1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Statepoint.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 41 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 42 43 using namespace llvm; 44 45 // Print tracing output 46 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 47 cl::init(false)); 48 49 // Print the liveset found at the insert location 50 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 51 cl::init(false)); 52 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", 53 cl::Hidden, cl::init(false)); 54 // Print out the base pointers for debugging 55 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", 56 cl::Hidden, cl::init(false)); 57 58 namespace { 59 struct RewriteStatepointsForGC : public FunctionPass { 60 static char ID; // Pass identification, replacement for typeid 61 62 RewriteStatepointsForGC() : FunctionPass(ID) { 63 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 64 } 65 bool runOnFunction(Function &F) override; 66 67 void getAnalysisUsage(AnalysisUsage &AU) const override { 68 // We add and rewrite a bunch of instructions, but don't really do much 69 // else. We could in theory preserve a lot more analyses here. 70 AU.addRequired<DominatorTreeWrapperPass>(); 71 } 72 }; 73 } // namespace 74 75 char RewriteStatepointsForGC::ID = 0; 76 77 FunctionPass *llvm::createRewriteStatepointsForGCPass() { 78 return new RewriteStatepointsForGC(); 79 } 80 81 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 82 "Make relocations explicit at statepoints", false, false) 83 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 84 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 85 "Make relocations explicit at statepoints", false, false) 86 87 namespace { 88 // The type of the internal cache used inside the findBasePointers family 89 // of functions. From the callers perspective, this is an opaque type and 90 // should not be inspected. 91 // 92 // In the actual implementation this caches two relations: 93 // - The base relation itself (i.e. this pointer is based on that one) 94 // - The base defining value relation (i.e. before base_phi insertion) 95 // Generally, after the execution of a full findBasePointer call, only the 96 // base relation will remain. Internally, we add a mixture of the two 97 // types, then update all the second type to the first type 98 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 99 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 100 101 struct PartiallyConstructedSafepointRecord { 102 /// The set of values known to be live accross this safepoint 103 StatepointLiveSetTy liveset; 104 105 /// Mapping from live pointers to a base-defining-value 106 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 107 108 /// Any new values which were added to the IR during base pointer analysis 109 /// for this safepoint 110 DenseSet<llvm::Value *> NewInsertedDefs; 111 112 /// The *new* gc.statepoint instruction itself. This produces the token 113 /// that normal path gc.relocates and the gc.result are tied to. 114 Instruction *StatepointToken; 115 116 /// Instruction to which exceptional gc relocates are attached 117 /// Makes it easier to iterate through them during relocationViaAlloca. 118 Instruction *UnwindToken; 119 }; 120 } 121 122 // TODO: Once we can get to the GCStrategy, this becomes 123 // Optional<bool> isGCManagedPointer(const Value *V) const override { 124 125 static bool isGCPointerType(const Type *T) { 126 if (const PointerType *PT = dyn_cast<PointerType>(T)) 127 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 128 // GC managed heap. We know that a pointer into this heap needs to be 129 // updated and that no other pointer does. 130 return (1 == PT->getAddressSpace()); 131 return false; 132 } 133 134 /// Return true if the Value is a gc reference type which is potentially used 135 /// after the instruction 'loc'. This is only used with the edge reachability 136 /// liveness code. Note: It is assumed the V dominates loc. 137 static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT, 138 LoopInfo *LI) { 139 if (!isGCPointerType(V.getType())) 140 return false; 141 142 if (V.use_empty()) 143 return false; 144 145 // Given assumption that V dominates loc, this may be live 146 return true; 147 } 148 149 #ifndef NDEBUG 150 static bool isAggWhichContainsGCPtrType(Type *Ty) { 151 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 152 return isGCPointerType(VT->getScalarType()); 153 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 154 return isGCPointerType(AT->getElementType()) || 155 isAggWhichContainsGCPtrType(AT->getElementType()); 156 if (StructType *ST = dyn_cast<StructType>(Ty)) 157 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 158 [](Type *SubType) { 159 return isGCPointerType(SubType) || 160 isAggWhichContainsGCPtrType(SubType); 161 }); 162 return false; 163 } 164 #endif 165 166 // Conservatively identifies any definitions which might be live at the 167 // given instruction. The analysis is performed immediately before the 168 // given instruction. Values defined by that instruction are not considered 169 // live. Values used by that instruction are considered live. 170 // 171 // preconditions: valid IR graph, term is either a terminator instruction or 172 // a call instruction, pred is the basic block of term, DT, LI are valid 173 // 174 // side effects: none, does not mutate IR 175 // 176 // postconditions: populates liveValues as discussed above 177 static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred, 178 DominatorTree &DT, LoopInfo *LI, 179 StatepointLiveSetTy &liveValues) { 180 liveValues.clear(); 181 182 assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator()); 183 184 Function *F = pred->getParent(); 185 186 auto is_live_gc_reference = 187 [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); }; 188 189 // Are there any gc pointer arguments live over this point? This needs to be 190 // special cased since arguments aren't defined in basic blocks. 191 for (Argument &arg : F->args()) { 192 assert(!isAggWhichContainsGCPtrType(arg.getType()) && 193 "support for FCA unimplemented"); 194 195 if (is_live_gc_reference(arg)) { 196 liveValues.insert(&arg); 197 } 198 } 199 200 // Walk through all dominating blocks - the ones which can contain 201 // definitions used in this block - and check to see if any of the values 202 // they define are used in locations potentially reachable from the 203 // interesting instruction. 204 BasicBlock *BBI = pred; 205 while (true) { 206 if (TraceLSP) { 207 errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n"; 208 } 209 assert(DT.dominates(BBI, pred)); 210 assert(isPotentiallyReachable(BBI, pred, &DT) && 211 "dominated block must be reachable"); 212 213 // Walk through the instructions in dominating blocks and keep any 214 // that have a use potentially reachable from the block we're 215 // considering putting the safepoint in 216 for (Instruction &inst : *BBI) { 217 if (TraceLSP) { 218 errs() << "[LSP] Looking at instruction "; 219 inst.dump(); 220 } 221 222 if (pred == BBI && (&inst) == term) { 223 if (TraceLSP) { 224 errs() << "[LSP] stopped because we encountered the safepoint " 225 "instruction.\n"; 226 } 227 228 // If we're in the block which defines the interesting instruction, 229 // we don't want to include any values as live which are defined 230 // _after_ the interesting line or as part of the line itself 231 // i.e. "term" is the call instruction for a call safepoint, the 232 // results of the call should not be considered live in that stackmap 233 break; 234 } 235 236 assert(!isAggWhichContainsGCPtrType(inst.getType()) && 237 "support for FCA unimplemented"); 238 239 if (is_live_gc_reference(inst)) { 240 if (TraceLSP) { 241 errs() << "[LSP] found live value for this safepoint "; 242 inst.dump(); 243 term->dump(); 244 } 245 liveValues.insert(&inst); 246 } 247 } 248 if (!DT.getNode(BBI)->getIDom()) { 249 assert(BBI == &F->getEntryBlock() && 250 "failed to find a dominator for something other than " 251 "the entry block"); 252 break; 253 } 254 BBI = DT.getNode(BBI)->getIDom()->getBlock(); 255 } 256 } 257 258 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 259 if (a->hasName() && b->hasName()) { 260 return -1 == a->getName().compare(b->getName()); 261 } else if (a->hasName() && !b->hasName()) { 262 return true; 263 } else if (!a->hasName() && b->hasName()) { 264 return false; 265 } else { 266 // Better than nothing, but not stable 267 return a < b; 268 } 269 } 270 271 /// Find the initial live set. Note that due to base pointer 272 /// insertion, the live set may be incomplete. 