1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstIterator.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/Cloning.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 45 46 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 47 48 using namespace llvm; 49 50 // Print the liveset found at the insert location 51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 52 cl::init(false)); 53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 54 cl::init(false)); 55 // Print out the base pointers for debugging 56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 57 cl::init(false)); 58 59 // Cost threshold measuring when it is profitable to rematerialize value instead 60 // of relocating it 61 static cl::opt<unsigned> 62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 63 cl::init(6)); 64 65 #ifdef EXPENSIVE_CHECKS 66 static bool ClobberNonLive = true; 67 #else 68 static bool ClobberNonLive = false; 69 #endif 70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 71 cl::location(ClobberNonLive), 72 cl::Hidden); 73 74 static cl::opt<bool> 75 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 76 cl::Hidden, cl::init(true)); 77 78 namespace { 79 struct RewriteStatepointsForGC : public ModulePass { 80 static char ID; // Pass identification, replacement for typeid 81 82 RewriteStatepointsForGC() : ModulePass(ID) { 83 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 84 } 85 bool runOnFunction(Function &F); 86 bool runOnModule(Module &M) override { 87 bool Changed = false; 88 for (Function &F : M) 89 Changed |= runOnFunction(F); 90 91 if (Changed) { 92 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 93 // returns true for at least one function in the module. Since at least 94 // one function changed, we know that the precondition is satisfied. 95 stripNonValidAttributes(M); 96 } 97 98 return Changed; 99 } 100 101 void getAnalysisUsage(AnalysisUsage &AU) const override { 102 // We add and rewrite a bunch of instructions, but don't really do much 103 // else. We could in theory preserve a lot more analyses here. 104 AU.addRequired<DominatorTreeWrapperPass>(); 105 AU.addRequired<TargetTransformInfoWrapperPass>(); 106 } 107 108 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 109 /// dereferenceability that are no longer valid/correct after 110 /// RewriteStatepointsForGC has run. This is because semantically, after 111 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 112 /// heap. stripNonValidAttributes (conservatively) restores correctness 113 /// by erasing all attributes in the module that externally imply 114 /// dereferenceability. 115 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 116 /// can touch the entire heap including noalias objects. 117 void stripNonValidAttributes(Module &M); 118 119 // Helpers for stripNonValidAttributes 120 void stripNonValidAttributesFromBody(Function &F); 121 void stripNonValidAttributesFromPrototype(Function &F); 122 }; 123 } // namespace 124 125 char RewriteStatepointsForGC::ID = 0; 126 127 ModulePass *llvm::createRewriteStatepointsForGCPass() { 128 return new RewriteStatepointsForGC(); 129 } 130 131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 132 "Make relocations explicit at statepoints", false, false) 133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 136 "Make relocations explicit at statepoints", false, false) 137 138 namespace { 139 struct GCPtrLivenessData { 140 /// Values defined in this block. 141 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 142 /// Values used in this block (and thus live); does not included values 143 /// killed within this block. 144 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 145 146 /// Values live into this basic block (i.e. used by any 147 /// instruction in this basic block or ones reachable from here) 148 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 149 150 /// Values live out of this basic block (i.e. live into 151 /// any successor block) 152 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 153 }; 154 155 // The type of the internal cache used inside the findBasePointers family 156 // of functions. From the callers perspective, this is an opaque type and 157 // should not be inspected. 158 // 159 // In the actual implementation this caches two relations: 160 // - The base relation itself (i.e. this pointer is based on that one) 161 // - The base defining value relation (i.e. before base_phi insertion) 162 // Generally, after the execution of a full findBasePointer call, only the 163 // base relation will remain. Internally, we add a mixture of the two 164 // types, then update all the second type to the first type 165 typedef MapVector<Value *, Value *> DefiningValueMapTy; 166 typedef SetVector<Value *> StatepointLiveSetTy; 167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>> 168 RematerializedValueMapTy; 169 170 struct PartiallyConstructedSafepointRecord { 171 /// The set of values known to be live across this safepoint 172 StatepointLiveSetTy LiveSet; 173 174 /// Mapping from live pointers to a base-defining-value 175 MapVector<Value *, Value *> PointerToBase; 176 177 /// The *new* gc.statepoint instruction itself. This produces the token 178 /// that normal path gc.relocates and the gc.result are tied to. 179 Instruction *StatepointToken; 180 181 /// Instruction to which exceptional gc relocates are attached 182 /// Makes it easier to iterate through them during relocationViaAlloca. 183 Instruction *UnwindToken; 184 185 /// Record live values we are rematerialized instead of relocating. 186 /// They are not included into 'LiveSet' field. 187 /// Maps rematerialized copy to it's original value. 188 RematerializedValueMapTy RematerializedValues; 189 }; 190 } 191 192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 193 Optional<OperandBundleUse> DeoptBundle = 194 CS.getOperandBundle(LLVMContext::OB_deopt); 195 196 if (!DeoptBundle.hasValue()) { 197 assert(AllowStatepointWithNoDeoptInfo && 198 "Found non-leaf call without deopt info!"); 199 return None; 200 } 201 202 return DeoptBundle.getValue().Inputs; 203 } 204 205 /// Compute the live-in set for every basic block in the function 206 static void computeLiveInValues(DominatorTree &DT, Function &F, 207 GCPtrLivenessData &Data); 208 209 /// Given results from the dataflow liveness computation, find the set of live 210 /// Values at a particular instruction. 211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 212 StatepointLiveSetTy &out); 213 214 // TODO: Once we can get to the GCStrategy, this becomes 215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 216 217 static bool isGCPointerType(Type *T) { 218 if (auto *PT = dyn_cast<PointerType>(T)) 219 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 220 // GC managed heap. We know that a pointer into this heap needs to be 221 // updated and that no other pointer does. 222 return PT->getAddressSpace() == 1; 223 return false; 224 } 225 226 // Return true if this type is one which a) is a gc pointer or contains a GC 227 // pointer and b) is of a type this code expects to encounter as a live value. 228 // (The insertion code will assert that a type which matches (a) and not (b) 229 // is not encountered.) 230 static bool isHandledGCPointerType(Type *T) { 231 // We fully support gc pointers 232 if (isGCPointerType(T)) 233 return true; 234 // We partially support vectors of gc pointers. The code will assert if it 235 // can't handle something. 236 if (auto VT = dyn_cast<VectorType>(T)) 237 if (isGCPointerType(VT->getElementType())) 238 return true; 239 return false; 240 } 241 242 #ifndef NDEBUG 243 /// Returns true if this type contains a gc pointer whether we know how to 244 /// handle that type or not. 245 static bool containsGCPtrType(Type *Ty) { 246 if (isGCPointerType(Ty)) 247 return true; 248 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 249 return isGCPointerType(VT->getScalarType()); 250 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 251 return containsGCPtrType(AT->getElementType()); 252 if (StructType *ST = dyn_cast<StructType>(Ty)) 253 return any_of(ST->subtypes(), containsGCPtrType); 254 return false; 255 } 256 257 // Returns true if this is a type which a) is a gc pointer or contains a GC 258 // pointer and b) is of a type which the code doesn't expect (i.e. first class 259 // aggregates). Used to trip assertions. 260 static bool isUnhandledGCPointerType(Type *Ty) { 261 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 262 } 263 #endif 264 265 // Return the name of the value suffixed with the provided value, or if the 266 // value didn't have a name, the default value specified. 267 static std::string suffixed_name_or(Value *V, StringRef Suffix, 268 StringRef DefaultName) { 269 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 270 } 271 272 // Conservatively identifies any definitions which might be live at the 273 // given instruction. The analysis is performed immediately before the 274 // given instruction. Values defined by that instruction are not considered 275 // live. Values used by that instruction are considered live. 276 static void 277 analyzeParsePointLiveness(DominatorTree &DT, 278 GCPtrLivenessData &OriginalLivenessData, CallSite CS, 279 PartiallyConstructedSafepointRecord &Result) { 280 Instruction *Inst = CS.getInstruction(); 281 282 StatepointLiveSetTy LiveSet; 283 findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet); 284 285 if (PrintLiveSet) { 286 dbgs() << "Live Variables:\n"; 287 for (Value *V : LiveSet) 288 dbgs() << " " << V->getName() << " " << *V << "\n"; 289 } 290 if (PrintLiveSetSize) { 291 dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 292 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 293 } 294 Result.LiveSet = LiveSet; 295 } 296 297 static bool isKnownBaseResult(Value *V); 298 namespace { 299 /// A single base defining value - An immediate base defining value for an 300 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 301 /// For instructions which have multiple pointer [vector] inputs or that 302 /// transition between vector and scalar types, there is no immediate base 303 /// defining value. The 'base defining value' for 'Def' is the transitive 304 /// closure of this relation stopping at the first instruction which has no 305 /// immediate base defining value. The b.d.v. might itself be a base pointer, 306 /// but it can also be an arbitrary derived pointer. 307 struct BaseDefiningValueResult { 308 /// Contains the value which is the base defining value. 309 Value * const BDV; 310 /// True if the base defining value is also known to be an actual base 311 /// pointer. 312 const bool IsKnownBase; 313 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 314 : BDV(BDV), IsKnownBase(IsKnownBase) { 315 #ifndef NDEBUG 316 // Check consistency between new and old means of checking whether a BDV is 317 // a base. 318 bool MustBeBase = isKnownBaseResult(BDV); 319 assert(!MustBeBase || MustBeBase == IsKnownBase); 320 #endif 321 } 322 }; 323 } 324 325 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 326 327 /// Return a base defining value for the 'Index' element of the given vector 328 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 329 /// 'I'. As an optimization, this method will try to determine when the 330 /// element is known to already be a base pointer. If this can be established, 331 /// the second value in the returned pair will be true. Note that either a 332 /// vector or a pointer typed value can be returned. For the former, the 333 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 334 /// If the later, the return pointer is a BDV (or possibly a base) for the 335 /// particular element in 'I'. 336 static BaseDefiningValueResult 337 findBaseDefiningValueOfVector(Value *I) { 338 // Each case parallels findBaseDefiningValue below, see that code for 339 // detailed motivation. 340 341 if (isa<Argument>(I)) 342 // An incoming argument to the function is a base pointer 343 return BaseDefiningValueResult(I, true); 344 345 if (isa<Constant>(I)) 346 // Base of constant vector consists only of constant null pointers. 347 // For reasoning see similar case inside 'findBaseDefiningValue' function. 348 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 349 true); 350 351 if (isa<LoadInst>(I)) 352 return BaseDefiningValueResult(I, true); 353 354 if (isa<InsertElementInst>(I)) 355 // We don't know whether this vector contains entirely base pointers or 356 // not. To be conservatively correct, we treat it as a BDV and will 357 // duplicate code as needed to construct a parallel vector of bases. 358 return BaseDefiningValueResult(I, false); 359 360 if (isa<ShuffleVectorInst>(I)) 361 // We don't know whether this vector contains entirely base pointers or 362 // not. To be conservatively correct, we treat it as a BDV and will 363 // duplicate code as needed to construct a parallel vector of bases. 364 // TODO: There a number of local optimizations which could be applied here 365 // for particular sufflevector patterns. 366 return BaseDefiningValueResult(I, false); 367 368 // The behavior of getelementptr instructions is the same for vector and 369 // non-vector data types. 