1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/Cloning.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 46 47 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 48 49 using namespace llvm; 50 51 // Print the liveset found at the insert location 52 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 53 cl::init(false)); 54 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 55 cl::init(false)); 56 // Print out the base pointers for debugging 57 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 58 cl::init(false)); 59 60 // Cost threshold measuring when it is profitable to rematerialize value instead 61 // of relocating it 62 static cl::opt<unsigned> 63 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 64 cl::init(6)); 65 66 #ifdef XDEBUG 67 static bool ClobberNonLive = true; 68 #else 69 static bool ClobberNonLive = false; 70 #endif 71 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 72 cl::location(ClobberNonLive), 73 cl::Hidden); 74 75 static cl::opt<bool> UseDeoptBundles("rs4gc-use-deopt-bundles", cl::Hidden, 76 cl::init(false)); 77 static cl::opt<bool> 78 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 79 cl::Hidden, cl::init(true)); 80 81 namespace { 82 struct RewriteStatepointsForGC : public ModulePass { 83 static char ID; // Pass identification, replacement for typeid 84 85 RewriteStatepointsForGC() : ModulePass(ID) { 86 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 87 } 88 bool runOnFunction(Function &F); 89 bool runOnModule(Module &M) override { 90 bool Changed = false; 91 for (Function &F : M) 92 Changed |= runOnFunction(F); 93 94 if (Changed) { 95 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 96 // returns true for at least one function in the module. Since at least 97 // one function changed, we know that the precondition is satisfied. 98 stripNonValidAttributes(M); 99 } 100 101 return Changed; 102 } 103 104 void getAnalysisUsage(AnalysisUsage &AU) const override { 105 // We add and rewrite a bunch of instructions, but don't really do much 106 // else. We could in theory preserve a lot more analyses here. 107 AU.addRequired<DominatorTreeWrapperPass>(); 108 AU.addRequired<TargetTransformInfoWrapperPass>(); 109 } 110 111 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 112 /// dereferenceability that are no longer valid/correct after 113 /// RewriteStatepointsForGC has run. This is because semantically, after 114 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 115 /// heap. stripNonValidAttributes (conservatively) restores correctness 116 /// by erasing all attributes in the module that externally imply 117 /// dereferenceability. 118 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 119 /// can touch the entire heap including noalias objects. 120 void stripNonValidAttributes(Module &M); 121 122 // Helpers for stripNonValidAttributes 123 void stripNonValidAttributesFromBody(Function &F); 124 void stripNonValidAttributesFromPrototype(Function &F); 125 }; 126 } // namespace 127 128 char RewriteStatepointsForGC::ID = 0; 129 130 ModulePass *llvm::createRewriteStatepointsForGCPass() { 131 return new RewriteStatepointsForGC(); 132 } 133 134 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 135 "Make relocations explicit at statepoints", false, false) 136 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 137 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 138 "Make relocations explicit at statepoints", false, false) 139 140 namespace { 141 struct GCPtrLivenessData { 142 /// Values defined in this block. 143 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 144 /// Values used in this block (and thus live); does not included values 145 /// killed within this block. 146 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 147 148 /// Values live into this basic block (i.e. used by any 149 /// instruction in this basic block or ones reachable from here) 150 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 151 152 /// Values live out of this basic block (i.e. live into 153 /// any successor block) 154 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 155 }; 156 157 // The type of the internal cache used inside the findBasePointers family 158 // of functions. From the callers perspective, this is an opaque type and 159 // should not be inspected. 160 // 161 // In the actual implementation this caches two relations: 162 // - The base relation itself (i.e. this pointer is based on that one) 163 // - The base defining value relation (i.e. before base_phi insertion) 164 // Generally, after the execution of a full findBasePointer call, only the 165 // base relation will remain. Internally, we add a mixture of the two 166 // types, then update all the second type to the first type 167 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 168 typedef DenseSet<Value *> StatepointLiveSetTy; 169 typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>> 170 RematerializedValueMapTy; 171 172 struct PartiallyConstructedSafepointRecord { 173 /// The set of values known to be live across this safepoint 174 StatepointLiveSetTy LiveSet; 175 176 /// Mapping from live pointers to a base-defining-value 177 DenseMap<Value *, Value *> PointerToBase; 178 179 /// The *new* gc.statepoint instruction itself. This produces the token 180 /// that normal path gc.relocates and the gc.result are tied to. 181 Instruction *StatepointToken; 182 183 /// Instruction to which exceptional gc relocates are attached 184 /// Makes it easier to iterate through them during relocationViaAlloca. 185 Instruction *UnwindToken; 186 187 /// Record live values we are rematerialized instead of relocating. 188 /// They are not included into 'LiveSet' field. 189 /// Maps rematerialized copy to it's original value. 190 RematerializedValueMapTy RematerializedValues; 191 }; 192 } 193 194 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 195 assert(UseDeoptBundles && "Should not be called otherwise!"); 196 197 Optional<OperandBundleUse> DeoptBundle = CS.getOperandBundle("deopt"); 198 199 if (!DeoptBundle.hasValue()) { 200 assert(AllowStatepointWithNoDeoptInfo && 201 "Found non-leaf call without deopt info!"); 202 return None; 203 } 204 205 return DeoptBundle.getValue().Inputs; 206 } 207 208 /// Compute the live-in set for every basic block in the function 209 static void computeLiveInValues(DominatorTree &DT, Function &F, 210 GCPtrLivenessData &Data); 211 212 /// Given results from the dataflow liveness computation, find the set of live 213 /// Values at a particular instruction. 214 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 215 StatepointLiveSetTy &out); 216 217 // TODO: Once we can get to the GCStrategy, this becomes 218 // Optional<bool> isGCManagedPointer(const Value *V) const override { 219 220 static bool isGCPointerType(Type *T) { 221 if (auto *PT = dyn_cast<PointerType>(T)) 222 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 223 // GC managed heap. We know that a pointer into this heap needs to be 224 // updated and that no other pointer does. 225 return (1 == PT->getAddressSpace()); 226 return false; 227 } 228 229 // Return true if this type is one which a) is a gc pointer or contains a GC 230 // pointer and b) is of a type this code expects to encounter as a live value. 231 // (The insertion code will assert that a type which matches (a) and not (b) 232 // is not encountered.) 233 static bool isHandledGCPointerType(Type *T) { 234 // We fully support gc pointers 235 if (isGCPointerType(T)) 236 return true; 237 // We partially support vectors of gc pointers. The code will assert if it 238 // can't handle something. 239 if (auto VT = dyn_cast<VectorType>(T)) 240 if (isGCPointerType(VT->getElementType())) 241 return true; 242 return false; 243 } 244 245 #ifndef NDEBUG 246 /// Returns true if this type contains a gc pointer whether we know how to 247 /// handle that type or not. 248 static bool containsGCPtrType(Type *Ty) { 249 if (isGCPointerType(Ty)) 250 return true; 251 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 252 return isGCPointerType(VT->getScalarType()); 253 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 254 return containsGCPtrType(AT->getElementType()); 255 if (StructType *ST = dyn_cast<StructType>(Ty)) 256 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 257 containsGCPtrType); 258 return false; 259 } 260 261 // Returns true if this is a type which a) is a gc pointer or contains a GC 262 // pointer and b) is of a type which the code doesn't expect (i.e. first class 263 // aggregates). Used to trip assertions. 264 static bool isUnhandledGCPointerType(Type *Ty) { 265 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 266 } 267 #endif 268 269 static bool order_by_name(Value *a, Value *b) { 270 if (a->hasName() && b->hasName()) { 271 return -1 == a->getName().compare(b->getName()); 272 } else if (a->hasName() && !b->hasName()) { 273 return true; 274 } else if (!a->hasName() && b->hasName()) { 275 return false; 276 } else { 277 // Better than nothing, but not stable 278 return a < b; 279 } 280 } 281 282 // Return the name of the value suffixed with the provided value, or if the 283 // value didn't have a name, the default value specified. 284 static std::string suffixed_name_or(Value *V, StringRef Suffix, 285 StringRef DefaultName) { 286 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 287 } 288 289 // Conservatively identifies any definitions which might be live at the 290 // given instruction. The analysis is performed immediately before the 291 // given instruction. Values defined by that instruction are not considered 292 // live. Values used by that instruction are considered live. 293 static void analyzeParsePointLiveness( 294 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 295 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 296 Instruction *inst = CS.getInstruction(); 297 298 StatepointLiveSetTy LiveSet; 299 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet); 300 301 if (PrintLiveSet) { 302 // Note: This output is used by several of the test cases 303 // The order of elements in a set is not stable, put them in a vec and sort 304 // by name 305 SmallVector<Value *, 64> Temp; 306 Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end()); 307 std::sort(Temp.begin(), Temp.end(), order_by_name); 308 errs() << "Live Variables:\n"; 309 for (Value *V : Temp) 310 dbgs() << " " << V->getName() << " " << *V << "\n"; 311 } 312 if (PrintLiveSetSize) { 313 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 314 errs() << "Number live values: " << LiveSet.size() << "\n"; 315 } 316 result.LiveSet = LiveSet; 317 } 318 319 static bool isKnownBaseResult(Value *V); 320 namespace { 321 /// A single base defining value - An immediate base defining value for an 322 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 323 /// For instructions which have multiple pointer [vector] inputs or that 324 /// transition between vector and scalar types, there is no immediate base 325 /// defining value. The 'base defining value' for 'Def' is the transitive 326 /// closure of this relation stopping at the first instruction which has no 327 /// immediate base defining value. The b.d.v. might itself be a base pointer, 328 /// but it can also be an arbitrary derived pointer. 329 struct BaseDefiningValueResult { 330 /// Contains the value which is the base defining value. 331 Value * const BDV; 332 /// True if the base defining value is also known to be an actual base 333 /// pointer. 334 const bool IsKnownBase; 335 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 336 : BDV(BDV), IsKnownBase(IsKnownBase) { 337 #ifndef NDEBUG 338 // Check consistency between new and old means of checking whether a BDV is 339 // a base. 340 bool MustBeBase = isKnownBaseResult(BDV); 341 assert(!MustBeBase || MustBeBase == IsKnownBase); 342 #endif 343 } 344 }; 345 } 346 347 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 348 349 /// Return a base defining value for the 'Index' element of the given vector 350 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 351 /// 'I'. As an optimization, this method will try to determine when the 352 /// element is known to already be a base pointer. If this can be established, 353 /// the second value in the returned pair will be true. Note that either a 354 /// vector or a pointer typed value can be returned. For the former, the 355 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 356 /// If the later, the return pointer is a BDV (or possibly a base) for the 357 /// particular element in 'I'. 358 static BaseDefiningValueResult 359 findBaseDefiningValueOfVector(Value *I) { 360 assert(I->getType()->isVectorTy() && 361 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 362 "Illegal to ask for the base pointer of a non-pointer type"); 363 364 // Each case parallels findBaseDefiningValue below, see that code for 365 // detailed motivation. 366 367 if (isa<Argument>(I)) 368 // An incoming argument to the function is a base pointer 369 return BaseDefiningValueResult(I, true); 370 371 // We shouldn't see the address of a global as a vector value? 372 assert(!isa<GlobalVariable>(I) && 373 "unexpected global variable found in base of vector"); 374 375 // inlining could possibly introduce phi node that contains 376 // undef if callee has multiple returns 377 if (isa<UndefValue>(I)) 378 // utterly meaningless, but useful for dealing with partially optimized 379 // code. 380 return BaseDefiningValueResult(I, true); 381 382 // Due to inheritance, this must be _after_ the global variable and undef 383 // checks 384 if (Constant *Con = dyn_cast<Constant>(I)) { 385 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 386 "order of checks wrong!"); 387 assert(Con->isNullValue() && "null is the only case which makes sense"); 388 return BaseDefiningValueResult(Con, true); 389 } 390 391 if (isa<LoadInst>(I)) 392 return BaseDefiningValueResult(I, true); 393 394 if (isa<InsertElementInst>(I)) 395 // We don't know whether this vector contains entirely base pointers or 396 // not. To be conservatively correct, we treat it as a BDV and will 397 // duplicate code as needed to construct a parallel vector of bases. 