xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 99f93dd3a502568441da3db04ddf0655a2e38c24)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Rewrite call/invoke instructions so as to make potential relocations
10 // performed by the garbage collector explicit in the IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueHandle.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <set>
75 #include <string>
76 #include <utility>
77 #include <vector>
78 
79 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
80 
81 using namespace llvm;
82 
83 // Print the liveset found at the insert location
84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
85                                   cl::init(false));
86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
87                                       cl::init(false));
88 
89 // Print out the base pointers for debugging
90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
91                                        cl::init(false));
92 
93 // Cost threshold measuring when it is profitable to rematerialize value instead
94 // of relocating it
95 static cl::opt<unsigned>
96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
97                            cl::init(6));
98 
99 #ifdef EXPENSIVE_CHECKS
100 static bool ClobberNonLive = true;
101 #else
102 static bool ClobberNonLive = false;
103 #endif
104 
105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
106                                                   cl::location(ClobberNonLive),
107                                                   cl::Hidden);
108 
109 static cl::opt<bool>
110     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
111                                    cl::Hidden, cl::init(true));
112 
113 /// The IR fed into RewriteStatepointsForGC may have had attributes and
114 /// metadata implying dereferenceability that are no longer valid/correct after
115 /// RewriteStatepointsForGC has run. This is because semantically, after
116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
117 /// heap. stripNonValidData (conservatively) restores
118 /// correctness by erasing all attributes in the module that externally imply
119 /// dereferenceability. Similar reasoning also applies to the noalias
120 /// attributes and metadata. gc.statepoint can touch the entire heap including
121 /// noalias objects.
122 /// Apart from attributes and metadata, we also remove instructions that imply
123 /// constant physical memory: llvm.invariant.start.
124 static void stripNonValidData(Module &M);
125 
126 static bool shouldRewriteStatepointsIn(Function &F);
127 
128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
129                                                ModuleAnalysisManager &AM) {
130   bool Changed = false;
131   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
132   for (Function &F : M) {
133     // Nothing to do for declarations.
134     if (F.isDeclaration() || F.empty())
135       continue;
136 
137     // Policy choice says not to rewrite - the most common reason is that we're
138     // compiling code without a GCStrategy.
139     if (!shouldRewriteStatepointsIn(F))
140       continue;
141 
142     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
143     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
144     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
145     Changed |= runOnFunction(F, DT, TTI, TLI);
146   }
147   if (!Changed)
148     return PreservedAnalyses::all();
149 
150   // stripNonValidData asserts that shouldRewriteStatepointsIn
151   // returns true for at least one function in the module.  Since at least
152   // one function changed, we know that the precondition is satisfied.
153   stripNonValidData(M);
154 
155   PreservedAnalyses PA;
156   PA.preserve<TargetIRAnalysis>();
157   PA.preserve<TargetLibraryAnalysis>();
158   return PA;
159 }
160 
161 namespace {
162 
163 class RewriteStatepointsForGCLegacyPass : public ModulePass {
164   RewriteStatepointsForGC Impl;
165 
166 public:
167   static char ID; // Pass identification, replacement for typeid
168 
169   RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
170     initializeRewriteStatepointsForGCLegacyPassPass(
171         *PassRegistry::getPassRegistry());
172   }
173 
174   bool runOnModule(Module &M) override {
175     bool Changed = false;
176     for (Function &F : M) {
177       // Nothing to do for declarations.
178       if (F.isDeclaration() || F.empty())
179         continue;
180 
181       // Policy choice says not to rewrite - the most common reason is that
182       // we're compiling code without a GCStrategy.
183       if (!shouldRewriteStatepointsIn(F))
184         continue;
185 
186       TargetTransformInfo &TTI =
187           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
188       const TargetLibraryInfo &TLI =
189           getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
190       auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
191 
192       Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
193     }
194 
195     if (!Changed)
196       return false;
197 
198     // stripNonValidData asserts that shouldRewriteStatepointsIn
199     // returns true for at least one function in the module.  Since at least
200     // one function changed, we know that the precondition is satisfied.
201     stripNonValidData(M);
202     return true;
203   }
204 
205   void getAnalysisUsage(AnalysisUsage &AU) const override {
206     // We add and rewrite a bunch of instructions, but don't really do much
207     // else.  We could in theory preserve a lot more analyses here.
208     AU.addRequired<DominatorTreeWrapperPass>();
209     AU.addRequired<TargetTransformInfoWrapperPass>();
210     AU.addRequired<TargetLibraryInfoWrapperPass>();
211   }
212 };
213 
214 } // end anonymous namespace
215 
216 char RewriteStatepointsForGCLegacyPass::ID = 0;
217 
218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
219   return new RewriteStatepointsForGCLegacyPass();
220 }
221 
222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
223                       "rewrite-statepoints-for-gc",
224                       "Make relocations explicit at statepoints", false, false)
225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
228                     "rewrite-statepoints-for-gc",
229                     "Make relocations explicit at statepoints", false, false)
230 
231 namespace {
232 
233 struct GCPtrLivenessData {
234   /// Values defined in this block.
235   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
236 
237   /// Values used in this block (and thus live); does not included values
238   /// killed within this block.
239   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
240 
241   /// Values live into this basic block (i.e. used by any
242   /// instruction in this basic block or ones reachable from here)
243   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
244 
245   /// Values live out of this basic block (i.e. live into
246   /// any successor block)
247   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
248 };
249 
250 // The type of the internal cache used inside the findBasePointers family
251 // of functions.  From the callers perspective, this is an opaque type and
252 // should not be inspected.
253 //
254 // In the actual implementation this caches two relations:
255 // - The base relation itself (i.e. this pointer is based on that one)
256 // - The base defining value relation (i.e. before base_phi insertion)
257 // Generally, after the execution of a full findBasePointer call, only the
258 // base relation will remain.  Internally, we add a mixture of the two
259 // types, then update all the second type to the first type
260 using DefiningValueMapTy = MapVector<Value *, Value *>;
261 using StatepointLiveSetTy = SetVector<Value *>;
262 using RematerializedValueMapTy =
263     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
264 
265 struct PartiallyConstructedSafepointRecord {
266   /// The set of values known to be live across this safepoint
267   StatepointLiveSetTy LiveSet;
268 
269   /// Mapping from live pointers to a base-defining-value
270   MapVector<Value *, Value *> PointerToBase;
271 
272   /// The *new* gc.statepoint instruction itself.  This produces the token
273   /// that normal path gc.relocates and the gc.result are tied to.
274   GCStatepointInst *StatepointToken;
275 
276   /// Instruction to which exceptional gc relocates are attached
277   /// Makes it easier to iterate through them during relocationViaAlloca.
278   Instruction *UnwindToken;
279 
280   /// Record live values we are rematerialized instead of relocating.
281   /// They are not included into 'LiveSet' field.
282   /// Maps rematerialized copy to it's original value.
283   RematerializedValueMapTy RematerializedValues;
284 };
285 
286 } // end anonymous namespace
287 
288 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
289   Optional<OperandBundleUse> DeoptBundle =
290       Call->getOperandBundle(LLVMContext::OB_deopt);
291 
292   if (!DeoptBundle.hasValue()) {
293     assert(AllowStatepointWithNoDeoptInfo &&
294            "Found non-leaf call without deopt info!");
295     return None;
296   }
297 
298   return DeoptBundle.getValue().Inputs;
299 }
300 
301 /// Compute the live-in set for every basic block in the function
302 static void computeLiveInValues(DominatorTree &DT, Function &F,
303                                 GCPtrLivenessData &Data);
304 
305 /// Given results from the dataflow liveness computation, find the set of live
306 /// Values at a particular instruction.
307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
308                               StatepointLiveSetTy &out);
309 
310 // TODO: Once we can get to the GCStrategy, this becomes
311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
312 
313 static bool isGCPointerType(Type *T) {
314   if (auto *PT = dyn_cast<PointerType>(T))
315     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
316     // GC managed heap.  We know that a pointer into this heap needs to be
317     // updated and that no other pointer does.
318     return PT->getAddressSpace() == 1;
319   return false;
320 }
321 
322 // Return true if this type is one which a) is a gc pointer or contains a GC
323 // pointer and b) is of a type this code expects to encounter as a live value.
324 // (The insertion code will assert that a type which matches (a) and not (b)
325 // is not encountered.)
326 static bool isHandledGCPointerType(Type *T) {
327   // We fully support gc pointers
328   if (isGCPointerType(T))
329     return true;
330   // We partially support vectors of gc pointers. The code will assert if it
331   // can't handle something.
332   if (auto VT = dyn_cast<VectorType>(T))
333     if (isGCPointerType(VT->getElementType()))
334       return true;
335   return false;
336 }
337 
338 #ifndef NDEBUG
339 /// Returns true if this type contains a gc pointer whether we know how to
340 /// handle that type or not.
341 static bool containsGCPtrType(Type *Ty) {
342   if (isGCPointerType(Ty))
343     return true;
344   if (VectorType *VT = dyn_cast<VectorType>(Ty))
345     return isGCPointerType(VT->getScalarType());
346   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
347     return containsGCPtrType(AT->getElementType());
348   if (StructType *ST = dyn_cast<StructType>(Ty))
349     return llvm::any_of(ST->elements(), containsGCPtrType);
350   return false;
351 }
352 
353 // Returns true if this is a type which a) is a gc pointer or contains a GC
354 // pointer and b) is of a type which the code doesn't expect (i.e. first class
355 // aggregates).  Used to trip assertions.
356 static bool isUnhandledGCPointerType(Type *Ty) {
357   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
358 }
359 #endif
360 
361 // Return the name of the value suffixed with the provided value, or if the
362 // value didn't have a name, the default value specified.
363 static std::string suffixed_name_or(Value *V, StringRef Suffix,
364                                     StringRef DefaultName) {
365   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
366 }
367 
368 // Conservatively identifies any definitions which might be live at the
369 // given instruction. The  analysis is performed immediately before the
370 // given instruction. Values defined by that instruction are not considered
371 // live.  Values used by that instruction are considered live.
372 static void analyzeParsePointLiveness(
373     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
374     PartiallyConstructedSafepointRecord &Result) {
375   StatepointLiveSetTy LiveSet;
376   findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
377 
378   if (PrintLiveSet) {
379     dbgs() << "Live Variables:\n";
380     for (Value *V : LiveSet)
381       dbgs() << " " << V->getName() << " " << *V << "\n";
382   }
383   if (PrintLiveSetSize) {
384     dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n";
385     dbgs() << "Number live values: " << LiveSet.size() << "\n";
386   }
387   Result.LiveSet = LiveSet;
388 }
389 
390 // Returns true is V is a knownBaseResult.
391 static bool isKnownBaseResult(Value *V);
392 
393 // Returns true if V is a BaseResult that already exists in the IR, i.e. it is
394 // not created by the findBasePointers algorithm.
395 static bool isOriginalBaseResult(Value *V);
396 
397 namespace {
398 
399 /// A single base defining value - An immediate base defining value for an
400 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
401 /// For instructions which have multiple pointer [vector] inputs or that
402 /// transition between vector and scalar types, there is no immediate base
403 /// defining value.  The 'base defining value' for 'Def' is the transitive
404 /// closure of this relation stopping at the first instruction which has no
405 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
406 /// but it can also be an arbitrary derived pointer.
407 struct BaseDefiningValueResult {
408   /// Contains the value which is the base defining value.
409   Value * const BDV;
410 
411   /// True if the base defining value is also known to be an actual base
412   /// pointer.
413   const bool IsKnownBase;
414 
415   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
416     : BDV(BDV), IsKnownBase(IsKnownBase) {
417 #ifndef NDEBUG
418     // Check consistency between new and old means of checking whether a BDV is
419     // a base.
420     bool MustBeBase = isKnownBaseResult(BDV);
421     assert(!MustBeBase || MustBeBase == IsKnownBase);
422 #endif
423   }
424 };
425 
426 } // end anonymous namespace
427 
428 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
429 
430 /// Return a base defining value for the 'Index' element of the given vector
431 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
432 /// 'I'.  As an optimization, this method will try to determine when the
433 /// element is known to already be a base pointer.  If this can be established,
434 /// the second value in the returned pair will be true.  Note that either a
435 /// vector or a pointer typed value can be returned.  For the former, the
436 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
437 /// If the later, the return pointer is a BDV (or possibly a base) for the
438 /// particular element in 'I'.
439 static BaseDefiningValueResult
440 findBaseDefiningValueOfVector(Value *I) {
441   // Each case parallels findBaseDefiningValue below, see that code for
442   // detailed motivation.
443 
444   if (isa<Argument>(I))
445     // An incoming argument to the function is a base pointer
446     return BaseDefiningValueResult(I, true);
447 
448   if (isa<Constant>(I))
449     // Base of constant vector consists only of constant null pointers.
450     // For reasoning see similar case inside 'findBaseDefiningValue' function.
451     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
452                                    true);
453 
454   if (isa<LoadInst>(I))
455     return BaseDefiningValueResult(I, true);
456 
457   if (isa<InsertElementInst>(I))
458     // We don't know whether this vector contains entirely base pointers or
459     // not.  To be conservatively correct, we treat it as a BDV and will
460     // duplicate code as needed to construct a parallel vector of bases.
461     return BaseDefiningValueResult(I, false);
462 
463   if (isa<ShuffleVectorInst>(I))
464     // We don't know whether this vector contains entirely base pointers or
465     // not.  To be conservatively correct, we treat it as a BDV and will
466     // duplicate code as needed to construct a parallel vector of bases.
467     // TODO: There a number of local optimizations which could be applied here
468     // for particular sufflevector patterns.
469     return BaseDefiningValueResult(I, false);
470 
471   // The behavior of getelementptr instructions is the same for vector and
472   // non-vector data types.