370 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 371 return findBaseDefiningValue(GEP->getPointerOperand()); 372 373 // A PHI or Select is a base defining value. The outer findBasePointer 374 // algorithm is responsible for constructing a base value for this BDV. 375 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 376 "unknown vector instruction - no base found for vector element"); 377 return BaseDefiningValueResult(I, false); 378 } 379 380 /// Helper function for findBasePointer - Will return a value which either a) 381 /// defines the base pointer for the input, b) blocks the simple search 382 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 383 /// from pointer to vector type or back. 384 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 385 assert(I->getType()->isPtrOrPtrVectorTy() && 386 "Illegal to ask for the base pointer of a non-pointer type"); 387 388 if (I->getType()->isVectorTy()) 389 return findBaseDefiningValueOfVector(I); 390 391 if (isa<Argument>(I)) 392 // An incoming argument to the function is a base pointer 393 // We should have never reached here if this argument isn't an gc value 394 return BaseDefiningValueResult(I, true); 395 396 if (isa<Constant>(I)) { 397 // We assume that objects with a constant base (e.g. a global) can't move 398 // and don't need to be reported to the collector because they are always 399 // live. Besides global references, all kinds of constants (e.g. undef, 400 // constant expressions, null pointers) can be introduced by the inliner or 401 // the optimizer, especially on dynamically dead paths. 402 // Here we treat all of them as having single null base. By doing this we 403 // trying to avoid problems reporting various conflicts in a form of 404 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 405 // See constant.ll file for relevant test cases. 406 407 return BaseDefiningValueResult( 408 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 409 } 410 411 if (CastInst *CI = dyn_cast<CastInst>(I)) { 412 Value *Def = CI->stripPointerCasts(); 413 // If stripping pointer casts changes the address space there is an 414 // addrspacecast in between. 415 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 416 cast<PointerType>(CI->getType())->getAddressSpace() && 417 "unsupported addrspacecast"); 418 // If we find a cast instruction here, it means we've found a cast which is 419 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 420 // handle int->ptr conversion. 421 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 422 return findBaseDefiningValue(Def); 423 } 424 425 if (isa<LoadInst>(I)) 426 // The value loaded is an gc base itself 427 return BaseDefiningValueResult(I, true); 428 429 430 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 431 // The base of this GEP is the base 432 return findBaseDefiningValue(GEP->getPointerOperand()); 433 434 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 435 switch (II->getIntrinsicID()) { 436 default: 437 // fall through to general call handling 438 break; 439 case Intrinsic::experimental_gc_statepoint: 440 llvm_unreachable("statepoints don't produce pointers"); 441 case Intrinsic::experimental_gc_relocate: { 442 // Rerunning safepoint insertion after safepoints are already 443 // inserted is not supported. It could probably be made to work, 444 // but why are you doing this? There's no good reason. 445 llvm_unreachable("repeat safepoint insertion is not supported"); 446 } 447 case Intrinsic::gcroot: 448 // Currently, this mechanism hasn't been extended to work with gcroot. 449 // There's no reason it couldn't be, but I haven't thought about the 450 // implications much. 451 llvm_unreachable( 452 "interaction with the gcroot mechanism is not supported"); 453 } 454 } 455 // We assume that functions in the source language only return base 456 // pointers. This should probably be generalized via attributes to support 457 // both source language and internal functions. 458 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 459 return BaseDefiningValueResult(I, true); 460 461 // TODO: I have absolutely no idea how to implement this part yet. It's not 462 // necessarily hard, I just haven't really looked at it yet. 463 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 464 465 if (isa<AtomicCmpXchgInst>(I)) 466 // A CAS is effectively a atomic store and load combined under a 467 // predicate. From the perspective of base pointers, we just treat it 468 // like a load. 469 return BaseDefiningValueResult(I, true); 470 471 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 472 "binary ops which don't apply to pointers"); 473 474 // The aggregate ops. Aggregates can either be in the heap or on the 475 // stack, but in either case, this is simply a field load. As a result, 476 // this is a defining definition of the base just like a load is. 477 if (isa<ExtractValueInst>(I)) 478 return BaseDefiningValueResult(I, true); 479 480 // We should never see an insert vector since that would require we be 481 // tracing back a struct value not a pointer value. 482 assert(!isa<InsertValueInst>(I) && 483 "Base pointer for a struct is meaningless"); 484 485 // An extractelement produces a base result exactly when it's input does. 486 // We may need to insert a parallel instruction to extract the appropriate 487 // element out of the base vector corresponding to the input. Given this, 488 // it's analogous to the phi and select case even though it's not a merge. 489 if (isa<ExtractElementInst>(I)) 490 // Note: There a lot of obvious peephole cases here. This are deliberately 491 // handled after the main base pointer inference algorithm to make writing 492 // test cases to exercise that code easier. 493 return BaseDefiningValueResult(I, false); 494 495 // The last two cases here don't return a base pointer. Instead, they 496 // return a value which dynamically selects from among several base 497 // derived pointers (each with it's own base potentially). It's the job of 498 // the caller to resolve these. 499 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 500 "missing instruction case in findBaseDefiningValing"); 501 return BaseDefiningValueResult(I, false); 502 } 503 504 /// Returns the base defining value for this value. 505 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 506 Value *&Cached = Cache[I]; 507 if (!Cached) { 508 Cached = findBaseDefiningValue(I).BDV; 509 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 510 << Cached->getName() << "\n"); 511 } 512 assert(Cache[I] != nullptr); 513 return Cached; 514 } 515 516 /// Return a base pointer for this value if known. Otherwise, return it's 517 /// base defining value. 518 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 519 Value *Def = findBaseDefiningValueCached(I, Cache); 520 auto Found = Cache.find(Def); 521 if (Found != Cache.end()) { 522 // Either a base-of relation, or a self reference. Caller must check. 523 return Found->second; 524 } 525 // Only a BDV available 526 return Def; 527 } 528 529 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 530 /// is it known to be a base pointer? Or do we need to continue searching. 531 static bool isKnownBaseResult(Value *V) { 532 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 533 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 534 !isa<ShuffleVectorInst>(V)) { 535 // no recursion possible 536 return true; 537 } 538 if (isa<Instruction>(V) && 539 cast<Instruction>(V)->getMetadata("is_base_value")) { 540 // This is a previously inserted base phi or select. We know 541 // that this is a base value. 542 return true; 543 } 544 545 // We need to keep searching 546 return false; 547 } 548 549 namespace { 550 /// Models the state of a single base defining value in the findBasePointer 551 /// algorithm for determining where a new instruction is needed to propagate 552 /// the base of this BDV. 553 class BDVState { 554 public: 555 enum Status { Unknown, Base, Conflict }; 556 557 BDVState() : Status(Unknown), BaseValue(nullptr) {} 558 559 explicit BDVState(Status Status, Value *BaseValue = nullptr) 560 : Status(Status), BaseValue(BaseValue) { 561 assert(Status != Base || BaseValue); 562 } 563 564 explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {} 565 566 Status getStatus() const { return Status; } 567 Value *getBaseValue() const { return BaseValue; } 568 569 bool isBase() const { return getStatus() == Base; } 570 bool isUnknown() const { return getStatus() == Unknown; } 571 bool isConflict() const { return getStatus() == Conflict; } 572 573 bool operator==(const BDVState &Other) const { 574 return BaseValue == Other.BaseValue && Status == Other.Status; 575 } 576 577 bool operator!=(const BDVState &other) const { return !(*this == other); } 578 579 LLVM_DUMP_METHOD 580 void dump() const { 581 print(dbgs()); 582 dbgs() << '\n'; 583 } 584 585 void print(raw_ostream &OS) const { 586 switch (getStatus()) { 587 case Unknown: 588 OS << "U"; 589 break; 590 case Base: 591 OS << "B"; 592 break; 593 case Conflict: 594 OS << "C"; 595 break; 596 }; 597 OS << " (" << getBaseValue() << " - " 598 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): "; 599 } 600 601 private: 602 Status Status; 603 AssertingVH<Value> BaseValue; // Non-null only if Status == Base. 604 }; 605 } 606 607 #ifndef NDEBUG 608 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 609 State.print(OS); 610 return OS; 611 } 612 #endif 613 614 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) { 615 switch (LHS.getStatus()) { 616 case BDVState::Unknown: 617 return RHS; 618 619 case BDVState::Base: 620 assert(LHS.getBaseValue() && "can't be null"); 621 if (RHS.isUnknown()) 622 return LHS; 623 624 if (RHS.isBase()) { 625 if (LHS.getBaseValue() == RHS.getBaseValue()) { 626 assert(LHS == RHS && "equality broken!"); 627 return LHS; 628 } 629 return BDVState(BDVState::Conflict); 630 } 631 assert(RHS.isConflict() && "only three states!"); 632 return BDVState(BDVState::Conflict); 633 634 case BDVState::Conflict: 635 return LHS; 636 } 637 llvm_unreachable("only three states!"); 638 } 639 640 // Values of type BDVState form a lattice, and this function implements the meet 641 // operation. 642 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) { 643 BDVState Result = meetBDVStateImpl(LHS, RHS); 644 assert(Result == meetBDVStateImpl(RHS, LHS) && 645 "Math is wrong: meet does not commute!"); 646 return Result; 647 } 648 649 /// For a given value or instruction, figure out what base ptr its derived from. 650 /// For gc objects, this is simply itself. On success, returns a value which is 651 /// the base pointer. (This is reliable and can be used for relocation.) On 652 /// failure, returns nullptr. 653 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 654 Value *Def = findBaseOrBDV(I, Cache); 655 656 if (isKnownBaseResult(Def)) 657 return Def; 658 659 // Here's the rough algorithm: 660 // - For every SSA value, construct a mapping to either an actual base 661 // pointer or a PHI which obscures the base pointer. 662 // - Construct a mapping from PHI to unknown TOP state. Use an 663 // optimistic algorithm to propagate base pointer information. Lattice 664 // looks like: 665 // UNKNOWN 666 // b1 b2 b3 b4 667 // CONFLICT 668 // When algorithm terminates, all PHIs will either have a single concrete 669 // base or be in a conflict state. 670 // - For every conflict, insert a dummy PHI node without arguments. Add 671 // these to the base[Instruction] = BasePtr mapping. For every 672 // non-conflict, add the actual base. 673 // - For every conflict, add arguments for the base[a] of each input 674 // arguments. 675 // 676 // Note: A simpler form of this would be to add the conflict form of all 677 // PHIs without running the optimistic algorithm. This would be 678 // analogous to pessimistic data flow and would likely lead to an 679 // overall worse solution. 680 681 #ifndef NDEBUG 682 auto isExpectedBDVType = [](Value *BDV) { 683 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 684 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 685 isa<ShuffleVectorInst>(BDV); 686 }; 687 #endif 688 689 // Once populated, will contain a mapping from each potentially non-base BDV 690 // to a lattice value (described above) which corresponds to that BDV. 691 // We use the order of insertion (DFS over the def/use graph) to provide a 692 // stable deterministic ordering for visiting DenseMaps (which are unordered) 693 // below. This is important for deterministic compilation. 