1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstIterator.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/IR/Statepoint.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Transforms/Scalar.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/Cloning.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 44 45 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 46 47 using namespace llvm; 48 49 // Print tracing output 50 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 51 cl::init(false)); 52 53 // Print the liveset found at the insert location 54 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 55 cl::init(false)); 56 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 57 cl::init(false)); 58 // Print out the base pointers for debugging 59 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 60 cl::init(false)); 61 62 // Cost threshold measuring when it is profitable to rematerialize value instead 63 // of relocating it 64 static cl::opt<unsigned> 65 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 66 cl::init(6)); 67 68 #ifdef XDEBUG 69 static bool ClobberNonLive = true; 70 #else 71 static bool ClobberNonLive = false; 72 #endif 73 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 74 cl::location(ClobberNonLive), 75 cl::Hidden); 76 77 namespace { 78 struct RewriteStatepointsForGC : public ModulePass { 79 static char ID; // Pass identification, replacement for typeid 80 81 RewriteStatepointsForGC() : ModulePass(ID) { 82 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 83 } 84 bool runOnFunction(Function &F); 85 bool runOnModule(Module &M) override { 86 bool Changed = false; 87 for (Function &F : M) 88 Changed |= runOnFunction(F); 89 90 if (Changed) { 91 // stripDereferenceabilityInfo asserts that shouldRewriteStatepointsIn 92 // returns true for at least one function in the module. Since at least 93 // one function changed, we know that the precondition is satisfied. 94 stripDereferenceabilityInfo(M); 95 } 96 97 return Changed; 98 } 99 100 void getAnalysisUsage(AnalysisUsage &AU) const override { 101 // We add and rewrite a bunch of instructions, but don't really do much 102 // else. We could in theory preserve a lot more analyses here. 103 AU.addRequired<DominatorTreeWrapperPass>(); 104 AU.addRequired<TargetTransformInfoWrapperPass>(); 105 } 106 107 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 108 /// dereferenceability that are no longer valid/correct after 109 /// RewriteStatepointsForGC has run. This is because semantically, after 110 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 111 /// heap. stripDereferenceabilityInfo (conservatively) restores correctness 112 /// by erasing all attributes in the module that externally imply 113 /// dereferenceability. 114 /// 115 void stripDereferenceabilityInfo(Module &M); 116 117 // Helpers for stripDereferenceabilityInfo 118 void stripDereferenceabilityInfoFromBody(Function &F); 119 void stripDereferenceabilityInfoFromPrototype(Function &F); 120 }; 121 } // namespace 122 123 char RewriteStatepointsForGC::ID = 0; 124 125 ModulePass *llvm::createRewriteStatepointsForGCPass() { 126 return new RewriteStatepointsForGC(); 127 } 128 129 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 130 "Make relocations explicit at statepoints", false, false) 131 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 132 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 133 "Make relocations explicit at statepoints", false, false) 134 135 namespace { 136 struct GCPtrLivenessData { 137 /// Values defined in this block. 138 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 139 /// Values used in this block (and thus live); does not included values 140 /// killed within this block. 141 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 142 143 /// Values live into this basic block (i.e. used by any 144 /// instruction in this basic block or ones reachable from here) 145 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 146 147 /// Values live out of this basic block (i.e. live into 148 /// any successor block) 149 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 150 }; 151 152 // The type of the internal cache used inside the findBasePointers family 153 // of functions. From the callers perspective, this is an opaque type and 154 // should not be inspected. 155 // 156 // In the actual implementation this caches two relations: 157 // - The base relation itself (i.e. this pointer is based on that one) 158 // - The base defining value relation (i.e. before base_phi insertion) 159 // Generally, after the execution of a full findBasePointer call, only the 160 // base relation will remain. Internally, we add a mixture of the two 161 // types, then update all the second type to the first type 162 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 163 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 164 typedef DenseMap<Instruction *, Value *> RematerializedValueMapTy; 165 166 struct PartiallyConstructedSafepointRecord { 167 /// The set of values known to be live accross this safepoint 168 StatepointLiveSetTy liveset; 169 170 /// Mapping from live pointers to a base-defining-value 171 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 172 173 /// The *new* gc.statepoint instruction itself. This produces the token 174 /// that normal path gc.relocates and the gc.result are tied to. 175 Instruction *StatepointToken; 176 177 /// Instruction to which exceptional gc relocates are attached 178 /// Makes it easier to iterate through them during relocationViaAlloca. 179 Instruction *UnwindToken; 180 181 /// Record live values we are rematerialized instead of relocating. 182 /// They are not included into 'liveset' field. 183 /// Maps rematerialized copy to it's original value. 184 RematerializedValueMapTy RematerializedValues; 185 }; 186 } 187 188 /// Compute the live-in set for every basic block in the function 189 static void computeLiveInValues(DominatorTree &DT, Function &F, 190 GCPtrLivenessData &Data); 191 192 /// Given results from the dataflow liveness computation, find the set of live 193 /// Values at a particular instruction. 194 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 195 StatepointLiveSetTy &out); 196 197 // TODO: Once we can get to the GCStrategy, this becomes 198 // Optional<bool> isGCManagedPointer(const Value *V) const override { 199 200 static bool isGCPointerType(const Type *T) { 201 if (const PointerType *PT = dyn_cast<PointerType>(T)) 202 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 203 // GC managed heap. We know that a pointer into this heap needs to be 204 // updated and that no other pointer does. 205 return (1 == PT->getAddressSpace()); 206 return false; 207 } 208 209 // Return true if this type is one which a) is a gc pointer or contains a GC 210 // pointer and b) is of a type this code expects to encounter as a live value. 211 // (The insertion code will assert that a type which matches (a) and not (b) 212 // is not encountered.) 213 static bool isHandledGCPointerType(Type *T) { 214 // We fully support gc pointers 215 if (isGCPointerType(T)) 216 return true; 217 // We partially support vectors of gc pointers. The code will assert if it 218 // can't handle something. 219 if (auto VT = dyn_cast<VectorType>(T)) 220 if (isGCPointerType(VT->getElementType())) 221 return true; 222 return false; 223 } 224 225 #ifndef NDEBUG 226 /// Returns true if this type contains a gc pointer whether we know how to 227 /// handle that type or not. 228 static bool containsGCPtrType(Type *Ty) { 229 if (isGCPointerType(Ty)) 230 return true; 231 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 232 return isGCPointerType(VT->getScalarType()); 233 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 234 return containsGCPtrType(AT->getElementType()); 235 if (StructType *ST = dyn_cast<StructType>(Ty)) 236 return std::any_of( 237 ST->subtypes().begin(), ST->subtypes().end(), 238 [](Type *SubType) { return containsGCPtrType(SubType); }); 239 return false; 240 } 241 242 // Returns true if this is a type which a) is a gc pointer or contains a GC 243 // pointer and b) is of a type which the code doesn't expect (i.e. first class 244 // aggregates). Used to trip assertions. 245 static bool isUnhandledGCPointerType(Type *Ty) { 246 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 247 } 248 #endif 249 250 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 251 if (a->hasName() && b->hasName()) { 252 return -1 == a->getName().compare(b->getName()); 253 } else if (a->hasName() && !b->hasName()) { 254 return true; 255 } else if (!a->hasName() && b->hasName()) { 256 return false; 257 } else { 258 // Better than nothing, but not stable 259 return a < b; 260 } 261 } 262 263 // Conservatively identifies any definitions which might be live at the 264 // given instruction. The analysis is performed immediately before the 265 // given instruction. Values defined by that instruction are not considered 266 // live. Values used by that instruction are considered live. 267 static void analyzeParsePointLiveness( 268 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 269 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 270 Instruction *inst = CS.getInstruction(); 271 272 StatepointLiveSetTy liveset; 273 findLiveSetAtInst(inst, OriginalLivenessData, liveset); 274 275 if (PrintLiveSet) { 276 // Note: This output is used by several of the test cases 277 // The order of elemtns in a set is not stable, put them in a vec and sort 278 // by name 279 SmallVector<Value *, 64> temp; 280 temp.insert(temp.end(), liveset.begin(), liveset.end()); 281 std::sort(temp.begin(), temp.end(), order_by_name); 282 errs() << "Live Variables:\n"; 283 for (Value *V : temp) { 284 errs() << " " << V->getName(); // no newline 285 V->dump(); 286 } 287 } 288 if (PrintLiveSetSize) { 289 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 290 errs() << "Number live values: " << liveset.size() << "\n"; 291 } 292 result.liveset = liveset; 293 } 294 295 static Value *findBaseDefiningValue(Value *I); 296 297 /// Return a base defining value for the 'Index' element of the given vector 298 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 299 /// 'I'. As an optimization, this method will try to determine when the 300 /// element is known to already be a base pointer. If this can be established, 301 /// the second value in the returned pair will be true. Note that either a 302 /// vector or a pointer typed value can be returned. For the former, the 303 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 304 /// If the later, the return pointer is a BDV (or possibly a base) for the 305 /// particular element in 'I'. 306 static std::pair<Value *, bool> 307 findBaseDefiningValueOfVector(Value *I, Value *Index = nullptr) { 308 assert(I->getType()->isVectorTy() && 309 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 310 "Illegal to ask for the base pointer of a non-pointer type"); 311 312 // Each case parallels findBaseDefiningValue below, see that code for 313 // detailed motivation. 314 315 if (isa<Argument>(I)) 316 // An incoming argument to the function is a base pointer 317 return std::make_pair(I, true); 318 319 // We shouldn't see the address of a global as a vector value? 320 assert(!isa<GlobalVariable>(I) && 321 "unexpected global variable found in base of vector"); 322 323 // inlining could possibly introduce phi node that contains 324 // undef if callee has multiple returns 325 if (isa<UndefValue>(I)) 326 // utterly meaningless, but useful for dealing with partially optimized 327 // code. 328 return std::make_pair(I, true); 329 330 // Due to inheritance, this must be _after_ the global variable and undef 331 // checks 332 if (Constant *Con = dyn_cast<Constant>(I)) { 333 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 334 "order of checks wrong!"); 335 assert(Con->isNullValue() && "null is the only case which makes sense"); 336 return std::make_pair(Con, true); 337 } 338 339 if (isa<LoadInst>(I)) 340 return std::make_pair(I, true); 341 342 // For an insert element, we might be able to look through it if we know 343 // something about the indexes. 344 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(I)) { 345 if (Index) { 346 Value *InsertIndex = IEI->getOperand(2); 347 // This index is inserting the value, look for its BDV 348 if (InsertIndex == Index) 349 return std::make_pair(findBaseDefiningValue(IEI->getOperand(1)), false); 350 // Both constant, and can't be equal per above. This insert is definitely 351 // not relevant, look back at the rest of the vector and keep trying. 