473   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
474     return findBaseDefiningValue(GEP->getPointerOperand());
475 
476   // If the pointer comes through a bitcast of a vector of pointers to
477   // a vector of another type of pointer, then look through the bitcast
478   if (auto *BC = dyn_cast<BitCastInst>(I))
479     return findBaseDefiningValue(BC->getOperand(0));
480 
481   // We assume that functions in the source language only return base
482   // pointers.  This should probably be generalized via attributes to support
483   // both source language and internal functions.
484   if (isa<CallInst>(I) || isa<InvokeInst>(I))
485     return BaseDefiningValueResult(I, true);
486 
487   // A PHI or Select is a base defining value.  The outer findBasePointer
488   // algorithm is responsible for constructing a base value for this BDV.
489   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
490          "unknown vector instruction - no base found for vector element");
491   return BaseDefiningValueResult(I, false);
492 }
493 
494 /// Helper function for findBasePointer - Will return a value which either a)
495 /// defines the base pointer for the input, b) blocks the simple search
496 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
497 /// from pointer to vector type or back.
498 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
499   assert(I->getType()->isPtrOrPtrVectorTy() &&
500          "Illegal to ask for the base pointer of a non-pointer type");
501 
502   if (I->getType()->isVectorTy())
503     return findBaseDefiningValueOfVector(I);
504 
505   if (isa<Argument>(I))
506     // An incoming argument to the function is a base pointer
507     // We should have never reached here if this argument isn't an gc value
508     return BaseDefiningValueResult(I, true);
509 
510   if (isa<Constant>(I)) {
511     // We assume that objects with a constant base (e.g. a global) can't move
512     // and don't need to be reported to the collector because they are always
513     // live. Besides global references, all kinds of constants (e.g. undef,
514     // constant expressions, null pointers) can be introduced by the inliner or
515     // the optimizer, especially on dynamically dead paths.
516     // Here we treat all of them as having single null base. By doing this we
517     // trying to avoid problems reporting various conflicts in a form of
518     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
519     // See constant.ll file for relevant test cases.
520 
521     return BaseDefiningValueResult(
522         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
523   }
524 
525   if (CastInst *CI = dyn_cast<CastInst>(I)) {
526     Value *Def = CI->stripPointerCasts();
527     // If stripping pointer casts changes the address space there is an
528     // addrspacecast in between.
529     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
530                cast<PointerType>(CI->getType())->getAddressSpace() &&
531            "unsupported addrspacecast");
532     // If we find a cast instruction here, it means we've found a cast which is
533     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
534     // handle int->ptr conversion.
535     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
536     return findBaseDefiningValue(Def);
537   }
538 
539   if (isa<LoadInst>(I))
540     // The value loaded is an gc base itself
541     return BaseDefiningValueResult(I, true);
542 
543   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
544     // The base of this GEP is the base
545     return findBaseDefiningValue(GEP->getPointerOperand());
546 
547   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
548     switch (II->getIntrinsicID()) {
549     default:
550       // fall through to general call handling
551       break;
552     case Intrinsic::experimental_gc_statepoint:
553       llvm_unreachable("statepoints don't produce pointers");
554     case Intrinsic::experimental_gc_relocate:
555       // Rerunning safepoint insertion after safepoints are already
556       // inserted is not supported.  It could probably be made to work,
557       // but why are you doing this?  There's no good reason.
558       llvm_unreachable("repeat safepoint insertion is not supported");
559     case Intrinsic::gcroot:
560       // Currently, this mechanism hasn't been extended to work with gcroot.
561       // There's no reason it couldn't be, but I haven't thought about the
562       // implications much.
563       llvm_unreachable(
564           "interaction with the gcroot mechanism is not supported");
565     }
566   }
567   // We assume that functions in the source language only return base
568   // pointers.  This should probably be generalized via attributes to support
569   // both source language and internal functions.
570   if (isa<CallInst>(I) || isa<InvokeInst>(I))
571     return BaseDefiningValueResult(I, true);
572 
573   // TODO: I have absolutely no idea how to implement this part yet.  It's not
574   // necessarily hard, I just haven't really looked at it yet.
575   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
576 
577   if (isa<AtomicCmpXchgInst>(I))
578     // A CAS is effectively a atomic store and load combined under a
579     // predicate.  From the perspective of base pointers, we just treat it
580     // like a load.
581     return BaseDefiningValueResult(I, true);
582 
583   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
584                                    "binary ops which don't apply to pointers");
585 
586   // The aggregate ops.  Aggregates can either be in the heap or on the
587   // stack, but in either case, this is simply a field load.  As a result,
588   // this is a defining definition of the base just like a load is.
589   if (isa<ExtractValueInst>(I))
590     return BaseDefiningValueResult(I, true);
591 
592   // We should never see an insert vector since that would require we be
593   // tracing back a struct value not a pointer value.
594   assert(!isa<InsertValueInst>(I) &&
595          "Base pointer for a struct is meaningless");
596 
597   // An extractelement produces a base result exactly when it's input does.
598   // We may need to insert a parallel instruction to extract the appropriate
599   // element out of the base vector corresponding to the input. Given this,
600   // it's analogous to the phi and select case even though it's not a merge.
601   if (isa<ExtractElementInst>(I))
602     // Note: There a lot of obvious peephole cases here.  This are deliberately
603     // handled after the main base pointer inference algorithm to make writing
604     // test cases to exercise that code easier.
605     return BaseDefiningValueResult(I, false);
606 
607   // The last two cases here don't return a base pointer.  Instead, they
608   // return a value which dynamically selects from among several base
609   // derived pointers (each with it's own base potentially).  It's the job of
610   // the caller to resolve these.
611   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
612          "missing instruction case in findBaseDefiningValing");
613   return BaseDefiningValueResult(I, false);
614 }
615 
616 /// Returns the base defining value for this value.
617 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
618   Value *&Cached = Cache[I];
619   if (!Cached) {
620     Cached = findBaseDefiningValue(I).BDV;
621     LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
622                       << Cached->getName() << "\n");
623   }
624   assert(Cache[I] != nullptr);
625   return Cached;
626 }
627 
628 /// Return a base pointer for this value if known.  Otherwise, return it's
629 /// base defining value.
630 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
631   Value *Def = findBaseDefiningValueCached(I, Cache);
632   auto Found = Cache.find(Def);
633   if (Found != Cache.end()) {
634     // Either a base-of relation, or a self reference.  Caller must check.
635     return Found->second;
636   }
637   // Only a BDV available
638   return Def;
639 }
640 
641 /// This value is a base pointer that is not generated by RS4GC, i.e. it already
642 /// exists in the code.
643 static bool isOriginalBaseResult(Value *V) {
644   // no recursion possible
645   return !isa<PHINode>(V) && !isa<SelectInst>(V) &&
646          !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
647          !isa<ShuffleVectorInst>(V);
648 }
649 
650 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
651 /// is it known to be a base pointer?  Or do we need to continue searching.
652 static bool isKnownBaseResult(Value *V) {
653   if (isOriginalBaseResult(V))
654     return true;
655   if (isa<Instruction>(V) &&
656       cast<Instruction>(V)->getMetadata("is_base_value")) {
657     // This is a previously inserted base phi or select.  We know
658     // that this is a base value.
659     return true;
660   }
661 
662   // We need to keep searching
663   return false;
664 }
665 
666 // Returns true if First and Second values are both scalar or both vector.
667 static bool areBothVectorOrScalar(Value *First, Value *Second) {
668   return isa<VectorType>(First->getType()) ==
669          isa<VectorType>(Second->getType());
670 }
671 
672 namespace {
673 
674 /// Models the state of a single base defining value in the findBasePointer
675 /// algorithm for determining where a new instruction is needed to propagate
676 /// the base of this BDV.
677 class BDVState {
678 public:
679   enum Status { Unknown, Base, Conflict };
680 
681   BDVState() : BaseValue(nullptr) {}
682 
683   explicit BDVState(Status Status, Value *BaseValue = nullptr)
684       : Status(Status), BaseValue(BaseValue) {
685     assert(Status != Base || BaseValue);
686   }
687 
688   explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
689 
690   Status getStatus() const { return Status; }
691   Value *getBaseValue() const { return BaseValue; }
692 
693   bool isBase() const { return getStatus() == Base; }
694   bool isUnknown() const { return getStatus() == Unknown; }
695   bool isConflict() const { return getStatus() == Conflict; }
696 
697   bool operator==(const BDVState &Other) const {
698     return BaseValue == Other.BaseValue && Status == Other.Status;
699   }
700 
701   bool operator!=(const BDVState &other) const { return !(*this == other); }
702 
703   LLVM_DUMP_METHOD
704   void dump() const {
705     print(dbgs());
706     dbgs() << '\n';
707   }
708 
709   void print(raw_ostream &OS) const {
710     switch (getStatus()) {
711     case Unknown:
712       OS << "U";
713       break;
714     case Base:
715       OS << "B";
716       break;
717     case Conflict:
718       OS << "C";
719       break;
720     }
721     OS << " (" << getBaseValue() << " - "
722        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
723   }
724 
725 private:
726   Status Status = Unknown;
727   AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
728 };
729 
730 } // end anonymous namespace
731 
732 #ifndef NDEBUG
733 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
734   State.print(OS);
735   return OS;
736 }
737 #endif
738 
739 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
740   switch (LHS.getStatus()) {
741   case BDVState::Unknown:
742     return RHS;
743 
744   case BDVState::Base:
745     assert(LHS.getBaseValue() && "can't be null");
746     if (RHS.isUnknown())
747       return LHS;
748 
749     if (RHS.isBase()) {
750       if (LHS.getBaseValue() == RHS.getBaseValue()) {
751         assert(LHS == RHS && "equality broken!");
752         return LHS;
753       }
754       return BDVState(BDVState::Conflict);
755     }
756     assert(RHS.isConflict() && "only three states!");
757     return BDVState(BDVState::Conflict);
758 
759   case BDVState::Conflict:
760     return LHS;
761   }
762   llvm_unreachable("only three states!");
763 }
764 
765 // Values of type BDVState form a lattice, and this function implements the meet
766 // operation.
767 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
768   BDVState Result = meetBDVStateImpl(LHS, RHS);
769   assert(Result == meetBDVStateImpl(RHS, LHS) &&
770          "Math is wrong: meet does not commute!");
771   return Result;
772 }
773 
774 /// For a given value or instruction, figure out what base ptr its derived from.
775 /// For gc objects, this is simply itself.  On success, returns a value which is
776 /// the base pointer.  (This is reliable and can be used for relocation.)  On
777 /// failure, returns nullptr.
778 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
779   Value *Def = findBaseOrBDV(I, Cache);
780 
781   if (isKnownBaseResult(Def) && areBothVectorOrScalar(Def, I))
782     return Def;
783 
784   // Here's the rough algorithm:
785   // - For every SSA value, construct a mapping to either an actual base
786   //   pointer or a PHI which obscures the base pointer.
787   // - Construct a mapping from PHI to unknown TOP state.  Use an
788   //   optimistic algorithm to propagate base pointer information.  Lattice
789   //   looks like:
790   //   UNKNOWN
791   //   b1 b2 b3 b4
792   //   CONFLICT
793   //   When algorithm terminates, all PHIs will either have a single concrete
794   //   base or be in a conflict state.
795   // - For every conflict, insert a dummy PHI node without arguments.  Add
796   //   these to the base[Instruction] = BasePtr mapping.  For every
797   //   non-conflict, add the actual base.
798   //  - For every conflict, add arguments for the base[a] of each input
799   //   arguments.
800   //
801   // Note: A simpler form of this would be to add the conflict form of all
802   // PHIs without running the optimistic algorithm.  This would be
803   // analogous to pessimistic data flow and would likely lead to an
804   // overall worse solution.
805 
806 #ifndef NDEBUG
807   auto isExpectedBDVType = [](Value *BDV) {
808     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
809            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
810            isa<ShuffleVectorInst>(BDV);
811   };
812 #endif
813 
814   // Once populated, will contain a mapping from each potentially non-base BDV
815   // to a lattice value (described above) which corresponds to that BDV.
816   // We use the order of insertion (DFS over the def/use graph) to provide a
817   // stable deterministic ordering for visiting DenseMaps (which are unordered)
818   // below.  This is important for deterministic compilation.
819   MapVector<Value *, BDVState> States;
820 
821   // Recursively fill in all base defining values reachable from the initial
822   // one for which we don't already know a definite base value for
823   /* scope */ {
824     SmallVector<Value*, 16> Worklist;
825     Worklist.push_back(Def);
826     States.insert({Def, BDVState()});
827     while (!Worklist.empty()) {
828       Value *Current = Worklist.pop_back_val();
829       assert(!isOriginalBaseResult(Current) && "why did it get added?");
830 
831       auto visitIncomingValue = [&](Value *InVal) {
832         Value *Base = findBaseOrBDV(InVal, Cache);
833         if (isKnownBaseResult(Base) && areBothVectorOrScalar(Base, InVal))
834           // Known bases won't need new instructions introduced and can be
835           // ignored safely. However, this can only be done when InVal and Base
836           // are both scalar or both vector. Otherwise, we need to find a
837           // correct BDV for InVal, by creating an entry in the lattice
838           // (States).
839           return;
840         assert(isExpectedBDVType(Base) && "the only non-base values "
841                "we see should be base defining values");
842         if (States.insert(std::make_pair(Base, BDVState())).second)
843           Worklist.push_back(Base);
844       };
845       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
846         for (Value *InVal : PN->incoming_values())
847           visitIncomingValue(InVal);
848       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
849         visitIncomingValue(SI->getTrueValue());
850         visitIncomingValue(SI->getFalseValue());
851       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
852         visitIncomingValue(EE->getVectorOperand());
853       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
854         visitIncomingValue(IE->getOperand(0)); // vector operand
855         visitIncomingValue(IE->getOperand(1)); // scalar operand
856       } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
857         visitIncomingValue(SV->getOperand(0));
858         visitIncomingValue(SV->getOperand(1));
859       }
860       else {
861         llvm_unreachable("Unimplemented instruction case");
862       }
863     }
864   }
865 
866 #ifndef NDEBUG
867   LLVM_DEBUG(dbgs() << "States after initialization:\n");
868   for (auto Pair : States) {
869     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
870   }
871 #endif
872 
873   // Return a phi state for a base defining value.  We'll generate a new
874   // base state for known bases and expect to find a cached state otherwise.
