xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 9fec382601dfd61e0eccf007a158314ae76b145c)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Rewrite call/invoke instructions so as to make potential relocations
10 // performed by the garbage collector explicit in the IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueHandle.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <set>
75 #include <string>
76 #include <utility>
77 #include <vector>
78 
79 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
80 
81 using namespace llvm;
82 
83 // Print the liveset found at the insert location
84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
85                                   cl::init(false));
86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
87                                       cl::init(false));
88 
89 // Print out the base pointers for debugging
90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
91                                        cl::init(false));
92 
93 // Cost threshold measuring when it is profitable to rematerialize value instead
94 // of relocating it
95 static cl::opt<unsigned>
96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
97                            cl::init(6));
98 
99 #ifdef EXPENSIVE_CHECKS
100 static bool ClobberNonLive = true;
101 #else
102 static bool ClobberNonLive = false;
103 #endif
104 
105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
106                                                   cl::location(ClobberNonLive),
107                                                   cl::Hidden);
108 
109 static cl::opt<bool>
110     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
111                                    cl::Hidden, cl::init(true));
112 
113 /// The IR fed into RewriteStatepointsForGC may have had attributes and
114 /// metadata implying dereferenceability that are no longer valid/correct after
115 /// RewriteStatepointsForGC has run. This is because semantically, after
116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
117 /// heap. stripNonValidData (conservatively) restores
118 /// correctness by erasing all attributes in the module that externally imply
119 /// dereferenceability. Similar reasoning also applies to the noalias
120 /// attributes and metadata. gc.statepoint can touch the entire heap including
121 /// noalias objects.
122 /// Apart from attributes and metadata, we also remove instructions that imply
123 /// constant physical memory: llvm.invariant.start.
124 static void stripNonValidData(Module &M);
125 
126 static bool shouldRewriteStatepointsIn(Function &F);
127 
128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
129                                                ModuleAnalysisManager &AM) {
130   bool Changed = false;
131   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
132   for (Function &F : M) {
133     // Nothing to do for declarations.
134     if (F.isDeclaration() || F.empty())
135       continue;
136 
137     // Policy choice says not to rewrite - the most common reason is that we're
138     // compiling code without a GCStrategy.
139     if (!shouldRewriteStatepointsIn(F))
140       continue;
141 
142     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
143     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
144     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
145     Changed |= runOnFunction(F, DT, TTI, TLI);
146   }
147   if (!Changed)
148     return PreservedAnalyses::all();
149 
150   // stripNonValidData asserts that shouldRewriteStatepointsIn
151   // returns true for at least one function in the module.  Since at least
152   // one function changed, we know that the precondition is satisfied.
153   stripNonValidData(M);
154 
155   PreservedAnalyses PA;
156   PA.preserve<TargetIRAnalysis>();
157   PA.preserve<TargetLibraryAnalysis>();
158   return PA;
159 }
160 
161 namespace {
162 
163 class RewriteStatepointsForGCLegacyPass : public ModulePass {
164   RewriteStatepointsForGC Impl;
165 
166 public:
167   static char ID; // Pass identification, replacement for typeid
168 
169   RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
170     initializeRewriteStatepointsForGCLegacyPassPass(
171         *PassRegistry::getPassRegistry());
172   }
173 
174   bool runOnModule(Module &M) override {
175     bool Changed = false;
176     for (Function &F : M) {
177       // Nothing to do for declarations.
178       if (F.isDeclaration() || F.empty())
179         continue;
180 
181       // Policy choice says not to rewrite - the most common reason is that
182       // we're compiling code without a GCStrategy.
183       if (!shouldRewriteStatepointsIn(F))
184         continue;
185 
186       TargetTransformInfo &TTI =
187           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
188       const TargetLibraryInfo &TLI =
189           getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
190       auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
191 
192       Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
193     }
194 
195     if (!Changed)
196       return false;
197 
198     // stripNonValidData asserts that shouldRewriteStatepointsIn
199     // returns true for at least one function in the module.  Since at least
200     // one function changed, we know that the precondition is satisfied.
201     stripNonValidData(M);
202     return true;
203   }
204 
205   void getAnalysisUsage(AnalysisUsage &AU) const override {
206     // We add and rewrite a bunch of instructions, but don't really do much
207     // else.  We could in theory preserve a lot more analyses here.
208     AU.addRequired<DominatorTreeWrapperPass>();
209     AU.addRequired<TargetTransformInfoWrapperPass>();
210     AU.addRequired<TargetLibraryInfoWrapperPass>();
211   }
212 };
213 
214 } // end anonymous namespace
215 
216 char RewriteStatepointsForGCLegacyPass::ID = 0;
217 
218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
219   return new RewriteStatepointsForGCLegacyPass();
220 }
221 
222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
223                       "rewrite-statepoints-for-gc",
224                       "Make relocations explicit at statepoints", false, false)
225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
228                     "rewrite-statepoints-for-gc",
229                     "Make relocations explicit at statepoints", false, false)
230 
231 namespace {
232 
233 struct GCPtrLivenessData {
234   /// Values defined in this block.
235   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
236 
237   /// Values used in this block (and thus live); does not included values
238   /// killed within this block.
239   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
240 
241   /// Values live into this basic block (i.e. used by any
242   /// instruction in this basic block or ones reachable from here)
243   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
244 
245   /// Values live out of this basic block (i.e. live into
246   /// any successor block)
247   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
248 };
249 
250 // The type of the internal cache used inside the findBasePointers family
251 // of functions.  From the callers perspective, this is an opaque type and
252 // should not be inspected.
253 //
254 // In the actual implementation this caches two relations:
255 // - The base relation itself (i.e. this pointer is based on that one)
256 // - The base defining value relation (i.e. before base_phi insertion)
257 // Generally, after the execution of a full findBasePointer call, only the
258 // base relation will remain.  Internally, we add a mixture of the two
259 // types, then update all the second type to the first type
260 using DefiningValueMapTy = MapVector<Value *, Value *>;
261 using StatepointLiveSetTy = SetVector<Value *>;
262 using RematerializedValueMapTy =
263     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
264 
265 struct PartiallyConstructedSafepointRecord {
266   /// The set of values known to be live across this safepoint
267   StatepointLiveSetTy LiveSet;
268 
269   /// Mapping from live pointers to a base-defining-value
270   MapVector<Value *, Value *> PointerToBase;
271 
272   /// The *new* gc.statepoint instruction itself.  This produces the token
273   /// that normal path gc.relocates and the gc.result are tied to.
274   GCStatepointInst *StatepointToken;
275 
276   /// Instruction to which exceptional gc relocates are attached
277   /// Makes it easier to iterate through them during relocationViaAlloca.
278   Instruction *UnwindToken;
279 
280   /// Record live values we are rematerialized instead of relocating.
281   /// They are not included into 'LiveSet' field.
282   /// Maps rematerialized copy to it's original value.
283   RematerializedValueMapTy RematerializedValues;
284 };
285 
286 } // end anonymous namespace
287 
288 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
289   Optional<OperandBundleUse> DeoptBundle =
290       Call->getOperandBundle(LLVMContext::OB_deopt);
291 
292   if (!DeoptBundle.hasValue()) {
293     assert(AllowStatepointWithNoDeoptInfo &&
294            "Found non-leaf call without deopt info!");
295     return None;
296   }
297 
298   return DeoptBundle.getValue().Inputs;
299 }
300 
301 /// Compute the live-in set for every basic block in the function
302 static void computeLiveInValues(DominatorTree &DT, Function &F,
303                                 GCPtrLivenessData &Data);
304 
305 /// Given results from the dataflow liveness computation, find the set of live
306 /// Values at a particular instruction.
307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
308                               StatepointLiveSetTy &out);
309 
310 // TODO: Once we can get to the GCStrategy, this becomes
311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
312 
313 static bool isGCPointerType(Type *T) {
314   if (auto *PT = dyn_cast<PointerType>(T))
315     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
316     // GC managed heap.  We know that a pointer into this heap needs to be
317     // updated and that no other pointer does.
318     return PT->getAddressSpace() == 1;
319   return false;
320 }
321 
322 // Return true if this type is one which a) is a gc pointer or contains a GC
323 // pointer and b) is of a type this code expects to encounter as a live value.
324 // (The insertion code will assert that a type which matches (a) and not (b)
325 // is not encountered.)
326 static bool isHandledGCPointerType(Type *T) {
327   // We fully support gc pointers
328   if (isGCPointerType(T))
329     return true;
330   // We partially support vectors of gc pointers. The code will assert if it
331   // can't handle something.
332   if (auto VT = dyn_cast<VectorType>(T))
333     if (isGCPointerType(VT->getElementType()))
334       return true;
335   return false;
336 }
337 
338 #ifndef NDEBUG
339 /// Returns true if this type contains a gc pointer whether we know how to
340 /// handle that type or not.
341 static bool containsGCPtrType(Type *Ty) {
342   if (isGCPointerType(Ty))
343     return true;
344   if (VectorType *VT = dyn_cast<VectorType>(Ty))
345     return isGCPointerType(VT->getScalarType());
346   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
347     return containsGCPtrType(AT->getElementType());
348   if (StructType *ST = dyn_cast<StructType>(Ty))
349     return llvm::any_of(ST->elements(), containsGCPtrType);
350   return false;
351 }
352 
353 // Returns true if this is a type which a) is a gc pointer or contains a GC
354 // pointer and b) is of a type which the code doesn't expect (i.e. first class
355 // aggregates).  Used to trip assertions.
356 static bool isUnhandledGCPointerType(Type *Ty) {
357   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
358 }
359 #endif
360 
361 // Return the name of the value suffixed with the provided value, or if the
362 // value didn't have a name, the default value specified.
363 static std::string suffixed_name_or(Value *V, StringRef Suffix,
364                                     StringRef DefaultName) {
365   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
366 }
367 
368 // Conservatively identifies any definitions which might be live at the
369 // given instruction. The  analysis is performed immediately before the
370 // given instruction. Values defined by that instruction are not considered
371 // live.  Values used by that instruction are considered live.
372 static void analyzeParsePointLiveness(
373     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
374     PartiallyConstructedSafepointRecord &Result) {
375   StatepointLiveSetTy LiveSet;
376   findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
377 
378   if (PrintLiveSet) {
379     dbgs() << "Live Variables:\n";
380     for (Value *V : LiveSet)
381       dbgs() << " " << V->getName() << " " << *V << "\n";
382   }
383   if (PrintLiveSetSize) {
384     dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n";
385     dbgs() << "Number live values: " << LiveSet.size() << "\n";
386   }
387   Result.LiveSet = LiveSet;
388 }
389 
390 // Returns true is V is a knownBaseResult.
391 static bool isKnownBaseResult(Value *V);
392 
393 // Returns true if V is a BaseResult that already exists in the IR, i.e. it is
394 // not created by the findBasePointers algorithm.
395 static bool isOriginalBaseResult(Value *V);
396 
397 namespace {
398 
399 /// A single base defining value - An immediate base defining value for an
400 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
401 /// For instructions which have multiple pointer [vector] inputs or that
402 /// transition between vector and scalar types, there is no immediate base
403 /// defining value.  The 'base defining value' for 'Def' is the transitive
404 /// closure of this relation stopping at the first instruction which has no
405 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
406 /// but it can also be an arbitrary derived pointer.
407 struct BaseDefiningValueResult {
408   /// Contains the value which is the base defining value.
409   Value * const BDV;
410 
411   /// True if the base defining value is also known to be an actual base
412   /// pointer.
413   const bool IsKnownBase;
414 
415   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
416     : BDV(BDV), IsKnownBase(IsKnownBase) {
417 #ifndef NDEBUG
418     // Check consistency between new and old means of checking whether a BDV is
419     // a base.
420     bool MustBeBase = isKnownBaseResult(BDV);
421     assert(!MustBeBase || MustBeBase == IsKnownBase);
422 #endif
423   }
424 };
425 
426 } // end anonymous namespace
427 
428 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
429 
430 /// Return a base defining value for the 'Index' element of the given vector
431 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
432 /// 'I'.  As an optimization, this method will try to determine when the
433 /// element is known to already be a base pointer.  If this can be established,
434 /// the second value in the returned pair will be true.  Note that either a
435 /// vector or a pointer typed value can be returned.  For the former, the
436 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
437 /// If the later, the return pointer is a BDV (or possibly a base) for the
438 /// particular element in 'I'.
439 static BaseDefiningValueResult
440 findBaseDefiningValueOfVector(Value *I) {
441   // Each case parallels findBaseDefiningValue below, see that code for
442   // detailed motivation.
443 
444   if (isa<Argument>(I))
445     // An incoming argument to the function is a base pointer
446     return BaseDefiningValueResult(I, true);
447 
448   if (isa<Constant>(I))
449     // Base of constant vector consists only of constant null pointers.
450     // For reasoning see similar case inside 'findBaseDefiningValue' function.
451     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
452                                    true);
453 
454   if (isa<LoadInst>(I))
455     return BaseDefiningValueResult(I, true);
456 
457   if (isa<InsertElementInst>(I))
458     // We don't know whether this vector contains entirely base pointers or
459     // not.  To be conservatively correct, we treat it as a BDV and will
460     // duplicate code as needed to construct a parallel vector of bases.
461     return BaseDefiningValueResult(I, false);
462 
463   if (isa<ShuffleVectorInst>(I))
464     // We don't know whether this vector contains entirely base pointers or
465     // not.  To be conservatively correct, we treat it as a BDV and will
466     // duplicate code as needed to construct a parallel vector of bases.
467     // TODO: There a number of local optimizations which could be applied here
468     // for particular sufflevector patterns.
469     return BaseDefiningValueResult(I, false);
470 
471   // The behavior of getelementptr instructions is the same for vector and
472   // non-vector data types.
473   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
474     return findBaseDefiningValue(GEP->getPointerOperand());
475 
476   // If the pointer comes through a bitcast of a vector of pointers to
477   // a vector of another type of pointer, then look through the bitcast
478   if (auto *BC = dyn_cast<BitCastInst>(I))
479     return findBaseDefiningValue(BC->getOperand(0));
480 
481   // We assume that functions in the source language only return base
482   // pointers.  This should probably be generalized via attributes to support
483   // both source language and internal functions.