694 MapVector<Value *, BDVState> States; 695 696 // Recursively fill in all base defining values reachable from the initial 697 // one for which we don't already know a definite base value for 698 /* scope */ { 699 SmallVector<Value*, 16> Worklist; 700 Worklist.push_back(Def); 701 States.insert({Def, BDVState()}); 702 while (!Worklist.empty()) { 703 Value *Current = Worklist.pop_back_val(); 704 assert(!isKnownBaseResult(Current) && "why did it get added?"); 705 706 auto visitIncomingValue = [&](Value *InVal) { 707 Value *Base = findBaseOrBDV(InVal, Cache); 708 if (isKnownBaseResult(Base)) 709 // Known bases won't need new instructions introduced and can be 710 // ignored safely 711 return; 712 assert(isExpectedBDVType(Base) && "the only non-base values " 713 "we see should be base defining values"); 714 if (States.insert(std::make_pair(Base, BDVState())).second) 715 Worklist.push_back(Base); 716 }; 717 if (PHINode *PN = dyn_cast<PHINode>(Current)) { 718 for (Value *InVal : PN->incoming_values()) 719 visitIncomingValue(InVal); 720 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { 721 visitIncomingValue(SI->getTrueValue()); 722 visitIncomingValue(SI->getFalseValue()); 723 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 724 visitIncomingValue(EE->getVectorOperand()); 725 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 726 visitIncomingValue(IE->getOperand(0)); // vector operand 727 visitIncomingValue(IE->getOperand(1)); // scalar operand 728 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) { 729 visitIncomingValue(SV->getOperand(0)); 730 visitIncomingValue(SV->getOperand(1)); 731 } 732 else { 733 llvm_unreachable("Unimplemented instruction case"); 734 } 735 } 736 } 737 738 #ifndef NDEBUG 739 DEBUG(dbgs() << "States after initialization:\n"); 740 for (auto Pair : States) { 741 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 742 } 743 #endif 744 745 // Return a phi state for a base defining value. We'll generate a new 746 // base state for known bases and expect to find a cached state otherwise. 747 auto getStateForBDV = [&](Value *baseValue) { 748 if (isKnownBaseResult(baseValue)) 749 return BDVState(baseValue); 750 auto I = States.find(baseValue); 751 assert(I != States.end() && "lookup failed!"); 752 return I->second; 753 }; 754 755 bool Progress = true; 756 while (Progress) { 757 #ifndef NDEBUG 758 const size_t OldSize = States.size(); 759 #endif 760 Progress = false; 761 // We're only changing values in this loop, thus safe to keep iterators. 762 // Since this is computing a fixed point, the order of visit does not 763 // effect the result. TODO: We could use a worklist here and make this run 764 // much faster. 765 for (auto Pair : States) { 766 Value *BDV = Pair.first; 767 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 768 769 // Given an input value for the current instruction, return a BDVState 770 // instance which represents the BDV of that value. 771 auto getStateForInput = [&](Value *V) mutable { 772 Value *BDV = findBaseOrBDV(V, Cache); 773 return getStateForBDV(BDV); 774 }; 775 776 BDVState NewState; 777 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 778 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); 779 NewState = 780 meetBDVState(NewState, getStateForInput(SI->getFalseValue())); 781 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 782 for (Value *Val : PN->incoming_values()) 783 NewState = meetBDVState(NewState, getStateForInput(Val)); 784 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 785 // The 'meet' for an extractelement is slightly trivial, but it's still 786 // useful in that it drives us to conflict if our input is. 787 NewState = 788 meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); 789 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){ 790 // Given there's a inherent type mismatch between the operands, will 791 // *always* produce Conflict. 792 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); 793 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); 794 } else { 795 // The only instance this does not return a Conflict is when both the 796 // vector operands are the same vector. 797 auto *SV = cast<ShuffleVectorInst>(BDV); 798 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0))); 799 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1))); 800 } 801 802 BDVState OldState = States[BDV]; 803 if (OldState != NewState) { 804 Progress = true; 805 States[BDV] = NewState; 806 } 807 } 808 809 assert(OldSize == States.size() && 810 "fixed point shouldn't be adding any new nodes to state"); 811 } 812 813 #ifndef NDEBUG 814 DEBUG(dbgs() << "States after meet iteration:\n"); 815 for (auto Pair : States) { 816 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 817 } 818 #endif 819 820 // Insert Phis for all conflicts 821 // TODO: adjust naming patterns to avoid this order of iteration dependency 822 for (auto Pair : States) { 823 Instruction *I = cast<Instruction>(Pair.first); 824 BDVState State = Pair.second; 825 assert(!isKnownBaseResult(I) && "why did it get added?"); 826 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 827 828 // extractelement instructions are a bit special in that we may need to 829 // insert an extract even when we know an exact base for the instruction. 830 // The problem is that we need to convert from a vector base to a scalar 831 // base for the particular indice we're interested in. 832 if (State.isBase() && isa<ExtractElementInst>(I) && 833 isa<VectorType>(State.getBaseValue()->getType())) { 834 auto *EE = cast<ExtractElementInst>(I); 835 // TODO: In many cases, the new instruction is just EE itself. We should 836 // exploit this, but can't do it here since it would break the invariant 837 // about the BDV not being known to be a base. 838 auto *BaseInst = ExtractElementInst::Create( 839 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 840 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 841 States[I] = BDVState(BDVState::Base, BaseInst); 842 } 843 844 // Since we're joining a vector and scalar base, they can never be the 845 // same. As a result, we should always see insert element having reached 846 // the conflict state. 847 assert(!isa<InsertElementInst>(I) || State.isConflict()); 848 849 if (!State.isConflict()) 850 continue; 851 852 /// Create and insert a new instruction which will represent the base of 853 /// the given instruction 'I'. 854 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 855 if (isa<PHINode>(I)) { 856 BasicBlock *BB = I->getParent(); 857 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 858 assert(NumPreds > 0 && "how did we reach here"); 859 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 860 return PHINode::Create(I->getType(), NumPreds, Name, I); 861 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 862 // The undef will be replaced later 863 UndefValue *Undef = UndefValue::get(SI->getType()); 864 std::string Name = suffixed_name_or(I, ".base", "base_select"); 865 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); 866 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 867 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 868 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 869 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 870 EE); 871 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 872 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 873 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 874 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 875 return InsertElementInst::Create(VecUndef, ScalarUndef, 876 IE->getOperand(2), Name, IE); 877 } else { 878 auto *SV = cast<ShuffleVectorInst>(I); 879 UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType()); 880 std::string Name = suffixed_name_or(I, ".base", "base_sv"); 881 return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2), 882 Name, SV); 883 } 884 }; 885 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 886 // Add metadata marking this as a base value 887 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 888 States[I] = BDVState(BDVState::Conflict, BaseInst); 889 } 890 891 // Returns a instruction which produces the base pointer for a given 892 // instruction. The instruction is assumed to be an input to one of the BDVs 893 // seen in the inference algorithm above. As such, we must either already 894 // know it's base defining value is a base, or have inserted a new 895 // instruction to propagate the base of it's BDV and have entered that newly 896 // introduced instruction into the state table. In either case, we are 897 // assured to be able to determine an instruction which produces it's base 898 // pointer. 899 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 900 Value *BDV = findBaseOrBDV(Input, Cache); 901 Value *Base = nullptr; 902 if (isKnownBaseResult(BDV)) { 903 Base = BDV; 904 } else { 905 // Either conflict or base. 906 assert(States.count(BDV)); 907 Base = States[BDV].getBaseValue(); 908 } 909 assert(Base && "Can't be null"); 910 // The cast is needed since base traversal may strip away bitcasts 911 if (Base->getType() != Input->getType() && InsertPt) 912 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 913 return Base; 914 }; 915 916 // Fixup all the inputs of the new PHIs. Visit order needs to be 917 // deterministic and predictable because we're naming newly created 918 // instructions. 919 for (auto Pair : States) { 920 Instruction *BDV = cast<Instruction>(Pair.first); 921 BDVState State = Pair.second; 922 923 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 924 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 925 if (!State.isConflict()) 926 continue; 927 928 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 929 PHINode *PN = cast<PHINode>(BDV); 930 unsigned NumPHIValues = PN->getNumIncomingValues(); 931 for (unsigned i = 0; i < NumPHIValues; i++) { 932 Value *InVal = PN->getIncomingValue(i); 933 BasicBlock *InBB = PN->getIncomingBlock(i); 934 935 // If we've already seen InBB, add the same incoming value 936 // we added for it earlier. The IR verifier requires phi 937 // nodes with multiple entries from the same basic block 938 // to have the same incoming value for each of those 939 // entries. If we don't do this check here and basephi 940 // has a different type than base, we'll end up adding two 941 // bitcasts (and hence two distinct values) as incoming 942 // values for the same basic block. 943 944 int BlockIndex = BasePHI->getBasicBlockIndex(InBB); 945 if (BlockIndex != -1) { 946 Value *OldBase = BasePHI->getIncomingValue(BlockIndex); 947 BasePHI->addIncoming(OldBase, InBB); 948 949 #ifndef NDEBUG 950 Value *Base = getBaseForInput(InVal, nullptr); 951 // In essence this assert states: the only way two values 952 // incoming from the same basic block may be different is by 953 // being different bitcasts of the same value. A cleanup 954 // that remains TODO is changing findBaseOrBDV to return an 955 // llvm::Value of the correct type (and still remain pure). 956 // This will remove the need to add bitcasts. 957 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 958 "Sanity -- findBaseOrBDV should be pure!"); 959 #endif 960 continue; 961 } 962 963 // Find the instruction which produces the base for each input. We may 964 // need to insert a bitcast in the incoming block. 965 // TODO: Need to split critical edges if insertion is needed 966 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 967 BasePHI->addIncoming(Base, InBB); 968 } 969 assert(BasePHI->getNumIncomingValues() == NumPHIValues); 970 } else if (SelectInst *BaseSI = 971 dyn_cast<SelectInst>(State.getBaseValue())) { 972 SelectInst *SI = cast<SelectInst>(BDV); 973 974 // Find the instruction which produces the base for each input. 975 // We may need to insert a bitcast. 976 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 977 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 978 } else if (auto *BaseEE = 979 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 980 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 981 // Find the instruction which produces the base for each input. We may 982 // need to insert a bitcast. 983 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 984 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 985 auto *BdvIE = cast<InsertElementInst>(BDV); 986 auto UpdateOperand = [&](int OperandIdx) { 987 Value *InVal = BdvIE->getOperand(OperandIdx); 988 Value *Base = getBaseForInput(InVal, BaseIE); 989 BaseIE->setOperand(OperandIdx, Base); 990 }; 991 UpdateOperand(0); // vector operand 992 UpdateOperand(1); // scalar operand 993 } else { 994 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 995 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 996 auto UpdateOperand = [&](int OperandIdx) { 997 Value *InVal = BdvSV->getOperand(OperandIdx); 998 Value *Base = getBaseForInput(InVal, BaseSV); 999 BaseSV->setOperand(OperandIdx, Base); 1000 }; 1001 UpdateOperand(0); // vector operand 1002 UpdateOperand(1); // vector operand 1003 } 1004 } 1005 1006 // Cache all of our results so we can cheaply reuse them 1007 // NOTE: This is actually two caches: one of the base defining value 1008 // relation and one of the base pointer relation! FIXME 1009 for (auto Pair : States) { 1010 auto *BDV = Pair.first; 1011 Value *Base = Pair.second.getBaseValue(); 1012 assert(BDV && Base); 1013 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1014 1015 DEBUG(dbgs() << "Updating base value cache" 1016 << " for: " << BDV->getName() << " from: " 1017 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1018 << " to: " << Base->getName() << "\n"); 1019 1020 if (Cache.count(BDV)) { 1021 assert(isKnownBaseResult(Base) && 1022 "must be something we 'know' is a base pointer"); 1023 // Once we transition from the BDV relation being store in the Cache to 1024 // the base relation being stored, it must be stable 1025 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && 1026 "base relation should be stable"); 1027 } 1028 Cache[BDV] = Base; 1029 } 1030 assert(Cache.count(Def)); 1031 return Cache[Def]; 1032 } 1033 1034 // For a set of live pointers (base and/or derived), identify the base 1035 // pointer of the object which they are derived from. This routine will 1036 // mutate the IR graph as needed to make the 'base' pointer live at the 1037 // definition site of 'derived'. This ensures that any use of 'derived' can 1038 // also use 'base'. This may involve the insertion of a number of 1039 // additional PHI nodes. 