875   auto GetStateForBDV = [&](Value *BaseValue, Value *Input) {
876     if (isKnownBaseResult(BaseValue) && areBothVectorOrScalar(BaseValue, Input))
877       return BDVState(BaseValue);
878     auto I = States.find(BaseValue);
879     assert(I != States.end() && "lookup failed!");
880     return I->second;
881   };
882 
883   bool Progress = true;
884   while (Progress) {
885 #ifndef NDEBUG
886     const size_t OldSize = States.size();
887 #endif
888     Progress = false;
889     // We're only changing values in this loop, thus safe to keep iterators.
890     // Since this is computing a fixed point, the order of visit does not
891     // effect the result.  TODO: We could use a worklist here and make this run
892     // much faster.
893     for (auto Pair : States) {
894       Value *BDV = Pair.first;
895       // Only values that do not have known bases or those that have differing
896       // type (scalar versus vector) from a possible known base should be in the
897       // lattice.
898       assert((!isKnownBaseResult(BDV) ||
899              !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) &&
900                  "why did it get added?");
901 
902       // Given an input value for the current instruction, return a BDVState
903       // instance which represents the BDV of that value.
904       auto getStateForInput = [&](Value *V) mutable {
905         Value *BDV = findBaseOrBDV(V, Cache);
906         return GetStateForBDV(BDV, V);
907       };
908 
909       BDVState NewState;
910       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
911         NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
912         NewState =
913             meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
914       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
915         for (Value *Val : PN->incoming_values())
916           NewState = meetBDVState(NewState, getStateForInput(Val));
917       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
918         // The 'meet' for an extractelement is slightly trivial, but it's still
919         // useful in that it drives us to conflict if our input is.
920         NewState =
921             meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
922       } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
923         // Given there's a inherent type mismatch between the operands, will
924         // *always* produce Conflict.
925         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
926         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
927       } else {
928         // The only instance this does not return a Conflict is when both the
929         // vector operands are the same vector.
930         auto *SV = cast<ShuffleVectorInst>(BDV);
931         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
932         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
933       }
934 
935       BDVState OldState = States[BDV];
936       if (OldState != NewState) {
937         Progress = true;
938         States[BDV] = NewState;
939       }
940     }
941 
942     assert(OldSize == States.size() &&
943            "fixed point shouldn't be adding any new nodes to state");
944   }
945 
946 #ifndef NDEBUG
947   LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
948   for (auto Pair : States) {
949     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
950   }
951 #endif
952 
953   // Handle all instructions that have a vector BDV, but the instruction itself
954   // is of scalar type.
955   for (auto Pair : States) {
956     Instruction *I = cast<Instruction>(Pair.first);
957     BDVState State = Pair.second;
958     auto *BaseValue = State.getBaseValue();
959     // Only values that do not have known bases or those that have differing
960     // type (scalar versus vector) from a possible known base should be in the
961     // lattice.
962     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, BaseValue)) &&
963            "why did it get added?");
964     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
965 
966     if (!State.isBase() || !isa<VectorType>(BaseValue->getType()))
967       continue;
968     // extractelement instructions are a bit special in that we may need to
969     // insert an extract even when we know an exact base for the instruction.
970     // The problem is that we need to convert from a vector base to a scalar
971     // base for the particular indice we're interested in.
972     if (isa<ExtractElementInst>(I)) {
973       auto *EE = cast<ExtractElementInst>(I);
974       // TODO: In many cases, the new instruction is just EE itself.  We should
975       // exploit this, but can't do it here since it would break the invariant
976       // about the BDV not being known to be a base.
977       auto *BaseInst = ExtractElementInst::Create(
978           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
979       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
980       States[I] = BDVState(BDVState::Base, BaseInst);
981     } else if (!isa<VectorType>(I->getType())) {
982       // We need to handle cases that have a vector base but the instruction is
983       // a scalar type (these could be phis or selects or any instruction that
984       // are of scalar type, but the base can be a vector type).  We
985       // conservatively set this as conflict.  Setting the base value for these
986       // conflicts is handled in the next loop which traverses States.
987       States[I] = BDVState(BDVState::Conflict);
988     }
989   }
990 
991   // Insert Phis for all conflicts
992   // TODO: adjust naming patterns to avoid this order of iteration dependency
993   for (auto Pair : States) {
994     Instruction *I = cast<Instruction>(Pair.first);
995     BDVState State = Pair.second;
996     // Only values that do not have known bases or those that have differing
997     // type (scalar versus vector) from a possible known base should be in the
998     // lattice.
999     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, State.getBaseValue())) &&
1000            "why did it get added?");
1001     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1002 
1003     // Since we're joining a vector and scalar base, they can never be the
1004     // same.  As a result, we should always see insert element having reached
1005     // the conflict state.
1006     assert(!isa<InsertElementInst>(I) || State.isConflict());
1007 
1008     if (!State.isConflict())
1009       continue;
1010 
1011     /// Create and insert a new instruction which will represent the base of
1012     /// the given instruction 'I'.
1013     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
1014       if (isa<PHINode>(I)) {
1015         BasicBlock *BB = I->getParent();
1016         int NumPreds = pred_size(BB);
1017         assert(NumPreds > 0 && "how did we reach here");
1018         std::string Name = suffixed_name_or(I, ".base", "base_phi");
1019         return PHINode::Create(I->getType(), NumPreds, Name, I);
1020       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
1021         // The undef will be replaced later
1022         UndefValue *Undef = UndefValue::get(SI->getType());
1023         std::string Name = suffixed_name_or(I, ".base", "base_select");
1024         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
1025       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
1026         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
1027         std::string Name = suffixed_name_or(I, ".base", "base_ee");
1028         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
1029                                           EE);
1030       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
1031         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
1032         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
1033         std::string Name = suffixed_name_or(I, ".base", "base_ie");
1034         return InsertElementInst::Create(VecUndef, ScalarUndef,
1035                                          IE->getOperand(2), Name, IE);
1036       } else {
1037         auto *SV = cast<ShuffleVectorInst>(I);
1038         UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
1039         std::string Name = suffixed_name_or(I, ".base", "base_sv");
1040         return new ShuffleVectorInst(VecUndef, VecUndef, SV->getShuffleMask(),
1041                                      Name, SV);
1042       }
1043     };
1044     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
1045     // Add metadata marking this as a base value
1046     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1047     States[I] = BDVState(BDVState::Conflict, BaseInst);
1048   }
1049 
1050   // Returns a instruction which produces the base pointer for a given
1051   // instruction.  The instruction is assumed to be an input to one of the BDVs
1052   // seen in the inference algorithm above.  As such, we must either already
1053   // know it's base defining value is a base, or have inserted a new
1054   // instruction to propagate the base of it's BDV and have entered that newly
1055   // introduced instruction into the state table.  In either case, we are
1056   // assured to be able to determine an instruction which produces it's base
1057   // pointer.
1058   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1059     Value *BDV = findBaseOrBDV(Input, Cache);
1060     Value *Base = nullptr;
1061     if (isKnownBaseResult(BDV) && areBothVectorOrScalar(BDV, Input)) {
1062       Base = BDV;
1063     } else {
1064       // Either conflict or base.
1065       assert(States.count(BDV));
1066       Base = States[BDV].getBaseValue();
1067     }
1068     assert(Base && "Can't be null");
1069     // The cast is needed since base traversal may strip away bitcasts
1070     if (Base->getType() != Input->getType() && InsertPt)
1071       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1072     return Base;
1073   };
1074 
1075   // Fixup all the inputs of the new PHIs.  Visit order needs to be
1076   // deterministic and predictable because we're naming newly created
1077   // instructions.
1078   for (auto Pair : States) {
1079     Instruction *BDV = cast<Instruction>(Pair.first);
1080     BDVState State = Pair.second;
1081 
1082     // Only values that do not have known bases or those that have differing
1083     // type (scalar versus vector) from a possible known base should be in the
1084     // lattice.
1085     assert((!isKnownBaseResult(BDV) ||
1086             !areBothVectorOrScalar(BDV, State.getBaseValue())) &&
1087            "why did it get added?");
1088     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1089     if (!State.isConflict())
1090       continue;
1091 
1092     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1093       PHINode *PN = cast<PHINode>(BDV);
1094       unsigned NumPHIValues = PN->getNumIncomingValues();
1095       for (unsigned i = 0; i < NumPHIValues; i++) {
1096         Value *InVal = PN->getIncomingValue(i);
1097         BasicBlock *InBB = PN->getIncomingBlock(i);
1098 
1099         // If we've already seen InBB, add the same incoming value
1100         // we added for it earlier.  The IR verifier requires phi
1101         // nodes with multiple entries from the same basic block
1102         // to have the same incoming value for each of those
1103         // entries.  If we don't do this check here and basephi
1104         // has a different type than base, we'll end up adding two
1105         // bitcasts (and hence two distinct values) as incoming
1106         // values for the same basic block.
1107 
1108         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
1109         if (BlockIndex != -1) {
1110           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
1111           BasePHI->addIncoming(OldBase, InBB);
1112 
1113 #ifndef NDEBUG
1114           Value *Base = getBaseForInput(InVal, nullptr);
1115           // In essence this assert states: the only way two values
1116           // incoming from the same basic block may be different is by
1117           // being different bitcasts of the same value.  A cleanup
1118           // that remains TODO is changing findBaseOrBDV to return an
1119           // llvm::Value of the correct type (and still remain pure).
1120           // This will remove the need to add bitcasts.
1121           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1122                  "Sanity -- findBaseOrBDV should be pure!");
1123 #endif
1124           continue;
1125         }
1126 
1127         // Find the instruction which produces the base for each input.  We may
1128         // need to insert a bitcast in the incoming block.
1129         // TODO: Need to split critical edges if insertion is needed
1130         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1131         BasePHI->addIncoming(Base, InBB);
1132       }
1133       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
1134     } else if (SelectInst *BaseSI =
1135                    dyn_cast<SelectInst>(State.getBaseValue())) {
1136       SelectInst *SI = cast<SelectInst>(BDV);
1137 
1138       // Find the instruction which produces the base for each input.
1139       // We may need to insert a bitcast.
1140       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1141       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1142     } else if (auto *BaseEE =
1143                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1144       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1145       // Find the instruction which produces the base for each input.  We may
1146       // need to insert a bitcast.
1147       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1148     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1149       auto *BdvIE = cast<InsertElementInst>(BDV);
1150       auto UpdateOperand = [&](int OperandIdx) {
1151         Value *InVal = BdvIE->getOperand(OperandIdx);
1152         Value *Base = getBaseForInput(InVal, BaseIE);
1153         BaseIE->setOperand(OperandIdx, Base);
1154       };
1155       UpdateOperand(0); // vector operand
1156       UpdateOperand(1); // scalar operand
1157     } else {
1158       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1159       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1160       auto UpdateOperand = [&](int OperandIdx) {
1161         Value *InVal = BdvSV->getOperand(OperandIdx);
1162         Value *Base = getBaseForInput(InVal, BaseSV);
1163         BaseSV->setOperand(OperandIdx, Base);
1164       };
1165       UpdateOperand(0); // vector operand
1166       UpdateOperand(1); // vector operand
1167     }
1168   }
1169 
1170   // Cache all of our results so we can cheaply reuse them
1171   // NOTE: This is actually two caches: one of the base defining value
1172   // relation and one of the base pointer relation!  FIXME
1173   for (auto Pair : States) {
1174     auto *BDV = Pair.first;
1175     Value *Base = Pair.second.getBaseValue();
1176     assert(BDV && Base);
1177     // Only values that do not have known bases or those that have differing
1178     // type (scalar versus vector) from a possible known base should be in the
1179     // lattice.
1180     assert((!isKnownBaseResult(BDV) || !areBothVectorOrScalar(BDV, Base)) &&
1181            "why did it get added?");
1182 
1183     LLVM_DEBUG(
1184         dbgs() << "Updating base value cache"
1185                << " for: " << BDV->getName() << " from: "
1186                << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1187                << " to: " << Base->getName() << "\n");
1188 
1189     if (Cache.count(BDV)) {
1190       assert(isKnownBaseResult(Base) &&
1191              "must be something we 'know' is a base pointer");
1192       // Once we transition from the BDV relation being store in the Cache to
1193       // the base relation being stored, it must be stable
1194       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
1195              "base relation should be stable");
1196     }
1197     Cache[BDV] = Base;
1198   }
1199   assert(Cache.count(Def));
1200   return Cache[Def];
1201 }
1202 
1203 // For a set of live pointers (base and/or derived), identify the base
1204 // pointer of the object which they are derived from.  This routine will
1205 // mutate the IR graph as needed to make the 'base' pointer live at the
1206 // definition site of 'derived'.  This ensures that any use of 'derived' can
1207 // also use 'base'.  This may involve the insertion of a number of
1208 // additional PHI nodes.
1209 //
1210 // preconditions: live is a set of pointer type Values
1211 //
1212 // side effects: may insert PHI nodes into the existing CFG, will preserve
1213 // CFG, will not remove or mutate any existing nodes
1214 //
1215 // post condition: PointerToBase contains one (derived, base) pair for every
1216 // pointer in live.  Note that derived can be equal to base if the original
1217 // pointer was a base pointer.