484   if (isa<CallInst>(I) || isa<InvokeInst>(I))
485     return BaseDefiningValueResult(I, true);
486 
487   // A PHI or Select is a base defining value.  The outer findBasePointer
488   // algorithm is responsible for constructing a base value for this BDV.
489   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
490          "unknown vector instruction - no base found for vector element");
491   return BaseDefiningValueResult(I, false);
492 }
493 
494 /// Helper function for findBasePointer - Will return a value which either a)
495 /// defines the base pointer for the input, b) blocks the simple search
496 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
497 /// from pointer to vector type or back.
498 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
499   assert(I->getType()->isPtrOrPtrVectorTy() &&
500          "Illegal to ask for the base pointer of a non-pointer type");
501 
502   if (I->getType()->isVectorTy())
503     return findBaseDefiningValueOfVector(I);
504 
505   if (isa<Argument>(I))
506     // An incoming argument to the function is a base pointer
507     // We should have never reached here if this argument isn't an gc value
508     return BaseDefiningValueResult(I, true);
509 
510   if (isa<Constant>(I)) {
511     // We assume that objects with a constant base (e.g. a global) can't move
512     // and don't need to be reported to the collector because they are always
513     // live. Besides global references, all kinds of constants (e.g. undef,
514     // constant expressions, null pointers) can be introduced by the inliner or
515     // the optimizer, especially on dynamically dead paths.
516     // Here we treat all of them as having single null base. By doing this we
517     // trying to avoid problems reporting various conflicts in a form of
518     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
519     // See constant.ll file for relevant test cases.
520 
521     return BaseDefiningValueResult(
522         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
523   }
524 
525   if (CastInst *CI = dyn_cast<CastInst>(I)) {
526     Value *Def = CI->stripPointerCasts();
527     // If stripping pointer casts changes the address space there is an
528     // addrspacecast in between.
529     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
530                cast<PointerType>(CI->getType())->getAddressSpace() &&
531            "unsupported addrspacecast");
532     // If we find a cast instruction here, it means we've found a cast which is
533     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
534     // handle int->ptr conversion.
535     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
536     return findBaseDefiningValue(Def);
537   }
538 
539   if (isa<LoadInst>(I))
540     // The value loaded is an gc base itself
541     return BaseDefiningValueResult(I, true);
542 
543   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
544     // The base of this GEP is the base
545     return findBaseDefiningValue(GEP->getPointerOperand());
546 
547   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
548     switch (II->getIntrinsicID()) {
549     default:
550       // fall through to general call handling
551       break;
552     case Intrinsic::experimental_gc_statepoint:
553       llvm_unreachable("statepoints don't produce pointers");
554     case Intrinsic::experimental_gc_relocate:
555       // Rerunning safepoint insertion after safepoints are already
556       // inserted is not supported.  It could probably be made to work,
557       // but why are you doing this?  There's no good reason.
558       llvm_unreachable("repeat safepoint insertion is not supported");
559     case Intrinsic::gcroot:
560       // Currently, this mechanism hasn't been extended to work with gcroot.
561       // There's no reason it couldn't be, but I haven't thought about the
562       // implications much.
563       llvm_unreachable(
564           "interaction with the gcroot mechanism is not supported");
565     }
566   }
567   // We assume that functions in the source language only return base
568   // pointers.  This should probably be generalized via attributes to support
569   // both source language and internal functions.
570   if (isa<CallInst>(I) || isa<InvokeInst>(I))
571     return BaseDefiningValueResult(I, true);
572 
573   // TODO: I have absolutely no idea how to implement this part yet.  It's not
574   // necessarily hard, I just haven't really looked at it yet.
575   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
576 
577   if (isa<AtomicCmpXchgInst>(I))
578     // A CAS is effectively a atomic store and load combined under a
579     // predicate.  From the perspective of base pointers, we just treat it
580     // like a load.
581     return BaseDefiningValueResult(I, true);
582 
583   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
584                                    "binary ops which don't apply to pointers");
585 
586   // The aggregate ops.  Aggregates can either be in the heap or on the
587   // stack, but in either case, this is simply a field load.  As a result,
588   // this is a defining definition of the base just like a load is.
589   if (isa<ExtractValueInst>(I))
590     return BaseDefiningValueResult(I, true);
591 
592   // We should never see an insert vector since that would require we be
593   // tracing back a struct value not a pointer value.
594   assert(!isa<InsertValueInst>(I) &&
595          "Base pointer for a struct is meaningless");
596 
597   // An extractelement produces a base result exactly when it's input does.
598   // We may need to insert a parallel instruction to extract the appropriate
599   // element out of the base vector corresponding to the input. Given this,
600   // it's analogous to the phi and select case even though it's not a merge.
601   if (isa<ExtractElementInst>(I))
602     // Note: There a lot of obvious peephole cases here.  This are deliberately
603     // handled after the main base pointer inference algorithm to make writing
604     // test cases to exercise that code easier.
605     return BaseDefiningValueResult(I, false);
606 
607   // The last two cases here don't return a base pointer.  Instead, they
608   // return a value which dynamically selects from among several base
609   // derived pointers (each with it's own base potentially).  It's the job of
610   // the caller to resolve these.
611   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
612          "missing instruction case in findBaseDefiningValing");
613   return BaseDefiningValueResult(I, false);
614 }
615 
616 /// Returns the base defining value for this value.
617 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
618   Value *&Cached = Cache[I];
619   if (!Cached) {
620     Cached = findBaseDefiningValue(I).BDV;
621     LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
622                       << Cached->getName() << "\n");
623   }
624   assert(Cache[I] != nullptr);
625   return Cached;
626 }
627 
628 /// Return a base pointer for this value if known.  Otherwise, return it's
629 /// base defining value.
630 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
631   Value *Def = findBaseDefiningValueCached(I, Cache);
632   auto Found = Cache.find(Def);
633   if (Found != Cache.end()) {
634     // Either a base-of relation, or a self reference.  Caller must check.
635     return Found->second;
636   }
637   // Only a BDV available
638   return Def;
639 }
640 
641 /// This value is a base pointer that is not generated by RS4GC, i.e. it already
642 /// exists in the code.
643 static bool isOriginalBaseResult(Value *V) {
644   // no recursion possible
645   return !isa<PHINode>(V) && !isa<SelectInst>(V) &&
646          !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
647          !isa<ShuffleVectorInst>(V);
648 }
649 
650 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
651 /// is it known to be a base pointer?  Or do we need to continue searching.
652 static bool isKnownBaseResult(Value *V) {
653   if (isOriginalBaseResult(V))
654     return true;
655   if (isa<Instruction>(V) &&
656       cast<Instruction>(V)->getMetadata("is_base_value")) {
657     // This is a previously inserted base phi or select.  We know
658     // that this is a base value.
659     return true;
660   }
661 
662   // We need to keep searching
663   return false;
664 }
665 
666 // Returns true if First and Second values are both scalar or both vector.
667 static bool areBothVectorOrScalar(Value *First, Value *Second) {
668   return isa<VectorType>(First->getType()) ==
669          isa<VectorType>(Second->getType());
670 }
671 
672 namespace {
673 
674 /// Models the state of a single base defining value in the findBasePointer
675 /// algorithm for determining where a new instruction is needed to propagate
676 /// the base of this BDV.
677 class BDVState {
678 public:
679   enum StatusTy {
680      // Starting state of lattice
681      Unknown,
682      // Some specific base value -- does *not* mean that instruction
683      // propagates the base of the object
684      // ex: gep %arg, 16 -> %arg is the base value
685      Base,
686      // Need to insert a node to represent a merge.
687      Conflict
688   };
689 
690   BDVState() {
691     llvm_unreachable("missing state in map");
692   }
693 
694   explicit BDVState(Value *OriginalValue)
695     : OriginalValue(OriginalValue) {}
696   explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr)
697     : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) {
698     assert(Status != Base || BaseValue);
699   }
700 
701   StatusTy getStatus() const { return Status; }
702   Value *getOriginalValue() const { return OriginalValue; }
703   Value *getBaseValue() const { return BaseValue; }
704 
705   bool isBase() const { return getStatus() == Base; }
706   bool isUnknown() const { return getStatus() == Unknown; }
707   bool isConflict() const { return getStatus() == Conflict; }
708 
709   bool operator==(const BDVState &Other) const {
710     return OriginalValue == OriginalValue && BaseValue == Other.BaseValue &&
711       Status == Other.Status;
712   }
713 
714   bool operator!=(const BDVState &other) const { return !(*this == other); }
715 
716   LLVM_DUMP_METHOD
717   void dump() const {
718     print(dbgs());
719     dbgs() << '\n';
720   }
721 
722   void print(raw_ostream &OS) const {
723     switch (getStatus()) {
724     case Unknown:
725       OS << "U";
726       break;
727     case Base:
728       OS << "B";
729       break;
730     case Conflict:
731       OS << "C";
732       break;
733     }
734     OS << " (base " << getBaseValue() << " - "
735        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")"
736        << " for  "  << OriginalValue->getName() << ":";
737   }
738 
739 private:
740   AssertingVH<Value> OriginalValue; // instruction this state corresponds to
741   StatusTy Status = Unknown;
742   AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base.
743 };
744 
745 } // end anonymous namespace
746 
747 #ifndef NDEBUG
748 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
749   State.print(OS);
750   return OS;
751 }
752 #endif
753 
754 static BDVState::StatusTy meet(const BDVState::StatusTy &LHS,
755                                const BDVState::StatusTy &RHS) {
756   switch (LHS) {
757   case BDVState::Unknown:
758     return RHS;
759   case BDVState::Base:
760     switch (RHS) {
761     case BDVState::Unknown:
762     case BDVState::Base:
763       return BDVState::Base;
764     case BDVState::Conflict:
765       return BDVState::Conflict;
766     };
767     llvm_unreachable("covered switch");
768   case BDVState::Conflict:
769     return BDVState::Conflict;
770   }
771   llvm_unreachable("covered switch");
772 }
773 
774 // Values of type BDVState form a lattice, and this function implements the meet
775 // operation.
776 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
777   auto NewStatus = meet(LHS.getStatus(), RHS.getStatus());
778   assert(NewStatus == meet(RHS.getStatus(), LHS.getStatus()));
779 
780   Value *BaseValue = LHS.getStatus() == BDVState::Base ?
781     LHS.getBaseValue() : RHS.getBaseValue();
782   if (LHS.getStatus() == BDVState::Base && RHS.getStatus() == BDVState::Base &&
783       LHS.getBaseValue() != RHS.getBaseValue()) {
784     NewStatus = BDVState::Conflict;
785   }
786   if (NewStatus == BDVState::Conflict)
787     BaseValue = nullptr;
788   return BDVState(LHS.getOriginalValue(), NewStatus, BaseValue);
789 }
790 
791 /// For a given value or instruction, figure out what base ptr its derived from.
792 /// For gc objects, this is simply itself.  On success, returns a value which is
793 /// the base pointer.  (This is reliable and can be used for relocation.)  On
794 /// failure, returns nullptr.
795 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
796   Value *Def = findBaseOrBDV(I, Cache);
797 
798   if (isKnownBaseResult(Def) && areBothVectorOrScalar(Def, I))
799     return Def;
800 
801   // Here's the rough algorithm:
802   // - For every SSA value, construct a mapping to either an actual base
803   //   pointer or a PHI which obscures the base pointer.
804   // - Construct a mapping from PHI to unknown TOP state.  Use an
805   //   optimistic algorithm to propagate base pointer information.  Lattice
806   //   looks like:
807   //   UNKNOWN
808   //   b1 b2 b3 b4
809   //   CONFLICT
810   //   When algorithm terminates, all PHIs will either have a single concrete
811   //   base or be in a conflict state.
812   // - For every conflict, insert a dummy PHI node without arguments.  Add
813   //   these to the base[Instruction] = BasePtr mapping.  For every
814   //   non-conflict, add the actual base.
815   //  - For every conflict, add arguments for the base[a] of each input
816   //   arguments.
817   //
818   // Note: A simpler form of this would be to add the conflict form of all
819   // PHIs without running the optimistic algorithm.  This would be
820   // analogous to pessimistic data flow and would likely lead to an
821   // overall worse solution.
822 
823 #ifndef NDEBUG
824   auto isExpectedBDVType = [](Value *BDV) {
825     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
826            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
827            isa<ShuffleVectorInst>(BDV);
828   };
829 #endif
830 
831   // Once populated, will contain a mapping from each potentially non-base BDV
832   // to a lattice value (described above) which corresponds to that BDV.
833   // We use the order of insertion (DFS over the def/use graph) to provide a
834   // stable deterministic ordering for visiting DenseMaps (which are unordered)
835   // below.  This is important for deterministic compilation.
836   MapVector<Value *, BDVState> States;
837 
838 #ifndef NDEBUG
839   auto VerifyStates = [&]() {
840     for (auto &Entry : States) {
841       assert(Entry.first == Entry.second.getOriginalValue());
842     }
843   };
844 #endif
845 
846   auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) {
847     if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
848       for (Value *InVal : PN->incoming_values())
849         F(InVal);
850     } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
851       F(SI->getTrueValue());
852       F(SI->getFalseValue());
853     } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
854       F(EE->getVectorOperand());
855     } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) {
856       F(IE->getOperand(0));
857       F(IE->getOperand(1));
858     } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) {
859       // For a canonical broadcast, ignore the undef argument
860       // (without this, we insert a parallel base shuffle for every broadcast)
861       F(SV->getOperand(0));
862       if (!SV->isZeroEltSplat())
863         F(SV->getOperand(1));
864     } else {
865       llvm_unreachable("unexpected BDV type");
866     }
867   };
868 
869 
870   // Recursively fill in all base defining values reachable from the initial
871   // one for which we don't already know a definite base value for
872   /* scope */ {
873     SmallVector<Value*, 16> Worklist;
874     Worklist.push_back(Def);
875     States.insert({Def, BDVState(Def)});
876     while (!Worklist.empty()) {
877       Value *Current = Worklist.pop_back_val();
878       assert(!isOriginalBaseResult(Current) && "why did it get added?");
879 
880       auto visitIncomingValue = [&](Value *InVal) {
881         Value *Base = findBaseOrBDV(InVal, Cache);
882         if (isKnownBaseResult(Base) && areBothVectorOrScalar(Base, InVal))
883           // Known bases won't need new instructions introduced and can be
884           // ignored safely. However, this can only be done when InVal and Base
885           // are both scalar or both vector. Otherwise, we need to find a
886           // correct BDV for InVal, by creating an entry in the lattice
887           // (States).