352 if (isa<ConstantInt>(Index) && isa<ConstantInt>(InsertIndex)) 353 return findBaseDefiningValueOfVector(IEI->getOperand(0), Index); 354 } 355 356 // We don't know whether this vector contains entirely base pointers or 357 // not. To be conservatively correct, we treat it as a BDV and will 358 // duplicate code as needed to construct a parallel vector of bases. 359 return std::make_pair(IEI, false); 360 } 361 362 if (isa<ShuffleVectorInst>(I)) 363 // We don't know whether this vector contains entirely base pointers or 364 // not. To be conservatively correct, we treat it as a BDV and will 365 // duplicate code as needed to construct a parallel vector of bases. 366 // TODO: There a number of local optimizations which could be applied here 367 // for particular sufflevector patterns. 368 return std::make_pair(I, false); 369 370 // A PHI or Select is a base defining value. The outer findBasePointer 371 // algorithm is responsible for constructing a base value for this BDV. 372 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 373 "unknown vector instruction - no base found for vector element"); 374 return std::make_pair(I, false); 375 } 376 377 static bool isKnownBaseResult(Value *V); 378 379 /// Helper function for findBasePointer - Will return a value which either a) 380 /// defines the base pointer for the input or b) blocks the simple search 381 /// (i.e. a PHI or Select of two derived pointers) 382 static Value *findBaseDefiningValue(Value *I) { 383 if (I->getType()->isVectorTy()) 384 return findBaseDefiningValueOfVector(I).first; 385 386 assert(I->getType()->isPointerTy() && 387 "Illegal to ask for the base pointer of a non-pointer type"); 388 389 // This case is a bit of a hack - it only handles extracts from vectors which 390 // trivially contain only base pointers or cases where we can directly match 391 // the index of the original extract element to an insertion into the vector. 392 // See note inside the function for how to improve this. 393 if (auto *EEI = dyn_cast<ExtractElementInst>(I)) { 394 Value *VectorOperand = EEI->getVectorOperand(); 395 Value *Index = EEI->getIndexOperand(); 396 std::pair<Value *, bool> pair = 397 findBaseDefiningValueOfVector(VectorOperand, Index); 398 Value *VectorBase = pair.first; 399 if (VectorBase->getType()->isPointerTy()) 400 // We found a BDV for this specific element with the vector. This is an 401 // optimization, but in practice it covers most of the useful cases 402 // created via scalarization. 403 return VectorBase; 404 else { 405 assert(VectorBase->getType()->isVectorTy()); 406 if (pair.second) 407 // If the entire vector returned is known to be entirely base pointers, 408 // then the extractelement is valid base for this value. 409 return EEI; 410 else { 411 // Otherwise, we have an instruction which potentially produces a 412 // derived pointer and we need findBasePointers to clone code for us 413 // such that we can create an instruction which produces the 414 // accompanying base pointer. 415 // Note: This code is currently rather incomplete. We don't currently 416 // support the general form of shufflevector of insertelement. 417 // Conceptually, these are just 'base defining values' of the same 418 // variety as phi or select instructions. We need to update the 419 // findBasePointers algorithm to insert new 'base-only' versions of the 420 // original instructions. This is relative straight forward to do, but 421 // the case which would motivate the work hasn't shown up in real 422 // workloads yet. 423 assert((isa<PHINode>(VectorBase) || isa<SelectInst>(VectorBase)) && 424 "need to extend findBasePointers for generic vector" 425 "instruction cases"); 426 return VectorBase; 427 } 428 } 429 } 430 431 if (isa<Argument>(I)) 432 // An incoming argument to the function is a base pointer 433 // We should have never reached here if this argument isn't an gc value 434 return I; 435 436 if (isa<GlobalVariable>(I)) 437 // base case 438 return I; 439 440 // inlining could possibly introduce phi node that contains 441 // undef if callee has multiple returns 442 if (isa<UndefValue>(I)) 443 // utterly meaningless, but useful for dealing with 444 // partially optimized code. 445 return I; 446 447 // Due to inheritance, this must be _after_ the global variable and undef 448 // checks 449 if (Constant *Con = dyn_cast<Constant>(I)) { 450 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 451 "order of checks wrong!"); 452 // Note: Finding a constant base for something marked for relocation 453 // doesn't really make sense. The most likely case is either a) some 454 // screwed up the address space usage or b) your validating against 455 // compiled C++ code w/o the proper separation. The only real exception 456 // is a null pointer. You could have generic code written to index of 457 // off a potentially null value and have proven it null. We also use 458 // null pointers in dead paths of relocation phis (which we might later 459 // want to find a base pointer for). 460 assert(isa<ConstantPointerNull>(Con) && 461 "null is the only case which makes sense"); 462 return Con; 463 } 464 465 if (CastInst *CI = dyn_cast<CastInst>(I)) { 466 Value *Def = CI->stripPointerCasts(); 467 // If we find a cast instruction here, it means we've found a cast which is 468 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 469 // handle int->ptr conversion. 470 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 471 return findBaseDefiningValue(Def); 472 } 473 474 if (isa<LoadInst>(I)) 475 return I; // The value loaded is an gc base itself 476 477 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 478 // The base of this GEP is the base 479 return findBaseDefiningValue(GEP->getPointerOperand()); 480 481 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 482 switch (II->getIntrinsicID()) { 483 case Intrinsic::experimental_gc_result_ptr: 484 default: 485 // fall through to general call handling 486 break; 487 case Intrinsic::experimental_gc_statepoint: 488 case Intrinsic::experimental_gc_result_float: 489 case Intrinsic::experimental_gc_result_int: 490 llvm_unreachable("these don't produce pointers"); 491 case Intrinsic::experimental_gc_relocate: { 492 // Rerunning safepoint insertion after safepoints are already 493 // inserted is not supported. It could probably be made to work, 494 // but why are you doing this? There's no good reason. 495 llvm_unreachable("repeat safepoint insertion is not supported"); 496 } 497 case Intrinsic::gcroot: 498 // Currently, this mechanism hasn't been extended to work with gcroot. 499 // There's no reason it couldn't be, but I haven't thought about the 500 // implications much. 501 llvm_unreachable( 502 "interaction with the gcroot mechanism is not supported"); 503 } 504 } 505 // We assume that functions in the source language only return base 506 // pointers. This should probably be generalized via attributes to support 507 // both source language and internal functions. 508 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 509 return I; 510 511 // I have absolutely no idea how to implement this part yet. It's not 512 // neccessarily hard, I just haven't really looked at it yet. 513 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 514 515 if (isa<AtomicCmpXchgInst>(I)) 516 // A CAS is effectively a atomic store and load combined under a 517 // predicate. From the perspective of base pointers, we just treat it 518 // like a load. 519 return I; 520 521 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 522 "binary ops which don't apply to pointers"); 523 524 // The aggregate ops. Aggregates can either be in the heap or on the 525 // stack, but in either case, this is simply a field load. As a result, 526 // this is a defining definition of the base just like a load is. 527 if (isa<ExtractValueInst>(I)) 528 return I; 529 530 // We should never see an insert vector since that would require we be 531 // tracing back a struct value not a pointer value. 532 assert(!isa<InsertValueInst>(I) && 533 "Base pointer for a struct is meaningless"); 534 535 // The last two cases here don't return a base pointer. Instead, they 536 // return a value which dynamically selects from amoung several base 537 // derived pointers (each with it's own base potentially). It's the job of 538 // the caller to resolve these. 539 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 540 "missing instruction case in findBaseDefiningValing"); 541 return I; 542 } 543 544 /// Returns the base defining value for this value. 545 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 546 Value *&Cached = Cache[I]; 547 if (!Cached) { 548 Cached = findBaseDefiningValue(I); 549 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 550 << Cached->getName() << "\n"); 551 } 552 assert(Cache[I] != nullptr); 553 return Cached; 554 } 555 556 /// Return a base pointer for this value if known. Otherwise, return it's 557 /// base defining value. 558 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 559 Value *Def = findBaseDefiningValueCached(I, Cache); 560 auto Found = Cache.find(Def); 561 if (Found != Cache.end()) { 562 // Either a base-of relation, or a self reference. Caller must check. 563 return Found->second; 564 } 565 // Only a BDV available 566 return Def; 567 } 568 569 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 570 /// is it known to be a base pointer? Or do we need to continue searching. 571 static bool isKnownBaseResult(Value *V) { 572 if (!isa<PHINode>(V) && !isa<SelectInst>(V)) { 573 // no recursion possible 574 return true; 575 } 576 if (isa<Instruction>(V) && 577 cast<Instruction>(V)->getMetadata("is_base_value")) { 578 // This is a previously inserted base phi or select. We know 579 // that this is a base value. 580 return true; 581 } 582 583 // We need to keep searching 584 return false; 585 } 586 587 namespace { 588 /// Models the state of a single base defining value in the findBasePointer 589 /// algorithm for determining where a new instruction is needed to propagate 590 /// the base of this BDV. 591 class BDVState { 592 public: 593 enum Status { Unknown, Base, Conflict }; 594 595 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 596 assert(status != Base || b); 597 } 598 explicit BDVState(Value *b) : status(Base), base(b) {} 599 BDVState() : status(Unknown), base(nullptr) {} 600 601 Status getStatus() const { return status; } 602 Value *getBase() const { return base; } 603 604 bool isBase() const { return getStatus() == Base; } 605 bool isUnknown() const { return getStatus() == Unknown; } 606 bool isConflict() const { return getStatus() == Conflict; } 607 608 bool operator==(const BDVState &other) const { 609 return base == other.base && status == other.status; 610 } 611 612 bool operator!=(const BDVState &other) const { return !(*this == other); } 613 614 LLVM_DUMP_METHOD 615 void dump() const { print(dbgs()); dbgs() << '\n'; } 616 617 void print(raw_ostream &OS) const { 618 OS << status << " (" << base << " - " 619 << (base ? base->getName() : "nullptr") << "): "; 620 } 621 622 private: 623 Status status; 624 Value *base; // non null only if status == base 625 }; 626 627 inline raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 628 State.print(OS); 629 return OS; 630 } 631 632 633 typedef DenseMap<Value *, BDVState> ConflictStateMapTy; 634 // Values of type BDVState form a lattice, and this is a helper 635 // class that implementes the meet operation. The meat of the meet 636 // operation is implemented in MeetBDVStates::pureMeet 637 class MeetBDVStates { 638 public: 639 /// Initializes the currentResult to the TOP state so that if can be met with 640 /// any other state to produce that state. 641 MeetBDVStates() {} 642 643 // Destructively meet the current result with the given BDVState 644 void meetWith(BDVState otherState) { 645 currentResult = meet(otherState, currentResult); 646 } 647 648 BDVState getResult() const { return currentResult; } 649 650 private: 651 BDVState currentResult; 652 653 /// Perform a meet operation on two elements of the BDVState lattice. 654 static BDVState meet(BDVState LHS, BDVState RHS) { 655 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 656 "math is wrong: meet does not commute!"); 657 BDVState Result = pureMeet(LHS, RHS); 658 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 659 << " produced " << Result << "\n"); 660 return Result; 661 } 662 663 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 664 switch (stateA.getStatus()) { 665 case BDVState::Unknown: 666 return stateB; 667 668 case BDVState::Base: 669 assert(stateA.getBase() && "can't be null"); 670 if (stateB.isUnknown()) 671 return stateA; 672 673 if (stateB.isBase()) { 674 if (stateA.getBase() == stateB.getBase()) { 675 assert(stateA == stateB && "equality broken!"); 676 return stateA; 677 } 678 return BDVState(BDVState::Conflict); 679 } 680 assert(stateB.isConflict() && "only three states!"); 681 return BDVState(BDVState::Conflict); 682 683 case BDVState::Conflict: 684 return stateA; 685 } 686 llvm_unreachable("only three states!"); 687 } 688 }; 689 } 690 /// For a given value or instruction, figure out what base ptr it's derived 691 /// from. For gc objects, this is simply itself. On success, returns a value 692 /// which is the base pointer. (This is reliable and can be used for 693 /// relocation.) On failure, returns nullptr. 