273 static void 274 analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS, 275 PartiallyConstructedSafepointRecord &result) { 276 Instruction *inst = CS.getInstruction(); 277 278 BasicBlock *BB = inst->getParent(); 279 StatepointLiveSetTy liveset; 280 findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset); 281 282 if (PrintLiveSet) { 283 // Note: This output is used by several of the test cases 284 // The order of elemtns in a set is not stable, put them in a vec and sort 285 // by name 286 SmallVector<Value *, 64> temp; 287 temp.insert(temp.end(), liveset.begin(), liveset.end()); 288 std::sort(temp.begin(), temp.end(), order_by_name); 289 errs() << "Live Variables:\n"; 290 for (Value *V : temp) { 291 errs() << " " << V->getName(); // no newline 292 V->dump(); 293 } 294 } 295 if (PrintLiveSetSize) { 296 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 297 errs() << "Number live values: " << liveset.size() << "\n"; 298 } 299 result.liveset = liveset; 300 } 301 302 /// True iff this value is the null pointer constant (of any pointer type) 303 static bool LLVM_ATTRIBUTE_UNUSED isNullConstant(Value *V) { 304 return isa<Constant>(V) && isa<PointerType>(V->getType()) && 305 cast<Constant>(V)->isNullValue(); 306 } 307 308 /// Helper function for findBasePointer - Will return a value which either a) 309 /// defines the base pointer for the input or b) blocks the simple search 310 /// (i.e. a PHI or Select of two derived pointers) 311 static Value *findBaseDefiningValue(Value *I) { 312 assert(I->getType()->isPointerTy() && 313 "Illegal to ask for the base pointer of a non-pointer type"); 314 315 // There are instructions which can never return gc pointer values. Sanity 316 // check 317 // that this is actually true. 318 assert(!isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) && 319 !isa<ShuffleVectorInst>(I) && "Vector types are not gc pointers"); 320 assert((!isa<Instruction>(I) || isa<InvokeInst>(I) || 321 !cast<Instruction>(I)->isTerminator()) && 322 "With the exception of invoke terminators don't define values"); 323 assert(!isa<StoreInst>(I) && !isa<FenceInst>(I) && 324 "Can't be definitions to start with"); 325 assert(!isa<ICmpInst>(I) && !isa<FCmpInst>(I) && 326 "Comparisons don't give ops"); 327 // There's a bunch of instructions which just don't make sense to apply to 328 // a pointer. The only valid reason for this would be pointer bit 329 // twiddling which we're just not going to support. 330 assert((!isa<Instruction>(I) || !cast<Instruction>(I)->isBinaryOp()) && 331 "Binary ops on pointer values are meaningless. Unless your " 332 "bit-twiddling which we don't support"); 333 334 if (Argument *Arg = dyn_cast<Argument>(I)) { 335 // An incoming argument to the function is a base pointer 336 // We should have never reached here if this argument isn't an gc value 337 assert(Arg->getType()->isPointerTy() && 338 "Base for pointer must be another pointer"); 339 return Arg; 340 } 341 342 if (GlobalVariable *global = dyn_cast<GlobalVariable>(I)) { 343 // base case 344 assert(global->getType()->isPointerTy() && 345 "Base for pointer must be another pointer"); 346 return global; 347 } 348 349 // inlining could possibly introduce phi node that contains 350 // undef if callee has multiple returns 351 if (UndefValue *undef = dyn_cast<UndefValue>(I)) { 352 assert(undef->getType()->isPointerTy() && 353 "Base for pointer must be another pointer"); 354 return undef; // utterly meaningless, but useful for dealing with 355 // partially optimized code. 356 } 357 358 // Due to inheritance, this must be _after_ the global variable and undef 359 // checks 360 if (Constant *con = dyn_cast<Constant>(I)) { 361 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 362 "order of checks wrong!"); 363 // Note: Finding a constant base for something marked for relocation 364 // doesn't really make sense. The most likely case is either a) some 365 // screwed up the address space usage or b) your validating against 366 // compiled C++ code w/o the proper separation. The only real exception 367 // is a null pointer. You could have generic code written to index of 368 // off a potentially null value and have proven it null. We also use 369 // null pointers in dead paths of relocation phis (which we might later 370 // want to find a base pointer for). 371 assert(con->getType()->isPointerTy() && 372 "Base for pointer must be another pointer"); 373 assert(con->isNullValue() && "null is the only case which makes sense"); 374 return con; 375 } 376 377 if (CastInst *CI = dyn_cast<CastInst>(I)) { 378 Value *def = CI->stripPointerCasts(); 379 assert(def->getType()->isPointerTy() && 380 "Base for pointer must be another pointer"); 381 // If we find a cast instruction here, it means we've found a cast which is 382 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 383 // handle int->ptr conversion. 384 assert(!isa<CastInst>(def) && "shouldn't find another cast here"); 385 return findBaseDefiningValue(def); 386 } 387 388 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 389 if (LI->getType()->isPointerTy()) { 390 Value *Op = LI->getOperand(0); 391 (void)Op; 392 // Has to be a pointer to an gc object, or possibly an array of such? 393 assert(Op->getType()->isPointerTy()); 394 return LI; // The value loaded is an gc base itself 395 } 396 } 397 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 398 Value *Op = GEP->getOperand(0); 399 if (Op->getType()->isPointerTy()) { 400 return findBaseDefiningValue(Op); // The base of this GEP is the base 401 } 402 } 403 404 if (AllocaInst *alloc = dyn_cast<AllocaInst>(I)) { 405 // An alloca represents a conceptual stack slot. It's the slot itself 406 // that the GC needs to know about, not the value in the slot. 407 assert(alloc->getType()->isPointerTy() && 408 "Base for pointer must be another pointer"); 409 return alloc; 410 } 411 412 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 413 switch (II->getIntrinsicID()) { 414 default: 415 // fall through to general call handling 416 break; 417 case Intrinsic::experimental_gc_statepoint: 418 case Intrinsic::experimental_gc_result_float: 419 case Intrinsic::experimental_gc_result_int: 420 llvm_unreachable("these don't produce pointers"); 421 case Intrinsic::experimental_gc_result_ptr: 422 // This is just a special case of the CallInst check below to handle a 423 // statepoint with deopt args which hasn't been rewritten for GC yet. 424 // TODO: Assert that the statepoint isn't rewritten yet. 425 return II; 426 case Intrinsic::experimental_gc_relocate: { 427 // Rerunning safepoint insertion after safepoints are already 428 // inserted is not supported. It could probably be made to work, 429 // but why are you doing this? There's no good reason. 430 llvm_unreachable("repeat safepoint insertion is not supported"); 431 } 432 case Intrinsic::gcroot: 433 // Currently, this mechanism hasn't been extended to work with gcroot. 434 // There's no reason it couldn't be, but I haven't thought about the 435 // implications much. 436 llvm_unreachable( 437 "interaction with the gcroot mechanism is not supported"); 438 } 439 } 440 // We assume that functions in the source language only return base 441 // pointers. This should probably be generalized via attributes to support 442 // both source language and internal functions. 443 if (CallInst *call = dyn_cast<CallInst>(I)) { 444 assert(call->getType()->isPointerTy() && 445 "Base for pointer must be another pointer"); 446 return call; 447 } 448 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 449 assert(invoke->getType()->isPointerTy() && 450 "Base for pointer must be another pointer"); 451 return invoke; 452 } 453 454 // I have absolutely no idea how to implement this part yet. It's not 455 // neccessarily hard, I just haven't really looked at it yet. 456 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 457 458 if (AtomicCmpXchgInst *cas = dyn_cast<AtomicCmpXchgInst>(I)) { 459 // A CAS is effectively a atomic store and load combined under a 460 // predicate. From the perspective of base pointers, we just treat it 461 // like a load. We loaded a pointer from a address in memory, that value 462 // had better be a valid base pointer. 463 return cas->getPointerOperand(); 464 } 465 if (AtomicRMWInst *atomic = dyn_cast<AtomicRMWInst>(I)) { 466 assert(AtomicRMWInst::Xchg == atomic->getOperation() && 467 "All others are binary ops which don't apply to base pointers"); 468 // semantically, a load, store pair. Treat it the same as a standard load 469 return atomic->getPointerOperand(); 470 } 471 472 // The aggregate ops. Aggregates can either be in the heap or on the 473 // stack, but in either case, this is simply a field load. As a result, 474 // this is a defining definition of the base just like a load is. 475 if (ExtractValueInst *ev = dyn_cast<ExtractValueInst>(I)) { 476 return ev; 477 } 478 479 // We should never see an insert vector since that would require we be 480 // tracing back a struct value not a pointer value. 481 assert(!isa<InsertValueInst>(I) && 482 "Base pointer for a struct is meaningless"); 483 484 // The last two cases here don't return a base pointer. Instead, they 485 // return a value which dynamically selects from amoung several base 486 // derived pointers (each with it's own base potentially). It's the job of 487 // the caller to resolve these. 