1040 // 1041 // preconditions: live is a set of pointer type Values 1042 // 1043 // side effects: may insert PHI nodes into the existing CFG, will preserve 1044 // CFG, will not remove or mutate any existing nodes 1045 // 1046 // post condition: PointerToBase contains one (derived, base) pair for every 1047 // pointer in live. Note that derived can be equal to base if the original 1048 // pointer was a base pointer. 1049 static void 1050 findBasePointers(const StatepointLiveSetTy &live, 1051 MapVector<Value *, Value *> &PointerToBase, 1052 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1053 for (Value *ptr : live) { 1054 Value *base = findBasePointer(ptr, DVCache); 1055 assert(base && "failed to find base pointer"); 1056 PointerToBase[ptr] = base; 1057 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1058 DT->dominates(cast<Instruction>(base)->getParent(), 1059 cast<Instruction>(ptr)->getParent())) && 1060 "The base we found better dominate the derived pointer"); 1061 } 1062 } 1063 1064 /// Find the required based pointers (and adjust the live set) for the given 1065 /// parse point. 1066 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1067 CallSite CS, 1068 PartiallyConstructedSafepointRecord &result) { 1069 MapVector<Value *, Value *> PointerToBase; 1070 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1071 1072 if (PrintBasePointers) { 1073 errs() << "Base Pairs (w/o Relocation):\n"; 1074 for (auto &Pair : PointerToBase) { 1075 errs() << " derived "; 1076 Pair.first->printAsOperand(errs(), false); 1077 errs() << " base "; 1078 Pair.second->printAsOperand(errs(), false); 1079 errs() << "\n";; 1080 } 1081 } 1082 1083 result.PointerToBase = PointerToBase; 1084 } 1085 1086 /// Given an updated version of the dataflow liveness results, update the 1087 /// liveset and base pointer maps for the call site CS. 1088 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1089 CallSite CS, 1090 PartiallyConstructedSafepointRecord &result); 1091 1092 static void recomputeLiveInValues( 1093 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1094 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1095 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1096 // again. The old values are still live and will help it stabilize quickly. 1097 GCPtrLivenessData RevisedLivenessData; 1098 computeLiveInValues(DT, F, RevisedLivenessData); 1099 for (size_t i = 0; i < records.size(); i++) { 1100 struct PartiallyConstructedSafepointRecord &info = records[i]; 1101 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1102 } 1103 } 1104 1105 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1106 // no uses of the original value / return value between the gc.statepoint and 1107 // the gc.relocate / gc.result call. One case which can arise is a phi node 1108 // starting one of the successor blocks. We also need to be able to insert the 1109 // gc.relocates only on the path which goes through the statepoint. We might 1110 // need to split an edge to make this possible. 1111 static BasicBlock * 1112 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1113 DominatorTree &DT) { 1114 BasicBlock *Ret = BB; 1115 if (!BB->getUniquePredecessor()) 1116 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1117 1118 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1119 // from it 1120 FoldSingleEntryPHINodes(Ret); 1121 assert(!isa<PHINode>(Ret->begin()) && 1122 "All PHI nodes should have been removed!"); 1123 1124 // At this point, we can safely insert a gc.relocate or gc.result as the first 1125 // instruction in Ret if needed. 1126 return Ret; 1127 } 1128 1129 // Create new attribute set containing only attributes which can be transferred 1130 // from original call to the safepoint. 1131 static AttributeList legalizeCallAttributes(AttributeList AL) { 1132 if (AL.isEmpty()) 1133 return AL; 1134 1135 // Remove the readonly, readnone, and statepoint function attributes. 1136 AttrBuilder FnAttrs = AL.getFnAttributes(); 1137 FnAttrs.removeAttribute(Attribute::ReadNone); 1138 FnAttrs.removeAttribute(Attribute::ReadOnly); 1139 for (Attribute A : AL.getFnAttributes()) { 1140 if (isStatepointDirectiveAttr(A)) 1141 FnAttrs.remove(A); 1142 } 1143 1144 // Just skip parameter and return attributes for now 1145 LLVMContext &Ctx = AL.getContext(); 1146 return AttributeList::get(Ctx, AttributeList::FunctionIndex, 1147 AttributeSet::get(Ctx, FnAttrs)); 1148 } 1149 1150 /// Helper function to place all gc relocates necessary for the given 1151 /// statepoint. 1152 /// Inputs: 1153 /// liveVariables - list of variables to be relocated. 1154 /// liveStart - index of the first live variable. 1155 /// basePtrs - base pointers. 1156 /// statepointToken - statepoint instruction to which relocates should be 1157 /// bound. 1158 /// Builder - Llvm IR builder to be used to construct new calls. 1159 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1160 const int LiveStart, 1161 ArrayRef<Value *> BasePtrs, 1162 Instruction *StatepointToken, 1163 IRBuilder<> Builder) { 1164 if (LiveVariables.empty()) 1165 return; 1166 1167 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1168 auto ValIt = find(LiveVec, Val); 1169 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1170 size_t Index = std::distance(LiveVec.begin(), ValIt); 1171 assert(Index < LiveVec.size() && "Bug in std::find?"); 1172 return Index; 1173 }; 1174 Module *M = StatepointToken->getModule(); 1175 1176 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1177 // element type is i8 addrspace(1)*). We originally generated unique 1178 // declarations for each pointer type, but this proved problematic because 1179 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1180 // towards a single unified pointer type anyways, we can just cast everything 1181 // to an i8* of the right address space. A bitcast is added later to convert 1182 // gc_relocate to the actual value's type. 1183 auto getGCRelocateDecl = [&] (Type *Ty) { 1184 assert(isHandledGCPointerType(Ty)); 1185 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1186 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1187 if (auto *VT = dyn_cast<VectorType>(Ty)) 1188 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1189 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1190 {NewTy}); 1191 }; 1192 1193 // Lazily populated map from input types to the canonicalized form mentioned 1194 // in the comment above. This should probably be cached somewhere more 1195 // broadly. 1196 DenseMap<Type*, Value*> TypeToDeclMap; 1197 1198 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1199 // Generate the gc.relocate call and save the result 1200 Value *BaseIdx = 1201 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1202 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1203 1204 Type *Ty = LiveVariables[i]->getType(); 1205 if (!TypeToDeclMap.count(Ty)) 1206 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1207 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1208 1209 // only specify a debug name if we can give a useful one 1210 CallInst *Reloc = Builder.CreateCall( 1211 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1212 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1213 // Trick CodeGen into thinking there are lots of free registers at this 1214 // fake call. 1215 Reloc->setCallingConv(CallingConv::Cold); 1216 } 1217 } 1218 1219 namespace { 1220 1221 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1222 /// avoids having to worry about keeping around dangling pointers to Values. 1223 class DeferredReplacement { 1224 AssertingVH<Instruction> Old; 1225 AssertingVH<Instruction> New; 1226 bool IsDeoptimize = false; 1227 1228 DeferredReplacement() {} 1229 1230 public: 1231 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1232 assert(Old != New && Old && New && 1233 "Cannot RAUW equal values or to / from null!"); 1234 1235 DeferredReplacement D; 1236 D.Old = Old; 1237 D.New = New; 1238 return D; 1239 } 1240 1241 static DeferredReplacement createDelete(Instruction *ToErase) { 1242 DeferredReplacement D; 1243 D.Old = ToErase; 1244 return D; 1245 } 1246 1247 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1248 #ifndef NDEBUG 1249 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1250 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1251 "Only way to construct a deoptimize deferred replacement"); 1252 #endif 1253 DeferredReplacement D; 1254 D.Old = Old; 1255 D.IsDeoptimize = true; 1256 return D; 1257 } 1258 1259 /// Does the task represented by this instance. 1260 void doReplacement() { 1261 Instruction *OldI = Old; 1262 Instruction *NewI = New; 1263 1264 assert(OldI != NewI && "Disallowed at construction?!"); 1265 assert((!IsDeoptimize || !New) && 1266 "Deoptimize instrinsics are not replaced!"); 1267 1268 Old = nullptr; 1269 New = nullptr; 1270 1271 if (NewI) 1272 OldI->replaceAllUsesWith(NewI); 1273 1274 if (IsDeoptimize) { 1275 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1276 // not necessarilly be followed by the matching return. 1277 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1278 new UnreachableInst(RI->getContext(), RI); 1279 RI->eraseFromParent(); 1280 } 1281 1282 OldI->eraseFromParent(); 1283 } 1284 }; 1285 } 1286 1287 static StringRef getDeoptLowering(CallSite CS) { 1288 const char *DeoptLowering = "deopt-lowering"; 1289 if (CS.hasFnAttr(DeoptLowering)) { 1290 // FIXME: CallSite has a *really* confusing interface around attributes 1291 // with values. 1292 const AttributeList &CSAS = CS.getAttributes(); 1293 if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering)) 1294 return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering) 1295 .getValueAsString(); 1296 Function *F = CS.getCalledFunction(); 1297 assert(F && F->hasFnAttribute(DeoptLowering)); 1298 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1299 } 1300 return "live-through"; 1301 } 1302 1303 1304 static void 1305 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1306 const SmallVectorImpl<Value *> &BasePtrs, 1307 const SmallVectorImpl<Value *> &LiveVariables, 1308 PartiallyConstructedSafepointRecord &Result, 1309 std::vector<DeferredReplacement> &Replacements) { 1310 assert(BasePtrs.size() == LiveVariables.size()); 1311 1312 // Then go ahead and use the builder do actually do the inserts. We insert 1313 // immediately before the previous instruction under the assumption that all 1314 // arguments will be available here. We can't insert afterwards since we may 1315 // be replacing a terminator. 1316 Instruction *InsertBefore = CS.getInstruction(); 1317 IRBuilder<> Builder(InsertBefore); 1318 1319 ArrayRef<Value *> GCArgs(LiveVariables); 1320 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1321 uint32_t NumPatchBytes = 0; 1322 uint32_t Flags = uint32_t(StatepointFlags::None); 1323 1324 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1325 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1326 ArrayRef<Use> TransitionArgs; 1327 if (auto TransitionBundle = 1328 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1329 Flags |= uint32_t(StatepointFlags::GCTransition); 1330 TransitionArgs = TransitionBundle->Inputs; 1331 } 1332 1333 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1334 // with a return value, we lower then as never returning calls to 1335 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1336 bool IsDeoptimize = false; 1337 1338 StatepointDirectives SD = 1339 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1340 if (SD.NumPatchBytes) 1341 NumPatchBytes = *SD.NumPatchBytes; 1342 if (SD.StatepointID) 1343 StatepointID = *SD.StatepointID; 1344 1345 // Pass through the requested lowering if any. The default is live-through. 1346 StringRef DeoptLowering = getDeoptLowering(CS); 1347 if (DeoptLowering.equals("live-in")) 1348 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1349 else { 1350 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1351 } 1352 1353 Value *CallTarget = CS.getCalledValue(); 1354 if (Function *F = dyn_cast<Function>(CallTarget)) { 1355 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1356 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1357 // __llvm_deoptimize symbol. We want to resolve this now, since the 1358 // verifier does not allow taking the address of an intrinsic function. 