398 return BaseDefiningValueResult(I, false); 399 400 if (isa<ShuffleVectorInst>(I)) 401 // We don't know whether this vector contains entirely base pointers or 402 // not. To be conservatively correct, we treat it as a BDV and will 403 // duplicate code as needed to construct a parallel vector of bases. 404 // TODO: There a number of local optimizations which could be applied here 405 // for particular sufflevector patterns. 406 return BaseDefiningValueResult(I, false); 407 408 // A PHI or Select is a base defining value. The outer findBasePointer 409 // algorithm is responsible for constructing a base value for this BDV. 410 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 411 "unknown vector instruction - no base found for vector element"); 412 return BaseDefiningValueResult(I, false); 413 } 414 415 /// Helper function for findBasePointer - Will return a value which either a) 416 /// defines the base pointer for the input, b) blocks the simple search 417 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 418 /// from pointer to vector type or back. 419 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 420 if (I->getType()->isVectorTy()) 421 return findBaseDefiningValueOfVector(I); 422 423 assert(I->getType()->isPointerTy() && 424 "Illegal to ask for the base pointer of a non-pointer type"); 425 426 if (isa<Argument>(I)) 427 // An incoming argument to the function is a base pointer 428 // We should have never reached here if this argument isn't an gc value 429 return BaseDefiningValueResult(I, true); 430 431 if (isa<GlobalVariable>(I)) 432 // base case 433 return BaseDefiningValueResult(I, true); 434 435 // inlining could possibly introduce phi node that contains 436 // undef if callee has multiple returns 437 if (isa<UndefValue>(I)) 438 // utterly meaningless, but useful for dealing with 439 // partially optimized code. 440 return BaseDefiningValueResult(I, true); 441 442 // Due to inheritance, this must be _after_ the global variable and undef 443 // checks 444 if (isa<Constant>(I)) { 445 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 446 "order of checks wrong!"); 447 // Note: Even for frontends which don't have constant references, we can 448 // see constants appearing after optimizations. A simple example is 449 // specialization of an address computation on null feeding into a merge 450 // point where the actual use of the now-constant input is protected by 451 // another null check. (e.g. test4 in constants.ll) 452 return BaseDefiningValueResult(I, true); 453 } 454 455 if (CastInst *CI = dyn_cast<CastInst>(I)) { 456 Value *Def = CI->stripPointerCasts(); 457 // If stripping pointer casts changes the address space there is an 458 // addrspacecast in between. 459 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 460 cast<PointerType>(CI->getType())->getAddressSpace() && 461 "unsupported addrspacecast"); 462 // If we find a cast instruction here, it means we've found a cast which is 463 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 464 // handle int->ptr conversion. 465 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 466 return findBaseDefiningValue(Def); 467 } 468 469 if (isa<LoadInst>(I)) 470 // The value loaded is an gc base itself 471 return BaseDefiningValueResult(I, true); 472 473 474 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 475 // The base of this GEP is the base 476 return findBaseDefiningValue(GEP->getPointerOperand()); 477 478 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 479 switch (II->getIntrinsicID()) { 480 default: 481 // fall through to general call handling 482 break; 483 case Intrinsic::experimental_gc_statepoint: 484 llvm_unreachable("statepoints don't produce pointers"); 485 case Intrinsic::experimental_gc_relocate: { 486 // Rerunning safepoint insertion after safepoints are already 487 // inserted is not supported. It could probably be made to work, 488 // but why are you doing this? There's no good reason. 489 llvm_unreachable("repeat safepoint insertion is not supported"); 490 } 491 case Intrinsic::gcroot: 492 // Currently, this mechanism hasn't been extended to work with gcroot. 493 // There's no reason it couldn't be, but I haven't thought about the 494 // implications much. 495 llvm_unreachable( 496 "interaction with the gcroot mechanism is not supported"); 497 } 498 } 499 // We assume that functions in the source language only return base 500 // pointers. This should probably be generalized via attributes to support 501 // both source language and internal functions. 502 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 503 return BaseDefiningValueResult(I, true); 504 505 // I have absolutely no idea how to implement this part yet. It's not 506 // necessarily hard, I just haven't really looked at it yet. 507 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 508 509 if (isa<AtomicCmpXchgInst>(I)) 510 // A CAS is effectively a atomic store and load combined under a 511 // predicate. From the perspective of base pointers, we just treat it 512 // like a load. 513 return BaseDefiningValueResult(I, true); 514 515 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 516 "binary ops which don't apply to pointers"); 517 518 // The aggregate ops. Aggregates can either be in the heap or on the 519 // stack, but in either case, this is simply a field load. As a result, 520 // this is a defining definition of the base just like a load is. 521 if (isa<ExtractValueInst>(I)) 522 return BaseDefiningValueResult(I, true); 523 524 // We should never see an insert vector since that would require we be 525 // tracing back a struct value not a pointer value. 526 assert(!isa<InsertValueInst>(I) && 527 "Base pointer for a struct is meaningless"); 528 529 // An extractelement produces a base result exactly when it's input does. 530 // We may need to insert a parallel instruction to extract the appropriate 531 // element out of the base vector corresponding to the input. Given this, 532 // it's analogous to the phi and select case even though it's not a merge. 533 if (isa<ExtractElementInst>(I)) 534 // Note: There a lot of obvious peephole cases here. This are deliberately 535 // handled after the main base pointer inference algorithm to make writing 536 // test cases to exercise that code easier. 537 return BaseDefiningValueResult(I, false); 538 539 // The last two cases here don't return a base pointer. Instead, they 540 // return a value which dynamically selects from among several base 541 // derived pointers (each with it's own base potentially). It's the job of 542 // the caller to resolve these. 543 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 544 "missing instruction case in findBaseDefiningValing"); 545 return BaseDefiningValueResult(I, false); 546 } 547 548 /// Returns the base defining value for this value. 549 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 550 Value *&Cached = Cache[I]; 551 if (!Cached) { 552 Cached = findBaseDefiningValue(I).BDV; 553 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 554 << Cached->getName() << "\n"); 555 } 556 assert(Cache[I] != nullptr); 557 return Cached; 558 } 559 560 /// Return a base pointer for this value if known. Otherwise, return it's 561 /// base defining value. 562 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 563 Value *Def = findBaseDefiningValueCached(I, Cache); 564 auto Found = Cache.find(Def); 565 if (Found != Cache.end()) { 566 // Either a base-of relation, or a self reference. Caller must check. 567 return Found->second; 568 } 569 // Only a BDV available 570 return Def; 571 } 572 573 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 574 /// is it known to be a base pointer? Or do we need to continue searching. 575 static bool isKnownBaseResult(Value *V) { 576 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 577 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 578 !isa<ShuffleVectorInst>(V)) { 579 // no recursion possible 580 return true; 581 } 582 if (isa<Instruction>(V) && 583 cast<Instruction>(V)->getMetadata("is_base_value")) { 584 // This is a previously inserted base phi or select. We know 585 // that this is a base value. 586 return true; 587 } 588 589 // We need to keep searching 590 return false; 591 } 592 593 namespace { 594 /// Models the state of a single base defining value in the findBasePointer 595 /// algorithm for determining where a new instruction is needed to propagate 596 /// the base of this BDV. 597 class BDVState { 598 public: 599 enum Status { Unknown, Base, Conflict }; 600 601 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 602 assert(status != Base || b); 603 } 604 explicit BDVState(Value *b) : status(Base), base(b) {} 605 BDVState() : status(Unknown), base(nullptr) {} 606 607 Status getStatus() const { return status; } 608 Value *getBase() const { return base; } 609 610 bool isBase() const { return getStatus() == Base; } 611 bool isUnknown() const { return getStatus() == Unknown; } 612 bool isConflict() const { return getStatus() == Conflict; } 613 614 bool operator==(const BDVState &other) const { 615 return base == other.base && status == other.status; 616 } 617 618 bool operator!=(const BDVState &other) const { return !(*this == other); } 619 620 LLVM_DUMP_METHOD 621 void dump() const { print(dbgs()); dbgs() << '\n'; } 622 623 void print(raw_ostream &OS) const { 624 switch (status) { 625 case Unknown: 626 OS << "U"; 627 break; 628 case Base: 629 OS << "B"; 630 break; 631 case Conflict: 632 OS << "C"; 633 break; 634 }; 635 OS << " (" << base << " - " 636 << (base ? base->getName() : "nullptr") << "): "; 637 } 638 639 private: 640 Status status; 641 AssertingVH<Value> base; // non null only if status == base 642 }; 643 } 644 645 #ifndef NDEBUG 646 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 647 State.print(OS); 648 return OS; 649 } 650 #endif 651 652 namespace { 653 // Values of type BDVState form a lattice, and this is a helper 654 // class that implementes the meet operation. The meat of the meet 655 // operation is implemented in MeetBDVStates::pureMeet 656 class MeetBDVStates { 657 public: 658 /// Initializes the currentResult to the TOP state so that if can be met with 659 /// any other state to produce that state. 660 MeetBDVStates() {} 661 662 // Destructively meet the current result with the given BDVState 663 void meetWith(BDVState otherState) { 664 currentResult = meet(otherState, currentResult); 665 } 666 667 BDVState getResult() const { return currentResult; } 668 669 private: 670 BDVState currentResult; 671 672 /// Perform a meet operation on two elements of the BDVState lattice. 673 static BDVState meet(BDVState LHS, BDVState RHS) { 674 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 675 "math is wrong: meet does not commute!"); 676 BDVState Result = pureMeet(LHS, RHS); 677 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 678 << " produced " << Result << "\n"); 679 return Result; 680 } 681 682 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 683 switch (stateA.getStatus()) { 684 case BDVState::Unknown: 685 return stateB; 686 687 case BDVState::Base: 688 assert(stateA.getBase() && "can't be null"); 689 if (stateB.isUnknown()) 690 return stateA; 691 692 if (stateB.isBase()) { 693 if (stateA.getBase() == stateB.getBase()) { 694 assert(stateA == stateB && "equality broken!"); 695 return stateA; 696 } 697 return BDVState(BDVState::Conflict); 698 } 699 assert(stateB.isConflict() && "only three states!"); 700 return BDVState(BDVState::Conflict); 701 702 case BDVState::Conflict: 703 return stateA; 704 } 705 llvm_unreachable("only three states!"); 706 } 707 }; 708 } 709 710 711 /// For a given value or instruction, figure out what base ptr it's derived 712 /// from. For gc objects, this is simply itself. On success, returns a value 713 /// which is the base pointer. (This is reliable and can be used for 714 /// relocation.) On failure, returns nullptr. 715 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 716 Value *def = findBaseOrBDV(I, cache); 717 718 if (isKnownBaseResult(def)) { 719 return def; 720 } 721 722 // Here's the rough algorithm: 723 // - For every SSA value, construct a mapping to either an actual base 724 // pointer or a PHI which obscures the base pointer. 725 // - Construct a mapping from PHI to unknown TOP state. Use an 726 // optimistic algorithm to propagate base pointer information. Lattice 727 // looks like: 728 // UNKNOWN 729 // b1 b2 b3 b4 730 // CONFLICT 731 // When algorithm terminates, all PHIs will either have a single concrete 732 // base or be in a conflict state. 733 // - For every conflict, insert a dummy PHI node without arguments. Add 734 // these to the base[Instruction] = BasePtr mapping. For every 735 // non-conflict, add the actual base. 736 // - For every conflict, add arguments for the base[a] of each input 737 // arguments. 738 // 739 // Note: A simpler form of this would be to add the conflict form of all 740 // PHIs without running the optimistic algorithm. This would be 741 // analogous to pessimistic data flow and would likely lead to an 742 // overall worse solution. 743 744 #ifndef NDEBUG 745 auto isExpectedBDVType = [](Value *BDV) { 746 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 747 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 748 }; 749 #endif 750 751 // Once populated, will contain a mapping from each potentially non-base BDV 752 // to a lattice value (described above) which corresponds to that BDV. 753 // We use the order of insertion (DFS over the def/use graph) to provide a 754 // stable deterministic ordering for visiting DenseMaps (which are unordered) 755 // below. This is important for deterministic compilation. 