888           return;
889         assert(isExpectedBDVType(Base) && "the only non-base values "
890                "we see should be base defining values");
891         if (States.insert(std::make_pair(Base, BDVState(Base))).second)
892           Worklist.push_back(Base);
893       };
894 
895       visitBDVOperands(Current, visitIncomingValue);
896     }
897   }
898 
899 #ifndef NDEBUG
900   VerifyStates();
901   LLVM_DEBUG(dbgs() << "States after initialization:\n");
902   for (auto Pair : States) {
903     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
904   }
905 #endif
906 
907   // Iterate forward through the value graph pruning any node from the state
908   // list where all of the inputs are base pointers.  The purpose of this is to
909   // reuse existing values when the derived pointer we were asked to materialize
910   // a base pointer for happens to be a base pointer itself.  (Or a sub-graph
911   // feeding it does.)
912   SmallVector<Value *> ToRemove;
913   do {
914     ToRemove.clear();
915     for (auto Pair : States) {
916       Value *BDV = Pair.first;
917       auto canPruneInput = [&](Value *V) {
918         Value *BDV = findBaseOrBDV(V, Cache);
919         if (V->stripPointerCasts() != BDV)
920           return false;
921         // The assumption is that anything not in the state list is
922         // propagates a base pointer.
923         return States.count(BDV) == 0;
924       };
925 
926       bool CanPrune = true;
927       visitBDVOperands(BDV, [&](Value *Op) {
928         CanPrune = CanPrune && canPruneInput(Op);
929       });
930       if (CanPrune)
931         ToRemove.push_back(BDV);
932     }
933     for (Value *V : ToRemove) {
934       States.erase(V);
935       // Cache the fact V is it's own base for later usage.
936       Cache[V] = V;
937     }
938   } while (!ToRemove.empty());
939 
940   // Did we manage to prove that Def itself must be a base pointer?
941   if (!States.count(Def))
942     return Def;
943 
944   // Return a phi state for a base defining value.  We'll generate a new
945   // base state for known bases and expect to find a cached state otherwise.
946   auto GetStateForBDV = [&](Value *BaseValue, Value *Input) {
947     auto I = States.find(BaseValue);
948     if (I != States.end())
949       return I->second;
950     assert(areBothVectorOrScalar(BaseValue, Input));
951     return BDVState(BaseValue, BDVState::Base, BaseValue);
952   };
953 
954   bool Progress = true;
955   while (Progress) {
956 #ifndef NDEBUG
957     const size_t OldSize = States.size();
958 #endif
959     Progress = false;
960     // We're only changing values in this loop, thus safe to keep iterators.
961     // Since this is computing a fixed point, the order of visit does not
962     // effect the result.  TODO: We could use a worklist here and make this run
963     // much faster.
964     for (auto Pair : States) {
965       Value *BDV = Pair.first;
966       // Only values that do not have known bases or those that have differing
967       // type (scalar versus vector) from a possible known base should be in the
968       // lattice.
969       assert((!isKnownBaseResult(BDV) ||
970              !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) &&
971                  "why did it get added?");
972 
973       BDVState NewState(BDV);
974       visitBDVOperands(BDV, [&] (Value *Op) {
975         Value *BDV = findBaseOrBDV(Op, Cache);
976         auto OpState = GetStateForBDV(BDV, Op);
977         NewState = meetBDVState(NewState, OpState);
978       });
979 
980       BDVState OldState = States[BDV];
981       if (OldState != NewState) {
982         Progress = true;
983         States[BDV] = NewState;
984       }
985     }
986 
987     assert(OldSize == States.size() &&
988            "fixed point shouldn't be adding any new nodes to state");
989   }
990 
991 #ifndef NDEBUG
992   VerifyStates();
993   LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
994   for (auto Pair : States) {
995     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
996   }
997 #endif
998 
999   // Handle all instructions that have a vector BDV, but the instruction itself
1000   // is of scalar type.
1001   for (auto Pair : States) {
1002     Instruction *I = cast<Instruction>(Pair.first);
1003     BDVState State = Pair.second;
1004     auto *BaseValue = State.getBaseValue();
1005     // Only values that do not have known bases or those that have differing
1006     // type (scalar versus vector) from a possible known base should be in the
1007     // lattice.
1008     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, BaseValue)) &&
1009            "why did it get added?");
1010     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1011 
1012     if (!State.isBase() || !isa<VectorType>(BaseValue->getType()))
1013       continue;
1014     // extractelement instructions are a bit special in that we may need to
1015     // insert an extract even when we know an exact base for the instruction.
1016     // The problem is that we need to convert from a vector base to a scalar
1017     // base for the particular indice we're interested in.
1018     if (isa<ExtractElementInst>(I)) {
1019       auto *EE = cast<ExtractElementInst>(I);
1020       // TODO: In many cases, the new instruction is just EE itself.  We should
1021       // exploit this, but can't do it here since it would break the invariant
1022       // about the BDV not being known to be a base.
1023       auto *BaseInst = ExtractElementInst::Create(
1024           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
1025       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1026       States[I] = BDVState(I, BDVState::Base, BaseInst);
1027     } else if (!isa<VectorType>(I->getType())) {
1028       // We need to handle cases that have a vector base but the instruction is
1029       // a scalar type (these could be phis or selects or any instruction that
1030       // are of scalar type, but the base can be a vector type).  We
1031       // conservatively set this as conflict.  Setting the base value for these
1032       // conflicts is handled in the next loop which traverses States.
1033       States[I] = BDVState(I, BDVState::Conflict);
1034     }
1035   }
1036 
1037 #ifndef NDEBUG
1038   VerifyStates();
1039 #endif
1040 
1041   // Insert Phis for all conflicts
1042   // TODO: adjust naming patterns to avoid this order of iteration dependency
1043   for (auto Pair : States) {
1044     Instruction *I = cast<Instruction>(Pair.first);
1045     BDVState State = Pair.second;
1046     // Only values that do not have known bases or those that have differing
1047     // type (scalar versus vector) from a possible known base should be in the
1048     // lattice.
1049     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, State.getBaseValue())) &&
1050            "why did it get added?");
1051     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1052 
1053     // Since we're joining a vector and scalar base, they can never be the
1054     // same.  As a result, we should always see insert element having reached
1055     // the conflict state.
1056     assert(!isa<InsertElementInst>(I) || State.isConflict());
1057 
1058     if (!State.isConflict())
1059       continue;
1060 
1061     auto getMangledName = [](Instruction *I) -> std::string {
1062       if (isa<PHINode>(I)) {
1063         return suffixed_name_or(I, ".base", "base_phi");
1064       } else if (isa<SelectInst>(I)) {
1065         return suffixed_name_or(I, ".base", "base_select");
1066       } else if (isa<ExtractElementInst>(I)) {
1067         return suffixed_name_or(I, ".base", "base_ee");
1068       } else if (isa<InsertElementInst>(I)) {
1069         return suffixed_name_or(I, ".base", "base_ie");
1070       } else {
1071         return suffixed_name_or(I, ".base", "base_sv");
1072       }
1073     };
1074 
1075     Instruction *BaseInst = I->clone();
1076     BaseInst->insertBefore(I);
1077     BaseInst->setName(getMangledName(I));
1078     // Add metadata marking this as a base value
1079     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1080     States[I] = BDVState(I, BDVState::Conflict, BaseInst);
1081   }
1082 
1083 #ifndef NDEBUG
1084   VerifyStates();
1085 #endif
1086 
1087   // Returns a instruction which produces the base pointer for a given
1088   // instruction.  The instruction is assumed to be an input to one of the BDVs
1089   // seen in the inference algorithm above.  As such, we must either already
1090   // know it's base defining value is a base, or have inserted a new
1091   // instruction to propagate the base of it's BDV and have entered that newly
1092   // introduced instruction into the state table.  In either case, we are
1093   // assured to be able to determine an instruction which produces it's base
1094   // pointer.
1095   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1096     Value *BDV = findBaseOrBDV(Input, Cache);
1097     Value *Base = nullptr;
1098     if (!States.count(BDV)) {
1099       assert(areBothVectorOrScalar(BDV, Input));
1100       Base = BDV;
1101     } else {
1102       // Either conflict or base.
1103       assert(States.count(BDV));
1104       Base = States[BDV].getBaseValue();
1105     }
1106     assert(Base && "Can't be null");
1107     // The cast is needed since base traversal may strip away bitcasts
1108     if (Base->getType() != Input->getType() && InsertPt)
1109       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1110     return Base;
1111   };
1112 
1113   // Fixup all the inputs of the new PHIs.  Visit order needs to be
1114   // deterministic and predictable because we're naming newly created
1115   // instructions.
1116   for (auto Pair : States) {
1117     Instruction *BDV = cast<Instruction>(Pair.first);
1118     BDVState State = Pair.second;
1119 
1120     // Only values that do not have known bases or those that have differing
1121     // type (scalar versus vector) from a possible known base should be in the
1122     // lattice.
1123     assert((!isKnownBaseResult(BDV) ||
1124             !areBothVectorOrScalar(BDV, State.getBaseValue())) &&
1125            "why did it get added?");
1126     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1127     if (!State.isConflict())
1128       continue;
1129 
1130     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1131       PHINode *PN = cast<PHINode>(BDV);
1132       const unsigned NumPHIValues = PN->getNumIncomingValues();
1133 
1134       // The IR verifier requires phi nodes with multiple entries from the
1135       // same basic block to have the same incoming value for each of those
1136       // entries.  Since we're inserting bitcasts in the loop, make sure we
1137       // do so at least once per incoming block.
1138       DenseMap<BasicBlock *, Value*> BlockToValue;
1139       for (unsigned i = 0; i < NumPHIValues; i++) {
1140         Value *InVal = PN->getIncomingValue(i);
1141         BasicBlock *InBB = PN->getIncomingBlock(i);
1142         if (!BlockToValue.count(InBB))
1143           BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator());
1144         else {
1145 #ifndef NDEBUG
1146           Value *OldBase = BlockToValue[InBB];
1147           Value *Base = getBaseForInput(InVal, nullptr);
1148           // In essence this assert states: the only way two values
1149           // incoming from the same basic block may be different is by
1150           // being different bitcasts of the same value.  A cleanup
1151           // that remains TODO is changing findBaseOrBDV to return an
1152           // llvm::Value of the correct type (and still remain pure).
1153           // This will remove the need to add bitcasts.
1154           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1155                  "Sanity -- findBaseOrBDV should be pure!");
1156 #endif
1157         }
1158         Value *Base = BlockToValue[InBB];
1159         BasePHI->setIncomingValue(i, Base);
1160       }
1161     } else if (SelectInst *BaseSI =
1162                    dyn_cast<SelectInst>(State.getBaseValue())) {
1163       SelectInst *SI = cast<SelectInst>(BDV);
1164 
1165       // Find the instruction which produces the base for each input.
1166       // We may need to insert a bitcast.
1167       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1168       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1169     } else if (auto *BaseEE =
1170                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1171       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1172       // Find the instruction which produces the base for each input.  We may
1173       // need to insert a bitcast.
1174       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1175     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1176       auto *BdvIE = cast<InsertElementInst>(BDV);
1177       auto UpdateOperand = [&](int OperandIdx) {
1178         Value *InVal = BdvIE->getOperand(OperandIdx);
1179         Value *Base = getBaseForInput(InVal, BaseIE);
1180         BaseIE->setOperand(OperandIdx, Base);
1181       };
1182       UpdateOperand(0); // vector operand
1183       UpdateOperand(1); // scalar operand
1184     } else {
1185       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1186       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1187       auto UpdateOperand = [&](int OperandIdx) {
1188         Value *InVal = BdvSV->getOperand(OperandIdx);
1189         Value *Base = getBaseForInput(InVal, BaseSV);
1190         BaseSV->setOperand(OperandIdx, Base);
1191       };
1192       UpdateOperand(0); // vector operand
1193       if (!BdvSV->isZeroEltSplat())
1194         UpdateOperand(1); // vector operand
1195       else {
1196         // Never read, so just use undef
1197         Value *InVal = BdvSV->getOperand(1);
1198         BaseSV->setOperand(1, UndefValue::get(InVal->getType()));
1199       }
1200     }
1201   }
1202 
1203 #ifndef NDEBUG
1204   VerifyStates();
1205 #endif
1206 
1207   // Cache all of our results so we can cheaply reuse them
1208   // NOTE: This is actually two caches: one of the base defining value
1209   // relation and one of the base pointer relation!  FIXME
1210   for (auto Pair : States) {
1211     auto *BDV = Pair.first;
1212     Value *Base = Pair.second.getBaseValue();
1213     assert(BDV && Base);
1214     // Only values that do not have known bases or those that have differing
1215     // type (scalar versus vector) from a possible known base should be in the
1216     // lattice.
1217     assert((!isKnownBaseResult(BDV) || !areBothVectorOrScalar(BDV, Base)) &&
1218            "why did it get added?");
1219 
1220     LLVM_DEBUG(
1221         dbgs() << "Updating base value cache"
1222                << " for: " << BDV->getName() << " from: "
1223                << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1224                << " to: " << Base->getName() << "\n");
1225 
1226     Cache[BDV] = Base;
1227   }
1228   assert(Cache.count(Def));
1229   return Cache[Def];
1230 }
1231 
1232 // For a set of live pointers (base and/or derived), identify the base
1233 // pointer of the object which they are derived from.  This routine will
1234 // mutate the IR graph as needed to make the 'base' pointer live at the
1235 // definition site of 'derived'.  This ensures that any use of 'derived' can
1236 // also use 'base'.  This may involve the insertion of a number of
1237 // additional PHI nodes.
