xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 9fb6782c694582604c4fd96845f92f180d4b8d29)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Rewrite call/invoke instructions so as to make potential relocations
10 // performed by the garbage collector explicit in the IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueHandle.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <set>
75 #include <string>
76 #include <utility>
77 #include <vector>
78 
79 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
80 
81 using namespace llvm;
82 
83 // Print the liveset found at the insert location
84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
85                                   cl::init(false));
86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
87                                       cl::init(false));
88 
89 // Print out the base pointers for debugging
90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
91                                        cl::init(false));
92 
93 // Cost threshold measuring when it is profitable to rematerialize value instead
94 // of relocating it
95 static cl::opt<unsigned>
96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
97                            cl::init(6));
98 
99 #ifdef EXPENSIVE_CHECKS
100 static bool ClobberNonLive = true;
101 #else
102 static bool ClobberNonLive = false;
103 #endif
104 
105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
106                                                   cl::location(ClobberNonLive),
107                                                   cl::Hidden);
108 
109 static cl::opt<bool>
110     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
111                                    cl::Hidden, cl::init(true));
112 
113 /// The IR fed into RewriteStatepointsForGC may have had attributes and
114 /// metadata implying dereferenceability that are no longer valid/correct after
115 /// RewriteStatepointsForGC has run. This is because semantically, after
116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
117 /// heap. stripNonValidData (conservatively) restores
118 /// correctness by erasing all attributes in the module that externally imply
119 /// dereferenceability. Similar reasoning also applies to the noalias
120 /// attributes and metadata. gc.statepoint can touch the entire heap including
121 /// noalias objects.
122 /// Apart from attributes and metadata, we also remove instructions that imply
123 /// constant physical memory: llvm.invariant.start.
124 static void stripNonValidData(Module &M);
125 
126 static bool shouldRewriteStatepointsIn(Function &F);
127 
128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
129                                                ModuleAnalysisManager &AM) {
130   bool Changed = false;
131   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
132   for (Function &F : M) {
133     // Nothing to do for declarations.
134     if (F.isDeclaration() || F.empty())
135       continue;
136 
137     // Policy choice says not to rewrite - the most common reason is that we're
138     // compiling code without a GCStrategy.
139     if (!shouldRewriteStatepointsIn(F))
140       continue;
141 
142     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
143     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
144     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
145     Changed |= runOnFunction(F, DT, TTI, TLI);
146   }
147   if (!Changed)
148     return PreservedAnalyses::all();
149 
150   // stripNonValidData asserts that shouldRewriteStatepointsIn
151   // returns true for at least one function in the module.  Since at least
152   // one function changed, we know that the precondition is satisfied.
153   stripNonValidData(M);
154 
155   PreservedAnalyses PA;
156   PA.preserve<TargetIRAnalysis>();
157   PA.preserve<TargetLibraryAnalysis>();
158   return PA;
159 }
160 
161 namespace {
162 
163 class RewriteStatepointsForGCLegacyPass : public ModulePass {
164   RewriteStatepointsForGC Impl;
165 
166 public:
167   static char ID; // Pass identification, replacement for typeid
168 
169   RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
170     initializeRewriteStatepointsForGCLegacyPassPass(
171         *PassRegistry::getPassRegistry());
172   }
173 
174   bool runOnModule(Module &M) override {
175     bool Changed = false;
176     for (Function &F : M) {
177       // Nothing to do for declarations.
178       if (F.isDeclaration() || F.empty())
179         continue;
180 
181       // Policy choice says not to rewrite - the most common reason is that
182       // we're compiling code without a GCStrategy.
183       if (!shouldRewriteStatepointsIn(F))
184         continue;
185 
186       TargetTransformInfo &TTI =
187           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
188       const TargetLibraryInfo &TLI =
189           getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
190       auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
191 
192       Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
193     }
194 
195     if (!Changed)
196       return false;
197 
198     // stripNonValidData asserts that shouldRewriteStatepointsIn
199     // returns true for at least one function in the module.  Since at least
200     // one function changed, we know that the precondition is satisfied.
201     stripNonValidData(M);
202     return true;
203   }
204 
205   void getAnalysisUsage(AnalysisUsage &AU) const override {
206     // We add and rewrite a bunch of instructions, but don't really do much
207     // else.  We could in theory preserve a lot more analyses here.
208     AU.addRequired<DominatorTreeWrapperPass>();
209     AU.addRequired<TargetTransformInfoWrapperPass>();
210     AU.addRequired<TargetLibraryInfoWrapperPass>();
211   }
212 };
213 
214 } // end anonymous namespace
215 
216 char RewriteStatepointsForGCLegacyPass::ID = 0;
217 
218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
219   return new RewriteStatepointsForGCLegacyPass();
220 }
221 
222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
223                       "rewrite-statepoints-for-gc",
224                       "Make relocations explicit at statepoints", false, false)
225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
228                     "rewrite-statepoints-for-gc",
229                     "Make relocations explicit at statepoints", false, false)
230 
231 namespace {
232 
233 struct GCPtrLivenessData {
234   /// Values defined in this block.
235   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
236 
237   /// Values used in this block (and thus live); does not included values
238   /// killed within this block.
239   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
240 
241   /// Values live into this basic block (i.e. used by any
242   /// instruction in this basic block or ones reachable from here)
243   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
244 
245   /// Values live out of this basic block (i.e. live into
246   /// any successor block)
247   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
248 };
249 
250 // The type of the internal cache used inside the findBasePointers family
251 // of functions.  From the callers perspective, this is an opaque type and
252 // should not be inspected.
253 //
254 // In the actual implementation this caches two relations:
255 // - The base relation itself (i.e. this pointer is based on that one)
256 // - The base defining value relation (i.e. before base_phi insertion)
257 // Generally, after the execution of a full findBasePointer call, only the
258 // base relation will remain.  Internally, we add a mixture of the two
259 // types, then update all the second type to the first type
260 using DefiningValueMapTy = MapVector<Value *, Value *>;
261 using StatepointLiveSetTy = SetVector<Value *>;
262 using RematerializedValueMapTy =
263     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
264 
265 struct PartiallyConstructedSafepointRecord {
266   /// The set of values known to be live across this safepoint
267   StatepointLiveSetTy LiveSet;
268 
269   /// Mapping from live pointers to a base-defining-value
270   MapVector<Value *, Value *> PointerToBase;
271 
272   /// The *new* gc.statepoint instruction itself.  This produces the token
273   /// that normal path gc.relocates and the gc.result are tied to.
274   GCStatepointInst *StatepointToken;
275 
276   /// Instruction to which exceptional gc relocates are attached
277   /// Makes it easier to iterate through them during relocationViaAlloca.
278   Instruction *UnwindToken;
279 
280   /// Record live values we are rematerialized instead of relocating.
281   /// They are not included into 'LiveSet' field.
282   /// Maps rematerialized copy to it's original value.
283   RematerializedValueMapTy RematerializedValues;
284 };
285 
286 } // end anonymous namespace
287 
288 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
289   Optional<OperandBundleUse> DeoptBundle =
290       Call->getOperandBundle(LLVMContext::OB_deopt);
291 
292   if (!DeoptBundle.hasValue()) {
293     assert(AllowStatepointWithNoDeoptInfo &&
294            "Found non-leaf call without deopt info!");
295     return None;
296   }
297 
298   return DeoptBundle.getValue().Inputs;
299 }
300 
301 /// Compute the live-in set for every basic block in the function
302 static void computeLiveInValues(DominatorTree &DT, Function &F,
303                                 GCPtrLivenessData &Data);
304 
305 /// Given results from the dataflow liveness computation, find the set of live
306 /// Values at a particular instruction.
307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
308                               StatepointLiveSetTy &out);
309 
310 // TODO: Once we can get to the GCStrategy, this becomes
311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
312 
313 static bool isGCPointerType(Type *T) {
314   if (auto *PT = dyn_cast<PointerType>(T))
315     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
316     // GC managed heap.  We know that a pointer into this heap needs to be
317     // updated and that no other pointer does.
318     return PT->getAddressSpace() == 1;
319   return false;
320 }
321 
322 // Return true if this type is one which a) is a gc pointer or contains a GC
323 // pointer and b) is of a type this code expects to encounter as a live value.
324 // (The insertion code will assert that a type which matches (a) and not (b)
325 // is not encountered.)
326 static bool isHandledGCPointerType(Type *T) {
327   // We fully support gc pointers
328   if (isGCPointerType(T))
329     return true;
330   // We partially support vectors of gc pointers. The code will assert if it
331   // can't handle something.
332   if (auto VT = dyn_cast<VectorType>(T))
333     if (isGCPointerType(VT->getElementType()))
334       return true;
335   return false;
336 }
337 
338 #ifndef NDEBUG
339 /// Returns true if this type contains a gc pointer whether we know how to
340 /// handle that type or not.
341 static bool containsGCPtrType(Type *Ty) {
342   if (isGCPointerType(Ty))
343     return true;
344   if (VectorType *VT = dyn_cast<VectorType>(Ty))
345     return isGCPointerType(VT->getScalarType());
346   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
347     return containsGCPtrType(AT->getElementType());
348   if (StructType *ST = dyn_cast<StructType>(Ty))
349     return llvm::any_of(ST->elements(), containsGCPtrType);
350   return false;
351 }
352 
353 // Returns true if this is a type which a) is a gc pointer or contains a GC
354 // pointer and b) is of a type which the code doesn't expect (i.e. first class
355 // aggregates).  Used to trip assertions.
356 static bool isUnhandledGCPointerType(Type *Ty) {
357   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
358 }
359 #endif
360 
361 // Return the name of the value suffixed with the provided value, or if the
362 // value didn't have a name, the default value specified.
363 static std::string suffixed_name_or(Value *V, StringRef Suffix,
364                                     StringRef DefaultName) {
365   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
366 }
367 
368 // Conservatively identifies any definitions which might be live at the
369 // given instruction. The  analysis is performed immediately before the
370 // given instruction. Values defined by that instruction are not considered
371 // live.  Values used by that instruction are considered live.
372 static void analyzeParsePointLiveness(
373     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
374     PartiallyConstructedSafepointRecord &Result) {
375   StatepointLiveSetTy LiveSet;
376   findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
377 
378   if (PrintLiveSet) {
379     dbgs() << "Live Variables:\n";
380     for (Value *V : LiveSet)
381       dbgs() << " " << V->getName() << " " << *V << "\n";
382   }
383   if (PrintLiveSetSize) {
384     dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n";
385     dbgs() << "Number live values: " << LiveSet.size() << "\n";
386   }
387   Result.LiveSet = LiveSet;
388 }
389 
390 // Returns true is V is a knownBaseResult.
391 static bool isKnownBaseResult(Value *V);
392 
393 // Returns true if V is a BaseResult that already exists in the IR, i.e. it is
394 // not created by the findBasePointers algorithm.
395 static bool isOriginalBaseResult(Value *V);
396 
397 namespace {
398 
399 /// A single base defining value - An immediate base defining value for an
400 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
401 /// For instructions which have multiple pointer [vector] inputs or that
402 /// transition between vector and scalar types, there is no immediate base
403 /// defining value.  The 'base defining value' for 'Def' is the transitive
404 /// closure of this relation stopping at the first instruction which has no
405 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
406 /// but it can also be an arbitrary derived pointer.
407 struct BaseDefiningValueResult {
408   /// Contains the value which is the base defining value.
409   Value * const BDV;
410 
411   /// True if the base defining value is also known to be an actual base
412   /// pointer.
413   const bool IsKnownBase;
414 
415   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
416     : BDV(BDV), IsKnownBase(IsKnownBase) {
417 #ifndef NDEBUG
418     // Check consistency between new and old means of checking whether a BDV is
419     // a base.
420     bool MustBeBase = isKnownBaseResult(BDV);
421     assert(!MustBeBase || MustBeBase == IsKnownBase);
422 #endif
423   }
424 };
425 
426 } // end anonymous namespace
427 
428 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
429 
430 /// Return a base defining value for the 'Index' element of the given vector
431 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
432 /// 'I'.  As an optimization, this method will try to determine when the
433 /// element is known to already be a base pointer.  If this can be established,
434 /// the second value in the returned pair will be true.  Note that either a
435 /// vector or a pointer typed value can be returned.  For the former, the
436 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
437 /// If the later, the return pointer is a BDV (or possibly a base) for the
438 /// particular element in 'I'.
439 static BaseDefiningValueResult
440 findBaseDefiningValueOfVector(Value *I) {
441   // Each case parallels findBaseDefiningValue below, see that code for
442   // detailed motivation.
443 
444   if (isa<Argument>(I))
445     // An incoming argument to the function is a base pointer
446     return BaseDefiningValueResult(I, true);
447 
448   if (isa<Constant>(I))
449     // Base of constant vector consists only of constant null pointers.
450     // For reasoning see similar case inside 'findBaseDefiningValue' function.
451     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
452                                    true);
453 
454   if (isa<LoadInst>(I))
455     return BaseDefiningValueResult(I, true);
456 
457   if (isa<InsertElementInst>(I))
458     // We don't know whether this vector contains entirely base pointers or
459     // not.  To be conservatively correct, we treat it as a BDV and will
460     // duplicate code as needed to construct a parallel vector of bases.
461     return BaseDefiningValueResult(I, false);
462 
463   if (isa<ShuffleVectorInst>(I))
464     // We don't know whether this vector contains entirely base pointers or
465     // not.  To be conservatively correct, we treat it as a BDV and will
466     // duplicate code as needed to construct a parallel vector of bases.
467     // TODO: There a number of local optimizations which could be applied here
468     // for particular sufflevector patterns.
469     return BaseDefiningValueResult(I, false);
470 
471   // The behavior of getelementptr instructions is the same for vector and
472   // non-vector data types.
473   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
474     return findBaseDefiningValue(GEP->getPointerOperand());
475 
476   // If the pointer comes through a bitcast of a vector of pointers to
477   // a vector of another type of pointer, then look through the bitcast
478   if (auto *BC = dyn_cast<BitCastInst>(I))
479     return findBaseDefiningValue(BC->getOperand(0));
480 
481   // We assume that functions in the source language only return base
482   // pointers.  This should probably be generalized via attributes to support
483   // both source language and internal functions.
