xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 90547f1d201555727e23b8f42f3fc6ebabb0d65f)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Rewrite an existing set of gc.statepoints such that they make potential
11 // relocations performed by the garbage collector explicit in the IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Pass.h"
16 #include "llvm/Analysis/CFG.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstIterator.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/IR/Statepoint.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/IR/Verifier.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Transforms/Utils/Cloning.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
45 
46 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
47 
48 using namespace llvm;
49 
50 // Print the liveset found at the insert location
51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
52                                   cl::init(false));
53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
54                                       cl::init(false));
55 // Print out the base pointers for debugging
56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
57                                        cl::init(false));
58 
59 // Cost threshold measuring when it is profitable to rematerialize value instead
60 // of relocating it
61 static cl::opt<unsigned>
62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
63                            cl::init(6));
64 
65 #ifdef EXPENSIVE_CHECKS
66 static bool ClobberNonLive = true;
67 #else
68 static bool ClobberNonLive = false;
69 #endif
70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
71                                                   cl::location(ClobberNonLive),
72                                                   cl::Hidden);
73 
74 static cl::opt<bool>
75     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
76                                    cl::Hidden, cl::init(true));
77 
78 namespace {
79 struct RewriteStatepointsForGC : public ModulePass {
80   static char ID; // Pass identification, replacement for typeid
81 
82   RewriteStatepointsForGC() : ModulePass(ID) {
83     initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
84   }
85   bool runOnFunction(Function &F);
86   bool runOnModule(Module &M) override {
87     bool Changed = false;
88     for (Function &F : M)
89       Changed |= runOnFunction(F);
90 
91     if (Changed) {
92       // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
93       // returns true for at least one function in the module.  Since at least
94       // one function changed, we know that the precondition is satisfied.
95       stripNonValidAttributes(M);
96     }
97 
98     return Changed;
99   }
100 
101   void getAnalysisUsage(AnalysisUsage &AU) const override {
102     // We add and rewrite a bunch of instructions, but don't really do much
103     // else.  We could in theory preserve a lot more analyses here.
104     AU.addRequired<DominatorTreeWrapperPass>();
105     AU.addRequired<TargetTransformInfoWrapperPass>();
106   }
107 
108   /// The IR fed into RewriteStatepointsForGC may have had attributes implying
109   /// dereferenceability that are no longer valid/correct after
110   /// RewriteStatepointsForGC has run.  This is because semantically, after
111   /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
112   /// heap.  stripNonValidAttributes (conservatively) restores correctness
113   /// by erasing all attributes in the module that externally imply
114   /// dereferenceability.
115   /// Similar reasoning also applies to the noalias attributes. gc.statepoint
116   /// can touch the entire heap including noalias objects.
117   void stripNonValidAttributes(Module &M);
118 
119   // Helpers for stripNonValidAttributes
120   void stripNonValidAttributesFromBody(Function &F);
121   void stripNonValidAttributesFromPrototype(Function &F);
122 };
123 } // namespace
124 
125 char RewriteStatepointsForGC::ID = 0;
126 
127 ModulePass *llvm::createRewriteStatepointsForGCPass() {
128   return new RewriteStatepointsForGC();
129 }
130 
131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
132                       "Make relocations explicit at statepoints", false, false)
133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
136                     "Make relocations explicit at statepoints", false, false)
137 
138 namespace {
139 struct GCPtrLivenessData {
140   /// Values defined in this block.
141   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
142   /// Values used in this block (and thus live); does not included values
143   /// killed within this block.
144   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
145 
146   /// Values live into this basic block (i.e. used by any
147   /// instruction in this basic block or ones reachable from here)
148   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
149 
150   /// Values live out of this basic block (i.e. live into
151   /// any successor block)
152   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
153 };
154 
155 // The type of the internal cache used inside the findBasePointers family
156 // of functions.  From the callers perspective, this is an opaque type and
157 // should not be inspected.
158 //
159 // In the actual implementation this caches two relations:
160 // - The base relation itself (i.e. this pointer is based on that one)
161 // - The base defining value relation (i.e. before base_phi insertion)
162 // Generally, after the execution of a full findBasePointer call, only the
163 // base relation will remain.  Internally, we add a mixture of the two
164 // types, then update all the second type to the first type
165 typedef MapVector<Value *, Value *> DefiningValueMapTy;
166 typedef SetVector<Value *> StatepointLiveSetTy;
167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>>
168   RematerializedValueMapTy;
169 
170 struct PartiallyConstructedSafepointRecord {
171   /// The set of values known to be live across this safepoint
172   StatepointLiveSetTy LiveSet;
173 
174   /// Mapping from live pointers to a base-defining-value
175   MapVector<Value *, Value *> PointerToBase;
176 
177   /// The *new* gc.statepoint instruction itself.  This produces the token
178   /// that normal path gc.relocates and the gc.result are tied to.
179   Instruction *StatepointToken;
180 
181   /// Instruction to which exceptional gc relocates are attached
182   /// Makes it easier to iterate through them during relocationViaAlloca.
183   Instruction *UnwindToken;
184 
185   /// Record live values we are rematerialized instead of relocating.
186   /// They are not included into 'LiveSet' field.
187   /// Maps rematerialized copy to it's original value.
188   RematerializedValueMapTy RematerializedValues;
189 };
190 }
191 
192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
193   Optional<OperandBundleUse> DeoptBundle =
194       CS.getOperandBundle(LLVMContext::OB_deopt);
195 
196   if (!DeoptBundle.hasValue()) {
197     assert(AllowStatepointWithNoDeoptInfo &&
198            "Found non-leaf call without deopt info!");
199     return None;
200   }
201 
202   return DeoptBundle.getValue().Inputs;
203 }
204 
205 /// Compute the live-in set for every basic block in the function
206 static void computeLiveInValues(DominatorTree &DT, Function &F,
207                                 GCPtrLivenessData &Data);
208 
209 /// Given results from the dataflow liveness computation, find the set of live
210 /// Values at a particular instruction.
211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
212                               StatepointLiveSetTy &out);
213 
214 // TODO: Once we can get to the GCStrategy, this becomes
215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
216 
217 static bool isGCPointerType(Type *T) {
218   if (auto *PT = dyn_cast<PointerType>(T))
219     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
220     // GC managed heap.  We know that a pointer into this heap needs to be
221     // updated and that no other pointer does.
222     return (1 == PT->getAddressSpace());
223   return false;
224 }
225 
226 // Return true if this type is one which a) is a gc pointer or contains a GC
227 // pointer and b) is of a type this code expects to encounter as a live value.
228 // (The insertion code will assert that a type which matches (a) and not (b)
229 // is not encountered.)
230 static bool isHandledGCPointerType(Type *T) {
231   // We fully support gc pointers
232   if (isGCPointerType(T))
233     return true;
234   // We partially support vectors of gc pointers. The code will assert if it
235   // can't handle something.
236   if (auto VT = dyn_cast<VectorType>(T))
237     if (isGCPointerType(VT->getElementType()))
238       return true;
239   return false;
240 }
241 
242 #ifndef NDEBUG
243 /// Returns true if this type contains a gc pointer whether we know how to
244 /// handle that type or not.
245 static bool containsGCPtrType(Type *Ty) {
246   if (isGCPointerType(Ty))
247     return true;
248   if (VectorType *VT = dyn_cast<VectorType>(Ty))
249     return isGCPointerType(VT->getScalarType());
250   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
251     return containsGCPtrType(AT->getElementType());
252   if (StructType *ST = dyn_cast<StructType>(Ty))
253     return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
254                        containsGCPtrType);
255   return false;
256 }
257 
258 // Returns true if this is a type which a) is a gc pointer or contains a GC
259 // pointer and b) is of a type which the code doesn't expect (i.e. first class
260 // aggregates).  Used to trip assertions.
261 static bool isUnhandledGCPointerType(Type *Ty) {
262   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
263 }
264 #endif
265 
266 // Return the name of the value suffixed with the provided value, or if the
267 // value didn't have a name, the default value specified.
268 static std::string suffixed_name_or(Value *V, StringRef Suffix,
269                                     StringRef DefaultName) {
270   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
271 }
272 
273 // Conservatively identifies any definitions which might be live at the
274 // given instruction. The  analysis is performed immediately before the
275 // given instruction. Values defined by that instruction are not considered
276 // live.  Values used by that instruction are considered live.
277 static void
278 analyzeParsePointLiveness(DominatorTree &DT,
279                           GCPtrLivenessData &OriginalLivenessData, CallSite CS,
280                           PartiallyConstructedSafepointRecord &result) {
281   Instruction *inst = CS.getInstruction();
282 
283   StatepointLiveSetTy LiveSet;
284   findLiveSetAtInst(inst, OriginalLivenessData, LiveSet);
285 
286   if (PrintLiveSet) {
287     errs() << "Live Variables:\n";
288     for (Value *V : LiveSet)
289       dbgs() << " " << V->getName() << " " << *V << "\n";
290   }
291   if (PrintLiveSetSize) {
292     errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
293     errs() << "Number live values: " << LiveSet.size() << "\n";
294   }
295   result.LiveSet = LiveSet;
296 }
297 
298 static bool isKnownBaseResult(Value *V);
299 namespace {
300 /// A single base defining value - An immediate base defining value for an
301 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
302 /// For instructions which have multiple pointer [vector] inputs or that
303 /// transition between vector and scalar types, there is no immediate base
304 /// defining value.  The 'base defining value' for 'Def' is the transitive
305 /// closure of this relation stopping at the first instruction which has no
306 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
307 /// but it can also be an arbitrary derived pointer.
308 struct BaseDefiningValueResult {
309   /// Contains the value which is the base defining value.
310   Value * const BDV;
311   /// True if the base defining value is also known to be an actual base
312   /// pointer.
313   const bool IsKnownBase;
314   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
315     : BDV(BDV), IsKnownBase(IsKnownBase) {
316 #ifndef NDEBUG
317     // Check consistency between new and old means of checking whether a BDV is
318     // a base.
319     bool MustBeBase = isKnownBaseResult(BDV);
320     assert(!MustBeBase || MustBeBase == IsKnownBase);
321 #endif
322   }
323 };
324 }
325 
326 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
327 
328 /// Return a base defining value for the 'Index' element of the given vector
329 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
330 /// 'I'.  As an optimization, this method will try to determine when the
331 /// element is known to already be a base pointer.  If this can be established,
332 /// the second value in the returned pair will be true.  Note that either a
333 /// vector or a pointer typed value can be returned.  For the former, the
334 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
335 /// If the later, the return pointer is a BDV (or possibly a base) for the
336 /// particular element in 'I'.
337 static BaseDefiningValueResult
338 findBaseDefiningValueOfVector(Value *I) {
339   // Each case parallels findBaseDefiningValue below, see that code for
340   // detailed motivation.
341 
342   if (isa<Argument>(I))
343     // An incoming argument to the function is a base pointer
344     return BaseDefiningValueResult(I, true);
345 
346   if (isa<Constant>(I))
347     // Base of constant vector consists only of constant null pointers.
348     // For reasoning see similar case inside 'findBaseDefiningValue' function.
349     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
350                                    true);
351 
352   if (isa<LoadInst>(I))
353     return BaseDefiningValueResult(I, true);
354 
355   if (isa<InsertElementInst>(I))
356     // We don't know whether this vector contains entirely base pointers or
357     // not.  To be conservatively correct, we treat it as a BDV and will
358     // duplicate code as needed to construct a parallel vector of bases.
359     return BaseDefiningValueResult(I, false);
360 
361   if (isa<ShuffleVectorInst>(I))
362     // We don't know whether this vector contains entirely base pointers or
363     // not.  To be conservatively correct, we treat it as a BDV and will
364     // duplicate code as needed to construct a parallel vector of bases.