488 if (SelectInst *select = dyn_cast<SelectInst>(I)) { 489 return select; 490 } 491 492 return cast<PHINode>(I); 493 } 494 495 /// Returns the base defining value for this value. 496 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &cache) { 497 Value *&Cached = cache[I]; 498 if (!Cached) { 499 Cached = findBaseDefiningValue(I); 500 } 501 assert(cache[I] != nullptr); 502 503 if (TraceLSP) { 504 errs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() 505 << "\n"; 506 } 507 return Cached; 508 } 509 510 /// Return a base pointer for this value if known. Otherwise, return it's 511 /// base defining value. 512 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &cache) { 513 Value *def = findBaseDefiningValueCached(I, cache); 514 auto Found = cache.find(def); 515 if (Found != cache.end()) { 516 // Either a base-of relation, or a self reference. Caller must check. 517 return Found->second; 518 } 519 // Only a BDV available 520 return def; 521 } 522 523 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 524 /// is it known to be a base pointer? Or do we need to continue searching. 525 static bool isKnownBaseResult(Value *v) { 526 if (!isa<PHINode>(v) && !isa<SelectInst>(v)) { 527 // no recursion possible 528 return true; 529 } 530 if (cast<Instruction>(v)->getMetadata("is_base_value")) { 531 // This is a previously inserted base phi or select. We know 532 // that this is a base value. 533 return true; 534 } 535 536 // We need to keep searching 537 return false; 538 } 539 540 // TODO: find a better name for this 541 namespace { 542 class PhiState { 543 public: 544 enum Status { Unknown, Base, Conflict }; 545 546 PhiState(Status s, Value *b = nullptr) : status(s), base(b) { 547 assert(status != Base || b); 548 } 549 PhiState(Value *b) : status(Base), base(b) {} 550 PhiState() : status(Unknown), base(nullptr) {} 551 PhiState(const PhiState &other) : status(other.status), base(other.base) { 552 assert(status != Base || base); 553 } 554 555 Status getStatus() const { return status; } 556 Value *getBase() const { return base; } 557 558 bool isBase() const { return getStatus() == Base; } 559 bool isUnknown() const { return getStatus() == Unknown; } 560 bool isConflict() const { return getStatus() == Conflict; } 561 562 bool operator==(const PhiState &other) const { 563 return base == other.base && status == other.status; 564 } 565 566 bool operator!=(const PhiState &other) const { return !(*this == other); } 567 568 void dump() { 569 errs() << status << " (" << base << " - " 570 << (base ? base->getName() : "nullptr") << "): "; 571 } 572 573 private: 574 Status status; 575 Value *base; // non null only if status == base 576 }; 577 578 typedef DenseMap<Value *, PhiState> ConflictStateMapTy; 579 // Values of type PhiState form a lattice, and this is a helper 580 // class that implementes the meet operation. The meat of the meet 581 // operation is implemented in MeetPhiStates::pureMeet 582 class MeetPhiStates { 583 public: 584 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. 585 explicit MeetPhiStates(const ConflictStateMapTy &phiStates) 586 : phiStates(phiStates) {} 587 588 // Destructively meet the current result with the base V. V can 589 // either be a merge instruction (SelectInst / PHINode), in which 590 // case its status is looked up in the phiStates map; or a regular 591 // SSA value, in which case it is assumed to be a base. 592 void meetWith(Value *V) { 593 PhiState otherState = getStateForBDV(V); 594 assert((MeetPhiStates::pureMeet(otherState, currentResult) == 595 MeetPhiStates::pureMeet(currentResult, otherState)) && 596 "math is wrong: meet does not commute!"); 597 currentResult = MeetPhiStates::pureMeet(otherState, currentResult); 598 } 599 600 PhiState getResult() const { return currentResult; } 601 602 private: 603 const ConflictStateMapTy &phiStates; 604 PhiState currentResult; 605 606 /// Return a phi state for a base defining value. We'll generate a new 607 /// base state for known bases and expect to find a cached state otherwise 608 PhiState getStateForBDV(Value *baseValue) { 609 if (isKnownBaseResult(baseValue)) { 610 return PhiState(baseValue); 611 } else { 612 return lookupFromMap(baseValue); 613 } 614 } 615 616 PhiState lookupFromMap(Value *V) { 617 auto I = phiStates.find(V); 618 assert(I != phiStates.end() && "lookup failed!"); 619 return I->second; 620 } 621 622 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { 623 switch (stateA.getStatus()) { 624 case PhiState::Unknown: 625 return stateB; 626 627 case PhiState::Base: 628 assert(stateA.getBase() && "can't be null"); 629 if (stateB.isUnknown()) 630 return stateA; 631 632 if (stateB.isBase()) { 633 if (stateA.getBase() == stateB.getBase()) { 634 assert(stateA == stateB && "equality broken!"); 635 return stateA; 636 } 637 return PhiState(PhiState::Conflict); 638 } 639 assert(stateB.isConflict() && "only three states!"); 640 return PhiState(PhiState::Conflict); 641 642 case PhiState::Conflict: 643 return stateA; 644 } 645 llvm_unreachable("only three states!"); 646 } 647 }; 648 } 649 /// For a given value or instruction, figure out what base ptr it's derived 650 /// from. For gc objects, this is simply itself. On success, returns a value 651 /// which is the base pointer. (This is reliable and can be used for 652 /// relocation.) On failure, returns nullptr. 653 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache, 654 DenseSet<llvm::Value *> &NewInsertedDefs) { 655 Value *def = findBaseOrBDV(I, cache); 656 657 if (isKnownBaseResult(def)) { 658 return def; 659 } 660 661 // Here's the rough algorithm: 662 // - For every SSA value, construct a mapping to either an actual base 663 // pointer or a PHI which obscures the base pointer. 664 // - Construct a mapping from PHI to unknown TOP state. Use an 665 // optimistic algorithm to propagate base pointer information. Lattice 666 // looks like: 667 // UNKNOWN 668 // b1 b2 b3 b4 669 // CONFLICT 670 // When algorithm terminates, all PHIs will either have a single concrete 671 // base or be in a conflict state. 672 // - For every conflict, insert a dummy PHI node without arguments. Add 673 // these to the base[Instruction] = BasePtr mapping. For every 674 // non-conflict, add the actual base. 675 // - For every conflict, add arguments for the base[a] of each input 676 // arguments. 677 // 678 // Note: A simpler form of this would be to add the conflict form of all 679 // PHIs without running the optimistic algorithm. This would be 680 // analougous to pessimistic data flow and would likely lead to an 681 // overall worse solution. 682 683 ConflictStateMapTy states; 684 states[def] = PhiState(); 685 // Recursively fill in all phis & selects reachable from the initial one 686 // for which we don't already know a definite base value for 687 // TODO: This should be rewritten with a worklist 688 bool done = false; 689 while (!done) { 690 done = true; 691 // Since we're adding elements to 'states' as we run, we can't keep 692 // iterators into the set. 693 SmallVector<Value*, 16> Keys; 694 Keys.reserve(states.size()); 695 for (auto Pair : states) { 696 Value *V = Pair.first; 697 Keys.push_back(V); 698 } 699 for (Value *v : Keys) { 700 assert(!isKnownBaseResult(v) && "why did it get added?"); 701 if (PHINode *phi = dyn_cast<PHINode>(v)) { 702 assert(phi->getNumIncomingValues() > 0 && 703 "zero input phis are illegal"); 704 for (Value *InVal : phi->incoming_values()) { 705 Value *local = findBaseOrBDV(InVal, cache); 706 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 707 states[local] = PhiState(); 708 done = false; 709 } 710 } 711 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 712 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 713 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 714 states[local] = PhiState(); 715 done = false; 716 } 717 local = findBaseOrBDV(sel->getFalseValue(), cache); 718 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 719 states[local] = PhiState(); 720 done = false; 721 } 722 } 723 } 724 } 725 726 if (TraceLSP) { 727 errs() << "States after initialization:\n"; 728 for (auto Pair : states) { 729 Instruction *v = cast<Instruction>(Pair.first); 730 PhiState state = Pair.second; 731 state.dump(); 732 v->dump(); 733 } 734 } 735 736 // TODO: come back and revisit the state transitions around inputs which 737 // have reached conflict state. The current version seems too conservative. 