484   if (isa<CallInst>(I) || isa<InvokeInst>(I))
485     return BaseDefiningValueResult(I, true);
486 
487   // A PHI or Select is a base defining value.  The outer findBasePointer
488   // algorithm is responsible for constructing a base value for this BDV.
489   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
490          "unknown vector instruction - no base found for vector element");
491   return BaseDefiningValueResult(I, false);
492 }
493 
494 /// Helper function for findBasePointer - Will return a value which either a)
495 /// defines the base pointer for the input, b) blocks the simple search
496 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
497 /// from pointer to vector type or back.
498 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
499   assert(I->getType()->isPtrOrPtrVectorTy() &&
500          "Illegal to ask for the base pointer of a non-pointer type");
501 
502   if (I->getType()->isVectorTy())
503     return findBaseDefiningValueOfVector(I);
504 
505   if (isa<Argument>(I))
506     // An incoming argument to the function is a base pointer
507     // We should have never reached here if this argument isn't an gc value
508     return BaseDefiningValueResult(I, true);
509 
510   if (isa<Constant>(I)) {
511     // We assume that objects with a constant base (e.g. a global) can't move
512     // and don't need to be reported to the collector because they are always
513     // live. Besides global references, all kinds of constants (e.g. undef,
514     // constant expressions, null pointers) can be introduced by the inliner or
515     // the optimizer, especially on dynamically dead paths.
516     // Here we treat all of them as having single null base. By doing this we
517     // trying to avoid problems reporting various conflicts in a form of
518     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
519     // See constant.ll file for relevant test cases.
520 
521     return BaseDefiningValueResult(
522         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
523   }
524 
525   if (CastInst *CI = dyn_cast<CastInst>(I)) {
526     Value *Def = CI->stripPointerCasts();
527     // If stripping pointer casts changes the address space there is an
528     // addrspacecast in between.
529     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
530                cast<PointerType>(CI->getType())->getAddressSpace() &&
531            "unsupported addrspacecast");
532     // If we find a cast instruction here, it means we've found a cast which is
533     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
534     // handle int->ptr conversion.
535     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
536     return findBaseDefiningValue(Def);
537   }
538 
539   if (isa<LoadInst>(I))
540     // The value loaded is an gc base itself
541     return BaseDefiningValueResult(I, true);
542 
543   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
544     // The base of this GEP is the base
545     return findBaseDefiningValue(GEP->getPointerOperand());
546 
547   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
548     switch (II->getIntrinsicID()) {
549     default:
550       // fall through to general call handling
551       break;
552     case Intrinsic::experimental_gc_statepoint:
553       llvm_unreachable("statepoints don't produce pointers");
554     case Intrinsic::experimental_gc_relocate:
555       // Rerunning safepoint insertion after safepoints are already
556       // inserted is not supported.  It could probably be made to work,
557       // but why are you doing this?  There's no good reason.
558       llvm_unreachable("repeat safepoint insertion is not supported");
559     case Intrinsic::gcroot:
560       // Currently, this mechanism hasn't been extended to work with gcroot.
561       // There's no reason it couldn't be, but I haven't thought about the
562       // implications much.
563       llvm_unreachable(
564           "interaction with the gcroot mechanism is not supported");
565     }
566   }
567   // We assume that functions in the source language only return base
568   // pointers.  This should probably be generalized via attributes to support
569   // both source language and internal functions.
570   if (isa<CallInst>(I) || isa<InvokeInst>(I))
571     return BaseDefiningValueResult(I, true);
572 
573   // TODO: I have absolutely no idea how to implement this part yet.  It's not
574   // necessarily hard, I just haven't really looked at it yet.
575   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
576 
577   if (isa<AtomicCmpXchgInst>(I))
578     // A CAS is effectively a atomic store and load combined under a
579     // predicate.  From the perspective of base pointers, we just treat it
580     // like a load.
581     return BaseDefiningValueResult(I, true);
582 
583   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
584                                    "binary ops which don't apply to pointers");
585 
586   // The aggregate ops.  Aggregates can either be in the heap or on the
587   // stack, but in either case, this is simply a field load.  As a result,
588   // this is a defining definition of the base just like a load is.
589   if (isa<ExtractValueInst>(I))
590     return BaseDefiningValueResult(I, true);
591 
592   // We should never see an insert vector since that would require we be
593   // tracing back a struct value not a pointer value.
594   assert(!isa<InsertValueInst>(I) &&
595          "Base pointer for a struct is meaningless");
596 
597   // An extractelement produces a base result exactly when it's input does.
598   // We may need to insert a parallel instruction to extract the appropriate
599   // element out of the base vector corresponding to the input. Given this,
600   // it's analogous to the phi and select case even though it's not a merge.
601   if (isa<ExtractElementInst>(I))
602     // Note: There a lot of obvious peephole cases here.  This are deliberately
603     // handled after the main base pointer inference algorithm to make writing
604     // test cases to exercise that code easier.
605     return BaseDefiningValueResult(I, false);
606 
607   // The last two cases here don't return a base pointer.  Instead, they
608   // return a value which dynamically selects from among several base
609   // derived pointers (each with it's own base potentially).  It's the job of
610   // the caller to resolve these.
611   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
612          "missing instruction case in findBaseDefiningValing");
613   return BaseDefiningValueResult(I, false);
614 }
615 
616 /// Returns the base defining value for this value.
617 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
618   Value *&Cached = Cache[I];
619   if (!Cached) {
620     Cached = findBaseDefiningValue(I).BDV;
621     LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
622                       << Cached->getName() << "\n");
623   }
624   assert(Cache[I] != nullptr);
625   return Cached;
626 }
627 
628 /// Return a base pointer for this value if known.  Otherwise, return it's
629 /// base defining value.
630 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
631   Value *Def = findBaseDefiningValueCached(I, Cache);
632   auto Found = Cache.find(Def);
633   if (Found != Cache.end()) {
634     // Either a base-of relation, or a self reference.  Caller must check.
635     return Found->second;
636   }
637   // Only a BDV available
638   return Def;
639 }
640 
641 /// This value is a base pointer that is not generated by RS4GC, i.e. it already
642 /// exists in the code.
643 static bool isOriginalBaseResult(Value *V) {
644   // no recursion possible
645   return !isa<PHINode>(V) && !isa<SelectInst>(V) &&
646          !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
647          !isa<ShuffleVectorInst>(V);
648 }
649 
650 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
651 /// is it known to be a base pointer?  Or do we need to continue searching.
652 static bool isKnownBaseResult(Value *V) {
653   if (isOriginalBaseResult(V))
654     return true;
655   if (isa<Instruction>(V) &&
656       cast<Instruction>(V)->getMetadata("is_base_value")) {
657     // This is a previously inserted base phi or select.  We know
658     // that this is a base value.
659     return true;
660   }
661 
662   // We need to keep searching
663   return false;
664 }
665 
666 // Returns true if First and Second values are both scalar or both vector.
667 static bool areBothVectorOrScalar(Value *First, Value *Second) {
668   return isa<VectorType>(First->getType()) ==
669          isa<VectorType>(Second->getType());
670 }
671 
672 namespace {
673 
674 /// Models the state of a single base defining value in the findBasePointer
675 /// algorithm for determining where a new instruction is needed to propagate
676 /// the base of this BDV.
677 class BDVState {
678 public:
679   enum StatusTy {
680      // Starting state of lattice
681      Unknown,
682      // Some specific base value -- does *not* mean that instruction
683      // propagates the base of the object
684      // ex: gep %arg, 16 -> %arg is the base value
685      Base,
686      // Need to insert a node to represent a merge.
687      Conflict
688   };
689 
690   BDVState() {
691     llvm_unreachable("missing state in map");
692   }
693 
694   explicit BDVState(Value *OriginalValue)
695     : OriginalValue(OriginalValue) {}
696   explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr)
697     : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) {
698     assert(Status != Base || BaseValue);
699   }
700 
701   StatusTy getStatus() const { return Status; }
702   Value *getOriginalValue() const { return OriginalValue; }
703   Value *getBaseValue() const { return BaseValue; }
704 
705   bool isBase() const { return getStatus() == Base; }
706   bool isUnknown() const { return getStatus() == Unknown; }
707   bool isConflict() const { return getStatus() == Conflict; }
708 
709   bool operator==(const BDVState &Other) const {
710     return OriginalValue == OriginalValue && BaseValue == Other.BaseValue &&
711       Status == Other.Status;
712   }
713 
714   bool operator!=(const BDVState &other) const { return !(*this == other); }
715 
716   LLVM_DUMP_METHOD
717   void dump() const {
718     print(dbgs());
719     dbgs() << '\n';
720   }
721 
722   void print(raw_ostream &OS) const {
723     switch (getStatus()) {
724     case Unknown:
725       OS << "U";
726       break;
727     case Base:
728       OS << "B";
729       break;
730     case Conflict:
731       OS << "C";
732       break;
733     }
734     OS << " (base " << getBaseValue() << " - "
735        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")"
736        << " for  "  << OriginalValue->getName() << ":";
737   }
738 
739 private:
740   AssertingVH<Value> OriginalValue; // instruction this state corresponds to
741   StatusTy Status = Unknown;
742   AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base.
743 };
744 
745 } // end anonymous namespace
746 
747 #ifndef NDEBUG
748 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
749   State.print(OS);
750   return OS;
751 }
752 #endif
753 
754 static BDVState::StatusTy meet(const BDVState::StatusTy &LHS,
755                                const BDVState::StatusTy &RHS) {
756   switch (LHS) {
757   case BDVState::Unknown:
758     return RHS;
759   case BDVState::Base:
760     switch (RHS) {
761     case BDVState::Unknown:
762     case BDVState::Base:
763       return BDVState::Base;
764     case BDVState::Conflict:
765       return BDVState::Conflict;
766     };
767     llvm_unreachable("covered switch");
768   case BDVState::Conflict:
769     return BDVState::Conflict;
770   }
771   llvm_unreachable("covered switch");
772 }
773 
774 // Values of type BDVState form a lattice, and this function implements the meet
775 // operation.
776 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
777   auto NewStatus = meet(LHS.getStatus(), RHS.getStatus());
778   assert(NewStatus == meet(RHS.getStatus(), LHS.getStatus()));
779 
780   Value *BaseValue = LHS.getStatus() == BDVState::Base ?
781     LHS.getBaseValue() : RHS.getBaseValue();
782   if (LHS.getStatus() == BDVState::Base && RHS.getStatus() == BDVState::Base &&
783       LHS.getBaseValue() != RHS.getBaseValue()) {
784     NewStatus = BDVState::Conflict;
785     BaseValue = nullptr;
786   }
787   return BDVState(LHS.getOriginalValue(), NewStatus, BaseValue);
788 }
789 
790 /// For a given value or instruction, figure out what base ptr its derived from.
791 /// For gc objects, this is simply itself.  On success, returns a value which is
792 /// the base pointer.  (This is reliable and can be used for relocation.)  On
793 /// failure, returns nullptr.
794 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
795   Value *Def = findBaseOrBDV(I, Cache);
796 
797   if (isKnownBaseResult(Def) && areBothVectorOrScalar(Def, I))
798     return Def;
799 
800   // Here's the rough algorithm:
801   // - For every SSA value, construct a mapping to either an actual base
802   //   pointer or a PHI which obscures the base pointer.
803   // - Construct a mapping from PHI to unknown TOP state.  Use an
804   //   optimistic algorithm to propagate base pointer information.  Lattice
805   //   looks like:
806   //   UNKNOWN
807   //   b1 b2 b3 b4
808   //   CONFLICT
809   //   When algorithm terminates, all PHIs will either have a single concrete
810   //   base or be in a conflict state.
811   // - For every conflict, insert a dummy PHI node without arguments.  Add
812   //   these to the base[Instruction] = BasePtr mapping.  For every
813   //   non-conflict, add the actual base.
814   //  - For every conflict, add arguments for the base[a] of each input
815   //   arguments.
816   //
817   // Note: A simpler form of this would be to add the conflict form of all
818   // PHIs without running the optimistic algorithm.  This would be
819   // analogous to pessimistic data flow and would likely lead to an
820   // overall worse solution.
821 
822 #ifndef NDEBUG
823   auto isExpectedBDVType = [](Value *BDV) {
824     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
825            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
826            isa<ShuffleVectorInst>(BDV);
827   };
828 #endif
829 
830   // Once populated, will contain a mapping from each potentially non-base BDV
831   // to a lattice value (described above) which corresponds to that BDV.
832   // We use the order of insertion (DFS over the def/use graph) to provide a
833   // stable deterministic ordering for visiting DenseMaps (which are unordered)
834   // below.  This is important for deterministic compilation.
835   MapVector<Value *, BDVState> States;
836 
837 #ifndef NDEBUG
838   auto VerifyStates = [&]() {
839     for (auto &Entry : States) {
840       assert(Entry.first == Entry.second.getOriginalValue());
841     }
842   };
843 #endif
844 
845   // Recursively fill in all base defining values reachable from the initial
846   // one for which we don't already know a definite base value for
847   /* scope */ {
848     SmallVector<Value*, 16> Worklist;
849     Worklist.push_back(Def);
850     States.insert({Def, BDVState(Def)});
851     while (!Worklist.empty()) {
852       Value *Current = Worklist.pop_back_val();
853       assert(!isOriginalBaseResult(Current) && "why did it get added?");
854 
855       auto visitIncomingValue = [&](Value *InVal) {
856         Value *Base = findBaseOrBDV(InVal, Cache);
857         if (isKnownBaseResult(Base) && areBothVectorOrScalar(Base, InVal))
858           // Known bases won't need new instructions introduced and can be
859           // ignored safely. However, this can only be done when InVal and Base
860           // are both scalar or both vector. Otherwise, we need to find a
861           // correct BDV for InVal, by creating an entry in the lattice
862           // (States).