365     // TODO: There a number of local optimizations which could be applied here
366     // for particular sufflevector patterns.
367     return BaseDefiningValueResult(I, false);
368 
369   // A PHI or Select is a base defining value.  The outer findBasePointer
370   // algorithm is responsible for constructing a base value for this BDV.
371   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
372          "unknown vector instruction - no base found for vector element");
373   return BaseDefiningValueResult(I, false);
374 }
375 
376 /// Helper function for findBasePointer - Will return a value which either a)
377 /// defines the base pointer for the input, b) blocks the simple search
378 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
379 /// from pointer to vector type or back.
380 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
381   assert(I->getType()->isPtrOrPtrVectorTy() &&
382          "Illegal to ask for the base pointer of a non-pointer type");
383 
384   if (I->getType()->isVectorTy())
385     return findBaseDefiningValueOfVector(I);
386 
387   if (isa<Argument>(I))
388     // An incoming argument to the function is a base pointer
389     // We should have never reached here if this argument isn't an gc value
390     return BaseDefiningValueResult(I, true);
391 
392   if (isa<Constant>(I)) {
393     // We assume that objects with a constant base (e.g. a global) can't move
394     // and don't need to be reported to the collector because they are always
395     // live. Besides global references, all kinds of constants (e.g. undef,
396     // constant expressions, null pointers) can be introduced by the inliner or
397     // the optimizer, especially on dynamically dead paths.
398     // Here we treat all of them as having single null base. By doing this we
399     // trying to avoid problems reporting various conflicts in a form of
400     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
401     // See constant.ll file for relevant test cases.
402 
403     return BaseDefiningValueResult(
404         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
405   }
406 
407   if (CastInst *CI = dyn_cast<CastInst>(I)) {
408     Value *Def = CI->stripPointerCasts();
409     // If stripping pointer casts changes the address space there is an
410     // addrspacecast in between.
411     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
412                cast<PointerType>(CI->getType())->getAddressSpace() &&
413            "unsupported addrspacecast");
414     // If we find a cast instruction here, it means we've found a cast which is
415     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
416     // handle int->ptr conversion.
417     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
418     return findBaseDefiningValue(Def);
419   }
420 
421   if (isa<LoadInst>(I))
422     // The value loaded is an gc base itself
423     return BaseDefiningValueResult(I, true);
424 
425 
426   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
427     // The base of this GEP is the base
428     return findBaseDefiningValue(GEP->getPointerOperand());
429 
430   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
431     switch (II->getIntrinsicID()) {
432     default:
433       // fall through to general call handling
434       break;
435     case Intrinsic::experimental_gc_statepoint:
436       llvm_unreachable("statepoints don't produce pointers");
437     case Intrinsic::experimental_gc_relocate: {
438       // Rerunning safepoint insertion after safepoints are already
439       // inserted is not supported.  It could probably be made to work,
440       // but why are you doing this?  There's no good reason.
441       llvm_unreachable("repeat safepoint insertion is not supported");
442     }
443     case Intrinsic::gcroot:
444       // Currently, this mechanism hasn't been extended to work with gcroot.
445       // There's no reason it couldn't be, but I haven't thought about the
446       // implications much.
447       llvm_unreachable(
448           "interaction with the gcroot mechanism is not supported");
449     }
450   }
451   // We assume that functions in the source language only return base
452   // pointers.  This should probably be generalized via attributes to support
453   // both source language and internal functions.
454   if (isa<CallInst>(I) || isa<InvokeInst>(I))
455     return BaseDefiningValueResult(I, true);
456 
457   // I have absolutely no idea how to implement this part yet.  It's not
458   // necessarily hard, I just haven't really looked at it yet.
459   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
460 
461   if (isa<AtomicCmpXchgInst>(I))
462     // A CAS is effectively a atomic store and load combined under a
463     // predicate.  From the perspective of base pointers, we just treat it
464     // like a load.
465     return BaseDefiningValueResult(I, true);
466 
467   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
468                                    "binary ops which don't apply to pointers");
469 
470   // The aggregate ops.  Aggregates can either be in the heap or on the
471   // stack, but in either case, this is simply a field load.  As a result,
472   // this is a defining definition of the base just like a load is.
473   if (isa<ExtractValueInst>(I))
474     return BaseDefiningValueResult(I, true);
475 
476   // We should never see an insert vector since that would require we be
477   // tracing back a struct value not a pointer value.
478   assert(!isa<InsertValueInst>(I) &&
479          "Base pointer for a struct is meaningless");
480 
481   // An extractelement produces a base result exactly when it's input does.
482   // We may need to insert a parallel instruction to extract the appropriate
483   // element out of the base vector corresponding to the input. Given this,
484   // it's analogous to the phi and select case even though it's not a merge.
485   if (isa<ExtractElementInst>(I))
486     // Note: There a lot of obvious peephole cases here.  This are deliberately
487     // handled after the main base pointer inference algorithm to make writing
488     // test cases to exercise that code easier.
489     return BaseDefiningValueResult(I, false);
490 
491   // The last two cases here don't return a base pointer.  Instead, they
492   // return a value which dynamically selects from among several base
493   // derived pointers (each with it's own base potentially).  It's the job of
494   // the caller to resolve these.
495   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
496          "missing instruction case in findBaseDefiningValing");
497   return BaseDefiningValueResult(I, false);
498 }
499 
500 /// Returns the base defining value for this value.
501 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
502   Value *&Cached = Cache[I];
503   if (!Cached) {
504     Cached = findBaseDefiningValue(I).BDV;
505     DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
506                  << Cached->getName() << "\n");
507   }
508   assert(Cache[I] != nullptr);
509   return Cached;
510 }
511 
512 /// Return a base pointer for this value if known.  Otherwise, return it's
513 /// base defining value.
514 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
515   Value *Def = findBaseDefiningValueCached(I, Cache);
516   auto Found = Cache.find(Def);
517   if (Found != Cache.end()) {
518     // Either a base-of relation, or a self reference.  Caller must check.
519     return Found->second;
520   }
521   // Only a BDV available
522   return Def;
523 }
524 
525 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
526 /// is it known to be a base pointer?  Or do we need to continue searching.
527 static bool isKnownBaseResult(Value *V) {
528   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
529       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
530       !isa<ShuffleVectorInst>(V)) {
531     // no recursion possible
532     return true;
533   }
534   if (isa<Instruction>(V) &&
535       cast<Instruction>(V)->getMetadata("is_base_value")) {
536     // This is a previously inserted base phi or select.  We know
537     // that this is a base value.
538     return true;
539   }
540 
541   // We need to keep searching
542   return false;
543 }
544 
545 namespace {
546 /// Models the state of a single base defining value in the findBasePointer
547 /// algorithm for determining where a new instruction is needed to propagate
548 /// the base of this BDV.
549 class BDVState {
550 public:
551   enum Status { Unknown, Base, Conflict };
552 
553   BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
554     assert(status != Base || b);
555   }
556   explicit BDVState(Value *b) : status(Base), base(b) {}
557   BDVState() : status(Unknown), base(nullptr) {}
558 
559   Status getStatus() const { return status; }
560   Value *getBase() const { return base; }
561 
562   bool isBase() const { return getStatus() == Base; }
563   bool isUnknown() const { return getStatus() == Unknown; }
564   bool isConflict() const { return getStatus() == Conflict; }
565 
566   bool operator==(const BDVState &other) const {
567     return base == other.base && status == other.status;
568   }
569 
570   bool operator!=(const BDVState &other) const { return !(*this == other); }
571 
572   LLVM_DUMP_METHOD
573   void dump() const { print(dbgs()); dbgs() << '\n'; }
574 
575   void print(raw_ostream &OS) const {
576     switch (status) {
577     case Unknown:
578       OS << "U";
579       break;
580     case Base:
581       OS << "B";
582       break;
583     case Conflict:
584       OS << "C";
585       break;
586     };
587     OS << " (" << base << " - "
588        << (base ? base->getName() : "nullptr") << "): ";
589   }
590 
591 private:
592   Status status;
593   AssertingVH<Value> base; // non null only if status == base
594 };
595 }
596 
597 #ifndef NDEBUG
598 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
599   State.print(OS);
600   return OS;
601 }
602 #endif
603 
604 namespace {
605 // Values of type BDVState form a lattice, and this is a helper
606 // class that implementes the meet operation.  The meat of the meet
607 // operation is implemented in MeetBDVStates::pureMeet
608 class MeetBDVStates {
609 public:
610   /// Initializes the currentResult to the TOP state so that if can be met with
611   /// any other state to produce that state.
612   MeetBDVStates() {}
613 
614   // Destructively meet the current result with the given BDVState
615   void meetWith(BDVState otherState) {
616     currentResult = meet(otherState, currentResult);
617   }
618 
619   BDVState getResult() const { return currentResult; }
620 
621 private:
622   BDVState currentResult;
623 
624   /// Perform a meet operation on two elements of the BDVState lattice.
625   static BDVState meet(BDVState LHS, BDVState RHS) {
626     assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) &&
627            "math is wrong: meet does not commute!");
628     BDVState Result = pureMeet(LHS, RHS);
629     DEBUG(dbgs() << "meet of " << LHS << " with " << RHS
630                  << " produced " << Result << "\n");
631     return Result;
632   }
633 
634   static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) {
635     switch (stateA.getStatus()) {
636     case BDVState::Unknown:
637       return stateB;
638 
639     case BDVState::Base:
640       assert(stateA.getBase() && "can't be null");
641       if (stateB.isUnknown())
642         return stateA;
643 
644       if (stateB.isBase()) {
645         if (stateA.getBase() == stateB.getBase()) {
646           assert(stateA == stateB && "equality broken!");
647           return stateA;
648         }
649         return BDVState(BDVState::Conflict);
650       }
651       assert(stateB.isConflict() && "only three states!");
652       return BDVState(BDVState::Conflict);
653 
654     case BDVState::Conflict:
655       return stateA;
656     }
657     llvm_unreachable("only three states!");
658   }
659 };
660 }
661 
662 
663 /// For a given value or instruction, figure out what base ptr its derived from.
664 /// For gc objects, this is simply itself.  On success, returns a value which is
665 /// the base pointer.  (This is reliable and can be used for relocation.)  On
666 /// failure, returns nullptr.
667 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
668   Value *Def = findBaseOrBDV(I, Cache);
669 
670   if (isKnownBaseResult(Def))
671     return Def;
672 
673   // Here's the rough algorithm:
674   // - For every SSA value, construct a mapping to either an actual base
675   //   pointer or a PHI which obscures the base pointer.
676   // - Construct a mapping from PHI to unknown TOP state.  Use an
677   //   optimistic algorithm to propagate base pointer information.  Lattice
678   //   looks like:
679   //   UNKNOWN
680   //   b1 b2 b3 b4
681   //   CONFLICT
682   //   When algorithm terminates, all PHIs will either have a single concrete
683   //   base or be in a conflict state.
684   // - For every conflict, insert a dummy PHI node without arguments.  Add
685   //   these to the base[Instruction] = BasePtr mapping.  For every
686   //   non-conflict, add the actual base.
687   //  - For every conflict, add arguments for the base[a] of each input
688   //   arguments.
689   //
690   // Note: A simpler form of this would be to add the conflict form of all
691   // PHIs without running the optimistic algorithm.  This would be
692   // analogous to pessimistic data flow and would likely lead to an
693   // overall worse solution.
694 
695 #ifndef NDEBUG
696   auto isExpectedBDVType = [](Value *BDV) {
697     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
698            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
699   };
700 #endif
701 
702   // Once populated, will contain a mapping from each potentially non-base BDV
703   // to a lattice value (described above) which corresponds to that BDV.
704   // We use the order of insertion (DFS over the def/use graph) to provide a
705   // stable deterministic ordering for visiting DenseMaps (which are unordered)
706   // below.  This is important for deterministic compilation.