1238 //
1239 // preconditions: live is a set of pointer type Values
1240 //
1241 // side effects: may insert PHI nodes into the existing CFG, will preserve
1242 // CFG, will not remove or mutate any existing nodes
1243 //
1244 // post condition: PointerToBase contains one (derived, base) pair for every
1245 // pointer in live.  Note that derived can be equal to base if the original
1246 // pointer was a base pointer.
1247 static void
1248 findBasePointers(const StatepointLiveSetTy &live,
1249                  MapVector<Value *, Value *> &PointerToBase,
1250                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1251   for (Value *ptr : live) {
1252     Value *base = findBasePointer(ptr, DVCache);
1253     assert(base && "failed to find base pointer");
1254     PointerToBase[ptr] = base;
1255     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1256             DT->dominates(cast<Instruction>(base)->getParent(),
1257                           cast<Instruction>(ptr)->getParent())) &&
1258            "The base we found better dominate the derived pointer");
1259   }
1260 }
1261 
1262 /// Find the required based pointers (and adjust the live set) for the given
1263 /// parse point.
1264 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1265                              CallBase *Call,
1266                              PartiallyConstructedSafepointRecord &result) {
1267   MapVector<Value *, Value *> PointerToBase;
1268   StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet;
1269   // We assume that all pointers passed to deopt are base pointers; as an
1270   // optimization, we can use this to avoid seperately materializing the base
1271   // pointer graph.  This is only relevant since we're very conservative about
1272   // generating new conflict nodes during base pointer insertion.  If we were
1273   // smarter there, this would be irrelevant.
1274   if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt))
1275     for (Value *V : Opt->Inputs) {
1276       if (!PotentiallyDerivedPointers.count(V))
1277         continue;
1278       PotentiallyDerivedPointers.remove(V);
1279       PointerToBase[V] = V;
1280     }
1281   findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache);
1282 
1283   if (PrintBasePointers) {
1284     errs() << "Base Pairs (w/o Relocation):\n";
1285     for (auto &Pair : PointerToBase) {
1286       errs() << " derived ";
1287       Pair.first->printAsOperand(errs(), false);
1288       errs() << " base ";
1289       Pair.second->printAsOperand(errs(), false);
1290       errs() << "\n";;
1291     }
1292   }
1293 
1294   result.PointerToBase = PointerToBase;
1295 }
1296 
1297 /// Given an updated version of the dataflow liveness results, update the
1298 /// liveset and base pointer maps for the call site CS.
1299 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1300                                   CallBase *Call,
1301                                   PartiallyConstructedSafepointRecord &result);
1302 
1303 static void recomputeLiveInValues(
1304     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1305     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1306   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1307   // again.  The old values are still live and will help it stabilize quickly.
1308   GCPtrLivenessData RevisedLivenessData;
1309   computeLiveInValues(DT, F, RevisedLivenessData);
1310   for (size_t i = 0; i < records.size(); i++) {
1311     struct PartiallyConstructedSafepointRecord &info = records[i];
1312     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1313   }
1314 }
1315 
1316 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1317 // no uses of the original value / return value between the gc.statepoint and
1318 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1319 // starting one of the successor blocks.  We also need to be able to insert the
1320 // gc.relocates only on the path which goes through the statepoint.  We might
1321 // need to split an edge to make this possible.
1322 static BasicBlock *
1323 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1324                             DominatorTree &DT) {
1325   BasicBlock *Ret = BB;
1326   if (!BB->getUniquePredecessor())
1327     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1328 
1329   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1330   // from it
1331   FoldSingleEntryPHINodes(Ret);
1332   assert(!isa<PHINode>(Ret->begin()) &&
1333          "All PHI nodes should have been removed!");
1334 
1335   // At this point, we can safely insert a gc.relocate or gc.result as the first
1336   // instruction in Ret if needed.
1337   return Ret;
1338 }
1339 
1340 // Create new attribute set containing only attributes which can be transferred
1341 // from original call to the safepoint.
1342 static AttributeList legalizeCallAttributes(LLVMContext &Ctx,
1343                                             AttributeList AL) {
1344   if (AL.isEmpty())
1345     return AL;
1346 
1347   // Remove the readonly, readnone, and statepoint function attributes.
1348   AttrBuilder FnAttrs = AL.getFnAttributes();
1349   FnAttrs.removeAttribute(Attribute::ReadNone);
1350   FnAttrs.removeAttribute(Attribute::ReadOnly);
1351   for (Attribute A : AL.getFnAttributes()) {
1352     if (isStatepointDirectiveAttr(A))
1353       FnAttrs.remove(A);
1354   }
1355 
1356   // Just skip parameter and return attributes for now
1357   return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1358                             AttributeSet::get(Ctx, FnAttrs));
1359 }
1360 
1361 /// Helper function to place all gc relocates necessary for the given
1362 /// statepoint.
1363 /// Inputs:
1364 ///   liveVariables - list of variables to be relocated.
1365 ///   basePtrs - base pointers.
1366 ///   statepointToken - statepoint instruction to which relocates should be
1367 ///   bound.
1368 ///   Builder - Llvm IR builder to be used to construct new calls.
1369 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1370                               ArrayRef<Value *> BasePtrs,
1371                               Instruction *StatepointToken,
1372                               IRBuilder<> &Builder) {
1373   if (LiveVariables.empty())
1374     return;
1375 
1376   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1377     auto ValIt = llvm::find(LiveVec, Val);
1378     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1379     size_t Index = std::distance(LiveVec.begin(), ValIt);
1380     assert(Index < LiveVec.size() && "Bug in std::find?");
1381     return Index;
1382   };
1383   Module *M = StatepointToken->getModule();
1384 
1385   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1386   // element type is i8 addrspace(1)*). We originally generated unique
1387   // declarations for each pointer type, but this proved problematic because
1388   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1389   // towards a single unified pointer type anyways, we can just cast everything
1390   // to an i8* of the right address space.  A bitcast is added later to convert
1391   // gc_relocate to the actual value's type.
1392   auto getGCRelocateDecl = [&] (Type *Ty) {
1393     assert(isHandledGCPointerType(Ty));
1394     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1395     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1396     if (auto *VT = dyn_cast<VectorType>(Ty))
1397       NewTy = FixedVectorType::get(NewTy,
1398                                    cast<FixedVectorType>(VT)->getNumElements());
1399     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1400                                      {NewTy});
1401   };
1402 
1403   // Lazily populated map from input types to the canonicalized form mentioned
1404   // in the comment above.  This should probably be cached somewhere more
1405   // broadly.
1406   DenseMap<Type *, Function *> TypeToDeclMap;
1407 
1408   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1409     // Generate the gc.relocate call and save the result
1410     Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i]));
1411     Value *LiveIdx = Builder.getInt32(i);
1412 
1413     Type *Ty = LiveVariables[i]->getType();
1414     if (!TypeToDeclMap.count(Ty))
1415       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1416     Function *GCRelocateDecl = TypeToDeclMap[Ty];
1417 
1418     // only specify a debug name if we can give a useful one
1419     CallInst *Reloc = Builder.CreateCall(
1420         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1421         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1422     // Trick CodeGen into thinking there are lots of free registers at this
1423     // fake call.
1424     Reloc->setCallingConv(CallingConv::Cold);
1425   }
1426 }
1427 
1428 namespace {
1429 
1430 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1431 /// avoids having to worry about keeping around dangling pointers to Values.
1432 class DeferredReplacement {
1433   AssertingVH<Instruction> Old;
1434   AssertingVH<Instruction> New;
1435   bool IsDeoptimize = false;
1436 
1437   DeferredReplacement() = default;
1438 
1439 public:
1440   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1441     assert(Old != New && Old && New &&
1442            "Cannot RAUW equal values or to / from null!");
1443 
1444     DeferredReplacement D;
1445     D.Old = Old;
1446     D.New = New;
1447     return D;
1448   }
1449 
1450   static DeferredReplacement createDelete(Instruction *ToErase) {
1451     DeferredReplacement D;
1452     D.Old = ToErase;
1453     return D;
1454   }
1455 
1456   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1457 #ifndef NDEBUG
1458     auto *F = cast<CallInst>(Old)->getCalledFunction();
1459     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1460            "Only way to construct a deoptimize deferred replacement");
1461 #endif
1462     DeferredReplacement D;
1463     D.Old = Old;
1464     D.IsDeoptimize = true;
1465     return D;
1466   }
1467 
1468   /// Does the task represented by this instance.
1469   void doReplacement() {
1470     Instruction *OldI = Old;
1471     Instruction *NewI = New;
1472 
1473     assert(OldI != NewI && "Disallowed at construction?!");
1474     assert((!IsDeoptimize || !New) &&
1475            "Deoptimize intrinsics are not replaced!");
1476 
1477     Old = nullptr;
1478     New = nullptr;
1479 
1480     if (NewI)
1481       OldI->replaceAllUsesWith(NewI);
1482 
1483     if (IsDeoptimize) {
1484       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1485       // not necessarily be followed by the matching return.
1486       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1487       new UnreachableInst(RI->getContext(), RI);
1488       RI->eraseFromParent();
1489     }
1490 
1491     OldI->eraseFromParent();
1492   }
1493 };
1494 
1495 } // end anonymous namespace
1496 
1497 static StringRef getDeoptLowering(CallBase *Call) {
1498   const char *DeoptLowering = "deopt-lowering";
1499   if (Call->hasFnAttr(DeoptLowering)) {
1500     // FIXME: Calls have a *really* confusing interface around attributes
1501     // with values.
1502     const AttributeList &CSAS = Call->getAttributes();
1503     if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1504       return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1505           .getValueAsString();
1506     Function *F = Call->getCalledFunction();
1507     assert(F && F->hasFnAttribute(DeoptLowering));
1508     return F->getFnAttribute(DeoptLowering).getValueAsString();
1509   }
1510   return "live-through";
1511 }
1512 
1513 static void
1514 makeStatepointExplicitImpl(CallBase *Call, /* to replace */
1515                            const SmallVectorImpl<Value *> &BasePtrs,
1516                            const SmallVectorImpl<Value *> &LiveVariables,
1517                            PartiallyConstructedSafepointRecord &Result,
1518                            std::vector<DeferredReplacement> &Replacements) {
1519   assert(BasePtrs.size() == LiveVariables.size());
1520 
1521   // Then go ahead and use the builder do actually do the inserts.  We insert
1522   // immediately before the previous instruction under the assumption that all
1523   // arguments will be available here.  We can't insert afterwards since we may
1524   // be replacing a terminator.
1525   IRBuilder<> Builder(Call);
1526 
1527   ArrayRef<Value *> GCArgs(LiveVariables);
1528   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1529   uint32_t NumPatchBytes = 0;
1530   uint32_t Flags = uint32_t(StatepointFlags::None);
1531 
1532   SmallVector<Value *, 8> CallArgs(Call->args());
1533   Optional<ArrayRef<Use>> DeoptArgs;
1534   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt))
1535     DeoptArgs = Bundle->Inputs;
1536   Optional<ArrayRef<Use>> TransitionArgs;
1537   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
1538     TransitionArgs = Bundle->Inputs;
1539     // TODO: This flag no longer serves a purpose and can be removed later
1540     Flags |= uint32_t(StatepointFlags::GCTransition);
1541   }
1542 
1543   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1544   // with a return value, we lower then as never returning calls to
1545   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1546   bool IsDeoptimize = false;
1547 
1548   StatepointDirectives SD =
1549       parseStatepointDirectivesFromAttrs(Call->getAttributes());
1550   if (SD.NumPatchBytes)
1551     NumPatchBytes = *SD.NumPatchBytes;
1552   if (SD.StatepointID)
1553     StatepointID = *SD.StatepointID;
1554 
1555   // Pass through the requested lowering if any.  The default is live-through.
1556   StringRef DeoptLowering = getDeoptLowering(Call);
1557   if (DeoptLowering.equals("live-in"))
1558     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1559   else {
1560     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1561   }
1562 
1563   Value *CallTarget = Call->getCalledOperand();
1564   if (Function *F = dyn_cast<Function>(CallTarget)) {
1565     auto IID = F->getIntrinsicID();
1566     if (IID == Intrinsic::experimental_deoptimize) {
1567       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1568       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1569       // verifier does not allow taking the address of an intrinsic function.
1570 
1571       SmallVector<Type *, 8> DomainTy;
1572       for (Value *Arg : CallArgs)
1573         DomainTy.push_back(Arg->getType());
1574       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1575                                     /* isVarArg = */ false);
1576 
1577       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1578       // calls to @llvm.experimental.deoptimize with different argument types in
1579       // the same module.  This is fine -- we assume the frontend knew what it
1580       // was doing when generating this kind of IR.
1581       CallTarget = F->getParent()
1582                        ->getOrInsertFunction("__llvm_deoptimize", FTy)
1583                        .getCallee();
1584 
1585       IsDeoptimize = true;
1586     } else if (IID == Intrinsic::memcpy_element_unordered_atomic ||
1587                IID == Intrinsic::memmove_element_unordered_atomic) {
1588       // Unordered atomic memcpy and memmove intrinsics which are not explicitly
1589       // marked as "gc-leaf-function" should be lowered in a GC parseable way.
1590       // Specifically, these calls should be lowered to the
1591       // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols.
1592       // Similarly to __llvm_deoptimize we want to resolve this now, since the
1593       // verifier does not allow taking the address of an intrinsic function.
1594       //
1595       // Moreover we need to shuffle the arguments for the call in order to
1596       // accommodate GC. The underlying source and destination objects might be
1597       // relocated during copy operation should the GC occur. To relocate the
1598       // derived source and destination pointers the implementation of the
1599       // intrinsic should know the corresponding base pointers.