694 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 695 Value *def = findBaseOrBDV(I, cache); 696 697 if (isKnownBaseResult(def)) { 698 return def; 699 } 700 701 // Here's the rough algorithm: 702 // - For every SSA value, construct a mapping to either an actual base 703 // pointer or a PHI which obscures the base pointer. 704 // - Construct a mapping from PHI to unknown TOP state. Use an 705 // optimistic algorithm to propagate base pointer information. Lattice 706 // looks like: 707 // UNKNOWN 708 // b1 b2 b3 b4 709 // CONFLICT 710 // When algorithm terminates, all PHIs will either have a single concrete 711 // base or be in a conflict state. 712 // - For every conflict, insert a dummy PHI node without arguments. Add 713 // these to the base[Instruction] = BasePtr mapping. For every 714 // non-conflict, add the actual base. 715 // - For every conflict, add arguments for the base[a] of each input 716 // arguments. 717 // 718 // Note: A simpler form of this would be to add the conflict form of all 719 // PHIs without running the optimistic algorithm. This would be 720 // analougous to pessimistic data flow and would likely lead to an 721 // overall worse solution. 722 723 ConflictStateMapTy states; 724 states[def] = BDVState(); 725 // Recursively fill in all phis & selects reachable from the initial one 726 // for which we don't already know a definite base value for 727 // TODO: This should be rewritten with a worklist 728 bool done = false; 729 while (!done) { 730 done = true; 731 // Since we're adding elements to 'states' as we run, we can't keep 732 // iterators into the set. 733 SmallVector<Value *, 16> Keys; 734 Keys.reserve(states.size()); 735 for (auto Pair : states) { 736 Value *V = Pair.first; 737 Keys.push_back(V); 738 } 739 for (Value *v : Keys) { 740 assert(!isKnownBaseResult(v) && "why did it get added?"); 741 if (PHINode *phi = dyn_cast<PHINode>(v)) { 742 assert(phi->getNumIncomingValues() > 0 && 743 "zero input phis are illegal"); 744 for (Value *InVal : phi->incoming_values()) { 745 Value *local = findBaseOrBDV(InVal, cache); 746 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 747 states[local] = BDVState(); 748 done = false; 749 } 750 } 751 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 752 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 753 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 754 states[local] = BDVState(); 755 done = false; 756 } 757 local = findBaseOrBDV(sel->getFalseValue(), cache); 758 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 759 states[local] = BDVState(); 760 done = false; 761 } 762 } 763 } 764 } 765 766 if (TraceLSP) { 767 errs() << "States after initialization:\n"; 768 for (auto Pair : states) 769 dbgs() << " " << Pair.second << " for " << Pair.first << "\n"; 770 } 771 772 // TODO: come back and revisit the state transitions around inputs which 773 // have reached conflict state. The current version seems too conservative. 774 775 // Return a phi state for a base defining value. We'll generate a new 776 // base state for known bases and expect to find a cached state otherwise. 777 auto getStateForBDV = [&](Value *baseValue) { 778 if (isKnownBaseResult(baseValue)) 779 return BDVState(baseValue); 780 auto I = states.find(baseValue); 781 assert(I != states.end() && "lookup failed!"); 782 return I->second; 783 }; 784 785 bool progress = true; 786 while (progress) { 787 #ifndef NDEBUG 788 size_t oldSize = states.size(); 789 #endif 790 progress = false; 791 // We're only changing keys in this loop, thus safe to keep iterators 792 for (auto Pair : states) { 793 Value *v = Pair.first; 794 assert(!isKnownBaseResult(v) && "why did it get added?"); 795 796 // Given an input value for the current instruction, return a BDVState 797 // instance which represents the BDV of that value. 798 auto getStateForInput = [&](Value *V) mutable { 799 Value *BDV = findBaseOrBDV(V, cache); 800 return getStateForBDV(BDV); 801 }; 802 803 MeetBDVStates calculateMeet; 804 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 805 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 806 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 807 } else 808 for (Value *Val : cast<PHINode>(v)->incoming_values()) 809 calculateMeet.meetWith(getStateForInput(Val)); 810 811 BDVState oldState = states[v]; 812 BDVState newState = calculateMeet.getResult(); 813 if (oldState != newState) { 814 progress = true; 815 states[v] = newState; 816 } 817 } 818 819 assert(oldSize <= states.size()); 820 assert(oldSize == states.size() || progress); 821 } 822 823 if (TraceLSP) { 824 errs() << "States after meet iteration:\n"; 825 for (auto Pair : states) 826 dbgs() << " " << Pair.second << " for " << Pair.first << "\n"; 827 } 828 829 // Insert Phis for all conflicts 830 // We want to keep naming deterministic in the loop that follows, so 831 // sort the keys before iteration. This is useful in allowing us to 832 // write stable tests. Note that there is no invalidation issue here. 833 SmallVector<Value *, 16> Keys; 834 Keys.reserve(states.size()); 835 for (auto Pair : states) { 836 Value *V = Pair.first; 837 Keys.push_back(V); 838 } 839 std::sort(Keys.begin(), Keys.end(), order_by_name); 840 // TODO: adjust naming patterns to avoid this order of iteration dependency 841 for (Value *V : Keys) { 842 Instruction *I = cast<Instruction>(V); 843 BDVState State = states[I]; 844 assert(!isKnownBaseResult(I) && "why did it get added?"); 845 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 846 if (!State.isConflict()) 847 continue; 848 849 /// Create and insert a new instruction which will represent the base of 850 /// the given instruction 'I'. 851 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 852 if (isa<PHINode>(I)) { 853 BasicBlock *BB = I->getParent(); 854 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 855 assert(NumPreds > 0 && "how did we reach here"); 856 return PHINode::Create(I->getType(), NumPreds, "base_phi", I); 857 } 858 SelectInst *Sel = cast<SelectInst>(I); 859 // The undef will be replaced later 860 UndefValue *Undef = UndefValue::get(Sel->getType()); 861 return SelectInst::Create(Sel->getCondition(), Undef, 862 Undef, "base_select", Sel); 863 }; 864 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 865 // Add metadata marking this as a base value 866 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 867 states[I] = BDVState(BDVState::Conflict, BaseInst); 868 } 869 870 // Fixup all the inputs of the new PHIs 871 for (auto Pair : states) { 872 Instruction *v = cast<Instruction>(Pair.first); 873 BDVState state = Pair.second; 874 875 assert(!isKnownBaseResult(v) && "why did it get added?"); 876 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 877 if (!state.isConflict()) 878 continue; 879 880 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 881 PHINode *phi = cast<PHINode>(v); 882 unsigned NumPHIValues = phi->getNumIncomingValues(); 883 for (unsigned i = 0; i < NumPHIValues; i++) { 884 Value *InVal = phi->getIncomingValue(i); 885 BasicBlock *InBB = phi->getIncomingBlock(i); 886 887 // If we've already seen InBB, add the same incoming value 888 // we added for it earlier. The IR verifier requires phi 889 // nodes with multiple entries from the same basic block 890 // to have the same incoming value for each of those 891 // entries. If we don't do this check here and basephi 892 // has a different type than base, we'll end up adding two 893 // bitcasts (and hence two distinct values) as incoming 894 // values for the same basic block. 895 896 int blockIndex = basephi->getBasicBlockIndex(InBB); 897 if (blockIndex != -1) { 898 Value *oldBase = basephi->getIncomingValue(blockIndex); 899 basephi->addIncoming(oldBase, InBB); 900 #ifndef NDEBUG 901 Value *base = findBaseOrBDV(InVal, cache); 902 if (!isKnownBaseResult(base)) { 903 // Either conflict or base. 904 assert(states.count(base)); 905 base = states[base].getBase(); 906 assert(base != nullptr && "unknown BDVState!"); 907 } 908 909 // In essense this assert states: the only way two 910 // values incoming from the same basic block may be 911 // different is by being different bitcasts of the same 912 // value. A cleanup that remains TODO is changing 913 // findBaseOrBDV to return an llvm::Value of the correct 914 // type (and still remain pure). This will remove the 915 // need to add bitcasts. 916 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 917 "sanity -- findBaseOrBDV should be pure!"); 918 #endif 919 continue; 920 } 921 922 // Find either the defining value for the PHI or the normal base for 923 // a non-phi node 924 Value *base = findBaseOrBDV(InVal, cache); 925 if (!isKnownBaseResult(base)) { 926 // Either conflict or base. 927 assert(states.count(base)); 928 base = states[base].getBase(); 929 assert(base != nullptr && "unknown BDVState!"); 930 } 931 assert(base && "can't be null"); 932 // Must use original input BB since base may not be Instruction 933 // The cast is needed since base traversal may strip away bitcasts 934 if (base->getType() != basephi->getType()) { 935 base = new BitCastInst(base, basephi->getType(), "cast", 936 InBB->getTerminator()); 937 } 938 basephi->addIncoming(base, InBB); 939 } 940 assert(basephi->getNumIncomingValues() == NumPHIValues); 941 } else { 942 SelectInst *basesel = cast<SelectInst>(state.getBase()); 943 SelectInst *sel = cast<SelectInst>(v); 944 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 945 // something more safe and less hacky. 946 for (int i = 1; i <= 2; i++) { 947 Value *InVal = sel->getOperand(i); 948 // Find either the defining value for the PHI or the normal base for 949 // a non-phi node 950 Value *base = findBaseOrBDV(InVal, cache); 951 if (!isKnownBaseResult(base)) { 952 // Either conflict or base. 953 assert(states.count(base)); 954 base = states[base].getBase(); 955 assert(base != nullptr && "unknown BDVState!"); 956 } 957 assert(base && "can't be null"); 958 // Must use original input BB since base may not be Instruction 959 // The cast is needed since base traversal may strip away bitcasts 960 if (base->getType() != basesel->getType()) { 961 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 962 } 963 basesel->setOperand(i, base); 964 } 965 } 966 } 967 968 // Cache all of our results so we can cheaply reuse them 969 // NOTE: This is actually two caches: one of the base defining value 970 // relation and one of the base pointer relation! FIXME 971 for (auto item : states) { 972 Value *v = item.first; 973 Value *base = item.second.getBase(); 974 assert(v && base); 975 assert(!isKnownBaseResult(v) && "why did it get added?"); 976 977 if (TraceLSP) { 978 std::string fromstr = 979 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 980 : "none"; 981 errs() << "Updating base value cache" 982 << " for: " << (v->hasName() ? v->getName() : "") 983 << " from: " << fromstr 984 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 985 } 986 987 assert(isKnownBaseResult(base) && 988 "must be something we 'know' is a base pointer"); 989 if (cache.count(v)) { 990 // Once we transition from the BDV relation being store in the cache to 991 // the base relation being stored, it must be stable 992 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 993 "base relation should be stable"); 994 } 995 cache[v] = base; 996 } 997 assert(cache.find(def) != cache.end()); 998 return cache[def]; 999 } 1000 1001 // For a set of live pointers (base and/or derived), identify the base 1002 // pointer of the object which they are derived from. This routine will 1003 // mutate the IR graph as needed to make the 'base' pointer live at the 1004 // definition site of 'derived'. This ensures that any use of 'derived' can 1005 // also use 'base'. This may involve the insertion of a number of 1006 // additional PHI nodes. 1007 // 1008 // preconditions: live is a set of pointer type Values 1009 // 1010 // side effects: may insert PHI nodes into the existing CFG, will preserve 1011 // CFG, will not remove or mutate any existing nodes 1012 // 1013 // post condition: PointerToBase contains one (derived, base) pair for every 1014 // pointer in live. Note that derived can be equal to base if the original 1015 // pointer was a base pointer. 