738 739 bool progress = true; 740 size_t oldSize = 0; 741 while (progress) { 742 oldSize = states.size(); 743 progress = false; 744 // We're only changing keys in this loop, thus safe to keep iterators 745 for (auto Pair : states) { 746 MeetPhiStates calculateMeet(states); 747 Value *v = Pair.first; 748 assert(!isKnownBaseResult(v) && "why did it get added?"); 749 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 750 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); 751 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); 752 } else 753 for (Value *Val : cast<PHINode>(v)->incoming_values()) 754 calculateMeet.meetWith(findBaseOrBDV(Val, cache)); 755 756 PhiState oldState = states[v]; 757 PhiState newState = calculateMeet.getResult(); 758 if (oldState != newState) { 759 progress = true; 760 states[v] = newState; 761 } 762 } 763 764 assert(oldSize <= states.size()); 765 assert(oldSize == states.size() || progress); 766 } 767 768 if (TraceLSP) { 769 errs() << "States after meet iteration:\n"; 770 for (auto Pair : states) { 771 Instruction *v = cast<Instruction>(Pair.first); 772 PhiState state = Pair.second; 773 state.dump(); 774 v->dump(); 775 } 776 } 777 778 // Insert Phis for all conflicts 779 // Only changing keys in 'states', thus safe to keep iterators 780 for (auto Pair : states) { 781 Instruction *v = cast<Instruction>(Pair.first); 782 PhiState state = Pair.second; 783 assert(!isKnownBaseResult(v) && "why did it get added?"); 784 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 785 if (state.isConflict()) { 786 if (isa<PHINode>(v)) { 787 int num_preds = 788 std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); 789 assert(num_preds > 0 && "how did we reach here"); 790 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); 791 NewInsertedDefs.insert(phi); 792 // Add metadata marking this as a base value 793 auto *const_1 = ConstantInt::get( 794 Type::getInt32Ty( 795 v->getParent()->getParent()->getParent()->getContext()), 796 1); 797 auto MDConst = ConstantAsMetadata::get(const_1); 798 MDNode *md = MDNode::get( 799 v->getParent()->getParent()->getParent()->getContext(), MDConst); 800 phi->setMetadata("is_base_value", md); 801 states[v] = PhiState(PhiState::Conflict, phi); 802 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 803 // The undef will be replaced later 804 UndefValue *undef = UndefValue::get(sel->getType()); 805 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, 806 undef, "base_select", sel); 807 NewInsertedDefs.insert(basesel); 808 // Add metadata marking this as a base value 809 auto *const_1 = ConstantInt::get( 810 Type::getInt32Ty( 811 v->getParent()->getParent()->getParent()->getContext()), 812 1); 813 auto MDConst = ConstantAsMetadata::get(const_1); 814 MDNode *md = MDNode::get( 815 v->getParent()->getParent()->getParent()->getContext(), MDConst); 816 basesel->setMetadata("is_base_value", md); 817 states[v] = PhiState(PhiState::Conflict, basesel); 818 } else 819 llvm_unreachable("unknown conflict type"); 820 } 821 } 822 823 // Fixup all the inputs of the new PHIs 824 for (auto Pair : states) { 825 Instruction *v = cast<Instruction>(Pair.first); 826 PhiState state = Pair.second; 827 828 assert(!isKnownBaseResult(v) && "why did it get added?"); 829 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 830 if (state.isConflict()) { 831 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 832 PHINode *phi = cast<PHINode>(v); 833 unsigned NumPHIValues = phi->getNumIncomingValues(); 834 for (unsigned i = 0; i < NumPHIValues; i++) { 835 Value *InVal = phi->getIncomingValue(i); 836 BasicBlock *InBB = phi->getIncomingBlock(i); 837 838 // If we've already seen InBB, add the same incoming value 839 // we added for it earlier. The IR verifier requires phi 840 // nodes with multiple entries from the same basic block 841 // to have the same incoming value for each of those 842 // entries. If we don't do this check here and basephi 843 // has a different type than base, we'll end up adding two 844 // bitcasts (and hence two distinct values) as incoming 845 // values for the same basic block. 846 847 int blockIndex = basephi->getBasicBlockIndex(InBB); 848 if (blockIndex != -1) { 849 Value *oldBase = basephi->getIncomingValue(blockIndex); 850 basephi->addIncoming(oldBase, InBB); 851 #ifndef NDEBUG 852 Value *base = findBaseOrBDV(InVal, cache); 853 if (!isKnownBaseResult(base)) { 854 // Either conflict or base. 855 assert(states.count(base)); 856 base = states[base].getBase(); 857 assert(base != nullptr && "unknown PhiState!"); 858 assert(NewInsertedDefs.count(base) && 859 "should have already added this in a prev. iteration!"); 860 } 861 862 // In essense this assert states: the only way two 863 // values incoming from the same basic block may be 864 // different is by being different bitcasts of the same 865 // value. A cleanup that remains TODO is changing 866 // findBaseOrBDV to return an llvm::Value of the correct 867 // type (and still remain pure). This will remove the 868 // need to add bitcasts. 869 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 870 "sanity -- findBaseOrBDV should be pure!"); 871 #endif 872 continue; 873 } 874 875 // Find either the defining value for the PHI or the normal base for 876 // a non-phi node 877 Value *base = findBaseOrBDV(InVal, cache); 878 if (!isKnownBaseResult(base)) { 879 // Either conflict or base. 880 assert(states.count(base)); 881 base = states[base].getBase(); 882 assert(base != nullptr && "unknown PhiState!"); 883 } 884 assert(base && "can't be null"); 885 // Must use original input BB since base may not be Instruction 886 // The cast is needed since base traversal may strip away bitcasts 887 if (base->getType() != basephi->getType()) { 888 base = new BitCastInst(base, basephi->getType(), "cast", 889 InBB->getTerminator()); 890 NewInsertedDefs.insert(base); 891 } 892 basephi->addIncoming(base, InBB); 893 } 894 assert(basephi->getNumIncomingValues() == NumPHIValues); 895 } else if (SelectInst *basesel = dyn_cast<SelectInst>(state.getBase())) { 896 SelectInst *sel = cast<SelectInst>(v); 897 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 898 // something more safe and less hacky. 899 for (int i = 1; i <= 2; i++) { 900 Value *InVal = sel->getOperand(i); 901 // Find either the defining value for the PHI or the normal base for 902 // a non-phi node 903 Value *base = findBaseOrBDV(InVal, cache); 904 if (!isKnownBaseResult(base)) { 905 // Either conflict or base. 906 assert(states.count(base)); 907 base = states[base].getBase(); 908 assert(base != nullptr && "unknown PhiState!"); 909 } 910 assert(base && "can't be null"); 911 // Must use original input BB since base may not be Instruction 912 // The cast is needed since base traversal may strip away bitcasts 913 if (base->getType() != basesel->getType()) { 914 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 915 NewInsertedDefs.insert(base); 916 } 917 basesel->setOperand(i, base); 918 } 919 } else 920 llvm_unreachable("unexpected conflict type"); 921 } 922 } 923 924 // Cache all of our results so we can cheaply reuse them 925 // NOTE: This is actually two caches: one of the base defining value 926 // relation and one of the base pointer relation! FIXME 927 for (auto item : states) { 928 Value *v = item.first; 929 Value *base = item.second.getBase(); 930 assert(v && base); 931 assert(!isKnownBaseResult(v) && "why did it get added?"); 932 933 if (TraceLSP) { 934 std::string fromstr = 935 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 936 : "none"; 937 errs() << "Updating base value cache" 938 << " for: " << (v->hasName() ? v->getName() : "") 939 << " from: " << fromstr 940 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 941 } 942 943 assert(isKnownBaseResult(base) && 944 "must be something we 'know' is a base pointer"); 945 if (cache.count(v)) { 946 // Once we transition from the BDV relation being store in the cache to 947 // the base relation being stored, it must be stable 948 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 949 "base relation should be stable"); 950 } 951 cache[v] = base; 952 } 953 assert(cache.find(def) != cache.end()); 954 return cache[def]; 955 } 956 957 // For a set of live pointers (base and/or derived), identify the base 958 // pointer of the object which they are derived from. This routine will 959 // mutate the IR graph as needed to make the 'base' pointer live at the 960 // definition site of 'derived'. This ensures that any use of 'derived' can 961 // also use 'base'. This may involve the insertion of a number of 962 // additional PHI nodes. 963 // 964 // preconditions: live is a set of pointer type Values 965 // 966 // side effects: may insert PHI nodes into the existing CFG, will preserve 967 // CFG, will not remove or mutate any existing nodes 968 // 969 // post condition: PointerToBase contains one (derived, base) pair for every 970 // pointer in live. Note that derived can be equal to base if the original 971 // pointer was a base pointer. 972 static void findBasePointers(const StatepointLiveSetTy &live, 973 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 974 DominatorTree *DT, DefiningValueMapTy &DVCache, 975 DenseSet<llvm::Value *> &NewInsertedDefs) { 976 for (Value *ptr : live) { 977 Value *base = findBasePointer(ptr, DVCache, NewInsertedDefs); 978 assert(base && "failed to find base pointer"); 979 PointerToBase[ptr] = base; 980 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 981 DT->dominates(cast<Instruction>(base)->getParent(), 982 cast<Instruction>(ptr)->getParent())) && 983 "The base we found better dominate the derived pointer"); 984 985 // If you see this trip and like to live really dangerously, the code should 986 // be correct, just with idioms the verifier can't handle. You can try 987 // disabling the verifier at your own substaintial risk. 988 assert(!isNullConstant(base) && "the relocation code needs adjustment to " 989 "handle the relocation of a null pointer " 990 "constant without causing false positives " 991 "in the safepoint ir verifier."); 992 } 993 } 994 995 /// Find the required based pointers (and adjust the live set) for the given 996 /// parse point. 