1600       //
1601       // To make the base pointers available pass them explicitly as arguments:
1602       //   memcpy(dest_derived, source_derived, ...) =>
1603       //   memcpy(dest_base, dest_offset, source_base, source_offset, ...)
1604       auto &Context = Call->getContext();
1605       auto &DL = Call->getModule()->getDataLayout();
1606       auto GetBaseAndOffset = [&](Value *Derived) {
1607         assert(Result.PointerToBase.count(Derived));
1608         unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
1609         unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
1610         Value *Base = Result.PointerToBase.find(Derived)->second;
1611         Value *Base_int = Builder.CreatePtrToInt(
1612             Base, Type::getIntNTy(Context, IntPtrSize));
1613         Value *Derived_int = Builder.CreatePtrToInt(
1614             Derived, Type::getIntNTy(Context, IntPtrSize));
1615         return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int));
1616       };
1617 
1618       auto *Dest = CallArgs[0];
1619       Value *DestBase, *DestOffset;
1620       std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest);
1621 
1622       auto *Source = CallArgs[1];
1623       Value *SourceBase, *SourceOffset;
1624       std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source);
1625 
1626       auto *LengthInBytes = CallArgs[2];
1627       auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]);
1628 
1629       CallArgs.clear();
1630       CallArgs.push_back(DestBase);
1631       CallArgs.push_back(DestOffset);
1632       CallArgs.push_back(SourceBase);
1633       CallArgs.push_back(SourceOffset);
1634       CallArgs.push_back(LengthInBytes);
1635 
1636       SmallVector<Type *, 8> DomainTy;
1637       for (Value *Arg : CallArgs)
1638         DomainTy.push_back(Arg->getType());
1639       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1640                                     /* isVarArg = */ false);
1641 
1642       auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) {
1643         uint64_t ElementSize = ElementSizeCI->getZExtValue();
1644         if (IID == Intrinsic::memcpy_element_unordered_atomic) {
1645           switch (ElementSize) {
1646           case 1:
1647             return "__llvm_memcpy_element_unordered_atomic_safepoint_1";
1648           case 2:
1649             return "__llvm_memcpy_element_unordered_atomic_safepoint_2";
1650           case 4:
1651             return "__llvm_memcpy_element_unordered_atomic_safepoint_4";
1652           case 8:
1653             return "__llvm_memcpy_element_unordered_atomic_safepoint_8";
1654           case 16:
1655             return "__llvm_memcpy_element_unordered_atomic_safepoint_16";
1656           default:
1657             llvm_unreachable("unexpected element size!");
1658           }
1659         }
1660         assert(IID == Intrinsic::memmove_element_unordered_atomic);
1661         switch (ElementSize) {
1662         case 1:
1663           return "__llvm_memmove_element_unordered_atomic_safepoint_1";
1664         case 2:
1665           return "__llvm_memmove_element_unordered_atomic_safepoint_2";
1666         case 4:
1667           return "__llvm_memmove_element_unordered_atomic_safepoint_4";
1668         case 8:
1669           return "__llvm_memmove_element_unordered_atomic_safepoint_8";
1670         case 16:
1671           return "__llvm_memmove_element_unordered_atomic_safepoint_16";
1672         default:
1673           llvm_unreachable("unexpected element size!");
1674         }
1675       };
1676 
1677       CallTarget =
1678           F->getParent()
1679               ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy)
1680               .getCallee();
1681     }
1682   }
1683 
1684   // Create the statepoint given all the arguments
1685   GCStatepointInst *Token = nullptr;
1686   if (auto *CI = dyn_cast<CallInst>(Call)) {
1687     CallInst *SPCall = Builder.CreateGCStatepointCall(
1688         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1689         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1690 
1691     SPCall->setTailCallKind(CI->getTailCallKind());
1692     SPCall->setCallingConv(CI->getCallingConv());
1693 
1694     // Currently we will fail on parameter attributes and on certain
1695     // function attributes.  In case if we can handle this set of attributes -
1696     // set up function attrs directly on statepoint and return attrs later for
1697     // gc_result intrinsic.
1698     SPCall->setAttributes(
1699         legalizeCallAttributes(CI->getContext(), CI->getAttributes()));
1700 
1701     Token = cast<GCStatepointInst>(SPCall);
1702 
1703     // Put the following gc_result and gc_relocate calls immediately after the
1704     // the old call (which we're about to delete)
1705     assert(CI->getNextNode() && "Not a terminator, must have next!");
1706     Builder.SetInsertPoint(CI->getNextNode());
1707     Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
1708   } else {
1709     auto *II = cast<InvokeInst>(Call);
1710 
1711     // Insert the new invoke into the old block.  We'll remove the old one in a
1712     // moment at which point this will become the new terminator for the
1713     // original block.
1714     InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
1715         StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
1716         II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
1717         "statepoint_token");
1718 
1719     SPInvoke->setCallingConv(II->getCallingConv());
1720 
1721     // Currently we will fail on parameter attributes and on certain
1722     // function attributes.  In case if we can handle this set of attributes -
1723     // set up function attrs directly on statepoint and return attrs later for
1724     // gc_result intrinsic.
1725     SPInvoke->setAttributes(
1726         legalizeCallAttributes(II->getContext(), II->getAttributes()));
1727 
1728     Token = cast<GCStatepointInst>(SPInvoke);
1729 
1730     // Generate gc relocates in exceptional path
1731     BasicBlock *UnwindBlock = II->getUnwindDest();
1732     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1733            UnwindBlock->getUniquePredecessor() &&
1734            "can't safely insert in this block!");
1735 
1736     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1737     Builder.SetCurrentDebugLocation(II->getDebugLoc());
1738 
1739     // Attach exceptional gc relocates to the landingpad.
1740     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1741     Result.UnwindToken = ExceptionalToken;
1742 
1743     CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder);
1744 
1745     // Generate gc relocates and returns for normal block
1746     BasicBlock *NormalDest = II->getNormalDest();
1747     assert(!isa<PHINode>(NormalDest->begin()) &&
1748            NormalDest->getUniquePredecessor() &&
1749            "can't safely insert in this block!");
1750 
1751     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1752 
1753     // gc relocates will be generated later as if it were regular call
1754     // statepoint
1755   }
1756   assert(Token && "Should be set in one of the above branches!");
1757 
1758   if (IsDeoptimize) {
1759     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1760     // transform the tail-call like structure to a call to a void function
1761     // followed by unreachable to get better codegen.
1762     Replacements.push_back(
1763         DeferredReplacement::createDeoptimizeReplacement(Call));
1764   } else {
1765     Token->setName("statepoint_token");
1766     if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
1767       StringRef Name = Call->hasName() ? Call->getName() : "";
1768       CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
1769       GCResult->setAttributes(
1770           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1771                              Call->getAttributes().getRetAttributes()));
1772 
1773       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1774       // live set of some other safepoint, in which case that safepoint's
1775       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1776       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1777       // after the live sets have been made explicit in the IR, and we no longer
1778       // have raw pointers to worry about.
1779       Replacements.emplace_back(
1780           DeferredReplacement::createRAUW(Call, GCResult));
1781     } else {
1782       Replacements.emplace_back(DeferredReplacement::createDelete(Call));
1783     }
1784   }
1785 
1786   Result.StatepointToken = Token;
1787 
1788   // Second, create a gc.relocate for every live variable
1789   CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder);
1790 }
1791 
1792 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1793 // which make the relocations happening at this safepoint explicit.
1794 //
1795 // WARNING: Does not do any fixup to adjust users of the original live
1796 // values.  That's the callers responsibility.
1797 static void
1798 makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
1799                        PartiallyConstructedSafepointRecord &Result,
1800                        std::vector<DeferredReplacement> &Replacements) {
1801   const auto &LiveSet = Result.LiveSet;
1802   const auto &PointerToBase = Result.PointerToBase;
1803 
1804   // Convert to vector for efficient cross referencing.
1805   SmallVector<Value *, 64> BaseVec, LiveVec;
1806   LiveVec.reserve(LiveSet.size());
1807   BaseVec.reserve(LiveSet.size());
1808   for (Value *L : LiveSet) {
1809     LiveVec.push_back(L);
1810     assert(PointerToBase.count(L));
1811     Value *Base = PointerToBase.find(L)->second;
1812     BaseVec.push_back(Base);
1813   }
1814   assert(LiveVec.size() == BaseVec.size());
1815 
1816   // Do the actual rewriting and delete the old statepoint
1817   makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
1818 }
1819 
1820 // Helper function for the relocationViaAlloca.
1821 //
1822 // It receives iterator to the statepoint gc relocates and emits a store to the
1823 // assigned location (via allocaMap) for the each one of them.  It adds the
1824 // visited values into the visitedLiveValues set, which we will later use them
1825 // for sanity checking.
1826 static void
1827 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1828                        DenseMap<Value *, AllocaInst *> &AllocaMap,
1829                        DenseSet<Value *> &VisitedLiveValues) {
1830   for (User *U : GCRelocs) {
1831     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1832     if (!Relocate)
1833       continue;
1834 
1835     Value *OriginalValue = Relocate->getDerivedPtr();
1836     assert(AllocaMap.count(OriginalValue));
1837     Value *Alloca = AllocaMap[OriginalValue];
1838 
1839     // Emit store into the related alloca
1840     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1841     // the correct type according to alloca.
1842     assert(Relocate->getNextNode() &&
1843            "Should always have one since it's not a terminator");
1844     IRBuilder<> Builder(Relocate->getNextNode());
1845     Value *CastedRelocatedValue =
1846       Builder.CreateBitCast(Relocate,
1847                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1848                             suffixed_name_or(Relocate, ".casted", ""));
1849 
1850     new StoreInst(CastedRelocatedValue, Alloca,
1851                   cast<Instruction>(CastedRelocatedValue)->getNextNode());
1852 
1853 #ifndef NDEBUG
1854     VisitedLiveValues.insert(OriginalValue);
1855 #endif
1856   }
1857 }
1858 
1859 // Helper function for the "relocationViaAlloca". Similar to the
1860 // "insertRelocationStores" but works for rematerialized values.
1861 static void insertRematerializationStores(
1862     const RematerializedValueMapTy &RematerializedValues,
1863     DenseMap<Value *, AllocaInst *> &AllocaMap,
1864     DenseSet<Value *> &VisitedLiveValues) {
1865   for (auto RematerializedValuePair: RematerializedValues) {
1866     Instruction *RematerializedValue = RematerializedValuePair.first;
1867     Value *OriginalValue = RematerializedValuePair.second;
1868 
1869     assert(AllocaMap.count(OriginalValue) &&
1870            "Can not find alloca for rematerialized value");
1871     Value *Alloca = AllocaMap[OriginalValue];
1872 
1873     new StoreInst(RematerializedValue, Alloca,
1874                   RematerializedValue->getNextNode());
1875 
1876 #ifndef NDEBUG
1877     VisitedLiveValues.insert(OriginalValue);
1878 #endif
1879   }
1880 }
1881 
1882 /// Do all the relocation update via allocas and mem2reg
1883 static void relocationViaAlloca(
1884     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1885     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1886 #ifndef NDEBUG
1887   // record initial number of (static) allocas; we'll check we have the same
1888   // number when we get done.
1889   int InitialAllocaNum = 0;
1890   for (Instruction &I : F.getEntryBlock())
1891     if (isa<AllocaInst>(I))
1892       InitialAllocaNum++;
1893 #endif
1894 
1895   // TODO-PERF: change data structures, reserve
1896   DenseMap<Value *, AllocaInst *> AllocaMap;
1897   SmallVector<AllocaInst *, 200> PromotableAllocas;
1898   // Used later to chack that we have enough allocas to store all values
1899   std::size_t NumRematerializedValues = 0;
1900   PromotableAllocas.reserve(Live.size());
1901 
1902   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1903   // "PromotableAllocas"
1904   const DataLayout &DL = F.getParent()->getDataLayout();
1905   auto emitAllocaFor = [&](Value *LiveValue) {
1906     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1907                                         DL.getAllocaAddrSpace(), "",
1908                                         F.getEntryBlock().getFirstNonPHI());
1909     AllocaMap[LiveValue] = Alloca;
1910     PromotableAllocas.push_back(Alloca);
1911   };
1912 
1913   // Emit alloca for each live gc pointer
1914   for (Value *V : Live)
1915     emitAllocaFor(V);
1916 
1917   // Emit allocas for rematerialized values
1918   for (const auto &Info : Records)
1919     for (auto RematerializedValuePair : Info.RematerializedValues) {
1920       Value *OriginalValue = RematerializedValuePair.second;
1921       if (AllocaMap.count(OriginalValue) != 0)
1922         continue;
1923 
1924       emitAllocaFor(OriginalValue);
1925       ++NumRematerializedValues;
1926     }
1927 
1928   // The next two loops are part of the same conceptual operation.  We need to
1929   // insert a store to the alloca after the original def and at each
1930   // redefinition.  We need to insert a load before each use.  These are split
1931   // into distinct loops for performance reasons.
1932 
1933   // Update gc pointer after each statepoint: either store a relocated value or
1934   // null (if no relocated value was found for this gc pointer and it is not a
1935   // gc_result).  This must happen before we update the statepoint with load of
1936   // alloca otherwise we lose the link between statepoint and old def.
1937   for (const auto &Info : Records) {
1938     Value *Statepoint = Info.StatepointToken;
1939 
1940     // This will be used for consistency check
1941     DenseSet<Value *> VisitedLiveValues;
1942 
1943     // Insert stores for normal statepoint gc relocates
1944     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1945 
1946     // In case if it was invoke statepoint
1947     // we will insert stores for exceptional path gc relocates.
1948     if (isa<InvokeInst>(Statepoint)) {
1949       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1950                              VisitedLiveValues);
1951     }
1952 
1953     // Do similar thing with rematerialized values
1954     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1955                                   VisitedLiveValues);
1956 
1957     if (ClobberNonLive) {
1958       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1959       // the gc.statepoint.  This will turn some subtle GC problems into
1960       // slightly easier to debug SEGVs.  Note that on large IR files with
1961       // lots of gc.statepoints this is extremely costly both memory and time
1962       // wise.