1218 static void
1219 findBasePointers(const StatepointLiveSetTy &live,
1220                  MapVector<Value *, Value *> &PointerToBase,
1221                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1222   for (Value *ptr : live) {
1223     Value *base = findBasePointer(ptr, DVCache);
1224     assert(base && "failed to find base pointer");
1225     PointerToBase[ptr] = base;
1226     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1227             DT->dominates(cast<Instruction>(base)->getParent(),
1228                           cast<Instruction>(ptr)->getParent())) &&
1229            "The base we found better dominate the derived pointer");
1230   }
1231 }
1232 
1233 /// Find the required based pointers (and adjust the live set) for the given
1234 /// parse point.
1235 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1236                              CallBase *Call,
1237                              PartiallyConstructedSafepointRecord &result) {
1238   MapVector<Value *, Value *> PointerToBase;
1239   StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet;
1240   // We assume that all pointers passed to deopt are base pointers; as an
1241   // optimization, we can use this to avoid seperately materializing the base
1242   // pointer graph.  This is only relevant since we're very conservative about
1243   // generating new conflict nodes during base pointer insertion.  If we were
1244   // smarter there, this would be irrelevant.
1245   if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt))
1246     for (Value *V : Opt->Inputs) {
1247       if (!PotentiallyDerivedPointers.count(V))
1248         continue;
1249       PotentiallyDerivedPointers.remove(V);
1250       PointerToBase[V] = V;
1251     }
1252   findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache);
1253 
1254   if (PrintBasePointers) {
1255     errs() << "Base Pairs (w/o Relocation):\n";
1256     for (auto &Pair : PointerToBase) {
1257       errs() << " derived ";
1258       Pair.first->printAsOperand(errs(), false);
1259       errs() << " base ";
1260       Pair.second->printAsOperand(errs(), false);
1261       errs() << "\n";;
1262     }
1263   }
1264 
1265   result.PointerToBase = PointerToBase;
1266 }
1267 
1268 /// Given an updated version of the dataflow liveness results, update the
1269 /// liveset and base pointer maps for the call site CS.
1270 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1271                                   CallBase *Call,
1272                                   PartiallyConstructedSafepointRecord &result);
1273 
1274 static void recomputeLiveInValues(
1275     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1276     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1277   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1278   // again.  The old values are still live and will help it stabilize quickly.
1279   GCPtrLivenessData RevisedLivenessData;
1280   computeLiveInValues(DT, F, RevisedLivenessData);
1281   for (size_t i = 0; i < records.size(); i++) {
1282     struct PartiallyConstructedSafepointRecord &info = records[i];
1283     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1284   }
1285 }
1286 
1287 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1288 // no uses of the original value / return value between the gc.statepoint and
1289 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1290 // starting one of the successor blocks.  We also need to be able to insert the
1291 // gc.relocates only on the path which goes through the statepoint.  We might
1292 // need to split an edge to make this possible.
1293 static BasicBlock *
1294 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1295                             DominatorTree &DT) {
1296   BasicBlock *Ret = BB;
1297   if (!BB->getUniquePredecessor())
1298     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1299 
1300   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1301   // from it
1302   FoldSingleEntryPHINodes(Ret);
1303   assert(!isa<PHINode>(Ret->begin()) &&
1304          "All PHI nodes should have been removed!");
1305 
1306   // At this point, we can safely insert a gc.relocate or gc.result as the first
1307   // instruction in Ret if needed.
1308   return Ret;
1309 }
1310 
1311 // Create new attribute set containing only attributes which can be transferred
1312 // from original call to the safepoint.
1313 static AttributeList legalizeCallAttributes(LLVMContext &Ctx,
1314                                             AttributeList AL) {
1315   if (AL.isEmpty())
1316     return AL;
1317 
1318   // Remove the readonly, readnone, and statepoint function attributes.
1319   AttrBuilder FnAttrs = AL.getFnAttributes();
1320   FnAttrs.removeAttribute(Attribute::ReadNone);
1321   FnAttrs.removeAttribute(Attribute::ReadOnly);
1322   for (Attribute A : AL.getFnAttributes()) {
1323     if (isStatepointDirectiveAttr(A))
1324       FnAttrs.remove(A);
1325   }
1326 
1327   // Just skip parameter and return attributes for now
1328   return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1329                             AttributeSet::get(Ctx, FnAttrs));
1330 }
1331 
1332 /// Helper function to place all gc relocates necessary for the given
1333 /// statepoint.
1334 /// Inputs:
1335 ///   liveVariables - list of variables to be relocated.
1336 ///   basePtrs - base pointers.
1337 ///   statepointToken - statepoint instruction to which relocates should be
1338 ///   bound.
1339 ///   Builder - Llvm IR builder to be used to construct new calls.
1340 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1341                               ArrayRef<Value *> BasePtrs,
1342                               Instruction *StatepointToken,
1343                               IRBuilder<> &Builder) {
1344   if (LiveVariables.empty())
1345     return;
1346 
1347   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1348     auto ValIt = llvm::find(LiveVec, Val);
1349     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1350     size_t Index = std::distance(LiveVec.begin(), ValIt);
1351     assert(Index < LiveVec.size() && "Bug in std::find?");
1352     return Index;
1353   };
1354   Module *M = StatepointToken->getModule();
1355 
1356   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1357   // element type is i8 addrspace(1)*). We originally generated unique
1358   // declarations for each pointer type, but this proved problematic because
1359   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1360   // towards a single unified pointer type anyways, we can just cast everything
1361   // to an i8* of the right address space.  A bitcast is added later to convert
1362   // gc_relocate to the actual value's type.
1363   auto getGCRelocateDecl = [&] (Type *Ty) {
1364     assert(isHandledGCPointerType(Ty));
1365     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1366     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1367     if (auto *VT = dyn_cast<VectorType>(Ty))
1368       NewTy = FixedVectorType::get(NewTy,
1369                                    cast<FixedVectorType>(VT)->getNumElements());
1370     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1371                                      {NewTy});
1372   };
1373 
1374   // Lazily populated map from input types to the canonicalized form mentioned
1375   // in the comment above.  This should probably be cached somewhere more
1376   // broadly.
1377   DenseMap<Type *, Function *> TypeToDeclMap;
1378 
1379   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1380     // Generate the gc.relocate call and save the result
1381     Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i]));
1382     Value *LiveIdx = Builder.getInt32(i);
1383 
1384     Type *Ty = LiveVariables[i]->getType();
1385     if (!TypeToDeclMap.count(Ty))
1386       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1387     Function *GCRelocateDecl = TypeToDeclMap[Ty];
1388 
1389     // only specify a debug name if we can give a useful one
1390     CallInst *Reloc = Builder.CreateCall(
1391         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1392         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1393     // Trick CodeGen into thinking there are lots of free registers at this
1394     // fake call.
1395     Reloc->setCallingConv(CallingConv::Cold);
1396   }
1397 }
1398 
1399 namespace {
1400 
1401 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1402 /// avoids having to worry about keeping around dangling pointers to Values.
1403 class DeferredReplacement {
1404   AssertingVH<Instruction> Old;
1405   AssertingVH<Instruction> New;
1406   bool IsDeoptimize = false;
1407 
1408   DeferredReplacement() = default;
1409 
1410 public:
1411   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1412     assert(Old != New && Old && New &&
1413            "Cannot RAUW equal values or to / from null!");
1414 
1415     DeferredReplacement D;
1416     D.Old = Old;
1417     D.New = New;
1418     return D;
1419   }
1420 
1421   static DeferredReplacement createDelete(Instruction *ToErase) {
1422     DeferredReplacement D;
1423     D.Old = ToErase;
1424     return D;
1425   }
1426 
1427   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1428 #ifndef NDEBUG
1429     auto *F = cast<CallInst>(Old)->getCalledFunction();
1430     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1431            "Only way to construct a deoptimize deferred replacement");
1432 #endif
1433     DeferredReplacement D;
1434     D.Old = Old;
1435     D.IsDeoptimize = true;
1436     return D;
1437   }
1438 
1439   /// Does the task represented by this instance.
1440   void doReplacement() {
1441     Instruction *OldI = Old;
1442     Instruction *NewI = New;
1443 
1444     assert(OldI != NewI && "Disallowed at construction?!");
1445     assert((!IsDeoptimize || !New) &&
1446            "Deoptimize intrinsics are not replaced!");
1447 
1448     Old = nullptr;
1449     New = nullptr;
1450 
1451     if (NewI)
1452       OldI->replaceAllUsesWith(NewI);
1453 
1454     if (IsDeoptimize) {
1455       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1456       // not necessarily be followed by the matching return.
1457       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1458       new UnreachableInst(RI->getContext(), RI);
1459       RI->eraseFromParent();
1460     }
1461 
1462     OldI->eraseFromParent();
1463   }
1464 };
1465 
1466 } // end anonymous namespace
1467 
1468 static StringRef getDeoptLowering(CallBase *Call) {
1469   const char *DeoptLowering = "deopt-lowering";
1470   if (Call->hasFnAttr(DeoptLowering)) {
1471     // FIXME: Calls have a *really* confusing interface around attributes
1472     // with values.
1473     const AttributeList &CSAS = Call->getAttributes();
1474     if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1475       return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1476           .getValueAsString();
1477     Function *F = Call->getCalledFunction();
1478     assert(F && F->hasFnAttribute(DeoptLowering));
1479     return F->getFnAttribute(DeoptLowering).getValueAsString();
1480   }
1481   return "live-through";
1482 }
1483 
1484 static void
1485 makeStatepointExplicitImpl(CallBase *Call, /* to replace */
1486                            const SmallVectorImpl<Value *> &BasePtrs,
1487                            const SmallVectorImpl<Value *> &LiveVariables,
1488                            PartiallyConstructedSafepointRecord &Result,
1489                            std::vector<DeferredReplacement> &Replacements) {
1490   assert(BasePtrs.size() == LiveVariables.size());
1491 
1492   // Then go ahead and use the builder do actually do the inserts.  We insert
1493   // immediately before the previous instruction under the assumption that all
1494   // arguments will be available here.  We can't insert afterwards since we may
1495   // be replacing a terminator.
1496   IRBuilder<> Builder(Call);
1497 
1498   ArrayRef<Value *> GCArgs(LiveVariables);
1499   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1500   uint32_t NumPatchBytes = 0;
1501   uint32_t Flags = uint32_t(StatepointFlags::None);
1502 
1503   SmallVector<Value *, 8> CallArgs(Call->args());
1504   Optional<ArrayRef<Use>> DeoptArgs;
1505   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt))
1506     DeoptArgs = Bundle->Inputs;
1507   Optional<ArrayRef<Use>> TransitionArgs;
1508   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
1509     TransitionArgs = Bundle->Inputs;
1510     // TODO: This flag no longer serves a purpose and can be removed later
1511     Flags |= uint32_t(StatepointFlags::GCTransition);
1512   }
1513 
1514   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1515   // with a return value, we lower then as never returning calls to
1516   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1517   bool IsDeoptimize = false;
1518 
1519   StatepointDirectives SD =
1520       parseStatepointDirectivesFromAttrs(Call->getAttributes());
1521   if (SD.NumPatchBytes)
1522     NumPatchBytes = *SD.NumPatchBytes;
1523   if (SD.StatepointID)
1524     StatepointID = *SD.StatepointID;
1525 
1526   // Pass through the requested lowering if any.  The default is live-through.
1527   StringRef DeoptLowering = getDeoptLowering(Call);
1528   if (DeoptLowering.equals("live-in"))
1529     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1530   else {
1531     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1532   }
1533 
1534   Value *CallTarget = Call->getCalledOperand();
1535   if (Function *F = dyn_cast<Function>(CallTarget)) {
1536     auto IID = F->getIntrinsicID();
1537     if (IID == Intrinsic::experimental_deoptimize) {
1538       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1539       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1540       // verifier does not allow taking the address of an intrinsic function.
1541 
1542       SmallVector<Type *, 8> DomainTy;
1543       for (Value *Arg : CallArgs)
1544         DomainTy.push_back(Arg->getType());
1545       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1546                                     /* isVarArg = */ false);
1547 
1548       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1549       // calls to @llvm.experimental.deoptimize with different argument types in
1550       // the same module.  This is fine -- we assume the frontend knew what it
1551       // was doing when generating this kind of IR.
1552       CallTarget = F->getParent()
1553                        ->getOrInsertFunction("__llvm_deoptimize", FTy)
1554                        .getCallee();
1555 
1556       IsDeoptimize = true;
1557     } else if (IID == Intrinsic::memcpy_element_unordered_atomic ||
1558                IID == Intrinsic::memmove_element_unordered_atomic) {
1559       // Unordered atomic memcpy and memmove intrinsics which are not explicitly
1560       // marked as "gc-leaf-function" should be lowered in a GC parseable way.
1561       // Specifically, these calls should be lowered to the
1562       // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols.
1563       // Similarly to __llvm_deoptimize we want to resolve this now, since the
1564       // verifier does not allow taking the address of an intrinsic function.
1565       //
1566       // Moreover we need to shuffle the arguments for the call in order to
1567       // accommodate GC. The underlying source and destination objects might be
1568       // relocated during copy operation should the GC occur. To relocate the
1569       // derived source and destination pointers the implementation of the
1570       // intrinsic should know the corresponding base pointers.
1571       //
1572       // To make the base pointers available pass them explicitly as arguments:
1573       //   memcpy(dest_derived, source_derived, ...) =>
1574       //   memcpy(dest_base, dest_offset, source_base, source_offset, ...)