1016 static void 1017 findBasePointers(const StatepointLiveSetTy &live, 1018 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 1019 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1020 // For the naming of values inserted to be deterministic - which makes for 1021 // much cleaner and more stable tests - we need to assign an order to the 1022 // live values. DenseSets do not provide a deterministic order across runs. 1023 SmallVector<Value *, 64> Temp; 1024 Temp.insert(Temp.end(), live.begin(), live.end()); 1025 std::sort(Temp.begin(), Temp.end(), order_by_name); 1026 for (Value *ptr : Temp) { 1027 Value *base = findBasePointer(ptr, DVCache); 1028 assert(base && "failed to find base pointer"); 1029 PointerToBase[ptr] = base; 1030 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1031 DT->dominates(cast<Instruction>(base)->getParent(), 1032 cast<Instruction>(ptr)->getParent())) && 1033 "The base we found better dominate the derived pointer"); 1034 1035 // If you see this trip and like to live really dangerously, the code should 1036 // be correct, just with idioms the verifier can't handle. You can try 1037 // disabling the verifier at your own substaintial risk. 1038 assert(!isa<ConstantPointerNull>(base) && 1039 "the relocation code needs adjustment to handle the relocation of " 1040 "a null pointer constant without causing false positives in the " 1041 "safepoint ir verifier."); 1042 } 1043 } 1044 1045 /// Find the required based pointers (and adjust the live set) for the given 1046 /// parse point. 1047 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1048 const CallSite &CS, 1049 PartiallyConstructedSafepointRecord &result) { 1050 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 1051 findBasePointers(result.liveset, PointerToBase, &DT, DVCache); 1052 1053 if (PrintBasePointers) { 1054 // Note: Need to print these in a stable order since this is checked in 1055 // some tests. 1056 errs() << "Base Pairs (w/o Relocation):\n"; 1057 SmallVector<Value *, 64> Temp; 1058 Temp.reserve(PointerToBase.size()); 1059 for (auto Pair : PointerToBase) { 1060 Temp.push_back(Pair.first); 1061 } 1062 std::sort(Temp.begin(), Temp.end(), order_by_name); 1063 for (Value *Ptr : Temp) { 1064 Value *Base = PointerToBase[Ptr]; 1065 errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() 1066 << "\n"; 1067 } 1068 } 1069 1070 result.PointerToBase = PointerToBase; 1071 } 1072 1073 /// Given an updated version of the dataflow liveness results, update the 1074 /// liveset and base pointer maps for the call site CS. 1075 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1076 const CallSite &CS, 1077 PartiallyConstructedSafepointRecord &result); 1078 1079 static void recomputeLiveInValues( 1080 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1081 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1082 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1083 // again. The old values are still live and will help it stablize quickly. 1084 GCPtrLivenessData RevisedLivenessData; 1085 computeLiveInValues(DT, F, RevisedLivenessData); 1086 for (size_t i = 0; i < records.size(); i++) { 1087 struct PartiallyConstructedSafepointRecord &info = records[i]; 1088 const CallSite &CS = toUpdate[i]; 1089 recomputeLiveInValues(RevisedLivenessData, CS, info); 1090 } 1091 } 1092 1093 // When inserting gc.relocate calls, we need to ensure there are no uses 1094 // of the original value between the gc.statepoint and the gc.relocate call. 1095 // One case which can arise is a phi node starting one of the successor blocks. 1096 // We also need to be able to insert the gc.relocates only on the path which 1097 // goes through the statepoint. We might need to split an edge to make this 1098 // possible. 1099 static BasicBlock * 1100 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1101 DominatorTree &DT) { 1102 BasicBlock *Ret = BB; 1103 if (!BB->getUniquePredecessor()) { 1104 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1105 } 1106 1107 // Now that 'ret' has unique predecessor we can safely remove all phi nodes 1108 // from it 1109 FoldSingleEntryPHINodes(Ret); 1110 assert(!isa<PHINode>(Ret->begin())); 1111 1112 // At this point, we can safely insert a gc.relocate as the first instruction 1113 // in Ret if needed. 1114 return Ret; 1115 } 1116 1117 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1118 auto itr = std::find(livevec.begin(), livevec.end(), val); 1119 assert(livevec.end() != itr); 1120 size_t index = std::distance(livevec.begin(), itr); 1121 assert(index < livevec.size()); 1122 return index; 1123 } 1124 1125 // Create new attribute set containing only attributes which can be transfered 1126 // from original call to the safepoint. 1127 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1128 AttributeSet ret; 1129 1130 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1131 unsigned index = AS.getSlotIndex(Slot); 1132 1133 if (index == AttributeSet::ReturnIndex || 1134 index == AttributeSet::FunctionIndex) { 1135 1136 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1137 ++it) { 1138 Attribute attr = *it; 1139 1140 // Do not allow certain attributes - just skip them 1141 // Safepoint can not be read only or read none. 1142 if (attr.hasAttribute(Attribute::ReadNone) || 1143 attr.hasAttribute(Attribute::ReadOnly)) 1144 continue; 1145 1146 ret = ret.addAttributes( 1147 AS.getContext(), index, 1148 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1149 } 1150 } 1151 1152 // Just skip parameter attributes for now 1153 } 1154 1155 return ret; 1156 } 1157 1158 /// Helper function to place all gc relocates necessary for the given 1159 /// statepoint. 1160 /// Inputs: 1161 /// liveVariables - list of variables to be relocated. 1162 /// liveStart - index of the first live variable. 1163 /// basePtrs - base pointers. 1164 /// statepointToken - statepoint instruction to which relocates should be 1165 /// bound. 1166 /// Builder - Llvm IR builder to be used to construct new calls. 1167 static void CreateGCRelocates(ArrayRef<llvm::Value *> LiveVariables, 1168 const int LiveStart, 1169 ArrayRef<llvm::Value *> BasePtrs, 1170 Instruction *StatepointToken, 1171 IRBuilder<> Builder) { 1172 if (LiveVariables.empty()) 1173 return; 1174 1175 // All gc_relocate are set to i8 addrspace(1)* type. We originally generated 1176 // unique declarations for each pointer type, but this proved problematic 1177 // because the intrinsic mangling code is incomplete and fragile. Since 1178 // we're moving towards a single unified pointer type anyways, we can just 1179 // cast everything to an i8* of the right address space. A bitcast is added 1180 // later to convert gc_relocate to the actual value's type. 1181 Module *M = StatepointToken->getModule(); 1182 auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace(); 1183 Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)}; 1184 Value *GCRelocateDecl = 1185 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); 1186 1187 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1188 // Generate the gc.relocate call and save the result 1189 Value *BaseIdx = 1190 Builder.getInt32(LiveStart + find_index(LiveVariables, BasePtrs[i])); 1191 Value *LiveIdx = 1192 Builder.getInt32(LiveStart + find_index(LiveVariables, LiveVariables[i])); 1193 1194 // only specify a debug name if we can give a useful one 1195 CallInst *Reloc = Builder.CreateCall( 1196 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1197 LiveVariables[i]->hasName() ? LiveVariables[i]->getName() + ".relocated" 1198 : ""); 1199 // Trick CodeGen into thinking there are lots of free registers at this 1200 // fake call. 1201 Reloc->setCallingConv(CallingConv::Cold); 1202 } 1203 } 1204 1205 static void 1206 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1207 const SmallVectorImpl<llvm::Value *> &basePtrs, 1208 const SmallVectorImpl<llvm::Value *> &liveVariables, 1209 Pass *P, 1210 PartiallyConstructedSafepointRecord &result) { 1211 assert(basePtrs.size() == liveVariables.size()); 1212 assert(isStatepoint(CS) && 1213 "This method expects to be rewriting a statepoint"); 1214 1215 BasicBlock *BB = CS.getInstruction()->getParent(); 1216 assert(BB); 1217 Function *F = BB->getParent(); 1218 assert(F && "must be set"); 1219 Module *M = F->getParent(); 1220 (void)M; 1221 assert(M && "must be set"); 1222 1223 // We're not changing the function signature of the statepoint since the gc 1224 // arguments go into the var args section. 1225 Function *gc_statepoint_decl = CS.getCalledFunction(); 1226 1227 // Then go ahead and use the builder do actually do the inserts. We insert 1228 // immediately before the previous instruction under the assumption that all 1229 // arguments will be available here. We can't insert afterwards since we may 1230 // be replacing a terminator. 1231 Instruction *insertBefore = CS.getInstruction(); 1232 IRBuilder<> Builder(insertBefore); 1233 // Copy all of the arguments from the original statepoint - this includes the 1234 // target, call args, and deopt args 1235 SmallVector<llvm::Value *, 64> args; 1236 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1237 // TODO: Clear the 'needs rewrite' flag 1238 1239 // add all the pointers to be relocated (gc arguments) 1240 // Capture the start of the live variable list for use in the gc_relocates 1241 const int live_start = args.size(); 1242 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1243 1244 // Create the statepoint given all the arguments 1245 Instruction *token = nullptr; 1246 AttributeSet return_attributes; 1247 if (CS.isCall()) { 1248 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1249 CallInst *call = 1250 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1251 call->setTailCall(toReplace->isTailCall()); 1252 call->setCallingConv(toReplace->getCallingConv()); 1253 1254 // Currently we will fail on parameter attributes and on certain 1255 // function attributes. 1256 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1257 // In case if we can handle this set of sttributes - set up function attrs 1258 // directly on statepoint and return attrs later for gc_result intrinsic. 1259 call->setAttributes(new_attrs.getFnAttributes()); 1260 return_attributes = new_attrs.getRetAttributes(); 1261 1262 token = call; 1263 1264 // Put the following gc_result and gc_relocate calls immediately after the 1265 // the old call (which we're about to delete) 1266 BasicBlock::iterator next(toReplace); 1267 assert(BB->end() != next && "not a terminator, must have next"); 1268 next++; 1269 Instruction *IP = &*(next); 1270 Builder.SetInsertPoint(IP); 1271 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1272 1273 } else { 1274 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1275 1276 // Insert the new invoke into the old block. We'll remove the old one in a 1277 // moment at which point this will become the new terminator for the 1278 // original block. 1279 InvokeInst *invoke = InvokeInst::Create( 1280 gc_statepoint_decl, toReplace->getNormalDest(), 1281 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1282 invoke->setCallingConv(toReplace->getCallingConv()); 1283 1284 // Currently we will fail on parameter attributes and on certain 1285 // function attributes. 1286 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1287 // In case if we can handle this set of sttributes - set up function attrs 1288 // directly on statepoint and return attrs later for gc_result intrinsic. 1289 invoke->setAttributes(new_attrs.getFnAttributes()); 1290 return_attributes = new_attrs.getRetAttributes(); 1291 1292 token = invoke; 1293 1294 // Generate gc relocates in exceptional path 1295 BasicBlock *unwindBlock = toReplace->getUnwindDest(); 1296 assert(!isa<PHINode>(unwindBlock->begin()) && 1297 unwindBlock->getUniquePredecessor() && 1298 "can't safely insert in this block!"); 1299 1300 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1301 Builder.SetInsertPoint(IP); 1302 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1303 1304 // Extract second element from landingpad return value. We will attach 1305 // exceptional gc relocates to it. 1306 const unsigned idx = 1; 1307 Instruction *exceptional_token = 1308 cast<Instruction>(Builder.CreateExtractValue( 1309 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1310 result.UnwindToken = exceptional_token; 1311 1312 CreateGCRelocates(liveVariables, live_start, basePtrs, 1313 exceptional_token, Builder); 1314 1315 // Generate gc relocates and returns for normal block 1316 BasicBlock *normalDest = toReplace->getNormalDest(); 1317 assert(!isa<PHINode>(normalDest->begin()) && 1318 normalDest->getUniquePredecessor() && 1319 "can't safely insert in this block!"); 1320 1321 IP = &*(normalDest->getFirstInsertionPt()); 1322 Builder.SetInsertPoint(IP); 1323 1324 // gc relocates will be generated later as if it were regular call 1325 // statepoint 1326 } 1327 assert(token); 1328 1329 // Take the name of the original value call if it had one. 1330 token->takeName(CS.getInstruction()); 1331 1332 // The GCResult is already inserted, we just need to find it 1333 #ifndef NDEBUG 1334 Instruction *toReplace = CS.getInstruction(); 1335 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1336 "only valid use before rewrite is gc.result"); 1337 assert(!toReplace->hasOneUse() || 1338 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1339 #endif 1340 1341 // Update the gc.result of the original statepoint (if any) to use the newly 1342 // inserted statepoint. This is safe to do here since the token can't be 1343 // considered a live reference. 