1359 1360 SmallVector<Type *, 8> DomainTy; 1361 for (Value *Arg : CallArgs) 1362 DomainTy.push_back(Arg->getType()); 1363 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1364 /* isVarArg = */ false); 1365 1366 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1367 // calls to @llvm.experimental.deoptimize with different argument types in 1368 // the same module. This is fine -- we assume the frontend knew what it 1369 // was doing when generating this kind of IR. 1370 CallTarget = 1371 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1372 1373 IsDeoptimize = true; 1374 } 1375 } 1376 1377 // Create the statepoint given all the arguments 1378 Instruction *Token = nullptr; 1379 if (CS.isCall()) { 1380 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1381 CallInst *Call = Builder.CreateGCStatepointCall( 1382 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1383 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1384 1385 Call->setTailCallKind(ToReplace->getTailCallKind()); 1386 Call->setCallingConv(ToReplace->getCallingConv()); 1387 1388 // Currently we will fail on parameter attributes and on certain 1389 // function attributes. In case if we can handle this set of attributes - 1390 // set up function attrs directly on statepoint and return attrs later for 1391 // gc_result intrinsic. 1392 Call->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1393 1394 Token = Call; 1395 1396 // Put the following gc_result and gc_relocate calls immediately after the 1397 // the old call (which we're about to delete) 1398 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1399 Builder.SetInsertPoint(ToReplace->getNextNode()); 1400 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1401 } else { 1402 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1403 1404 // Insert the new invoke into the old block. We'll remove the old one in a 1405 // moment at which point this will become the new terminator for the 1406 // original block. 1407 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1408 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1409 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1410 GCArgs, "statepoint_token"); 1411 1412 Invoke->setCallingConv(ToReplace->getCallingConv()); 1413 1414 // Currently we will fail on parameter attributes and on certain 1415 // function attributes. In case if we can handle this set of attributes - 1416 // set up function attrs directly on statepoint and return attrs later for 1417 // gc_result intrinsic. 1418 Invoke->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1419 1420 Token = Invoke; 1421 1422 // Generate gc relocates in exceptional path 1423 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1424 assert(!isa<PHINode>(UnwindBlock->begin()) && 1425 UnwindBlock->getUniquePredecessor() && 1426 "can't safely insert in this block!"); 1427 1428 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1429 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1430 1431 // Attach exceptional gc relocates to the landingpad. 1432 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1433 Result.UnwindToken = ExceptionalToken; 1434 1435 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1436 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1437 Builder); 1438 1439 // Generate gc relocates and returns for normal block 1440 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1441 assert(!isa<PHINode>(NormalDest->begin()) && 1442 NormalDest->getUniquePredecessor() && 1443 "can't safely insert in this block!"); 1444 1445 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1446 1447 // gc relocates will be generated later as if it were regular call 1448 // statepoint 1449 } 1450 assert(Token && "Should be set in one of the above branches!"); 1451 1452 if (IsDeoptimize) { 1453 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1454 // transform the tail-call like structure to a call to a void function 1455 // followed by unreachable to get better codegen. 1456 Replacements.push_back( 1457 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1458 } else { 1459 Token->setName("statepoint_token"); 1460 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1461 StringRef Name = 1462 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1463 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1464 GCResult->setAttributes( 1465 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1466 CS.getAttributes().getRetAttributes())); 1467 1468 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1469 // live set of some other safepoint, in which case that safepoint's 1470 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1471 // llvm::Instruction. Instead, we defer the replacement and deletion to 1472 // after the live sets have been made explicit in the IR, and we no longer 1473 // have raw pointers to worry about. 1474 Replacements.emplace_back( 1475 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1476 } else { 1477 Replacements.emplace_back( 1478 DeferredReplacement::createDelete(CS.getInstruction())); 1479 } 1480 } 1481 1482 Result.StatepointToken = Token; 1483 1484 // Second, create a gc.relocate for every live variable 1485 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1486 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1487 } 1488 1489 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1490 // which make the relocations happening at this safepoint explicit. 1491 // 1492 // WARNING: Does not do any fixup to adjust users of the original live 1493 // values. That's the callers responsibility. 1494 static void 1495 makeStatepointExplicit(DominatorTree &DT, CallSite CS, 1496 PartiallyConstructedSafepointRecord &Result, 1497 std::vector<DeferredReplacement> &Replacements) { 1498 const auto &LiveSet = Result.LiveSet; 1499 const auto &PointerToBase = Result.PointerToBase; 1500 1501 // Convert to vector for efficient cross referencing. 1502 SmallVector<Value *, 64> BaseVec, LiveVec; 1503 LiveVec.reserve(LiveSet.size()); 1504 BaseVec.reserve(LiveSet.size()); 1505 for (Value *L : LiveSet) { 1506 LiveVec.push_back(L); 1507 assert(PointerToBase.count(L)); 1508 Value *Base = PointerToBase.find(L)->second; 1509 BaseVec.push_back(Base); 1510 } 1511 assert(LiveVec.size() == BaseVec.size()); 1512 1513 // Do the actual rewriting and delete the old statepoint 1514 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1515 } 1516 1517 // Helper function for the relocationViaAlloca. 1518 // 1519 // It receives iterator to the statepoint gc relocates and emits a store to the 1520 // assigned location (via allocaMap) for the each one of them. It adds the 1521 // visited values into the visitedLiveValues set, which we will later use them 1522 // for sanity checking. 1523 static void 1524 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1525 DenseMap<Value *, Value *> &AllocaMap, 1526 DenseSet<Value *> &VisitedLiveValues) { 1527 1528 for (User *U : GCRelocs) { 1529 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1530 if (!Relocate) 1531 continue; 1532 1533 Value *OriginalValue = Relocate->getDerivedPtr(); 1534 assert(AllocaMap.count(OriginalValue)); 1535 Value *Alloca = AllocaMap[OriginalValue]; 1536 1537 // Emit store into the related alloca 1538 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1539 // the correct type according to alloca. 1540 assert(Relocate->getNextNode() && 1541 "Should always have one since it's not a terminator"); 1542 IRBuilder<> Builder(Relocate->getNextNode()); 1543 Value *CastedRelocatedValue = 1544 Builder.CreateBitCast(Relocate, 1545 cast<AllocaInst>(Alloca)->getAllocatedType(), 1546 suffixed_name_or(Relocate, ".casted", "")); 1547 1548 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1549 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1550 1551 #ifndef NDEBUG 1552 VisitedLiveValues.insert(OriginalValue); 1553 #endif 1554 } 1555 } 1556 1557 // Helper function for the "relocationViaAlloca". Similar to the 1558 // "insertRelocationStores" but works for rematerialized values. 1559 static void insertRematerializationStores( 1560 const RematerializedValueMapTy &RematerializedValues, 1561 DenseMap<Value *, Value *> &AllocaMap, 1562 DenseSet<Value *> &VisitedLiveValues) { 1563 1564 for (auto RematerializedValuePair: RematerializedValues) { 1565 Instruction *RematerializedValue = RematerializedValuePair.first; 1566 Value *OriginalValue = RematerializedValuePair.second; 1567 1568 assert(AllocaMap.count(OriginalValue) && 1569 "Can not find alloca for rematerialized value"); 1570 Value *Alloca = AllocaMap[OriginalValue]; 1571 1572 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1573 Store->insertAfter(RematerializedValue); 1574 1575 #ifndef NDEBUG 1576 VisitedLiveValues.insert(OriginalValue); 1577 #endif 1578 } 1579 } 1580 1581 /// Do all the relocation update via allocas and mem2reg 1582 static void relocationViaAlloca( 1583 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1584 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1585 #ifndef NDEBUG 1586 // record initial number of (static) allocas; we'll check we have the same 1587 // number when we get done. 1588 int InitialAllocaNum = 0; 1589 for (Instruction &I : F.getEntryBlock()) 1590 if (isa<AllocaInst>(I)) 1591 InitialAllocaNum++; 1592 #endif 1593 1594 // TODO-PERF: change data structures, reserve 1595 DenseMap<Value *, Value *> AllocaMap; 1596 SmallVector<AllocaInst *, 200> PromotableAllocas; 1597 // Used later to chack that we have enough allocas to store all values 1598 std::size_t NumRematerializedValues = 0; 1599 PromotableAllocas.reserve(Live.size()); 1600 1601 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1602 // "PromotableAllocas" 1603 const DataLayout &DL = F.getParent()->getDataLayout(); 1604 auto emitAllocaFor = [&](Value *LiveValue) { 1605 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 1606 DL.getAllocaAddrSpace(), "", 1607 F.getEntryBlock().getFirstNonPHI()); 1608 AllocaMap[LiveValue] = Alloca; 1609 PromotableAllocas.push_back(Alloca); 1610 }; 1611 1612 // Emit alloca for each live gc pointer 1613 for (Value *V : Live) 1614 emitAllocaFor(V); 1615 1616 // Emit allocas for rematerialized values 1617 for (const auto &Info : Records) 1618 for (auto RematerializedValuePair : Info.RematerializedValues) { 1619 Value *OriginalValue = RematerializedValuePair.second; 1620 if (AllocaMap.count(OriginalValue) != 0) 1621 continue; 1622 1623 emitAllocaFor(OriginalValue); 1624 ++NumRematerializedValues; 1625 } 1626 1627 // The next two loops are part of the same conceptual operation. We need to 1628 // insert a store to the alloca after the original def and at each 1629 // redefinition. We need to insert a load before each use. These are split 1630 // into distinct loops for performance reasons. 1631 1632 // Update gc pointer after each statepoint: either store a relocated value or 1633 // null (if no relocated value was found for this gc pointer and it is not a 1634 // gc_result). This must happen before we update the statepoint with load of 1635 // alloca otherwise we lose the link between statepoint and old def. 1636 for (const auto &Info : Records) { 1637 Value *Statepoint = Info.StatepointToken; 1638 1639 // This will be used for consistency check 1640 DenseSet<Value *> VisitedLiveValues; 1641 1642 // Insert stores for normal statepoint gc relocates 1643 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1644 1645 // In case if it was invoke statepoint 1646 // we will insert stores for exceptional path gc relocates. 1647 if (isa<InvokeInst>(Statepoint)) { 1648 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1649 VisitedLiveValues); 1650 } 1651 1652 // Do similar thing with rematerialized values 1653 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1654 VisitedLiveValues); 1655 1656 if (ClobberNonLive) { 1657 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1658 // the gc.statepoint. This will turn some subtle GC problems into 1659 // slightly easier to debug SEGVs. Note that on large IR files with 1660 // lots of gc.statepoints this is extremely costly both memory and time 1661 // wise. 1662 SmallVector<AllocaInst *, 64> ToClobber; 1663 for (auto Pair : AllocaMap) { 1664 Value *Def = Pair.first; 1665 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1666 1667 // This value was relocated 1668 if (VisitedLiveValues.count(Def)) { 1669 continue; 1670 } 1671 ToClobber.push_back(Alloca); 1672 } 1673 1674 auto InsertClobbersAt = [&](Instruction *IP) { 1675 for (auto *AI : ToClobber) { 1676 auto PT = cast<PointerType>(AI->getAllocatedType()); 1677 Constant *CPN = ConstantPointerNull::get(PT); 1678 StoreInst *Store = new StoreInst(CPN, AI); 1679 Store->insertBefore(IP); 1680 } 1681 }; 1682 1683 // Insert the clobbering stores. These may get intermixed with the 1684 // gc.results and gc.relocates, but that's fine. 1685 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1686 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1687 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1688 } else { 1689 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1690 } 1691 } 1692 } 1693 1694 // Update use with load allocas and add store for gc_relocated. 