1963       SmallVector<AllocaInst *, 64> ToClobber;
1964       for (auto Pair : AllocaMap) {
1965         Value *Def = Pair.first;
1966         AllocaInst *Alloca = Pair.second;
1967 
1968         // This value was relocated
1969         if (VisitedLiveValues.count(Def)) {
1970           continue;
1971         }
1972         ToClobber.push_back(Alloca);
1973       }
1974 
1975       auto InsertClobbersAt = [&](Instruction *IP) {
1976         for (auto *AI : ToClobber) {
1977           auto PT = cast<PointerType>(AI->getAllocatedType());
1978           Constant *CPN = ConstantPointerNull::get(PT);
1979           new StoreInst(CPN, AI, IP);
1980         }
1981       };
1982 
1983       // Insert the clobbering stores.  These may get intermixed with the
1984       // gc.results and gc.relocates, but that's fine.
1985       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1986         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1987         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1988       } else {
1989         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1990       }
1991     }
1992   }
1993 
1994   // Update use with load allocas and add store for gc_relocated.
1995   for (auto Pair : AllocaMap) {
1996     Value *Def = Pair.first;
1997     AllocaInst *Alloca = Pair.second;
1998 
1999     // We pre-record the uses of allocas so that we dont have to worry about
2000     // later update that changes the user information..
2001 
2002     SmallVector<Instruction *, 20> Uses;
2003     // PERF: trade a linear scan for repeated reallocation
2004     Uses.reserve(Def->getNumUses());
2005     for (User *U : Def->users()) {
2006       if (!isa<ConstantExpr>(U)) {
2007         // If the def has a ConstantExpr use, then the def is either a
2008         // ConstantExpr use itself or null.  In either case
2009         // (recursively in the first, directly in the second), the oop
2010         // it is ultimately dependent on is null and this particular
2011         // use does not need to be fixed up.
2012         Uses.push_back(cast<Instruction>(U));
2013       }
2014     }
2015 
2016     llvm::sort(Uses);
2017     auto Last = std::unique(Uses.begin(), Uses.end());
2018     Uses.erase(Last, Uses.end());
2019 
2020     for (Instruction *Use : Uses) {
2021       if (isa<PHINode>(Use)) {
2022         PHINode *Phi = cast<PHINode>(Use);
2023         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
2024           if (Def == Phi->getIncomingValue(i)) {
2025             LoadInst *Load =
2026                 new LoadInst(Alloca->getAllocatedType(), Alloca, "",
2027                              Phi->getIncomingBlock(i)->getTerminator());
2028             Phi->setIncomingValue(i, Load);
2029           }
2030         }
2031       } else {
2032         LoadInst *Load =
2033             new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
2034         Use->replaceUsesOfWith(Def, Load);
2035       }
2036     }
2037 
2038     // Emit store for the initial gc value.  Store must be inserted after load,
2039     // otherwise store will be in alloca's use list and an extra load will be
2040     // inserted before it.
2041     StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false,
2042                                      DL.getABITypeAlign(Def->getType()));
2043     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
2044       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
2045         // InvokeInst is a terminator so the store need to be inserted into its
2046         // normal destination block.
2047         BasicBlock *NormalDest = Invoke->getNormalDest();
2048         Store->insertBefore(NormalDest->getFirstNonPHI());
2049       } else {
2050         assert(!Inst->isTerminator() &&
2051                "The only terminator that can produce a value is "
2052                "InvokeInst which is handled above.");
2053         Store->insertAfter(Inst);
2054       }
2055     } else {
2056       assert(isa<Argument>(Def));
2057       Store->insertAfter(cast<Instruction>(Alloca));
2058     }
2059   }
2060 
2061   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
2062          "we must have the same allocas with lives");
2063   if (!PromotableAllocas.empty()) {
2064     // Apply mem2reg to promote alloca to SSA
2065     PromoteMemToReg(PromotableAllocas, DT);
2066   }
2067 
2068 #ifndef NDEBUG
2069   for (auto &I : F.getEntryBlock())
2070     if (isa<AllocaInst>(I))
2071       InitialAllocaNum--;
2072   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
2073 #endif
2074 }
2075 
2076 /// Implement a unique function which doesn't require we sort the input
2077 /// vector.  Doing so has the effect of changing the output of a couple of
2078 /// tests in ways which make them less useful in testing fused safepoints.
2079 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
2080   SmallSet<T, 8> Seen;
2081   erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; });
2082 }
2083 
2084 /// Insert holders so that each Value is obviously live through the entire
2085 /// lifetime of the call.
2086 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
2087                                  SmallVectorImpl<CallInst *> &Holders) {
2088   if (Values.empty())
2089     // No values to hold live, might as well not insert the empty holder
2090     return;
2091 
2092   Module *M = Call->getModule();
2093   // Use a dummy vararg function to actually hold the values live
2094   FunctionCallee Func = M->getOrInsertFunction(
2095       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
2096   if (isa<CallInst>(Call)) {
2097     // For call safepoints insert dummy calls right after safepoint
2098     Holders.push_back(
2099         CallInst::Create(Func, Values, "", &*++Call->getIterator()));
2100     return;
2101   }
2102   // For invoke safepooints insert dummy calls both in normal and
2103   // exceptional destination blocks
2104   auto *II = cast<InvokeInst>(Call);
2105   Holders.push_back(CallInst::Create(
2106       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
2107   Holders.push_back(CallInst::Create(
2108       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
2109 }
2110 
2111 static void findLiveReferences(
2112     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
2113     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
2114   GCPtrLivenessData OriginalLivenessData;
2115   computeLiveInValues(DT, F, OriginalLivenessData);
2116   for (size_t i = 0; i < records.size(); i++) {
2117     struct PartiallyConstructedSafepointRecord &info = records[i];
2118     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
2119   }
2120 }
2121 
2122 // Helper function for the "rematerializeLiveValues". It walks use chain
2123 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
2124 // the base or a value it cannot process. Only "simple" values are processed
2125 // (currently it is GEP's and casts). The returned root is  examined by the
2126 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
2127 // with all visited values.
2128 static Value* findRematerializableChainToBasePointer(
2129   SmallVectorImpl<Instruction*> &ChainToBase,
2130   Value *CurrentValue) {
2131   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2132     ChainToBase.push_back(GEP);
2133     return findRematerializableChainToBasePointer(ChainToBase,
2134                                                   GEP->getPointerOperand());
2135   }
2136 
2137   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2138     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2139       return CI;
2140 
2141     ChainToBase.push_back(CI);
2142     return findRematerializableChainToBasePointer(ChainToBase,
2143                                                   CI->getOperand(0));
2144   }
2145 
2146   // We have reached the root of the chain, which is either equal to the base or
2147   // is the first unsupported value along the use chain.
2148   return CurrentValue;
2149 }
2150 
2151 // Helper function for the "rematerializeLiveValues". Compute cost of the use
2152 // chain we are going to rematerialize.
2153 static InstructionCost
2154 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain,
2155                        TargetTransformInfo &TTI) {
2156   InstructionCost Cost = 0;
2157 
2158   for (Instruction *Instr : Chain) {
2159     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2160       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2161              "non noop cast is found during rematerialization");
2162 
2163       Type *SrcTy = CI->getOperand(0)->getType();
2164       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy,
2165                                    TTI::getCastContextHint(CI),
2166                                    TargetTransformInfo::TCK_SizeAndLatency, CI);
2167 
2168     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2169       // Cost of the address calculation
2170       Type *ValTy = GEP->getSourceElementType();
2171       Cost += TTI.getAddressComputationCost(ValTy);
2172 
2173       // And cost of the GEP itself
2174       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2175       //       allowed for the external usage)
2176       if (!GEP->hasAllConstantIndices())
2177         Cost += 2;
2178 
2179     } else {
2180       llvm_unreachable("unsupported instruction type during rematerialization");
2181     }
2182   }
2183 
2184   return Cost;
2185 }
2186 
2187 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
2188   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
2189   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
2190       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
2191     return false;
2192   // Map of incoming values and their corresponding basic blocks of
2193   // OrigRootPhi.
2194   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
2195   for (unsigned i = 0; i < PhiNum; i++)
2196     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2197         OrigRootPhi.getIncomingBlock(i);
2198 
2199   // Both current and base PHIs should have same incoming values and
2200   // the same basic blocks corresponding to the incoming values.
2201   for (unsigned i = 0; i < PhiNum; i++) {
2202     auto CIVI =
2203         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2204     if (CIVI == CurrentIncomingValues.end())
2205       return false;
2206     BasicBlock *CurrentIncomingBB = CIVI->second;
2207     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2208       return false;
2209   }
2210   return true;
2211 }
2212 
2213 // From the statepoint live set pick values that are cheaper to recompute then
2214 // to relocate. Remove this values from the live set, rematerialize them after
2215 // statepoint and record them in "Info" structure. Note that similar to
2216 // relocated values we don't do any user adjustments here.
2217 static void rematerializeLiveValues(CallBase *Call,
2218                                     PartiallyConstructedSafepointRecord &Info,
2219                                     TargetTransformInfo &TTI) {
2220   const unsigned int ChainLengthThreshold = 10;
2221 
2222   // Record values we are going to delete from this statepoint live set.
2223   // We can not di this in following loop due to iterator invalidation.
2224   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2225 
2226   for (Value *LiveValue: Info.LiveSet) {
2227     // For each live pointer find its defining chain
2228     SmallVector<Instruction *, 3> ChainToBase;
2229     assert(Info.PointerToBase.count(LiveValue));
2230     Value *RootOfChain =
2231       findRematerializableChainToBasePointer(ChainToBase,
2232                                              LiveValue);
2233 
2234     // Nothing to do, or chain is too long
2235     if ( ChainToBase.size() == 0 ||
2236         ChainToBase.size() > ChainLengthThreshold)
2237       continue;
2238 
2239     // Handle the scenario where the RootOfChain is not equal to the
2240     // Base Value, but they are essentially the same phi values.
2241     if (RootOfChain != Info.PointerToBase[LiveValue]) {
2242       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2243       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2244       if (!OrigRootPhi || !AlternateRootPhi)
2245         continue;
2246       // PHI nodes that have the same incoming values, and belonging to the same
2247       // basic blocks are essentially the same SSA value.  When the original phi
2248       // has incoming values with different base pointers, the original phi is
2249       // marked as conflict, and an additional `AlternateRootPhi` with the same
2250       // incoming values get generated by the findBasePointer function. We need
2251       // to identify the newly generated AlternateRootPhi (.base version of phi)
2252       // and RootOfChain (the original phi node itself) are the same, so that we
2253       // can rematerialize the gep and casts. This is a workaround for the
2254       // deficiency in the findBasePointer algorithm.
2255       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2256         continue;
2257       // Now that the phi nodes are proved to be the same, assert that
2258       // findBasePointer's newly generated AlternateRootPhi is present in the
2259       // liveset of the call.
2260       assert(Info.LiveSet.count(AlternateRootPhi));
2261     }
2262     // Compute cost of this chain
2263     InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI);
2264     // TODO: We can also account for cases when we will be able to remove some
2265     //       of the rematerialized values by later optimization passes. I.e if
2266     //       we rematerialized several intersecting chains. Or if original values
2267     //       don't have any uses besides this statepoint.
2268 
2269     // For invokes we need to rematerialize each chain twice - for normal and
2270     // for unwind basic blocks. Model this by multiplying cost by two.
2271     if (isa<InvokeInst>(Call)) {
2272       Cost *= 2;
2273     }
2274     // If it's too expensive - skip it
2275     if (Cost >= RematerializationThreshold)
2276       continue;
2277 
2278     // Remove value from the live set
2279     LiveValuesToBeDeleted.push_back(LiveValue);
2280 
2281     // Clone instructions and record them inside "Info" structure
2282 
2283     // Walk backwards to visit top-most instructions first
2284     std::reverse(ChainToBase.begin(), ChainToBase.end());
2285 
2286     // Utility function which clones all instructions from "ChainToBase"
2287     // and inserts them before "InsertBefore". Returns rematerialized value
2288     // which should be used after statepoint.
2289     auto rematerializeChain = [&ChainToBase](
2290         Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2291       Instruction *LastClonedValue = nullptr;
2292       Instruction *LastValue = nullptr;
2293       for (Instruction *Instr: ChainToBase) {
2294         // Only GEP's and casts are supported as we need to be careful to not
2295         // introduce any new uses of pointers not in the liveset.
2296         // Note that it's fine to introduce new uses of pointers which were
2297         // otherwise not used after this statepoint.
2298         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2299 
2300         Instruction *ClonedValue = Instr->clone();
2301         ClonedValue->insertBefore(InsertBefore);
2302         ClonedValue->setName(Instr->getName() + ".remat");
2303 
2304         // If it is not first instruction in the chain then it uses previously
2305         // cloned value. We should update it to use cloned value.
2306         if (LastClonedValue) {
2307           assert(LastValue);
2308           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2309 #ifndef NDEBUG
2310           for (auto OpValue : ClonedValue->operand_values()) {
2311             // Assert that cloned instruction does not use any instructions from
2312             // this chain other than LastClonedValue
2313             assert(!is_contained(ChainToBase, OpValue) &&
2314                    "incorrect use in rematerialization chain");
2315             // Assert that the cloned instruction does not use the RootOfChain
2316             // or the AlternateLiveBase.
2317             assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2318           }
2319 #endif
2320         } else {
2321           // For the first instruction, replace the use of unrelocated base i.e.
2322           // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2323           // live set. They have been proved to be the same PHI nodes.  Note
2324           // that the *only* use of the RootOfChain in the ChainToBase list is
2325           // the first Value in the list.