1344 CS.getInstruction()->replaceAllUsesWith(token); 1345 1346 result.StatepointToken = token; 1347 1348 // Second, create a gc.relocate for every live variable 1349 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1350 } 1351 1352 namespace { 1353 struct name_ordering { 1354 Value *base; 1355 Value *derived; 1356 bool operator()(name_ordering const &a, name_ordering const &b) { 1357 return -1 == a.derived->getName().compare(b.derived->getName()); 1358 } 1359 }; 1360 } 1361 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1362 SmallVectorImpl<Value *> &livevec) { 1363 assert(basevec.size() == livevec.size()); 1364 1365 SmallVector<name_ordering, 64> temp; 1366 for (size_t i = 0; i < basevec.size(); i++) { 1367 name_ordering v; 1368 v.base = basevec[i]; 1369 v.derived = livevec[i]; 1370 temp.push_back(v); 1371 } 1372 std::sort(temp.begin(), temp.end(), name_ordering()); 1373 for (size_t i = 0; i < basevec.size(); i++) { 1374 basevec[i] = temp[i].base; 1375 livevec[i] = temp[i].derived; 1376 } 1377 } 1378 1379 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1380 // which make the relocations happening at this safepoint explicit. 1381 // 1382 // WARNING: Does not do any fixup to adjust users of the original live 1383 // values. That's the callers responsibility. 1384 static void 1385 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1386 PartiallyConstructedSafepointRecord &result) { 1387 auto liveset = result.liveset; 1388 auto PointerToBase = result.PointerToBase; 1389 1390 // Convert to vector for efficient cross referencing. 1391 SmallVector<Value *, 64> basevec, livevec; 1392 livevec.reserve(liveset.size()); 1393 basevec.reserve(liveset.size()); 1394 for (Value *L : liveset) { 1395 livevec.push_back(L); 1396 assert(PointerToBase.count(L)); 1397 Value *base = PointerToBase[L]; 1398 basevec.push_back(base); 1399 } 1400 assert(livevec.size() == basevec.size()); 1401 1402 // To make the output IR slightly more stable (for use in diffs), ensure a 1403 // fixed order of the values in the safepoint (by sorting the value name). 1404 // The order is otherwise meaningless. 1405 stablize_order(basevec, livevec); 1406 1407 // Do the actual rewriting and delete the old statepoint 1408 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1409 CS.getInstruction()->eraseFromParent(); 1410 } 1411 1412 // Helper function for the relocationViaAlloca. 1413 // It receives iterator to the statepoint gc relocates and emits store to the 1414 // assigned 1415 // location (via allocaMap) for the each one of them. 1416 // Add visited values into the visitedLiveValues set we will later use them 1417 // for sanity check. 1418 static void 1419 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1420 DenseMap<Value *, Value *> &AllocaMap, 1421 DenseSet<Value *> &VisitedLiveValues) { 1422 1423 for (User *U : GCRelocs) { 1424 if (!isa<IntrinsicInst>(U)) 1425 continue; 1426 1427 IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U); 1428 1429 // We only care about relocates 1430 if (RelocatedValue->getIntrinsicID() != 1431 Intrinsic::experimental_gc_relocate) { 1432 continue; 1433 } 1434 1435 GCRelocateOperands RelocateOperands(RelocatedValue); 1436 Value *OriginalValue = 1437 const_cast<Value *>(RelocateOperands.getDerivedPtr()); 1438 assert(AllocaMap.count(OriginalValue)); 1439 Value *Alloca = AllocaMap[OriginalValue]; 1440 1441 // Emit store into the related alloca 1442 // All gc_relocate are i8 addrspace(1)* typed, and it must be bitcasted to 1443 // the correct type according to alloca. 1444 assert(RelocatedValue->getNextNode() && "Should always have one since it's not a terminator"); 1445 IRBuilder<> Builder(RelocatedValue->getNextNode()); 1446 Value *CastedRelocatedValue = 1447 Builder.CreateBitCast(RelocatedValue, cast<AllocaInst>(Alloca)->getAllocatedType(), 1448 RelocatedValue->hasName() ? RelocatedValue->getName() + ".casted" : ""); 1449 1450 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1451 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1452 1453 #ifndef NDEBUG 1454 VisitedLiveValues.insert(OriginalValue); 1455 #endif 1456 } 1457 } 1458 1459 // Helper function for the "relocationViaAlloca". Similar to the 1460 // "insertRelocationStores" but works for rematerialized values. 1461 static void 1462 insertRematerializationStores( 1463 RematerializedValueMapTy RematerializedValues, 1464 DenseMap<Value *, Value *> &AllocaMap, 1465 DenseSet<Value *> &VisitedLiveValues) { 1466 1467 for (auto RematerializedValuePair: RematerializedValues) { 1468 Instruction *RematerializedValue = RematerializedValuePair.first; 1469 Value *OriginalValue = RematerializedValuePair.second; 1470 1471 assert(AllocaMap.count(OriginalValue) && 1472 "Can not find alloca for rematerialized value"); 1473 Value *Alloca = AllocaMap[OriginalValue]; 1474 1475 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1476 Store->insertAfter(RematerializedValue); 1477 1478 #ifndef NDEBUG 1479 VisitedLiveValues.insert(OriginalValue); 1480 #endif 1481 } 1482 } 1483 1484 /// do all the relocation update via allocas and mem2reg 1485 static void relocationViaAlloca( 1486 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1487 ArrayRef<struct PartiallyConstructedSafepointRecord> Records) { 1488 #ifndef NDEBUG 1489 // record initial number of (static) allocas; we'll check we have the same 1490 // number when we get done. 1491 int InitialAllocaNum = 0; 1492 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1493 I++) 1494 if (isa<AllocaInst>(*I)) 1495 InitialAllocaNum++; 1496 #endif 1497 1498 // TODO-PERF: change data structures, reserve 1499 DenseMap<Value *, Value *> AllocaMap; 1500 SmallVector<AllocaInst *, 200> PromotableAllocas; 1501 // Used later to chack that we have enough allocas to store all values 1502 std::size_t NumRematerializedValues = 0; 1503 PromotableAllocas.reserve(Live.size()); 1504 1505 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1506 // "PromotableAllocas" 1507 auto emitAllocaFor = [&](Value *LiveValue) { 1508 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1509 F.getEntryBlock().getFirstNonPHI()); 1510 AllocaMap[LiveValue] = Alloca; 1511 PromotableAllocas.push_back(Alloca); 1512 }; 1513 1514 // emit alloca for each live gc pointer 1515 for (unsigned i = 0; i < Live.size(); i++) { 1516 emitAllocaFor(Live[i]); 1517 } 1518 1519 // emit allocas for rematerialized values 1520 for (size_t i = 0; i < Records.size(); i++) { 1521 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1522 1523 for (auto RematerializedValuePair : Info.RematerializedValues) { 1524 Value *OriginalValue = RematerializedValuePair.second; 1525 if (AllocaMap.count(OriginalValue) != 0) 1526 continue; 1527 1528 emitAllocaFor(OriginalValue); 1529 ++NumRematerializedValues; 1530 } 1531 } 1532 1533 // The next two loops are part of the same conceptual operation. We need to 1534 // insert a store to the alloca after the original def and at each 1535 // redefinition. We need to insert a load before each use. These are split 1536 // into distinct loops for performance reasons. 1537 1538 // update gc pointer after each statepoint 1539 // either store a relocated value or null (if no relocated value found for 1540 // this gc pointer and it is not a gc_result) 1541 // this must happen before we update the statepoint with load of alloca 1542 // otherwise we lose the link between statepoint and old def 1543 for (size_t i = 0; i < Records.size(); i++) { 1544 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1545 Value *Statepoint = Info.StatepointToken; 1546 1547 // This will be used for consistency check 1548 DenseSet<Value *> VisitedLiveValues; 1549 1550 // Insert stores for normal statepoint gc relocates 1551 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1552 1553 // In case if it was invoke statepoint 1554 // we will insert stores for exceptional path gc relocates. 1555 if (isa<InvokeInst>(Statepoint)) { 1556 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1557 VisitedLiveValues); 1558 } 1559 1560 // Do similar thing with rematerialized values 1561 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1562 VisitedLiveValues); 1563 1564 if (ClobberNonLive) { 1565 // As a debuging aid, pretend that an unrelocated pointer becomes null at 1566 // the gc.statepoint. This will turn some subtle GC problems into 1567 // slightly easier to debug SEGVs. Note that on large IR files with 1568 // lots of gc.statepoints this is extremely costly both memory and time 1569 // wise. 1570 SmallVector<AllocaInst *, 64> ToClobber; 1571 for (auto Pair : AllocaMap) { 1572 Value *Def = Pair.first; 1573 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1574 1575 // This value was relocated 1576 if (VisitedLiveValues.count(Def)) { 1577 continue; 1578 } 1579 ToClobber.push_back(Alloca); 1580 } 1581 1582 auto InsertClobbersAt = [&](Instruction *IP) { 1583 for (auto *AI : ToClobber) { 1584 auto AIType = cast<PointerType>(AI->getType()); 1585 auto PT = cast<PointerType>(AIType->getElementType()); 1586 Constant *CPN = ConstantPointerNull::get(PT); 1587 StoreInst *Store = new StoreInst(CPN, AI); 1588 Store->insertBefore(IP); 1589 } 1590 }; 1591 1592 // Insert the clobbering stores. These may get intermixed with the 1593 // gc.results and gc.relocates, but that's fine. 1594 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1595 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1596 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1597 } else { 1598 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1599 Next++; 1600 InsertClobbersAt(Next); 1601 } 1602 } 1603 } 1604 // update use with load allocas and add store for gc_relocated 1605 for (auto Pair : AllocaMap) { 1606 Value *Def = Pair.first; 1607 Value *Alloca = Pair.second; 1608 1609 // we pre-record the uses of allocas so that we dont have to worry about 1610 // later update 1611 // that change the user information. 1612 SmallVector<Instruction *, 20> Uses; 1613 // PERF: trade a linear scan for repeated reallocation 1614 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1615 for (User *U : Def->users()) { 1616 if (!isa<ConstantExpr>(U)) { 1617 // If the def has a ConstantExpr use, then the def is either a 1618 // ConstantExpr use itself or null. In either case 1619 // (recursively in the first, directly in the second), the oop 1620 // it is ultimately dependent on is null and this particular 1621 // use does not need to be fixed up. 1622 Uses.push_back(cast<Instruction>(U)); 1623 } 1624 } 1625 1626 std::sort(Uses.begin(), Uses.end()); 1627 auto Last = std::unique(Uses.begin(), Uses.end()); 1628 Uses.erase(Last, Uses.end()); 1629 1630 for (Instruction *Use : Uses) { 1631 if (isa<PHINode>(Use)) { 1632 PHINode *Phi = cast<PHINode>(Use); 1633 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1634 if (Def == Phi->getIncomingValue(i)) { 1635 LoadInst *Load = new LoadInst( 1636 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1637 Phi->setIncomingValue(i, Load); 1638 } 1639 } 1640 } else { 1641 LoadInst *Load = new LoadInst(Alloca, "", Use); 1642 Use->replaceUsesOfWith(Def, Load); 1643 } 1644 } 1645 1646 // emit store for the initial gc value 1647 // store must be inserted after load, otherwise store will be in alloca's 1648 // use list and an extra load will be inserted before it 1649 StoreInst *Store = new StoreInst(Def, Alloca); 1650 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1651 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1652 // InvokeInst is a TerminatorInst so the store need to be inserted 1653 // into its normal destination block. 