863           return;
864         assert(isExpectedBDVType(Base) && "the only non-base values "
865                "we see should be base defining values");
866         if (States.insert(std::make_pair(Base, BDVState(Base))).second)
867           Worklist.push_back(Base);
868       };
869       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
870         for (Value *InVal : PN->incoming_values())
871           visitIncomingValue(InVal);
872       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
873         visitIncomingValue(SI->getTrueValue());
874         visitIncomingValue(SI->getFalseValue());
875       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
876         visitIncomingValue(EE->getVectorOperand());
877       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
878         visitIncomingValue(IE->getOperand(0)); // vector operand
879         visitIncomingValue(IE->getOperand(1)); // scalar operand
880       } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
881         visitIncomingValue(SV->getOperand(0));
882         visitIncomingValue(SV->getOperand(1));
883       }
884       else {
885         llvm_unreachable("Unimplemented instruction case");
886       }
887     }
888   }
889 
890 #ifndef NDEBUG
891   VerifyStates();
892   LLVM_DEBUG(dbgs() << "States after initialization:\n");
893   for (auto Pair : States) {
894     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
895   }
896 #endif
897 
898   // Return a phi state for a base defining value.  We'll generate a new
899   // base state for known bases and expect to find a cached state otherwise.
900   auto GetStateForBDV = [&](Value *BaseValue, Value *Input) {
901     if (isKnownBaseResult(BaseValue) && areBothVectorOrScalar(BaseValue, Input))
902       return BDVState(BaseValue, BDVState::Base, BaseValue);
903     auto I = States.find(BaseValue);
904     assert(I != States.end() && "lookup failed!");
905     return I->second;
906   };
907 
908   bool Progress = true;
909   while (Progress) {
910 #ifndef NDEBUG
911     const size_t OldSize = States.size();
912 #endif
913     Progress = false;
914     // We're only changing values in this loop, thus safe to keep iterators.
915     // Since this is computing a fixed point, the order of visit does not
916     // effect the result.  TODO: We could use a worklist here and make this run
917     // much faster.
918     for (auto Pair : States) {
919       Value *BDV = Pair.first;
920       // Only values that do not have known bases or those that have differing
921       // type (scalar versus vector) from a possible known base should be in the
922       // lattice.
923       assert((!isKnownBaseResult(BDV) ||
924              !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) &&
925                  "why did it get added?");
926 
927       // Given an input value for the current instruction, return a BDVState
928       // instance which represents the BDV of that value.
929       auto getStateForInput = [&](Value *V) mutable {
930         Value *BDV = findBaseOrBDV(V, Cache);
931         return GetStateForBDV(BDV, V);
932       };
933 
934       BDVState NewState(BDV);
935       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
936         NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
937         NewState =
938             meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
939       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
940         for (Value *Val : PN->incoming_values())
941           NewState = meetBDVState(NewState, getStateForInput(Val));
942       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
943         // The 'meet' for an extractelement is slightly trivial, but it's still
944         // useful in that it drives us to conflict if our input is.
945         NewState =
946             meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
947       } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
948         // Given there's a inherent type mismatch between the operands, will
949         // *always* produce Conflict.
950         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
951         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
952       } else {
953         // The only instance this does not return a Conflict is when both the
954         // vector operands are the same vector.
955         auto *SV = cast<ShuffleVectorInst>(BDV);
956         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
957         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
958       }
959 
960       BDVState OldState = States[BDV];
961       if (OldState != NewState) {
962         Progress = true;
963         States[BDV] = NewState;
964       }
965     }
966 
967     assert(OldSize == States.size() &&
968            "fixed point shouldn't be adding any new nodes to state");
969   }
970 
971 #ifndef NDEBUG
972   VerifyStates();
973   LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
974   for (auto Pair : States) {
975     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
976   }
977 #endif
978 
979   // Handle all instructions that have a vector BDV, but the instruction itself
980   // is of scalar type.
981   for (auto Pair : States) {
982     Instruction *I = cast<Instruction>(Pair.first);
983     BDVState State = Pair.second;
984     auto *BaseValue = State.getBaseValue();
985     // Only values that do not have known bases or those that have differing
986     // type (scalar versus vector) from a possible known base should be in the
987     // lattice.
988     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, BaseValue)) &&
989            "why did it get added?");
990     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
991 
992     if (!State.isBase() || !isa<VectorType>(BaseValue->getType()))
993       continue;
994     // extractelement instructions are a bit special in that we may need to
995     // insert an extract even when we know an exact base for the instruction.
996     // The problem is that we need to convert from a vector base to a scalar
997     // base for the particular indice we're interested in.
998     if (isa<ExtractElementInst>(I)) {
999       auto *EE = cast<ExtractElementInst>(I);
1000       // TODO: In many cases, the new instruction is just EE itself.  We should
1001       // exploit this, but can't do it here since it would break the invariant
1002       // about the BDV not being known to be a base.
1003       auto *BaseInst = ExtractElementInst::Create(
1004           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
1005       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1006       States[I] = BDVState(I, BDVState::Base, BaseInst);
1007     } else if (!isa<VectorType>(I->getType())) {
1008       // We need to handle cases that have a vector base but the instruction is
1009       // a scalar type (these could be phis or selects or any instruction that
1010       // are of scalar type, but the base can be a vector type).  We
1011       // conservatively set this as conflict.  Setting the base value for these
1012       // conflicts is handled in the next loop which traverses States.
1013       States[I] = BDVState(I, BDVState::Conflict);
1014     }
1015   }
1016 
1017 #ifndef NDEBUG
1018   VerifyStates();
1019 #endif
1020 
1021   // Insert Phis for all conflicts
1022   // TODO: adjust naming patterns to avoid this order of iteration dependency
1023   for (auto Pair : States) {
1024     Instruction *I = cast<Instruction>(Pair.first);
1025     BDVState State = Pair.second;
1026     // Only values that do not have known bases or those that have differing
1027     // type (scalar versus vector) from a possible known base should be in the
1028     // lattice.
1029     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, State.getBaseValue())) &&
1030            "why did it get added?");
1031     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1032 
1033     // Since we're joining a vector and scalar base, they can never be the
1034     // same.  As a result, we should always see insert element having reached
1035     // the conflict state.
1036     assert(!isa<InsertElementInst>(I) || State.isConflict());
1037 
1038     if (!State.isConflict())
1039       continue;
1040 
1041     /// Create and insert a new instruction which will represent the base of
1042     /// the given instruction 'I'.
1043     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
1044       if (isa<PHINode>(I)) {
1045         BasicBlock *BB = I->getParent();
1046         int NumPreds = pred_size(BB);
1047         assert(NumPreds > 0 && "how did we reach here");
1048         std::string Name = suffixed_name_or(I, ".base", "base_phi");
1049         return PHINode::Create(I->getType(), NumPreds, Name, I);
1050       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
1051         // The undef will be replaced later
1052         UndefValue *Undef = UndefValue::get(SI->getType());
1053         std::string Name = suffixed_name_or(I, ".base", "base_select");
1054         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
1055       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
1056         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
1057         std::string Name = suffixed_name_or(I, ".base", "base_ee");
1058         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
1059                                           EE);
1060       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
1061         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
1062         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
1063         std::string Name = suffixed_name_or(I, ".base", "base_ie");
1064         return InsertElementInst::Create(VecUndef, ScalarUndef,
1065                                          IE->getOperand(2), Name, IE);
1066       } else {
1067         auto *SV = cast<ShuffleVectorInst>(I);
1068         UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
1069         std::string Name = suffixed_name_or(I, ".base", "base_sv");
1070         return new ShuffleVectorInst(VecUndef, VecUndef, SV->getShuffleMask(),
1071                                      Name, SV);
1072       }
1073     };
1074     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
1075     // Add metadata marking this as a base value
1076     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1077     States[I] = BDVState(I, BDVState::Conflict, BaseInst);
1078   }
1079 
1080 #ifndef NDEBUG
1081   VerifyStates();
1082 #endif
1083 
1084   // Returns a instruction which produces the base pointer for a given
1085   // instruction.  The instruction is assumed to be an input to one of the BDVs
1086   // seen in the inference algorithm above.  As such, we must either already
1087   // know it's base defining value is a base, or have inserted a new
1088   // instruction to propagate the base of it's BDV and have entered that newly
1089   // introduced instruction into the state table.  In either case, we are
1090   // assured to be able to determine an instruction which produces it's base
1091   // pointer.
1092   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1093     Value *BDV = findBaseOrBDV(Input, Cache);
1094     Value *Base = nullptr;
1095     if (isKnownBaseResult(BDV) && areBothVectorOrScalar(BDV, Input)) {
1096       Base = BDV;
1097     } else {
1098       // Either conflict or base.
1099       assert(States.count(BDV));
1100       Base = States[BDV].getBaseValue();
1101     }
1102     assert(Base && "Can't be null");
1103     // The cast is needed since base traversal may strip away bitcasts
1104     if (Base->getType() != Input->getType() && InsertPt)
1105       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1106     return Base;
1107   };
1108 
1109   // Fixup all the inputs of the new PHIs.  Visit order needs to be
1110   // deterministic and predictable because we're naming newly created
1111   // instructions.
1112   for (auto Pair : States) {
1113     Instruction *BDV = cast<Instruction>(Pair.first);
1114     BDVState State = Pair.second;
1115 
1116     // Only values that do not have known bases or those that have differing
1117     // type (scalar versus vector) from a possible known base should be in the
1118     // lattice.
1119     assert((!isKnownBaseResult(BDV) ||
1120             !areBothVectorOrScalar(BDV, State.getBaseValue())) &&
1121            "why did it get added?");
1122     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1123     if (!State.isConflict())
1124       continue;
1125 
1126     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1127       PHINode *PN = cast<PHINode>(BDV);
1128       unsigned NumPHIValues = PN->getNumIncomingValues();
1129       for (unsigned i = 0; i < NumPHIValues; i++) {
1130         Value *InVal = PN->getIncomingValue(i);
1131         BasicBlock *InBB = PN->getIncomingBlock(i);
1132 
1133         // If we've already seen InBB, add the same incoming value
1134         // we added for it earlier.  The IR verifier requires phi
1135         // nodes with multiple entries from the same basic block
1136         // to have the same incoming value for each of those
1137         // entries.  If we don't do this check here and basephi
1138         // has a different type than base, we'll end up adding two
1139         // bitcasts (and hence two distinct values) as incoming
1140         // values for the same basic block.
1141 
1142         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
1143         if (BlockIndex != -1) {
1144           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
1145           BasePHI->addIncoming(OldBase, InBB);
1146 
1147 #ifndef NDEBUG
1148           Value *Base = getBaseForInput(InVal, nullptr);
1149           // In essence this assert states: the only way two values
1150           // incoming from the same basic block may be different is by
1151           // being different bitcasts of the same value.  A cleanup
1152           // that remains TODO is changing findBaseOrBDV to return an
1153           // llvm::Value of the correct type (and still remain pure).
1154           // This will remove the need to add bitcasts.
1155           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1156                  "Sanity -- findBaseOrBDV should be pure!");
1157 #endif
1158           continue;
1159         }
1160 
1161         // Find the instruction which produces the base for each input.  We may
1162         // need to insert a bitcast in the incoming block.
1163         // TODO: Need to split critical edges if insertion is needed
1164         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1165         BasePHI->addIncoming(Base, InBB);
1166       }
1167       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
1168     } else if (SelectInst *BaseSI =
1169                    dyn_cast<SelectInst>(State.getBaseValue())) {
1170       SelectInst *SI = cast<SelectInst>(BDV);
1171 
1172       // Find the instruction which produces the base for each input.
1173       // We may need to insert a bitcast.
1174       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1175       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1176     } else if (auto *BaseEE =
1177                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1178       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1179       // Find the instruction which produces the base for each input.  We may
1180       // need to insert a bitcast.
1181       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1182     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1183       auto *BdvIE = cast<InsertElementInst>(BDV);
1184       auto UpdateOperand = [&](int OperandIdx) {
1185         Value *InVal = BdvIE->getOperand(OperandIdx);
1186         Value *Base = getBaseForInput(InVal, BaseIE);
1187         BaseIE->setOperand(OperandIdx, Base);
1188       };
1189       UpdateOperand(0); // vector operand
1190       UpdateOperand(1); // scalar operand
1191     } else {
1192       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1193       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1194       auto UpdateOperand = [&](int OperandIdx) {
1195         Value *InVal = BdvSV->getOperand(OperandIdx);
1196         Value *Base = getBaseForInput(InVal, BaseSV);
1197         BaseSV->setOperand(OperandIdx, Base);
1198       };
1199       UpdateOperand(0); // vector operand
1200       UpdateOperand(1); // vector operand
1201     }
1202   }
1203 
1204 #ifndef NDEBUG
1205   VerifyStates();
1206 #endif
1207 
1208   // Cache all of our results so we can cheaply reuse them
1209   // NOTE: This is actually two caches: one of the base defining value
1210   // relation and one of the base pointer relation!  FIXME
1211   for (auto Pair : States) {
1212     auto *BDV = Pair.first;
1213     Value *Base = Pair.second.getBaseValue();
1214     assert(BDV && Base);
1215     // Only values that do not have known bases or those that have differing
1216     // type (scalar versus vector) from a possible known base should be in the
1217     // lattice.
1218     assert((!isKnownBaseResult(BDV) || !areBothVectorOrScalar(BDV, Base)) &&
1219            "why did it get added?");
1220 
1221     LLVM_DEBUG(
1222         dbgs() << "Updating base value cache"
1223                << " for: " << BDV->getName() << " from: "
1224                << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1225                << " to: " << Base->getName() << "\n");
1226 
1227     if (Cache.count(BDV)) {
1228       assert(isKnownBaseResult(Base) &&
1229              "must be something we 'know' is a base pointer");
1230       // Once we transition from the BDV relation being store in the Cache to
1231       // the base relation being stored, it must be stable
1232       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
1233              "base relation should be stable");
1234     }
1235     Cache[BDV] = Base;
1236   }
1237   assert(Cache.count(Def));
1238   return Cache[Def];
1239 }
1240 
1241 // For a set of live pointers (base and/or derived), identify the base
1242 // pointer of the object which they are derived from.  This routine will
1243 // mutate the IR graph as needed to make the 'base' pointer live at the
1244 // definition site of 'derived'.  This ensures that any use of 'derived' can
1245 // also use 'base'.  This may involve the insertion of a number of
1246 // additional PHI nodes.