756 MapVector<Value *, BDVState> States; 757 758 // Recursively fill in all base defining values reachable from the initial 759 // one for which we don't already know a definite base value for 760 /* scope */ { 761 SmallVector<Value*, 16> Worklist; 762 Worklist.push_back(def); 763 States.insert(std::make_pair(def, BDVState())); 764 while (!Worklist.empty()) { 765 Value *Current = Worklist.pop_back_val(); 766 assert(!isKnownBaseResult(Current) && "why did it get added?"); 767 768 auto visitIncomingValue = [&](Value *InVal) { 769 Value *Base = findBaseOrBDV(InVal, cache); 770 if (isKnownBaseResult(Base)) 771 // Known bases won't need new instructions introduced and can be 772 // ignored safely 773 return; 774 assert(isExpectedBDVType(Base) && "the only non-base values " 775 "we see should be base defining values"); 776 if (States.insert(std::make_pair(Base, BDVState())).second) 777 Worklist.push_back(Base); 778 }; 779 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 780 for (Value *InVal : Phi->incoming_values()) 781 visitIncomingValue(InVal); 782 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 783 visitIncomingValue(Sel->getTrueValue()); 784 visitIncomingValue(Sel->getFalseValue()); 785 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 786 visitIncomingValue(EE->getVectorOperand()); 787 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 788 visitIncomingValue(IE->getOperand(0)); // vector operand 789 visitIncomingValue(IE->getOperand(1)); // scalar operand 790 } else { 791 // There is one known class of instructions we know we don't handle. 792 assert(isa<ShuffleVectorInst>(Current)); 793 llvm_unreachable("unimplemented instruction case"); 794 } 795 } 796 } 797 798 #ifndef NDEBUG 799 DEBUG(dbgs() << "States after initialization:\n"); 800 for (auto Pair : States) { 801 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 802 } 803 #endif 804 805 // Return a phi state for a base defining value. We'll generate a new 806 // base state for known bases and expect to find a cached state otherwise. 807 auto getStateForBDV = [&](Value *baseValue) { 808 if (isKnownBaseResult(baseValue)) 809 return BDVState(baseValue); 810 auto I = States.find(baseValue); 811 assert(I != States.end() && "lookup failed!"); 812 return I->second; 813 }; 814 815 bool progress = true; 816 while (progress) { 817 #ifndef NDEBUG 818 const size_t oldSize = States.size(); 819 #endif 820 progress = false; 821 // We're only changing values in this loop, thus safe to keep iterators. 822 // Since this is computing a fixed point, the order of visit does not 823 // effect the result. TODO: We could use a worklist here and make this run 824 // much faster. 825 for (auto Pair : States) { 826 Value *BDV = Pair.first; 827 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 828 829 // Given an input value for the current instruction, return a BDVState 830 // instance which represents the BDV of that value. 831 auto getStateForInput = [&](Value *V) mutable { 832 Value *BDV = findBaseOrBDV(V, cache); 833 return getStateForBDV(BDV); 834 }; 835 836 MeetBDVStates calculateMeet; 837 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) { 838 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 839 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 840 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) { 841 for (Value *Val : Phi->incoming_values()) 842 calculateMeet.meetWith(getStateForInput(Val)); 843 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 844 // The 'meet' for an extractelement is slightly trivial, but it's still 845 // useful in that it drives us to conflict if our input is. 846 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 847 } else { 848 // Given there's a inherent type mismatch between the operands, will 849 // *always* produce Conflict. 850 auto *IE = cast<InsertElementInst>(BDV); 851 calculateMeet.meetWith(getStateForInput(IE->getOperand(0))); 852 calculateMeet.meetWith(getStateForInput(IE->getOperand(1))); 853 } 854 855 BDVState oldState = States[BDV]; 856 BDVState newState = calculateMeet.getResult(); 857 if (oldState != newState) { 858 progress = true; 859 States[BDV] = newState; 860 } 861 } 862 863 assert(oldSize == States.size() && 864 "fixed point shouldn't be adding any new nodes to state"); 865 } 866 867 #ifndef NDEBUG 868 DEBUG(dbgs() << "States after meet iteration:\n"); 869 for (auto Pair : States) { 870 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 871 } 872 #endif 873 874 // Insert Phis for all conflicts 875 // TODO: adjust naming patterns to avoid this order of iteration dependency 876 for (auto Pair : States) { 877 Instruction *I = cast<Instruction>(Pair.first); 878 BDVState State = Pair.second; 879 assert(!isKnownBaseResult(I) && "why did it get added?"); 880 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 881 882 // extractelement instructions are a bit special in that we may need to 883 // insert an extract even when we know an exact base for the instruction. 884 // The problem is that we need to convert from a vector base to a scalar 885 // base for the particular indice we're interested in. 886 if (State.isBase() && isa<ExtractElementInst>(I) && 887 isa<VectorType>(State.getBase()->getType())) { 888 auto *EE = cast<ExtractElementInst>(I); 889 // TODO: In many cases, the new instruction is just EE itself. We should 890 // exploit this, but can't do it here since it would break the invariant 891 // about the BDV not being known to be a base. 892 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 893 EE->getIndexOperand(), 894 "base_ee", EE); 895 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 896 States[I] = BDVState(BDVState::Base, BaseInst); 897 } 898 899 // Since we're joining a vector and scalar base, they can never be the 900 // same. As a result, we should always see insert element having reached 901 // the conflict state. 902 if (isa<InsertElementInst>(I)) { 903 assert(State.isConflict()); 904 } 905 906 if (!State.isConflict()) 907 continue; 908 909 /// Create and insert a new instruction which will represent the base of 910 /// the given instruction 'I'. 911 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 912 if (isa<PHINode>(I)) { 913 BasicBlock *BB = I->getParent(); 914 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 915 assert(NumPreds > 0 && "how did we reach here"); 916 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 917 return PHINode::Create(I->getType(), NumPreds, Name, I); 918 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 919 // The undef will be replaced later 920 UndefValue *Undef = UndefValue::get(Sel->getType()); 921 std::string Name = suffixed_name_or(I, ".base", "base_select"); 922 return SelectInst::Create(Sel->getCondition(), Undef, 923 Undef, Name, Sel); 924 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 925 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 926 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 927 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 928 EE); 929 } else { 930 auto *IE = cast<InsertElementInst>(I); 931 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 932 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 933 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 934 return InsertElementInst::Create(VecUndef, ScalarUndef, 935 IE->getOperand(2), Name, IE); 936 } 937 938 }; 939 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 940 // Add metadata marking this as a base value 941 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 942 States[I] = BDVState(BDVState::Conflict, BaseInst); 943 } 944 945 // Returns a instruction which produces the base pointer for a given 946 // instruction. The instruction is assumed to be an input to one of the BDVs 947 // seen in the inference algorithm above. As such, we must either already 948 // know it's base defining value is a base, or have inserted a new 949 // instruction to propagate the base of it's BDV and have entered that newly 950 // introduced instruction into the state table. In either case, we are 951 // assured to be able to determine an instruction which produces it's base 952 // pointer. 953 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 954 Value *BDV = findBaseOrBDV(Input, cache); 955 Value *Base = nullptr; 956 if (isKnownBaseResult(BDV)) { 957 Base = BDV; 958 } else { 959 // Either conflict or base. 960 assert(States.count(BDV)); 961 Base = States[BDV].getBase(); 962 } 963 assert(Base && "can't be null"); 964 // The cast is needed since base traversal may strip away bitcasts 965 if (Base->getType() != Input->getType() && 966 InsertPt) { 967 Base = new BitCastInst(Base, Input->getType(), "cast", 968 InsertPt); 969 } 970 return Base; 971 }; 972 973 // Fixup all the inputs of the new PHIs. Visit order needs to be 974 // deterministic and predictable because we're naming newly created 975 // instructions. 976 for (auto Pair : States) { 977 Instruction *BDV = cast<Instruction>(Pair.first); 978 BDVState State = Pair.second; 979 980 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 981 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 982 if (!State.isConflict()) 983 continue; 984 985 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) { 986 PHINode *phi = cast<PHINode>(BDV); 987 unsigned NumPHIValues = phi->getNumIncomingValues(); 988 for (unsigned i = 0; i < NumPHIValues; i++) { 989 Value *InVal = phi->getIncomingValue(i); 990 BasicBlock *InBB = phi->getIncomingBlock(i); 991 992 // If we've already seen InBB, add the same incoming value 993 // we added for it earlier. The IR verifier requires phi 994 // nodes with multiple entries from the same basic block 995 // to have the same incoming value for each of those 996 // entries. If we don't do this check here and basephi 997 // has a different type than base, we'll end up adding two 998 // bitcasts (and hence two distinct values) as incoming 999 // values for the same basic block. 1000 1001 int blockIndex = basephi->getBasicBlockIndex(InBB); 1002 if (blockIndex != -1) { 1003 Value *oldBase = basephi->getIncomingValue(blockIndex); 1004 basephi->addIncoming(oldBase, InBB); 1005 1006 #ifndef NDEBUG 1007 Value *Base = getBaseForInput(InVal, nullptr); 1008 // In essence this assert states: the only way two 1009 // values incoming from the same basic block may be 1010 // different is by being different bitcasts of the same 1011 // value. A cleanup that remains TODO is changing 1012 // findBaseOrBDV to return an llvm::Value of the correct 1013 // type (and still remain pure). This will remove the 1014 // need to add bitcasts. 1015 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() && 1016 "sanity -- findBaseOrBDV should be pure!"); 1017 #endif 1018 continue; 1019 } 1020 1021 // Find the instruction which produces the base for each input. We may 1022 // need to insert a bitcast in the incoming block. 1023 // TODO: Need to split critical edges if insertion is needed 1024 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1025 basephi->addIncoming(Base, InBB); 1026 } 1027 assert(basephi->getNumIncomingValues() == NumPHIValues); 1028 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) { 1029 SelectInst *Sel = cast<SelectInst>(BDV); 1030 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 1031 // something more safe and less hacky. 1032 for (int i = 1; i <= 2; i++) { 1033 Value *InVal = Sel->getOperand(i); 1034 // Find the instruction which produces the base for each input. We may 1035 // need to insert a bitcast. 1036 Value *Base = getBaseForInput(InVal, BaseSel); 1037 BaseSel->setOperand(i, Base); 1038 } 1039 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 1040 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1041 // Find the instruction which produces the base for each input. We may 1042 // need to insert a bitcast. 1043 Value *Base = getBaseForInput(InVal, BaseEE); 1044 BaseEE->setOperand(0, Base); 1045 } else { 1046 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 1047 auto *BdvIE = cast<InsertElementInst>(BDV); 1048 auto UpdateOperand = [&](int OperandIdx) { 1049 Value *InVal = BdvIE->getOperand(OperandIdx); 1050 Value *Base = getBaseForInput(InVal, BaseIE); 1051 BaseIE->setOperand(OperandIdx, Base); 1052 }; 1053 UpdateOperand(0); // vector operand 1054 UpdateOperand(1); // scalar operand 1055 } 1056 1057 } 1058 1059 // Now that we're done with the algorithm, see if we can optimize the 1060 // results slightly by reducing the number of new instructions needed. 1061 // Arguably, this should be integrated into the algorithm above, but 1062 // doing as a post process step is easier to reason about for the moment. 1063 DenseMap<Value *, Value *> ReverseMap; 1064 SmallPtrSet<Instruction *, 16> NewInsts; 1065 SmallSetVector<AssertingVH<Instruction>, 16> Worklist; 1066 // Note: We need to visit the states in a deterministic order. We uses the 1067 // Keys we sorted above for this purpose. Note that we are papering over a 1068 // bigger problem with the algorithm above - it's visit order is not 1069 // deterministic. A larger change is needed to fix this. 1070 for (auto Pair : States) { 1071 auto *BDV = Pair.first; 1072 auto State = Pair.second; 1073 Value *Base = State.getBase(); 1074 assert(BDV && Base); 1075 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1076 assert(isKnownBaseResult(Base) && 1077 "must be something we 'know' is a base pointer"); 1078 if (!State.isConflict()) 1079 continue; 1080 1081 ReverseMap[Base] = BDV; 1082 if (auto *BaseI = dyn_cast<Instruction>(Base)) { 1083 NewInsts.insert(BaseI); 1084 Worklist.insert(BaseI); 1085 } 1086 } 1087 auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI, 1088 Value *Replacement) { 1089 // Add users which are new instructions (excluding self references) 1090 for (User *U : BaseI->users()) 1091 if (auto *UI = dyn_cast<Instruction>(U)) 1092 if (NewInsts.count(UI) && UI != BaseI) 1093 Worklist.insert(UI); 1094 // Then do the actual replacement 1095 NewInsts.erase(BaseI); 1096 ReverseMap.erase(BaseI); 1097 BaseI->replaceAllUsesWith(Replacement); 1098 assert(States.count(BDV)); 1099 assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI); 1100 States[BDV] = BDVState(BDVState::Conflict, Replacement); 1101 BaseI->eraseFromParent(); 1102 }; 1103 const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout(); 1104 while (!Worklist.empty()) { 1105 Instruction *BaseI = Worklist.pop_back_val(); 1106 assert(NewInsts.count(BaseI)); 1107 Value *Bdv = ReverseMap[BaseI]; 1108 if (auto *BdvI = dyn_cast<Instruction>(Bdv)) 1109 if (BaseI->isIdenticalTo(BdvI)) { 1110 DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n"); 1111 ReplaceBaseInstWith(Bdv, BaseI, Bdv); 1112 continue; 1113 } 1114 if (Value *V = SimplifyInstruction(BaseI, DL)) { 1115 DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n"); 1116 ReplaceBaseInstWith(Bdv, BaseI, V); 1117 continue; 1118 } 1119 } 1120 1121 // Cache all of our results so we can cheaply reuse them 1122 // NOTE: This is actually two caches: one of the base defining value 1123 // relation and one of the base pointer relation! FIXME 1124 for (auto Pair : States) { 1125 auto *BDV = Pair.first; 1126 Value *base = Pair.second.getBase(); 1127 assert(BDV && base); 1128 1129 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none"; 1130 DEBUG(dbgs() << "Updating base value cache" 1131 << " for: " << BDV->getName() 1132 << " from: " << fromstr 1133 << " to: " << base->getName() << "\n"); 1134 1135 if (cache.count(BDV)) { 1136 // Once we transition from the BDV relation being store in the cache to 1137 // the base relation being stored, it must be stable 1138 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) && 1139 "base relation should be stable"); 1140 } 1141 cache[BDV] = base; 1142 } 1143 assert(cache.find(def) != cache.end()); 1144 return cache[def]; 1145 } 1146 1147 // For a set of live pointers (base and/or derived), identify the base 1148 // pointer of the object which they are derived from. This routine will 1149 // mutate the IR graph as needed to make the 'base' pointer live at the 1150 // definition site of 'derived'. This ensures that any use of 'derived' can 1151 // also use 'base'. This may involve the insertion of a number of 1152 // additional PHI nodes. 