997 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 998 const CallSite &CS, 999 PartiallyConstructedSafepointRecord &result) { 1000 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 1001 DenseSet<llvm::Value *> NewInsertedDefs; 1002 findBasePointers(result.liveset, PointerToBase, &DT, DVCache, NewInsertedDefs); 1003 1004 if (PrintBasePointers) { 1005 // Note: Need to print these in a stable order since this is checked in 1006 // some tests. 1007 errs() << "Base Pairs (w/o Relocation):\n"; 1008 SmallVector<Value*, 64> Temp; 1009 Temp.reserve(PointerToBase.size()); 1010 for (auto Pair : PointerToBase) { 1011 Temp.push_back(Pair.first); 1012 } 1013 std::sort(Temp.begin(), Temp.end(), order_by_name); 1014 for (Value *Ptr : Temp) { 1015 Value *Base = PointerToBase[Ptr]; 1016 errs() << " derived %" << Ptr->getName() << " base %" 1017 << Base->getName() << "\n"; 1018 } 1019 } 1020 1021 result.PointerToBase = PointerToBase; 1022 result.NewInsertedDefs = NewInsertedDefs; 1023 } 1024 1025 /// Check for liveness of items in the insert defs and add them to the live 1026 /// and base pointer sets 1027 static void fixupLiveness(DominatorTree &DT, const CallSite &CS, 1028 const DenseSet<Value *> &allInsertedDefs, 1029 PartiallyConstructedSafepointRecord &result) { 1030 Instruction *inst = CS.getInstruction(); 1031 1032 auto liveset = result.liveset; 1033 auto PointerToBase = result.PointerToBase; 1034 1035 auto is_live_gc_reference = 1036 [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); }; 1037 1038 // For each new definition, check to see if a) the definition dominates the 1039 // instruction we're interested in, and b) one of the uses of that definition 1040 // is edge-reachable from the instruction we're interested in. This is the 1041 // same definition of liveness we used in the intial liveness analysis 1042 for (Value *newDef : allInsertedDefs) { 1043 if (liveset.count(newDef)) { 1044 // already live, no action needed 1045 continue; 1046 } 1047 1048 // PERF: Use DT to check instruction domination might not be good for 1049 // compilation time, and we could change to optimal solution if this 1050 // turn to be a issue 1051 if (!DT.dominates(cast<Instruction>(newDef), inst)) { 1052 // can't possibly be live at inst 1053 continue; 1054 } 1055 1056 if (is_live_gc_reference(*newDef)) { 1057 // Add the live new defs into liveset and PointerToBase 1058 liveset.insert(newDef); 1059 PointerToBase[newDef] = newDef; 1060 } 1061 } 1062 1063 result.liveset = liveset; 1064 result.PointerToBase = PointerToBase; 1065 } 1066 1067 static void fixupLiveReferences( 1068 Function &F, DominatorTree &DT, Pass *P, 1069 const DenseSet<llvm::Value *> &allInsertedDefs, 1070 ArrayRef<CallSite> toUpdate, 1071 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1072 for (size_t i = 0; i < records.size(); i++) { 1073 struct PartiallyConstructedSafepointRecord &info = records[i]; 1074 const CallSite &CS = toUpdate[i]; 1075 fixupLiveness(DT, CS, allInsertedDefs, info); 1076 } 1077 } 1078 1079 // Normalize basic block to make it ready to be target of invoke statepoint. 1080 // It means spliting it to have single predecessor. Return newly created BB 1081 // ready to be successor of invoke statepoint. 1082 static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB, 1083 BasicBlock *InvokeParent, 1084 Pass *P) { 1085 BasicBlock *ret = BB; 1086 1087 if (!BB->getUniquePredecessor()) { 1088 ret = SplitBlockPredecessors(BB, InvokeParent, ""); 1089 } 1090 1091 // Another requirement for such basic blocks is to not have any phi nodes. 1092 // Since we just ensured that new BB will have single predecessor, 1093 // all phi nodes in it will have one value. Here it would be naturall place 1094 // to 1095 // remove them all. But we can not do this because we are risking to remove 1096 // one of the values stored in liveset of another statepoint. We will do it 1097 // later after placing all safepoints. 1098 1099 return ret; 1100 } 1101 1102 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1103 auto itr = std::find(livevec.begin(), livevec.end(), val); 1104 assert(livevec.end() != itr); 1105 size_t index = std::distance(livevec.begin(), itr); 1106 assert(index < livevec.size()); 1107 return index; 1108 } 1109 1110 // Create new attribute set containing only attributes which can be transfered 1111 // from original call to the safepoint. 1112 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1113 AttributeSet ret; 1114 1115 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1116 unsigned index = AS.getSlotIndex(Slot); 1117 1118 if (index == AttributeSet::ReturnIndex || 1119 index == AttributeSet::FunctionIndex) { 1120 1121 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1122 ++it) { 1123 Attribute attr = *it; 1124 1125 // Do not allow certain attributes - just skip them 1126 // Safepoint can not be read only or read none. 1127 if (attr.hasAttribute(Attribute::ReadNone) || 1128 attr.hasAttribute(Attribute::ReadOnly)) 1129 continue; 1130 1131 ret = ret.addAttributes( 1132 AS.getContext(), index, 1133 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1134 } 1135 } 1136 1137 // Just skip parameter attributes for now 1138 } 1139 1140 return ret; 1141 } 1142 1143 /// Helper function to place all gc relocates necessary for the given 1144 /// statepoint. 1145 /// Inputs: 1146 /// liveVariables - list of variables to be relocated. 1147 /// liveStart - index of the first live variable. 1148 /// basePtrs - base pointers. 1149 /// statepointToken - statepoint instruction to which relocates should be 1150 /// bound. 1151 /// Builder - Llvm IR builder to be used to construct new calls. 1152 void CreateGCRelocates(ArrayRef<llvm::Value *> liveVariables, 1153 const int liveStart, 1154 ArrayRef<llvm::Value *> basePtrs, 1155 Instruction *statepointToken, IRBuilder<> Builder) { 1156 1157 SmallVector<Instruction *, 64> NewDefs; 1158 NewDefs.reserve(liveVariables.size()); 1159 1160 Module *M = statepointToken->getParent()->getParent()->getParent(); 1161 1162 for (unsigned i = 0; i < liveVariables.size(); i++) { 1163 // We generate a (potentially) unique declaration for every pointer type 1164 // combination. This results is some blow up the function declarations in 1165 // the IR, but removes the need for argument bitcasts which shrinks the IR 1166 // greatly and makes it much more readable. 1167 SmallVector<Type *, 1> types; // one per 'any' type 1168 types.push_back(liveVariables[i]->getType()); // result type 1169 Value *gc_relocate_decl = Intrinsic::getDeclaration( 1170 M, Intrinsic::experimental_gc_relocate, types); 1171 1172 // Generate the gc.relocate call and save the result 1173 Value *baseIdx = 1174 ConstantInt::get(Type::getInt32Ty(M->getContext()), 1175 liveStart + find_index(liveVariables, basePtrs[i])); 1176 Value *liveIdx = ConstantInt::get( 1177 Type::getInt32Ty(M->getContext()), 1178 liveStart + find_index(liveVariables, liveVariables[i])); 1179 1180 // only specify a debug name if we can give a useful one 1181 Value *reloc = Builder.CreateCall3( 1182 gc_relocate_decl, statepointToken, baseIdx, liveIdx, 1183 liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" 1184 : ""); 1185 // Trick CodeGen into thinking there are lots of free registers at this 1186 // fake call. 1187 cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold); 1188 1189 NewDefs.push_back(cast<Instruction>(reloc)); 1190 } 1191 assert(NewDefs.size() == liveVariables.size() && 1192 "missing or extra redefinition at safepoint"); 1193 } 1194 1195 static void 1196 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1197 const SmallVectorImpl<llvm::Value *> &basePtrs, 1198 const SmallVectorImpl<llvm::Value *> &liveVariables, 1199 Pass *P, 1200 PartiallyConstructedSafepointRecord &result) { 1201 assert(basePtrs.size() == liveVariables.size()); 1202 assert(isStatepoint(CS) && 1203 "This method expects to be rewriting a statepoint"); 1204 1205 BasicBlock *BB = CS.getInstruction()->getParent(); 1206 assert(BB); 1207 Function *F = BB->getParent(); 1208 assert(F && "must be set"); 1209 Module *M = F->getParent(); 1210 (void)M; 1211 assert(M && "must be set"); 1212 1213 // We're not changing the function signature of the statepoint since the gc 1214 // arguments go into the var args section. 1215 Function *gc_statepoint_decl = CS.getCalledFunction(); 1216 1217 // Then go ahead and use the builder do actually do the inserts. We insert 1218 // immediately before the previous instruction under the assumption that all 1219 // arguments will be available here. We can't insert afterwards since we may 1220 // be replacing a terminator. 