1247 //
1248 // preconditions: live is a set of pointer type Values
1249 //
1250 // side effects: may insert PHI nodes into the existing CFG, will preserve
1251 // CFG, will not remove or mutate any existing nodes
1252 //
1253 // post condition: PointerToBase contains one (derived, base) pair for every
1254 // pointer in live.  Note that derived can be equal to base if the original
1255 // pointer was a base pointer.
1256 static void
1257 findBasePointers(const StatepointLiveSetTy &live,
1258                  MapVector<Value *, Value *> &PointerToBase,
1259                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1260   for (Value *ptr : live) {
1261     Value *base = findBasePointer(ptr, DVCache);
1262     assert(base && "failed to find base pointer");
1263     PointerToBase[ptr] = base;
1264     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1265             DT->dominates(cast<Instruction>(base)->getParent(),
1266                           cast<Instruction>(ptr)->getParent())) &&
1267            "The base we found better dominate the derived pointer");
1268   }
1269 }
1270 
1271 /// Find the required based pointers (and adjust the live set) for the given
1272 /// parse point.
1273 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1274                              CallBase *Call,
1275                              PartiallyConstructedSafepointRecord &result) {
1276   MapVector<Value *, Value *> PointerToBase;
1277   StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet;
1278   // We assume that all pointers passed to deopt are base pointers; as an
1279   // optimization, we can use this to avoid seperately materializing the base
1280   // pointer graph.  This is only relevant since we're very conservative about
1281   // generating new conflict nodes during base pointer insertion.  If we were
1282   // smarter there, this would be irrelevant.
1283   if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt))
1284     for (Value *V : Opt->Inputs) {
1285       if (!PotentiallyDerivedPointers.count(V))
1286         continue;
1287       PotentiallyDerivedPointers.remove(V);
1288       PointerToBase[V] = V;
1289     }
1290   findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache);
1291 
1292   if (PrintBasePointers) {
1293     errs() << "Base Pairs (w/o Relocation):\n";
1294     for (auto &Pair : PointerToBase) {
1295       errs() << " derived ";
1296       Pair.first->printAsOperand(errs(), false);
1297       errs() << " base ";
1298       Pair.second->printAsOperand(errs(), false);
1299       errs() << "\n";;
1300     }
1301   }
1302 
1303   result.PointerToBase = PointerToBase;
1304 }
1305 
1306 /// Given an updated version of the dataflow liveness results, update the
1307 /// liveset and base pointer maps for the call site CS.
1308 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1309                                   CallBase *Call,
1310                                   PartiallyConstructedSafepointRecord &result);
1311 
1312 static void recomputeLiveInValues(
1313     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1314     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1315   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1316   // again.  The old values are still live and will help it stabilize quickly.
1317   GCPtrLivenessData RevisedLivenessData;
1318   computeLiveInValues(DT, F, RevisedLivenessData);
1319   for (size_t i = 0; i < records.size(); i++) {
1320     struct PartiallyConstructedSafepointRecord &info = records[i];
1321     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1322   }
1323 }
1324 
1325 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1326 // no uses of the original value / return value between the gc.statepoint and
1327 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1328 // starting one of the successor blocks.  We also need to be able to insert the
1329 // gc.relocates only on the path which goes through the statepoint.  We might
1330 // need to split an edge to make this possible.
1331 static BasicBlock *
1332 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1333                             DominatorTree &DT) {
1334   BasicBlock *Ret = BB;
1335   if (!BB->getUniquePredecessor())
1336     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1337 
1338   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1339   // from it
1340   FoldSingleEntryPHINodes(Ret);
1341   assert(!isa<PHINode>(Ret->begin()) &&
1342          "All PHI nodes should have been removed!");
1343 
1344   // At this point, we can safely insert a gc.relocate or gc.result as the first
1345   // instruction in Ret if needed.
1346   return Ret;
1347 }
1348 
1349 // Create new attribute set containing only attributes which can be transferred
1350 // from original call to the safepoint.
1351 static AttributeList legalizeCallAttributes(LLVMContext &Ctx,
1352                                             AttributeList AL) {
1353   if (AL.isEmpty())
1354     return AL;
1355 
1356   // Remove the readonly, readnone, and statepoint function attributes.
1357   AttrBuilder FnAttrs = AL.getFnAttributes();
1358   FnAttrs.removeAttribute(Attribute::ReadNone);
1359   FnAttrs.removeAttribute(Attribute::ReadOnly);
1360   for (Attribute A : AL.getFnAttributes()) {
1361     if (isStatepointDirectiveAttr(A))
1362       FnAttrs.remove(A);
1363   }
1364 
1365   // Just skip parameter and return attributes for now
1366   return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1367                             AttributeSet::get(Ctx, FnAttrs));
1368 }
1369 
1370 /// Helper function to place all gc relocates necessary for the given
1371 /// statepoint.
1372 /// Inputs:
1373 ///   liveVariables - list of variables to be relocated.
1374 ///   basePtrs - base pointers.
1375 ///   statepointToken - statepoint instruction to which relocates should be
1376 ///   bound.
1377 ///   Builder - Llvm IR builder to be used to construct new calls.
1378 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1379                               ArrayRef<Value *> BasePtrs,
1380                               Instruction *StatepointToken,
1381                               IRBuilder<> &Builder) {
1382   if (LiveVariables.empty())
1383     return;
1384 
1385   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1386     auto ValIt = llvm::find(LiveVec, Val);
1387     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1388     size_t Index = std::distance(LiveVec.begin(), ValIt);
1389     assert(Index < LiveVec.size() && "Bug in std::find?");
1390     return Index;
1391   };
1392   Module *M = StatepointToken->getModule();
1393 
1394   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1395   // element type is i8 addrspace(1)*). We originally generated unique
1396   // declarations for each pointer type, but this proved problematic because
1397   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1398   // towards a single unified pointer type anyways, we can just cast everything
1399   // to an i8* of the right address space.  A bitcast is added later to convert
1400   // gc_relocate to the actual value's type.
1401   auto getGCRelocateDecl = [&] (Type *Ty) {
1402     assert(isHandledGCPointerType(Ty));
1403     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1404     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1405     if (auto *VT = dyn_cast<VectorType>(Ty))
1406       NewTy = FixedVectorType::get(NewTy,
1407                                    cast<FixedVectorType>(VT)->getNumElements());
1408     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1409                                      {NewTy});
1410   };
1411 
1412   // Lazily populated map from input types to the canonicalized form mentioned
1413   // in the comment above.  This should probably be cached somewhere more
1414   // broadly.
1415   DenseMap<Type *, Function *> TypeToDeclMap;
1416 
1417   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1418     // Generate the gc.relocate call and save the result
1419     Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i]));
1420     Value *LiveIdx = Builder.getInt32(i);
1421 
1422     Type *Ty = LiveVariables[i]->getType();
1423     if (!TypeToDeclMap.count(Ty))
1424       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1425     Function *GCRelocateDecl = TypeToDeclMap[Ty];
1426 
1427     // only specify a debug name if we can give a useful one
1428     CallInst *Reloc = Builder.CreateCall(
1429         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1430         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1431     // Trick CodeGen into thinking there are lots of free registers at this
1432     // fake call.
1433     Reloc->setCallingConv(CallingConv::Cold);
1434   }
1435 }
1436 
1437 namespace {
1438 
1439 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1440 /// avoids having to worry about keeping around dangling pointers to Values.
1441 class DeferredReplacement {
1442   AssertingVH<Instruction> Old;
1443   AssertingVH<Instruction> New;
1444   bool IsDeoptimize = false;
1445 
1446   DeferredReplacement() = default;
1447 
1448 public:
1449   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1450     assert(Old != New && Old && New &&
1451            "Cannot RAUW equal values or to / from null!");
1452 
1453     DeferredReplacement D;
1454     D.Old = Old;
1455     D.New = New;
1456     return D;
1457   }
1458 
1459   static DeferredReplacement createDelete(Instruction *ToErase) {
1460     DeferredReplacement D;
1461     D.Old = ToErase;
1462     return D;
1463   }
1464 
1465   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1466 #ifndef NDEBUG
1467     auto *F = cast<CallInst>(Old)->getCalledFunction();
1468     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1469            "Only way to construct a deoptimize deferred replacement");
1470 #endif
1471     DeferredReplacement D;
1472     D.Old = Old;
1473     D.IsDeoptimize = true;
1474     return D;
1475   }
1476 
1477   /// Does the task represented by this instance.
1478   void doReplacement() {
1479     Instruction *OldI = Old;
1480     Instruction *NewI = New;
1481 
1482     assert(OldI != NewI && "Disallowed at construction?!");
1483     assert((!IsDeoptimize || !New) &&
1484            "Deoptimize intrinsics are not replaced!");
1485 
1486     Old = nullptr;
1487     New = nullptr;
1488 
1489     if (NewI)
1490       OldI->replaceAllUsesWith(NewI);
1491 
1492     if (IsDeoptimize) {
1493       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1494       // not necessarily be followed by the matching return.
1495       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1496       new UnreachableInst(RI->getContext(), RI);
1497       RI->eraseFromParent();
1498     }
1499 
1500     OldI->eraseFromParent();
1501   }
1502 };
1503 
1504 } // end anonymous namespace
1505 
1506 static StringRef getDeoptLowering(CallBase *Call) {
1507   const char *DeoptLowering = "deopt-lowering";
1508   if (Call->hasFnAttr(DeoptLowering)) {
1509     // FIXME: Calls have a *really* confusing interface around attributes
1510     // with values.
1511     const AttributeList &CSAS = Call->getAttributes();
1512     if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1513       return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1514           .getValueAsString();
1515     Function *F = Call->getCalledFunction();
1516     assert(F && F->hasFnAttribute(DeoptLowering));
1517     return F->getFnAttribute(DeoptLowering).getValueAsString();
1518   }
1519   return "live-through";
1520 }
1521 
1522 static void
1523 makeStatepointExplicitImpl(CallBase *Call, /* to replace */
1524                            const SmallVectorImpl<Value *> &BasePtrs,
1525                            const SmallVectorImpl<Value *> &LiveVariables,
1526                            PartiallyConstructedSafepointRecord &Result,
1527                            std::vector<DeferredReplacement> &Replacements) {
1528   assert(BasePtrs.size() == LiveVariables.size());
1529 
1530   // Then go ahead and use the builder do actually do the inserts.  We insert
1531   // immediately before the previous instruction under the assumption that all
1532   // arguments will be available here.  We can't insert afterwards since we may
1533   // be replacing a terminator.
1534   IRBuilder<> Builder(Call);
1535 
1536   ArrayRef<Value *> GCArgs(LiveVariables);
1537   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1538   uint32_t NumPatchBytes = 0;
1539   uint32_t Flags = uint32_t(StatepointFlags::None);
1540 
1541   SmallVector<Value *, 8> CallArgs(Call->args());
1542   Optional<ArrayRef<Use>> DeoptArgs;
1543   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt))
1544     DeoptArgs = Bundle->Inputs;
1545   Optional<ArrayRef<Use>> TransitionArgs;
1546   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
1547     TransitionArgs = Bundle->Inputs;
1548     // TODO: This flag no longer serves a purpose and can be removed later
1549     Flags |= uint32_t(StatepointFlags::GCTransition);
1550   }
1551 
1552   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1553   // with a return value, we lower then as never returning calls to
1554   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1555   bool IsDeoptimize = false;
1556 
1557   StatepointDirectives SD =
1558       parseStatepointDirectivesFromAttrs(Call->getAttributes());
1559   if (SD.NumPatchBytes)
1560     NumPatchBytes = *SD.NumPatchBytes;
1561   if (SD.StatepointID)
1562     StatepointID = *SD.StatepointID;
1563 
1564   // Pass through the requested lowering if any.  The default is live-through.
1565   StringRef DeoptLowering = getDeoptLowering(Call);
1566   if (DeoptLowering.equals("live-in"))
1567     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1568   else {
1569     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1570   }
1571 
1572   Value *CallTarget = Call->getCalledOperand();
1573   if (Function *F = dyn_cast<Function>(CallTarget)) {
1574     auto IID = F->getIntrinsicID();
1575     if (IID == Intrinsic::experimental_deoptimize) {
1576       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1577       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1578       // verifier does not allow taking the address of an intrinsic function.
1579 
1580       SmallVector<Type *, 8> DomainTy;
1581       for (Value *Arg : CallArgs)
1582         DomainTy.push_back(Arg->getType());
1583       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1584                                     /* isVarArg = */ false);
1585 
1586       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1587       // calls to @llvm.experimental.deoptimize with different argument types in
1588       // the same module.  This is fine -- we assume the frontend knew what it
1589       // was doing when generating this kind of IR.
1590       CallTarget = F->getParent()
1591                        ->getOrInsertFunction("__llvm_deoptimize", FTy)
1592                        .getCallee();
1593 
1594       IsDeoptimize = true;
1595     } else if (IID == Intrinsic::memcpy_element_unordered_atomic ||
1596                IID == Intrinsic::memmove_element_unordered_atomic) {
1597       // Unordered atomic memcpy and memmove intrinsics which are not explicitly
1598       // marked as "gc-leaf-function" should be lowered in a GC parseable way.
1599       // Specifically, these calls should be lowered to the
1600       // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols.
1601       // Similarly to __llvm_deoptimize we want to resolve this now, since the
1602       // verifier does not allow taking the address of an intrinsic function.
1603       //
1604       // Moreover we need to shuffle the arguments for the call in order to
1605       // accommodate GC. The underlying source and destination objects might be
1606       // relocated during copy operation should the GC occur. To relocate the
1607       // derived source and destination pointers the implementation of the
1608       // intrinsic should know the corresponding base pointers.