707   MapVector<Value *, BDVState> States;
708 
709   // Recursively fill in all base defining values reachable from the initial
710   // one for which we don't already know a definite base value for
711   /* scope */ {
712     SmallVector<Value*, 16> Worklist;
713     Worklist.push_back(Def);
714     States.insert({Def, BDVState()});
715     while (!Worklist.empty()) {
716       Value *Current = Worklist.pop_back_val();
717       assert(!isKnownBaseResult(Current) && "why did it get added?");
718 
719       auto visitIncomingValue = [&](Value *InVal) {
720         Value *Base = findBaseOrBDV(InVal, Cache);
721         if (isKnownBaseResult(Base))
722           // Known bases won't need new instructions introduced and can be
723           // ignored safely
724           return;
725         assert(isExpectedBDVType(Base) && "the only non-base values "
726                "we see should be base defining values");
727         if (States.insert(std::make_pair(Base, BDVState())).second)
728           Worklist.push_back(Base);
729       };
730       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
731         for (Value *InVal : PN->incoming_values())
732           visitIncomingValue(InVal);
733       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
734         visitIncomingValue(SI->getTrueValue());
735         visitIncomingValue(SI->getFalseValue());
736       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
737         visitIncomingValue(EE->getVectorOperand());
738       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
739         visitIncomingValue(IE->getOperand(0)); // vector operand
740         visitIncomingValue(IE->getOperand(1)); // scalar operand
741       } else {
742         // There is one known class of instructions we know we don't handle.
743         assert(isa<ShuffleVectorInst>(Current));
744         llvm_unreachable("Unimplemented instruction case");
745       }
746     }
747   }
748 
749 #ifndef NDEBUG
750   DEBUG(dbgs() << "States after initialization:\n");
751   for (auto Pair : States)
752     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
753 #endif
754 
755   // Return a phi state for a base defining value.  We'll generate a new
756   // base state for known bases and expect to find a cached state otherwise.
757   auto getStateForBDV = [&](Value *baseValue) {
758     if (isKnownBaseResult(baseValue))
759       return BDVState(baseValue);
760     auto I = States.find(baseValue);
761     assert(I != States.end() && "lookup failed!");
762     return I->second;
763   };
764 
765   bool Progress = true;
766   while (Progress) {
767 #ifndef NDEBUG
768     const size_t OldSize = States.size();
769 #endif
770     Progress = false;
771     // We're only changing values in this loop, thus safe to keep iterators.
772     // Since this is computing a fixed point, the order of visit does not
773     // effect the result.  TODO: We could use a worklist here and make this run
774     // much faster.
775     for (auto Pair : States) {
776       Value *BDV = Pair.first;
777       assert(!isKnownBaseResult(BDV) && "why did it get added?");
778 
779       // Given an input value for the current instruction, return a BDVState
780       // instance which represents the BDV of that value.
781       auto getStateForInput = [&](Value *V) mutable {
782         Value *BDV = findBaseOrBDV(V, Cache);
783         return getStateForBDV(BDV);
784       };
785 
786       MeetBDVStates CalculateMeet;
787       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
788         CalculateMeet.meetWith(getStateForInput(SI->getTrueValue()));
789         CalculateMeet.meetWith(getStateForInput(SI->getFalseValue()));
790       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
791         for (Value *Val : PN->incoming_values())
792           CalculateMeet.meetWith(getStateForInput(Val));
793       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
794         // The 'meet' for an extractelement is slightly trivial, but it's still
795         // useful in that it drives us to conflict if our input is.
796         CalculateMeet.meetWith(getStateForInput(EE->getVectorOperand()));
797       } else {
798         // Given there's a inherent type mismatch between the operands, will
799         // *always* produce Conflict.
800         auto *IE = cast<InsertElementInst>(BDV);
801         CalculateMeet.meetWith(getStateForInput(IE->getOperand(0)));
802         CalculateMeet.meetWith(getStateForInput(IE->getOperand(1)));
803       }
804 
805       BDVState OldState = States[BDV];
806       BDVState NewState = CalculateMeet.getResult();
807       if (OldState != NewState) {
808         Progress = true;
809         States[BDV] = NewState;
810       }
811     }
812 
813     assert(OldSize == States.size() &&
814            "fixed point shouldn't be adding any new nodes to state");
815   }
816 
817 #ifndef NDEBUG
818   DEBUG(dbgs() << "States after meet iteration:\n");
819   for (auto Pair : States)
820     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
821 #endif
822 
823   // Insert Phis for all conflicts
824   // TODO: adjust naming patterns to avoid this order of iteration dependency
825   for (auto Pair : States) {
826     Instruction *I = cast<Instruction>(Pair.first);
827     BDVState State = Pair.second;
828     assert(!isKnownBaseResult(I) && "why did it get added?");
829     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
830 
831     // extractelement instructions are a bit special in that we may need to
832     // insert an extract even when we know an exact base for the instruction.
833     // The problem is that we need to convert from a vector base to a scalar
834     // base for the particular indice we're interested in.
835     if (State.isBase() && isa<ExtractElementInst>(I) &&
836         isa<VectorType>(State.getBase()->getType())) {
837       auto *EE = cast<ExtractElementInst>(I);
838       // TODO: In many cases, the new instruction is just EE itself.  We should
839       // exploit this, but can't do it here since it would break the invariant
840       // about the BDV not being known to be a base.
841       auto *BaseInst = ExtractElementInst::Create(
842           State.getBase(), EE->getIndexOperand(), "base_ee", EE);
843       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
844       States[I] = BDVState(BDVState::Base, BaseInst);
845     }
846 
847     // Since we're joining a vector and scalar base, they can never be the
848     // same.  As a result, we should always see insert element having reached
849     // the conflict state.
850     assert(!isa<InsertElementInst>(I) || State.isConflict());
851 
852     if (!State.isConflict())
853       continue;
854 
855     /// Create and insert a new instruction which will represent the base of
856     /// the given instruction 'I'.
857     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
858       if (isa<PHINode>(I)) {
859         BasicBlock *BB = I->getParent();
860         int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
861         assert(NumPreds > 0 && "how did we reach here");
862         std::string Name = suffixed_name_or(I, ".base", "base_phi");
863         return PHINode::Create(I->getType(), NumPreds, Name, I);
864       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
865         // The undef will be replaced later
866         UndefValue *Undef = UndefValue::get(SI->getType());
867         std::string Name = suffixed_name_or(I, ".base", "base_select");
868         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
869       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
870         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
871         std::string Name = suffixed_name_or(I, ".base", "base_ee");
872         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
873                                           EE);
874       } else {
875         auto *IE = cast<InsertElementInst>(I);
876         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
877         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
878         std::string Name = suffixed_name_or(I, ".base", "base_ie");
879         return InsertElementInst::Create(VecUndef, ScalarUndef,
880                                          IE->getOperand(2), Name, IE);
881       }
882     };
883     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
884     // Add metadata marking this as a base value
885     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
886     States[I] = BDVState(BDVState::Conflict, BaseInst);
887   }
888 
889   // Returns a instruction which produces the base pointer for a given
890   // instruction.  The instruction is assumed to be an input to one of the BDVs
891   // seen in the inference algorithm above.  As such, we must either already
892   // know it's base defining value is a base, or have inserted a new
893   // instruction to propagate the base of it's BDV and have entered that newly
894   // introduced instruction into the state table.  In either case, we are
895   // assured to be able to determine an instruction which produces it's base
896   // pointer.
897   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
898     Value *BDV = findBaseOrBDV(Input, Cache);
899     Value *Base = nullptr;
900     if (isKnownBaseResult(BDV)) {
901       Base = BDV;
902     } else {
903       // Either conflict or base.
904       assert(States.count(BDV));
905       Base = States[BDV].getBase();
906     }
907     assert(Base && "Can't be null");
908     // The cast is needed since base traversal may strip away bitcasts
909     if (Base->getType() != Input->getType() && InsertPt)
910       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
911     return Base;
912   };
913 
914   // Fixup all the inputs of the new PHIs.  Visit order needs to be
915   // deterministic and predictable because we're naming newly created
916   // instructions.
917   for (auto Pair : States) {
918     Instruction *BDV = cast<Instruction>(Pair.first);
919     BDVState State = Pair.second;
920 
921     assert(!isKnownBaseResult(BDV) && "why did it get added?");
922     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
923     if (!State.isConflict())
924       continue;
925 
926     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBase())) {
927       PHINode *PN = cast<PHINode>(BDV);
928       unsigned NumPHIValues = PN->getNumIncomingValues();
929       for (unsigned i = 0; i < NumPHIValues; i++) {
930         Value *InVal = PN->getIncomingValue(i);
931         BasicBlock *InBB = PN->getIncomingBlock(i);
932 
933         // If we've already seen InBB, add the same incoming value
934         // we added for it earlier.  The IR verifier requires phi
935         // nodes with multiple entries from the same basic block
936         // to have the same incoming value for each of those
937         // entries.  If we don't do this check here and basephi
938         // has a different type than base, we'll end up adding two
939         // bitcasts (and hence two distinct values) as incoming
940         // values for the same basic block.
941 
942         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
943         if (BlockIndex != -1) {
944           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
945           BasePHI->addIncoming(OldBase, InBB);
946 
947 #ifndef NDEBUG
948           Value *Base = getBaseForInput(InVal, nullptr);
949           // In essence this assert states: the only way two values
950           // incoming from the same basic block may be different is by
951           // being different bitcasts of the same value.  A cleanup
952           // that remains TODO is changing findBaseOrBDV to return an
953           // llvm::Value of the correct type (and still remain pure).
954           // This will remove the need to add bitcasts.
955           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
956                  "Sanity -- findBaseOrBDV should be pure!");
957 #endif
958           continue;
959         }
960 
961         // Find the instruction which produces the base for each input.  We may
962         // need to insert a bitcast in the incoming block.
963         // TODO: Need to split critical edges if insertion is needed
964         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
965         BasePHI->addIncoming(Base, InBB);
966       }
967       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
968     } else if (SelectInst *BaseSI = dyn_cast<SelectInst>(State.getBase())) {
969       SelectInst *SI = cast<SelectInst>(BDV);
970 
971       // Find the instruction which produces the base for each input.
972       // We may need to insert a bitcast.
973       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
974       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
975     } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) {
976       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
977       // Find the instruction which produces the base for each input.  We may
978       // need to insert a bitcast.
979       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
980     } else {
981       auto *BaseIE = cast<InsertElementInst>(State.getBase());
982       auto *BdvIE = cast<InsertElementInst>(BDV);
983       auto UpdateOperand = [&](int OperandIdx) {
984         Value *InVal = BdvIE->getOperand(OperandIdx);
985         Value *Base = getBaseForInput(InVal, BaseIE);
986         BaseIE->setOperand(OperandIdx, Base);
987       };
988       UpdateOperand(0); // vector operand
989       UpdateOperand(1); // scalar operand
990     }
991   }
992 
993   // Cache all of our results so we can cheaply reuse them
994   // NOTE: This is actually two caches: one of the base defining value
995   // relation and one of the base pointer relation!  FIXME
996   for (auto Pair : States) {
997     auto *BDV = Pair.first;
998     Value *Base = Pair.second.getBase();
999     assert(BDV && Base);
1000     assert(!isKnownBaseResult(BDV) && "why did it get added?");
1001 
1002     DEBUG(dbgs() << "Updating base value cache"
1003                  << " for: " << BDV->getName() << " from: "
1004                  << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1005                  << " to: " << Base->getName() << "\n");
1006 
1007     if (Cache.count(BDV)) {
1008       assert(isKnownBaseResult(Base) &&
1009              "must be something we 'know' is a base pointer");
1010       // Once we transition from the BDV relation being store in the Cache to
1011       // the base relation being stored, it must be stable
1012       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
1013              "base relation should be stable");
1014     }
1015     Cache[BDV] = Base;
1016   }
1017   assert(Cache.count(Def));
1018   return Cache[Def];
1019 }
1020 
1021 // For a set of live pointers (base and/or derived), identify the base
1022 // pointer of the object which they are derived from.  This routine will
1023 // mutate the IR graph as needed to make the 'base' pointer live at the
1024 // definition site of 'derived'.  This ensures that any use of 'derived' can
1025 // also use 'base'.  This may involve the insertion of a number of
1026 // additional PHI nodes.