1654 BasicBlock *NormalDest = Invoke->getNormalDest(); 1655 Store->insertBefore(NormalDest->getFirstNonPHI()); 1656 } else { 1657 assert(!Inst->isTerminator() && 1658 "The only TerminatorInst that can produce a value is " 1659 "InvokeInst which is handled above."); 1660 Store->insertAfter(Inst); 1661 } 1662 } else { 1663 assert(isa<Argument>(Def)); 1664 Store->insertAfter(cast<Instruction>(Alloca)); 1665 } 1666 } 1667 1668 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1669 "we must have the same allocas with lives"); 1670 if (!PromotableAllocas.empty()) { 1671 // apply mem2reg to promote alloca to SSA 1672 PromoteMemToReg(PromotableAllocas, DT); 1673 } 1674 1675 #ifndef NDEBUG 1676 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1677 I++) 1678 if (isa<AllocaInst>(*I)) 1679 InitialAllocaNum--; 1680 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1681 #endif 1682 } 1683 1684 /// Implement a unique function which doesn't require we sort the input 1685 /// vector. Doing so has the effect of changing the output of a couple of 1686 /// tests in ways which make them less useful in testing fused safepoints. 1687 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1688 SmallSet<T, 8> Seen; 1689 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1690 return !Seen.insert(V).second; 1691 }), Vec.end()); 1692 } 1693 1694 /// Insert holders so that each Value is obviously live through the entire 1695 /// lifetime of the call. 1696 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1697 SmallVectorImpl<CallInst *> &Holders) { 1698 if (Values.empty()) 1699 // No values to hold live, might as well not insert the empty holder 1700 return; 1701 1702 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1703 // Use a dummy vararg function to actually hold the values live 1704 Function *Func = cast<Function>(M->getOrInsertFunction( 1705 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1706 if (CS.isCall()) { 1707 // For call safepoints insert dummy calls right after safepoint 1708 BasicBlock::iterator Next(CS.getInstruction()); 1709 Next++; 1710 Holders.push_back(CallInst::Create(Func, Values, "", Next)); 1711 return; 1712 } 1713 // For invoke safepooints insert dummy calls both in normal and 1714 // exceptional destination blocks 1715 auto *II = cast<InvokeInst>(CS.getInstruction()); 1716 Holders.push_back(CallInst::Create( 1717 Func, Values, "", II->getNormalDest()->getFirstInsertionPt())); 1718 Holders.push_back(CallInst::Create( 1719 Func, Values, "", II->getUnwindDest()->getFirstInsertionPt())); 1720 } 1721 1722 static void findLiveReferences( 1723 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1724 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1725 GCPtrLivenessData OriginalLivenessData; 1726 computeLiveInValues(DT, F, OriginalLivenessData); 1727 for (size_t i = 0; i < records.size(); i++) { 1728 struct PartiallyConstructedSafepointRecord &info = records[i]; 1729 const CallSite &CS = toUpdate[i]; 1730 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1731 } 1732 } 1733 1734 /// Remove any vector of pointers from the liveset by scalarizing them over the 1735 /// statepoint instruction. Adds the scalarized pieces to the liveset. It 1736 /// would be preferrable to include the vector in the statepoint itself, but 1737 /// the lowering code currently does not handle that. Extending it would be 1738 /// slightly non-trivial since it requires a format change. Given how rare 1739 /// such cases are (for the moment?) scalarizing is an acceptable comprimise. 1740 static void splitVectorValues(Instruction *StatepointInst, 1741 StatepointLiveSetTy &LiveSet, 1742 DenseMap<Value *, Value *>& PointerToBase, 1743 DominatorTree &DT) { 1744 SmallVector<Value *, 16> ToSplit; 1745 for (Value *V : LiveSet) 1746 if (isa<VectorType>(V->getType())) 1747 ToSplit.push_back(V); 1748 1749 if (ToSplit.empty()) 1750 return; 1751 1752 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1753 1754 Function &F = *(StatepointInst->getParent()->getParent()); 1755 1756 DenseMap<Value *, AllocaInst *> AllocaMap; 1757 // First is normal return, second is exceptional return (invoke only) 1758 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1759 for (Value *V : ToSplit) { 1760 AllocaInst *Alloca = 1761 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1762 AllocaMap[V] = Alloca; 1763 1764 VectorType *VT = cast<VectorType>(V->getType()); 1765 IRBuilder<> Builder(StatepointInst); 1766 SmallVector<Value *, 16> Elements; 1767 for (unsigned i = 0; i < VT->getNumElements(); i++) 1768 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1769 ElementMapping[V] = Elements; 1770 1771 auto InsertVectorReform = [&](Instruction *IP) { 1772 Builder.SetInsertPoint(IP); 1773 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1774 Value *ResultVec = UndefValue::get(VT); 1775 for (unsigned i = 0; i < VT->getNumElements(); i++) 1776 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1777 Builder.getInt32(i)); 1778 return ResultVec; 1779 }; 1780 1781 if (isa<CallInst>(StatepointInst)) { 1782 BasicBlock::iterator Next(StatepointInst); 1783 Next++; 1784 Instruction *IP = &*(Next); 1785 Replacements[V].first = InsertVectorReform(IP); 1786 Replacements[V].second = nullptr; 1787 } else { 1788 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 1789 // We've already normalized - check that we don't have shared destination 1790 // blocks 1791 BasicBlock *NormalDest = Invoke->getNormalDest(); 1792 assert(!isa<PHINode>(NormalDest->begin())); 1793 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 1794 assert(!isa<PHINode>(UnwindDest->begin())); 1795 // Insert insert element sequences in both successors 1796 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 1797 Replacements[V].first = InsertVectorReform(IP); 1798 IP = &*(UnwindDest->getFirstInsertionPt()); 1799 Replacements[V].second = InsertVectorReform(IP); 1800 } 1801 } 1802 1803 for (Value *V : ToSplit) { 1804 AllocaInst *Alloca = AllocaMap[V]; 1805 1806 // Capture all users before we start mutating use lists 1807 SmallVector<Instruction *, 16> Users; 1808 for (User *U : V->users()) 1809 Users.push_back(cast<Instruction>(U)); 1810 1811 for (Instruction *I : Users) { 1812 if (auto Phi = dyn_cast<PHINode>(I)) { 1813 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 1814 if (V == Phi->getIncomingValue(i)) { 1815 LoadInst *Load = new LoadInst( 1816 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1817 Phi->setIncomingValue(i, Load); 1818 } 1819 } else { 1820 LoadInst *Load = new LoadInst(Alloca, "", I); 1821 I->replaceUsesOfWith(V, Load); 1822 } 1823 } 1824 1825 // Store the original value and the replacement value into the alloca 1826 StoreInst *Store = new StoreInst(V, Alloca); 1827 if (auto I = dyn_cast<Instruction>(V)) 1828 Store->insertAfter(I); 1829 else 1830 Store->insertAfter(Alloca); 1831 1832 // Normal return for invoke, or call return 1833 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 1834 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1835 // Unwind return for invoke only 1836 Replacement = cast_or_null<Instruction>(Replacements[V].second); 1837 if (Replacement) 1838 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1839 } 1840 1841 // apply mem2reg to promote alloca to SSA 1842 SmallVector<AllocaInst *, 16> Allocas; 1843 for (Value *V : ToSplit) 1844 Allocas.push_back(AllocaMap[V]); 1845 PromoteMemToReg(Allocas, DT); 1846 1847 // Update our tracking of live pointers and base mappings to account for the 1848 // changes we just made. 1849 for (Value *V : ToSplit) { 1850 auto &Elements = ElementMapping[V]; 1851 1852 LiveSet.erase(V); 1853 LiveSet.insert(Elements.begin(), Elements.end()); 1854 // We need to update the base mapping as well. 1855 assert(PointerToBase.count(V)); 1856 Value *OldBase = PointerToBase[V]; 1857 auto &BaseElements = ElementMapping[OldBase]; 1858 PointerToBase.erase(V); 1859 assert(Elements.size() == BaseElements.size()); 1860 for (unsigned i = 0; i < Elements.size(); i++) { 1861 Value *Elem = Elements[i]; 1862 PointerToBase[Elem] = BaseElements[i]; 1863 } 1864 } 1865 } 1866 1867 // Helper function for the "rematerializeLiveValues". It walks use chain 1868 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1869 // values are visited (currently it is GEP's and casts). Returns true if it 1870 // sucessfully reached "BaseValue" and false otherwise. 1871 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1872 // recorded. 1873 static bool findRematerializableChainToBasePointer( 1874 SmallVectorImpl<Instruction*> &ChainToBase, 1875 Value *CurrentValue, Value *BaseValue) { 1876 1877 // We have found a base value 1878 if (CurrentValue == BaseValue) { 1879 return true; 1880 } 1881 1882 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1883 ChainToBase.push_back(GEP); 1884 return findRematerializableChainToBasePointer(ChainToBase, 1885 GEP->getPointerOperand(), 1886 BaseValue); 1887 } 1888 1889 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1890 Value *Def = CI->stripPointerCasts(); 1891 1892 // This two checks are basically similar. First one is here for the 1893 // consistency with findBasePointers logic. 1894 assert(!isa<CastInst>(Def) && "not a pointer cast found"); 1895 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1896 return false; 1897 1898 ChainToBase.push_back(CI); 1899 return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue); 1900 } 1901 1902 // Not supported instruction in the chain 1903 return false; 1904 } 1905 1906 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1907 // chain we are going to rematerialize. 1908 static unsigned 1909 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1910 TargetTransformInfo &TTI) { 1911 unsigned Cost = 0; 1912 1913 for (Instruction *Instr : Chain) { 1914 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1915 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1916 "non noop cast is found during rematerialization"); 1917 1918 Type *SrcTy = CI->getOperand(0)->getType(); 1919 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 1920 1921 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1922 // Cost of the address calculation 1923 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); 1924 Cost += TTI.getAddressComputationCost(ValTy); 1925 1926 // And cost of the GEP itself 1927 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1928 // allowed for the external usage) 1929 if (!GEP->hasAllConstantIndices()) 1930 Cost += 2; 1931 1932 } else { 1933 llvm_unreachable("unsupported instruciton type during rematerialization"); 1934 } 1935 } 1936 1937 return Cost; 1938 } 1939 1940 // From the statepoint liveset pick values that are cheaper to recompute then to 1941 // relocate. Remove this values from the liveset, rematerialize them after 1942 // statepoint and record them in "Info" structure. Note that similar to 1943 // relocated values we don't do any user adjustments here. 1944 static void rematerializeLiveValues(CallSite CS, 1945 PartiallyConstructedSafepointRecord &Info, 1946 TargetTransformInfo &TTI) { 1947 const unsigned int ChainLengthThreshold = 10; 1948 1949 // Record values we are going to delete from this statepoint live set. 1950 // We can not di this in following loop due to iterator invalidation. 1951 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1952 1953 for (Value *LiveValue: Info.liveset) { 1954 // For each live pointer find it's defining chain 1955 SmallVector<Instruction *, 3> ChainToBase; 1956 assert(Info.PointerToBase.count(LiveValue)); 1957 bool FoundChain = 1958 findRematerializableChainToBasePointer(ChainToBase, 1959 LiveValue, 1960 Info.PointerToBase[LiveValue]); 1961 // Nothing to do, or chain is too long 1962 if (!FoundChain || 1963 ChainToBase.size() == 0 || 1964 ChainToBase.size() > ChainLengthThreshold) 1965 continue; 1966 1967 // Compute cost of this chain 1968 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1969 // TODO: We can also account for cases when we will be able to remove some 1970 // of the rematerialized values by later optimization passes. I.e if 1971 // we rematerialized several intersecting chains. Or if original values 1972 // don't have any uses besides this statepoint. 1973 1974 // For invokes we need to rematerialize each chain twice - for normal and 1975 // for unwind basic blocks. Model this by multiplying cost by two. 1976 if (CS.isInvoke()) { 1977 Cost *= 2; 1978 } 1979 // If it's too expensive - skip it 1980 if (Cost >= RematerializationThreshold) 1981 continue; 1982 1983 // Remove value from the live set 1984 LiveValuesToBeDeleted.push_back(LiveValue); 1985 1986 // Clone instructions and record them inside "Info" structure 1987 1988 // Walk backwards to visit top-most instructions first 1989 std::reverse(ChainToBase.begin(), ChainToBase.end()); 1990 1991 // Utility function which clones all instructions from "ChainToBase" 1992 // and inserts them before "InsertBefore". Returns rematerialized value 1993 // which should be used after statepoint. 