1609       //
1610       // To make the base pointers available pass them explicitly as arguments:
1611       //   memcpy(dest_derived, source_derived, ...) =>
1612       //   memcpy(dest_base, dest_offset, source_base, source_offset, ...)
1613       auto &Context = Call->getContext();
1614       auto &DL = Call->getModule()->getDataLayout();
1615       auto GetBaseAndOffset = [&](Value *Derived) {
1616         assert(Result.PointerToBase.count(Derived));
1617         unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
1618         unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
1619         Value *Base = Result.PointerToBase.find(Derived)->second;
1620         Value *Base_int = Builder.CreatePtrToInt(
1621             Base, Type::getIntNTy(Context, IntPtrSize));
1622         Value *Derived_int = Builder.CreatePtrToInt(
1623             Derived, Type::getIntNTy(Context, IntPtrSize));
1624         return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int));
1625       };
1626 
1627       auto *Dest = CallArgs[0];
1628       Value *DestBase, *DestOffset;
1629       std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest);
1630 
1631       auto *Source = CallArgs[1];
1632       Value *SourceBase, *SourceOffset;
1633       std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source);
1634 
1635       auto *LengthInBytes = CallArgs[2];
1636       auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]);
1637 
1638       CallArgs.clear();
1639       CallArgs.push_back(DestBase);
1640       CallArgs.push_back(DestOffset);
1641       CallArgs.push_back(SourceBase);
1642       CallArgs.push_back(SourceOffset);
1643       CallArgs.push_back(LengthInBytes);
1644 
1645       SmallVector<Type *, 8> DomainTy;
1646       for (Value *Arg : CallArgs)
1647         DomainTy.push_back(Arg->getType());
1648       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1649                                     /* isVarArg = */ false);
1650 
1651       auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) {
1652         uint64_t ElementSize = ElementSizeCI->getZExtValue();
1653         if (IID == Intrinsic::memcpy_element_unordered_atomic) {
1654           switch (ElementSize) {
1655           case 1:
1656             return "__llvm_memcpy_element_unordered_atomic_safepoint_1";
1657           case 2:
1658             return "__llvm_memcpy_element_unordered_atomic_safepoint_2";
1659           case 4:
1660             return "__llvm_memcpy_element_unordered_atomic_safepoint_4";
1661           case 8:
1662             return "__llvm_memcpy_element_unordered_atomic_safepoint_8";
1663           case 16:
1664             return "__llvm_memcpy_element_unordered_atomic_safepoint_16";
1665           default:
1666             llvm_unreachable("unexpected element size!");
1667           }
1668         }
1669         assert(IID == Intrinsic::memmove_element_unordered_atomic);
1670         switch (ElementSize) {
1671         case 1:
1672           return "__llvm_memmove_element_unordered_atomic_safepoint_1";
1673         case 2:
1674           return "__llvm_memmove_element_unordered_atomic_safepoint_2";
1675         case 4:
1676           return "__llvm_memmove_element_unordered_atomic_safepoint_4";
1677         case 8:
1678           return "__llvm_memmove_element_unordered_atomic_safepoint_8";
1679         case 16:
1680           return "__llvm_memmove_element_unordered_atomic_safepoint_16";
1681         default:
1682           llvm_unreachable("unexpected element size!");
1683         }
1684       };
1685 
1686       CallTarget =
1687           F->getParent()
1688               ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy)
1689               .getCallee();
1690     }
1691   }
1692 
1693   // Create the statepoint given all the arguments
1694   GCStatepointInst *Token = nullptr;
1695   if (auto *CI = dyn_cast<CallInst>(Call)) {
1696     CallInst *SPCall = Builder.CreateGCStatepointCall(
1697         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1698         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1699 
1700     SPCall->setTailCallKind(CI->getTailCallKind());
1701     SPCall->setCallingConv(CI->getCallingConv());
1702 
1703     // Currently we will fail on parameter attributes and on certain
1704     // function attributes.  In case if we can handle this set of attributes -
1705     // set up function attrs directly on statepoint and return attrs later for
1706     // gc_result intrinsic.
1707     SPCall->setAttributes(
1708         legalizeCallAttributes(CI->getContext(), CI->getAttributes()));
1709 
1710     Token = cast<GCStatepointInst>(SPCall);
1711 
1712     // Put the following gc_result and gc_relocate calls immediately after the
1713     // the old call (which we're about to delete)
1714     assert(CI->getNextNode() && "Not a terminator, must have next!");
1715     Builder.SetInsertPoint(CI->getNextNode());
1716     Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
1717   } else {
1718     auto *II = cast<InvokeInst>(Call);
1719 
1720     // Insert the new invoke into the old block.  We'll remove the old one in a
1721     // moment at which point this will become the new terminator for the
1722     // original block.
1723     InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
1724         StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
1725         II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
1726         "statepoint_token");
1727 
1728     SPInvoke->setCallingConv(II->getCallingConv());
1729 
1730     // Currently we will fail on parameter attributes and on certain
1731     // function attributes.  In case if we can handle this set of attributes -
1732     // set up function attrs directly on statepoint and return attrs later for
1733     // gc_result intrinsic.
1734     SPInvoke->setAttributes(
1735         legalizeCallAttributes(II->getContext(), II->getAttributes()));
1736 
1737     Token = cast<GCStatepointInst>(SPInvoke);
1738 
1739     // Generate gc relocates in exceptional path
1740     BasicBlock *UnwindBlock = II->getUnwindDest();
1741     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1742            UnwindBlock->getUniquePredecessor() &&
1743            "can't safely insert in this block!");
1744 
1745     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1746     Builder.SetCurrentDebugLocation(II->getDebugLoc());
1747 
1748     // Attach exceptional gc relocates to the landingpad.
1749     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1750     Result.UnwindToken = ExceptionalToken;
1751 
1752     CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder);
1753 
1754     // Generate gc relocates and returns for normal block
1755     BasicBlock *NormalDest = II->getNormalDest();
1756     assert(!isa<PHINode>(NormalDest->begin()) &&
1757            NormalDest->getUniquePredecessor() &&
1758            "can't safely insert in this block!");
1759 
1760     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1761 
1762     // gc relocates will be generated later as if it were regular call
1763     // statepoint
1764   }
1765   assert(Token && "Should be set in one of the above branches!");
1766 
1767   if (IsDeoptimize) {
1768     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1769     // transform the tail-call like structure to a call to a void function
1770     // followed by unreachable to get better codegen.
1771     Replacements.push_back(
1772         DeferredReplacement::createDeoptimizeReplacement(Call));
1773   } else {
1774     Token->setName("statepoint_token");
1775     if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
1776       StringRef Name = Call->hasName() ? Call->getName() : "";
1777       CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
1778       GCResult->setAttributes(
1779           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1780                              Call->getAttributes().getRetAttributes()));
1781 
1782       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1783       // live set of some other safepoint, in which case that safepoint's
1784       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1785       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1786       // after the live sets have been made explicit in the IR, and we no longer
1787       // have raw pointers to worry about.
1788       Replacements.emplace_back(
1789           DeferredReplacement::createRAUW(Call, GCResult));
1790     } else {
1791       Replacements.emplace_back(DeferredReplacement::createDelete(Call));
1792     }
1793   }
1794 
1795   Result.StatepointToken = Token;
1796 
1797   // Second, create a gc.relocate for every live variable
1798   CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder);
1799 }
1800 
1801 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1802 // which make the relocations happening at this safepoint explicit.
1803 //
1804 // WARNING: Does not do any fixup to adjust users of the original live
1805 // values.  That's the callers responsibility.
1806 static void
1807 makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
1808                        PartiallyConstructedSafepointRecord &Result,
1809                        std::vector<DeferredReplacement> &Replacements) {
1810   const auto &LiveSet = Result.LiveSet;
1811   const auto &PointerToBase = Result.PointerToBase;
1812 
1813   // Convert to vector for efficient cross referencing.
1814   SmallVector<Value *, 64> BaseVec, LiveVec;
1815   LiveVec.reserve(LiveSet.size());
1816   BaseVec.reserve(LiveSet.size());
1817   for (Value *L : LiveSet) {
1818     LiveVec.push_back(L);
1819     assert(PointerToBase.count(L));
1820     Value *Base = PointerToBase.find(L)->second;
1821     BaseVec.push_back(Base);
1822   }
1823   assert(LiveVec.size() == BaseVec.size());
1824 
1825   // Do the actual rewriting and delete the old statepoint
1826   makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
1827 }
1828 
1829 // Helper function for the relocationViaAlloca.
1830 //
1831 // It receives iterator to the statepoint gc relocates and emits a store to the
1832 // assigned location (via allocaMap) for the each one of them.  It adds the
1833 // visited values into the visitedLiveValues set, which we will later use them
1834 // for sanity checking.
1835 static void
1836 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1837                        DenseMap<Value *, AllocaInst *> &AllocaMap,
1838                        DenseSet<Value *> &VisitedLiveValues) {
1839   for (User *U : GCRelocs) {
1840     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1841     if (!Relocate)
1842       continue;
1843 
1844     Value *OriginalValue = Relocate->getDerivedPtr();
1845     assert(AllocaMap.count(OriginalValue));
1846     Value *Alloca = AllocaMap[OriginalValue];
1847 
1848     // Emit store into the related alloca
1849     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1850     // the correct type according to alloca.
1851     assert(Relocate->getNextNode() &&
1852            "Should always have one since it's not a terminator");
1853     IRBuilder<> Builder(Relocate->getNextNode());
1854     Value *CastedRelocatedValue =
1855       Builder.CreateBitCast(Relocate,
1856                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1857                             suffixed_name_or(Relocate, ".casted", ""));
1858 
1859     new StoreInst(CastedRelocatedValue, Alloca,
1860                   cast<Instruction>(CastedRelocatedValue)->getNextNode());
1861 
1862 #ifndef NDEBUG
1863     VisitedLiveValues.insert(OriginalValue);
1864 #endif
1865   }
1866 }
1867 
1868 // Helper function for the "relocationViaAlloca". Similar to the
1869 // "insertRelocationStores" but works for rematerialized values.
1870 static void insertRematerializationStores(
1871     const RematerializedValueMapTy &RematerializedValues,
1872     DenseMap<Value *, AllocaInst *> &AllocaMap,
1873     DenseSet<Value *> &VisitedLiveValues) {
1874   for (auto RematerializedValuePair: RematerializedValues) {
1875     Instruction *RematerializedValue = RematerializedValuePair.first;
1876     Value *OriginalValue = RematerializedValuePair.second;
1877 
1878     assert(AllocaMap.count(OriginalValue) &&
1879            "Can not find alloca for rematerialized value");
1880     Value *Alloca = AllocaMap[OriginalValue];
1881 
1882     new StoreInst(RematerializedValue, Alloca,
1883                   RematerializedValue->getNextNode());
1884 
1885 #ifndef NDEBUG
1886     VisitedLiveValues.insert(OriginalValue);
1887 #endif
1888   }
1889 }
1890 
1891 /// Do all the relocation update via allocas and mem2reg
1892 static void relocationViaAlloca(
1893     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1894     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1895 #ifndef NDEBUG
1896   // record initial number of (static) allocas; we'll check we have the same
1897   // number when we get done.
1898   int InitialAllocaNum = 0;
1899   for (Instruction &I : F.getEntryBlock())
1900     if (isa<AllocaInst>(I))
1901       InitialAllocaNum++;
1902 #endif
1903 
1904   // TODO-PERF: change data structures, reserve
1905   DenseMap<Value *, AllocaInst *> AllocaMap;
1906   SmallVector<AllocaInst *, 200> PromotableAllocas;
1907   // Used later to chack that we have enough allocas to store all values
1908   std::size_t NumRematerializedValues = 0;
1909   PromotableAllocas.reserve(Live.size());
1910 
1911   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1912   // "PromotableAllocas"
1913   const DataLayout &DL = F.getParent()->getDataLayout();
1914   auto emitAllocaFor = [&](Value *LiveValue) {
1915     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1916                                         DL.getAllocaAddrSpace(), "",
1917                                         F.getEntryBlock().getFirstNonPHI());
1918     AllocaMap[LiveValue] = Alloca;
1919     PromotableAllocas.push_back(Alloca);
1920   };
1921 
1922   // Emit alloca for each live gc pointer
1923   for (Value *V : Live)
1924     emitAllocaFor(V);
1925 
1926   // Emit allocas for rematerialized values
1927   for (const auto &Info : Records)
1928     for (auto RematerializedValuePair : Info.RematerializedValues) {
1929       Value *OriginalValue = RematerializedValuePair.second;
1930       if (AllocaMap.count(OriginalValue) != 0)
1931         continue;
1932 
1933       emitAllocaFor(OriginalValue);
1934       ++NumRematerializedValues;
1935     }
1936 
1937   // The next two loops are part of the same conceptual operation.  We need to
1938   // insert a store to the alloca after the original def and at each
1939   // redefinition.  We need to insert a load before each use.  These are split
1940   // into distinct loops for performance reasons.
1941 
1942   // Update gc pointer after each statepoint: either store a relocated value or
1943   // null (if no relocated value was found for this gc pointer and it is not a
1944   // gc_result).  This must happen before we update the statepoint with load of
1945   // alloca otherwise we lose the link between statepoint and old def.
1946   for (const auto &Info : Records) {
1947     Value *Statepoint = Info.StatepointToken;
1948 
1949     // This will be used for consistency check
1950     DenseSet<Value *> VisitedLiveValues;
1951 
1952     // Insert stores for normal statepoint gc relocates
1953     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1954 
1955     // In case if it was invoke statepoint
1956     // we will insert stores for exceptional path gc relocates.
1957     if (isa<InvokeInst>(Statepoint)) {
1958       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1959                              VisitedLiveValues);
1960     }
1961 
1962     // Do similar thing with rematerialized values
1963     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1964                                   VisitedLiveValues);
1965 
1966     if (ClobberNonLive) {
1967       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1968       // the gc.statepoint.  This will turn some subtle GC problems into
1969       // slightly easier to debug SEGVs.  Note that on large IR files with
1970       // lots of gc.statepoints this is extremely costly both memory and time
1971       // wise.