1153 // 1154 // preconditions: live is a set of pointer type Values 1155 // 1156 // side effects: may insert PHI nodes into the existing CFG, will preserve 1157 // CFG, will not remove or mutate any existing nodes 1158 // 1159 // post condition: PointerToBase contains one (derived, base) pair for every 1160 // pointer in live. Note that derived can be equal to base if the original 1161 // pointer was a base pointer. 1162 static void 1163 findBasePointers(const StatepointLiveSetTy &live, 1164 DenseMap<Value *, Value *> &PointerToBase, 1165 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1166 // For the naming of values inserted to be deterministic - which makes for 1167 // much cleaner and more stable tests - we need to assign an order to the 1168 // live values. DenseSets do not provide a deterministic order across runs. 1169 SmallVector<Value *, 64> Temp; 1170 Temp.insert(Temp.end(), live.begin(), live.end()); 1171 std::sort(Temp.begin(), Temp.end(), order_by_name); 1172 for (Value *ptr : Temp) { 1173 Value *base = findBasePointer(ptr, DVCache); 1174 assert(base && "failed to find base pointer"); 1175 PointerToBase[ptr] = base; 1176 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1177 DT->dominates(cast<Instruction>(base)->getParent(), 1178 cast<Instruction>(ptr)->getParent())) && 1179 "The base we found better dominate the derived pointer"); 1180 1181 // If you see this trip and like to live really dangerously, the code should 1182 // be correct, just with idioms the verifier can't handle. You can try 1183 // disabling the verifier at your own substantial risk. 1184 assert(!isa<ConstantPointerNull>(base) && 1185 "the relocation code needs adjustment to handle the relocation of " 1186 "a null pointer constant without causing false positives in the " 1187 "safepoint ir verifier."); 1188 } 1189 } 1190 1191 /// Find the required based pointers (and adjust the live set) for the given 1192 /// parse point. 1193 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1194 const CallSite &CS, 1195 PartiallyConstructedSafepointRecord &result) { 1196 DenseMap<Value *, Value *> PointerToBase; 1197 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1198 1199 if (PrintBasePointers) { 1200 // Note: Need to print these in a stable order since this is checked in 1201 // some tests. 1202 errs() << "Base Pairs (w/o Relocation):\n"; 1203 SmallVector<Value *, 64> Temp; 1204 Temp.reserve(PointerToBase.size()); 1205 for (auto Pair : PointerToBase) { 1206 Temp.push_back(Pair.first); 1207 } 1208 std::sort(Temp.begin(), Temp.end(), order_by_name); 1209 for (Value *Ptr : Temp) { 1210 Value *Base = PointerToBase[Ptr]; 1211 errs() << " derived "; 1212 Ptr->printAsOperand(errs(), false); 1213 errs() << " base "; 1214 Base->printAsOperand(errs(), false); 1215 errs() << "\n";; 1216 } 1217 } 1218 1219 result.PointerToBase = PointerToBase; 1220 } 1221 1222 /// Given an updated version of the dataflow liveness results, update the 1223 /// liveset and base pointer maps for the call site CS. 1224 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1225 const CallSite &CS, 1226 PartiallyConstructedSafepointRecord &result); 1227 1228 static void recomputeLiveInValues( 1229 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1230 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1231 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1232 // again. The old values are still live and will help it stabilize quickly. 1233 GCPtrLivenessData RevisedLivenessData; 1234 computeLiveInValues(DT, F, RevisedLivenessData); 1235 for (size_t i = 0; i < records.size(); i++) { 1236 struct PartiallyConstructedSafepointRecord &info = records[i]; 1237 const CallSite &CS = toUpdate[i]; 1238 recomputeLiveInValues(RevisedLivenessData, CS, info); 1239 } 1240 } 1241 1242 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1243 // no uses of the original value / return value between the gc.statepoint and 1244 // the gc.relocate / gc.result call. One case which can arise is a phi node 1245 // starting one of the successor blocks. We also need to be able to insert the 1246 // gc.relocates only on the path which goes through the statepoint. We might 1247 // need to split an edge to make this possible. 1248 static BasicBlock * 1249 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1250 DominatorTree &DT) { 1251 BasicBlock *Ret = BB; 1252 if (!BB->getUniquePredecessor()) 1253 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1254 1255 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1256 // from it 1257 FoldSingleEntryPHINodes(Ret); 1258 assert(!isa<PHINode>(Ret->begin()) && 1259 "All PHI nodes should have been removed!"); 1260 1261 // At this point, we can safely insert a gc.relocate or gc.result as the first 1262 // instruction in Ret if needed. 1263 return Ret; 1264 } 1265 1266 // Create new attribute set containing only attributes which can be transferred 1267 // from original call to the safepoint. 1268 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1269 AttributeSet Ret; 1270 1271 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1272 unsigned Index = AS.getSlotIndex(Slot); 1273 1274 if (Index == AttributeSet::ReturnIndex || 1275 Index == AttributeSet::FunctionIndex) { 1276 1277 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { 1278 1279 // Do not allow certain attributes - just skip them 1280 // Safepoint can not be read only or read none. 1281 if (Attr.hasAttribute(Attribute::ReadNone) || 1282 Attr.hasAttribute(Attribute::ReadOnly)) 1283 continue; 1284 1285 // These attributes control the generation of the gc.statepoint call / 1286 // invoke itself; and once the gc.statepoint is in place, they're of no 1287 // use. 1288 if (Attr.hasAttribute("statepoint-num-patch-bytes") || 1289 Attr.hasAttribute("statepoint-id")) 1290 continue; 1291 1292 Ret = Ret.addAttributes( 1293 AS.getContext(), Index, 1294 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); 1295 } 1296 } 1297 1298 // Just skip parameter attributes for now 1299 } 1300 1301 return Ret; 1302 } 1303 1304 /// Helper function to place all gc relocates necessary for the given 1305 /// statepoint. 1306 /// Inputs: 1307 /// liveVariables - list of variables to be relocated. 1308 /// liveStart - index of the first live variable. 1309 /// basePtrs - base pointers. 1310 /// statepointToken - statepoint instruction to which relocates should be 1311 /// bound. 1312 /// Builder - Llvm IR builder to be used to construct new calls. 1313 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1314 const int LiveStart, 1315 ArrayRef<Value *> BasePtrs, 1316 Instruction *StatepointToken, 1317 IRBuilder<> Builder) { 1318 if (LiveVariables.empty()) 1319 return; 1320 1321 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1322 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val); 1323 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1324 size_t Index = std::distance(LiveVec.begin(), ValIt); 1325 assert(Index < LiveVec.size() && "Bug in std::find?"); 1326 return Index; 1327 }; 1328 1329 // All gc_relocate are set to i8 addrspace(1)* type. We originally generated 1330 // unique declarations for each pointer type, but this proved problematic 1331 // because the intrinsic mangling code is incomplete and fragile. Since 1332 // we're moving towards a single unified pointer type anyways, we can just 1333 // cast everything to an i8* of the right address space. A bitcast is added 1334 // later to convert gc_relocate to the actual value's type. 1335 Module *M = StatepointToken->getModule(); 1336 auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace(); 1337 Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)}; 1338 Value *GCRelocateDecl = 1339 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); 1340 1341 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1342 // Generate the gc.relocate call and save the result 1343 Value *BaseIdx = 1344 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1345 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1346 1347 // only specify a debug name if we can give a useful one 1348 CallInst *Reloc = Builder.CreateCall( 1349 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1350 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1351 // Trick CodeGen into thinking there are lots of free registers at this 1352 // fake call. 1353 Reloc->setCallingConv(CallingConv::Cold); 1354 } 1355 } 1356 1357 namespace { 1358 1359 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1360 /// avoids having to worry about keeping around dangling pointers to Values. 1361 class DeferredReplacement { 1362 AssertingVH<Instruction> Old; 1363 AssertingVH<Instruction> New; 1364 1365 public: 1366 explicit DeferredReplacement(Instruction *Old, Instruction *New) : 1367 Old(Old), New(New) { 1368 assert(Old != New && "Not allowed!"); 1369 } 1370 1371 /// Does the task represented by this instance. 1372 void doReplacement() { 1373 Instruction *OldI = Old; 1374 Instruction *NewI = New; 1375 1376 assert(OldI != NewI && "Disallowed at construction?!"); 1377 1378 Old = nullptr; 1379 New = nullptr; 1380 1381 if (NewI) 1382 OldI->replaceAllUsesWith(NewI); 1383 OldI->eraseFromParent(); 1384 } 1385 }; 1386 } 1387 1388 static void 1389 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1390 const SmallVectorImpl<Value *> &BasePtrs, 1391 const SmallVectorImpl<Value *> &LiveVariables, 1392 PartiallyConstructedSafepointRecord &Result, 1393 std::vector<DeferredReplacement> &Replacements) { 1394 assert(BasePtrs.size() == LiveVariables.size()); 1395 assert((UseDeoptBundles || isStatepoint(CS)) && 1396 "This method expects to be rewriting a statepoint"); 1397 1398 // Then go ahead and use the builder do actually do the inserts. We insert 1399 // immediately before the previous instruction under the assumption that all 1400 // arguments will be available here. We can't insert afterwards since we may 1401 // be replacing a terminator. 1402 Instruction *InsertBefore = CS.getInstruction(); 1403 IRBuilder<> Builder(InsertBefore); 1404 1405 ArrayRef<Value *> GCArgs(LiveVariables); 1406 uint64_t StatepointID = 0xABCDEF00; 1407 uint32_t NumPatchBytes = 0; 1408 uint32_t Flags = uint32_t(StatepointFlags::None); 1409 1410 ArrayRef<Use> CallArgs; 1411 ArrayRef<Use> DeoptArgs; 1412 ArrayRef<Use> TransitionArgs; 1413 1414 Value *CallTarget = nullptr; 1415 1416 if (UseDeoptBundles) { 1417 CallArgs = {CS.arg_begin(), CS.arg_end()}; 1418 DeoptArgs = GetDeoptBundleOperands(CS); 1419 // TODO: we don't fill in TransitionArgs or Flags in this branch, but we 1420 // could have an operand bundle for that too. 1421 AttributeSet OriginalAttrs = CS.getAttributes(); 1422 1423 Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex, 1424 "statepoint-id"); 1425 if (AttrID.isStringAttribute()) 1426 AttrID.getValueAsString().getAsInteger(10, StatepointID); 1427 1428 Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute( 1429 AttributeSet::FunctionIndex, "statepoint-num-patch-bytes"); 1430 if (AttrNumPatchBytes.isStringAttribute()) 1431 AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes); 1432 1433 CallTarget = CS.getCalledValue(); 1434 } else { 1435 // This branch will be gone soon, and we will soon only support the 1436 // UseDeoptBundles == true configuration. 1437 Statepoint OldSP(CS); 1438 StatepointID = OldSP.getID(); 1439 NumPatchBytes = OldSP.getNumPatchBytes(); 1440 Flags = OldSP.getFlags(); 1441 1442 CallArgs = {OldSP.arg_begin(), OldSP.arg_end()}; 1443 DeoptArgs = {OldSP.vm_state_begin(), OldSP.vm_state_end()}; 1444 TransitionArgs = {OldSP.gc_transition_args_begin(), 1445 OldSP.gc_transition_args_end()}; 1446 CallTarget = OldSP.getCalledValue(); 1447 } 1448 1449 // Create the statepoint given all the arguments 1450 Instruction *Token = nullptr; 1451 AttributeSet ReturnAttrs; 1452 if (CS.isCall()) { 1453 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1454 CallInst *Call = Builder.CreateGCStatepointCall( 1455 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1456 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1457 1458 Call->setTailCall(ToReplace->isTailCall()); 1459 Call->setCallingConv(ToReplace->getCallingConv()); 1460 1461 // Currently we will fail on parameter attributes and on certain 1462 // function attributes. 1463 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1464 // In case if we can handle this set of attributes - set up function attrs 1465 // directly on statepoint and return attrs later for gc_result intrinsic. 