1575       auto &Context = Call->getContext();
1576       auto &DL = Call->getModule()->getDataLayout();
1577       auto GetBaseAndOffset = [&](Value *Derived) {
1578         assert(Result.PointerToBase.count(Derived));
1579         unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
1580         unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
1581         Value *Base = Result.PointerToBase.find(Derived)->second;
1582         Value *Base_int = Builder.CreatePtrToInt(
1583             Base, Type::getIntNTy(Context, IntPtrSize));
1584         Value *Derived_int = Builder.CreatePtrToInt(
1585             Derived, Type::getIntNTy(Context, IntPtrSize));
1586         return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int));
1587       };
1588 
1589       auto *Dest = CallArgs[0];
1590       Value *DestBase, *DestOffset;
1591       std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest);
1592 
1593       auto *Source = CallArgs[1];
1594       Value *SourceBase, *SourceOffset;
1595       std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source);
1596 
1597       auto *LengthInBytes = CallArgs[2];
1598       auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]);
1599 
1600       CallArgs.clear();
1601       CallArgs.push_back(DestBase);
1602       CallArgs.push_back(DestOffset);
1603       CallArgs.push_back(SourceBase);
1604       CallArgs.push_back(SourceOffset);
1605       CallArgs.push_back(LengthInBytes);
1606 
1607       SmallVector<Type *, 8> DomainTy;
1608       for (Value *Arg : CallArgs)
1609         DomainTy.push_back(Arg->getType());
1610       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1611                                     /* isVarArg = */ false);
1612 
1613       auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) {
1614         uint64_t ElementSize = ElementSizeCI->getZExtValue();
1615         if (IID == Intrinsic::memcpy_element_unordered_atomic) {
1616           switch (ElementSize) {
1617           case 1:
1618             return "__llvm_memcpy_element_unordered_atomic_safepoint_1";
1619           case 2:
1620             return "__llvm_memcpy_element_unordered_atomic_safepoint_2";
1621           case 4:
1622             return "__llvm_memcpy_element_unordered_atomic_safepoint_4";
1623           case 8:
1624             return "__llvm_memcpy_element_unordered_atomic_safepoint_8";
1625           case 16:
1626             return "__llvm_memcpy_element_unordered_atomic_safepoint_16";
1627           default:
1628             llvm_unreachable("unexpected element size!");
1629           }
1630         }
1631         assert(IID == Intrinsic::memmove_element_unordered_atomic);
1632         switch (ElementSize) {
1633         case 1:
1634           return "__llvm_memmove_element_unordered_atomic_safepoint_1";
1635         case 2:
1636           return "__llvm_memmove_element_unordered_atomic_safepoint_2";
1637         case 4:
1638           return "__llvm_memmove_element_unordered_atomic_safepoint_4";
1639         case 8:
1640           return "__llvm_memmove_element_unordered_atomic_safepoint_8";
1641         case 16:
1642           return "__llvm_memmove_element_unordered_atomic_safepoint_16";
1643         default:
1644           llvm_unreachable("unexpected element size!");
1645         }
1646       };
1647 
1648       CallTarget =
1649           F->getParent()
1650               ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy)
1651               .getCallee();
1652     }
1653   }
1654 
1655   // Create the statepoint given all the arguments
1656   GCStatepointInst *Token = nullptr;
1657   if (auto *CI = dyn_cast<CallInst>(Call)) {
1658     CallInst *SPCall = Builder.CreateGCStatepointCall(
1659         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1660         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1661 
1662     SPCall->setTailCallKind(CI->getTailCallKind());
1663     SPCall->setCallingConv(CI->getCallingConv());
1664 
1665     // Currently we will fail on parameter attributes and on certain
1666     // function attributes.  In case if we can handle this set of attributes -
1667     // set up function attrs directly on statepoint and return attrs later for
1668     // gc_result intrinsic.
1669     SPCall->setAttributes(
1670         legalizeCallAttributes(CI->getContext(), CI->getAttributes()));
1671 
1672     Token = cast<GCStatepointInst>(SPCall);
1673 
1674     // Put the following gc_result and gc_relocate calls immediately after the
1675     // the old call (which we're about to delete)
1676     assert(CI->getNextNode() && "Not a terminator, must have next!");
1677     Builder.SetInsertPoint(CI->getNextNode());
1678     Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
1679   } else {
1680     auto *II = cast<InvokeInst>(Call);
1681 
1682     // Insert the new invoke into the old block.  We'll remove the old one in a
1683     // moment at which point this will become the new terminator for the
1684     // original block.
1685     InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
1686         StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
1687         II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
1688         "statepoint_token");
1689 
1690     SPInvoke->setCallingConv(II->getCallingConv());
1691 
1692     // Currently we will fail on parameter attributes and on certain
1693     // function attributes.  In case if we can handle this set of attributes -
1694     // set up function attrs directly on statepoint and return attrs later for
1695     // gc_result intrinsic.
1696     SPInvoke->setAttributes(
1697         legalizeCallAttributes(II->getContext(), II->getAttributes()));
1698 
1699     Token = cast<GCStatepointInst>(SPInvoke);
1700 
1701     // Generate gc relocates in exceptional path
1702     BasicBlock *UnwindBlock = II->getUnwindDest();
1703     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1704            UnwindBlock->getUniquePredecessor() &&
1705            "can't safely insert in this block!");
1706 
1707     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1708     Builder.SetCurrentDebugLocation(II->getDebugLoc());
1709 
1710     // Attach exceptional gc relocates to the landingpad.
1711     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1712     Result.UnwindToken = ExceptionalToken;
1713 
1714     CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder);
1715 
1716     // Generate gc relocates and returns for normal block
1717     BasicBlock *NormalDest = II->getNormalDest();
1718     assert(!isa<PHINode>(NormalDest->begin()) &&
1719            NormalDest->getUniquePredecessor() &&
1720            "can't safely insert in this block!");
1721 
1722     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1723 
1724     // gc relocates will be generated later as if it were regular call
1725     // statepoint
1726   }
1727   assert(Token && "Should be set in one of the above branches!");
1728 
1729   if (IsDeoptimize) {
1730     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1731     // transform the tail-call like structure to a call to a void function
1732     // followed by unreachable to get better codegen.
1733     Replacements.push_back(
1734         DeferredReplacement::createDeoptimizeReplacement(Call));
1735   } else {
1736     Token->setName("statepoint_token");
1737     if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
1738       StringRef Name = Call->hasName() ? Call->getName() : "";
1739       CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
1740       GCResult->setAttributes(
1741           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1742                              Call->getAttributes().getRetAttributes()));
1743 
1744       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1745       // live set of some other safepoint, in which case that safepoint's
1746       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1747       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1748       // after the live sets have been made explicit in the IR, and we no longer
1749       // have raw pointers to worry about.
1750       Replacements.emplace_back(
1751           DeferredReplacement::createRAUW(Call, GCResult));
1752     } else {
1753       Replacements.emplace_back(DeferredReplacement::createDelete(Call));
1754     }
1755   }
1756 
1757   Result.StatepointToken = Token;
1758 
1759   // Second, create a gc.relocate for every live variable
1760   CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder);
1761 }
1762 
1763 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1764 // which make the relocations happening at this safepoint explicit.
1765 //
1766 // WARNING: Does not do any fixup to adjust users of the original live
1767 // values.  That's the callers responsibility.
1768 static void
1769 makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
1770                        PartiallyConstructedSafepointRecord &Result,
1771                        std::vector<DeferredReplacement> &Replacements) {
1772   const auto &LiveSet = Result.LiveSet;
1773   const auto &PointerToBase = Result.PointerToBase;
1774 
1775   // Convert to vector for efficient cross referencing.
1776   SmallVector<Value *, 64> BaseVec, LiveVec;
1777   LiveVec.reserve(LiveSet.size());
1778   BaseVec.reserve(LiveSet.size());
1779   for (Value *L : LiveSet) {
1780     LiveVec.push_back(L);
1781     assert(PointerToBase.count(L));
1782     Value *Base = PointerToBase.find(L)->second;
1783     BaseVec.push_back(Base);
1784   }
1785   assert(LiveVec.size() == BaseVec.size());
1786 
1787   // Do the actual rewriting and delete the old statepoint
1788   makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
1789 }
1790 
1791 // Helper function for the relocationViaAlloca.
1792 //
1793 // It receives iterator to the statepoint gc relocates and emits a store to the
1794 // assigned location (via allocaMap) for the each one of them.  It adds the
1795 // visited values into the visitedLiveValues set, which we will later use them
1796 // for sanity checking.
1797 static void
1798 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1799                        DenseMap<Value *, AllocaInst *> &AllocaMap,
1800                        DenseSet<Value *> &VisitedLiveValues) {
1801   for (User *U : GCRelocs) {
1802     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1803     if (!Relocate)
1804       continue;
1805 
1806     Value *OriginalValue = Relocate->getDerivedPtr();
1807     assert(AllocaMap.count(OriginalValue));
1808     Value *Alloca = AllocaMap[OriginalValue];
1809 
1810     // Emit store into the related alloca
1811     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1812     // the correct type according to alloca.
1813     assert(Relocate->getNextNode() &&
1814            "Should always have one since it's not a terminator");
1815     IRBuilder<> Builder(Relocate->getNextNode());
1816     Value *CastedRelocatedValue =
1817       Builder.CreateBitCast(Relocate,
1818                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1819                             suffixed_name_or(Relocate, ".casted", ""));
1820 
1821     new StoreInst(CastedRelocatedValue, Alloca,
1822                   cast<Instruction>(CastedRelocatedValue)->getNextNode());
1823 
1824 #ifndef NDEBUG
1825     VisitedLiveValues.insert(OriginalValue);
1826 #endif
1827   }
1828 }
1829 
1830 // Helper function for the "relocationViaAlloca". Similar to the
1831 // "insertRelocationStores" but works for rematerialized values.
1832 static void insertRematerializationStores(
1833     const RematerializedValueMapTy &RematerializedValues,
1834     DenseMap<Value *, AllocaInst *> &AllocaMap,
1835     DenseSet<Value *> &VisitedLiveValues) {
1836   for (auto RematerializedValuePair: RematerializedValues) {
1837     Instruction *RematerializedValue = RematerializedValuePair.first;
1838     Value *OriginalValue = RematerializedValuePair.second;
1839 
1840     assert(AllocaMap.count(OriginalValue) &&
1841            "Can not find alloca for rematerialized value");
1842     Value *Alloca = AllocaMap[OriginalValue];
1843 
1844     new StoreInst(RematerializedValue, Alloca,
1845                   RematerializedValue->getNextNode());
1846 
1847 #ifndef NDEBUG
1848     VisitedLiveValues.insert(OriginalValue);
1849 #endif
1850   }
1851 }
1852 
1853 /// Do all the relocation update via allocas and mem2reg
1854 static void relocationViaAlloca(
1855     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1856     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1857 #ifndef NDEBUG
1858   // record initial number of (static) allocas; we'll check we have the same
1859   // number when we get done.
1860   int InitialAllocaNum = 0;
1861   for (Instruction &I : F.getEntryBlock())
1862     if (isa<AllocaInst>(I))
1863       InitialAllocaNum++;
1864 #endif
1865 
1866   // TODO-PERF: change data structures, reserve
1867   DenseMap<Value *, AllocaInst *> AllocaMap;
1868   SmallVector<AllocaInst *, 200> PromotableAllocas;
1869   // Used later to chack that we have enough allocas to store all values
1870   std::size_t NumRematerializedValues = 0;
1871   PromotableAllocas.reserve(Live.size());
1872 
1873   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1874   // "PromotableAllocas"
1875   const DataLayout &DL = F.getParent()->getDataLayout();
1876   auto emitAllocaFor = [&](Value *LiveValue) {
1877     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1878                                         DL.getAllocaAddrSpace(), "",
1879                                         F.getEntryBlock().getFirstNonPHI());
1880     AllocaMap[LiveValue] = Alloca;
1881     PromotableAllocas.push_back(Alloca);
1882   };
1883 
1884   // Emit alloca for each live gc pointer
1885   for (Value *V : Live)
1886     emitAllocaFor(V);
1887 
1888   // Emit allocas for rematerialized values
1889   for (const auto &Info : Records)
1890     for (auto RematerializedValuePair : Info.RematerializedValues) {
1891       Value *OriginalValue = RematerializedValuePair.second;
1892       if (AllocaMap.count(OriginalValue) != 0)
1893         continue;
1894 
1895       emitAllocaFor(OriginalValue);
1896       ++NumRematerializedValues;
1897     }
1898 
1899   // The next two loops are part of the same conceptual operation.  We need to
1900   // insert a store to the alloca after the original def and at each
1901   // redefinition.  We need to insert a load before each use.  These are split
1902   // into distinct loops for performance reasons.
1903 
1904   // Update gc pointer after each statepoint: either store a relocated value or
1905   // null (if no relocated value was found for this gc pointer and it is not a
1906   // gc_result).  This must happen before we update the statepoint with load of
1907   // alloca otherwise we lose the link between statepoint and old def.
1908   for (const auto &Info : Records) {
1909     Value *Statepoint = Info.StatepointToken;
1910 
1911     // This will be used for consistency check
1912     DenseSet<Value *> VisitedLiveValues;
1913 
1914     // Insert stores for normal statepoint gc relocates
1915     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1916 
1917     // In case if it was invoke statepoint
1918     // we will insert stores for exceptional path gc relocates.
1919     if (isa<InvokeInst>(Statepoint)) {
1920       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1921                              VisitedLiveValues);
1922     }
1923 
1924     // Do similar thing with rematerialized values
1925     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1926                                   VisitedLiveValues);
1927 
1928     if (ClobberNonLive) {
1929       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1930       // the gc.statepoint.  This will turn some subtle GC problems into
1931       // slightly easier to debug SEGVs.  Note that on large IR files with
1932       // lots of gc.statepoints this is extremely costly both memory and time
1933       // wise.
