<Value *> &LiveTmp) { 2861 for (auto &I : make_range(Begin, End)) { 2862 // KILL/Def - Remove this definition from LiveIn 2863 LiveTmp.remove(&I); 2864 2865 // Don't consider *uses* in PHI nodes, we handle their contribution to 2866 // predecessor blocks when we seed the LiveOut sets 2867 if (isa<PHINode>(I)) 2868 continue; 2869 2870 // USE - Add to the LiveIn set for this instruction 2871 for (Value *V : I.operands()) { 2872 assert(!isUnhandledGCPointerType(V->getType()) && 2873 "support for FCA unimplemented"); 2874 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2875 // The choice to exclude all things constant here is slightly subtle. 2876 // There are two independent reasons: 2877 // - We assume that things which are constant (from LLVM's definition) 2878 // do not move at runtime. For example, the address of a global 2879 // variable is fixed, even though it's contents may not be. 2880 // - Second, we can't disallow arbitrary inttoptr constants even 2881 // if the language frontend does. Optimization passes are free to 2882 // locally exploit facts without respect to global reachability. This 2883 // can create sections of code which are dynamically unreachable and 2884 // contain just about anything. (see constants.ll in tests) 2885 LiveTmp.insert(V); 2886 } 2887 } 2888 } 2889 } 2890 2891 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2892 for (BasicBlock *Succ : successors(BB)) { 2893 for (auto &I : *Succ) { 2894 PHINode *PN = dyn_cast<PHINode>(&I); 2895 if (!PN) 2896 break; 2897 2898 Value *V = PN->getIncomingValueForBlock(BB); 2899 assert(!isUnhandledGCPointerType(V->getType()) && 2900 "support for FCA unimplemented"); 2901 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 2902 LiveTmp.insert(V); 2903 } 2904 } 2905 } 2906 2907 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2908 SetVector<Value *> KillSet; 2909 for (Instruction &I : *BB) 2910 if (isHandledGCPointerType(I.getType())) 2911 KillSet.insert(&I); 2912 return KillSet; 2913 } 2914 2915 #ifndef NDEBUG 2916 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2917 /// sanity check for the liveness computation. 2918 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2919 Instruction *TI, bool TermOkay = false) { 2920 for (Value *V : Live) { 2921 if (auto *I = dyn_cast<Instruction>(V)) { 2922 // The terminator can be a member of the LiveOut set. LLVM's definition 2923 // of instruction dominance states that V does not dominate itself. As 2924 // such, we need to special case this to allow it. 2925 if (TermOkay && TI == I) 2926 continue; 2927 assert(DT.dominates(I, TI) && 2928 "basic SSA liveness expectation violated by liveness analysis"); 2929 } 2930 } 2931 } 2932 2933 /// Check that all the liveness sets used during the computation of liveness 2934 /// obey basic SSA properties. This is useful for finding cases where we miss 2935 /// a def. 2936 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2937 BasicBlock &BB) { 2938 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2939 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2940 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2941 } 2942 #endif 2943 2944 static void computeLiveInValues(DominatorTree &DT, Function &F, 2945 GCPtrLivenessData &Data) { 2946 SmallSetVector<BasicBlock *, 32> Worklist; 2947 2948 // Seed the liveness for each individual block 2949 for (BasicBlock &BB : F) { 2950 Data.KillSet[&BB] = computeKillSet(&BB); 2951 Data.LiveSet[&BB].clear(); 2952 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2953 2954 #ifndef NDEBUG 2955 for (Value *Kill : Data.KillSet[&BB]) 2956 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2957 #endif 2958 2959 Data.LiveOut[&BB] = SetVector<Value *>(); 2960 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2961 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2962 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2963 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2964 if (!Data.LiveIn[&BB].empty()) 2965 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 2966 } 2967 2968 // Propagate that liveness until stable 2969 while (!Worklist.empty()) { 2970 BasicBlock *BB = Worklist.pop_back_val(); 2971 2972 // Compute our new liveout set, then exit early if it hasn't changed despite 2973 // the contribution of our successor. 2974 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2975 const auto OldLiveOutSize = LiveOut.size(); 2976 for (BasicBlock *Succ : successors(BB)) { 2977 assert(Data.LiveIn.count(Succ)); 2978 LiveOut.set_union(Data.LiveIn[Succ]); 2979 } 2980 // assert OutLiveOut is a subset of LiveOut 2981 if (OldLiveOutSize == LiveOut.size()) { 2982 // If the sets are the same size, then we didn't actually add anything 2983 // when unioning our successors LiveIn. Thus, the LiveIn of this block 2984 // hasn't changed. 2985 continue; 2986 } 2987 Data.LiveOut[BB] = LiveOut; 2988 2989 // Apply the effects of this basic block 2990 SetVector<Value *> LiveTmp = LiveOut; 2991 LiveTmp.set_union(Data.LiveSet[BB]); 2992 LiveTmp.set_subtract(Data.KillSet[BB]); 2993 2994 assert(Data.LiveIn.count(BB)); 2995 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2996 // assert: OldLiveIn is a subset of LiveTmp 2997 if (OldLiveIn.size() != LiveTmp.size()) { 2998 Data.LiveIn[BB] = LiveTmp; 2999 Worklist.insert(pred_begin(BB), pred_end(BB)); 3000 } 3001 } // while (!Worklist.empty()) 3002 3003 #ifndef NDEBUG 3004 // Sanity check our output against SSA properties. This helps catch any 3005 // missing kills during the above iteration. 3006 for (BasicBlock &BB : F) 3007 checkBasicSSA(DT, Data, BB); 3008 #endif 3009 } 3010 3011 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 3012 StatepointLiveSetTy &Out) { 3013 BasicBlock *BB = Inst->getParent(); 3014 3015 // Note: The copy is intentional and required 3016 assert(Data.LiveOut.count(BB)); 3017 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3018 3019 // We want to handle the statepoint itself oddly. It's 3020 // call result is not live (normal), nor are it's arguments 3021 // (unless they're used again later). This adjustment is 3022 // specifically what we need to relocate 3023 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 3024 LiveOut); 3025 LiveOut.remove(Inst); 3026 Out.insert(LiveOut.begin(), LiveOut.end()); 3027 } 3028 3029 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 3030 CallBase *Call, 3031 PartiallyConstructedSafepointRecord &Info) { 3032 StatepointLiveSetTy Updated; 3033 findLiveSetAtInst(Call, RevisedLivenessData, Updated); 3034 3035 // We may have base pointers which are now live that weren't before. We need 3036 // to update the PointerToBase structure to reflect this. 3037 for (auto V : Updated) 3038 Info.PointerToBase.insert({V, V}); 3039 3040 #ifndef NDEBUG 3041 for (auto V : Updated) 3042 assert(Info.PointerToBase.count(V) && 3043 "Must be able to find base for live value!"); 3044 #endif 3045 3046 // Remove any stale base mappings - this can happen since our liveness is 3047 // more precise then the one inherent in the base pointer analysis. 3048 DenseSet<Value *> ToErase; 3049 for (auto KVPair : Info.PointerToBase) 3050 if (!Updated.count(KVPair.first)) 3051 ToErase.insert(KVPair.first); 3052 3053 for (auto *V : ToErase) 3054 Info.PointerToBase.erase(V); 3055 3056 #ifndef NDEBUG 3057 for (auto KVPair : Info.PointerToBase) 3058 assert(Updated.count(KVPair.first) && "record for non-live value"); 3059 #endif 3060 3061 Info.LiveSet = Updated; 3062 } 3063