1466 Call->setAttributes(NewAttrs.getFnAttributes()); 1467 ReturnAttrs = NewAttrs.getRetAttributes(); 1468 1469 Token = Call; 1470 1471 // Put the following gc_result and gc_relocate calls immediately after the 1472 // the old call (which we're about to delete) 1473 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1474 Builder.SetInsertPoint(ToReplace->getNextNode()); 1475 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1476 } else { 1477 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1478 1479 // Insert the new invoke into the old block. We'll remove the old one in a 1480 // moment at which point this will become the new terminator for the 1481 // original block. 1482 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1483 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1484 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1485 GCArgs, "statepoint_token"); 1486 1487 Invoke->setCallingConv(ToReplace->getCallingConv()); 1488 1489 // Currently we will fail on parameter attributes and on certain 1490 // function attributes. 1491 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1492 // In case if we can handle this set of attributes - set up function attrs 1493 // directly on statepoint and return attrs later for gc_result intrinsic. 1494 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1495 ReturnAttrs = NewAttrs.getRetAttributes(); 1496 1497 Token = Invoke; 1498 1499 // Generate gc relocates in exceptional path 1500 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1501 assert(!isa<PHINode>(UnwindBlock->begin()) && 1502 UnwindBlock->getUniquePredecessor() && 1503 "can't safely insert in this block!"); 1504 1505 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1506 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1507 1508 // Extract second element from landingpad return value. We will attach 1509 // exceptional gc relocates to it. 1510 Instruction *ExceptionalToken = 1511 cast<Instruction>(Builder.CreateExtractValue( 1512 UnwindBlock->getLandingPadInst(), 1, "relocate_token")); 1513 Result.UnwindToken = ExceptionalToken; 1514 1515 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1516 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1517 Builder); 1518 1519 // Generate gc relocates and returns for normal block 1520 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1521 assert(!isa<PHINode>(NormalDest->begin()) && 1522 NormalDest->getUniquePredecessor() && 1523 "can't safely insert in this block!"); 1524 1525 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1526 1527 // gc relocates will be generated later as if it were regular call 1528 // statepoint 1529 } 1530 assert(Token && "Should be set in one of the above branches!"); 1531 1532 if (UseDeoptBundles) { 1533 Token->setName("statepoint_token"); 1534 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1535 StringRef Name = 1536 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1537 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1538 GCResult->setAttributes(CS.getAttributes().getRetAttributes()); 1539 1540 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1541 // live set of some other safepoint, in which case that safepoint's 1542 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1543 // llvm::Instruction. Instead, we defer the replacement and deletion to 1544 // after the live sets have been made explicit in the IR, and we no longer 1545 // have raw pointers to worry about. 1546 Replacements.emplace_back(CS.getInstruction(), GCResult); 1547 } else { 1548 Replacements.emplace_back(CS.getInstruction(), nullptr); 1549 } 1550 } else { 1551 assert(!CS.getInstruction()->hasNUsesOrMore(2) && 1552 "only valid use before rewrite is gc.result"); 1553 assert(!CS.getInstruction()->hasOneUse() || 1554 isGCResult(cast<Instruction>(*CS.getInstruction()->user_begin()))); 1555 1556 // Take the name of the original statepoint token if there was one. 1557 Token->takeName(CS.getInstruction()); 1558 1559 // Update the gc.result of the original statepoint (if any) to use the newly 1560 // inserted statepoint. This is safe to do here since the token can't be 1561 // considered a live reference. 1562 CS.getInstruction()->replaceAllUsesWith(Token); 1563 CS.getInstruction()->eraseFromParent(); 1564 } 1565 1566 Result.StatepointToken = Token; 1567 1568 // Second, create a gc.relocate for every live variable 1569 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1570 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1571 } 1572 1573 namespace { 1574 struct NameOrdering { 1575 Value *Base; 1576 Value *Derived; 1577 1578 bool operator()(NameOrdering const &a, NameOrdering const &b) { 1579 return -1 == a.Derived->getName().compare(b.Derived->getName()); 1580 } 1581 }; 1582 } 1583 1584 static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec, 1585 SmallVectorImpl<Value *> &LiveVec) { 1586 assert(BaseVec.size() == LiveVec.size()); 1587 1588 SmallVector<NameOrdering, 64> Temp; 1589 for (size_t i = 0; i < BaseVec.size(); i++) { 1590 NameOrdering v; 1591 v.Base = BaseVec[i]; 1592 v.Derived = LiveVec[i]; 1593 Temp.push_back(v); 1594 } 1595 1596 std::sort(Temp.begin(), Temp.end(), NameOrdering()); 1597 for (size_t i = 0; i < BaseVec.size(); i++) { 1598 BaseVec[i] = Temp[i].Base; 1599 LiveVec[i] = Temp[i].Derived; 1600 } 1601 } 1602 1603 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1604 // which make the relocations happening at this safepoint explicit. 1605 // 1606 // WARNING: Does not do any fixup to adjust users of the original live 1607 // values. That's the callers responsibility. 1608 static void 1609 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, 1610 PartiallyConstructedSafepointRecord &Result, 1611 std::vector<DeferredReplacement> &Replacements) { 1612 const auto &LiveSet = Result.LiveSet; 1613 const auto &PointerToBase = Result.PointerToBase; 1614 1615 // Convert to vector for efficient cross referencing. 1616 SmallVector<Value *, 64> BaseVec, LiveVec; 1617 LiveVec.reserve(LiveSet.size()); 1618 BaseVec.reserve(LiveSet.size()); 1619 for (Value *L : LiveSet) { 1620 LiveVec.push_back(L); 1621 assert(PointerToBase.count(L)); 1622 Value *Base = PointerToBase.find(L)->second; 1623 BaseVec.push_back(Base); 1624 } 1625 assert(LiveVec.size() == BaseVec.size()); 1626 1627 // To make the output IR slightly more stable (for use in diffs), ensure a 1628 // fixed order of the values in the safepoint (by sorting the value name). 1629 // The order is otherwise meaningless. 1630 StabilizeOrder(BaseVec, LiveVec); 1631 1632 // Do the actual rewriting and delete the old statepoint 1633 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1634 } 1635 1636 // Helper function for the relocationViaAlloca. 1637 // 1638 // It receives iterator to the statepoint gc relocates and emits a store to the 1639 // assigned location (via allocaMap) for the each one of them. It adds the 1640 // visited values into the visitedLiveValues set, which we will later use them 1641 // for sanity checking. 1642 static void 1643 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1644 DenseMap<Value *, Value *> &AllocaMap, 1645 DenseSet<Value *> &VisitedLiveValues) { 1646 1647 for (User *U : GCRelocs) { 1648 if (!isa<IntrinsicInst>(U)) 1649 continue; 1650 1651 IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U); 1652 1653 // We only care about relocates 1654 if (RelocatedValue->getIntrinsicID() != 1655 Intrinsic::experimental_gc_relocate) { 1656 continue; 1657 } 1658 1659 GCRelocateOperands RelocateOperands(RelocatedValue); 1660 Value *OriginalValue = 1661 const_cast<Value *>(RelocateOperands.getDerivedPtr()); 1662 assert(AllocaMap.count(OriginalValue)); 1663 Value *Alloca = AllocaMap[OriginalValue]; 1664 1665 // Emit store into the related alloca 1666 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1667 // the correct type according to alloca. 1668 assert(RelocatedValue->getNextNode() && 1669 "Should always have one since it's not a terminator"); 1670 IRBuilder<> Builder(RelocatedValue->getNextNode()); 1671 Value *CastedRelocatedValue = 1672 Builder.CreateBitCast(RelocatedValue, 1673 cast<AllocaInst>(Alloca)->getAllocatedType(), 1674 suffixed_name_or(RelocatedValue, ".casted", "")); 1675 1676 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1677 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1678 1679 #ifndef NDEBUG 1680 VisitedLiveValues.insert(OriginalValue); 1681 #endif 1682 } 1683 } 1684 1685 // Helper function for the "relocationViaAlloca". Similar to the 1686 // "insertRelocationStores" but works for rematerialized values. 1687 static void 1688 insertRematerializationStores( 1689 RematerializedValueMapTy RematerializedValues, 1690 DenseMap<Value *, Value *> &AllocaMap, 1691 DenseSet<Value *> &VisitedLiveValues) { 1692 1693 for (auto RematerializedValuePair: RematerializedValues) { 1694 Instruction *RematerializedValue = RematerializedValuePair.first; 1695 Value *OriginalValue = RematerializedValuePair.second; 1696 1697 assert(AllocaMap.count(OriginalValue) && 1698 "Can not find alloca for rematerialized value"); 1699 Value *Alloca = AllocaMap[OriginalValue]; 1700 1701 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1702 Store->insertAfter(RematerializedValue); 1703 1704 #ifndef NDEBUG 1705 VisitedLiveValues.insert(OriginalValue); 1706 #endif 1707 } 1708 } 1709 1710 /// Do all the relocation update via allocas and mem2reg 1711 static void relocationViaAlloca( 1712 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1713 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1714 #ifndef NDEBUG 1715 // record initial number of (static) allocas; we'll check we have the same 1716 // number when we get done. 1717 int InitialAllocaNum = 0; 1718 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1719 I++) 1720 if (isa<AllocaInst>(*I)) 1721 InitialAllocaNum++; 1722 #endif 1723 1724 // TODO-PERF: change data structures, reserve 1725 DenseMap<Value *, Value *> AllocaMap; 1726 SmallVector<AllocaInst *, 200> PromotableAllocas; 1727 // Used later to chack that we have enough allocas to store all values 1728 std::size_t NumRematerializedValues = 0; 1729 PromotableAllocas.reserve(Live.size()); 1730 1731 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1732 // "PromotableAllocas" 1733 auto emitAllocaFor = [&](Value *LiveValue) { 1734 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1735 F.getEntryBlock().getFirstNonPHI()); 1736 AllocaMap[LiveValue] = Alloca; 1737 PromotableAllocas.push_back(Alloca); 1738 }; 1739 1740 // Emit alloca for each live gc pointer 1741 for (Value *V : Live) 1742 emitAllocaFor(V); 1743 1744 // Emit allocas for rematerialized values 1745 for (const auto &Info : Records) 1746 for (auto RematerializedValuePair : Info.RematerializedValues) { 1747 Value *OriginalValue = RematerializedValuePair.second; 1748 if (AllocaMap.count(OriginalValue) != 0) 1749 continue; 1750 1751 emitAllocaFor(OriginalValue); 1752 ++NumRematerializedValues; 1753 } 1754 1755 // The next two loops are part of the same conceptual operation. We need to 1756 // insert a store to the alloca after the original def and at each 1757 // redefinition. We need to insert a load before each use. These are split 1758 // into distinct loops for performance reasons. 1759 1760 // Update gc pointer after each statepoint: either store a relocated value or 1761 // null (if no relocated value was found for this gc pointer and it is not a 1762 // gc_result). This must happen before we update the statepoint with load of 1763 // alloca otherwise we lose the link between statepoint and old def. 1764 for (const auto &Info : Records) { 1765 Value *Statepoint = Info.StatepointToken; 1766 1767 // This will be used for consistency check 1768 DenseSet<Value *> VisitedLiveValues; 1769 1770 // Insert stores for normal statepoint gc relocates 1771 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1772 1773 // In case if it was invoke statepoint 1774 // we will insert stores for exceptional path gc relocates. 1775 if (isa<InvokeInst>(Statepoint)) { 1776 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1777 VisitedLiveValues); 1778 } 1779 1780 // Do similar thing with rematerialized values 1781 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1782 VisitedLiveValues); 1783 1784 if (ClobberNonLive) { 1785 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1786 // the gc.statepoint. This will turn some subtle GC problems into 1787 // slightly easier to debug SEGVs. Note that on large IR files with 1788 // lots of gc.statepoints this is extremely costly both memory and time 1789 // wise. 1790 SmallVector<AllocaInst *, 64> ToClobber; 1791 for (auto Pair : AllocaMap) { 1792 Value *Def = Pair.first; 1793 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1794 1795 // This value was relocated 1796 if (VisitedLiveValues.count(Def)) { 1797 continue; 1798 } 1799 ToClobber.push_back(Alloca); 1800 } 1801 1802 auto InsertClobbersAt = [&](Instruction *IP) { 1803 for (auto *AI : ToClobber) { 1804 auto AIType = cast<PointerType>(AI->getType()); 1805 auto PT = cast<PointerType>(AIType->getElementType()); 1806 Constant *CPN = ConstantPointerNull::get(PT); 1807 StoreInst *Store = new StoreInst(CPN, AI); 1808 Store->insertBefore(IP); 1809 } 1810 }; 1811 1812 // Insert the clobbering stores. These may get intermixed with the 1813 // gc.results and gc.relocates, but that's fine. 1814 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1815 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1816 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1817 } else { 1818 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1819 } 1820 } 1821 } 1822 1823 // Update use with load allocas and add store for gc_relocated. 1824 for (auto Pair : AllocaMap) { 1825 Value *Def = Pair.first; 1826 Value *Alloca = Pair.second; 1827 1828 // We pre-record the uses of allocas so that we dont have to worry about 1829 // later update that changes the user information.. 