1695 for (auto Pair : AllocaMap) { 1696 Value *Def = Pair.first; 1697 Value *Alloca = Pair.second; 1698 1699 // We pre-record the uses of allocas so that we dont have to worry about 1700 // later update that changes the user information.. 1701 1702 SmallVector<Instruction *, 20> Uses; 1703 // PERF: trade a linear scan for repeated reallocation 1704 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1705 for (User *U : Def->users()) { 1706 if (!isa<ConstantExpr>(U)) { 1707 // If the def has a ConstantExpr use, then the def is either a 1708 // ConstantExpr use itself or null. In either case 1709 // (recursively in the first, directly in the second), the oop 1710 // it is ultimately dependent on is null and this particular 1711 // use does not need to be fixed up. 1712 Uses.push_back(cast<Instruction>(U)); 1713 } 1714 } 1715 1716 std::sort(Uses.begin(), Uses.end()); 1717 auto Last = std::unique(Uses.begin(), Uses.end()); 1718 Uses.erase(Last, Uses.end()); 1719 1720 for (Instruction *Use : Uses) { 1721 if (isa<PHINode>(Use)) { 1722 PHINode *Phi = cast<PHINode>(Use); 1723 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1724 if (Def == Phi->getIncomingValue(i)) { 1725 LoadInst *Load = new LoadInst( 1726 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1727 Phi->setIncomingValue(i, Load); 1728 } 1729 } 1730 } else { 1731 LoadInst *Load = new LoadInst(Alloca, "", Use); 1732 Use->replaceUsesOfWith(Def, Load); 1733 } 1734 } 1735 1736 // Emit store for the initial gc value. Store must be inserted after load, 1737 // otherwise store will be in alloca's use list and an extra load will be 1738 // inserted before it. 1739 StoreInst *Store = new StoreInst(Def, Alloca); 1740 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1741 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1742 // InvokeInst is a TerminatorInst so the store need to be inserted 1743 // into its normal destination block. 1744 BasicBlock *NormalDest = Invoke->getNormalDest(); 1745 Store->insertBefore(NormalDest->getFirstNonPHI()); 1746 } else { 1747 assert(!Inst->isTerminator() && 1748 "The only TerminatorInst that can produce a value is " 1749 "InvokeInst which is handled above."); 1750 Store->insertAfter(Inst); 1751 } 1752 } else { 1753 assert(isa<Argument>(Def)); 1754 Store->insertAfter(cast<Instruction>(Alloca)); 1755 } 1756 } 1757 1758 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1759 "we must have the same allocas with lives"); 1760 if (!PromotableAllocas.empty()) { 1761 // Apply mem2reg to promote alloca to SSA 1762 PromoteMemToReg(PromotableAllocas, DT); 1763 } 1764 1765 #ifndef NDEBUG 1766 for (auto &I : F.getEntryBlock()) 1767 if (isa<AllocaInst>(I)) 1768 InitialAllocaNum--; 1769 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1770 #endif 1771 } 1772 1773 /// Implement a unique function which doesn't require we sort the input 1774 /// vector. Doing so has the effect of changing the output of a couple of 1775 /// tests in ways which make them less useful in testing fused safepoints. 1776 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1777 SmallSet<T, 8> Seen; 1778 Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }), 1779 Vec.end()); 1780 } 1781 1782 /// Insert holders so that each Value is obviously live through the entire 1783 /// lifetime of the call. 1784 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1785 SmallVectorImpl<CallInst *> &Holders) { 1786 if (Values.empty()) 1787 // No values to hold live, might as well not insert the empty holder 1788 return; 1789 1790 Module *M = CS.getInstruction()->getModule(); 1791 // Use a dummy vararg function to actually hold the values live 1792 Function *Func = cast<Function>(M->getOrInsertFunction( 1793 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1794 if (CS.isCall()) { 1795 // For call safepoints insert dummy calls right after safepoint 1796 Holders.push_back(CallInst::Create(Func, Values, "", 1797 &*++CS.getInstruction()->getIterator())); 1798 return; 1799 } 1800 // For invoke safepooints insert dummy calls both in normal and 1801 // exceptional destination blocks 1802 auto *II = cast<InvokeInst>(CS.getInstruction()); 1803 Holders.push_back(CallInst::Create( 1804 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1805 Holders.push_back(CallInst::Create( 1806 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1807 } 1808 1809 static void findLiveReferences( 1810 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1811 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1812 GCPtrLivenessData OriginalLivenessData; 1813 computeLiveInValues(DT, F, OriginalLivenessData); 1814 for (size_t i = 0; i < records.size(); i++) { 1815 struct PartiallyConstructedSafepointRecord &info = records[i]; 1816 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1817 } 1818 } 1819 1820 // Helper function for the "rematerializeLiveValues". It walks use chain 1821 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 1822 // the base or a value it cannot process. Only "simple" values are processed 1823 // (currently it is GEP's and casts). The returned root is examined by the 1824 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 1825 // with all visited values. 1826 static Value* findRematerializableChainToBasePointer( 1827 SmallVectorImpl<Instruction*> &ChainToBase, 1828 Value *CurrentValue) { 1829 1830 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1831 ChainToBase.push_back(GEP); 1832 return findRematerializableChainToBasePointer(ChainToBase, 1833 GEP->getPointerOperand()); 1834 } 1835 1836 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1837 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1838 return CI; 1839 1840 ChainToBase.push_back(CI); 1841 return findRematerializableChainToBasePointer(ChainToBase, 1842 CI->getOperand(0)); 1843 } 1844 1845 // We have reached the root of the chain, which is either equal to the base or 1846 // is the first unsupported value along the use chain. 1847 return CurrentValue; 1848 } 1849 1850 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1851 // chain we are going to rematerialize. 1852 static unsigned 1853 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1854 TargetTransformInfo &TTI) { 1855 unsigned Cost = 0; 1856 1857 for (Instruction *Instr : Chain) { 1858 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1859 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1860 "non noop cast is found during rematerialization"); 1861 1862 Type *SrcTy = CI->getOperand(0)->getType(); 1863 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI); 1864 1865 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1866 // Cost of the address calculation 1867 Type *ValTy = GEP->getSourceElementType(); 1868 Cost += TTI.getAddressComputationCost(ValTy); 1869 1870 // And cost of the GEP itself 1871 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1872 // allowed for the external usage) 1873 if (!GEP->hasAllConstantIndices()) 1874 Cost += 2; 1875 1876 } else { 1877 llvm_unreachable("unsupported instruciton type during rematerialization"); 1878 } 1879 } 1880 1881 return Cost; 1882 } 1883 1884 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 1885 1886 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 1887 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 1888 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 1889 return false; 1890 // Map of incoming values and their corresponding basic blocks of 1891 // OrigRootPhi. 1892 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 1893 for (unsigned i = 0; i < PhiNum; i++) 1894 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 1895 OrigRootPhi.getIncomingBlock(i); 1896 1897 // Both current and base PHIs should have same incoming values and 1898 // the same basic blocks corresponding to the incoming values. 1899 for (unsigned i = 0; i < PhiNum; i++) { 1900 auto CIVI = 1901 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 1902 if (CIVI == CurrentIncomingValues.end()) 1903 return false; 1904 BasicBlock *CurrentIncomingBB = CIVI->second; 1905 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 1906 return false; 1907 } 1908 return true; 1909 1910 } 1911 1912 // From the statepoint live set pick values that are cheaper to recompute then 1913 // to relocate. Remove this values from the live set, rematerialize them after 1914 // statepoint and record them in "Info" structure. Note that similar to 1915 // relocated values we don't do any user adjustments here. 1916 static void rematerializeLiveValues(CallSite CS, 1917 PartiallyConstructedSafepointRecord &Info, 1918 TargetTransformInfo &TTI) { 1919 const unsigned int ChainLengthThreshold = 10; 1920 1921 // Record values we are going to delete from this statepoint live set. 1922 // We can not di this in following loop due to iterator invalidation. 1923 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1924 1925 for (Value *LiveValue: Info.LiveSet) { 1926 // For each live pointer find it's defining chain 1927 SmallVector<Instruction *, 3> ChainToBase; 1928 assert(Info.PointerToBase.count(LiveValue)); 1929 Value *RootOfChain = 1930 findRematerializableChainToBasePointer(ChainToBase, 1931 LiveValue); 1932 1933 // Nothing to do, or chain is too long 1934 if ( ChainToBase.size() == 0 || 1935 ChainToBase.size() > ChainLengthThreshold) 1936 continue; 1937 1938 // Handle the scenario where the RootOfChain is not equal to the 1939 // Base Value, but they are essentially the same phi values. 1940 if (RootOfChain != Info.PointerToBase[LiveValue]) { 1941 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 1942 PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]); 1943 if (!OrigRootPhi || !AlternateRootPhi) 1944 continue; 1945 // PHI nodes that have the same incoming values, and belonging to the same 1946 // basic blocks are essentially the same SSA value. When the original phi 1947 // has incoming values with different base pointers, the original phi is 1948 // marked as conflict, and an additional `AlternateRootPhi` with the same 1949 // incoming values get generated by the findBasePointer function. We need 1950 // to identify the newly generated AlternateRootPhi (.base version of phi) 1951 // and RootOfChain (the original phi node itself) are the same, so that we 1952 // can rematerialize the gep and casts. This is a workaround for the 1953 // deficieny in the findBasePointer algorithm. 1954 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 1955 continue; 1956 // Now that the phi nodes are proved to be the same, assert that 1957 // findBasePointer's newly generated AlternateRootPhi is present in the 1958 // liveset of the call. 1959 assert(Info.LiveSet.count(AlternateRootPhi)); 1960 } 1961 // Compute cost of this chain 1962 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1963 // TODO: We can also account for cases when we will be able to remove some 1964 // of the rematerialized values by later optimization passes. I.e if 1965 // we rematerialized several intersecting chains. Or if original values 1966 // don't have any uses besides this statepoint. 1967 1968 // For invokes we need to rematerialize each chain twice - for normal and 1969 // for unwind basic blocks. Model this by multiplying cost by two. 1970 if (CS.isInvoke()) { 1971 Cost *= 2; 1972 } 1973 // If it's too expensive - skip it 1974 if (Cost >= RematerializationThreshold) 1975 continue; 1976 1977 // Remove value from the live set 1978 LiveValuesToBeDeleted.push_back(LiveValue); 1979 1980 // Clone instructions and record them inside "Info" structure 1981 1982 // Walk backwards to visit top-most instructions first 1983 std::reverse(ChainToBase.begin(), ChainToBase.end()); 1984 1985 // Utility function which clones all instructions from "ChainToBase" 1986 // and inserts them before "InsertBefore". Returns rematerialized value 1987 // which should be used after statepoint. 1988 auto rematerializeChain = [&ChainToBase]( 1989 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 1990 Instruction *LastClonedValue = nullptr; 1991 Instruction *LastValue = nullptr; 1992 for (Instruction *Instr: ChainToBase) { 1993 // Only GEP's and casts are suported as we need to be careful to not 1994 // introduce any new uses of pointers not in the liveset. 1995 // Note that it's fine to introduce new uses of pointers which were 1996 // otherwise not used after this statepoint. 1997 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 1998 1999 Instruction *ClonedValue = Instr->clone(); 2000 ClonedValue->insertBefore(InsertBefore); 2001 ClonedValue->setName(Instr->getName() + ".remat"); 2002 2003 // If it is not first instruction in the chain then it uses previously 2004 // cloned value. We should update it to use cloned value. 2005 if (LastClonedValue) { 2006 assert(LastValue); 2007 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2008 #ifndef NDEBUG 2009 for (auto OpValue : ClonedValue->operand_values()) { 2010 // Assert that cloned instruction does not use any instructions from 2011 // this chain other than LastClonedValue 2012 assert(!is_contained(ChainToBase, OpValue) && 2013 "incorrect use in rematerialization chain"); 2014 // Assert that the cloned instruction does not use the RootOfChain 2015 // or the AlternateLiveBase. 