1027 //
1028 // preconditions: live is a set of pointer type Values
1029 //
1030 // side effects: may insert PHI nodes into the existing CFG, will preserve
1031 // CFG, will not remove or mutate any existing nodes
1032 //
1033 // post condition: PointerToBase contains one (derived, base) pair for every
1034 // pointer in live.  Note that derived can be equal to base if the original
1035 // pointer was a base pointer.
1036 static void
1037 findBasePointers(const StatepointLiveSetTy &live,
1038                  MapVector<Value *, Value *> &PointerToBase,
1039                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1040   for (Value *ptr : live) {
1041     Value *base = findBasePointer(ptr, DVCache);
1042     assert(base && "failed to find base pointer");
1043     PointerToBase[ptr] = base;
1044     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1045             DT->dominates(cast<Instruction>(base)->getParent(),
1046                           cast<Instruction>(ptr)->getParent())) &&
1047            "The base we found better dominate the derived pointer");
1048   }
1049 }
1050 
1051 /// Find the required based pointers (and adjust the live set) for the given
1052 /// parse point.
1053 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1054                              CallSite CS,
1055                              PartiallyConstructedSafepointRecord &result) {
1056   MapVector<Value *, Value *> PointerToBase;
1057   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1058 
1059   if (PrintBasePointers) {
1060     errs() << "Base Pairs (w/o Relocation):\n";
1061     for (auto &Pair : PointerToBase) {
1062       errs() << " derived ";
1063       Pair.first->printAsOperand(errs(), false);
1064       errs() << " base ";
1065       Pair.second->printAsOperand(errs(), false);
1066       errs() << "\n";;
1067     }
1068   }
1069 
1070   result.PointerToBase = PointerToBase;
1071 }
1072 
1073 /// Given an updated version of the dataflow liveness results, update the
1074 /// liveset and base pointer maps for the call site CS.
1075 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1076                                   CallSite CS,
1077                                   PartiallyConstructedSafepointRecord &result);
1078 
1079 static void recomputeLiveInValues(
1080     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1081     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1082   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1083   // again.  The old values are still live and will help it stabilize quickly.
1084   GCPtrLivenessData RevisedLivenessData;
1085   computeLiveInValues(DT, F, RevisedLivenessData);
1086   for (size_t i = 0; i < records.size(); i++) {
1087     struct PartiallyConstructedSafepointRecord &info = records[i];
1088     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1089   }
1090 }
1091 
1092 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1093 // no uses of the original value / return value between the gc.statepoint and
1094 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1095 // starting one of the successor blocks.  We also need to be able to insert the
1096 // gc.relocates only on the path which goes through the statepoint.  We might
1097 // need to split an edge to make this possible.
1098 static BasicBlock *
1099 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1100                             DominatorTree &DT) {
1101   BasicBlock *Ret = BB;
1102   if (!BB->getUniquePredecessor())
1103     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1104 
1105   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1106   // from it
1107   FoldSingleEntryPHINodes(Ret);
1108   assert(!isa<PHINode>(Ret->begin()) &&
1109          "All PHI nodes should have been removed!");
1110 
1111   // At this point, we can safely insert a gc.relocate or gc.result as the first
1112   // instruction in Ret if needed.
1113   return Ret;
1114 }
1115 
1116 // Create new attribute set containing only attributes which can be transferred
1117 // from original call to the safepoint.
1118 static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1119   AttributeSet Ret;
1120 
1121   for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1122     unsigned Index = AS.getSlotIndex(Slot);
1123 
1124     if (Index == AttributeSet::ReturnIndex ||
1125         Index == AttributeSet::FunctionIndex) {
1126 
1127       for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
1128 
1129         // Do not allow certain attributes - just skip them
1130         // Safepoint can not be read only or read none.
1131         if (Attr.hasAttribute(Attribute::ReadNone) ||
1132             Attr.hasAttribute(Attribute::ReadOnly))
1133           continue;
1134 
1135         // These attributes control the generation of the gc.statepoint call /
1136         // invoke itself; and once the gc.statepoint is in place, they're of no
1137         // use.
1138         if (isStatepointDirectiveAttr(Attr))
1139           continue;
1140 
1141         Ret = Ret.addAttributes(
1142             AS.getContext(), Index,
1143             AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
1144       }
1145     }
1146 
1147     // Just skip parameter attributes for now
1148   }
1149 
1150   return Ret;
1151 }
1152 
1153 /// Helper function to place all gc relocates necessary for the given
1154 /// statepoint.
1155 /// Inputs:
1156 ///   liveVariables - list of variables to be relocated.
1157 ///   liveStart - index of the first live variable.
1158 ///   basePtrs - base pointers.
1159 ///   statepointToken - statepoint instruction to which relocates should be
1160 ///   bound.
1161 ///   Builder - Llvm IR builder to be used to construct new calls.
1162 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1163                               const int LiveStart,
1164                               ArrayRef<Value *> BasePtrs,
1165                               Instruction *StatepointToken,
1166                               IRBuilder<> Builder) {
1167   if (LiveVariables.empty())
1168     return;
1169 
1170   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1171     auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
1172     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1173     size_t Index = std::distance(LiveVec.begin(), ValIt);
1174     assert(Index < LiveVec.size() && "Bug in std::find?");
1175     return Index;
1176   };
1177   Module *M = StatepointToken->getModule();
1178 
1179   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1180   // element type is i8 addrspace(1)*). We originally generated unique
1181   // declarations for each pointer type, but this proved problematic because
1182   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1183   // towards a single unified pointer type anyways, we can just cast everything
1184   // to an i8* of the right address space.  A bitcast is added later to convert
1185   // gc_relocate to the actual value's type.
1186   auto getGCRelocateDecl = [&] (Type *Ty) {
1187     assert(isHandledGCPointerType(Ty));
1188     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1189     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1190     if (auto *VT = dyn_cast<VectorType>(Ty))
1191       NewTy = VectorType::get(NewTy, VT->getNumElements());
1192     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1193                                      {NewTy});
1194   };
1195 
1196   // Lazily populated map from input types to the canonicalized form mentioned
1197   // in the comment above.  This should probably be cached somewhere more
1198   // broadly.
1199   DenseMap<Type*, Value*> TypeToDeclMap;
1200 
1201   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1202     // Generate the gc.relocate call and save the result
1203     Value *BaseIdx =
1204       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1205     Value *LiveIdx = Builder.getInt32(LiveStart + i);
1206 
1207     Type *Ty = LiveVariables[i]->getType();
1208     if (!TypeToDeclMap.count(Ty))
1209       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1210     Value *GCRelocateDecl = TypeToDeclMap[Ty];
1211 
1212     // only specify a debug name if we can give a useful one
1213     CallInst *Reloc = Builder.CreateCall(
1214         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1215         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1216     // Trick CodeGen into thinking there are lots of free registers at this
1217     // fake call.
1218     Reloc->setCallingConv(CallingConv::Cold);
1219   }
1220 }
1221 
1222 namespace {
1223 
1224 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1225 /// avoids having to worry about keeping around dangling pointers to Values.
1226 class DeferredReplacement {
1227   AssertingVH<Instruction> Old;
1228   AssertingVH<Instruction> New;
1229   bool IsDeoptimize = false;
1230 
1231   DeferredReplacement() {}
1232 
1233 public:
1234   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1235     assert(Old != New && Old && New &&
1236            "Cannot RAUW equal values or to / from null!");
1237 
1238     DeferredReplacement D;
1239     D.Old = Old;
1240     D.New = New;
1241     return D;
1242   }
1243 
1244   static DeferredReplacement createDelete(Instruction *ToErase) {
1245     DeferredReplacement D;
1246     D.Old = ToErase;
1247     return D;
1248   }
1249 
1250   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1251 #ifndef NDEBUG
1252     auto *F = cast<CallInst>(Old)->getCalledFunction();
1253     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1254            "Only way to construct a deoptimize deferred replacement");
1255 #endif
1256     DeferredReplacement D;
1257     D.Old = Old;
1258     D.IsDeoptimize = true;
1259     return D;
1260   }
1261 
1262   /// Does the task represented by this instance.
1263   void doReplacement() {
1264     Instruction *OldI = Old;
1265     Instruction *NewI = New;
1266 
1267     assert(OldI != NewI && "Disallowed at construction?!");
1268     assert((!IsDeoptimize || !New) &&
1269            "Deoptimize instrinsics are not replaced!");
1270 
1271     Old = nullptr;
1272     New = nullptr;
1273 
1274     if (NewI)
1275       OldI->replaceAllUsesWith(NewI);
1276 
1277     if (IsDeoptimize) {
1278       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1279       // not necessarilly be followed by the matching return.
1280       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1281       new UnreachableInst(RI->getContext(), RI);
1282       RI->eraseFromParent();
1283     }
1284 
1285     OldI->eraseFromParent();
1286   }
1287 };
1288 }
1289 
1290 static void
1291 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1292                            const SmallVectorImpl<Value *> &BasePtrs,
1293                            const SmallVectorImpl<Value *> &LiveVariables,
1294                            PartiallyConstructedSafepointRecord &Result,
1295                            std::vector<DeferredReplacement> &Replacements) {
1296   assert(BasePtrs.size() == LiveVariables.size());
1297 
1298   // Then go ahead and use the builder do actually do the inserts.  We insert
1299   // immediately before the previous instruction under the assumption that all
1300   // arguments will be available here.  We can't insert afterwards since we may
1301   // be replacing a terminator.
1302   Instruction *InsertBefore = CS.getInstruction();
1303   IRBuilder<> Builder(InsertBefore);
1304 
1305   ArrayRef<Value *> GCArgs(LiveVariables);
1306   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1307   uint32_t NumPatchBytes = 0;
1308   uint32_t Flags = uint32_t(StatepointFlags::None);
1309 
1310   ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
1311   ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
1312   ArrayRef<Use> TransitionArgs;
1313   if (auto TransitionBundle =
1314       CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
1315     Flags |= uint32_t(StatepointFlags::GCTransition);
1316     TransitionArgs = TransitionBundle->Inputs;
1317   }
1318 
1319   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1320   // with a return value, we lower then as never returning calls to
1321   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1322   bool IsDeoptimize = false;
1323 
1324   StatepointDirectives SD =
1325       parseStatepointDirectivesFromAttrs(CS.getAttributes());
1326   if (SD.NumPatchBytes)
1327     NumPatchBytes = *SD.NumPatchBytes;
1328   if (SD.StatepointID)
1329     StatepointID = *SD.StatepointID;
1330 
1331   Value *CallTarget = CS.getCalledValue();
1332   if (Function *F = dyn_cast<Function>(CallTarget)) {
1333     if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1334       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1335       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1336       // verifier does not allow taking the address of an intrinsic function.
1337 
1338       SmallVector<Type *, 8> DomainTy;
1339       for (Value *Arg : CallArgs)
1340         DomainTy.push_back(Arg->getType());
1341       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1342                                     /* isVarArg = */ false);
1343 
1344       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1345       // calls to @llvm.experimental.deoptimize with different argument types in
1346       // the same module.  This is fine -- we assume the frontend knew what it
1347       // was doing when generating this kind of IR.