1972       SmallVector<AllocaInst *, 64> ToClobber;
1973       for (auto Pair : AllocaMap) {
1974         Value *Def = Pair.first;
1975         AllocaInst *Alloca = Pair.second;
1976 
1977         // This value was relocated
1978         if (VisitedLiveValues.count(Def)) {
1979           continue;
1980         }
1981         ToClobber.push_back(Alloca);
1982       }
1983 
1984       auto InsertClobbersAt = [&](Instruction *IP) {
1985         for (auto *AI : ToClobber) {
1986           auto PT = cast<PointerType>(AI->getAllocatedType());
1987           Constant *CPN = ConstantPointerNull::get(PT);
1988           new StoreInst(CPN, AI, IP);
1989         }
1990       };
1991 
1992       // Insert the clobbering stores.  These may get intermixed with the
1993       // gc.results and gc.relocates, but that's fine.
1994       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1995         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1996         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1997       } else {
1998         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1999       }
2000     }
2001   }
2002 
2003   // Update use with load allocas and add store for gc_relocated.
2004   for (auto Pair : AllocaMap) {
2005     Value *Def = Pair.first;
2006     AllocaInst *Alloca = Pair.second;
2007 
2008     // We pre-record the uses of allocas so that we dont have to worry about
2009     // later update that changes the user information..
2010 
2011     SmallVector<Instruction *, 20> Uses;
2012     // PERF: trade a linear scan for repeated reallocation
2013     Uses.reserve(Def->getNumUses());
2014     for (User *U : Def->users()) {
2015       if (!isa<ConstantExpr>(U)) {
2016         // If the def has a ConstantExpr use, then the def is either a
2017         // ConstantExpr use itself or null.  In either case
2018         // (recursively in the first, directly in the second), the oop
2019         // it is ultimately dependent on is null and this particular
2020         // use does not need to be fixed up.
2021         Uses.push_back(cast<Instruction>(U));
2022       }
2023     }
2024 
2025     llvm::sort(Uses);
2026     auto Last = std::unique(Uses.begin(), Uses.end());
2027     Uses.erase(Last, Uses.end());
2028 
2029     for (Instruction *Use : Uses) {
2030       if (isa<PHINode>(Use)) {
2031         PHINode *Phi = cast<PHINode>(Use);
2032         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
2033           if (Def == Phi->getIncomingValue(i)) {
2034             LoadInst *Load =
2035                 new LoadInst(Alloca->getAllocatedType(), Alloca, "",
2036                              Phi->getIncomingBlock(i)->getTerminator());
2037             Phi->setIncomingValue(i, Load);
2038           }
2039         }
2040       } else {
2041         LoadInst *Load =
2042             new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
2043         Use->replaceUsesOfWith(Def, Load);
2044       }
2045     }
2046 
2047     // Emit store for the initial gc value.  Store must be inserted after load,
2048     // otherwise store will be in alloca's use list and an extra load will be
2049     // inserted before it.
2050     StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false,
2051                                      DL.getABITypeAlign(Def->getType()));
2052     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
2053       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
2054         // InvokeInst is a terminator so the store need to be inserted into its
2055         // normal destination block.
2056         BasicBlock *NormalDest = Invoke->getNormalDest();
2057         Store->insertBefore(NormalDest->getFirstNonPHI());
2058       } else {
2059         assert(!Inst->isTerminator() &&
2060                "The only terminator that can produce a value is "
2061                "InvokeInst which is handled above.");
2062         Store->insertAfter(Inst);
2063       }
2064     } else {
2065       assert(isa<Argument>(Def));
2066       Store->insertAfter(cast<Instruction>(Alloca));
2067     }
2068   }
2069 
2070   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
2071          "we must have the same allocas with lives");
2072   if (!PromotableAllocas.empty()) {
2073     // Apply mem2reg to promote alloca to SSA
2074     PromoteMemToReg(PromotableAllocas, DT);
2075   }
2076 
2077 #ifndef NDEBUG
2078   for (auto &I : F.getEntryBlock())
2079     if (isa<AllocaInst>(I))
2080       InitialAllocaNum--;
2081   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
2082 #endif
2083 }
2084 
2085 /// Implement a unique function which doesn't require we sort the input
2086 /// vector.  Doing so has the effect of changing the output of a couple of
2087 /// tests in ways which make them less useful in testing fused safepoints.
2088 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
2089   SmallSet<T, 8> Seen;
2090   erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; });
2091 }
2092 
2093 /// Insert holders so that each Value is obviously live through the entire
2094 /// lifetime of the call.
2095 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
2096                                  SmallVectorImpl<CallInst *> &Holders) {
2097   if (Values.empty())
2098     // No values to hold live, might as well not insert the empty holder
2099     return;
2100 
2101   Module *M = Call->getModule();
2102   // Use a dummy vararg function to actually hold the values live
2103   FunctionCallee Func = M->getOrInsertFunction(
2104       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
2105   if (isa<CallInst>(Call)) {
2106     // For call safepoints insert dummy calls right after safepoint
2107     Holders.push_back(
2108         CallInst::Create(Func, Values, "", &*++Call->getIterator()));
2109     return;
2110   }
2111   // For invoke safepooints insert dummy calls both in normal and
2112   // exceptional destination blocks
2113   auto *II = cast<InvokeInst>(Call);
2114   Holders.push_back(CallInst::Create(
2115       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
2116   Holders.push_back(CallInst::Create(
2117       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
2118 }
2119 
2120 static void findLiveReferences(
2121     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
2122     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
2123   GCPtrLivenessData OriginalLivenessData;
2124   computeLiveInValues(DT, F, OriginalLivenessData);
2125   for (size_t i = 0; i < records.size(); i++) {
2126     struct PartiallyConstructedSafepointRecord &info = records[i];
2127     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
2128   }
2129 }
2130 
2131 // Helper function for the "rematerializeLiveValues". It walks use chain
2132 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
2133 // the base or a value it cannot process. Only "simple" values are processed
2134 // (currently it is GEP's and casts). The returned root is  examined by the
2135 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
2136 // with all visited values.
2137 static Value* findRematerializableChainToBasePointer(
2138   SmallVectorImpl<Instruction*> &ChainToBase,
2139   Value *CurrentValue) {
2140   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2141     ChainToBase.push_back(GEP);
2142     return findRematerializableChainToBasePointer(ChainToBase,
2143                                                   GEP->getPointerOperand());
2144   }
2145 
2146   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2147     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2148       return CI;
2149 
2150     ChainToBase.push_back(CI);
2151     return findRematerializableChainToBasePointer(ChainToBase,
2152                                                   CI->getOperand(0));
2153   }
2154 
2155   // We have reached the root of the chain, which is either equal to the base or
2156   // is the first unsupported value along the use chain.
2157   return CurrentValue;
2158 }
2159 
2160 // Helper function for the "rematerializeLiveValues". Compute cost of the use
2161 // chain we are going to rematerialize.
2162 static InstructionCost
2163 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain,
2164                        TargetTransformInfo &TTI) {
2165   InstructionCost Cost = 0;
2166 
2167   for (Instruction *Instr : Chain) {
2168     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2169       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2170              "non noop cast is found during rematerialization");
2171 
2172       Type *SrcTy = CI->getOperand(0)->getType();
2173       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy,
2174                                    TTI::getCastContextHint(CI),
2175                                    TargetTransformInfo::TCK_SizeAndLatency, CI);
2176 
2177     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2178       // Cost of the address calculation
2179       Type *ValTy = GEP->getSourceElementType();
2180       Cost += TTI.getAddressComputationCost(ValTy);
2181 
2182       // And cost of the GEP itself
2183       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2184       //       allowed for the external usage)
2185       if (!GEP->hasAllConstantIndices())
2186         Cost += 2;
2187 
2188     } else {
2189       llvm_unreachable("unsupported instruction type during rematerialization");
2190     }
2191   }
2192 
2193   return Cost;
2194 }
2195 
2196 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
2197   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
2198   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
2199       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
2200     return false;
2201   // Map of incoming values and their corresponding basic blocks of
2202   // OrigRootPhi.
2203   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
2204   for (unsigned i = 0; i < PhiNum; i++)
2205     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2206         OrigRootPhi.getIncomingBlock(i);
2207 
2208   // Both current and base PHIs should have same incoming values and
2209   // the same basic blocks corresponding to the incoming values.
2210   for (unsigned i = 0; i < PhiNum; i++) {
2211     auto CIVI =
2212         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2213     if (CIVI == CurrentIncomingValues.end())
2214       return false;
2215     BasicBlock *CurrentIncomingBB = CIVI->second;
2216     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2217       return false;
2218   }
2219   return true;
2220 }
2221 
2222 // From the statepoint live set pick values that are cheaper to recompute then
2223 // to relocate. Remove this values from the live set, rematerialize them after
2224 // statepoint and record them in "Info" structure. Note that similar to
2225 // relocated values we don't do any user adjustments here.
2226 static void rematerializeLiveValues(CallBase *Call,
2227                                     PartiallyConstructedSafepointRecord &Info,
2228                                     TargetTransformInfo &TTI) {
2229   const unsigned int ChainLengthThreshold = 10;
2230 
2231   // Record values we are going to delete from this statepoint live set.
2232   // We can not di this in following loop due to iterator invalidation.
2233   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2234 
2235   for (Value *LiveValue: Info.LiveSet) {
2236     // For each live pointer find its defining chain
2237     SmallVector<Instruction *, 3> ChainToBase;
2238     assert(Info.PointerToBase.count(LiveValue));
2239     Value *RootOfChain =
2240       findRematerializableChainToBasePointer(ChainToBase,
2241                                              LiveValue);
2242 
2243     // Nothing to do, or chain is too long
2244     if ( ChainToBase.size() == 0 ||
2245         ChainToBase.size() > ChainLengthThreshold)
2246       continue;
2247 
2248     // Handle the scenario where the RootOfChain is not equal to the
2249     // Base Value, but they are essentially the same phi values.
2250     if (RootOfChain != Info.PointerToBase[LiveValue]) {
2251       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2252       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2253       if (!OrigRootPhi || !AlternateRootPhi)
2254         continue;
2255       // PHI nodes that have the same incoming values, and belonging to the same
2256       // basic blocks are essentially the same SSA value.  When the original phi
2257       // has incoming values with different base pointers, the original phi is
2258       // marked as conflict, and an additional `AlternateRootPhi` with the same
2259       // incoming values get generated by the findBasePointer function. We need
2260       // to identify the newly generated AlternateRootPhi (.base version of phi)
2261       // and RootOfChain (the original phi node itself) are the same, so that we
2262       // can rematerialize the gep and casts. This is a workaround for the
2263       // deficiency in the findBasePointer algorithm.
2264       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2265         continue;
2266       // Now that the phi nodes are proved to be the same, assert that
2267       // findBasePointer's newly generated AlternateRootPhi is present in the
2268       // liveset of the call.
2269       assert(Info.LiveSet.count(AlternateRootPhi));
2270     }
2271     // Compute cost of this chain
2272     InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI);
2273     // TODO: We can also account for cases when we will be able to remove some
2274     //       of the rematerialized values by later optimization passes. I.e if
2275     //       we rematerialized several intersecting chains. Or if original values
2276     //       don't have any uses besides this statepoint.
2277 
2278     // For invokes we need to rematerialize each chain twice - for normal and
2279     // for unwind basic blocks. Model this by multiplying cost by two.
2280     if (isa<InvokeInst>(Call)) {
2281       Cost *= 2;
2282     }
2283     // If it's too expensive - skip it
2284     if (Cost >= RematerializationThreshold)
2285       continue;
2286 
2287     // Remove value from the live set
2288     LiveValuesToBeDeleted.push_back(LiveValue);
2289 
2290     // Clone instructions and record them inside "Info" structure
2291 
2292     // Walk backwards to visit top-most instructions first
2293     std::reverse(ChainToBase.begin(), ChainToBase.end());
2294 
2295     // Utility function which clones all instructions from "ChainToBase"
2296     // and inserts them before "InsertBefore". Returns rematerialized value
2297     // which should be used after statepoint.
2298     auto rematerializeChain = [&ChainToBase](
2299         Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2300       Instruction *LastClonedValue = nullptr;
2301       Instruction *LastValue = nullptr;
2302       for (Instruction *Instr: ChainToBase) {
2303         // Only GEP's and casts are supported as we need to be careful to not
2304         // introduce any new uses of pointers not in the liveset.
2305         // Note that it's fine to introduce new uses of pointers which were
2306         // otherwise not used after this statepoint.
2307         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2308 
2309         Instruction *ClonedValue = Instr->clone();
2310         ClonedValue->insertBefore(InsertBefore);
2311         ClonedValue->setName(Instr->getName() + ".remat");
2312 
2313         // If it is not first instruction in the chain then it uses previously
2314         // cloned value. We should update it to use cloned value.
2315         if (LastClonedValue) {
2316           assert(LastValue);
2317           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2318 #ifndef NDEBUG
2319           for (auto OpValue : ClonedValue->operand_values()) {
2320             // Assert that cloned instruction does not use any instructions from
2321             // this chain other than LastClonedValue
2322             assert(!is_contained(ChainToBase, OpValue) &&
2323                    "incorrect use in rematerialization chain");
2324             // Assert that the cloned instruction does not use the RootOfChain
2325             // or the AlternateLiveBase.
2326             assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2327           }
2328 #endif
2329         } else {
2330           // For the first instruction, replace the use of unrelocated base i.e.
2331           // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2332           // live set. They have been proved to be the same PHI nodes.  Note
2333           // that the *only* use of the RootOfChain in the ChainToBase list is
2334           // the first Value in the list.
2335           if (RootOfChain != AlternateLiveBase)
2336             ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2337         }
2338 
2339         LastClonedValue = ClonedValue;
2340         LastValue = Instr;
2341       }
2342       assert(LastClonedValue);
2343       return LastClonedValue;
2344     };
2345 
2346     // Different cases for calls and invokes. For invokes we need to clone
2347     // instructions both on normal and unwind path.