1934       SmallVector<AllocaInst *, 64> ToClobber;
1935       for (auto Pair : AllocaMap) {
1936         Value *Def = Pair.first;
1937         AllocaInst *Alloca = Pair.second;
1938 
1939         // This value was relocated
1940         if (VisitedLiveValues.count(Def)) {
1941           continue;
1942         }
1943         ToClobber.push_back(Alloca);
1944       }
1945 
1946       auto InsertClobbersAt = [&](Instruction *IP) {
1947         for (auto *AI : ToClobber) {
1948           auto PT = cast<PointerType>(AI->getAllocatedType());
1949           Constant *CPN = ConstantPointerNull::get(PT);
1950           new StoreInst(CPN, AI, IP);
1951         }
1952       };
1953 
1954       // Insert the clobbering stores.  These may get intermixed with the
1955       // gc.results and gc.relocates, but that's fine.
1956       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1957         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1958         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1959       } else {
1960         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1961       }
1962     }
1963   }
1964 
1965   // Update use with load allocas and add store for gc_relocated.
1966   for (auto Pair : AllocaMap) {
1967     Value *Def = Pair.first;
1968     AllocaInst *Alloca = Pair.second;
1969 
1970     // We pre-record the uses of allocas so that we dont have to worry about
1971     // later update that changes the user information..
1972 
1973     SmallVector<Instruction *, 20> Uses;
1974     // PERF: trade a linear scan for repeated reallocation
1975     Uses.reserve(Def->getNumUses());
1976     for (User *U : Def->users()) {
1977       if (!isa<ConstantExpr>(U)) {
1978         // If the def has a ConstantExpr use, then the def is either a
1979         // ConstantExpr use itself or null.  In either case
1980         // (recursively in the first, directly in the second), the oop
1981         // it is ultimately dependent on is null and this particular
1982         // use does not need to be fixed up.
1983         Uses.push_back(cast<Instruction>(U));
1984       }
1985     }
1986 
1987     llvm::sort(Uses);
1988     auto Last = std::unique(Uses.begin(), Uses.end());
1989     Uses.erase(Last, Uses.end());
1990 
1991     for (Instruction *Use : Uses) {
1992       if (isa<PHINode>(Use)) {
1993         PHINode *Phi = cast<PHINode>(Use);
1994         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1995           if (Def == Phi->getIncomingValue(i)) {
1996             LoadInst *Load =
1997                 new LoadInst(Alloca->getAllocatedType(), Alloca, "",
1998                              Phi->getIncomingBlock(i)->getTerminator());
1999             Phi->setIncomingValue(i, Load);
2000           }
2001         }
2002       } else {
2003         LoadInst *Load =
2004             new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
2005         Use->replaceUsesOfWith(Def, Load);
2006       }
2007     }
2008 
2009     // Emit store for the initial gc value.  Store must be inserted after load,
2010     // otherwise store will be in alloca's use list and an extra load will be
2011     // inserted before it.
2012     StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false,
2013                                      DL.getABITypeAlign(Def->getType()));
2014     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
2015       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
2016         // InvokeInst is a terminator so the store need to be inserted into its
2017         // normal destination block.
2018         BasicBlock *NormalDest = Invoke->getNormalDest();
2019         Store->insertBefore(NormalDest->getFirstNonPHI());
2020       } else {
2021         assert(!Inst->isTerminator() &&
2022                "The only terminator that can produce a value is "
2023                "InvokeInst which is handled above.");
2024         Store->insertAfter(Inst);
2025       }
2026     } else {
2027       assert(isa<Argument>(Def));
2028       Store->insertAfter(cast<Instruction>(Alloca));
2029     }
2030   }
2031 
2032   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
2033          "we must have the same allocas with lives");
2034   if (!PromotableAllocas.empty()) {
2035     // Apply mem2reg to promote alloca to SSA
2036     PromoteMemToReg(PromotableAllocas, DT);
2037   }
2038 
2039 #ifndef NDEBUG
2040   for (auto &I : F.getEntryBlock())
2041     if (isa<AllocaInst>(I))
2042       InitialAllocaNum--;
2043   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
2044 #endif
2045 }
2046 
2047 /// Implement a unique function which doesn't require we sort the input
2048 /// vector.  Doing so has the effect of changing the output of a couple of
2049 /// tests in ways which make them less useful in testing fused safepoints.
2050 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
2051   SmallSet<T, 8> Seen;
2052   erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; });
2053 }
2054 
2055 /// Insert holders so that each Value is obviously live through the entire
2056 /// lifetime of the call.
2057 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
2058                                  SmallVectorImpl<CallInst *> &Holders) {
2059   if (Values.empty())
2060     // No values to hold live, might as well not insert the empty holder
2061     return;
2062 
2063   Module *M = Call->getModule();
2064   // Use a dummy vararg function to actually hold the values live
2065   FunctionCallee Func = M->getOrInsertFunction(
2066       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
2067   if (isa<CallInst>(Call)) {
2068     // For call safepoints insert dummy calls right after safepoint
2069     Holders.push_back(
2070         CallInst::Create(Func, Values, "", &*++Call->getIterator()));
2071     return;
2072   }
2073   // For invoke safepooints insert dummy calls both in normal and
2074   // exceptional destination blocks
2075   auto *II = cast<InvokeInst>(Call);
2076   Holders.push_back(CallInst::Create(
2077       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
2078   Holders.push_back(CallInst::Create(
2079       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
2080 }
2081 
2082 static void findLiveReferences(
2083     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
2084     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
2085   GCPtrLivenessData OriginalLivenessData;
2086   computeLiveInValues(DT, F, OriginalLivenessData);
2087   for (size_t i = 0; i < records.size(); i++) {
2088     struct PartiallyConstructedSafepointRecord &info = records[i];
2089     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
2090   }
2091 }
2092 
2093 // Helper function for the "rematerializeLiveValues". It walks use chain
2094 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
2095 // the base or a value it cannot process. Only "simple" values are processed
2096 // (currently it is GEP's and casts). The returned root is  examined by the
2097 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
2098 // with all visited values.
2099 static Value* findRematerializableChainToBasePointer(
2100   SmallVectorImpl<Instruction*> &ChainToBase,
2101   Value *CurrentValue) {
2102   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2103     ChainToBase.push_back(GEP);
2104     return findRematerializableChainToBasePointer(ChainToBase,
2105                                                   GEP->getPointerOperand());
2106   }
2107 
2108   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2109     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2110       return CI;
2111 
2112     ChainToBase.push_back(CI);
2113     return findRematerializableChainToBasePointer(ChainToBase,
2114                                                   CI->getOperand(0));
2115   }
2116 
2117   // We have reached the root of the chain, which is either equal to the base or
2118   // is the first unsupported value along the use chain.
2119   return CurrentValue;
2120 }
2121 
2122 // Helper function for the "rematerializeLiveValues". Compute cost of the use
2123 // chain we are going to rematerialize.
2124 static InstructionCost
2125 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain,
2126                        TargetTransformInfo &TTI) {
2127   InstructionCost Cost = 0;
2128 
2129   for (Instruction *Instr : Chain) {
2130     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2131       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2132              "non noop cast is found during rematerialization");
2133 
2134       Type *SrcTy = CI->getOperand(0)->getType();
2135       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy,
2136                                    TTI::getCastContextHint(CI),
2137                                    TargetTransformInfo::TCK_SizeAndLatency, CI);
2138 
2139     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2140       // Cost of the address calculation
2141       Type *ValTy = GEP->getSourceElementType();
2142       Cost += TTI.getAddressComputationCost(ValTy);
2143 
2144       // And cost of the GEP itself
2145       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2146       //       allowed for the external usage)
2147       if (!GEP->hasAllConstantIndices())
2148         Cost += 2;
2149 
2150     } else {
2151       llvm_unreachable("unsupported instruction type during rematerialization");
2152     }
2153   }
2154 
2155   return Cost;
2156 }
2157 
2158 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
2159   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
2160   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
2161       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
2162     return false;
2163   // Map of incoming values and their corresponding basic blocks of
2164   // OrigRootPhi.
2165   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
2166   for (unsigned i = 0; i < PhiNum; i++)
2167     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2168         OrigRootPhi.getIncomingBlock(i);
2169 
2170   // Both current and base PHIs should have same incoming values and
2171   // the same basic blocks corresponding to the incoming values.
2172   for (unsigned i = 0; i < PhiNum; i++) {
2173     auto CIVI =
2174         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2175     if (CIVI == CurrentIncomingValues.end())
2176       return false;
2177     BasicBlock *CurrentIncomingBB = CIVI->second;
2178     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2179       return false;
2180   }
2181   return true;
2182 }
2183 
2184 // From the statepoint live set pick values that are cheaper to recompute then
2185 // to relocate. Remove this values from the live set, rematerialize them after
2186 // statepoint and record them in "Info" structure. Note that similar to
2187 // relocated values we don't do any user adjustments here.
2188 static void rematerializeLiveValues(CallBase *Call,
2189                                     PartiallyConstructedSafepointRecord &Info,
2190                                     TargetTransformInfo &TTI) {
2191   const unsigned int ChainLengthThreshold = 10;
2192 
2193   // Record values we are going to delete from this statepoint live set.
2194   // We can not di this in following loop due to iterator invalidation.
2195   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2196 
2197   for (Value *LiveValue: Info.LiveSet) {
2198     // For each live pointer find its defining chain
2199     SmallVector<Instruction *, 3> ChainToBase;
2200     assert(Info.PointerToBase.count(LiveValue));
2201     Value *RootOfChain =
2202       findRematerializableChainToBasePointer(ChainToBase,
2203                                              LiveValue);
2204 
2205     // Nothing to do, or chain is too long
2206     if ( ChainToBase.size() == 0 ||
2207         ChainToBase.size() > ChainLengthThreshold)
2208       continue;
2209 
2210     // Handle the scenario where the RootOfChain is not equal to the
2211     // Base Value, but they are essentially the same phi values.
2212     if (RootOfChain != Info.PointerToBase[LiveValue]) {
2213       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2214       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2215       if (!OrigRootPhi || !AlternateRootPhi)
2216         continue;
2217       // PHI nodes that have the same incoming values, and belonging to the same
2218       // basic blocks are essentially the same SSA value.  When the original phi
2219       // has incoming values with different base pointers, the original phi is
2220       // marked as conflict, and an additional `AlternateRootPhi` with the same
2221       // incoming values get generated by the findBasePointer function. We need
2222       // to identify the newly generated AlternateRootPhi (.base version of phi)
2223       // and RootOfChain (the original phi node itself) are the same, so that we
2224       // can rematerialize the gep and casts. This is a workaround for the
2225       // deficiency in the findBasePointer algorithm.
2226       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2227         continue;
2228       // Now that the phi nodes are proved to be the same, assert that
2229       // findBasePointer's newly generated AlternateRootPhi is present in the
2230       // liveset of the call.
2231       assert(Info.LiveSet.count(AlternateRootPhi));
2232     }
2233     // Compute cost of this chain
2234     InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI);
2235     // TODO: We can also account for cases when we will be able to remove some
2236     //       of the rematerialized values by later optimization passes. I.e if
2237     //       we rematerialized several intersecting chains. Or if original values
2238     //       don't have any uses besides this statepoint.
2239 
2240     // For invokes we need to rematerialize each chain twice - for normal and
2241     // for unwind basic blocks. Model this by multiplying cost by two.
2242     if (isa<InvokeInst>(Call)) {
2243       Cost *= 2;
2244     }
2245     // If it's too expensive - skip it
2246     if (Cost >= RematerializationThreshold)
2247       continue;
2248 
2249     // Remove value from the live set
2250     LiveValuesToBeDeleted.push_back(LiveValue);
2251 
2252     // Clone instructions and record them inside "Info" structure
2253 
2254     // Walk backwards to visit top-most instructions first
2255     std::reverse(ChainToBase.begin(), ChainToBase.end());
2256 
2257     // Utility function which clones all instructions from "ChainToBase"
2258     // and inserts them before "InsertBefore". Returns rematerialized value
2259     // which should be used after statepoint.
2260     auto rematerializeChain = [&ChainToBase](
2261         Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2262       Instruction *LastClonedValue = nullptr;
2263       Instruction *LastValue = nullptr;
2264       for (Instruction *Instr: ChainToBase) {
2265         // Only GEP's and casts are supported as we need to be careful to not
2266         // introduce any new uses of pointers not in the liveset.
2267         // Note that it's fine to introduce new uses of pointers which were
2268         // otherwise not used after this statepoint.
2269         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2270 
2271         Instruction *ClonedValue = Instr->clone();
2272         ClonedValue->insertBefore(InsertBefore);
2273         ClonedValue->setName(Instr->getName() + ".remat");
2274 
2275         // If it is not first instruction in the chain then it uses previously
2276         // cloned value. We should update it to use cloned value.
2277         if (LastClonedValue) {
2278           assert(LastValue);
2279           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2280 #ifndef NDEBUG
2281           for (auto OpValue : ClonedValue->operand_values()) {
2282             // Assert that cloned instruction does not use any instructions from
2283             // this chain other than LastClonedValue
2284             assert(!is_contained(ChainToBase, OpValue) &&
2285                    "incorrect use in rematerialization chain");
2286             // Assert that the cloned instruction does not use the RootOfChain
2287             // or the AlternateLiveBase.
2288             assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2289           }
2290 #endif
2291         } else {
2292           // For the first instruction, replace the use of unrelocated base i.e.
2293           // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2294           // live set. They have been proved to be the same PHI nodes.  Note
2295           // that the *only* use of the RootOfChain in the ChainToBase list is
2296           // the first Value in the list.
2297           if (RootOfChain != AlternateLiveBase)
2298             ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2299         }
2300 
2301         LastClonedValue = ClonedValue;
2302         LastValue = Instr;
2303       }
2304       assert(LastClonedValue);
2305       return LastClonedValue;
2306     };
2307 
2308     // Different cases for calls and invokes. For invokes we need to clone
2309     // instructions both on normal and unwind path.