2016 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2017 } 2018 #endif 2019 } else { 2020 // For the first instruction, replace the use of unrelocated base i.e. 2021 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2022 // live set. They have been proved to be the same PHI nodes. Note 2023 // that the *only* use of the RootOfChain in the ChainToBase list is 2024 // the first Value in the list. 2025 if (RootOfChain != AlternateLiveBase) 2026 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2027 } 2028 2029 LastClonedValue = ClonedValue; 2030 LastValue = Instr; 2031 } 2032 assert(LastClonedValue); 2033 return LastClonedValue; 2034 }; 2035 2036 // Different cases for calls and invokes. For invokes we need to clone 2037 // instructions both on normal and unwind path. 2038 if (CS.isCall()) { 2039 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2040 assert(InsertBefore); 2041 Instruction *RematerializedValue = rematerializeChain( 2042 InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2043 Info.RematerializedValues[RematerializedValue] = LiveValue; 2044 } else { 2045 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2046 2047 Instruction *NormalInsertBefore = 2048 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2049 Instruction *UnwindInsertBefore = 2050 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2051 2052 Instruction *NormalRematerializedValue = rematerializeChain( 2053 NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2054 Instruction *UnwindRematerializedValue = rematerializeChain( 2055 UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2056 2057 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2058 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2059 } 2060 } 2061 2062 // Remove rematerializaed values from the live set 2063 for (auto LiveValue: LiveValuesToBeDeleted) { 2064 Info.LiveSet.remove(LiveValue); 2065 } 2066 } 2067 2068 static bool insertParsePoints(Function &F, DominatorTree &DT, 2069 TargetTransformInfo &TTI, 2070 SmallVectorImpl<CallSite> &ToUpdate) { 2071 #ifndef NDEBUG 2072 // sanity check the input 2073 std::set<CallSite> Uniqued; 2074 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2075 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2076 2077 for (CallSite CS : ToUpdate) 2078 assert(CS.getInstruction()->getFunction() == &F); 2079 #endif 2080 2081 // When inserting gc.relocates for invokes, we need to be able to insert at 2082 // the top of the successor blocks. See the comment on 2083 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2084 // may restructure the CFG. 2085 for (CallSite CS : ToUpdate) { 2086 if (!CS.isInvoke()) 2087 continue; 2088 auto *II = cast<InvokeInst>(CS.getInstruction()); 2089 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2090 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2091 } 2092 2093 // A list of dummy calls added to the IR to keep various values obviously 2094 // live in the IR. We'll remove all of these when done. 2095 SmallVector<CallInst *, 64> Holders; 2096 2097 // Insert a dummy call with all of the arguments to the vm_state we'll need 2098 // for the actual safepoint insertion. This ensures reference arguments in 2099 // the deopt argument list are considered live through the safepoint (and 2100 // thus makes sure they get relocated.) 2101 for (CallSite CS : ToUpdate) { 2102 SmallVector<Value *, 64> DeoptValues; 2103 2104 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2105 assert(!isUnhandledGCPointerType(Arg->getType()) && 2106 "support for FCA unimplemented"); 2107 if (isHandledGCPointerType(Arg->getType())) 2108 DeoptValues.push_back(Arg); 2109 } 2110 2111 insertUseHolderAfter(CS, DeoptValues, Holders); 2112 } 2113 2114 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2115 2116 // A) Identify all gc pointers which are statically live at the given call 2117 // site. 2118 findLiveReferences(F, DT, ToUpdate, Records); 2119 2120 // B) Find the base pointers for each live pointer 2121 /* scope for caching */ { 2122 // Cache the 'defining value' relation used in the computation and 2123 // insertion of base phis and selects. This ensures that we don't insert 2124 // large numbers of duplicate base_phis. 2125 DefiningValueMapTy DVCache; 2126 2127 for (size_t i = 0; i < Records.size(); i++) { 2128 PartiallyConstructedSafepointRecord &info = Records[i]; 2129 findBasePointers(DT, DVCache, ToUpdate[i], info); 2130 } 2131 } // end of cache scope 2132 2133 // The base phi insertion logic (for any safepoint) may have inserted new 2134 // instructions which are now live at some safepoint. The simplest such 2135 // example is: 2136 // loop: 2137 // phi a <-- will be a new base_phi here 2138 // safepoint 1 <-- that needs to be live here 2139 // gep a + 1 2140 // safepoint 2 2141 // br loop 2142 // We insert some dummy calls after each safepoint to definitely hold live 2143 // the base pointers which were identified for that safepoint. We'll then 2144 // ask liveness for _every_ base inserted to see what is now live. Then we 2145 // remove the dummy calls. 2146 Holders.reserve(Holders.size() + Records.size()); 2147 for (size_t i = 0; i < Records.size(); i++) { 2148 PartiallyConstructedSafepointRecord &Info = Records[i]; 2149 2150 SmallVector<Value *, 128> Bases; 2151 for (auto Pair : Info.PointerToBase) 2152 Bases.push_back(Pair.second); 2153 2154 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2155 } 2156 2157 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2158 // need to rerun liveness. We may *also* have inserted new defs, but that's 2159 // not the key issue. 2160 recomputeLiveInValues(F, DT, ToUpdate, Records); 2161 2162 if (PrintBasePointers) { 2163 for (auto &Info : Records) { 2164 errs() << "Base Pairs: (w/Relocation)\n"; 2165 for (auto Pair : Info.PointerToBase) { 2166 errs() << " derived "; 2167 Pair.first->printAsOperand(errs(), false); 2168 errs() << " base "; 2169 Pair.second->printAsOperand(errs(), false); 2170 errs() << "\n"; 2171 } 2172 } 2173 } 2174 2175 // It is possible that non-constant live variables have a constant base. For 2176 // example, a GEP with a variable offset from a global. In this case we can 2177 // remove it from the liveset. We already don't add constants to the liveset 2178 // because we assume they won't move at runtime and the GC doesn't need to be 2179 // informed about them. The same reasoning applies if the base is constant. 2180 // Note that the relocation placement code relies on this filtering for 2181 // correctness as it expects the base to be in the liveset, which isn't true 2182 // if the base is constant. 2183 for (auto &Info : Records) 2184 for (auto &BasePair : Info.PointerToBase) 2185 if (isa<Constant>(BasePair.second)) 2186 Info.LiveSet.remove(BasePair.first); 2187 2188 for (CallInst *CI : Holders) 2189 CI->eraseFromParent(); 2190 2191 Holders.clear(); 2192 2193 // In order to reduce live set of statepoint we might choose to rematerialize 2194 // some values instead of relocating them. This is purely an optimization and 2195 // does not influence correctness. 2196 for (size_t i = 0; i < Records.size(); i++) 2197 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2198 2199 // We need this to safely RAUW and delete call or invoke return values that 2200 // may themselves be live over a statepoint. For details, please see usage in 2201 // makeStatepointExplicitImpl. 2202 std::vector<DeferredReplacement> Replacements; 2203 2204 // Now run through and replace the existing statepoints with new ones with 2205 // the live variables listed. We do not yet update uses of the values being 2206 // relocated. We have references to live variables that need to 2207 // survive to the last iteration of this loop. (By construction, the 2208 // previous statepoint can not be a live variable, thus we can and remove 2209 // the old statepoint calls as we go.) 2210 for (size_t i = 0; i < Records.size(); i++) 2211 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2212 2213 ToUpdate.clear(); // prevent accident use of invalid CallSites 2214 2215 for (auto &PR : Replacements) 2216 PR.doReplacement(); 2217 2218 Replacements.clear(); 2219 2220 for (auto &Info : Records) { 2221 // These live sets may contain state Value pointers, since we replaced calls 2222 // with operand bundles with calls wrapped in gc.statepoint, and some of 2223 // those calls may have been def'ing live gc pointers. Clear these out to 2224 // avoid accidentally using them. 2225 // 2226 // TODO: We should create a separate data structure that does not contain 2227 // these live sets, and migrate to using that data structure from this point 2228 // onward. 2229 Info.LiveSet.clear(); 2230 Info.PointerToBase.clear(); 2231 } 2232 2233 // Do all the fixups of the original live variables to their relocated selves 2234 SmallVector<Value *, 128> Live; 2235 for (size_t i = 0; i < Records.size(); i++) { 2236 PartiallyConstructedSafepointRecord &Info = Records[i]; 2237 2238 // We can't simply save the live set from the original insertion. One of 2239 // the live values might be the result of a call which needs a safepoint. 2240 // That Value* no longer exists and we need to use the new gc_result. 2241 // Thankfully, the live set is embedded in the statepoint (and updated), so 2242 // we just grab that. 2243 Statepoint Statepoint(Info.StatepointToken); 2244 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2245 Statepoint.gc_args_end()); 2246 #ifndef NDEBUG 2247 // Do some basic sanity checks on our liveness results before performing 2248 // relocation. Relocation can and will turn mistakes in liveness results 2249 // into non-sensical code which is must harder to debug. 2250 // TODO: It would be nice to test consistency as well 2251 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2252 "statepoint must be reachable or liveness is meaningless"); 2253 for (Value *V : Statepoint.gc_args()) { 2254 if (!isa<Instruction>(V)) 2255 // Non-instruction values trivial dominate all possible uses 2256 continue; 2257 auto *LiveInst = cast<Instruction>(V); 2258 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2259 "unreachable values should never be live"); 2260 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2261 "basic SSA liveness expectation violated by liveness analysis"); 2262 } 2263 #endif 2264 } 2265 unique_unsorted(Live); 2266 2267 #ifndef NDEBUG 2268 // sanity check 2269 for (auto *Ptr : Live) 2270 assert(isHandledGCPointerType(Ptr->getType()) && 2271 "must be a gc pointer type"); 2272 #endif 2273 2274 relocationViaAlloca(F, DT, Live, Records); 2275 return !Records.empty(); 2276 } 2277 2278 // Handles both return values and arguments for Functions and CallSites. 2279 template <typename AttrHolder> 2280 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2281 unsigned Index) { 2282 AttrBuilder R; 2283 if (AH.getDereferenceableBytes(Index)) 2284 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2285 AH.getDereferenceableBytes(Index))); 2286 if (AH.getDereferenceableOrNullBytes(Index)) 2287 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2288 AH.getDereferenceableOrNullBytes(Index))); 2289 if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias)) 2290 R.addAttribute(Attribute::NoAlias); 2291 2292 if (!R.empty()) 2293 AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R)); 2294 } 2295 2296 void 2297 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2298 LLVMContext &Ctx = F.getContext(); 2299 2300 for (Argument &A : F.args()) 2301 if (isa<PointerType>(A.getType())) 2302 RemoveNonValidAttrAtIndex(Ctx, F, 2303 A.getArgNo() + AttributeList::FirstArgIndex); 2304 2305 if (isa<PointerType>(F.getReturnType())) 2306 RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex); 2307 } 2308 2309 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2310 if (F.empty()) 2311 return; 2312 2313 LLVMContext &Ctx = F.getContext(); 2314 MDBuilder Builder(Ctx); 2315 2316 for (Instruction &I : instructions(F)) { 2317 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2318 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2319 bool IsImmutableTBAA = 2320 MD->getNumOperands() == 4 && 2321 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2322 2323 if (!IsImmutableTBAA) 2324 continue; // no work to do, MD_tbaa is already marked mutable 2325 2326 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2327 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2328 uint64_t Offset = 2329 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2330 2331 MDNode *MutableTBAA = 2332 Builder.createTBAAStructTagNode(Base, Access, Offset); 2333 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2334 } 2335 2336 if (CallSite CS = CallSite(&I)) { 2337 for (int i = 0, e = CS.arg_size(); i != e; i++) 2338 if (isa<PointerType>(CS.getArgument(i)->getType())) 2339 RemoveNonValidAttrAtIndex(Ctx, CS, i + AttributeList::FirstArgIndex); 2340 if (isa<PointerType>(CS.getType())) 2341 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeList::ReturnIndex); 2342 } 2343 } 2344 } 2345 2346 /// Returns true if this function should be rewritten by this pass. The main 2347 /// point of this function is as an extension point for custom logic. 