2348     if (isa<CallInst>(Call)) {
2349       Instruction *InsertBefore = Call->getNextNode();
2350       assert(InsertBefore);
2351       Instruction *RematerializedValue = rematerializeChain(
2352           InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2353       Info.RematerializedValues[RematerializedValue] = LiveValue;
2354     } else {
2355       auto *Invoke = cast<InvokeInst>(Call);
2356 
2357       Instruction *NormalInsertBefore =
2358           &*Invoke->getNormalDest()->getFirstInsertionPt();
2359       Instruction *UnwindInsertBefore =
2360           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2361 
2362       Instruction *NormalRematerializedValue = rematerializeChain(
2363           NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2364       Instruction *UnwindRematerializedValue = rematerializeChain(
2365           UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2366 
2367       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2368       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2369     }
2370   }
2371 
2372   // Remove rematerializaed values from the live set
2373   for (auto LiveValue: LiveValuesToBeDeleted) {
2374     Info.LiveSet.remove(LiveValue);
2375   }
2376 }
2377 
2378 static bool insertParsePoints(Function &F, DominatorTree &DT,
2379                               TargetTransformInfo &TTI,
2380                               SmallVectorImpl<CallBase *> &ToUpdate) {
2381 #ifndef NDEBUG
2382   // sanity check the input
2383   std::set<CallBase *> Uniqued;
2384   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2385   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2386 
2387   for (CallBase *Call : ToUpdate)
2388     assert(Call->getFunction() == &F);
2389 #endif
2390 
2391   // When inserting gc.relocates for invokes, we need to be able to insert at
2392   // the top of the successor blocks.  See the comment on
2393   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2394   // may restructure the CFG.
2395   for (CallBase *Call : ToUpdate) {
2396     auto *II = dyn_cast<InvokeInst>(Call);
2397     if (!II)
2398       continue;
2399     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2400     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2401   }
2402 
2403   // A list of dummy calls added to the IR to keep various values obviously
2404   // live in the IR.  We'll remove all of these when done.
2405   SmallVector<CallInst *, 64> Holders;
2406 
2407   // Insert a dummy call with all of the deopt operands we'll need for the
2408   // actual safepoint insertion as arguments.  This ensures reference operands
2409   // in the deopt argument list are considered live through the safepoint (and
2410   // thus makes sure they get relocated.)
2411   for (CallBase *Call : ToUpdate) {
2412     SmallVector<Value *, 64> DeoptValues;
2413 
2414     for (Value *Arg : GetDeoptBundleOperands(Call)) {
2415       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2416              "support for FCA unimplemented");
2417       if (isHandledGCPointerType(Arg->getType()))
2418         DeoptValues.push_back(Arg);
2419     }
2420 
2421     insertUseHolderAfter(Call, DeoptValues, Holders);
2422   }
2423 
2424   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2425 
2426   // A) Identify all gc pointers which are statically live at the given call
2427   // site.
2428   findLiveReferences(F, DT, ToUpdate, Records);
2429 
2430   // B) Find the base pointers for each live pointer
2431   /* scope for caching */ {
2432     // Cache the 'defining value' relation used in the computation and
2433     // insertion of base phis and selects.  This ensures that we don't insert
2434     // large numbers of duplicate base_phis.
2435     DefiningValueMapTy DVCache;
2436 
2437     for (size_t i = 0; i < Records.size(); i++) {
2438       PartiallyConstructedSafepointRecord &info = Records[i];
2439       findBasePointers(DT, DVCache, ToUpdate[i], info);
2440     }
2441   } // end of cache scope
2442 
2443   // The base phi insertion logic (for any safepoint) may have inserted new
2444   // instructions which are now live at some safepoint.  The simplest such
2445   // example is:
2446   // loop:
2447   //   phi a  <-- will be a new base_phi here
2448   //   safepoint 1 <-- that needs to be live here
2449   //   gep a + 1
2450   //   safepoint 2
2451   //   br loop
2452   // We insert some dummy calls after each safepoint to definitely hold live
2453   // the base pointers which were identified for that safepoint.  We'll then
2454   // ask liveness for _every_ base inserted to see what is now live.  Then we
2455   // remove the dummy calls.
2456   Holders.reserve(Holders.size() + Records.size());
2457   for (size_t i = 0; i < Records.size(); i++) {
2458     PartiallyConstructedSafepointRecord &Info = Records[i];
2459 
2460     SmallVector<Value *, 128> Bases;
2461     for (auto Pair : Info.PointerToBase)
2462       Bases.push_back(Pair.second);
2463 
2464     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2465   }
2466 
2467   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2468   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2469   // not the key issue.
2470   recomputeLiveInValues(F, DT, ToUpdate, Records);
2471 
2472   if (PrintBasePointers) {
2473     for (auto &Info : Records) {
2474       errs() << "Base Pairs: (w/Relocation)\n";
2475       for (auto Pair : Info.PointerToBase) {
2476         errs() << " derived ";
2477         Pair.first->printAsOperand(errs(), false);
2478         errs() << " base ";
2479         Pair.second->printAsOperand(errs(), false);
2480         errs() << "\n";
2481       }
2482     }
2483   }
2484 
2485   // It is possible that non-constant live variables have a constant base.  For
2486   // example, a GEP with a variable offset from a global.  In this case we can
2487   // remove it from the liveset.  We already don't add constants to the liveset
2488   // because we assume they won't move at runtime and the GC doesn't need to be
2489   // informed about them.  The same reasoning applies if the base is constant.
2490   // Note that the relocation placement code relies on this filtering for
2491   // correctness as it expects the base to be in the liveset, which isn't true
2492   // if the base is constant.
2493   for (auto &Info : Records)
2494     for (auto &BasePair : Info.PointerToBase)
2495       if (isa<Constant>(BasePair.second))
2496         Info.LiveSet.remove(BasePair.first);
2497 
2498   for (CallInst *CI : Holders)
2499     CI->eraseFromParent();
2500 
2501   Holders.clear();
2502 
2503   // In order to reduce live set of statepoint we might choose to rematerialize
2504   // some values instead of relocating them. This is purely an optimization and
2505   // does not influence correctness.
2506   for (size_t i = 0; i < Records.size(); i++)
2507     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2508 
2509   // We need this to safely RAUW and delete call or invoke return values that
2510   // may themselves be live over a statepoint.  For details, please see usage in
2511   // makeStatepointExplicitImpl.
2512   std::vector<DeferredReplacement> Replacements;
2513 
2514   // Now run through and replace the existing statepoints with new ones with
2515   // the live variables listed.  We do not yet update uses of the values being
2516   // relocated. We have references to live variables that need to
2517   // survive to the last iteration of this loop.  (By construction, the
2518   // previous statepoint can not be a live variable, thus we can and remove
2519   // the old statepoint calls as we go.)
2520   for (size_t i = 0; i < Records.size(); i++)
2521     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2522 
2523   ToUpdate.clear(); // prevent accident use of invalid calls.
2524 
2525   for (auto &PR : Replacements)
2526     PR.doReplacement();
2527 
2528   Replacements.clear();
2529 
2530   for (auto &Info : Records) {
2531     // These live sets may contain state Value pointers, since we replaced calls
2532     // with operand bundles with calls wrapped in gc.statepoint, and some of
2533     // those calls may have been def'ing live gc pointers.  Clear these out to
2534     // avoid accidentally using them.
2535     //
2536     // TODO: We should create a separate data structure that does not contain
2537     // these live sets, and migrate to using that data structure from this point
2538     // onward.
2539     Info.LiveSet.clear();
2540     Info.PointerToBase.clear();
2541   }
2542 
2543   // Do all the fixups of the original live variables to their relocated selves
2544   SmallVector<Value *, 128> Live;
2545   for (size_t i = 0; i < Records.size(); i++) {
2546     PartiallyConstructedSafepointRecord &Info = Records[i];
2547 
2548     // We can't simply save the live set from the original insertion.  One of
2549     // the live values might be the result of a call which needs a safepoint.
2550     // That Value* no longer exists and we need to use the new gc_result.
2551     // Thankfully, the live set is embedded in the statepoint (and updated), so
2552     // we just grab that.
2553     llvm::append_range(Live, Info.StatepointToken->gc_args());
2554 #ifndef NDEBUG
2555     // Do some basic sanity checks on our liveness results before performing
2556     // relocation.  Relocation can and will turn mistakes in liveness results
2557     // into non-sensical code which is must harder to debug.
2558     // TODO: It would be nice to test consistency as well
2559     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2560            "statepoint must be reachable or liveness is meaningless");
2561     for (Value *V : Info.StatepointToken->gc_args()) {
2562       if (!isa<Instruction>(V))
2563         // Non-instruction values trivial dominate all possible uses
2564         continue;
2565       auto *LiveInst = cast<Instruction>(V);
2566       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2567              "unreachable values should never be live");
2568       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2569              "basic SSA liveness expectation violated by liveness analysis");
2570     }
2571 #endif
2572   }
2573   unique_unsorted(Live);
2574 
2575 #ifndef NDEBUG
2576   // sanity check
2577   for (auto *Ptr : Live)
2578     assert(isHandledGCPointerType(Ptr->getType()) &&
2579            "must be a gc pointer type");
2580 #endif
2581 
2582   relocationViaAlloca(F, DT, Live, Records);
2583   return !Records.empty();
2584 }
2585 
2586 // Handles both return values and arguments for Functions and calls.
2587 template <typename AttrHolder>
2588 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2589                                       unsigned Index) {
2590   AttrBuilder R;
2591   if (AH.getDereferenceableBytes(Index))
2592     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2593                                   AH.getDereferenceableBytes(Index)));
2594   if (AH.getDereferenceableOrNullBytes(Index))
2595     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2596                                   AH.getDereferenceableOrNullBytes(Index)));
2597   if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
2598     R.addAttribute(Attribute::NoAlias);
2599 
2600   if (!R.empty())
2601     AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2602 }
2603 
2604 static void stripNonValidAttributesFromPrototype(Function &F) {
2605   LLVMContext &Ctx = F.getContext();
2606 
2607   for (Argument &A : F.args())
2608     if (isa<PointerType>(A.getType()))
2609       RemoveNonValidAttrAtIndex(Ctx, F,
2610                                 A.getArgNo() + AttributeList::FirstArgIndex);
2611 
2612   if (isa<PointerType>(F.getReturnType()))
2613     RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2614 }
2615 
2616 /// Certain metadata on instructions are invalid after running RS4GC.
2617 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2618 /// optimize functions. We drop such metadata on the instruction.
2619 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2620   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2621     return;
2622   // These are the attributes that are still valid on loads and stores after
2623   // RS4GC.
2624   // The metadata implying dereferenceability and noalias are (conservatively)
2625   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2626   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2627   // touch the entire heap including noalias objects. Note: The reasoning is
2628   // same as stripping the dereferenceability and noalias attributes that are
2629   // analogous to the metadata counterparts.
2630   // We also drop the invariant.load metadata on the load because that metadata
2631   // implies the address operand to the load points to memory that is never
2632   // changed once it became dereferenceable. This is no longer true after RS4GC.
2633   // Similar reasoning applies to invariant.group metadata, which applies to
2634   // loads within a group.
2635   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2636                          LLVMContext::MD_range,
2637                          LLVMContext::MD_alias_scope,
2638                          LLVMContext::MD_nontemporal,
2639                          LLVMContext::MD_nonnull,
2640                          LLVMContext::MD_align,
2641                          LLVMContext::MD_type};
2642 
2643   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2644   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2645 }
2646 
2647 static void stripNonValidDataFromBody(Function &F) {
2648   if (F.empty())
2649     return;
2650 
2651   LLVMContext &Ctx = F.getContext();
2652   MDBuilder Builder(Ctx);
2653 
2654   // Set of invariantstart instructions that we need to remove.
2655   // Use this to avoid invalidating the instruction iterator.
2656   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2657 
2658   for (Instruction &I : instructions(F)) {
2659     // invariant.start on memory location implies that the referenced memory
2660     // location is constant and unchanging. This is no longer true after
2661     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2662     // which frees the entire heap and the presence of invariant.start allows
2663     // the optimizer to sink the load of a memory location past a statepoint,
2664     // which is incorrect.
2665     if (auto *II = dyn_cast<IntrinsicInst>(&I))
2666       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2667         InvariantStartInstructions.push_back(II);
2668         continue;
2669       }
2670 
2671     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2672       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2673       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2674     }
2675 
2676     stripInvalidMetadataFromInstruction(I);
2677 
2678     if (auto *Call = dyn_cast<CallBase>(&I)) {
2679       for (int i = 0, e = Call->arg_size(); i != e; i++)
2680         if (isa<PointerType>(Call->getArgOperand(i)->getType()))
2681           RemoveNonValidAttrAtIndex(Ctx, *Call,
2682                                     i + AttributeList::FirstArgIndex);
2683       if (isa<PointerType>(Call->getType()))
2684         RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
2685     }
2686   }
2687 
2688   // Delete the invariant.start instructions and RAUW undef.
2689   for (auto *II : InvariantStartInstructions) {
2690     II->replaceAllUsesWith(UndefValue::get(II->getType()));
2691     II->eraseFromParent();
2692   }
2693 }
2694 
2695 /// Returns true if this function should be rewritten by this pass.  The main
2696 /// point of this function is as an extension point for custom logic.