1830 1831 SmallVector<Instruction *, 20> Uses; 1832 // PERF: trade a linear scan for repeated reallocation 1833 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1834 for (User *U : Def->users()) { 1835 if (!isa<ConstantExpr>(U)) { 1836 // If the def has a ConstantExpr use, then the def is either a 1837 // ConstantExpr use itself or null. In either case 1838 // (recursively in the first, directly in the second), the oop 1839 // it is ultimately dependent on is null and this particular 1840 // use does not need to be fixed up. 1841 Uses.push_back(cast<Instruction>(U)); 1842 } 1843 } 1844 1845 std::sort(Uses.begin(), Uses.end()); 1846 auto Last = std::unique(Uses.begin(), Uses.end()); 1847 Uses.erase(Last, Uses.end()); 1848 1849 for (Instruction *Use : Uses) { 1850 if (isa<PHINode>(Use)) { 1851 PHINode *Phi = cast<PHINode>(Use); 1852 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1853 if (Def == Phi->getIncomingValue(i)) { 1854 LoadInst *Load = new LoadInst( 1855 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1856 Phi->setIncomingValue(i, Load); 1857 } 1858 } 1859 } else { 1860 LoadInst *Load = new LoadInst(Alloca, "", Use); 1861 Use->replaceUsesOfWith(Def, Load); 1862 } 1863 } 1864 1865 // Emit store for the initial gc value. Store must be inserted after load, 1866 // otherwise store will be in alloca's use list and an extra load will be 1867 // inserted before it. 1868 StoreInst *Store = new StoreInst(Def, Alloca); 1869 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1870 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1871 // InvokeInst is a TerminatorInst so the store need to be inserted 1872 // into its normal destination block. 1873 BasicBlock *NormalDest = Invoke->getNormalDest(); 1874 Store->insertBefore(NormalDest->getFirstNonPHI()); 1875 } else { 1876 assert(!Inst->isTerminator() && 1877 "The only TerminatorInst that can produce a value is " 1878 "InvokeInst which is handled above."); 1879 Store->insertAfter(Inst); 1880 } 1881 } else { 1882 assert(isa<Argument>(Def)); 1883 Store->insertAfter(cast<Instruction>(Alloca)); 1884 } 1885 } 1886 1887 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1888 "we must have the same allocas with lives"); 1889 if (!PromotableAllocas.empty()) { 1890 // Apply mem2reg to promote alloca to SSA 1891 PromoteMemToReg(PromotableAllocas, DT); 1892 } 1893 1894 #ifndef NDEBUG 1895 for (auto &I : F.getEntryBlock()) 1896 if (isa<AllocaInst>(I)) 1897 InitialAllocaNum--; 1898 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1899 #endif 1900 } 1901 1902 /// Implement a unique function which doesn't require we sort the input 1903 /// vector. Doing so has the effect of changing the output of a couple of 1904 /// tests in ways which make them less useful in testing fused safepoints. 1905 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1906 SmallSet<T, 8> Seen; 1907 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1908 return !Seen.insert(V).second; 1909 }), Vec.end()); 1910 } 1911 1912 /// Insert holders so that each Value is obviously live through the entire 1913 /// lifetime of the call. 1914 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1915 SmallVectorImpl<CallInst *> &Holders) { 1916 if (Values.empty()) 1917 // No values to hold live, might as well not insert the empty holder 1918 return; 1919 1920 Module *M = CS.getInstruction()->getModule(); 1921 // Use a dummy vararg function to actually hold the values live 1922 Function *Func = cast<Function>(M->getOrInsertFunction( 1923 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1924 if (CS.isCall()) { 1925 // For call safepoints insert dummy calls right after safepoint 1926 Holders.push_back(CallInst::Create(Func, Values, "", 1927 &*++CS.getInstruction()->getIterator())); 1928 return; 1929 } 1930 // For invoke safepooints insert dummy calls both in normal and 1931 // exceptional destination blocks 1932 auto *II = cast<InvokeInst>(CS.getInstruction()); 1933 Holders.push_back(CallInst::Create( 1934 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1935 Holders.push_back(CallInst::Create( 1936 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1937 } 1938 1939 static void findLiveReferences( 1940 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1941 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1942 GCPtrLivenessData OriginalLivenessData; 1943 computeLiveInValues(DT, F, OriginalLivenessData); 1944 for (size_t i = 0; i < records.size(); i++) { 1945 struct PartiallyConstructedSafepointRecord &info = records[i]; 1946 const CallSite &CS = toUpdate[i]; 1947 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1948 } 1949 } 1950 1951 /// Remove any vector of pointers from the live set by scalarizing them over the 1952 /// statepoint instruction. Adds the scalarized pieces to the live set. It 1953 /// would be preferable to include the vector in the statepoint itself, but 1954 /// the lowering code currently does not handle that. Extending it would be 1955 /// slightly non-trivial since it requires a format change. Given how rare 1956 /// such cases are (for the moment?) scalarizing is an acceptable compromise. 1957 static void splitVectorValues(Instruction *StatepointInst, 1958 StatepointLiveSetTy &LiveSet, 1959 DenseMap<Value *, Value *>& PointerToBase, 1960 DominatorTree &DT) { 1961 SmallVector<Value *, 16> ToSplit; 1962 for (Value *V : LiveSet) 1963 if (isa<VectorType>(V->getType())) 1964 ToSplit.push_back(V); 1965 1966 if (ToSplit.empty()) 1967 return; 1968 1969 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1970 1971 Function &F = *(StatepointInst->getParent()->getParent()); 1972 1973 DenseMap<Value *, AllocaInst *> AllocaMap; 1974 // First is normal return, second is exceptional return (invoke only) 1975 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1976 for (Value *V : ToSplit) { 1977 AllocaInst *Alloca = 1978 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1979 AllocaMap[V] = Alloca; 1980 1981 VectorType *VT = cast<VectorType>(V->getType()); 1982 IRBuilder<> Builder(StatepointInst); 1983 SmallVector<Value *, 16> Elements; 1984 for (unsigned i = 0; i < VT->getNumElements(); i++) 1985 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1986 ElementMapping[V] = Elements; 1987 1988 auto InsertVectorReform = [&](Instruction *IP) { 1989 Builder.SetInsertPoint(IP); 1990 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1991 Value *ResultVec = UndefValue::get(VT); 1992 for (unsigned i = 0; i < VT->getNumElements(); i++) 1993 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1994 Builder.getInt32(i)); 1995 return ResultVec; 1996 }; 1997 1998 if (isa<CallInst>(StatepointInst)) { 1999 BasicBlock::iterator Next(StatepointInst); 2000 Next++; 2001 Instruction *IP = &*(Next); 2002 Replacements[V].first = InsertVectorReform(IP); 2003 Replacements[V].second = nullptr; 2004 } else { 2005 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 2006 // We've already normalized - check that we don't have shared destination 2007 // blocks 2008 BasicBlock *NormalDest = Invoke->getNormalDest(); 2009 assert(!isa<PHINode>(NormalDest->begin())); 2010 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 2011 assert(!isa<PHINode>(UnwindDest->begin())); 2012 // Insert insert element sequences in both successors 2013 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 2014 Replacements[V].first = InsertVectorReform(IP); 2015 IP = &*(UnwindDest->getFirstInsertionPt()); 2016 Replacements[V].second = InsertVectorReform(IP); 2017 } 2018 } 2019 2020 for (Value *V : ToSplit) { 2021 AllocaInst *Alloca = AllocaMap[V]; 2022 2023 // Capture all users before we start mutating use lists 2024 SmallVector<Instruction *, 16> Users; 2025 for (User *U : V->users()) 2026 Users.push_back(cast<Instruction>(U)); 2027 2028 for (Instruction *I : Users) { 2029 if (auto Phi = dyn_cast<PHINode>(I)) { 2030 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 2031 if (V == Phi->getIncomingValue(i)) { 2032 LoadInst *Load = new LoadInst( 2033 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 2034 Phi->setIncomingValue(i, Load); 2035 } 2036 } else { 2037 LoadInst *Load = new LoadInst(Alloca, "", I); 2038 I->replaceUsesOfWith(V, Load); 2039 } 2040 } 2041 2042 // Store the original value and the replacement value into the alloca 2043 StoreInst *Store = new StoreInst(V, Alloca); 2044 if (auto I = dyn_cast<Instruction>(V)) 2045 Store->insertAfter(I); 2046 else 2047 Store->insertAfter(Alloca); 2048 2049 // Normal return for invoke, or call return 2050 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 2051 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 2052 // Unwind return for invoke only 2053 Replacement = cast_or_null<Instruction>(Replacements[V].second); 2054 if (Replacement) 2055 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 2056 } 2057 2058 // apply mem2reg to promote alloca to SSA 2059 SmallVector<AllocaInst *, 16> Allocas; 2060 for (Value *V : ToSplit) 2061 Allocas.push_back(AllocaMap[V]); 2062 PromoteMemToReg(Allocas, DT); 2063 2064 // Update our tracking of live pointers and base mappings to account for the 2065 // changes we just made. 2066 for (Value *V : ToSplit) { 2067 auto &Elements = ElementMapping[V]; 2068 2069 LiveSet.erase(V); 2070 LiveSet.insert(Elements.begin(), Elements.end()); 2071 // We need to update the base mapping as well. 2072 assert(PointerToBase.count(V)); 2073 Value *OldBase = PointerToBase[V]; 2074 auto &BaseElements = ElementMapping[OldBase]; 2075 PointerToBase.erase(V); 2076 assert(Elements.size() == BaseElements.size()); 2077 for (unsigned i = 0; i < Elements.size(); i++) { 2078 Value *Elem = Elements[i]; 2079 PointerToBase[Elem] = BaseElements[i]; 2080 } 2081 } 2082 } 2083 2084 // Helper function for the "rematerializeLiveValues". It walks use chain 2085 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 2086 // values are visited (currently it is GEP's and casts). Returns true if it 2087 // successfully reached "BaseValue" and false otherwise. 2088 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 2089 // recorded. 2090 static bool findRematerializableChainToBasePointer( 2091 SmallVectorImpl<Instruction*> &ChainToBase, 2092 Value *CurrentValue, Value *BaseValue) { 2093 2094 // We have found a base value 2095 if (CurrentValue == BaseValue) { 2096 return true; 2097 } 2098 2099 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2100 ChainToBase.push_back(GEP); 2101 return findRematerializableChainToBasePointer(ChainToBase, 2102 GEP->getPointerOperand(), 2103 BaseValue); 2104 } 2105 2106 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2107 Value *Def = CI->stripPointerCasts(); 2108 2109 // This two checks are basically similar. First one is here for the 2110 // consistency with findBasePointers logic. 2111 assert(!isa<CastInst>(Def) && "not a pointer cast found"); 2112 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2113 return false; 2114 2115 ChainToBase.push_back(CI); 2116 return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue); 2117 } 2118 2119 // Not supported instruction in the chain 2120 return false; 2121 } 2122 2123 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2124 // chain we are going to rematerialize. 2125 static unsigned 2126 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 2127 TargetTransformInfo &TTI) { 2128 unsigned Cost = 0; 2129 2130 for (Instruction *Instr : Chain) { 2131 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2132 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2133 "non noop cast is found during rematerialization"); 2134 2135 Type *SrcTy = CI->getOperand(0)->getType(); 2136 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 2137 2138 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2139 // Cost of the address calculation 2140 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); 2141 Cost += TTI.getAddressComputationCost(ValTy); 2142 2143 // And cost of the GEP itself 2144 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2145 // allowed for the external usage) 2146 if (!GEP->hasAllConstantIndices()) 2147 Cost += 2; 2148 2149 } else { 2150 llvm_unreachable("unsupported instruciton type during rematerialization"); 2151 } 2152 } 2153 2154 return Cost; 2155 } 2156 2157 // From the statepoint live set pick values that are cheaper to recompute then 2158 // to relocate. Remove this values from the live set, rematerialize them after 2159 // statepoint and record them in "Info" structure. Note that similar to 2160 // relocated values we don't do any user adjustments here. 2161 static void rematerializeLiveValues(CallSite CS, 2162 PartiallyConstructedSafepointRecord &Info, 2163 TargetTransformInfo &TTI) { 2164 const unsigned int ChainLengthThreshold = 10; 2165 2166 // Record values we are going to delete from this statepoint live set. 2167 // We can not di this in following loop due to iterator invalidation. 2168 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2169 2170 for (Value *LiveValue: Info.LiveSet) { 2171 // For each live pointer find it's defining chain 2172 SmallVector<Instruction *, 3> ChainToBase; 2173 assert(Info.PointerToBase.count(LiveValue)); 2174 bool FoundChain = 2175 findRematerializableChainToBasePointer(ChainToBase, 2176 LiveValue, 2177 Info.PointerToBase[LiveValue]); 2178 // Nothing to do, or chain is too long 2179 if (!FoundChain || 2180 ChainToBase.size() == 0 || 2181 ChainToBase.size() > ChainLengthThreshold) 2182 continue; 2183 2184 // Compute cost of this chain 2185 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2186 // TODO: We can also account for cases when we will be able to remove some 2187 // of the rematerialized values by later optimization passes. I.e if 2188 // we rematerialized several intersecting chains. Or if original values 2189 // don't have any uses besides this statepoint. 2190 2191 // For invokes we need to rematerialize each chain twice - for normal and 2192 // for unwind basic blocks. Model this by multiplying cost by two. 2193 if (CS.isInvoke()) { 2194 Cost *= 2; 2195 } 2196 // If it's too expensive - skip it 2197 if (Cost >= RematerializationThreshold) 2198 continue; 2199 2200 // Remove value from the live set 2201 LiveValuesToBeDeleted.push_back(LiveValue); 2202 2203 // Clone instructions and record them inside "Info" structure 2204 2205 // Walk backwards to visit top-most instructions first 2206 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2207 2208 // Utility function which clones all instructions from "ChainToBase" 2209 // and inserts them before "InsertBefore". Returns rematerialized value 2210 // which should be used after statepoint. 