1348       CallTarget =
1349           F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
1350 
1351       IsDeoptimize = true;
1352     }
1353   }
1354 
1355   // Create the statepoint given all the arguments
1356   Instruction *Token = nullptr;
1357   AttributeSet ReturnAttrs;
1358   if (CS.isCall()) {
1359     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1360     CallInst *Call = Builder.CreateGCStatepointCall(
1361         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1362         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1363 
1364     Call->setTailCall(ToReplace->isTailCall());
1365     Call->setCallingConv(ToReplace->getCallingConv());
1366 
1367     // Currently we will fail on parameter attributes and on certain
1368     // function attributes.
1369     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1370     // In case if we can handle this set of attributes - set up function attrs
1371     // directly on statepoint and return attrs later for gc_result intrinsic.
1372     Call->setAttributes(NewAttrs.getFnAttributes());
1373     ReturnAttrs = NewAttrs.getRetAttributes();
1374 
1375     Token = Call;
1376 
1377     // Put the following gc_result and gc_relocate calls immediately after the
1378     // the old call (which we're about to delete)
1379     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1380     Builder.SetInsertPoint(ToReplace->getNextNode());
1381     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1382   } else {
1383     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1384 
1385     // Insert the new invoke into the old block.  We'll remove the old one in a
1386     // moment at which point this will become the new terminator for the
1387     // original block.
1388     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1389         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1390         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1391         GCArgs, "statepoint_token");
1392 
1393     Invoke->setCallingConv(ToReplace->getCallingConv());
1394 
1395     // Currently we will fail on parameter attributes and on certain
1396     // function attributes.
1397     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1398     // In case if we can handle this set of attributes - set up function attrs
1399     // directly on statepoint and return attrs later for gc_result intrinsic.
1400     Invoke->setAttributes(NewAttrs.getFnAttributes());
1401     ReturnAttrs = NewAttrs.getRetAttributes();
1402 
1403     Token = Invoke;
1404 
1405     // Generate gc relocates in exceptional path
1406     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1407     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1408            UnwindBlock->getUniquePredecessor() &&
1409            "can't safely insert in this block!");
1410 
1411     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1412     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1413 
1414     // Attach exceptional gc relocates to the landingpad.
1415     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1416     Result.UnwindToken = ExceptionalToken;
1417 
1418     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1419     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1420                       Builder);
1421 
1422     // Generate gc relocates and returns for normal block
1423     BasicBlock *NormalDest = ToReplace->getNormalDest();
1424     assert(!isa<PHINode>(NormalDest->begin()) &&
1425            NormalDest->getUniquePredecessor() &&
1426            "can't safely insert in this block!");
1427 
1428     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1429 
1430     // gc relocates will be generated later as if it were regular call
1431     // statepoint
1432   }
1433   assert(Token && "Should be set in one of the above branches!");
1434 
1435   if (IsDeoptimize) {
1436     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1437     // transform the tail-call like structure to a call to a void function
1438     // followed by unreachable to get better codegen.
1439     Replacements.push_back(
1440         DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
1441   } else {
1442     Token->setName("statepoint_token");
1443     if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1444       StringRef Name =
1445           CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1446       CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1447       GCResult->setAttributes(CS.getAttributes().getRetAttributes());
1448 
1449       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1450       // live set of some other safepoint, in which case that safepoint's
1451       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1452       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1453       // after the live sets have been made explicit in the IR, and we no longer
1454       // have raw pointers to worry about.
1455       Replacements.emplace_back(
1456           DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
1457     } else {
1458       Replacements.emplace_back(
1459           DeferredReplacement::createDelete(CS.getInstruction()));
1460     }
1461   }
1462 
1463   Result.StatepointToken = Token;
1464 
1465   // Second, create a gc.relocate for every live variable
1466   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1467   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1468 }
1469 
1470 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1471 // which make the relocations happening at this safepoint explicit.
1472 //
1473 // WARNING: Does not do any fixup to adjust users of the original live
1474 // values.  That's the callers responsibility.
1475 static void
1476 makeStatepointExplicit(DominatorTree &DT, CallSite CS,
1477                        PartiallyConstructedSafepointRecord &Result,
1478                        std::vector<DeferredReplacement> &Replacements) {
1479   const auto &LiveSet = Result.LiveSet;
1480   const auto &PointerToBase = Result.PointerToBase;
1481 
1482   // Convert to vector for efficient cross referencing.
1483   SmallVector<Value *, 64> BaseVec, LiveVec;
1484   LiveVec.reserve(LiveSet.size());
1485   BaseVec.reserve(LiveSet.size());
1486   for (Value *L : LiveSet) {
1487     LiveVec.push_back(L);
1488     assert(PointerToBase.count(L));
1489     Value *Base = PointerToBase.find(L)->second;
1490     BaseVec.push_back(Base);
1491   }
1492   assert(LiveVec.size() == BaseVec.size());
1493 
1494   // Do the actual rewriting and delete the old statepoint
1495   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1496 }
1497 
1498 // Helper function for the relocationViaAlloca.
1499 //
1500 // It receives iterator to the statepoint gc relocates and emits a store to the
1501 // assigned location (via allocaMap) for the each one of them.  It adds the
1502 // visited values into the visitedLiveValues set, which we will later use them
1503 // for sanity checking.
1504 static void
1505 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1506                        DenseMap<Value *, Value *> &AllocaMap,
1507                        DenseSet<Value *> &VisitedLiveValues) {
1508 
1509   for (User *U : GCRelocs) {
1510     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1511     if (!Relocate)
1512       continue;
1513 
1514     Value *OriginalValue = Relocate->getDerivedPtr();
1515     assert(AllocaMap.count(OriginalValue));
1516     Value *Alloca = AllocaMap[OriginalValue];
1517 
1518     // Emit store into the related alloca
1519     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1520     // the correct type according to alloca.
1521     assert(Relocate->getNextNode() &&
1522            "Should always have one since it's not a terminator");
1523     IRBuilder<> Builder(Relocate->getNextNode());
1524     Value *CastedRelocatedValue =
1525       Builder.CreateBitCast(Relocate,
1526                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1527                             suffixed_name_or(Relocate, ".casted", ""));
1528 
1529     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1530     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1531 
1532 #ifndef NDEBUG
1533     VisitedLiveValues.insert(OriginalValue);
1534 #endif
1535   }
1536 }
1537 
1538 // Helper function for the "relocationViaAlloca". Similar to the
1539 // "insertRelocationStores" but works for rematerialized values.
1540 static void insertRematerializationStores(
1541     const RematerializedValueMapTy &RematerializedValues,
1542     DenseMap<Value *, Value *> &AllocaMap,
1543     DenseSet<Value *> &VisitedLiveValues) {
1544 
1545   for (auto RematerializedValuePair: RematerializedValues) {
1546     Instruction *RematerializedValue = RematerializedValuePair.first;
1547     Value *OriginalValue = RematerializedValuePair.second;
1548 
1549     assert(AllocaMap.count(OriginalValue) &&
1550            "Can not find alloca for rematerialized value");
1551     Value *Alloca = AllocaMap[OriginalValue];
1552 
1553     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1554     Store->insertAfter(RematerializedValue);
1555 
1556 #ifndef NDEBUG
1557     VisitedLiveValues.insert(OriginalValue);
1558 #endif
1559   }
1560 }
1561 
1562 /// Do all the relocation update via allocas and mem2reg
1563 static void relocationViaAlloca(
1564     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1565     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1566 #ifndef NDEBUG
1567   // record initial number of (static) allocas; we'll check we have the same
1568   // number when we get done.
1569   int InitialAllocaNum = 0;
1570   for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1571        I++)
1572     if (isa<AllocaInst>(*I))
1573       InitialAllocaNum++;
1574 #endif
1575 
1576   // TODO-PERF: change data structures, reserve
1577   DenseMap<Value *, Value *> AllocaMap;
1578   SmallVector<AllocaInst *, 200> PromotableAllocas;
1579   // Used later to chack that we have enough allocas to store all values
1580   std::size_t NumRematerializedValues = 0;
1581   PromotableAllocas.reserve(Live.size());
1582 
1583   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1584   // "PromotableAllocas"
1585   auto emitAllocaFor = [&](Value *LiveValue) {
1586     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1587                                         F.getEntryBlock().getFirstNonPHI());
1588     AllocaMap[LiveValue] = Alloca;
1589     PromotableAllocas.push_back(Alloca);
1590   };
1591 
1592   // Emit alloca for each live gc pointer
1593   for (Value *V : Live)
1594     emitAllocaFor(V);
1595 
1596   // Emit allocas for rematerialized values
1597   for (const auto &Info : Records)
1598     for (auto RematerializedValuePair : Info.RematerializedValues) {
1599       Value *OriginalValue = RematerializedValuePair.second;
1600       if (AllocaMap.count(OriginalValue) != 0)
1601         continue;
1602 
1603       emitAllocaFor(OriginalValue);
1604       ++NumRematerializedValues;
1605     }
1606 
1607   // The next two loops are part of the same conceptual operation.  We need to
1608   // insert a store to the alloca after the original def and at each
1609   // redefinition.  We need to insert a load before each use.  These are split
1610   // into distinct loops for performance reasons.
1611 
1612   // Update gc pointer after each statepoint: either store a relocated value or
1613   // null (if no relocated value was found for this gc pointer and it is not a
1614   // gc_result).  This must happen before we update the statepoint with load of
1615   // alloca otherwise we lose the link between statepoint and old def.
1616   for (const auto &Info : Records) {
1617     Value *Statepoint = Info.StatepointToken;
1618 
1619     // This will be used for consistency check
1620     DenseSet<Value *> VisitedLiveValues;
1621 
1622     // Insert stores for normal statepoint gc relocates
1623     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1624 
1625     // In case if it was invoke statepoint
1626     // we will insert stores for exceptional path gc relocates.
1627     if (isa<InvokeInst>(Statepoint)) {
1628       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1629                              VisitedLiveValues);
1630     }
1631 
1632     // Do similar thing with rematerialized values
1633     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1634                                   VisitedLiveValues);
1635 
1636     if (ClobberNonLive) {
1637       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1638       // the gc.statepoint.  This will turn some subtle GC problems into
1639       // slightly easier to debug SEGVs.  Note that on large IR files with
1640       // lots of gc.statepoints this is extremely costly both memory and time
1641       // wise.
1642       SmallVector<AllocaInst *, 64> ToClobber;
1643       for (auto Pair : AllocaMap) {
1644         Value *Def = Pair.first;
1645         AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1646 
1647         // This value was relocated
1648         if (VisitedLiveValues.count(Def)) {
1649           continue;
1650         }
1651         ToClobber.push_back(Alloca);
1652       }
1653 
1654       auto InsertClobbersAt = [&](Instruction *IP) {
1655         for (auto *AI : ToClobber) {
1656           auto PT = cast<PointerType>(AI->getAllocatedType());
1657           Constant *CPN = ConstantPointerNull::get(PT);
1658           StoreInst *Store = new StoreInst(CPN, AI);
1659           Store->insertBefore(IP);
1660         }
1661       };
1662 
1663       // Insert the clobbering stores.  These may get intermixed with the
1664       // gc.results and gc.relocates, but that's fine.
1665       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1666         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1667         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1668       } else {
1669         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1670       }
1671     }
1672   }
1673 
1674   // Update use with load allocas and add store for gc_relocated.
1675   for (auto Pair : AllocaMap) {
1676     Value *Def = Pair.first;
1677     Value *Alloca = Pair.second;
1678 
1679     // We pre-record the uses of allocas so that we dont have to worry about
1680     // later update that changes the user information..
1681 
1682     SmallVector<Instruction *, 20> Uses;
1683     // PERF: trade a linear scan for repeated reallocation
1684     Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1685     for (User *U : Def->users()) {
1686       if (!isa<ConstantExpr>(U)) {
1687         // If the def has a ConstantExpr use, then the def is either a
1688         // ConstantExpr use itself or null.  In either case
1689         // (recursively in the first, directly in the second), the oop
1690         // it is ultimately dependent on is null and this particular
1691         // use does not need to be fixed up.