1221 Instruction *insertBefore = CS.getInstruction(); 1222 IRBuilder<> Builder(insertBefore); 1223 // Copy all of the arguments from the original statepoint - this includes the 1224 // target, call args, and deopt args 1225 SmallVector<llvm::Value *, 64> args; 1226 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1227 // TODO: Clear the 'needs rewrite' flag 1228 1229 // add all the pointers to be relocated (gc arguments) 1230 // Capture the start of the live variable list for use in the gc_relocates 1231 const int live_start = args.size(); 1232 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1233 1234 // Create the statepoint given all the arguments 1235 Instruction *token = nullptr; 1236 AttributeSet return_attributes; 1237 if (CS.isCall()) { 1238 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1239 CallInst *call = 1240 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1241 call->setTailCall(toReplace->isTailCall()); 1242 call->setCallingConv(toReplace->getCallingConv()); 1243 1244 // Currently we will fail on parameter attributes and on certain 1245 // function attributes. 1246 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1247 // In case if we can handle this set of sttributes - set up function attrs 1248 // directly on statepoint and return attrs later for gc_result intrinsic. 1249 call->setAttributes(new_attrs.getFnAttributes()); 1250 return_attributes = new_attrs.getRetAttributes(); 1251 1252 token = call; 1253 1254 // Put the following gc_result and gc_relocate calls immediately after the 1255 // the old call (which we're about to delete) 1256 BasicBlock::iterator next(toReplace); 1257 assert(BB->end() != next && "not a terminator, must have next"); 1258 next++; 1259 Instruction *IP = &*(next); 1260 Builder.SetInsertPoint(IP); 1261 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1262 1263 } else { 1264 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1265 1266 // Insert the new invoke into the old block. We'll remove the old one in a 1267 // moment at which point this will become the new terminator for the 1268 // original block. 1269 InvokeInst *invoke = InvokeInst::Create( 1270 gc_statepoint_decl, toReplace->getNormalDest(), 1271 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1272 invoke->setCallingConv(toReplace->getCallingConv()); 1273 1274 // Currently we will fail on parameter attributes and on certain 1275 // function attributes. 1276 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1277 // In case if we can handle this set of sttributes - set up function attrs 1278 // directly on statepoint and return attrs later for gc_result intrinsic. 1279 invoke->setAttributes(new_attrs.getFnAttributes()); 1280 return_attributes = new_attrs.getRetAttributes(); 1281 1282 token = invoke; 1283 1284 // Generate gc relocates in exceptional path 1285 BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint( 1286 toReplace->getUnwindDest(), invoke->getParent(), P); 1287 1288 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1289 Builder.SetInsertPoint(IP); 1290 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1291 1292 // Extract second element from landingpad return value. We will attach 1293 // exceptional gc relocates to it. 1294 const unsigned idx = 1; 1295 Instruction *exceptional_token = 1296 cast<Instruction>(Builder.CreateExtractValue( 1297 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1298 result.UnwindToken = exceptional_token; 1299 1300 // Just throw away return value. We will use the one we got for normal 1301 // block. 1302 (void)CreateGCRelocates(liveVariables, live_start, basePtrs, 1303 exceptional_token, Builder); 1304 1305 // Generate gc relocates and returns for normal block 1306 BasicBlock *normalDest = normalizeBBForInvokeSafepoint( 1307 toReplace->getNormalDest(), invoke->getParent(), P); 1308 1309 IP = &*(normalDest->getFirstInsertionPt()); 1310 Builder.SetInsertPoint(IP); 1311 1312 // gc relocates will be generated later as if it were regular call 1313 // statepoint 1314 } 1315 assert(token); 1316 1317 // Take the name of the original value call if it had one. 1318 token->takeName(CS.getInstruction()); 1319 1320 // The GCResult is already inserted, we just need to find it 1321 #ifndef NDEBUG 1322 Instruction *toReplace = CS.getInstruction(); 1323 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1324 "only valid use before rewrite is gc.result"); 1325 assert(!toReplace->hasOneUse() || 1326 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1327 #endif 1328 1329 // Update the gc.result of the original statepoint (if any) to use the newly 1330 // inserted statepoint. This is safe to do here since the token can't be 1331 // considered a live reference. 1332 CS.getInstruction()->replaceAllUsesWith(token); 1333 1334 result.StatepointToken = token; 1335 1336 // Second, create a gc.relocate for every live variable 1337 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1338 1339 } 1340 1341 namespace { 1342 struct name_ordering { 1343 Value *base; 1344 Value *derived; 1345 bool operator()(name_ordering const &a, name_ordering const &b) { 1346 return -1 == a.derived->getName().compare(b.derived->getName()); 1347 } 1348 }; 1349 } 1350 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1351 SmallVectorImpl<Value *> &livevec) { 1352 assert(basevec.size() == livevec.size()); 1353 1354 SmallVector<name_ordering, 64> temp; 1355 for (size_t i = 0; i < basevec.size(); i++) { 1356 name_ordering v; 1357 v.base = basevec[i]; 1358 v.derived = livevec[i]; 1359 temp.push_back(v); 1360 } 1361 std::sort(temp.begin(), temp.end(), name_ordering()); 1362 for (size_t i = 0; i < basevec.size(); i++) { 1363 basevec[i] = temp[i].base; 1364 livevec[i] = temp[i].derived; 1365 } 1366 } 1367 1368 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1369 // which make the relocations happening at this safepoint explicit. 1370 // 1371 // WARNING: Does not do any fixup to adjust users of the original live 1372 // values. That's the callers responsibility. 1373 static void 1374 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1375 PartiallyConstructedSafepointRecord &result) { 1376 auto liveset = result.liveset; 1377 auto PointerToBase = result.PointerToBase; 1378 1379 // Convert to vector for efficient cross referencing. 1380 SmallVector<Value *, 64> basevec, livevec; 1381 livevec.reserve(liveset.size()); 1382 basevec.reserve(liveset.size()); 1383 for (Value *L : liveset) { 1384 livevec.push_back(L); 1385 1386 assert(PointerToBase.find(L) != PointerToBase.end()); 1387 Value *base = PointerToBase[L]; 1388 basevec.push_back(base); 1389 } 1390 assert(livevec.size() == basevec.size()); 1391 1392 // To make the output IR slightly more stable (for use in diffs), ensure a 1393 // fixed order of the values in the safepoint (by sorting the value name). 1394 // The order is otherwise meaningless. 1395 stablize_order(basevec, livevec); 1396 1397 // Do the actual rewriting and delete the old statepoint 1398 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1399 CS.getInstruction()->eraseFromParent(); 1400 } 1401 1402 // Helper function for the relocationViaAlloca. 1403 // It receives iterator to the statepoint gc relocates and emits store to the 1404 // assigned 1405 // location (via allocaMap) for the each one of them. 1406 // Add visited values into the visitedLiveValues set we will later use them 1407 // for sanity check. 1408 static void 1409 insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs, 1410 DenseMap<Value *, Value *> &allocaMap, 1411 DenseSet<Value *> &visitedLiveValues) { 1412 1413 for (User *U : gcRelocs) { 1414 if (!isa<IntrinsicInst>(U)) 1415 continue; 1416 1417 IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U); 1418 1419 // We only care about relocates 1420 if (relocatedValue->getIntrinsicID() != 1421 Intrinsic::experimental_gc_relocate) { 1422 continue; 1423 } 1424 1425 GCRelocateOperands relocateOperands(relocatedValue); 1426 Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr()); 1427 assert(allocaMap.count(originalValue)); 1428 Value *alloca = allocaMap[originalValue]; 1429 1430 // Emit store into the related alloca 1431 StoreInst *store = new StoreInst(relocatedValue, alloca); 1432 store->insertAfter(relocatedValue); 1433 1434 #ifndef NDEBUG 1435 visitedLiveValues.insert(originalValue); 1436 #endif 1437 } 1438 } 1439 1440 /// do all the relocation update via allocas and mem2reg 1441 static void relocationViaAlloca( 1442 Function &F, DominatorTree &DT, ArrayRef<Value *> live, 1443 ArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1444 #ifndef NDEBUG 1445 int initialAllocaNum = 0; 1446 1447 // record initial number of allocas 1448 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1449 itr++) { 1450 if (isa<AllocaInst>(*itr)) 1451 initialAllocaNum++; 1452 } 1453 #endif 1454 1455 // TODO-PERF: change data structures, reserve 1456 DenseMap<Value *, Value *> allocaMap; 1457 SmallVector<AllocaInst *, 200> PromotableAllocas; 1458 PromotableAllocas.reserve(live.size()); 1459 1460 // emit alloca for each live gc pointer 1461 for (unsigned i = 0; i < live.size(); i++) { 1462 Value *liveValue = live[i]; 1463 AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", 1464 F.getEntryBlock().getFirstNonPHI()); 1465 allocaMap[liveValue] = alloca; 1466 PromotableAllocas.push_back(alloca); 1467 } 1468 1469 // The next two loops are part of the same conceptual operation. We need to 1470 // insert a store to the alloca after the original def and at each 1471 // redefinition. We need to insert a load before each use. These are split 1472 // into distinct loops for performance reasons. 