2310     if (isa<CallInst>(Call)) {
2311       Instruction *InsertBefore = Call->getNextNode();
2312       assert(InsertBefore);
2313       Instruction *RematerializedValue = rematerializeChain(
2314           InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2315       Info.RematerializedValues[RematerializedValue] = LiveValue;
2316     } else {
2317       auto *Invoke = cast<InvokeInst>(Call);
2318 
2319       Instruction *NormalInsertBefore =
2320           &*Invoke->getNormalDest()->getFirstInsertionPt();
2321       Instruction *UnwindInsertBefore =
2322           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2323 
2324       Instruction *NormalRematerializedValue = rematerializeChain(
2325           NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2326       Instruction *UnwindRematerializedValue = rematerializeChain(
2327           UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2328 
2329       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2330       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2331     }
2332   }
2333 
2334   // Remove rematerializaed values from the live set
2335   for (auto LiveValue: LiveValuesToBeDeleted) {
2336     Info.LiveSet.remove(LiveValue);
2337   }
2338 }
2339 
2340 static bool insertParsePoints(Function &F, DominatorTree &DT,
2341                               TargetTransformInfo &TTI,
2342                               SmallVectorImpl<CallBase *> &ToUpdate) {
2343 #ifndef NDEBUG
2344   // sanity check the input
2345   std::set<CallBase *> Uniqued;
2346   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2347   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2348 
2349   for (CallBase *Call : ToUpdate)
2350     assert(Call->getFunction() == &F);
2351 #endif
2352 
2353   // When inserting gc.relocates for invokes, we need to be able to insert at
2354   // the top of the successor blocks.  See the comment on
2355   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2356   // may restructure the CFG.
2357   for (CallBase *Call : ToUpdate) {
2358     auto *II = dyn_cast<InvokeInst>(Call);
2359     if (!II)
2360       continue;
2361     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2362     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2363   }
2364 
2365   // A list of dummy calls added to the IR to keep various values obviously
2366   // live in the IR.  We'll remove all of these when done.
2367   SmallVector<CallInst *, 64> Holders;
2368 
2369   // Insert a dummy call with all of the deopt operands we'll need for the
2370   // actual safepoint insertion as arguments.  This ensures reference operands
2371   // in the deopt argument list are considered live through the safepoint (and
2372   // thus makes sure they get relocated.)
2373   for (CallBase *Call : ToUpdate) {
2374     SmallVector<Value *, 64> DeoptValues;
2375 
2376     for (Value *Arg : GetDeoptBundleOperands(Call)) {
2377       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2378              "support for FCA unimplemented");
2379       if (isHandledGCPointerType(Arg->getType()))
2380         DeoptValues.push_back(Arg);
2381     }
2382 
2383     insertUseHolderAfter(Call, DeoptValues, Holders);
2384   }
2385 
2386   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2387 
2388   // A) Identify all gc pointers which are statically live at the given call
2389   // site.
2390   findLiveReferences(F, DT, ToUpdate, Records);
2391 
2392   // B) Find the base pointers for each live pointer
2393   /* scope for caching */ {
2394     // Cache the 'defining value' relation used in the computation and
2395     // insertion of base phis and selects.  This ensures that we don't insert
2396     // large numbers of duplicate base_phis.
2397     DefiningValueMapTy DVCache;
2398 
2399     for (size_t i = 0; i < Records.size(); i++) {
2400       PartiallyConstructedSafepointRecord &info = Records[i];
2401       findBasePointers(DT, DVCache, ToUpdate[i], info);
2402     }
2403   } // end of cache scope
2404 
2405   // The base phi insertion logic (for any safepoint) may have inserted new
2406   // instructions which are now live at some safepoint.  The simplest such
2407   // example is:
2408   // loop:
2409   //   phi a  <-- will be a new base_phi here
2410   //   safepoint 1 <-- that needs to be live here
2411   //   gep a + 1
2412   //   safepoint 2
2413   //   br loop
2414   // We insert some dummy calls after each safepoint to definitely hold live
2415   // the base pointers which were identified for that safepoint.  We'll then
2416   // ask liveness for _every_ base inserted to see what is now live.  Then we
2417   // remove the dummy calls.
2418   Holders.reserve(Holders.size() + Records.size());
2419   for (size_t i = 0; i < Records.size(); i++) {
2420     PartiallyConstructedSafepointRecord &Info = Records[i];
2421 
2422     SmallVector<Value *, 128> Bases;
2423     for (auto Pair : Info.PointerToBase)
2424       Bases.push_back(Pair.second);
2425 
2426     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2427   }
2428 
2429   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2430   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2431   // not the key issue.
2432   recomputeLiveInValues(F, DT, ToUpdate, Records);
2433 
2434   if (PrintBasePointers) {
2435     for (auto &Info : Records) {
2436       errs() << "Base Pairs: (w/Relocation)\n";
2437       for (auto Pair : Info.PointerToBase) {
2438         errs() << " derived ";
2439         Pair.first->printAsOperand(errs(), false);
2440         errs() << " base ";
2441         Pair.second->printAsOperand(errs(), false);
2442         errs() << "\n";
2443       }
2444     }
2445   }
2446 
2447   // It is possible that non-constant live variables have a constant base.  For
2448   // example, a GEP with a variable offset from a global.  In this case we can
2449   // remove it from the liveset.  We already don't add constants to the liveset
2450   // because we assume they won't move at runtime and the GC doesn't need to be
2451   // informed about them.  The same reasoning applies if the base is constant.
2452   // Note that the relocation placement code relies on this filtering for
2453   // correctness as it expects the base to be in the liveset, which isn't true
2454   // if the base is constant.
2455   for (auto &Info : Records)
2456     for (auto &BasePair : Info.PointerToBase)
2457       if (isa<Constant>(BasePair.second))
2458         Info.LiveSet.remove(BasePair.first);
2459 
2460   for (CallInst *CI : Holders)
2461     CI->eraseFromParent();
2462 
2463   Holders.clear();
2464 
2465   // In order to reduce live set of statepoint we might choose to rematerialize
2466   // some values instead of relocating them. This is purely an optimization and
2467   // does not influence correctness.
2468   for (size_t i = 0; i < Records.size(); i++)
2469     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2470 
2471   // We need this to safely RAUW and delete call or invoke return values that
2472   // may themselves be live over a statepoint.  For details, please see usage in
2473   // makeStatepointExplicitImpl.
2474   std::vector<DeferredReplacement> Replacements;
2475 
2476   // Now run through and replace the existing statepoints with new ones with
2477   // the live variables listed.  We do not yet update uses of the values being
2478   // relocated. We have references to live variables that need to
2479   // survive to the last iteration of this loop.  (By construction, the
2480   // previous statepoint can not be a live variable, thus we can and remove
2481   // the old statepoint calls as we go.)
2482   for (size_t i = 0; i < Records.size(); i++)
2483     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2484 
2485   ToUpdate.clear(); // prevent accident use of invalid calls.
2486 
2487   for (auto &PR : Replacements)
2488     PR.doReplacement();
2489 
2490   Replacements.clear();
2491 
2492   for (auto &Info : Records) {
2493     // These live sets may contain state Value pointers, since we replaced calls
2494     // with operand bundles with calls wrapped in gc.statepoint, and some of
2495     // those calls may have been def'ing live gc pointers.  Clear these out to
2496     // avoid accidentally using them.
2497     //
2498     // TODO: We should create a separate data structure that does not contain
2499     // these live sets, and migrate to using that data structure from this point
2500     // onward.
2501     Info.LiveSet.clear();
2502     Info.PointerToBase.clear();
2503   }
2504 
2505   // Do all the fixups of the original live variables to their relocated selves
2506   SmallVector<Value *, 128> Live;
2507   for (size_t i = 0; i < Records.size(); i++) {
2508     PartiallyConstructedSafepointRecord &Info = Records[i];
2509 
2510     // We can't simply save the live set from the original insertion.  One of
2511     // the live values might be the result of a call which needs a safepoint.
2512     // That Value* no longer exists and we need to use the new gc_result.
2513     // Thankfully, the live set is embedded in the statepoint (and updated), so
2514     // we just grab that.
2515     llvm::append_range(Live, Info.StatepointToken->gc_args());
2516 #ifndef NDEBUG
2517     // Do some basic sanity checks on our liveness results before performing
2518     // relocation.  Relocation can and will turn mistakes in liveness results
2519     // into non-sensical code which is must harder to debug.
2520     // TODO: It would be nice to test consistency as well
2521     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2522            "statepoint must be reachable or liveness is meaningless");
2523     for (Value *V : Info.StatepointToken->gc_args()) {
2524       if (!isa<Instruction>(V))
2525         // Non-instruction values trivial dominate all possible uses
2526         continue;
2527       auto *LiveInst = cast<Instruction>(V);
2528       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2529              "unreachable values should never be live");
2530       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2531              "basic SSA liveness expectation violated by liveness analysis");
2532     }
2533 #endif
2534   }
2535   unique_unsorted(Live);
2536 
2537 #ifndef NDEBUG
2538   // sanity check
2539   for (auto *Ptr : Live)
2540     assert(isHandledGCPointerType(Ptr->getType()) &&
2541            "must be a gc pointer type");
2542 #endif
2543 
2544   relocationViaAlloca(F, DT, Live, Records);
2545   return !Records.empty();
2546 }
2547 
2548 // Handles both return values and arguments for Functions and calls.
2549 template <typename AttrHolder>
2550 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2551                                       unsigned Index) {
2552   AttrBuilder R;
2553   if (AH.getDereferenceableBytes(Index))
2554     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2555                                   AH.getDereferenceableBytes(Index)));
2556   if (AH.getDereferenceableOrNullBytes(Index))
2557     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2558                                   AH.getDereferenceableOrNullBytes(Index)));
2559   if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
2560     R.addAttribute(Attribute::NoAlias);
2561 
2562   if (!R.empty())
2563     AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2564 }
2565 
2566 static void stripNonValidAttributesFromPrototype(Function &F) {
2567   LLVMContext &Ctx = F.getContext();
2568 
2569   for (Argument &A : F.args())
2570     if (isa<PointerType>(A.getType()))
2571       RemoveNonValidAttrAtIndex(Ctx, F,
2572                                 A.getArgNo() + AttributeList::FirstArgIndex);
2573 
2574   if (isa<PointerType>(F.getReturnType()))
2575     RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2576 }
2577 
2578 /// Certain metadata on instructions are invalid after running RS4GC.
2579 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2580 /// optimize functions. We drop such metadata on the instruction.
2581 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2582   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2583     return;
2584   // These are the attributes that are still valid on loads and stores after
2585   // RS4GC.
2586   // The metadata implying dereferenceability and noalias are (conservatively)
2587   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2588   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2589   // touch the entire heap including noalias objects. Note: The reasoning is
2590   // same as stripping the dereferenceability and noalias attributes that are
2591   // analogous to the metadata counterparts.
2592   // We also drop the invariant.load metadata on the load because that metadata
2593   // implies the address operand to the load points to memory that is never
2594   // changed once it became dereferenceable. This is no longer true after RS4GC.
2595   // Similar reasoning applies to invariant.group metadata, which applies to
2596   // loads within a group.
2597   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2598                          LLVMContext::MD_range,
2599                          LLVMContext::MD_alias_scope,
2600                          LLVMContext::MD_nontemporal,
2601                          LLVMContext::MD_nonnull,
2602                          LLVMContext::MD_align,
2603                          LLVMContext::MD_type};
2604 
2605   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2606   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2607 }
2608 
2609 static void stripNonValidDataFromBody(Function &F) {
2610   if (F.empty())
2611     return;
2612 
2613   LLVMContext &Ctx = F.getContext();
2614   MDBuilder Builder(Ctx);
2615 
2616   // Set of invariantstart instructions that we need to remove.
2617   // Use this to avoid invalidating the instruction iterator.
2618   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2619 
2620   for (Instruction &I : instructions(F)) {
2621     // invariant.start on memory location implies that the referenced memory
2622     // location is constant and unchanging. This is no longer true after
2623     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2624     // which frees the entire heap and the presence of invariant.start allows
2625     // the optimizer to sink the load of a memory location past a statepoint,
2626     // which is incorrect.
2627     if (auto *II = dyn_cast<IntrinsicInst>(&I))
2628       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2629         InvariantStartInstructions.push_back(II);
2630         continue;
2631       }
2632 
2633     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2634       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2635       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2636     }
2637 
2638     stripInvalidMetadataFromInstruction(I);
2639 
2640     if (auto *Call = dyn_cast<CallBase>(&I)) {
2641       for (int i = 0, e = Call->arg_size(); i != e; i++)
2642         if (isa<PointerType>(Call->getArgOperand(i)->getType()))
2643           RemoveNonValidAttrAtIndex(Ctx, *Call,
2644                                     i + AttributeList::FirstArgIndex);
2645       if (isa<PointerType>(Call->getType()))
2646         RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
2647     }
2648   }
2649 
2650   // Delete the invariant.start instructions and RAUW undef.
2651   for (auto *II : InvariantStartInstructions) {
2652     II->replaceAllUsesWith(UndefValue::get(II->getType()));
2653     II->eraseFromParent();
2654   }
2655 }
2656 
2657 /// Returns true if this function should be rewritten by this pass.  The main
2658 /// point of this function is as an extension point for custom logic.