1994 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 1995 Instruction *LastClonedValue = nullptr; 1996 Instruction *LastValue = nullptr; 1997 for (Instruction *Instr: ChainToBase) { 1998 // Only GEP's and casts are suported as we need to be careful to not 1999 // introduce any new uses of pointers not in the liveset. 2000 // Note that it's fine to introduce new uses of pointers which were 2001 // otherwise not used after this statepoint. 2002 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2003 2004 Instruction *ClonedValue = Instr->clone(); 2005 ClonedValue->insertBefore(InsertBefore); 2006 ClonedValue->setName(Instr->getName() + ".remat"); 2007 2008 // If it is not first instruction in the chain then it uses previously 2009 // cloned value. We should update it to use cloned value. 2010 if (LastClonedValue) { 2011 assert(LastValue); 2012 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2013 #ifndef NDEBUG 2014 // Assert that cloned instruction does not use any instructions from 2015 // this chain other than LastClonedValue 2016 for (auto OpValue : ClonedValue->operand_values()) { 2017 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2018 ChainToBase.end() && 2019 "incorrect use in rematerialization chain"); 2020 } 2021 #endif 2022 } 2023 2024 LastClonedValue = ClonedValue; 2025 LastValue = Instr; 2026 } 2027 assert(LastClonedValue); 2028 return LastClonedValue; 2029 }; 2030 2031 // Different cases for calls and invokes. For invokes we need to clone 2032 // instructions both on normal and unwind path. 2033 if (CS.isCall()) { 2034 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2035 assert(InsertBefore); 2036 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2037 Info.RematerializedValues[RematerializedValue] = LiveValue; 2038 } else { 2039 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2040 2041 Instruction *NormalInsertBefore = 2042 Invoke->getNormalDest()->getFirstInsertionPt(); 2043 Instruction *UnwindInsertBefore = 2044 Invoke->getUnwindDest()->getFirstInsertionPt(); 2045 2046 Instruction *NormalRematerializedValue = 2047 rematerializeChain(NormalInsertBefore); 2048 Instruction *UnwindRematerializedValue = 2049 rematerializeChain(UnwindInsertBefore); 2050 2051 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2052 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2053 } 2054 } 2055 2056 // Remove rematerializaed values from the live set 2057 for (auto LiveValue: LiveValuesToBeDeleted) { 2058 Info.liveset.erase(LiveValue); 2059 } 2060 } 2061 2062 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 2063 SmallVectorImpl<CallSite> &toUpdate) { 2064 #ifndef NDEBUG 2065 // sanity check the input 2066 std::set<CallSite> uniqued; 2067 uniqued.insert(toUpdate.begin(), toUpdate.end()); 2068 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 2069 2070 for (size_t i = 0; i < toUpdate.size(); i++) { 2071 CallSite &CS = toUpdate[i]; 2072 assert(CS.getInstruction()->getParent()->getParent() == &F); 2073 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 2074 } 2075 #endif 2076 2077 // When inserting gc.relocates for invokes, we need to be able to insert at 2078 // the top of the successor blocks. See the comment on 2079 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2080 // may restructure the CFG. 2081 for (CallSite CS : toUpdate) { 2082 if (!CS.isInvoke()) 2083 continue; 2084 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 2085 normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(), 2086 DT); 2087 normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(), 2088 DT); 2089 } 2090 2091 // A list of dummy calls added to the IR to keep various values obviously 2092 // live in the IR. We'll remove all of these when done. 2093 SmallVector<CallInst *, 64> holders; 2094 2095 // Insert a dummy call with all of the arguments to the vm_state we'll need 2096 // for the actual safepoint insertion. This ensures reference arguments in 2097 // the deopt argument list are considered live through the safepoint (and 2098 // thus makes sure they get relocated.) 2099 for (size_t i = 0; i < toUpdate.size(); i++) { 2100 CallSite &CS = toUpdate[i]; 2101 Statepoint StatepointCS(CS); 2102 2103 SmallVector<Value *, 64> DeoptValues; 2104 for (Use &U : StatepointCS.vm_state_args()) { 2105 Value *Arg = cast<Value>(&U); 2106 assert(!isUnhandledGCPointerType(Arg->getType()) && 2107 "support for FCA unimplemented"); 2108 if (isHandledGCPointerType(Arg->getType())) 2109 DeoptValues.push_back(Arg); 2110 } 2111 insertUseHolderAfter(CS, DeoptValues, holders); 2112 } 2113 2114 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 2115 records.reserve(toUpdate.size()); 2116 for (size_t i = 0; i < toUpdate.size(); i++) { 2117 struct PartiallyConstructedSafepointRecord info; 2118 records.push_back(info); 2119 } 2120 assert(records.size() == toUpdate.size()); 2121 2122 // A) Identify all gc pointers which are staticly live at the given call 2123 // site. 2124 findLiveReferences(F, DT, P, toUpdate, records); 2125 2126 // B) Find the base pointers for each live pointer 2127 /* scope for caching */ { 2128 // Cache the 'defining value' relation used in the computation and 2129 // insertion of base phis and selects. This ensures that we don't insert 2130 // large numbers of duplicate base_phis. 2131 DefiningValueMapTy DVCache; 2132 2133 for (size_t i = 0; i < records.size(); i++) { 2134 struct PartiallyConstructedSafepointRecord &info = records[i]; 2135 CallSite &CS = toUpdate[i]; 2136 findBasePointers(DT, DVCache, CS, info); 2137 } 2138 } // end of cache scope 2139 2140 // The base phi insertion logic (for any safepoint) may have inserted new 2141 // instructions which are now live at some safepoint. The simplest such 2142 // example is: 2143 // loop: 2144 // phi a <-- will be a new base_phi here 2145 // safepoint 1 <-- that needs to be live here 2146 // gep a + 1 2147 // safepoint 2 2148 // br loop 2149 // We insert some dummy calls after each safepoint to definitely hold live 2150 // the base pointers which were identified for that safepoint. We'll then 2151 // ask liveness for _every_ base inserted to see what is now live. Then we 2152 // remove the dummy calls. 2153 holders.reserve(holders.size() + records.size()); 2154 for (size_t i = 0; i < records.size(); i++) { 2155 struct PartiallyConstructedSafepointRecord &info = records[i]; 2156 CallSite &CS = toUpdate[i]; 2157 2158 SmallVector<Value *, 128> Bases; 2159 for (auto Pair : info.PointerToBase) { 2160 Bases.push_back(Pair.second); 2161 } 2162 insertUseHolderAfter(CS, Bases, holders); 2163 } 2164 2165 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2166 // need to rerun liveness. We may *also* have inserted new defs, but that's 2167 // not the key issue. 2168 recomputeLiveInValues(F, DT, P, toUpdate, records); 2169 2170 if (PrintBasePointers) { 2171 for (size_t i = 0; i < records.size(); i++) { 2172 struct PartiallyConstructedSafepointRecord &info = records[i]; 2173 errs() << "Base Pairs: (w/Relocation)\n"; 2174 for (auto Pair : info.PointerToBase) { 2175 errs() << " derived %" << Pair.first->getName() << " base %" 2176 << Pair.second->getName() << "\n"; 2177 } 2178 } 2179 } 2180 for (size_t i = 0; i < holders.size(); i++) { 2181 holders[i]->eraseFromParent(); 2182 holders[i] = nullptr; 2183 } 2184 holders.clear(); 2185 2186 // Do a limited scalarization of any live at safepoint vector values which 2187 // contain pointers. This enables this pass to run after vectorization at 2188 // the cost of some possible performance loss. TODO: it would be nice to 2189 // natively support vectors all the way through the backend so we don't need 2190 // to scalarize here. 2191 for (size_t i = 0; i < records.size(); i++) { 2192 struct PartiallyConstructedSafepointRecord &info = records[i]; 2193 Instruction *statepoint = toUpdate[i].getInstruction(); 2194 splitVectorValues(cast<Instruction>(statepoint), info.liveset, 2195 info.PointerToBase, DT); 2196 } 2197 2198 // In order to reduce live set of statepoint we might choose to rematerialize 2199 // some values instead of relocating them. This is purelly an optimization and 2200 // does not influence correctness. 2201 TargetTransformInfo &TTI = 2202 P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2203 2204 for (size_t i = 0; i < records.size(); i++) { 2205 struct PartiallyConstructedSafepointRecord &info = records[i]; 2206 CallSite &CS = toUpdate[i]; 2207 2208 rematerializeLiveValues(CS, info, TTI); 2209 } 2210 2211 // Now run through and replace the existing statepoints with new ones with 2212 // the live variables listed. We do not yet update uses of the values being 2213 // relocated. We have references to live variables that need to 2214 // survive to the last iteration of this loop. (By construction, the 2215 // previous statepoint can not be a live variable, thus we can and remove 2216 // the old statepoint calls as we go.) 2217 for (size_t i = 0; i < records.size(); i++) { 2218 struct PartiallyConstructedSafepointRecord &info = records[i]; 2219 CallSite &CS = toUpdate[i]; 2220 makeStatepointExplicit(DT, CS, P, info); 2221 } 2222 toUpdate.clear(); // prevent accident use of invalid CallSites 2223 2224 // Do all the fixups of the original live variables to their relocated selves 2225 SmallVector<Value *, 128> live; 2226 for (size_t i = 0; i < records.size(); i++) { 2227 struct PartiallyConstructedSafepointRecord &info = records[i]; 2228 // We can't simply save the live set from the original insertion. One of 2229 // the live values might be the result of a call which needs a safepoint. 2230 // That Value* no longer exists and we need to use the new gc_result. 2231 // Thankfully, the liveset is embedded in the statepoint (and updated), so 2232 // we just grab that. 2233 Statepoint statepoint(info.StatepointToken); 2234 live.insert(live.end(), statepoint.gc_args_begin(), 2235 statepoint.gc_args_end()); 2236 #ifndef NDEBUG 2237 // Do some basic sanity checks on our liveness results before performing 2238 // relocation. Relocation can and will turn mistakes in liveness results 2239 // into non-sensical code which is must harder to debug. 2240 // TODO: It would be nice to test consistency as well 2241 assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) && 2242 "statepoint must be reachable or liveness is meaningless"); 2243 for (Value *V : statepoint.gc_args()) { 2244 if (!isa<Instruction>(V)) 2245 // Non-instruction values trivial dominate all possible uses 2246 continue; 2247 auto LiveInst = cast<Instruction>(V); 2248 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2249 "unreachable values should never be live"); 2250 assert(DT.dominates(LiveInst, info.StatepointToken) && 2251 "basic SSA liveness expectation violated by liveness analysis"); 2252 } 2253 #endif 2254 } 2255 unique_unsorted(live); 2256 2257 #ifndef NDEBUG 2258 // sanity check 2259 for (auto ptr : live) { 2260 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 2261 } 2262 #endif 2263 2264 relocationViaAlloca(F, DT, live, records); 2265 return !records.empty(); 2266 } 2267 2268 // Handles both return values and arguments for Functions and CallSites. 2269 template <typename AttrHolder> 2270 static void RemoveDerefAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2271 unsigned Index) { 2272 AttrBuilder R; 2273 if (AH.getDereferenceableBytes(Index)) 2274 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2275 AH.getDereferenceableBytes(Index))); 2276 if (AH.getDereferenceableOrNullBytes(Index)) 2277 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2278 AH.getDereferenceableOrNullBytes(Index))); 2279 2280 if (!R.empty()) 2281 AH.setAttributes(AH.getAttributes().removeAttributes( 2282 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2283 } 2284 2285 void 2286 RewriteStatepointsForGC::stripDereferenceabilityInfoFromPrototype(Function &F) { 2287 LLVMContext &Ctx = F.getContext(); 2288 2289 for (Argument &A : F.args()) 2290 if (isa<PointerType>(A.getType())) 2291 RemoveDerefAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2292 2293 if (isa<PointerType>(F.getReturnType())) 2294 RemoveDerefAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2295 } 2296 2297 void RewriteStatepointsForGC::stripDereferenceabilityInfoFromBody(Function &F) { 2298 if (F.empty()) 2299 return; 2300 2301 LLVMContext &Ctx = F.getContext(); 2302 MDBuilder Builder(Ctx); 2303 2304 for (Instruction &I : inst_range(F)) { 2305 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2306 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2307 bool IsImmutableTBAA = 2308 MD->getNumOperands() == 4 && 2309 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2310 2311 if (!IsImmutableTBAA) 2312 continue; // no work to do, MD_tbaa is already marked mutable 2313 2314 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2315 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2316 uint64_t Offset = 2317 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2318 2319 MDNode *MutableTBAA = 2320 Builder.createTBAAStructTagNode(Base, Access, Offset); 2321 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2322 } 2323 2324 if (CallSite CS = CallSite(&I)) { 2325 for (int i = 0, e = CS.arg_size(); i != e; i++) 2326 if (isa<PointerType>(CS.getArgument(i)->getType())) 2327 RemoveDerefAttrAtIndex(Ctx, CS, i + 1); 2328 if (isa<PointerType>(CS.getType())) 2329 RemoveDerefAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2330 } 2331 } 2332 } 2333 2334 /// Returns true if this function should be rewritten by this pass. The main 2335 /// point of this function is as an extension point for custom logic. 