2326           if (RootOfChain != AlternateLiveBase)
2327             ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2328         }
2329 
2330         LastClonedValue = ClonedValue;
2331         LastValue = Instr;
2332       }
2333       assert(LastClonedValue);
2334       return LastClonedValue;
2335     };
2336 
2337     // Different cases for calls and invokes. For invokes we need to clone
2338     // instructions both on normal and unwind path.
2339     if (isa<CallInst>(Call)) {
2340       Instruction *InsertBefore = Call->getNextNode();
2341       assert(InsertBefore);
2342       Instruction *RematerializedValue = rematerializeChain(
2343           InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2344       Info.RematerializedValues[RematerializedValue] = LiveValue;
2345     } else {
2346       auto *Invoke = cast<InvokeInst>(Call);
2347 
2348       Instruction *NormalInsertBefore =
2349           &*Invoke->getNormalDest()->getFirstInsertionPt();
2350       Instruction *UnwindInsertBefore =
2351           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2352 
2353       Instruction *NormalRematerializedValue = rematerializeChain(
2354           NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2355       Instruction *UnwindRematerializedValue = rematerializeChain(
2356           UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2357 
2358       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2359       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2360     }
2361   }
2362 
2363   // Remove rematerializaed values from the live set
2364   for (auto LiveValue: LiveValuesToBeDeleted) {
2365     Info.LiveSet.remove(LiveValue);
2366   }
2367 }
2368 
2369 static bool insertParsePoints(Function &F, DominatorTree &DT,
2370                               TargetTransformInfo &TTI,
2371                               SmallVectorImpl<CallBase *> &ToUpdate) {
2372 #ifndef NDEBUG
2373   // sanity check the input
2374   std::set<CallBase *> Uniqued;
2375   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2376   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2377 
2378   for (CallBase *Call : ToUpdate)
2379     assert(Call->getFunction() == &F);
2380 #endif
2381 
2382   // When inserting gc.relocates for invokes, we need to be able to insert at
2383   // the top of the successor blocks.  See the comment on
2384   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2385   // may restructure the CFG.
2386   for (CallBase *Call : ToUpdate) {
2387     auto *II = dyn_cast<InvokeInst>(Call);
2388     if (!II)
2389       continue;
2390     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2391     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2392   }
2393 
2394   // A list of dummy calls added to the IR to keep various values obviously
2395   // live in the IR.  We'll remove all of these when done.
2396   SmallVector<CallInst *, 64> Holders;
2397 
2398   // Insert a dummy call with all of the deopt operands we'll need for the
2399   // actual safepoint insertion as arguments.  This ensures reference operands
2400   // in the deopt argument list are considered live through the safepoint (and
2401   // thus makes sure they get relocated.)
2402   for (CallBase *Call : ToUpdate) {
2403     SmallVector<Value *, 64> DeoptValues;
2404 
2405     for (Value *Arg : GetDeoptBundleOperands(Call)) {
2406       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2407              "support for FCA unimplemented");
2408       if (isHandledGCPointerType(Arg->getType()))
2409         DeoptValues.push_back(Arg);
2410     }
2411 
2412     insertUseHolderAfter(Call, DeoptValues, Holders);
2413   }
2414 
2415   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2416 
2417   // A) Identify all gc pointers which are statically live at the given call
2418   // site.
2419   findLiveReferences(F, DT, ToUpdate, Records);
2420 
2421   // B) Find the base pointers for each live pointer
2422   /* scope for caching */ {
2423     // Cache the 'defining value' relation used in the computation and
2424     // insertion of base phis and selects.  This ensures that we don't insert
2425     // large numbers of duplicate base_phis.
2426     DefiningValueMapTy DVCache;
2427 
2428     for (size_t i = 0; i < Records.size(); i++) {
2429       PartiallyConstructedSafepointRecord &info = Records[i];
2430       findBasePointers(DT, DVCache, ToUpdate[i], info);
2431     }
2432   } // end of cache scope
2433 
2434   // The base phi insertion logic (for any safepoint) may have inserted new
2435   // instructions which are now live at some safepoint.  The simplest such
2436   // example is:
2437   // loop:
2438   //   phi a  <-- will be a new base_phi here
2439   //   safepoint 1 <-- that needs to be live here
2440   //   gep a + 1
2441   //   safepoint 2
2442   //   br loop
2443   // We insert some dummy calls after each safepoint to definitely hold live
2444   // the base pointers which were identified for that safepoint.  We'll then
2445   // ask liveness for _every_ base inserted to see what is now live.  Then we
2446   // remove the dummy calls.
2447   Holders.reserve(Holders.size() + Records.size());
2448   for (size_t i = 0; i < Records.size(); i++) {
2449     PartiallyConstructedSafepointRecord &Info = Records[i];
2450 
2451     SmallVector<Value *, 128> Bases;
2452     for (auto Pair : Info.PointerToBase)
2453       Bases.push_back(Pair.second);
2454 
2455     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2456   }
2457 
2458   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2459   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2460   // not the key issue.
2461   recomputeLiveInValues(F, DT, ToUpdate, Records);
2462 
2463   if (PrintBasePointers) {
2464     for (auto &Info : Records) {
2465       errs() << "Base Pairs: (w/Relocation)\n";
2466       for (auto Pair : Info.PointerToBase) {
2467         errs() << " derived ";
2468         Pair.first->printAsOperand(errs(), false);
2469         errs() << " base ";
2470         Pair.second->printAsOperand(errs(), false);
2471         errs() << "\n";
2472       }
2473     }
2474   }
2475 
2476   // It is possible that non-constant live variables have a constant base.  For
2477   // example, a GEP with a variable offset from a global.  In this case we can
2478   // remove it from the liveset.  We already don't add constants to the liveset
2479   // because we assume they won't move at runtime and the GC doesn't need to be
2480   // informed about them.  The same reasoning applies if the base is constant.
2481   // Note that the relocation placement code relies on this filtering for
2482   // correctness as it expects the base to be in the liveset, which isn't true
2483   // if the base is constant.
2484   for (auto &Info : Records)
2485     for (auto &BasePair : Info.PointerToBase)
2486       if (isa<Constant>(BasePair.second))
2487         Info.LiveSet.remove(BasePair.first);
2488 
2489   for (CallInst *CI : Holders)
2490     CI->eraseFromParent();
2491 
2492   Holders.clear();
2493 
2494   // In order to reduce live set of statepoint we might choose to rematerialize
2495   // some values instead of relocating them. This is purely an optimization and
2496   // does not influence correctness.
2497   for (size_t i = 0; i < Records.size(); i++)
2498     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2499 
2500   // We need this to safely RAUW and delete call or invoke return values that
2501   // may themselves be live over a statepoint.  For details, please see usage in
2502   // makeStatepointExplicitImpl.
2503   std::vector<DeferredReplacement> Replacements;
2504 
2505   // Now run through and replace the existing statepoints with new ones with
2506   // the live variables listed.  We do not yet update uses of the values being
2507   // relocated. We have references to live variables that need to
2508   // survive to the last iteration of this loop.  (By construction, the
2509   // previous statepoint can not be a live variable, thus we can and remove
2510   // the old statepoint calls as we go.)
2511   for (size_t i = 0; i < Records.size(); i++)
2512     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2513 
2514   ToUpdate.clear(); // prevent accident use of invalid calls.
2515 
2516   for (auto &PR : Replacements)
2517     PR.doReplacement();
2518 
2519   Replacements.clear();
2520 
2521   for (auto &Info : Records) {
2522     // These live sets may contain state Value pointers, since we replaced calls
2523     // with operand bundles with calls wrapped in gc.statepoint, and some of
2524     // those calls may have been def'ing live gc pointers.  Clear these out to
2525     // avoid accidentally using them.
2526     //
2527     // TODO: We should create a separate data structure that does not contain
2528     // these live sets, and migrate to using that data structure from this point
2529     // onward.
2530     Info.LiveSet.clear();
2531     Info.PointerToBase.clear();
2532   }
2533 
2534   // Do all the fixups of the original live variables to their relocated selves
2535   SmallVector<Value *, 128> Live;
2536   for (size_t i = 0; i < Records.size(); i++) {
2537     PartiallyConstructedSafepointRecord &Info = Records[i];
2538 
2539     // We can't simply save the live set from the original insertion.  One of
2540     // the live values might be the result of a call which needs a safepoint.
2541     // That Value* no longer exists and we need to use the new gc_result.
2542     // Thankfully, the live set is embedded in the statepoint (and updated), so
2543     // we just grab that.
2544     llvm::append_range(Live, Info.StatepointToken->gc_args());
2545 #ifndef NDEBUG
2546     // Do some basic sanity checks on our liveness results before performing
2547     // relocation.  Relocation can and will turn mistakes in liveness results
2548     // into non-sensical code which is must harder to debug.
2549     // TODO: It would be nice to test consistency as well
2550     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2551            "statepoint must be reachable or liveness is meaningless");
2552     for (Value *V : Info.StatepointToken->gc_args()) {
2553       if (!isa<Instruction>(V))
2554         // Non-instruction values trivial dominate all possible uses
2555         continue;
2556       auto *LiveInst = cast<Instruction>(V);
2557       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2558              "unreachable values should never be live");
2559       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2560              "basic SSA liveness expectation violated by liveness analysis");
2561     }
2562 #endif
2563   }
2564   unique_unsorted(Live);
2565 
2566 #ifndef NDEBUG
2567   // sanity check
2568   for (auto *Ptr : Live)
2569     assert(isHandledGCPointerType(Ptr->getType()) &&
2570            "must be a gc pointer type");
2571 #endif
2572 
2573   relocationViaAlloca(F, DT, Live, Records);
2574   return !Records.empty();
2575 }
2576 
2577 // Handles both return values and arguments for Functions and calls.
2578 template <typename AttrHolder>
2579 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2580                                       unsigned Index) {
2581   AttrBuilder R;
2582   if (AH.getDereferenceableBytes(Index))
2583     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2584                                   AH.getDereferenceableBytes(Index)));
2585   if (AH.getDereferenceableOrNullBytes(Index))
2586     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2587                                   AH.getDereferenceableOrNullBytes(Index)));
2588   if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
2589     R.addAttribute(Attribute::NoAlias);
2590 
2591   if (!R.empty())
2592     AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2593 }
2594 
2595 static void stripNonValidAttributesFromPrototype(Function &F) {
2596   LLVMContext &Ctx = F.getContext();
2597 
2598   for (Argument &A : F.args())
2599     if (isa<PointerType>(A.getType()))
2600       RemoveNonValidAttrAtIndex(Ctx, F,
2601                                 A.getArgNo() + AttributeList::FirstArgIndex);
2602 
2603   if (isa<PointerType>(F.getReturnType()))
2604     RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2605 }
2606 
2607 /// Certain metadata on instructions are invalid after running RS4GC.
2608 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2609 /// optimize functions. We drop such metadata on the instruction.
2610 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2611   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2612     return;
2613   // These are the attributes that are still valid on loads and stores after
2614   // RS4GC.
2615   // The metadata implying dereferenceability and noalias are (conservatively)
2616   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2617   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2618   // touch the entire heap including noalias objects. Note: The reasoning is
2619   // same as stripping the dereferenceability and noalias attributes that are
2620   // analogous to the metadata counterparts.
2621   // We also drop the invariant.load metadata on the load because that metadata
2622   // implies the address operand to the load points to memory that is never
2623   // changed once it became dereferenceable. This is no longer true after RS4GC.
2624   // Similar reasoning applies to invariant.group metadata, which applies to
2625   // loads within a group.
2626   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2627                          LLVMContext::MD_range,
2628                          LLVMContext::MD_alias_scope,
2629                          LLVMContext::MD_nontemporal,
2630                          LLVMContext::MD_nonnull,
2631                          LLVMContext::MD_align,
2632                          LLVMContext::MD_type};
2633 
2634   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2635   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2636 }
2637 
2638 static void stripNonValidDataFromBody(Function &F) {
2639   if (F.empty())
2640     return;
2641 
2642   LLVMContext &Ctx = F.getContext();
2643   MDBuilder Builder(Ctx);
2644 
2645   // Set of invariantstart instructions that we need to remove.
2646   // Use this to avoid invalidating the instruction iterator.
2647   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2648 
2649   for (Instruction &I : instructions(F)) {
2650     // invariant.start on memory location implies that the referenced memory
2651     // location is constant and unchanging. This is no longer true after
2652     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2653     // which frees the entire heap and the presence of invariant.start allows
2654     // the optimizer to sink the load of a memory location past a statepoint,
2655     // which is incorrect.
2656     if (auto *II = dyn_cast<IntrinsicInst>(&I))
2657       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2658         InvariantStartInstructions.push_back(II);
2659         continue;
2660       }
2661 
2662     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2663       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2664       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2665     }
2666 
2667     stripInvalidMetadataFromInstruction(I);
2668 
2669     if (auto *Call = dyn_cast<CallBase>(&I)) {
2670       for (int i = 0, e = Call->arg_size(); i != e; i++)
2671         if (isa<PointerType>(Call->getArgOperand(i)->getType()))
2672           RemoveNonValidAttrAtIndex(Ctx, *Call,
2673                                     i + AttributeList::FirstArgIndex);
2674       if (isa<PointerType>(Call->getType()))
2675         RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
2676     }
2677   }
2678 
2679   // Delete the invariant.start instructions and RAUW undef.
2680   for (auto *II : InvariantStartInstructions) {
2681     II->replaceAllUsesWith(UndefValue::get(II->getType()));
2682     II->eraseFromParent();
2683   }
2684 }
2685 
2686 /// Returns true if this function should be rewritten by this pass.  The main
2687 /// point of this function is as an extension point for custom logic.