2348 static bool shouldRewriteStatepointsIn(Function &F) { 2349 // TODO: This should check the GCStrategy 2350 if (F.hasGC()) { 2351 const auto &FunctionGCName = F.getGC(); 2352 const StringRef StatepointExampleName("statepoint-example"); 2353 const StringRef CoreCLRName("coreclr"); 2354 return (StatepointExampleName == FunctionGCName) || 2355 (CoreCLRName == FunctionGCName); 2356 } else 2357 return false; 2358 } 2359 2360 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2361 #ifndef NDEBUG 2362 assert(any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2363 #endif 2364 2365 for (Function &F : M) 2366 stripNonValidAttributesFromPrototype(F); 2367 2368 for (Function &F : M) 2369 stripNonValidAttributesFromBody(F); 2370 } 2371 2372 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2373 // Nothing to do for declarations. 2374 if (F.isDeclaration() || F.empty()) 2375 return false; 2376 2377 // Policy choice says not to rewrite - the most common reason is that we're 2378 // compiling code without a GCStrategy. 2379 if (!shouldRewriteStatepointsIn(F)) 2380 return false; 2381 2382 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2383 TargetTransformInfo &TTI = 2384 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2385 2386 auto NeedsRewrite = [](Instruction &I) { 2387 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2388 return !callsGCLeafFunction(CS) && !isStatepoint(CS); 2389 return false; 2390 }; 2391 2392 // Gather all the statepoints which need rewritten. Be careful to only 2393 // consider those in reachable code since we need to ask dominance queries 2394 // when rewriting. We'll delete the unreachable ones in a moment. 2395 SmallVector<CallSite, 64> ParsePointNeeded; 2396 bool HasUnreachableStatepoint = false; 2397 for (Instruction &I : instructions(F)) { 2398 // TODO: only the ones with the flag set! 2399 if (NeedsRewrite(I)) { 2400 if (DT.isReachableFromEntry(I.getParent())) 2401 ParsePointNeeded.push_back(CallSite(&I)); 2402 else 2403 HasUnreachableStatepoint = true; 2404 } 2405 } 2406 2407 bool MadeChange = false; 2408 2409 // Delete any unreachable statepoints so that we don't have unrewritten 2410 // statepoints surviving this pass. This makes testing easier and the 2411 // resulting IR less confusing to human readers. Rather than be fancy, we 2412 // just reuse a utility function which removes the unreachable blocks. 2413 if (HasUnreachableStatepoint) 2414 MadeChange |= removeUnreachableBlocks(F); 2415 2416 // Return early if no work to do. 2417 if (ParsePointNeeded.empty()) 2418 return MadeChange; 2419 2420 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2421 // These are created by LCSSA. They have the effect of increasing the size 2422 // of liveness sets for no good reason. It may be harder to do this post 2423 // insertion since relocations and base phis can confuse things. 2424 for (BasicBlock &BB : F) 2425 if (BB.getUniquePredecessor()) { 2426 MadeChange = true; 2427 FoldSingleEntryPHINodes(&BB); 2428 } 2429 2430 // Before we start introducing relocations, we want to tweak the IR a bit to 2431 // avoid unfortunate code generation effects. The main example is that we 2432 // want to try to make sure the comparison feeding a branch is after any 2433 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2434 // values feeding a branch after relocation. This is semantically correct, 2435 // but results in extra register pressure since both the pre-relocation and 2436 // post-relocation copies must be available in registers. For code without 2437 // relocations this is handled elsewhere, but teaching the scheduler to 2438 // reverse the transform we're about to do would be slightly complex. 2439 // Note: This may extend the live range of the inputs to the icmp and thus 2440 // increase the liveset of any statepoint we move over. This is profitable 2441 // as long as all statepoints are in rare blocks. If we had in-register 2442 // lowering for live values this would be a much safer transform. 2443 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2444 if (auto *BI = dyn_cast<BranchInst>(TI)) 2445 if (BI->isConditional()) 2446 return dyn_cast<Instruction>(BI->getCondition()); 2447 // TODO: Extend this to handle switches 2448 return nullptr; 2449 }; 2450 for (BasicBlock &BB : F) { 2451 TerminatorInst *TI = BB.getTerminator(); 2452 if (auto *Cond = getConditionInst(TI)) 2453 // TODO: Handle more than just ICmps here. We should be able to move 2454 // most instructions without side effects or memory access. 2455 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2456 MadeChange = true; 2457 Cond->moveBefore(TI); 2458 } 2459 } 2460 2461 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2462 return MadeChange; 2463 } 2464 2465 // liveness computation via standard dataflow 2466 // ------------------------------------------------------------------- 2467 2468 // TODO: Consider using bitvectors for liveness, the set of potentially 2469 // interesting values should be small and easy to pre-compute. 2470 2471 /// Compute the live-in set for the location rbegin starting from 2472 /// the live-out set of the basic block 2473 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 2474 BasicBlock::reverse_iterator End, 2475 SetVector<Value *> &LiveTmp) { 2476 for (auto &I : make_range(Begin, End)) { 2477 // KILL/Def - Remove this definition from LiveIn 2478 LiveTmp.remove(&I); 2479 2480 // Don't consider *uses* in PHI nodes, we handle their contribution to 2481 // predecessor blocks when we seed the LiveOut sets 2482 if (isa<PHINode>(I)) 2483 continue; 2484 2485 // USE - Add to the LiveIn set for this instruction 2486 for (Value *V : I.operands()) { 2487 assert(!isUnhandledGCPointerType(V->getType()) && 2488 "support for FCA unimplemented"); 2489 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2490 // The choice to exclude all things constant here is slightly subtle. 2491 // There are two independent reasons: 2492 // - We assume that things which are constant (from LLVM's definition) 2493 // do not move at runtime. For example, the address of a global 2494 // variable is fixed, even though it's contents may not be. 2495 // - Second, we can't disallow arbitrary inttoptr constants even 2496 // if the language frontend does. Optimization passes are free to 2497 // locally exploit facts without respect to global reachability. This 2498 // can create sections of code which are dynamically unreachable and 2499 // contain just about anything. (see constants.ll in tests) 2500 LiveTmp.insert(V); 2501 } 2502 } 2503 } 2504 } 2505 2506 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2507 for (BasicBlock *Succ : successors(BB)) { 2508 for (auto &I : *Succ) { 2509 PHINode *PN = dyn_cast<PHINode>(&I); 2510 if (!PN) 2511 break; 2512 2513 Value *V = PN->getIncomingValueForBlock(BB); 2514 assert(!isUnhandledGCPointerType(V->getType()) && 2515 "support for FCA unimplemented"); 2516 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 2517 LiveTmp.insert(V); 2518 } 2519 } 2520 } 2521 2522 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2523 SetVector<Value *> KillSet; 2524 for (Instruction &I : *BB) 2525 if (isHandledGCPointerType(I.getType())) 2526 KillSet.insert(&I); 2527 return KillSet; 2528 } 2529 2530 #ifndef NDEBUG 2531 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2532 /// sanity check for the liveness computation. 2533 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2534 TerminatorInst *TI, bool TermOkay = false) { 2535 for (Value *V : Live) { 2536 if (auto *I = dyn_cast<Instruction>(V)) { 2537 // The terminator can be a member of the LiveOut set. LLVM's definition 2538 // of instruction dominance states that V does not dominate itself. As 2539 // such, we need to special case this to allow it. 2540 if (TermOkay && TI == I) 2541 continue; 2542 assert(DT.dominates(I, TI) && 2543 "basic SSA liveness expectation violated by liveness analysis"); 2544 } 2545 } 2546 } 2547 2548 /// Check that all the liveness sets used during the computation of liveness 2549 /// obey basic SSA properties. This is useful for finding cases where we miss 2550 /// a def. 2551 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2552 BasicBlock &BB) { 2553 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2554 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2555 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2556 } 2557 #endif 2558 2559 static void computeLiveInValues(DominatorTree &DT, Function &F, 2560 GCPtrLivenessData &Data) { 2561 SmallSetVector<BasicBlock *, 32> Worklist; 2562 2563 // Seed the liveness for each individual block 2564 for (BasicBlock &BB : F) { 2565 Data.KillSet[&BB] = computeKillSet(&BB); 2566 Data.LiveSet[&BB].clear(); 2567 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2568 2569 #ifndef NDEBUG 2570 for (Value *Kill : Data.KillSet[&BB]) 2571 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2572 #endif 2573 2574 Data.LiveOut[&BB] = SetVector<Value *>(); 2575 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2576 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2577 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2578 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2579 if (!Data.LiveIn[&BB].empty()) 2580 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 2581 } 2582 2583 // Propagate that liveness until stable 2584 while (!Worklist.empty()) { 2585 BasicBlock *BB = Worklist.pop_back_val(); 2586 2587 // Compute our new liveout set, then exit early if it hasn't changed despite 2588 // the contribution of our successor. 2589 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2590 const auto OldLiveOutSize = LiveOut.size(); 2591 for (BasicBlock *Succ : successors(BB)) { 2592 assert(Data.LiveIn.count(Succ)); 2593 LiveOut.set_union(Data.LiveIn[Succ]); 2594 } 2595 // assert OutLiveOut is a subset of LiveOut 2596 if (OldLiveOutSize == LiveOut.size()) { 2597 // If the sets are the same size, then we didn't actually add anything 2598 // when unioning our successors LiveIn. Thus, the LiveIn of this block 2599 // hasn't changed. 2600 continue; 2601 } 2602 Data.LiveOut[BB] = LiveOut; 2603 2604 // Apply the effects of this basic block 2605 SetVector<Value *> LiveTmp = LiveOut; 2606 LiveTmp.set_union(Data.LiveSet[BB]); 2607 LiveTmp.set_subtract(Data.KillSet[BB]); 2608 2609 assert(Data.LiveIn.count(BB)); 2610 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2611 // assert: OldLiveIn is a subset of LiveTmp 2612 if (OldLiveIn.size() != LiveTmp.size()) { 2613 Data.LiveIn[BB] = LiveTmp; 2614 Worklist.insert(pred_begin(BB), pred_end(BB)); 2615 } 2616 } // while (!Worklist.empty()) 2617 2618 #ifndef NDEBUG 2619 // Sanity check our output against SSA properties. This helps catch any 2620 // missing kills during the above iteration. 2621 for (BasicBlock &BB : F) 2622 checkBasicSSA(DT, Data, BB); 2623 #endif 2624 } 2625 2626 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2627 StatepointLiveSetTy &Out) { 2628 2629 BasicBlock *BB = Inst->getParent(); 2630 2631 // Note: The copy is intentional and required 2632 assert(Data.LiveOut.count(BB)); 2633 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2634 2635 // We want to handle the statepoint itself oddly. It's 2636 // call result is not live (normal), nor are it's arguments 2637 // (unless they're used again later). This adjustment is 2638 // specifically what we need to relocate 2639 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 2640 LiveOut); 2641 LiveOut.remove(Inst); 2642 Out.insert(LiveOut.begin(), LiveOut.end()); 2643 } 2644 2645 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2646 CallSite CS, 2647 PartiallyConstructedSafepointRecord &Info) { 2648 Instruction *Inst = CS.getInstruction(); 2649 StatepointLiveSetTy Updated; 2650 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2651 2652 #ifndef NDEBUG 2653 DenseSet<Value *> Bases; 2654 for (auto KVPair : Info.PointerToBase) 2655 Bases.insert(KVPair.second); 2656 #endif 2657 2658 // We may have base pointers which are now live that weren't before. We need 2659 // to update the PointerToBase structure to reflect this. 2660 for (auto V : Updated) 2661 if (Info.PointerToBase.insert({V, V}).second) { 2662 assert(Bases.count(V) && "Can't find base for unexpected live value!"); 2663 continue; 2664 } 2665 2666 #ifndef NDEBUG 2667 for (auto V : Updated) 2668 assert(Info.PointerToBase.count(V) && 2669 "Must be able to find base for live value!"); 2670 #endif 2671 2672 // Remove any stale base mappings - this can happen since our liveness is 2673 // more precise then the one inherent in the base pointer analysis. 2674 DenseSet<Value *> ToErase; 2675 for (auto KVPair : Info.PointerToBase) 2676 if (!Updated.count(KVPair.first)) 2677 ToErase.insert(KVPair.first); 2678 2679 for (auto *V : ToErase) 2680 Info.PointerToBase.erase(V); 2681 2682 #ifndef NDEBUG 2683 for (auto KVPair : Info.PointerToBase) 2684 assert(Updated.count(KVPair.first) && "record for non-live value"); 2685 #endif 2686 2687 Info.LiveSet = Updated; 2688 } 2689