2659 static bool shouldRewriteStatepointsIn(Function &F) {
2660   // TODO: This should check the GCStrategy
2661   if (F.hasGC()) {
2662     const auto &FunctionGCName = F.getGC();
2663     const StringRef StatepointExampleName("statepoint-example");
2664     const StringRef CoreCLRName("coreclr");
2665     return (StatepointExampleName == FunctionGCName) ||
2666            (CoreCLRName == FunctionGCName);
2667   } else
2668     return false;
2669 }
2670 
2671 static void stripNonValidData(Module &M) {
2672 #ifndef NDEBUG
2673   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2674 #endif
2675 
2676   for (Function &F : M)
2677     stripNonValidAttributesFromPrototype(F);
2678 
2679   for (Function &F : M)
2680     stripNonValidDataFromBody(F);
2681 }
2682 
2683 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2684                                             TargetTransformInfo &TTI,
2685                                             const TargetLibraryInfo &TLI) {
2686   assert(!F.isDeclaration() && !F.empty() &&
2687          "need function body to rewrite statepoints in");
2688   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2689 
2690   auto NeedsRewrite = [&TLI](Instruction &I) {
2691     if (const auto *Call = dyn_cast<CallBase>(&I)) {
2692       if (isa<GCStatepointInst>(Call))
2693         return false;
2694       if (callsGCLeafFunction(Call, TLI))
2695         return false;
2696 
2697       // Normally it's up to the frontend to make sure that non-leaf calls also
2698       // have proper deopt state if it is required. We make an exception for
2699       // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics
2700       // these are non-leaf by default. They might be generated by the optimizer
2701       // which doesn't know how to produce a proper deopt state. So if we see a
2702       // non-leaf memcpy/memmove without deopt state just treat it as a leaf
2703       // copy and don't produce a statepoint.
2704       if (!AllowStatepointWithNoDeoptInfo &&
2705           !Call->getOperandBundle(LLVMContext::OB_deopt)) {
2706         assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) &&
2707                "Don't expect any other calls here!");
2708         return false;
2709       }
2710       return true;
2711     }
2712     return false;
2713   };
2714 
2715   // Delete any unreachable statepoints so that we don't have unrewritten
2716   // statepoints surviving this pass.  This makes testing easier and the
2717   // resulting IR less confusing to human readers.
2718   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2719   bool MadeChange = removeUnreachableBlocks(F, &DTU);
2720   // Flush the Dominator Tree.
2721   DTU.getDomTree();
2722 
2723   // Gather all the statepoints which need rewritten.  Be careful to only
2724   // consider those in reachable code since we need to ask dominance queries
2725   // when rewriting.  We'll delete the unreachable ones in a moment.
2726   SmallVector<CallBase *, 64> ParsePointNeeded;
2727   for (Instruction &I : instructions(F)) {
2728     // TODO: only the ones with the flag set!
2729     if (NeedsRewrite(I)) {
2730       // NOTE removeUnreachableBlocks() is stronger than
2731       // DominatorTree::isReachableFromEntry(). In other words
2732       // removeUnreachableBlocks can remove some blocks for which
2733       // isReachableFromEntry() returns true.
2734       assert(DT.isReachableFromEntry(I.getParent()) &&
2735             "no unreachable blocks expected");
2736       ParsePointNeeded.push_back(cast<CallBase>(&I));
2737     }
2738   }
2739 
2740   // Return early if no work to do.
2741   if (ParsePointNeeded.empty())
2742     return MadeChange;
2743 
2744   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2745   // These are created by LCSSA.  They have the effect of increasing the size
2746   // of liveness sets for no good reason.  It may be harder to do this post
2747   // insertion since relocations and base phis can confuse things.
2748   for (BasicBlock &BB : F)
2749     if (BB.getUniquePredecessor())
2750       MadeChange |= FoldSingleEntryPHINodes(&BB);
2751 
2752   // Before we start introducing relocations, we want to tweak the IR a bit to
2753   // avoid unfortunate code generation effects.  The main example is that we
2754   // want to try to make sure the comparison feeding a branch is after any
2755   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2756   // values feeding a branch after relocation.  This is semantically correct,
2757   // but results in extra register pressure since both the pre-relocation and
2758   // post-relocation copies must be available in registers.  For code without
2759   // relocations this is handled elsewhere, but teaching the scheduler to
2760   // reverse the transform we're about to do would be slightly complex.
2761   // Note: This may extend the live range of the inputs to the icmp and thus
2762   // increase the liveset of any statepoint we move over.  This is profitable
2763   // as long as all statepoints are in rare blocks.  If we had in-register
2764   // lowering for live values this would be a much safer transform.
2765   auto getConditionInst = [](Instruction *TI) -> Instruction * {
2766     if (auto *BI = dyn_cast<BranchInst>(TI))
2767       if (BI->isConditional())
2768         return dyn_cast<Instruction>(BI->getCondition());
2769     // TODO: Extend this to handle switches
2770     return nullptr;
2771   };
2772   for (BasicBlock &BB : F) {
2773     Instruction *TI = BB.getTerminator();
2774     if (auto *Cond = getConditionInst(TI))
2775       // TODO: Handle more than just ICmps here.  We should be able to move
2776       // most instructions without side effects or memory access.
2777       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2778         MadeChange = true;
2779         Cond->moveBefore(TI);
2780       }
2781   }
2782 
2783   // Nasty workaround - The base computation code in the main algorithm doesn't
2784   // consider the fact that a GEP can be used to convert a scalar to a vector.
2785   // The right fix for this is to integrate GEPs into the base rewriting
2786   // algorithm properly, this is just a short term workaround to prevent
2787   // crashes by canonicalizing such GEPs into fully vector GEPs.
2788   for (Instruction &I : instructions(F)) {
2789     if (!isa<GetElementPtrInst>(I))
2790       continue;
2791 
2792     unsigned VF = 0;
2793     for (unsigned i = 0; i < I.getNumOperands(); i++)
2794       if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) {
2795         assert(VF == 0 ||
2796                VF == cast<FixedVectorType>(OpndVTy)->getNumElements());
2797         VF = cast<FixedVectorType>(OpndVTy)->getNumElements();
2798       }
2799 
2800     // It's the vector to scalar traversal through the pointer operand which
2801     // confuses base pointer rewriting, so limit ourselves to that case.
2802     if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
2803       IRBuilder<> B(&I);
2804       auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
2805       I.setOperand(0, Splat);
2806       MadeChange = true;
2807     }
2808   }
2809 
2810   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2811   return MadeChange;
2812 }
2813 
2814 // liveness computation via standard dataflow
2815 // -------------------------------------------------------------------
2816 
2817 // TODO: Consider using bitvectors for liveness, the set of potentially
2818 // interesting values should be small and easy to pre-compute.
2819 
2820 /// Compute the live-in set for the location rbegin starting from
2821 /// the live-out set of the basic block
2822 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2823                                 BasicBlock::reverse_iterator End,
2824                                 SetVector<Value *> &LiveTmp) {
2825   for (auto &I : make_range(Begin, End)) {
2826     // KILL/Def - Remove this definition from LiveIn
2827     LiveTmp.remove(&I);
2828 
2829     // Don't consider *uses* in PHI nodes, we handle their contribution to
2830     // predecessor blocks when we seed the LiveOut sets
2831     if (isa<PHINode>(I))
2832       continue;
2833 
2834     // USE - Add to the LiveIn set for this instruction
2835     for (Value *V : I.operands()) {
2836       assert(!isUnhandledGCPointerType(V->getType()) &&
2837              "support for FCA unimplemented");
2838       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2839         // The choice to exclude all things constant here is slightly subtle.
2840         // There are two independent reasons:
2841         // - We assume that things which are constant (from LLVM's definition)
2842         // do not move at runtime.  For example, the address of a global
2843         // variable is fixed, even though it's contents may not be.
2844         // - Second, we can't disallow arbitrary inttoptr constants even
2845         // if the language frontend does.  Optimization passes are free to
2846         // locally exploit facts without respect to global reachability.  This
2847         // can create sections of code which are dynamically unreachable and
2848         // contain just about anything.  (see constants.ll in tests)
2849         LiveTmp.insert(V);
2850       }
2851     }
2852   }
2853 }
2854 
2855 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2856   for (BasicBlock *Succ : successors(BB)) {
2857     for (auto &I : *Succ) {
2858       PHINode *PN = dyn_cast<PHINode>(&I);
2859       if (!PN)
2860         break;
2861 
2862       Value *V = PN->getIncomingValueForBlock(BB);
2863       assert(!isUnhandledGCPointerType(V->getType()) &&
2864              "support for FCA unimplemented");
2865       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2866         LiveTmp.insert(V);
2867     }
2868   }
2869 }
2870 
2871 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2872   SetVector<Value *> KillSet;
2873   for (Instruction &I : *BB)
2874     if (isHandledGCPointerType(I.getType()))
2875       KillSet.insert(&I);
2876   return KillSet;
2877 }
2878 
2879 #ifndef NDEBUG
2880 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2881 /// sanity check for the liveness computation.
2882 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2883                           Instruction *TI, bool TermOkay = false) {
2884   for (Value *V : Live) {
2885     if (auto *I = dyn_cast<Instruction>(V)) {
2886       // The terminator can be a member of the LiveOut set.  LLVM's definition
2887       // of instruction dominance states that V does not dominate itself.  As
2888       // such, we need to special case this to allow it.
2889       if (TermOkay && TI == I)
2890         continue;
2891       assert(DT.dominates(I, TI) &&
2892              "basic SSA liveness expectation violated by liveness analysis");
2893     }
2894   }
2895 }
2896 
2897 /// Check that all the liveness sets used during the computation of liveness
2898 /// obey basic SSA properties.  This is useful for finding cases where we miss
2899 /// a def.
2900 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2901                           BasicBlock &BB) {
2902   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2903   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2904   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2905 }
2906 #endif
2907 
2908 static void computeLiveInValues(DominatorTree &DT, Function &F,
2909                                 GCPtrLivenessData &Data) {
2910   SmallSetVector<BasicBlock *, 32> Worklist;
2911 
2912   // Seed the liveness for each individual block
2913   for (BasicBlock &BB : F) {
2914     Data.KillSet[&BB] = computeKillSet(&BB);
2915     Data.LiveSet[&BB].clear();
2916     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2917 
2918 #ifndef NDEBUG
2919     for (Value *Kill : Data.KillSet[&BB])
2920       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2921 #endif
2922 
2923     Data.LiveOut[&BB] = SetVector<Value *>();
2924     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2925     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2926     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2927     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2928     if (!Data.LiveIn[&BB].empty())
2929       Worklist.insert(pred_begin(&BB), pred_end(&BB));
2930   }
2931 
2932   // Propagate that liveness until stable
2933   while (!Worklist.empty()) {
2934     BasicBlock *BB = Worklist.pop_back_val();
2935 
2936     // Compute our new liveout set, then exit early if it hasn't changed despite
2937     // the contribution of our successor.
2938     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2939     const auto OldLiveOutSize = LiveOut.size();
2940     for (BasicBlock *Succ : successors(BB)) {
2941       assert(Data.LiveIn.count(Succ));
2942       LiveOut.set_union(Data.LiveIn[Succ]);
2943     }
2944     // assert OutLiveOut is a subset of LiveOut
2945     if (OldLiveOutSize == LiveOut.size()) {
2946       // If the sets are the same size, then we didn't actually add anything
2947       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
2948       // hasn't changed.
2949       continue;
2950     }
2951     Data.LiveOut[BB] = LiveOut;
2952 
2953     // Apply the effects of this basic block
2954     SetVector<Value *> LiveTmp = LiveOut;
2955     LiveTmp.set_union(Data.LiveSet[BB]);
2956     LiveTmp.set_subtract(Data.KillSet[BB]);
2957 
2958     assert(Data.LiveIn.count(BB));
2959     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2960     // assert: OldLiveIn is a subset of LiveTmp
2961     if (OldLiveIn.size() != LiveTmp.size()) {
2962       Data.LiveIn[BB] = LiveTmp;
2963       Worklist.insert(pred_begin(BB), pred_end(BB));
2964     }
2965   } // while (!Worklist.empty())
2966 
2967 #ifndef NDEBUG
2968   // Sanity check our output against SSA properties.  This helps catch any
2969   // missing kills during the above iteration.
2970   for (BasicBlock &BB : F)
2971     checkBasicSSA(DT, Data, BB);
2972 #endif
2973 }
2974 
2975 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2976                               StatepointLiveSetTy &Out) {
2977   BasicBlock *BB = Inst->getParent();
2978 
2979   // Note: The copy is intentional and required
2980   assert(Data.LiveOut.count(BB));
2981   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2982 
2983   // We want to handle the statepoint itself oddly.  It's
2984   // call result is not live (normal), nor are it's arguments
2985   // (unless they're used again later).  This adjustment is
2986   // specifically what we need to relocate
2987   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
2988                       LiveOut);
2989   LiveOut.remove(Inst);
2990   Out.insert(LiveOut.begin(), LiveOut.end());
2991 }
2992 
2993 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2994                                   CallBase *Call,
2995                                   PartiallyConstructedSafepointRecord &Info) {
2996   StatepointLiveSetTy Updated;
2997   findLiveSetAtInst(Call, RevisedLivenessData, Updated);
2998 
2999   // We may have base pointers which are now live that weren't before.  We need
3000   // to update the PointerToBase structure to reflect this.
3001   for (auto V : Updated)
3002     if (Info.PointerToBase.insert({V, V}).second) {
3003       assert(isKnownBaseResult(V) &&
3004              "Can't find base for unexpected live value!");
3005       continue;
3006     }
3007 
3008 #ifndef NDEBUG
3009   for (auto V : Updated)
3010     assert(Info.PointerToBase.count(V) &&
3011            "Must be able to find base for live value!");
3012 #endif
3013 
3014   // Remove any stale base mappings - this can happen since our liveness is
3015   // more precise then the one inherent in the base pointer analysis.
3016   DenseSet<Value *> ToErase;
3017   for (auto KVPair : Info.PointerToBase)
3018     if (!Updated.count(KVPair.first))
3019       ToErase.insert(KVPair.first);
3020 
3021   for (auto *V : ToErase)
3022     Info.PointerToBase.erase(V);
3023 
3024 #ifndef NDEBUG
3025   for (auto KVPair : Info.PointerToBase)
3026     assert(Updated.count(KVPair.first) && "record for non-live value");
3027 #endif
3028 
3029   Info.LiveSet = Updated;
3030 }
3031