1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstIterator.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/Cloning.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 45 46 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 47 48 using namespace llvm; 49 50 // Print the liveset found at the insert location 51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 52 cl::init(false)); 53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 54 cl::init(false)); 55 // Print out the base pointers for debugging 56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 57 cl::init(false)); 58 59 // Cost threshold measuring when it is profitable to rematerialize value instead 60 // of relocating it 61 static cl::opt<unsigned> 62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 63 cl::init(6)); 64 65 #ifdef EXPENSIVE_CHECKS 66 static bool ClobberNonLive = true; 67 #else 68 static bool ClobberNonLive = false; 69 #endif 70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 71 cl::location(ClobberNonLive), 72 cl::Hidden); 73 74 static cl::opt<bool> 75 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 76 cl::Hidden, cl::init(true)); 77 78 namespace { 79 struct RewriteStatepointsForGC : public ModulePass { 80 static char ID; // Pass identification, replacement for typeid 81 82 RewriteStatepointsForGC() : ModulePass(ID) { 83 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 84 } 85 bool runOnFunction(Function &F); 86 bool runOnModule(Module &M) override { 87 bool Changed = false; 88 for (Function &F : M) 89 Changed |= runOnFunction(F); 90 91 if (Changed) { 92 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 93 // returns true for at least one function in the module. Since at least 94 // one function changed, we know that the precondition is satisfied. 95 stripNonValidAttributes(M); 96 } 97 98 return Changed; 99 } 100 101 void getAnalysisUsage(AnalysisUsage &AU) const override { 102 // We add and rewrite a bunch of instructions, but don't really do much 103 // else. We could in theory preserve a lot more analyses here. 104 AU.addRequired<DominatorTreeWrapperPass>(); 105 AU.addRequired<TargetTransformInfoWrapperPass>(); 106 } 107 108 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 109 /// dereferenceability that are no longer valid/correct after 110 /// RewriteStatepointsForGC has run. This is because semantically, after 111 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 112 /// heap. stripNonValidAttributes (conservatively) restores correctness 113 /// by erasing all attributes in the module that externally imply 114 /// dereferenceability. 115 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 116 /// can touch the entire heap including noalias objects. 117 void stripNonValidAttributes(Module &M); 118 119 // Helpers for stripNonValidAttributes 120 void stripNonValidAttributesFromBody(Function &F); 121 void stripNonValidAttributesFromPrototype(Function &F); 122 }; 123 } // namespace 124 125 char RewriteStatepointsForGC::ID = 0; 126 127 ModulePass *llvm::createRewriteStatepointsForGCPass() { 128 return new RewriteStatepointsForGC(); 129 } 130 131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 132 "Make relocations explicit at statepoints", false, false) 133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 136 "Make relocations explicit at statepoints", false, false) 137 138 namespace { 139 struct GCPtrLivenessData { 140 /// Values defined in this block. 141 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 142 /// Values used in this block (and thus live); does not included values 143 /// killed within this block. 144 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 145 146 /// Values live into this basic block (i.e. used by any 147 /// instruction in this basic block or ones reachable from here) 148 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 149 150 /// Values live out of this basic block (i.e. live into 151 /// any successor block) 152 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 153 }; 154 155 // The type of the internal cache used inside the findBasePointers family 156 // of functions. From the callers perspective, this is an opaque type and 157 // should not be inspected. 