2336 static bool shouldRewriteStatepointsIn(Function &F) { 2337 // TODO: This should check the GCStrategy 2338 if (F.hasGC()) { 2339 const char *FunctionGCName = F.getGC(); 2340 const StringRef StatepointExampleName("statepoint-example"); 2341 const StringRef CoreCLRName("coreclr"); 2342 return (StatepointExampleName == FunctionGCName) || 2343 (CoreCLRName == FunctionGCName); 2344 } else 2345 return false; 2346 } 2347 2348 void RewriteStatepointsForGC::stripDereferenceabilityInfo(Module &M) { 2349 #ifndef NDEBUG 2350 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2351 "precondition!"); 2352 #endif 2353 2354 for (Function &F : M) 2355 stripDereferenceabilityInfoFromPrototype(F); 2356 2357 for (Function &F : M) 2358 stripDereferenceabilityInfoFromBody(F); 2359 } 2360 2361 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2362 // Nothing to do for declarations. 2363 if (F.isDeclaration() || F.empty()) 2364 return false; 2365 2366 // Policy choice says not to rewrite - the most common reason is that we're 2367 // compiling code without a GCStrategy. 2368 if (!shouldRewriteStatepointsIn(F)) 2369 return false; 2370 2371 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2372 2373 // Gather all the statepoints which need rewritten. Be careful to only 2374 // consider those in reachable code since we need to ask dominance queries 2375 // when rewriting. We'll delete the unreachable ones in a moment. 2376 SmallVector<CallSite, 64> ParsePointNeeded; 2377 bool HasUnreachableStatepoint = false; 2378 for (Instruction &I : inst_range(F)) { 2379 // TODO: only the ones with the flag set! 2380 if (isStatepoint(I)) { 2381 if (DT.isReachableFromEntry(I.getParent())) 2382 ParsePointNeeded.push_back(CallSite(&I)); 2383 else 2384 HasUnreachableStatepoint = true; 2385 } 2386 } 2387 2388 bool MadeChange = false; 2389 2390 // Delete any unreachable statepoints so that we don't have unrewritten 2391 // statepoints surviving this pass. This makes testing easier and the 2392 // resulting IR less confusing to human readers. Rather than be fancy, we 2393 // just reuse a utility function which removes the unreachable blocks. 2394 if (HasUnreachableStatepoint) 2395 MadeChange |= removeUnreachableBlocks(F); 2396 2397 // Return early if no work to do. 2398 if (ParsePointNeeded.empty()) 2399 return MadeChange; 2400 2401 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2402 // These are created by LCSSA. They have the effect of increasing the size 2403 // of liveness sets for no good reason. It may be harder to do this post 2404 // insertion since relocations and base phis can confuse things. 2405 for (BasicBlock &BB : F) 2406 if (BB.getUniquePredecessor()) { 2407 MadeChange = true; 2408 FoldSingleEntryPHINodes(&BB); 2409 } 2410 2411 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); 2412 return MadeChange; 2413 } 2414 2415 // liveness computation via standard dataflow 2416 // ------------------------------------------------------------------- 2417 2418 // TODO: Consider using bitvectors for liveness, the set of potentially 2419 // interesting values should be small and easy to pre-compute. 2420 2421 /// Compute the live-in set for the location rbegin starting from 2422 /// the live-out set of the basic block 2423 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2424 BasicBlock::reverse_iterator rend, 2425 DenseSet<Value *> &LiveTmp) { 2426 2427 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2428 Instruction *I = &*ritr; 2429 2430 // KILL/Def - Remove this definition from LiveIn 2431 LiveTmp.erase(I); 2432 2433 // Don't consider *uses* in PHI nodes, we handle their contribution to 2434 // predecessor blocks when we seed the LiveOut sets 2435 if (isa<PHINode>(I)) 2436 continue; 2437 2438 // USE - Add to the LiveIn set for this instruction 2439 for (Value *V : I->operands()) { 2440 assert(!isUnhandledGCPointerType(V->getType()) && 2441 "support for FCA unimplemented"); 2442 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2443 // The choice to exclude all things constant here is slightly subtle. 2444 // There are two idependent reasons: 2445 // - We assume that things which are constant (from LLVM's definition) 2446 // do not move at runtime. For example, the address of a global 2447 // variable is fixed, even though it's contents may not be. 2448 // - Second, we can't disallow arbitrary inttoptr constants even 2449 // if the language frontend does. Optimization passes are free to 2450 // locally exploit facts without respect to global reachability. This 2451 // can create sections of code which are dynamically unreachable and 2452 // contain just about anything. (see constants.ll in tests) 2453 LiveTmp.insert(V); 2454 } 2455 } 2456 } 2457 } 2458 2459 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2460 2461 for (BasicBlock *Succ : successors(BB)) { 2462 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2463 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2464 PHINode *Phi = cast<PHINode>(&*I); 2465 Value *V = Phi->getIncomingValueForBlock(BB); 2466 assert(!isUnhandledGCPointerType(V->getType()) && 2467 "support for FCA unimplemented"); 2468 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2469 LiveTmp.insert(V); 2470 } 2471 } 2472 } 2473 } 2474 2475 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2476 DenseSet<Value *> KillSet; 2477 for (Instruction &I : *BB) 2478 if (isHandledGCPointerType(I.getType())) 2479 KillSet.insert(&I); 2480 return KillSet; 2481 } 2482 2483 #ifndef NDEBUG 2484 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2485 /// sanity check for the liveness computation. 2486 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2487 TerminatorInst *TI, bool TermOkay = false) { 2488 for (Value *V : Live) { 2489 if (auto *I = dyn_cast<Instruction>(V)) { 2490 // The terminator can be a member of the LiveOut set. LLVM's definition 2491 // of instruction dominance states that V does not dominate itself. As 2492 // such, we need to special case this to allow it. 2493 if (TermOkay && TI == I) 2494 continue; 2495 assert(DT.dominates(I, TI) && 2496 "basic SSA liveness expectation violated by liveness analysis"); 2497 } 2498 } 2499 } 2500 2501 /// Check that all the liveness sets used during the computation of liveness 2502 /// obey basic SSA properties. This is useful for finding cases where we miss 2503 /// a def. 2504 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2505 BasicBlock &BB) { 2506 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2507 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2508 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2509 } 2510 #endif 2511 2512 static void computeLiveInValues(DominatorTree &DT, Function &F, 2513 GCPtrLivenessData &Data) { 2514 2515 SmallSetVector<BasicBlock *, 200> Worklist; 2516 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2517 // We use a SetVector so that we don't have duplicates in the worklist. 2518 Worklist.insert(pred_begin(BB), pred_end(BB)); 2519 }; 2520 auto NextItem = [&]() { 2521 BasicBlock *BB = Worklist.back(); 2522 Worklist.pop_back(); 2523 return BB; 2524 }; 2525 2526 // Seed the liveness for each individual block 2527 for (BasicBlock &BB : F) { 2528 Data.KillSet[&BB] = computeKillSet(&BB); 2529 Data.LiveSet[&BB].clear(); 2530 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2531 2532 #ifndef NDEBUG 2533 for (Value *Kill : Data.KillSet[&BB]) 2534 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2535 #endif 2536 2537 Data.LiveOut[&BB] = DenseSet<Value *>(); 2538 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2539 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2540 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2541 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2542 if (!Data.LiveIn[&BB].empty()) 2543 AddPredsToWorklist(&BB); 2544 } 2545 2546 // Propagate that liveness until stable 2547 while (!Worklist.empty()) { 2548 BasicBlock *BB = NextItem(); 2549 2550 // Compute our new liveout set, then exit early if it hasn't changed 2551 // despite the contribution of our successor. 2552 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2553 const auto OldLiveOutSize = LiveOut.size(); 2554 for (BasicBlock *Succ : successors(BB)) { 2555 assert(Data.LiveIn.count(Succ)); 2556 set_union(LiveOut, Data.LiveIn[Succ]); 2557 } 2558 // assert OutLiveOut is a subset of LiveOut 2559 if (OldLiveOutSize == LiveOut.size()) { 2560 // If the sets are the same size, then we didn't actually add anything 2561 // when unioning our successors LiveIn Thus, the LiveIn of this block 2562 // hasn't changed. 2563 continue; 2564 } 2565 Data.LiveOut[BB] = LiveOut; 2566 2567 // Apply the effects of this basic block 2568 DenseSet<Value *> LiveTmp = LiveOut; 2569 set_union(LiveTmp, Data.LiveSet[BB]); 2570 set_subtract(LiveTmp, Data.KillSet[BB]); 2571 2572 assert(Data.LiveIn.count(BB)); 2573 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2574 // assert: OldLiveIn is a subset of LiveTmp 2575 if (OldLiveIn.size() != LiveTmp.size()) { 2576 Data.LiveIn[BB] = LiveTmp; 2577 AddPredsToWorklist(BB); 2578 } 2579 } // while( !worklist.empty() ) 2580 2581 #ifndef NDEBUG 2582 // Sanity check our ouput against SSA properties. This helps catch any 2583 // missing kills during the above iteration. 2584 for (BasicBlock &BB : F) { 2585 checkBasicSSA(DT, Data, BB); 2586 } 2587 #endif 2588 } 2589 2590 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2591 StatepointLiveSetTy &Out) { 2592 2593 BasicBlock *BB = Inst->getParent(); 2594 2595 // Note: The copy is intentional and required 2596 assert(Data.LiveOut.count(BB)); 2597 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2598 2599 // We want to handle the statepoint itself oddly. It's 2600 // call result is not live (normal), nor are it's arguments 2601 // (unless they're used again later). This adjustment is 2602 // specifically what we need to relocate 2603 BasicBlock::reverse_iterator rend(Inst); 2604 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2605 LiveOut.erase(Inst); 2606 Out.insert(LiveOut.begin(), LiveOut.end()); 2607 } 2608 2609 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2610 const CallSite &CS, 2611 PartiallyConstructedSafepointRecord &Info) { 2612 Instruction *Inst = CS.getInstruction(); 2613 StatepointLiveSetTy Updated; 2614 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2615 2616 #ifndef NDEBUG 2617 DenseSet<Value *> Bases; 2618 for (auto KVPair : Info.PointerToBase) { 2619 Bases.insert(KVPair.second); 2620 } 2621 #endif 2622 // We may have base pointers which are now live that weren't before. We need 2623 // to update the PointerToBase structure to reflect this. 2624 for (auto V : Updated) 2625 if (!Info.PointerToBase.count(V)) { 2626 assert(Bases.count(V) && "can't find base for unexpected live value"); 2627 Info.PointerToBase[V] = V; 2628 continue; 2629 } 2630 2631 #ifndef NDEBUG 2632 for (auto V : Updated) { 2633 assert(Info.PointerToBase.count(V) && 2634 "must be able to find base for live value"); 2635 } 2636 #endif 2637 2638 // Remove any stale base mappings - this can happen since our liveness is 2639 // more precise then the one inherent in the base pointer analysis 2640 DenseSet<Value *> ToErase; 2641 for (auto KVPair : Info.PointerToBase) 2642 if (!Updated.count(KVPair.first)) 2643 ToErase.insert(KVPair.first); 2644 for (auto V : ToErase) 2645 Info.PointerToBase.erase(V); 2646 2647 #ifndef NDEBUG 2648 for (auto KVPair : Info.PointerToBase) 2649 assert(Updated.count(KVPair.first) && "record for non-live value"); 2650 #endif 2651 2652 Info.liveset = Updated; 2653 } 2654