2688 static bool shouldRewriteStatepointsIn(Function &F) {
2689   // TODO: This should check the GCStrategy
2690   if (F.hasGC()) {
2691     const auto &FunctionGCName = F.getGC();
2692     const StringRef StatepointExampleName("statepoint-example");
2693     const StringRef CoreCLRName("coreclr");
2694     return (StatepointExampleName == FunctionGCName) ||
2695            (CoreCLRName == FunctionGCName);
2696   } else
2697     return false;
2698 }
2699 
2700 static void stripNonValidData(Module &M) {
2701 #ifndef NDEBUG
2702   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2703 #endif
2704 
2705   for (Function &F : M)
2706     stripNonValidAttributesFromPrototype(F);
2707 
2708   for (Function &F : M)
2709     stripNonValidDataFromBody(F);
2710 }
2711 
2712 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2713                                             TargetTransformInfo &TTI,
2714                                             const TargetLibraryInfo &TLI) {
2715   assert(!F.isDeclaration() && !F.empty() &&
2716          "need function body to rewrite statepoints in");
2717   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2718 
2719   auto NeedsRewrite = [&TLI](Instruction &I) {
2720     if (const auto *Call = dyn_cast<CallBase>(&I)) {
2721       if (isa<GCStatepointInst>(Call))
2722         return false;
2723       if (callsGCLeafFunction(Call, TLI))
2724         return false;
2725 
2726       // Normally it's up to the frontend to make sure that non-leaf calls also
2727       // have proper deopt state if it is required. We make an exception for
2728       // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics
2729       // these are non-leaf by default. They might be generated by the optimizer
2730       // which doesn't know how to produce a proper deopt state. So if we see a
2731       // non-leaf memcpy/memmove without deopt state just treat it as a leaf
2732       // copy and don't produce a statepoint.
2733       if (!AllowStatepointWithNoDeoptInfo &&
2734           !Call->getOperandBundle(LLVMContext::OB_deopt)) {
2735         assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) &&
2736                "Don't expect any other calls here!");
2737         return false;
2738       }
2739       return true;
2740     }
2741     return false;
2742   };
2743 
2744   // Delete any unreachable statepoints so that we don't have unrewritten
2745   // statepoints surviving this pass.  This makes testing easier and the
2746   // resulting IR less confusing to human readers.
2747   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2748   bool MadeChange = removeUnreachableBlocks(F, &DTU);
2749   // Flush the Dominator Tree.
2750   DTU.getDomTree();
2751 
2752   // Gather all the statepoints which need rewritten.  Be careful to only
2753   // consider those in reachable code since we need to ask dominance queries
2754   // when rewriting.  We'll delete the unreachable ones in a moment.
2755   SmallVector<CallBase *, 64> ParsePointNeeded;
2756   for (Instruction &I : instructions(F)) {
2757     // TODO: only the ones with the flag set!
2758     if (NeedsRewrite(I)) {
2759       // NOTE removeUnreachableBlocks() is stronger than
2760       // DominatorTree::isReachableFromEntry(). In other words
2761       // removeUnreachableBlocks can remove some blocks for which
2762       // isReachableFromEntry() returns true.
2763       assert(DT.isReachableFromEntry(I.getParent()) &&
2764             "no unreachable blocks expected");
2765       ParsePointNeeded.push_back(cast<CallBase>(&I));
2766     }
2767   }
2768 
2769   // Return early if no work to do.
2770   if (ParsePointNeeded.empty())
2771     return MadeChange;
2772 
2773   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2774   // These are created by LCSSA.  They have the effect of increasing the size
2775   // of liveness sets for no good reason.  It may be harder to do this post
2776   // insertion since relocations and base phis can confuse things.
2777   for (BasicBlock &BB : F)
2778     if (BB.getUniquePredecessor())
2779       MadeChange |= FoldSingleEntryPHINodes(&BB);
2780 
2781   // Before we start introducing relocations, we want to tweak the IR a bit to
2782   // avoid unfortunate code generation effects.  The main example is that we
2783   // want to try to make sure the comparison feeding a branch is after any
2784   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2785   // values feeding a branch after relocation.  This is semantically correct,
2786   // but results in extra register pressure since both the pre-relocation and
2787   // post-relocation copies must be available in registers.  For code without
2788   // relocations this is handled elsewhere, but teaching the scheduler to
2789   // reverse the transform we're about to do would be slightly complex.
2790   // Note: This may extend the live range of the inputs to the icmp and thus
2791   // increase the liveset of any statepoint we move over.  This is profitable
2792   // as long as all statepoints are in rare blocks.  If we had in-register
2793   // lowering for live values this would be a much safer transform.
2794   auto getConditionInst = [](Instruction *TI) -> Instruction * {
2795     if (auto *BI = dyn_cast<BranchInst>(TI))
2796       if (BI->isConditional())
2797         return dyn_cast<Instruction>(BI->getCondition());
2798     // TODO: Extend this to handle switches
2799     return nullptr;
2800   };
2801   for (BasicBlock &BB : F) {
2802     Instruction *TI = BB.getTerminator();
2803     if (auto *Cond = getConditionInst(TI))
2804       // TODO: Handle more than just ICmps here.  We should be able to move
2805       // most instructions without side effects or memory access.
2806       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2807         MadeChange = true;
2808         Cond->moveBefore(TI);
2809       }
2810   }
2811 
2812   // Nasty workaround - The base computation code in the main algorithm doesn't
2813   // consider the fact that a GEP can be used to convert a scalar to a vector.
2814   // The right fix for this is to integrate GEPs into the base rewriting
2815   // algorithm properly, this is just a short term workaround to prevent
2816   // crashes by canonicalizing such GEPs into fully vector GEPs.
2817   for (Instruction &I : instructions(F)) {
2818     if (!isa<GetElementPtrInst>(I))
2819       continue;
2820 
2821     unsigned VF = 0;
2822     for (unsigned i = 0; i < I.getNumOperands(); i++)
2823       if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) {
2824         assert(VF == 0 ||
2825                VF == cast<FixedVectorType>(OpndVTy)->getNumElements());
2826         VF = cast<FixedVectorType>(OpndVTy)->getNumElements();
2827       }
2828 
2829     // It's the vector to scalar traversal through the pointer operand which
2830     // confuses base pointer rewriting, so limit ourselves to that case.
2831     if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
2832       IRBuilder<> B(&I);
2833       auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
2834       I.setOperand(0, Splat);
2835       MadeChange = true;
2836     }
2837   }
2838 
2839   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2840   return MadeChange;
2841 }
2842 
2843 // liveness computation via standard dataflow
2844 // -------------------------------------------------------------------
2845 
2846 // TODO: Consider using bitvectors for liveness, the set of potentially
2847 // interesting values should be small and easy to pre-compute.
2848 
2849 /// Compute the live-in set for the location rbegin starting from
2850 /// the live-out set of the basic block
2851 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2852                                 BasicBlock::reverse_iterator End,
2853                                 SetVector<Value *> &LiveTmp) {
2854   for (auto &I : make_range(Begin, End)) {
2855     // KILL/Def - Remove this definition from LiveIn
2856     LiveTmp.remove(&I);
2857 
2858     // Don't consider *uses* in PHI nodes, we handle their contribution to
2859     // predecessor blocks when we seed the LiveOut sets
2860     if (isa<PHINode>(I))
2861       continue;
2862 
2863     // USE - Add to the LiveIn set for this instruction
2864     for (Value *V : I.operands()) {
2865       assert(!isUnhandledGCPointerType(V->getType()) &&
2866              "support for FCA unimplemented");
2867       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2868         // The choice to exclude all things constant here is slightly subtle.
2869         // There are two independent reasons:
2870         // - We assume that things which are constant (from LLVM's definition)
2871         // do not move at runtime.  For example, the address of a global
2872         // variable is fixed, even though it's contents may not be.
2873         // - Second, we can't disallow arbitrary inttoptr constants even
2874         // if the language frontend does.  Optimization passes are free to
2875         // locally exploit facts without respect to global reachability.  This
2876         // can create sections of code which are dynamically unreachable and
2877         // contain just about anything.  (see constants.ll in tests)
2878         LiveTmp.insert(V);
2879       }
2880     }
2881   }
2882 }
2883 
2884 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2885   for (BasicBlock *Succ : successors(BB)) {
2886     for (auto &I : *Succ) {
2887       PHINode *PN = dyn_cast<PHINode>(&I);
2888       if (!PN)
2889         break;
2890 
2891       Value *V = PN->getIncomingValueForBlock(BB);
2892       assert(!isUnhandledGCPointerType(V->getType()) &&
2893              "support for FCA unimplemented");
2894       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2895         LiveTmp.insert(V);
2896     }
2897   }
2898 }
2899 
2900 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2901   SetVector<Value *> KillSet;
2902   for (Instruction &I : *BB)
2903     if (isHandledGCPointerType(I.getType()))
2904       KillSet.insert(&I);
2905   return KillSet;
2906 }
2907 
2908 #ifndef NDEBUG
2909 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2910 /// sanity check for the liveness computation.
2911 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2912                           Instruction *TI, bool TermOkay = false) {
2913   for (Value *V : Live) {
2914     if (auto *I = dyn_cast<Instruction>(V)) {
2915       // The terminator can be a member of the LiveOut set.  LLVM's definition
2916       // of instruction dominance states that V does not dominate itself.  As
2917       // such, we need to special case this to allow it.
2918       if (TermOkay && TI == I)
2919         continue;
2920       assert(DT.dominates(I, TI) &&
2921              "basic SSA liveness expectation violated by liveness analysis");
2922     }
2923   }
2924 }
2925 
2926 /// Check that all the liveness sets used during the computation of liveness
2927 /// obey basic SSA properties.  This is useful for finding cases where we miss
2928 /// a def.
2929 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2930                           BasicBlock &BB) {
2931   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2932   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2933   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2934 }
2935 #endif
2936 
2937 static void computeLiveInValues(DominatorTree &DT, Function &F,
2938                                 GCPtrLivenessData &Data) {
2939   SmallSetVector<BasicBlock *, 32> Worklist;
2940 
2941   // Seed the liveness for each individual block
2942   for (BasicBlock &BB : F) {
2943     Data.KillSet[&BB] = computeKillSet(&BB);
2944     Data.LiveSet[&BB].clear();
2945     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2946 
2947 #ifndef NDEBUG
2948     for (Value *Kill : Data.KillSet[&BB])
2949       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2950 #endif
2951 
2952     Data.LiveOut[&BB] = SetVector<Value *>();
2953     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2954     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2955     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2956     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2957     if (!Data.LiveIn[&BB].empty())
2958       Worklist.insert(pred_begin(&BB), pred_end(&BB));
2959   }
2960 
2961   // Propagate that liveness until stable
2962   while (!Worklist.empty()) {
2963     BasicBlock *BB = Worklist.pop_back_val();
2964 
2965     // Compute our new liveout set, then exit early if it hasn't changed despite
2966     // the contribution of our successor.
2967     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2968     const auto OldLiveOutSize = LiveOut.size();
2969     for (BasicBlock *Succ : successors(BB)) {
2970       assert(Data.LiveIn.count(Succ));
2971       LiveOut.set_union(Data.LiveIn[Succ]);
2972     }
2973     // assert OutLiveOut is a subset of LiveOut
2974     if (OldLiveOutSize == LiveOut.size()) {
2975       // If the sets are the same size, then we didn't actually add anything
2976       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
2977       // hasn't changed.
2978       continue;
2979     }
2980     Data.LiveOut[BB] = LiveOut;
2981 
2982     // Apply the effects of this basic block
2983     SetVector<Value *> LiveTmp = LiveOut;
2984     LiveTmp.set_union(Data.LiveSet[BB]);
2985     LiveTmp.set_subtract(Data.KillSet[BB]);
2986 
2987     assert(Data.LiveIn.count(BB));
2988     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2989     // assert: OldLiveIn is a subset of LiveTmp
2990     if (OldLiveIn.size() != LiveTmp.size()) {
2991       Data.LiveIn[BB] = LiveTmp;
2992       Worklist.insert(pred_begin(BB), pred_end(BB));
2993     }
2994   } // while (!Worklist.empty())
2995 
2996 #ifndef NDEBUG
2997   // Sanity check our output against SSA properties.  This helps catch any
2998   // missing kills during the above iteration.
2999   for (BasicBlock &BB : F)
3000     checkBasicSSA(DT, Data, BB);
3001 #endif
3002 }
3003 
3004 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
3005                               StatepointLiveSetTy &Out) {
3006   BasicBlock *BB = Inst->getParent();
3007 
3008   // Note: The copy is intentional and required
3009   assert(Data.LiveOut.count(BB));
3010   SetVector<Value *> LiveOut = Data.LiveOut[BB];
3011 
3012   // We want to handle the statepoint itself oddly.  It's
3013   // call result is not live (normal), nor are it's arguments
3014   // (unless they're used again later).  This adjustment is
3015   // specifically what we need to relocate
3016   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
3017                       LiveOut);
3018   LiveOut.remove(Inst);
3019   Out.insert(LiveOut.begin(), LiveOut.end());
3020 }
3021 
3022 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
3023                                   CallBase *Call,
3024                                   PartiallyConstructedSafepointRecord &Info) {
3025   StatepointLiveSetTy Updated;
3026   findLiveSetAtInst(Call, RevisedLivenessData, Updated);
3027 
3028   // We may have base pointers which are now live that weren't before.  We need
3029   // to update the PointerToBase structure to reflect this.
3030   for (auto V : Updated)
3031     Info.PointerToBase.insert({V, V});
3032 
3033 #ifndef NDEBUG
3034   for (auto V : Updated)
3035     assert(Info.PointerToBase.count(V) &&
3036            "Must be able to find base for live value!");
3037 #endif
3038 
3039   // Remove any stale base mappings - this can happen since our liveness is
3040   // more precise then the one inherent in the base pointer analysis.
3041   DenseSet<Value *> ToErase;
3042   for (auto KVPair : Info.PointerToBase)
3043     if (!Updated.count(KVPair.first))
3044       ToErase.insert(KVPair.first);
3045 
3046   for (auto *V : ToErase)
3047     Info.PointerToBase.erase(V);
3048 
3049 #ifndef NDEBUG
3050   for (auto KVPair : Info.PointerToBase)
3051     assert(Updated.count(KVPair.first) && "record for non-live value");
3052 #endif
3053 
3054   Info.LiveSet = Updated;
3055 }
3056