1692         Uses.push_back(cast<Instruction>(U));
1693       }
1694     }
1695 
1696     std::sort(Uses.begin(), Uses.end());
1697     auto Last = std::unique(Uses.begin(), Uses.end());
1698     Uses.erase(Last, Uses.end());
1699 
1700     for (Instruction *Use : Uses) {
1701       if (isa<PHINode>(Use)) {
1702         PHINode *Phi = cast<PHINode>(Use);
1703         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1704           if (Def == Phi->getIncomingValue(i)) {
1705             LoadInst *Load = new LoadInst(
1706                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1707             Phi->setIncomingValue(i, Load);
1708           }
1709         }
1710       } else {
1711         LoadInst *Load = new LoadInst(Alloca, "", Use);
1712         Use->replaceUsesOfWith(Def, Load);
1713       }
1714     }
1715 
1716     // Emit store for the initial gc value.  Store must be inserted after load,
1717     // otherwise store will be in alloca's use list and an extra load will be
1718     // inserted before it.
1719     StoreInst *Store = new StoreInst(Def, Alloca);
1720     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1721       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1722         // InvokeInst is a TerminatorInst so the store need to be inserted
1723         // into its normal destination block.
1724         BasicBlock *NormalDest = Invoke->getNormalDest();
1725         Store->insertBefore(NormalDest->getFirstNonPHI());
1726       } else {
1727         assert(!Inst->isTerminator() &&
1728                "The only TerminatorInst that can produce a value is "
1729                "InvokeInst which is handled above.");
1730         Store->insertAfter(Inst);
1731       }
1732     } else {
1733       assert(isa<Argument>(Def));
1734       Store->insertAfter(cast<Instruction>(Alloca));
1735     }
1736   }
1737 
1738   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1739          "we must have the same allocas with lives");
1740   if (!PromotableAllocas.empty()) {
1741     // Apply mem2reg to promote alloca to SSA
1742     PromoteMemToReg(PromotableAllocas, DT);
1743   }
1744 
1745 #ifndef NDEBUG
1746   for (auto &I : F.getEntryBlock())
1747     if (isa<AllocaInst>(I))
1748       InitialAllocaNum--;
1749   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1750 #endif
1751 }
1752 
1753 /// Implement a unique function which doesn't require we sort the input
1754 /// vector.  Doing so has the effect of changing the output of a couple of
1755 /// tests in ways which make them less useful in testing fused safepoints.
1756 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1757   SmallSet<T, 8> Seen;
1758   Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1759               return !Seen.insert(V).second;
1760             }), Vec.end());
1761 }
1762 
1763 /// Insert holders so that each Value is obviously live through the entire
1764 /// lifetime of the call.
1765 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1766                                  SmallVectorImpl<CallInst *> &Holders) {
1767   if (Values.empty())
1768     // No values to hold live, might as well not insert the empty holder
1769     return;
1770 
1771   Module *M = CS.getInstruction()->getModule();
1772   // Use a dummy vararg function to actually hold the values live
1773   Function *Func = cast<Function>(M->getOrInsertFunction(
1774       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1775   if (CS.isCall()) {
1776     // For call safepoints insert dummy calls right after safepoint
1777     Holders.push_back(CallInst::Create(Func, Values, "",
1778                                        &*++CS.getInstruction()->getIterator()));
1779     return;
1780   }
1781   // For invoke safepooints insert dummy calls both in normal and
1782   // exceptional destination blocks
1783   auto *II = cast<InvokeInst>(CS.getInstruction());
1784   Holders.push_back(CallInst::Create(
1785       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1786   Holders.push_back(CallInst::Create(
1787       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1788 }
1789 
1790 static void findLiveReferences(
1791     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1792     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1793   GCPtrLivenessData OriginalLivenessData;
1794   computeLiveInValues(DT, F, OriginalLivenessData);
1795   for (size_t i = 0; i < records.size(); i++) {
1796     struct PartiallyConstructedSafepointRecord &info = records[i];
1797     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
1798   }
1799 }
1800 
1801 // Helper function for the "rematerializeLiveValues". It walks use chain
1802 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
1803 // values are visited (currently it is GEP's and casts). Returns true if it
1804 // successfully reached "BaseValue" and false otherwise.
1805 // Fills "ChainToBase" array with all visited values. "BaseValue" is not
1806 // recorded.
1807 static bool findRematerializableChainToBasePointer(
1808   SmallVectorImpl<Instruction*> &ChainToBase,
1809   Value *CurrentValue, Value *BaseValue) {
1810 
1811   // We have found a base value
1812   if (CurrentValue == BaseValue) {
1813     return true;
1814   }
1815 
1816   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1817     ChainToBase.push_back(GEP);
1818     return findRematerializableChainToBasePointer(ChainToBase,
1819                                                   GEP->getPointerOperand(),
1820                                                   BaseValue);
1821   }
1822 
1823   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1824     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1825       return false;
1826 
1827     ChainToBase.push_back(CI);
1828     return findRematerializableChainToBasePointer(ChainToBase,
1829                                                   CI->getOperand(0), BaseValue);
1830   }
1831 
1832   // Not supported instruction in the chain
1833   return false;
1834 }
1835 
1836 // Helper function for the "rematerializeLiveValues". Compute cost of the use
1837 // chain we are going to rematerialize.
1838 static unsigned
1839 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1840                        TargetTransformInfo &TTI) {
1841   unsigned Cost = 0;
1842 
1843   for (Instruction *Instr : Chain) {
1844     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1845       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1846              "non noop cast is found during rematerialization");
1847 
1848       Type *SrcTy = CI->getOperand(0)->getType();
1849       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
1850 
1851     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1852       // Cost of the address calculation
1853       Type *ValTy = GEP->getSourceElementType();
1854       Cost += TTI.getAddressComputationCost(ValTy);
1855 
1856       // And cost of the GEP itself
1857       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1858       //       allowed for the external usage)
1859       if (!GEP->hasAllConstantIndices())
1860         Cost += 2;
1861 
1862     } else {
1863       llvm_unreachable("unsupported instruciton type during rematerialization");
1864     }
1865   }
1866 
1867   return Cost;
1868 }
1869 
1870 // From the statepoint live set pick values that are cheaper to recompute then
1871 // to relocate. Remove this values from the live set, rematerialize them after
1872 // statepoint and record them in "Info" structure. Note that similar to
1873 // relocated values we don't do any user adjustments here.
1874 static void rematerializeLiveValues(CallSite CS,
1875                                     PartiallyConstructedSafepointRecord &Info,
1876                                     TargetTransformInfo &TTI) {
1877   const unsigned int ChainLengthThreshold = 10;
1878 
1879   // Record values we are going to delete from this statepoint live set.
1880   // We can not di this in following loop due to iterator invalidation.
1881   SmallVector<Value *, 32> LiveValuesToBeDeleted;
1882 
1883   for (Value *LiveValue: Info.LiveSet) {
1884     // For each live pointer find it's defining chain
1885     SmallVector<Instruction *, 3> ChainToBase;
1886     assert(Info.PointerToBase.count(LiveValue));
1887     bool FoundChain =
1888       findRematerializableChainToBasePointer(ChainToBase,
1889                                              LiveValue,
1890                                              Info.PointerToBase[LiveValue]);
1891     // Nothing to do, or chain is too long
1892     if (!FoundChain ||
1893         ChainToBase.size() == 0 ||
1894         ChainToBase.size() > ChainLengthThreshold)
1895       continue;
1896 
1897     // Compute cost of this chain
1898     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
1899     // TODO: We can also account for cases when we will be able to remove some
1900     //       of the rematerialized values by later optimization passes. I.e if
1901     //       we rematerialized several intersecting chains. Or if original values
1902     //       don't have any uses besides this statepoint.
1903 
1904     // For invokes we need to rematerialize each chain twice - for normal and
1905     // for unwind basic blocks. Model this by multiplying cost by two.
1906     if (CS.isInvoke()) {
1907       Cost *= 2;
1908     }
1909     // If it's too expensive - skip it
1910     if (Cost >= RematerializationThreshold)
1911       continue;
1912 
1913     // Remove value from the live set
1914     LiveValuesToBeDeleted.push_back(LiveValue);
1915 
1916     // Clone instructions and record them inside "Info" structure
1917 
1918     // Walk backwards to visit top-most instructions first
1919     std::reverse(ChainToBase.begin(), ChainToBase.end());
1920 
1921     // Utility function which clones all instructions from "ChainToBase"
1922     // and inserts them before "InsertBefore". Returns rematerialized value
1923     // which should be used after statepoint.
1924     auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
1925       Instruction *LastClonedValue = nullptr;
1926       Instruction *LastValue = nullptr;
1927       for (Instruction *Instr: ChainToBase) {
1928         // Only GEP's and casts are suported as we need to be careful to not
1929         // introduce any new uses of pointers not in the liveset.
1930         // Note that it's fine to introduce new uses of pointers which were
1931         // otherwise not used after this statepoint.
1932         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
1933 
1934         Instruction *ClonedValue = Instr->clone();
1935         ClonedValue->insertBefore(InsertBefore);
1936         ClonedValue->setName(Instr->getName() + ".remat");
1937 
1938         // If it is not first instruction in the chain then it uses previously
1939         // cloned value. We should update it to use cloned value.
1940         if (LastClonedValue) {
1941           assert(LastValue);
1942           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
1943 #ifndef NDEBUG
1944           // Assert that cloned instruction does not use any instructions from
1945           // this chain other than LastClonedValue
1946           for (auto OpValue : ClonedValue->operand_values()) {
1947             assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
1948                        ChainToBase.end() &&
1949                    "incorrect use in rematerialization chain");
1950           }
1951 #endif
1952         }
1953 
1954         LastClonedValue = ClonedValue;
1955         LastValue = Instr;
1956       }
1957       assert(LastClonedValue);
1958       return LastClonedValue;
1959     };
1960 
1961     // Different cases for calls and invokes. For invokes we need to clone
1962     // instructions both on normal and unwind path.
1963     if (CS.isCall()) {
1964       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
1965       assert(InsertBefore);
1966       Instruction *RematerializedValue = rematerializeChain(InsertBefore);
1967       Info.RematerializedValues[RematerializedValue] = LiveValue;
1968     } else {
1969       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
1970 
1971       Instruction *NormalInsertBefore =
1972           &*Invoke->getNormalDest()->getFirstInsertionPt();
1973       Instruction *UnwindInsertBefore =
1974           &*Invoke->getUnwindDest()->getFirstInsertionPt();
1975 
1976       Instruction *NormalRematerializedValue =
1977           rematerializeChain(NormalInsertBefore);
1978       Instruction *UnwindRematerializedValue =
1979           rematerializeChain(UnwindInsertBefore);
1980 
1981       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
1982       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
1983     }
1984   }
1985 
1986   // Remove rematerializaed values from the live set
1987   for (auto LiveValue: LiveValuesToBeDeleted) {
1988     Info.LiveSet.remove(LiveValue);
1989   }
1990 }
1991 
1992 static bool insertParsePoints(Function &F, DominatorTree &DT,
1993                               TargetTransformInfo &TTI,
1994                               SmallVectorImpl<CallSite> &ToUpdate) {
1995 #ifndef NDEBUG
1996   // sanity check the input
1997   std::set<CallSite> Uniqued;
1998   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
1999   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2000 
2001   for (CallSite CS : ToUpdate)
2002     assert(CS.getInstruction()->getFunction() == &F);
2003 #endif
2004 
2005   // When inserting gc.relocates for invokes, we need to be able to insert at
2006   // the top of the successor blocks.  See the comment on
2007   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2008   // may restructure the CFG.