2211 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 2212 Instruction *LastClonedValue = nullptr; 2213 Instruction *LastValue = nullptr; 2214 for (Instruction *Instr: ChainToBase) { 2215 // Only GEP's and casts are suported as we need to be careful to not 2216 // introduce any new uses of pointers not in the liveset. 2217 // Note that it's fine to introduce new uses of pointers which were 2218 // otherwise not used after this statepoint. 2219 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2220 2221 Instruction *ClonedValue = Instr->clone(); 2222 ClonedValue->insertBefore(InsertBefore); 2223 ClonedValue->setName(Instr->getName() + ".remat"); 2224 2225 // If it is not first instruction in the chain then it uses previously 2226 // cloned value. We should update it to use cloned value. 2227 if (LastClonedValue) { 2228 assert(LastValue); 2229 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2230 #ifndef NDEBUG 2231 // Assert that cloned instruction does not use any instructions from 2232 // this chain other than LastClonedValue 2233 for (auto OpValue : ClonedValue->operand_values()) { 2234 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2235 ChainToBase.end() && 2236 "incorrect use in rematerialization chain"); 2237 } 2238 #endif 2239 } 2240 2241 LastClonedValue = ClonedValue; 2242 LastValue = Instr; 2243 } 2244 assert(LastClonedValue); 2245 return LastClonedValue; 2246 }; 2247 2248 // Different cases for calls and invokes. For invokes we need to clone 2249 // instructions both on normal and unwind path. 2250 if (CS.isCall()) { 2251 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2252 assert(InsertBefore); 2253 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2254 Info.RematerializedValues[RematerializedValue] = LiveValue; 2255 } else { 2256 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2257 2258 Instruction *NormalInsertBefore = 2259 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2260 Instruction *UnwindInsertBefore = 2261 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2262 2263 Instruction *NormalRematerializedValue = 2264 rematerializeChain(NormalInsertBefore); 2265 Instruction *UnwindRematerializedValue = 2266 rematerializeChain(UnwindInsertBefore); 2267 2268 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2269 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2270 } 2271 } 2272 2273 // Remove rematerializaed values from the live set 2274 for (auto LiveValue: LiveValuesToBeDeleted) { 2275 Info.LiveSet.erase(LiveValue); 2276 } 2277 } 2278 2279 static bool insertParsePoints(Function &F, DominatorTree &DT, 2280 TargetTransformInfo &TTI, 2281 SmallVectorImpl<CallSite> &ToUpdate) { 2282 #ifndef NDEBUG 2283 // sanity check the input 2284 std::set<CallSite> Uniqued; 2285 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2286 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2287 2288 for (CallSite CS : ToUpdate) { 2289 assert(CS.getInstruction()->getParent()->getParent() == &F); 2290 assert((UseDeoptBundles || isStatepoint(CS)) && 2291 "expected to already be a deopt statepoint"); 2292 } 2293 #endif 2294 2295 // When inserting gc.relocates for invokes, we need to be able to insert at 2296 // the top of the successor blocks. See the comment on 2297 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2298 // may restructure the CFG. 2299 for (CallSite CS : ToUpdate) { 2300 if (!CS.isInvoke()) 2301 continue; 2302 auto *II = cast<InvokeInst>(CS.getInstruction()); 2303 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2304 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2305 } 2306 2307 // A list of dummy calls added to the IR to keep various values obviously 2308 // live in the IR. We'll remove all of these when done. 2309 SmallVector<CallInst *, 64> Holders; 2310 2311 // Insert a dummy call with all of the arguments to the vm_state we'll need 2312 // for the actual safepoint insertion. This ensures reference arguments in 2313 // the deopt argument list are considered live through the safepoint (and 2314 // thus makes sure they get relocated.) 2315 for (CallSite CS : ToUpdate) { 2316 SmallVector<Value *, 64> DeoptValues; 2317 2318 iterator_range<const Use *> DeoptStateRange = 2319 UseDeoptBundles 2320 ? iterator_range<const Use *>(GetDeoptBundleOperands(CS)) 2321 : iterator_range<const Use *>(Statepoint(CS).vm_state_args()); 2322 2323 for (Value *Arg : DeoptStateRange) { 2324 assert(!isUnhandledGCPointerType(Arg->getType()) && 2325 "support for FCA unimplemented"); 2326 if (isHandledGCPointerType(Arg->getType())) 2327 DeoptValues.push_back(Arg); 2328 } 2329 2330 insertUseHolderAfter(CS, DeoptValues, Holders); 2331 } 2332 2333 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2334 2335 // A) Identify all gc pointers which are statically live at the given call 2336 // site. 2337 findLiveReferences(F, DT, ToUpdate, Records); 2338 2339 // B) Find the base pointers for each live pointer 2340 /* scope for caching */ { 2341 // Cache the 'defining value' relation used in the computation and 2342 // insertion of base phis and selects. This ensures that we don't insert 2343 // large numbers of duplicate base_phis. 2344 DefiningValueMapTy DVCache; 2345 2346 for (size_t i = 0; i < Records.size(); i++) { 2347 PartiallyConstructedSafepointRecord &info = Records[i]; 2348 findBasePointers(DT, DVCache, ToUpdate[i], info); 2349 } 2350 } // end of cache scope 2351 2352 // The base phi insertion logic (for any safepoint) may have inserted new 2353 // instructions which are now live at some safepoint. The simplest such 2354 // example is: 2355 // loop: 2356 // phi a <-- will be a new base_phi here 2357 // safepoint 1 <-- that needs to be live here 2358 // gep a + 1 2359 // safepoint 2 2360 // br loop 2361 // We insert some dummy calls after each safepoint to definitely hold live 2362 // the base pointers which were identified for that safepoint. We'll then 2363 // ask liveness for _every_ base inserted to see what is now live. Then we 2364 // remove the dummy calls. 2365 Holders.reserve(Holders.size() + Records.size()); 2366 for (size_t i = 0; i < Records.size(); i++) { 2367 PartiallyConstructedSafepointRecord &Info = Records[i]; 2368 2369 SmallVector<Value *, 128> Bases; 2370 for (auto Pair : Info.PointerToBase) 2371 Bases.push_back(Pair.second); 2372 2373 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2374 } 2375 2376 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2377 // need to rerun liveness. We may *also* have inserted new defs, but that's 2378 // not the key issue. 2379 recomputeLiveInValues(F, DT, ToUpdate, Records); 2380 2381 if (PrintBasePointers) { 2382 for (auto &Info : Records) { 2383 errs() << "Base Pairs: (w/Relocation)\n"; 2384 for (auto Pair : Info.PointerToBase) { 2385 errs() << " derived "; 2386 Pair.first->printAsOperand(errs(), false); 2387 errs() << " base "; 2388 Pair.second->printAsOperand(errs(), false); 2389 errs() << "\n"; 2390 } 2391 } 2392 } 2393 2394 // It is possible that non-constant live variables have a constant base. For 2395 // example, a GEP with a variable offset from a global. In this case we can 2396 // remove it from the liveset. We already don't add constants to the liveset 2397 // because we assume they won't move at runtime and the GC doesn't need to be 2398 // informed about them. The same reasoning applies if the base is constant. 2399 // Note that the relocation placement code relies on this filtering for 2400 // correctness as it expects the base to be in the liveset, which isn't true 2401 // if the base is constant. 2402 for (auto &Info : Records) 2403 for (auto &BasePair : Info.PointerToBase) 2404 if (isa<Constant>(BasePair.second)) 2405 Info.LiveSet.erase(BasePair.first); 2406 2407 for (CallInst *CI : Holders) 2408 CI->eraseFromParent(); 2409 2410 Holders.clear(); 2411 2412 // Do a limited scalarization of any live at safepoint vector values which 2413 // contain pointers. This enables this pass to run after vectorization at 2414 // the cost of some possible performance loss. TODO: it would be nice to 2415 // natively support vectors all the way through the backend so we don't need 2416 // to scalarize here. 2417 for (size_t i = 0; i < Records.size(); i++) { 2418 PartiallyConstructedSafepointRecord &Info = Records[i]; 2419 Instruction *Statepoint = ToUpdate[i].getInstruction(); 2420 splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet, 2421 Info.PointerToBase, DT); 2422 } 2423 2424 // In order to reduce live set of statepoint we might choose to rematerialize 2425 // some values instead of relocating them. This is purely an optimization and 2426 // does not influence correctness. 2427 for (size_t i = 0; i < Records.size(); i++) 2428 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2429 2430 // We need this to safely RAUW and delete call or invoke return values that 2431 // may themselves be live over a statepoint. For details, please see usage in 2432 // makeStatepointExplicitImpl. 2433 std::vector<DeferredReplacement> Replacements; 2434 2435 // Now run through and replace the existing statepoints with new ones with 2436 // the live variables listed. We do not yet update uses of the values being 2437 // relocated. We have references to live variables that need to 2438 // survive to the last iteration of this loop. (By construction, the 2439 // previous statepoint can not be a live variable, thus we can and remove 2440 // the old statepoint calls as we go.) 2441 for (size_t i = 0; i < Records.size(); i++) 2442 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2443 2444 ToUpdate.clear(); // prevent accident use of invalid CallSites 2445 2446 for (auto &PR : Replacements) 2447 PR.doReplacement(); 2448 2449 Replacements.clear(); 2450 2451 for (auto &Info : Records) { 2452 // These live sets may contain state Value pointers, since we replaced calls 2453 // with operand bundles with calls wrapped in gc.statepoint, and some of 2454 // those calls may have been def'ing live gc pointers. Clear these out to 2455 // avoid accidentally using them. 2456 // 2457 // TODO: We should create a separate data structure that does not contain 2458 // these live sets, and migrate to using that data structure from this point 2459 // onward. 2460 Info.LiveSet.clear(); 2461 Info.PointerToBase.clear(); 2462 } 2463 2464 // Do all the fixups of the original live variables to their relocated selves 2465 SmallVector<Value *, 128> Live; 2466 for (size_t i = 0; i < Records.size(); i++) { 2467 PartiallyConstructedSafepointRecord &Info = Records[i]; 2468 2469 // We can't simply save the live set from the original insertion. One of 2470 // the live values might be the result of a call which needs a safepoint. 2471 // That Value* no longer exists and we need to use the new gc_result. 2472 // Thankfully, the live set is embedded in the statepoint (and updated), so 2473 // we just grab that. 2474 Statepoint Statepoint(Info.StatepointToken); 2475 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2476 Statepoint.gc_args_end()); 2477 #ifndef NDEBUG 2478 // Do some basic sanity checks on our liveness results before performing 2479 // relocation. Relocation can and will turn mistakes in liveness results 2480 // into non-sensical code which is must harder to debug. 2481 // TODO: It would be nice to test consistency as well 2482 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2483 "statepoint must be reachable or liveness is meaningless"); 2484 for (Value *V : Statepoint.gc_args()) { 2485 if (!isa<Instruction>(V)) 2486 // Non-instruction values trivial dominate all possible uses 2487 continue; 2488 auto *LiveInst = cast<Instruction>(V); 2489 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2490 "unreachable values should never be live"); 2491 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2492 "basic SSA liveness expectation violated by liveness analysis"); 2493 } 2494 #endif 2495 } 2496 unique_unsorted(Live); 2497 2498 #ifndef NDEBUG 2499 // sanity check 2500 for (auto *Ptr : Live) 2501 assert(isGCPointerType(Ptr->getType()) && "must be a gc pointer type"); 2502 #endif 2503 2504 relocationViaAlloca(F, DT, Live, Records); 2505 return !Records.empty(); 2506 } 2507 2508 // Handles both return values and arguments for Functions and CallSites. 2509 template <typename AttrHolder> 2510 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2511 unsigned Index) { 2512 AttrBuilder R; 2513 if (AH.getDereferenceableBytes(Index)) 2514 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2515 AH.getDereferenceableBytes(Index))); 2516 if (AH.getDereferenceableOrNullBytes(Index)) 2517 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2518 AH.getDereferenceableOrNullBytes(Index))); 2519 if (AH.doesNotAlias(Index)) 2520 R.addAttribute(Attribute::NoAlias); 2521 2522 if (!R.empty()) 2523 AH.setAttributes(AH.getAttributes().removeAttributes( 2524 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2525 } 2526 2527 void 2528 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2529 LLVMContext &Ctx = F.getContext(); 2530 2531 for (Argument &A : F.args()) 2532 if (isa<PointerType>(A.getType())) 2533 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2534 2535 if (isa<PointerType>(F.getReturnType())) 2536 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2537 } 2538 2539 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2540 if (F.empty()) 2541 return; 2542 2543 LLVMContext &Ctx = F.getContext(); 2544 MDBuilder Builder(Ctx); 2545 2546 for (Instruction &I : instructions(F)) { 2547 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2548 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2549 bool IsImmutableTBAA = 2550 MD->getNumOperands() == 4 && 2551 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2552 2553 if (!IsImmutableTBAA) 2554 continue; // no work to do, MD_tbaa is already marked mutable 2555 2556 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2557 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2558 uint64_t Offset = 2559 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2560 2561 MDNode *MutableTBAA = 2562 Builder.createTBAAStructTagNode(Base, Access, Offset); 2563 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2564 } 2565 2566 if (CallSite CS = CallSite(&I)) { 2567 for (int i = 0, e = CS.arg_size(); i != e; i++) 2568 if (isa<PointerType>(CS.getArgument(i)->getType())) 2569 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); 2570 if (isa<PointerType>(CS.getType())) 2571 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2572 } 2573 } 2574 } 2575 2576 /// Returns true if this function should be rewritten by this pass. The main 2577 /// point of this function is as an extension point for custom logic. 