2697 static bool shouldRewriteStatepointsIn(Function &F) {
2698   // TODO: This should check the GCStrategy
2699   if (F.hasGC()) {
2700     const auto &FunctionGCName = F.getGC();
2701     const StringRef StatepointExampleName("statepoint-example");
2702     const StringRef CoreCLRName("coreclr");
2703     return (StatepointExampleName == FunctionGCName) ||
2704            (CoreCLRName == FunctionGCName);
2705   } else
2706     return false;
2707 }
2708 
2709 static void stripNonValidData(Module &M) {
2710 #ifndef NDEBUG
2711   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2712 #endif
2713 
2714   for (Function &F : M)
2715     stripNonValidAttributesFromPrototype(F);
2716 
2717   for (Function &F : M)
2718     stripNonValidDataFromBody(F);
2719 }
2720 
2721 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2722                                             TargetTransformInfo &TTI,
2723                                             const TargetLibraryInfo &TLI) {
2724   assert(!F.isDeclaration() && !F.empty() &&
2725          "need function body to rewrite statepoints in");
2726   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2727 
2728   auto NeedsRewrite = [&TLI](Instruction &I) {
2729     if (const auto *Call = dyn_cast<CallBase>(&I)) {
2730       if (isa<GCStatepointInst>(Call))
2731         return false;
2732       if (callsGCLeafFunction(Call, TLI))
2733         return false;
2734 
2735       // Normally it's up to the frontend to make sure that non-leaf calls also
2736       // have proper deopt state if it is required. We make an exception for
2737       // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics
2738       // these are non-leaf by default. They might be generated by the optimizer
2739       // which doesn't know how to produce a proper deopt state. So if we see a
2740       // non-leaf memcpy/memmove without deopt state just treat it as a leaf
2741       // copy and don't produce a statepoint.
2742       if (!AllowStatepointWithNoDeoptInfo &&
2743           !Call->getOperandBundle(LLVMContext::OB_deopt)) {
2744         assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) &&
2745                "Don't expect any other calls here!");
2746         return false;
2747       }
2748       return true;
2749     }
2750     return false;
2751   };
2752 
2753   // Delete any unreachable statepoints so that we don't have unrewritten
2754   // statepoints surviving this pass.  This makes testing easier and the
2755   // resulting IR less confusing to human readers.
2756   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2757   bool MadeChange = removeUnreachableBlocks(F, &DTU);
2758   // Flush the Dominator Tree.
2759   DTU.getDomTree();
2760 
2761   // Gather all the statepoints which need rewritten.  Be careful to only
2762   // consider those in reachable code since we need to ask dominance queries
2763   // when rewriting.  We'll delete the unreachable ones in a moment.
2764   SmallVector<CallBase *, 64> ParsePointNeeded;
2765   for (Instruction &I : instructions(F)) {
2766     // TODO: only the ones with the flag set!
2767     if (NeedsRewrite(I)) {
2768       // NOTE removeUnreachableBlocks() is stronger than
2769       // DominatorTree::isReachableFromEntry(). In other words
2770       // removeUnreachableBlocks can remove some blocks for which
2771       // isReachableFromEntry() returns true.
2772       assert(DT.isReachableFromEntry(I.getParent()) &&
2773             "no unreachable blocks expected");
2774       ParsePointNeeded.push_back(cast<CallBase>(&I));
2775     }
2776   }
2777 
2778   // Return early if no work to do.
2779   if (ParsePointNeeded.empty())
2780     return MadeChange;
2781 
2782   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2783   // These are created by LCSSA.  They have the effect of increasing the size
2784   // of liveness sets for no good reason.  It may be harder to do this post
2785   // insertion since relocations and base phis can confuse things.
2786   for (BasicBlock &BB : F)
2787     if (BB.getUniquePredecessor())
2788       MadeChange |= FoldSingleEntryPHINodes(&BB);
2789 
2790   // Before we start introducing relocations, we want to tweak the IR a bit to
2791   // avoid unfortunate code generation effects.  The main example is that we
2792   // want to try to make sure the comparison feeding a branch is after any
2793   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2794   // values feeding a branch after relocation.  This is semantically correct,
2795   // but results in extra register pressure since both the pre-relocation and
2796   // post-relocation copies must be available in registers.  For code without
2797   // relocations this is handled elsewhere, but teaching the scheduler to
2798   // reverse the transform we're about to do would be slightly complex.
2799   // Note: This may extend the live range of the inputs to the icmp and thus
2800   // increase the liveset of any statepoint we move over.  This is profitable
2801   // as long as all statepoints are in rare blocks.  If we had in-register
2802   // lowering for live values this would be a much safer transform.
2803   auto getConditionInst = [](Instruction *TI) -> Instruction * {
2804     if (auto *BI = dyn_cast<BranchInst>(TI))
2805       if (BI->isConditional())
2806         return dyn_cast<Instruction>(BI->getCondition());
2807     // TODO: Extend this to handle switches
2808     return nullptr;
2809   };
2810   for (BasicBlock &BB : F) {
2811     Instruction *TI = BB.getTerminator();
2812     if (auto *Cond = getConditionInst(TI))
2813       // TODO: Handle more than just ICmps here.  We should be able to move
2814       // most instructions without side effects or memory access.
2815       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2816         MadeChange = true;
2817         Cond->moveBefore(TI);
2818       }
2819   }
2820 
2821   // Nasty workaround - The base computation code in the main algorithm doesn't
2822   // consider the fact that a GEP can be used to convert a scalar to a vector.
2823   // The right fix for this is to integrate GEPs into the base rewriting
2824   // algorithm properly, this is just a short term workaround to prevent
2825   // crashes by canonicalizing such GEPs into fully vector GEPs.
2826   for (Instruction &I : instructions(F)) {
2827     if (!isa<GetElementPtrInst>(I))
2828       continue;
2829 
2830     unsigned VF = 0;
2831     for (unsigned i = 0; i < I.getNumOperands(); i++)
2832       if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) {
2833         assert(VF == 0 ||
2834                VF == cast<FixedVectorType>(OpndVTy)->getNumElements());
2835         VF = cast<FixedVectorType>(OpndVTy)->getNumElements();
2836       }
2837 
2838     // It's the vector to scalar traversal through the pointer operand which
2839     // confuses base pointer rewriting, so limit ourselves to that case.
2840     if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
2841       IRBuilder<> B(&I);
2842       auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
2843       I.setOperand(0, Splat);
2844       MadeChange = true;
2845     }
2846   }
2847 
2848   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2849   return MadeChange;
2850 }
2851 
2852 // liveness computation via standard dataflow
2853 // -------------------------------------------------------------------
2854 
2855 // TODO: Consider using bitvectors for liveness, the set of potentially
2856 // interesting values should be small and easy to pre-compute.
2857 
2858 /// Compute the live-in set for the location rbegin starting from
2859 /// the live-out set of the basic block
2860 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2861                                 BasicBlock::reverse_iterator End,
2862                                 SetVector<Value *> &LiveTmp) {
2863   for (auto &I : make_range(Begin, End)) {
2864     // KILL/Def - Remove this definition from LiveIn
2865     LiveTmp.remove(&I);
2866 
2867     // Don't consider *uses* in PHI nodes, we handle their contribution to
2868     // predecessor blocks when we seed the LiveOut sets
2869     if (isa<PHINode>(I))
2870       continue;
2871 
2872     // USE - Add to the LiveIn set for this instruction
2873     for (Value *V : I.operands()) {
2874       assert(!isUnhandledGCPointerType(V->getType()) &&
2875              "support for FCA unimplemented");
2876       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2877         // The choice to exclude all things constant here is slightly subtle.
2878         // There are two independent reasons:
2879         // - We assume that things which are constant (from LLVM's definition)
2880         // do not move at runtime.  For example, the address of a global
2881         // variable is fixed, even though it's contents may not be.
2882         // - Second, we can't disallow arbitrary inttoptr constants even
2883         // if the language frontend does.  Optimization passes are free to
2884         // locally exploit facts without respect to global reachability.  This
2885         // can create sections of code which are dynamically unreachable and
2886         // contain just about anything.  (see constants.ll in tests)
2887         LiveTmp.insert(V);
2888       }
2889     }
2890   }
2891 }
2892 
2893 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2894   for (BasicBlock *Succ : successors(BB)) {
2895     for (auto &I : *Succ) {
2896       PHINode *PN = dyn_cast<PHINode>(&I);
2897       if (!PN)
2898         break;
2899 
2900       Value *V = PN->getIncomingValueForBlock(BB);
2901       assert(!isUnhandledGCPointerType(V->getType()) &&
2902              "support for FCA unimplemented");
2903       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2904         LiveTmp.insert(V);
2905     }
2906   }
2907 }
2908 
2909 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2910   SetVector<Value *> KillSet;
2911   for (Instruction &I : *BB)
2912     if (isHandledGCPointerType(I.getType()))
2913       KillSet.insert(&I);
2914   return KillSet;
2915 }
2916 
2917 #ifndef NDEBUG
2918 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2919 /// sanity check for the liveness computation.
2920 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2921                           Instruction *TI, bool TermOkay = false) {
2922   for (Value *V : Live) {
2923     if (auto *I = dyn_cast<Instruction>(V)) {
2924       // The terminator can be a member of the LiveOut set.  LLVM's definition
2925       // of instruction dominance states that V does not dominate itself.  As
2926       // such, we need to special case this to allow it.
2927       if (TermOkay && TI == I)
2928         continue;
2929       assert(DT.dominates(I, TI) &&
2930              "basic SSA liveness expectation violated by liveness analysis");
2931     }
2932   }
2933 }
2934 
2935 /// Check that all the liveness sets used during the computation of liveness
2936 /// obey basic SSA properties.  This is useful for finding cases where we miss
2937 /// a def.
2938 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2939                           BasicBlock &BB) {
2940   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2941   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2942   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2943 }
2944 #endif
2945 
2946 static void computeLiveInValues(DominatorTree &DT, Function &F,
2947                                 GCPtrLivenessData &Data) {
2948   SmallSetVector<BasicBlock *, 32> Worklist;
2949 
2950   // Seed the liveness for each individual block
2951   for (BasicBlock &BB : F) {
2952     Data.KillSet[&BB] = computeKillSet(&BB);
2953     Data.LiveSet[&BB].clear();
2954     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2955 
2956 #ifndef NDEBUG
2957     for (Value *Kill : Data.KillSet[&BB])
2958       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2959 #endif
2960 
2961     Data.LiveOut[&BB] = SetVector<Value *>();
2962     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2963     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2964     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2965     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2966     if (!Data.LiveIn[&BB].empty())
2967       Worklist.insert(pred_begin(&BB), pred_end(&BB));
2968   }
2969 
2970   // Propagate that liveness until stable
2971   while (!Worklist.empty()) {
2972     BasicBlock *BB = Worklist.pop_back_val();
2973 
2974     // Compute our new liveout set, then exit early if it hasn't changed despite
2975     // the contribution of our successor.
2976     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2977     const auto OldLiveOutSize = LiveOut.size();
2978     for (BasicBlock *Succ : successors(BB)) {
2979       assert(Data.LiveIn.count(Succ));
2980       LiveOut.set_union(Data.LiveIn[Succ]);
2981     }
2982     // assert OutLiveOut is a subset of LiveOut
2983     if (OldLiveOutSize == LiveOut.size()) {
2984       // If the sets are the same size, then we didn't actually add anything
2985       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
2986       // hasn't changed.
2987       continue;
2988     }
2989     Data.LiveOut[BB] = LiveOut;
2990 
2991     // Apply the effects of this basic block
2992     SetVector<Value *> LiveTmp = LiveOut;
2993     LiveTmp.set_union(Data.LiveSet[BB]);
2994     LiveTmp.set_subtract(Data.KillSet[BB]);
2995 
2996     assert(Data.LiveIn.count(BB));
2997     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2998     // assert: OldLiveIn is a subset of LiveTmp
2999     if (OldLiveIn.size() != LiveTmp.size()) {
3000       Data.LiveIn[BB] = LiveTmp;
3001       Worklist.insert(pred_begin(BB), pred_end(BB));
3002     }
3003   } // while (!Worklist.empty())
3004 
3005 #ifndef NDEBUG
3006   // Sanity check our output against SSA properties.  This helps catch any
3007   // missing kills during the above iteration.
3008   for (BasicBlock &BB : F)
3009     checkBasicSSA(DT, Data, BB);
3010 #endif
3011 }
3012 
3013 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
3014                               StatepointLiveSetTy &Out) {
3015   BasicBlock *BB = Inst->getParent();
3016 
3017   // Note: The copy is intentional and required
3018   assert(Data.LiveOut.count(BB));
3019   SetVector<Value *> LiveOut = Data.LiveOut[BB];
3020 
3021   // We want to handle the statepoint itself oddly.  It's
3022   // call result is not live (normal), nor are it's arguments
3023   // (unless they're used again later).  This adjustment is
3024   // specifically what we need to relocate
3025   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
3026                       LiveOut);
3027   LiveOut.remove(Inst);
3028   Out.insert(LiveOut.begin(), LiveOut.end());
3029 }
3030 
3031 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
3032                                   CallBase *Call,
3033                                   PartiallyConstructedSafepointRecord &Info) {
3034   StatepointLiveSetTy Updated;
3035   findLiveSetAtInst(Call, RevisedLivenessData, Updated);
3036 
3037   // We may have base pointers which are now live that weren't before.  We need
3038   // to update the PointerToBase structure to reflect this.
3039   for (auto V : Updated)
3040     if (Info.PointerToBase.insert({V, V}).second) {
3041       assert(isKnownBaseResult(V) &&
3042              "Can't find base for unexpected live value!");
3043       continue;
3044     }
3045 
3046 #ifndef NDEBUG
3047   for (auto V : Updated)
3048     assert(Info.PointerToBase.count(V) &&
3049            "Must be able to find base for live value!");
3050 #endif
3051 
3052   // Remove any stale base mappings - this can happen since our liveness is
3053   // more precise then the one inherent in the base pointer analysis.
3054   DenseSet<Value *> ToErase;
3055   for (auto KVPair : Info.PointerToBase)
3056     if (!Updated.count(KVPair.first))
3057       ToErase.insert(KVPair.first);
3058 
3059   for (auto *V : ToErase)
3060     Info.PointerToBase.erase(V);
3061 
3062 #ifndef NDEBUG
3063   for (auto KVPair : Info.PointerToBase)
3064     assert(Updated.count(KVPair.first) && "record for non-live value");
3065 #endif
3066 
3067   Info.LiveSet = Updated;
3068 }
3069