2009   for (CallSite CS : ToUpdate) {
2010     if (!CS.isInvoke())
2011       continue;
2012     auto *II = cast<InvokeInst>(CS.getInstruction());
2013     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2014     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2015   }
2016 
2017   // A list of dummy calls added to the IR to keep various values obviously
2018   // live in the IR.  We'll remove all of these when done.
2019   SmallVector<CallInst *, 64> Holders;
2020 
2021   // Insert a dummy call with all of the arguments to the vm_state we'll need
2022   // for the actual safepoint insertion.  This ensures reference arguments in
2023   // the deopt argument list are considered live through the safepoint (and
2024   // thus makes sure they get relocated.)
2025   for (CallSite CS : ToUpdate) {
2026     SmallVector<Value *, 64> DeoptValues;
2027 
2028     for (Value *Arg : GetDeoptBundleOperands(CS)) {
2029       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2030              "support for FCA unimplemented");
2031       if (isHandledGCPointerType(Arg->getType()))
2032         DeoptValues.push_back(Arg);
2033     }
2034 
2035     insertUseHolderAfter(CS, DeoptValues, Holders);
2036   }
2037 
2038   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2039 
2040   // A) Identify all gc pointers which are statically live at the given call
2041   // site.
2042   findLiveReferences(F, DT, ToUpdate, Records);
2043 
2044   // B) Find the base pointers for each live pointer
2045   /* scope for caching */ {
2046     // Cache the 'defining value' relation used in the computation and
2047     // insertion of base phis and selects.  This ensures that we don't insert
2048     // large numbers of duplicate base_phis.
2049     DefiningValueMapTy DVCache;
2050 
2051     for (size_t i = 0; i < Records.size(); i++) {
2052       PartiallyConstructedSafepointRecord &info = Records[i];
2053       findBasePointers(DT, DVCache, ToUpdate[i], info);
2054     }
2055   } // end of cache scope
2056 
2057   // The base phi insertion logic (for any safepoint) may have inserted new
2058   // instructions which are now live at some safepoint.  The simplest such
2059   // example is:
2060   // loop:
2061   //   phi a  <-- will be a new base_phi here
2062   //   safepoint 1 <-- that needs to be live here
2063   //   gep a + 1
2064   //   safepoint 2
2065   //   br loop
2066   // We insert some dummy calls after each safepoint to definitely hold live
2067   // the base pointers which were identified for that safepoint.  We'll then
2068   // ask liveness for _every_ base inserted to see what is now live.  Then we
2069   // remove the dummy calls.
2070   Holders.reserve(Holders.size() + Records.size());
2071   for (size_t i = 0; i < Records.size(); i++) {
2072     PartiallyConstructedSafepointRecord &Info = Records[i];
2073 
2074     SmallVector<Value *, 128> Bases;
2075     for (auto Pair : Info.PointerToBase)
2076       Bases.push_back(Pair.second);
2077 
2078     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2079   }
2080 
2081   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2082   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2083   // not the key issue.
2084   recomputeLiveInValues(F, DT, ToUpdate, Records);
2085 
2086   if (PrintBasePointers) {
2087     for (auto &Info : Records) {
2088       errs() << "Base Pairs: (w/Relocation)\n";
2089       for (auto Pair : Info.PointerToBase) {
2090         errs() << " derived ";
2091         Pair.first->printAsOperand(errs(), false);
2092         errs() << " base ";
2093         Pair.second->printAsOperand(errs(), false);
2094         errs() << "\n";
2095       }
2096     }
2097   }
2098 
2099   // It is possible that non-constant live variables have a constant base.  For
2100   // example, a GEP with a variable offset from a global.  In this case we can
2101   // remove it from the liveset.  We already don't add constants to the liveset
2102   // because we assume they won't move at runtime and the GC doesn't need to be
2103   // informed about them.  The same reasoning applies if the base is constant.
2104   // Note that the relocation placement code relies on this filtering for
2105   // correctness as it expects the base to be in the liveset, which isn't true
2106   // if the base is constant.
2107   for (auto &Info : Records)
2108     for (auto &BasePair : Info.PointerToBase)
2109       if (isa<Constant>(BasePair.second))
2110         Info.LiveSet.remove(BasePair.first);
2111 
2112   for (CallInst *CI : Holders)
2113     CI->eraseFromParent();
2114 
2115   Holders.clear();
2116 
2117   // In order to reduce live set of statepoint we might choose to rematerialize
2118   // some values instead of relocating them. This is purely an optimization and
2119   // does not influence correctness.
2120   for (size_t i = 0; i < Records.size(); i++)
2121     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2122 
2123   // We need this to safely RAUW and delete call or invoke return values that
2124   // may themselves be live over a statepoint.  For details, please see usage in
2125   // makeStatepointExplicitImpl.
2126   std::vector<DeferredReplacement> Replacements;
2127 
2128   // Now run through and replace the existing statepoints with new ones with
2129   // the live variables listed.  We do not yet update uses of the values being
2130   // relocated. We have references to live variables that need to
2131   // survive to the last iteration of this loop.  (By construction, the
2132   // previous statepoint can not be a live variable, thus we can and remove
2133   // the old statepoint calls as we go.)
2134   for (size_t i = 0; i < Records.size(); i++)
2135     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2136 
2137   ToUpdate.clear(); // prevent accident use of invalid CallSites
2138 
2139   for (auto &PR : Replacements)
2140     PR.doReplacement();
2141 
2142   Replacements.clear();
2143 
2144   for (auto &Info : Records) {
2145     // These live sets may contain state Value pointers, since we replaced calls
2146     // with operand bundles with calls wrapped in gc.statepoint, and some of
2147     // those calls may have been def'ing live gc pointers.  Clear these out to
2148     // avoid accidentally using them.
2149     //
2150     // TODO: We should create a separate data structure that does not contain
2151     // these live sets, and migrate to using that data structure from this point
2152     // onward.
2153     Info.LiveSet.clear();
2154     Info.PointerToBase.clear();
2155   }
2156 
2157   // Do all the fixups of the original live variables to their relocated selves
2158   SmallVector<Value *, 128> Live;
2159   for (size_t i = 0; i < Records.size(); i++) {
2160     PartiallyConstructedSafepointRecord &Info = Records[i];
2161 
2162     // We can't simply save the live set from the original insertion.  One of
2163     // the live values might be the result of a call which needs a safepoint.
2164     // That Value* no longer exists and we need to use the new gc_result.
2165     // Thankfully, the live set is embedded in the statepoint (and updated), so
2166     // we just grab that.
2167     Statepoint Statepoint(Info.StatepointToken);
2168     Live.insert(Live.end(), Statepoint.gc_args_begin(),
2169                 Statepoint.gc_args_end());
2170 #ifndef NDEBUG
2171     // Do some basic sanity checks on our liveness results before performing
2172     // relocation.  Relocation can and will turn mistakes in liveness results
2173     // into non-sensical code which is must harder to debug.
2174     // TODO: It would be nice to test consistency as well
2175     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2176            "statepoint must be reachable or liveness is meaningless");
2177     for (Value *V : Statepoint.gc_args()) {
2178       if (!isa<Instruction>(V))
2179         // Non-instruction values trivial dominate all possible uses
2180         continue;
2181       auto *LiveInst = cast<Instruction>(V);
2182       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2183              "unreachable values should never be live");
2184       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2185              "basic SSA liveness expectation violated by liveness analysis");
2186     }
2187 #endif
2188   }
2189   unique_unsorted(Live);
2190 
2191 #ifndef NDEBUG
2192   // sanity check
2193   for (auto *Ptr : Live)
2194     assert(isHandledGCPointerType(Ptr->getType()) &&
2195            "must be a gc pointer type");
2196 #endif
2197 
2198   relocationViaAlloca(F, DT, Live, Records);
2199   return !Records.empty();
2200 }
2201 
2202 // Handles both return values and arguments for Functions and CallSites.
2203 template <typename AttrHolder>
2204 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2205                                       unsigned Index) {
2206   AttrBuilder R;
2207   if (AH.getDereferenceableBytes(Index))
2208     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2209                                   AH.getDereferenceableBytes(Index)));
2210   if (AH.getDereferenceableOrNullBytes(Index))
2211     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2212                                   AH.getDereferenceableOrNullBytes(Index)));
2213   if (AH.doesNotAlias(Index))
2214     R.addAttribute(Attribute::NoAlias);
2215 
2216   if (!R.empty())
2217     AH.setAttributes(AH.getAttributes().removeAttributes(
2218         Ctx, Index, AttributeSet::get(Ctx, Index, R)));
2219 }
2220 
2221 void
2222 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
2223   LLVMContext &Ctx = F.getContext();
2224 
2225   for (Argument &A : F.args())
2226     if (isa<PointerType>(A.getType()))
2227       RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
2228 
2229   if (isa<PointerType>(F.getReturnType()))
2230     RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
2231 }
2232 
2233 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
2234   if (F.empty())
2235     return;
2236 
2237   LLVMContext &Ctx = F.getContext();
2238   MDBuilder Builder(Ctx);
2239 
2240   for (Instruction &I : instructions(F)) {
2241     if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2242       assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2243       bool IsImmutableTBAA =
2244           MD->getNumOperands() == 4 &&
2245           mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2246 
2247       if (!IsImmutableTBAA)
2248         continue; // no work to do, MD_tbaa is already marked mutable
2249 
2250       MDNode *Base = cast<MDNode>(MD->getOperand(0));
2251       MDNode *Access = cast<MDNode>(MD->getOperand(1));
2252       uint64_t Offset =
2253           mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2254 
2255       MDNode *MutableTBAA =
2256           Builder.createTBAAStructTagNode(Base, Access, Offset);
2257       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2258     }
2259 
2260     if (CallSite CS = CallSite(&I)) {
2261       for (int i = 0, e = CS.arg_size(); i != e; i++)
2262         if (isa<PointerType>(CS.getArgument(i)->getType()))
2263           RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
2264       if (isa<PointerType>(CS.getType()))
2265         RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
2266     }
2267   }
2268 }
2269 
2270 /// Returns true if this function should be rewritten by this pass.  The main
2271 /// point of this function is as an extension point for custom logic.
2272 static bool shouldRewriteStatepointsIn(Function &F) {
2273   // TODO: This should check the GCStrategy
2274   if (F.hasGC()) {
2275     const auto &FunctionGCName = F.getGC();
2276     const StringRef StatepointExampleName("statepoint-example");
2277     const StringRef CoreCLRName("coreclr");
2278     return (StatepointExampleName == FunctionGCName) ||
2279            (CoreCLRName == FunctionGCName);
2280   } else
2281     return false;
2282 }
2283 
2284 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
2285 #ifndef NDEBUG
2286   assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2287          "precondition!");
2288 #endif
2289 
2290   for (Function &F : M)
2291     stripNonValidAttributesFromPrototype(F);
2292 
2293   for (Function &F : M)
2294     stripNonValidAttributesFromBody(F);
2295 }
2296 
2297 bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2298   // Nothing to do for declarations.
2299   if (F.isDeclaration() || F.empty())
2300     return false;
2301 
2302   // Policy choice says not to rewrite - the most common reason is that we're
2303   // compiling code without a GCStrategy.
2304   if (!shouldRewriteStatepointsIn(F))
2305     return false;
2306 
2307   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2308   TargetTransformInfo &TTI =
2309       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2310 
2311   auto NeedsRewrite = [](Instruction &I) {
2312     if (ImmutableCallSite CS = ImmutableCallSite(&I))
2313       return !callsGCLeafFunction(CS) && !isStatepoint(CS);
2314     return false;
2315   };
2316 
2317   // Gather all the statepoints which need rewritten.  Be careful to only
2318   // consider those in reachable code since we need to ask dominance queries
2319   // when rewriting.  We'll delete the unreachable ones in a moment.