2578 static bool shouldRewriteStatepointsIn(Function &F) { 2579 // TODO: This should check the GCStrategy 2580 if (F.hasGC()) { 2581 const char *FunctionGCName = F.getGC(); 2582 const StringRef StatepointExampleName("statepoint-example"); 2583 const StringRef CoreCLRName("coreclr"); 2584 return (StatepointExampleName == FunctionGCName) || 2585 (CoreCLRName == FunctionGCName); 2586 } else 2587 return false; 2588 } 2589 2590 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2591 #ifndef NDEBUG 2592 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2593 "precondition!"); 2594 #endif 2595 2596 for (Function &F : M) 2597 stripNonValidAttributesFromPrototype(F); 2598 2599 for (Function &F : M) 2600 stripNonValidAttributesFromBody(F); 2601 } 2602 2603 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2604 // Nothing to do for declarations. 2605 if (F.isDeclaration() || F.empty()) 2606 return false; 2607 2608 // Policy choice says not to rewrite - the most common reason is that we're 2609 // compiling code without a GCStrategy. 2610 if (!shouldRewriteStatepointsIn(F)) 2611 return false; 2612 2613 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2614 TargetTransformInfo &TTI = 2615 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2616 2617 auto NeedsRewrite = [](Instruction &I) { 2618 if (UseDeoptBundles) { 2619 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2620 return !callsGCLeafFunction(CS); 2621 return false; 2622 } 2623 2624 return isStatepoint(I); 2625 }; 2626 2627 // Gather all the statepoints which need rewritten. Be careful to only 2628 // consider those in reachable code since we need to ask dominance queries 2629 // when rewriting. We'll delete the unreachable ones in a moment. 2630 SmallVector<CallSite, 64> ParsePointNeeded; 2631 bool HasUnreachableStatepoint = false; 2632 for (Instruction &I : instructions(F)) { 2633 // TODO: only the ones with the flag set! 2634 if (NeedsRewrite(I)) { 2635 if (DT.isReachableFromEntry(I.getParent())) 2636 ParsePointNeeded.push_back(CallSite(&I)); 2637 else 2638 HasUnreachableStatepoint = true; 2639 } 2640 } 2641 2642 bool MadeChange = false; 2643 2644 // Delete any unreachable statepoints so that we don't have unrewritten 2645 // statepoints surviving this pass. This makes testing easier and the 2646 // resulting IR less confusing to human readers. Rather than be fancy, we 2647 // just reuse a utility function which removes the unreachable blocks. 2648 if (HasUnreachableStatepoint) 2649 MadeChange |= removeUnreachableBlocks(F); 2650 2651 // Return early if no work to do. 2652 if (ParsePointNeeded.empty()) 2653 return MadeChange; 2654 2655 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2656 // These are created by LCSSA. They have the effect of increasing the size 2657 // of liveness sets for no good reason. It may be harder to do this post 2658 // insertion since relocations and base phis can confuse things. 2659 for (BasicBlock &BB : F) 2660 if (BB.getUniquePredecessor()) { 2661 MadeChange = true; 2662 FoldSingleEntryPHINodes(&BB); 2663 } 2664 2665 // Before we start introducing relocations, we want to tweak the IR a bit to 2666 // avoid unfortunate code generation effects. The main example is that we 2667 // want to try to make sure the comparison feeding a branch is after any 2668 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2669 // values feeding a branch after relocation. This is semantically correct, 2670 // but results in extra register pressure since both the pre-relocation and 2671 // post-relocation copies must be available in registers. For code without 2672 // relocations this is handled elsewhere, but teaching the scheduler to 2673 // reverse the transform we're about to do would be slightly complex. 2674 // Note: This may extend the live range of the inputs to the icmp and thus 2675 // increase the liveset of any statepoint we move over. This is profitable 2676 // as long as all statepoints are in rare blocks. If we had in-register 2677 // lowering for live values this would be a much safer transform. 2678 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2679 if (auto *BI = dyn_cast<BranchInst>(TI)) 2680 if (BI->isConditional()) 2681 return dyn_cast<Instruction>(BI->getCondition()); 2682 // TODO: Extend this to handle switches 2683 return nullptr; 2684 }; 2685 for (BasicBlock &BB : F) { 2686 TerminatorInst *TI = BB.getTerminator(); 2687 if (auto *Cond = getConditionInst(TI)) 2688 // TODO: Handle more than just ICmps here. We should be able to move 2689 // most instructions without side effects or memory access. 2690 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2691 MadeChange = true; 2692 Cond->moveBefore(TI); 2693 } 2694 } 2695 2696 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2697 return MadeChange; 2698 } 2699 2700 // liveness computation via standard dataflow 2701 // ------------------------------------------------------------------- 2702 2703 // TODO: Consider using bitvectors for liveness, the set of potentially 2704 // interesting values should be small and easy to pre-compute. 2705 2706 /// Compute the live-in set for the location rbegin starting from 2707 /// the live-out set of the basic block 2708 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2709 BasicBlock::reverse_iterator rend, 2710 DenseSet<Value *> &LiveTmp) { 2711 2712 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2713 Instruction *I = &*ritr; 2714 2715 // KILL/Def - Remove this definition from LiveIn 2716 LiveTmp.erase(I); 2717 2718 // Don't consider *uses* in PHI nodes, we handle their contribution to 2719 // predecessor blocks when we seed the LiveOut sets 2720 if (isa<PHINode>(I)) 2721 continue; 2722 2723 // USE - Add to the LiveIn set for this instruction 2724 for (Value *V : I->operands()) { 2725 assert(!isUnhandledGCPointerType(V->getType()) && 2726 "support for FCA unimplemented"); 2727 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2728 // The choice to exclude all things constant here is slightly subtle. 2729 // There are two independent reasons: 2730 // - We assume that things which are constant (from LLVM's definition) 2731 // do not move at runtime. For example, the address of a global 2732 // variable is fixed, even though it's contents may not be. 2733 // - Second, we can't disallow arbitrary inttoptr constants even 2734 // if the language frontend does. Optimization passes are free to 2735 // locally exploit facts without respect to global reachability. This 2736 // can create sections of code which are dynamically unreachable and 2737 // contain just about anything. (see constants.ll in tests) 2738 LiveTmp.insert(V); 2739 } 2740 } 2741 } 2742 } 2743 2744 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2745 2746 for (BasicBlock *Succ : successors(BB)) { 2747 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2748 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2749 PHINode *Phi = cast<PHINode>(&*I); 2750 Value *V = Phi->getIncomingValueForBlock(BB); 2751 assert(!isUnhandledGCPointerType(V->getType()) && 2752 "support for FCA unimplemented"); 2753 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2754 LiveTmp.insert(V); 2755 } 2756 } 2757 } 2758 } 2759 2760 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2761 DenseSet<Value *> KillSet; 2762 for (Instruction &I : *BB) 2763 if (isHandledGCPointerType(I.getType())) 2764 KillSet.insert(&I); 2765 return KillSet; 2766 } 2767 2768 #ifndef NDEBUG 2769 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2770 /// sanity check for the liveness computation. 2771 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2772 TerminatorInst *TI, bool TermOkay = false) { 2773 for (Value *V : Live) { 2774 if (auto *I = dyn_cast<Instruction>(V)) { 2775 // The terminator can be a member of the LiveOut set. LLVM's definition 2776 // of instruction dominance states that V does not dominate itself. As 2777 // such, we need to special case this to allow it. 2778 if (TermOkay && TI == I) 2779 continue; 2780 assert(DT.dominates(I, TI) && 2781 "basic SSA liveness expectation violated by liveness analysis"); 2782 } 2783 } 2784 } 2785 2786 /// Check that all the liveness sets used during the computation of liveness 2787 /// obey basic SSA properties. This is useful for finding cases where we miss 2788 /// a def. 2789 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2790 BasicBlock &BB) { 2791 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2792 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2793 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2794 } 2795 #endif 2796 2797 static void computeLiveInValues(DominatorTree &DT, Function &F, 2798 GCPtrLivenessData &Data) { 2799 2800 SmallSetVector<BasicBlock *, 200> Worklist; 2801 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2802 // We use a SetVector so that we don't have duplicates in the worklist. 2803 Worklist.insert(pred_begin(BB), pred_end(BB)); 2804 }; 2805 auto NextItem = [&]() { 2806 BasicBlock *BB = Worklist.back(); 2807 Worklist.pop_back(); 2808 return BB; 2809 }; 2810 2811 // Seed the liveness for each individual block 2812 for (BasicBlock &BB : F) { 2813 Data.KillSet[&BB] = computeKillSet(&BB); 2814 Data.LiveSet[&BB].clear(); 2815 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2816 2817 #ifndef NDEBUG 2818 for (Value *Kill : Data.KillSet[&BB]) 2819 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2820 #endif 2821 2822 Data.LiveOut[&BB] = DenseSet<Value *>(); 2823 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2824 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2825 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2826 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2827 if (!Data.LiveIn[&BB].empty()) 2828 AddPredsToWorklist(&BB); 2829 } 2830 2831 // Propagate that liveness until stable 2832 while (!Worklist.empty()) { 2833 BasicBlock *BB = NextItem(); 2834 2835 // Compute our new liveout set, then exit early if it hasn't changed 2836 // despite the contribution of our successor. 2837 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2838 const auto OldLiveOutSize = LiveOut.size(); 2839 for (BasicBlock *Succ : successors(BB)) { 2840 assert(Data.LiveIn.count(Succ)); 2841 set_union(LiveOut, Data.LiveIn[Succ]); 2842 } 2843 // assert OutLiveOut is a subset of LiveOut 2844 if (OldLiveOutSize == LiveOut.size()) { 2845 // If the sets are the same size, then we didn't actually add anything 2846 // when unioning our successors LiveIn Thus, the LiveIn of this block 2847 // hasn't changed. 2848 continue; 2849 } 2850 Data.LiveOut[BB] = LiveOut; 2851 2852 // Apply the effects of this basic block 2853 DenseSet<Value *> LiveTmp = LiveOut; 2854 set_union(LiveTmp, Data.LiveSet[BB]); 2855 set_subtract(LiveTmp, Data.KillSet[BB]); 2856 2857 assert(Data.LiveIn.count(BB)); 2858 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2859 // assert: OldLiveIn is a subset of LiveTmp 2860 if (OldLiveIn.size() != LiveTmp.size()) { 2861 Data.LiveIn[BB] = LiveTmp; 2862 AddPredsToWorklist(BB); 2863 } 2864 } // while( !worklist.empty() ) 2865 2866 #ifndef NDEBUG 2867 // Sanity check our output against SSA properties. This helps catch any 2868 // missing kills during the above iteration. 2869 for (BasicBlock &BB : F) { 2870 checkBasicSSA(DT, Data, BB); 2871 } 2872 #endif 2873 } 2874 2875 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2876 StatepointLiveSetTy &Out) { 2877 2878 BasicBlock *BB = Inst->getParent(); 2879 2880 // Note: The copy is intentional and required 2881 assert(Data.LiveOut.count(BB)); 2882 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2883 2884 // We want to handle the statepoint itself oddly. It's 2885 // call result is not live (normal), nor are it's arguments 2886 // (unless they're used again later). This adjustment is 2887 // specifically what we need to relocate 2888 BasicBlock::reverse_iterator rend(Inst->getIterator()); 2889 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2890 LiveOut.erase(Inst); 2891 Out.insert(LiveOut.begin(), LiveOut.end()); 2892 } 2893 2894 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2895 const CallSite &CS, 2896 PartiallyConstructedSafepointRecord &Info) { 2897 Instruction *Inst = CS.getInstruction(); 2898 StatepointLiveSetTy Updated; 2899 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2900 2901 #ifndef NDEBUG 2902 DenseSet<Value *> Bases; 2903 for (auto KVPair : Info.PointerToBase) { 2904 Bases.insert(KVPair.second); 2905 } 2906 #endif 2907 // We may have base pointers which are now live that weren't before. We need 2908 // to update the PointerToBase structure to reflect this. 2909 for (auto V : Updated) 2910 if (!Info.PointerToBase.count(V)) { 2911 assert(Bases.count(V) && "can't find base for unexpected live value"); 2912 Info.PointerToBase[V] = V; 2913 continue; 2914 } 2915 2916 #ifndef NDEBUG 2917 for (auto V : Updated) { 2918 assert(Info.PointerToBase.count(V) && 2919 "must be able to find base for live value"); 2920 } 2921 #endif 2922 2923 // Remove any stale base mappings - this can happen since our liveness is 2924 // more precise then the one inherent in the base pointer analysis 2925 DenseSet<Value *> ToErase; 2926 for (auto KVPair : Info.PointerToBase) 2927 if (!Updated.count(KVPair.first)) 2928 ToErase.insert(KVPair.first); 2929 for (auto V : ToErase) 2930 Info.PointerToBase.erase(V); 2931 2932 #ifndef NDEBUG 2933 for (auto KVPair : Info.PointerToBase) 2934 assert(Updated.count(KVPair.first) && "record for non-live value"); 2935 #endif 2936 2937 Info.LiveSet = Updated; 2938 } 2939