1473 1474 // update gc pointer after each statepoint 1475 // either store a relocated value or null (if no relocated value found for 1476 // this gc pointer and it is not a gc_result) 1477 // this must happen before we update the statepoint with load of alloca 1478 // otherwise we lose the link between statepoint and old def 1479 for (size_t i = 0; i < records.size(); i++) { 1480 const struct PartiallyConstructedSafepointRecord &info = records[i]; 1481 Value *Statepoint = info.StatepointToken; 1482 1483 // This will be used for consistency check 1484 DenseSet<Value *> visitedLiveValues; 1485 1486 // Insert stores for normal statepoint gc relocates 1487 insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues); 1488 1489 // In case if it was invoke statepoint 1490 // we will insert stores for exceptional path gc relocates. 1491 if (isa<InvokeInst>(Statepoint)) { 1492 insertRelocationStores(info.UnwindToken->users(), 1493 allocaMap, visitedLiveValues); 1494 } 1495 1496 #ifndef NDEBUG 1497 // As a debuging aid, pretend that an unrelocated pointer becomes null at 1498 // the gc.statepoint. This will turn some subtle GC problems into slightly 1499 // easier to debug SEGVs 1500 SmallVector<AllocaInst *, 64> ToClobber; 1501 for (auto Pair : allocaMap) { 1502 Value *Def = Pair.first; 1503 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1504 1505 // This value was relocated 1506 if (visitedLiveValues.count(Def)) { 1507 continue; 1508 } 1509 ToClobber.push_back(Alloca); 1510 } 1511 1512 auto InsertClobbersAt = [&](Instruction *IP) { 1513 for (auto *AI : ToClobber) { 1514 auto AIType = cast<PointerType>(AI->getType()); 1515 auto PT = cast<PointerType>(AIType->getElementType()); 1516 Constant *CPN = ConstantPointerNull::get(PT); 1517 StoreInst *store = new StoreInst(CPN, AI); 1518 store->insertBefore(IP); 1519 } 1520 }; 1521 1522 // Insert the clobbering stores. These may get intermixed with the 1523 // gc.results and gc.relocates, but that's fine. 1524 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1525 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1526 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1527 } else { 1528 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1529 Next++; 1530 InsertClobbersAt(Next); 1531 } 1532 #endif 1533 } 1534 // update use with load allocas and add store for gc_relocated 1535 for (auto Pair : allocaMap) { 1536 Value *def = Pair.first; 1537 Value *alloca = Pair.second; 1538 1539 // we pre-record the uses of allocas so that we dont have to worry about 1540 // later update 1541 // that change the user information. 1542 SmallVector<Instruction *, 20> uses; 1543 // PERF: trade a linear scan for repeated reallocation 1544 uses.reserve(std::distance(def->user_begin(), def->user_end())); 1545 for (User *U : def->users()) { 1546 if (!isa<ConstantExpr>(U)) { 1547 // If the def has a ConstantExpr use, then the def is either a 1548 // ConstantExpr use itself or null. In either case 1549 // (recursively in the first, directly in the second), the oop 1550 // it is ultimately dependent on is null and this particular 1551 // use does not need to be fixed up. 1552 uses.push_back(cast<Instruction>(U)); 1553 } 1554 } 1555 1556 std::sort(uses.begin(), uses.end()); 1557 auto last = std::unique(uses.begin(), uses.end()); 1558 uses.erase(last, uses.end()); 1559 1560 for (Instruction *use : uses) { 1561 if (isa<PHINode>(use)) { 1562 PHINode *phi = cast<PHINode>(use); 1563 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 1564 if (def == phi->getIncomingValue(i)) { 1565 LoadInst *load = new LoadInst( 1566 alloca, "", phi->getIncomingBlock(i)->getTerminator()); 1567 phi->setIncomingValue(i, load); 1568 } 1569 } 1570 } else { 1571 LoadInst *load = new LoadInst(alloca, "", use); 1572 use->replaceUsesOfWith(def, load); 1573 } 1574 } 1575 1576 // emit store for the initial gc value 1577 // store must be inserted after load, otherwise store will be in alloca's 1578 // use list and an extra load will be inserted before it 1579 StoreInst *store = new StoreInst(def, alloca); 1580 if (isa<Instruction>(def)) { 1581 store->insertAfter(cast<Instruction>(def)); 1582 } else { 1583 assert((isa<Argument>(def) || isa<GlobalVariable>(def) || 1584 (isa<Constant>(def) && cast<Constant>(def)->isNullValue())) && 1585 "Must be argument or global"); 1586 store->insertAfter(cast<Instruction>(alloca)); 1587 } 1588 } 1589 1590 assert(PromotableAllocas.size() == live.size() && 1591 "we must have the same allocas with lives"); 1592 if (!PromotableAllocas.empty()) { 1593 // apply mem2reg to promote alloca to SSA 1594 PromoteMemToReg(PromotableAllocas, DT); 1595 } 1596 1597 #ifndef NDEBUG 1598 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1599 itr++) { 1600 if (isa<AllocaInst>(*itr)) 1601 initialAllocaNum--; 1602 } 1603 assert(initialAllocaNum == 0 && "We must not introduce any extra allocas"); 1604 #endif 1605 } 1606 1607 /// Implement a unique function which doesn't require we sort the input 1608 /// vector. Doing so has the effect of changing the output of a couple of 1609 /// tests in ways which make them less useful in testing fused safepoints. 1610 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1611 DenseSet<T> Seen; 1612 SmallVector<T, 128> TempVec; 1613 TempVec.reserve(Vec.size()); 1614 for (auto Element : Vec) 1615 TempVec.push_back(Element); 1616 Vec.clear(); 1617 for (auto V : TempVec) { 1618 if (Seen.insert(V).second) { 1619 Vec.push_back(V); 1620 } 1621 } 1622 } 1623 1624 static Function *getUseHolder(Module &M) { 1625 FunctionType *ftype = 1626 FunctionType::get(Type::getVoidTy(M.getContext()), true); 1627 Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype)); 1628 return Func; 1629 } 1630 1631 /// Insert holders so that each Value is obviously live through the entire 1632 /// liftetime of the call. 1633 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1634 SmallVectorImpl<CallInst *> &holders) { 1635 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1636 Function *Func = getUseHolder(*M); 1637 if (CS.isCall()) { 1638 // For call safepoints insert dummy calls right after safepoint 1639 BasicBlock::iterator next(CS.getInstruction()); 1640 next++; 1641 CallInst *base_holder = CallInst::Create(Func, Values, "", next); 1642 holders.push_back(base_holder); 1643 } else if (CS.isInvoke()) { 1644 // For invoke safepooints insert dummy calls both in normal and 1645 // exceptional destination blocks 1646 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 1647 CallInst *normal_holder = CallInst::Create( 1648 Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt()); 1649 CallInst *unwind_holder = CallInst::Create( 1650 Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt()); 1651 holders.push_back(normal_holder); 1652 holders.push_back(unwind_holder); 1653 } else 1654 llvm_unreachable("unsupported call type"); 1655 } 1656 1657 static void findLiveReferences( 1658 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1659 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1660 for (size_t i = 0; i < records.size(); i++) { 1661 struct PartiallyConstructedSafepointRecord &info = records[i]; 1662 const CallSite &CS = toUpdate[i]; 1663 analyzeParsePointLiveness(DT, CS, info); 1664 } 1665 } 1666 1667 static void addBasesAsLiveValues(StatepointLiveSetTy &liveset, 1668 DenseMap<Value *, Value *> &PointerToBase) { 1669 // Identify any base pointers which are used in this safepoint, but not 1670 // themselves relocated. We need to relocate them so that later inserted 1671 // safepoints can get the properly relocated base register. 