2320   SmallVector<CallSite, 64> ParsePointNeeded;
2321   bool HasUnreachableStatepoint = false;
2322   for (Instruction &I : instructions(F)) {
2323     // TODO: only the ones with the flag set!
2324     if (NeedsRewrite(I)) {
2325       if (DT.isReachableFromEntry(I.getParent()))
2326         ParsePointNeeded.push_back(CallSite(&I));
2327       else
2328         HasUnreachableStatepoint = true;
2329     }
2330   }
2331 
2332   bool MadeChange = false;
2333 
2334   // Delete any unreachable statepoints so that we don't have unrewritten
2335   // statepoints surviving this pass.  This makes testing easier and the
2336   // resulting IR less confusing to human readers.  Rather than be fancy, we
2337   // just reuse a utility function which removes the unreachable blocks.
2338   if (HasUnreachableStatepoint)
2339     MadeChange |= removeUnreachableBlocks(F);
2340 
2341   // Return early if no work to do.
2342   if (ParsePointNeeded.empty())
2343     return MadeChange;
2344 
2345   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2346   // These are created by LCSSA.  They have the effect of increasing the size
2347   // of liveness sets for no good reason.  It may be harder to do this post
2348   // insertion since relocations and base phis can confuse things.
2349   for (BasicBlock &BB : F)
2350     if (BB.getUniquePredecessor()) {
2351       MadeChange = true;
2352       FoldSingleEntryPHINodes(&BB);
2353     }
2354 
2355   // Before we start introducing relocations, we want to tweak the IR a bit to
2356   // avoid unfortunate code generation effects.  The main example is that we
2357   // want to try to make sure the comparison feeding a branch is after any
2358   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2359   // values feeding a branch after relocation.  This is semantically correct,
2360   // but results in extra register pressure since both the pre-relocation and
2361   // post-relocation copies must be available in registers.  For code without
2362   // relocations this is handled elsewhere, but teaching the scheduler to
2363   // reverse the transform we're about to do would be slightly complex.
2364   // Note: This may extend the live range of the inputs to the icmp and thus
2365   // increase the liveset of any statepoint we move over.  This is profitable
2366   // as long as all statepoints are in rare blocks.  If we had in-register
2367   // lowering for live values this would be a much safer transform.
2368   auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2369     if (auto *BI = dyn_cast<BranchInst>(TI))
2370       if (BI->isConditional())
2371         return dyn_cast<Instruction>(BI->getCondition());
2372     // TODO: Extend this to handle switches
2373     return nullptr;
2374   };
2375   for (BasicBlock &BB : F) {
2376     TerminatorInst *TI = BB.getTerminator();
2377     if (auto *Cond = getConditionInst(TI))
2378       // TODO: Handle more than just ICmps here.  We should be able to move
2379       // most instructions without side effects or memory access.
2380       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2381         MadeChange = true;
2382         Cond->moveBefore(TI);
2383       }
2384   }
2385 
2386   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2387   return MadeChange;
2388 }
2389 
2390 // liveness computation via standard dataflow
2391 // -------------------------------------------------------------------
2392 
2393 // TODO: Consider using bitvectors for liveness, the set of potentially
2394 // interesting values should be small and easy to pre-compute.
2395 
2396 /// Compute the live-in set for the location rbegin starting from
2397 /// the live-out set of the basic block
2398 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
2399                                 BasicBlock::reverse_iterator rend,
2400                                 SetVector<Value *> &LiveTmp) {
2401 
2402   for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
2403     Instruction *I = &*ritr;
2404 
2405     // KILL/Def - Remove this definition from LiveIn
2406     LiveTmp.remove(I);
2407 
2408     // Don't consider *uses* in PHI nodes, we handle their contribution to
2409     // predecessor blocks when we seed the LiveOut sets
2410     if (isa<PHINode>(I))
2411       continue;
2412 
2413     // USE - Add to the LiveIn set for this instruction
2414     for (Value *V : I->operands()) {
2415       assert(!isUnhandledGCPointerType(V->getType()) &&
2416              "support for FCA unimplemented");
2417       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2418         // The choice to exclude all things constant here is slightly subtle.
2419         // There are two independent reasons:
2420         // - We assume that things which are constant (from LLVM's definition)
2421         // do not move at runtime.  For example, the address of a global
2422         // variable is fixed, even though it's contents may not be.
2423         // - Second, we can't disallow arbitrary inttoptr constants even
2424         // if the language frontend does.  Optimization passes are free to
2425         // locally exploit facts without respect to global reachability.  This
2426         // can create sections of code which are dynamically unreachable and
2427         // contain just about anything.  (see constants.ll in tests)
2428         LiveTmp.insert(V);
2429       }
2430     }
2431   }
2432 }
2433 
2434 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2435 
2436   for (BasicBlock *Succ : successors(BB)) {
2437     const BasicBlock::iterator E(Succ->getFirstNonPHI());
2438     for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
2439       PHINode *Phi = cast<PHINode>(&*I);
2440       Value *V = Phi->getIncomingValueForBlock(BB);
2441       assert(!isUnhandledGCPointerType(V->getType()) &&
2442              "support for FCA unimplemented");
2443       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2444         LiveTmp.insert(V);
2445       }
2446     }
2447   }
2448 }
2449 
2450 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2451   SetVector<Value *> KillSet;
2452   for (Instruction &I : *BB)
2453     if (isHandledGCPointerType(I.getType()))
2454       KillSet.insert(&I);
2455   return KillSet;
2456 }
2457 
2458 #ifndef NDEBUG
2459 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2460 /// sanity check for the liveness computation.
2461 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2462                           TerminatorInst *TI, bool TermOkay = false) {
2463   for (Value *V : Live) {
2464     if (auto *I = dyn_cast<Instruction>(V)) {
2465       // The terminator can be a member of the LiveOut set.  LLVM's definition
2466       // of instruction dominance states that V does not dominate itself.  As
2467       // such, we need to special case this to allow it.
2468       if (TermOkay && TI == I)
2469         continue;
2470       assert(DT.dominates(I, TI) &&
2471              "basic SSA liveness expectation violated by liveness analysis");
2472     }
2473   }
2474 }
2475 
2476 /// Check that all the liveness sets used during the computation of liveness
2477 /// obey basic SSA properties.  This is useful for finding cases where we miss
2478 /// a def.
2479 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2480                           BasicBlock &BB) {
2481   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2482   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2483   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2484 }
2485 #endif
2486 
2487 static void computeLiveInValues(DominatorTree &DT, Function &F,
2488                                 GCPtrLivenessData &Data) {
2489 
2490   SmallSetVector<BasicBlock *, 32> Worklist;
2491   auto AddPredsToWorklist = [&](BasicBlock *BB) {
2492     // We use a SetVector so that we don't have duplicates in the worklist.
2493     Worklist.insert(pred_begin(BB), pred_end(BB));
2494   };
2495   auto NextItem = [&]() {
2496     BasicBlock *BB = Worklist.back();
2497     Worklist.pop_back();
2498     return BB;
2499   };
2500 
2501   // Seed the liveness for each individual block
2502   for (BasicBlock &BB : F) {
2503     Data.KillSet[&BB] = computeKillSet(&BB);
2504     Data.LiveSet[&BB].clear();
2505     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2506 
2507 #ifndef NDEBUG
2508     for (Value *Kill : Data.KillSet[&BB])
2509       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2510 #endif
2511 
2512     Data.LiveOut[&BB] = SetVector<Value *>();
2513     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2514     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2515     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2516     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2517     if (!Data.LiveIn[&BB].empty())
2518       AddPredsToWorklist(&BB);
2519   }
2520 
2521   // Propagate that liveness until stable
2522   while (!Worklist.empty()) {
2523     BasicBlock *BB = NextItem();
2524 
2525     // Compute our new liveout set, then exit early if it hasn't changed
2526     // despite the contribution of our successor.
2527     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2528     const auto OldLiveOutSize = LiveOut.size();
2529     for (BasicBlock *Succ : successors(BB)) {
2530       assert(Data.LiveIn.count(Succ));
2531       LiveOut.set_union(Data.LiveIn[Succ]);
2532     }
2533     // assert OutLiveOut is a subset of LiveOut
2534     if (OldLiveOutSize == LiveOut.size()) {
2535       // If the sets are the same size, then we didn't actually add anything
2536       // when unioning our successors LiveIn  Thus, the LiveIn of this block
2537       // hasn't changed.
2538       continue;
2539     }
2540     Data.LiveOut[BB] = LiveOut;
2541 
2542     // Apply the effects of this basic block
2543     SetVector<Value *> LiveTmp = LiveOut;
2544     LiveTmp.set_union(Data.LiveSet[BB]);
2545     LiveTmp.set_subtract(Data.KillSet[BB]);
2546 
2547     assert(Data.LiveIn.count(BB));
2548     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2549     // assert: OldLiveIn is a subset of LiveTmp
2550     if (OldLiveIn.size() != LiveTmp.size()) {
2551       Data.LiveIn[BB] = LiveTmp;
2552       AddPredsToWorklist(BB);
2553     }
2554   } // while( !worklist.empty() )
2555 
2556 #ifndef NDEBUG
2557   // Sanity check our output against SSA properties.  This helps catch any
2558   // missing kills during the above iteration.
2559   for (BasicBlock &BB : F) {
2560     checkBasicSSA(DT, Data, BB);
2561   }
2562 #endif
2563 }
2564 
2565 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2566                               StatepointLiveSetTy &Out) {
2567 
2568   BasicBlock *BB = Inst->getParent();
2569 
2570   // Note: The copy is intentional and required
2571   assert(Data.LiveOut.count(BB));
2572   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2573 
2574   // We want to handle the statepoint itself oddly.  It's
2575   // call result is not live (normal), nor are it's arguments
2576   // (unless they're used again later).  This adjustment is
2577   // specifically what we need to relocate
2578   BasicBlock::reverse_iterator rend(Inst->getIterator());
2579   computeLiveInValues(BB->rbegin(), rend, LiveOut);
2580   LiveOut.remove(Inst);
2581   Out.insert(LiveOut.begin(), LiveOut.end());
2582 }
2583 
2584 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2585                                   CallSite CS,
2586                                   PartiallyConstructedSafepointRecord &Info) {
2587   Instruction *Inst = CS.getInstruction();
2588   StatepointLiveSetTy Updated;
2589   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2590 
2591 #ifndef NDEBUG
2592   DenseSet<Value *> Bases;
2593   for (auto KVPair : Info.PointerToBase) {
2594     Bases.insert(KVPair.second);
2595   }
2596 #endif
2597   // We may have base pointers which are now live that weren't before.  We need
2598   // to update the PointerToBase structure to reflect this.
2599   for (auto V : Updated)
2600     if (Info.PointerToBase.insert(std::make_pair(V, V)).second) {
2601       assert(Bases.count(V) && "can't find base for unexpected live value");
2602       continue;
2603     }
2604 
2605 #ifndef NDEBUG
2606   for (auto V : Updated) {
2607     assert(Info.PointerToBase.count(V) &&
2608            "must be able to find base for live value");
2609   }
2610 #endif
2611 
2612   // Remove any stale base mappings - this can happen since our liveness is
2613   // more precise then the one inherent in the base pointer analysis
2614   DenseSet<Value *> ToErase;
2615   for (auto KVPair : Info.PointerToBase)
2616     if (!Updated.count(KVPair.first))
2617       ToErase.insert(KVPair.first);
2618   for (auto V : ToErase)
2619     Info.PointerToBase.erase(V);
2620 
2621 #ifndef NDEBUG
2622   for (auto KVPair : Info.PointerToBase)
2623     assert(Updated.count(KVPair.first) && "record for non-live value");
2624 #endif
2625 
2626   Info.LiveSet = Updated;
2627 }
2628