1672 DenseSet<Value *> missing; 1673 for (Value *L : liveset) { 1674 assert(PointerToBase.find(L) != PointerToBase.end()); 1675 Value *base = PointerToBase[L]; 1676 assert(base); 1677 if (liveset.find(base) == liveset.end()) { 1678 assert(PointerToBase.find(base) == PointerToBase.end()); 1679 // uniqued by set insert 1680 missing.insert(base); 1681 } 1682 } 1683 1684 // Note that we want these at the end of the list, otherwise 1685 // register placement gets screwed up once we lower to STATEPOINT 1686 // instructions. This is an utter hack, but there doesn't seem to be a 1687 // better one. 1688 for (Value *base : missing) { 1689 assert(base); 1690 liveset.insert(base); 1691 PointerToBase[base] = base; 1692 } 1693 assert(liveset.size() == PointerToBase.size()); 1694 } 1695 1696 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 1697 SmallVectorImpl<CallSite> &toUpdate) { 1698 #ifndef NDEBUG 1699 // sanity check the input 1700 std::set<CallSite> uniqued; 1701 uniqued.insert(toUpdate.begin(), toUpdate.end()); 1702 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 1703 1704 for (size_t i = 0; i < toUpdate.size(); i++) { 1705 CallSite &CS = toUpdate[i]; 1706 assert(CS.getInstruction()->getParent()->getParent() == &F); 1707 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 1708 } 1709 #endif 1710 1711 // A list of dummy calls added to the IR to keep various values obviously 1712 // live in the IR. We'll remove all of these when done. 1713 SmallVector<CallInst *, 64> holders; 1714 1715 // Insert a dummy call with all of the arguments to the vm_state we'll need 1716 // for the actual safepoint insertion. This ensures reference arguments in 1717 // the deopt argument list are considered live through the safepoint (and 1718 // thus makes sure they get relocated.) 1719 for (size_t i = 0; i < toUpdate.size(); i++) { 1720 CallSite &CS = toUpdate[i]; 1721 Statepoint StatepointCS(CS); 1722 1723 SmallVector<Value *, 64> DeoptValues; 1724 for (Use &U : StatepointCS.vm_state_args()) { 1725 Value *Arg = cast<Value>(&U); 1726 if (isGCPointerType(Arg->getType())) 1727 DeoptValues.push_back(Arg); 1728 } 1729 insertUseHolderAfter(CS, DeoptValues, holders); 1730 } 1731 1732 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 1733 records.reserve(toUpdate.size()); 1734 for (size_t i = 0; i < toUpdate.size(); i++) { 1735 struct PartiallyConstructedSafepointRecord info; 1736 records.push_back(info); 1737 } 1738 assert(records.size() == toUpdate.size()); 1739 1740 // A) Identify all gc pointers which are staticly live at the given call 1741 // site. 1742 findLiveReferences(F, DT, P, toUpdate, records); 1743 1744 // B) Find the base pointers for each live pointer 1745 /* scope for caching */ { 1746 // Cache the 'defining value' relation used in the computation and 1747 // insertion of base phis and selects. This ensures that we don't insert 1748 // large numbers of duplicate base_phis. 1749 DefiningValueMapTy DVCache; 1750 1751 for (size_t i = 0; i < records.size(); i++) { 1752 struct PartiallyConstructedSafepointRecord &info = records[i]; 1753 CallSite &CS = toUpdate[i]; 1754 findBasePointers(DT, DVCache, CS, info); 1755 } 1756 } // end of cache scope 1757 1758 // The base phi insertion logic (for any safepoint) may have inserted new 1759 // instructions which are now live at some safepoint. The simplest such 1760 // example is: 1761 // loop: 1762 // phi a <-- will be a new base_phi here 1763 // safepoint 1 <-- that needs to be live here 1764 // gep a + 1 1765 // safepoint 2 1766 // br loop 1767 DenseSet<llvm::Value *> allInsertedDefs; 1768 for (size_t i = 0; i < records.size(); i++) { 1769 struct PartiallyConstructedSafepointRecord &info = records[i]; 1770 allInsertedDefs.insert(info.NewInsertedDefs.begin(), 1771 info.NewInsertedDefs.end()); 1772 } 1773 1774 // We insert some dummy calls after each safepoint to definitely hold live 1775 // the base pointers which were identified for that safepoint. We'll then 1776 // ask liveness for _every_ base inserted to see what is now live. Then we 1777 // remove the dummy calls. 1778 holders.reserve(holders.size() + records.size()); 1779 for (size_t i = 0; i < records.size(); i++) { 1780 struct PartiallyConstructedSafepointRecord &info = records[i]; 1781 CallSite &CS = toUpdate[i]; 1782 1783 SmallVector<Value *, 128> Bases; 1784 for (auto Pair : info.PointerToBase) { 1785 Bases.push_back(Pair.second); 1786 } 1787 insertUseHolderAfter(CS, Bases, holders); 1788 } 1789 1790 // Add the bases explicitly to the live vector set. This may result in a few 1791 // extra relocations, but the base has to be available whenever a pointer 1792 // derived from it is used. Thus, we need it to be part of the statepoint's 1793 // gc arguments list. TODO: Introduce an explicit notion (in the following 1794 // code) of the GC argument list as seperate from the live Values at a 1795 // given statepoint. 1796 for (size_t i = 0; i < records.size(); i++) { 1797 struct PartiallyConstructedSafepointRecord &info = records[i]; 1798 addBasesAsLiveValues(info.liveset, info.PointerToBase); 1799 } 1800 1801 // If we inserted any new values, we need to adjust our notion of what is 1802 // live at a particular safepoint. 1803 if (!allInsertedDefs.empty()) { 1804 fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records); 1805 } 1806 if (PrintBasePointers) { 1807 for (size_t i = 0; i < records.size(); i++) { 1808 struct PartiallyConstructedSafepointRecord &info = records[i]; 1809 errs() << "Base Pairs: (w/Relocation)\n"; 1810 for (auto Pair : info.PointerToBase) { 1811 errs() << " derived %" << Pair.first->getName() << " base %" 1812 << Pair.second->getName() << "\n"; 1813 } 1814 } 1815 } 1816 for (size_t i = 0; i < holders.size(); i++) { 1817 holders[i]->eraseFromParent(); 1818 holders[i] = nullptr; 1819 } 1820 holders.clear(); 1821 1822 // Now run through and replace the existing statepoints with new ones with 1823 // the live variables listed. We do not yet update uses of the values being 1824 // relocated. We have references to live variables that need to 1825 // survive to the last iteration of this loop. (By construction, the 1826 // previous statepoint can not be a live variable, thus we can and remove 1827 // the old statepoint calls as we go.) 1828 for (size_t i = 0; i < records.size(); i++) { 1829 struct PartiallyConstructedSafepointRecord &info = records[i]; 1830 CallSite &CS = toUpdate[i]; 1831 makeStatepointExplicit(DT, CS, P, info); 1832 } 1833 toUpdate.clear(); // prevent accident use of invalid CallSites 1834 1835 // In case if we inserted relocates in a different basic block than the 1836 // original safepoint (this can happen for invokes). We need to be sure that 1837 // original values were not used in any of the phi nodes at the 1838 // beginning of basic block containing them. Because we know that all such 1839 // blocks will have single predecessor we can safely assume that all phi 1840 // nodes have single entry (because of normalizeBBForInvokeSafepoint). 1841 // Just remove them all here. 1842 for (size_t i = 0; i < records.size(); i++) { 1843 Instruction *I = records[i].StatepointToken; 1844 1845 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 1846 FoldSingleEntryPHINodes(invoke->getNormalDest()); 1847 assert(!isa<PHINode>(invoke->getNormalDest()->begin())); 1848 1849 FoldSingleEntryPHINodes(invoke->getUnwindDest()); 1850 assert(!isa<PHINode>(invoke->getUnwindDest()->begin())); 1851 } 1852 } 1853 1854 // Do all the fixups of the original live variables to their relocated selves 1855 SmallVector<Value *, 128> live; 1856 for (size_t i = 0; i < records.size(); i++) { 1857 struct PartiallyConstructedSafepointRecord &info = records[i]; 1858 // We can't simply save the live set from the original insertion. One of 1859 // the live values might be the result of a call which needs a safepoint. 1860 // That Value* no longer exists and we need to use the new gc_result. 1861 // Thankfully, the liveset is embedded in the statepoint (and updated), so 1862 // we just grab that. 1863 Statepoint statepoint(info.StatepointToken); 1864 live.insert(live.end(), statepoint.gc_args_begin(), 1865 statepoint.gc_args_end()); 1866 } 1867 unique_unsorted(live); 1868 1869 #ifndef NDEBUG 1870 // sanity check 1871 for (auto ptr : live) { 1872 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 1873 } 1874 #endif 1875 1876 relocationViaAlloca(F, DT, live, records); 1877 return !records.empty(); 1878 } 1879 1880 /// Returns true if this function should be rewritten by this pass. The main 1881 /// point of this function is as an extension point for custom logic. 1882 static bool shouldRewriteStatepointsIn(Function &F) { 1883 // TODO: This should check the GCStrategy 1884 if (F.hasGC()) { 1885 const std::string StatepointExampleName("statepoint-example"); 1886 return StatepointExampleName == F.getGC(); 1887 } else 1888 return false; 1889 } 1890 1891 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 1892 // Nothing to do for declarations. 1893 if (F.isDeclaration() || F.empty()) 1894 return false; 1895 1896 // Policy choice says not to rewrite - the most common reason is that we're 1897 // compiling code without a GCStrategy. 1898 if (!shouldRewriteStatepointsIn(F)) 1899 return false; 1900 1901 // Gather all the statepoints which need rewritten. 1902 SmallVector<CallSite, 64> ParsePointNeeded; 1903 for (Instruction &I : inst_range(F)) { 1904 // TODO: only the ones with the flag set! 1905 if (isStatepoint(I)) 1906 ParsePointNeeded.push_back(CallSite(&I)); 1907 } 1908 1909 // Return early if no work to do. 1910 if (ParsePointNeeded.empty()) 1911 return false; 1912 1913 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1914 return insertParsePoints(F, DT, this, ParsePointNeeded); 1915 } 1916