158 // 159 // In the actual implementation this caches two relations: 160 // - The base relation itself (i.e. this pointer is based on that one) 161 // - The base defining value relation (i.e. before base_phi insertion) 162 // Generally, after the execution of a full findBasePointer call, only the 163 // base relation will remain. Internally, we add a mixture of the two 164 // types, then update all the second type to the first type 165 typedef MapVector<Value *, Value *> DefiningValueMapTy; 166 typedef SetVector<Value *> StatepointLiveSetTy; 167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>> 168 RematerializedValueMapTy; 169 170 struct PartiallyConstructedSafepointRecord { 171 /// The set of values known to be live across this safepoint 172 StatepointLiveSetTy LiveSet; 173 174 /// Mapping from live pointers to a base-defining-value 175 MapVector<Value *, Value *> PointerToBase; 176 177 /// The *new* gc.statepoint instruction itself. This produces the token 178 /// that normal path gc.relocates and the gc.result are tied to. 179 Instruction *StatepointToken; 180 181 /// Instruction to which exceptional gc relocates are attached 182 /// Makes it easier to iterate through them during relocationViaAlloca. 183 Instruction *UnwindToken; 184 185 /// Record live values we are rematerialized instead of relocating. 186 /// They are not included into 'LiveSet' field. 187 /// Maps rematerialized copy to it's original value. 188 RematerializedValueMapTy RematerializedValues; 189 }; 190 } 191 192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 193 Optional<OperandBundleUse> DeoptBundle = 194 CS.getOperandBundle(LLVMContext::OB_deopt); 195 196 if (!DeoptBundle.hasValue()) { 197 assert(AllowStatepointWithNoDeoptInfo && 198 "Found non-leaf call without deopt info!"); 199 return None; 200 } 201 202 return DeoptBundle.getValue().Inputs; 203 } 204 205 /// Compute the live-in set for every basic block in the function 206 static void computeLiveInValues(DominatorTree &DT, Function &F, 207 GCPtrLivenessData &Data); 208 209 /// Given results from the dataflow liveness computation, find the set of live 210 /// Values at a particular instruction. 211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 212 StatepointLiveSetTy &out); 213 214 // TODO: Once we can get to the GCStrategy, this becomes 215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 216 217 static bool isGCPointerType(Type *T) { 218 if (auto *PT = dyn_cast<PointerType>(T)) 219 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 220 // GC managed heap. We know that a pointer into this heap needs to be 221 // updated and that no other pointer does. 222 return (1 == PT->getAddressSpace()); 223 return false; 224 } 225 226 // Return true if this type is one which a) is a gc pointer or contains a GC 227 // pointer and b) is of a type this code expects to encounter as a live value. 228 // (The insertion code will assert that a type which matches (a) and not (b) 229 // is not encountered.) 230 static bool isHandledGCPointerType(Type *T) { 231 // We fully support gc pointers 232 if (isGCPointerType(T)) 233 return true; 234 // We partially support vectors of gc pointers. The code will assert if it 235 // can't handle something. 236 if (auto VT = dyn_cast<VectorType>(T)) 237 if (isGCPointerType(VT->getElementType())) 238 return true; 239 return false; 240 } 241 242 #ifndef NDEBUG 243 /// Returns true if this type contains a gc pointer whether we know how to 244 /// handle that type or not. 245 static bool containsGCPtrType(Type *Ty) { 246 if (isGCPointerType(Ty)) 247 return true; 248 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 249 return isGCPointerType(VT->getScalarType()); 250 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 251 return containsGCPtrType(AT->getElementType()); 252 if (StructType *ST = dyn_cast<StructType>(Ty)) 253 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 254 containsGCPtrType); 255 return false; 256 } 257 258 // Returns true if this is a type which a) is a gc pointer or contains a GC 259 // pointer and b) is of a type which the code doesn't expect (i.e. first class 260 // aggregates). Used to trip assertions. 261 static bool isUnhandledGCPointerType(Type *Ty) { 262 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 263 } 264 #endif 265 266 // Return the name of the value suffixed with the provided value, or if the 267 // value didn't have a name, the default value specified. 268 static std::string suffixed_name_or(Value *V, StringRef Suffix, 269 StringRef DefaultName) { 270 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 271 } 272 273 // Conservatively identifies any definitions which might be live at the 274 // given instruction. The analysis is performed immediately before the 275 // given instruction. Values defined by that instruction are not considered 276 // live. Values used by that instruction are considered live. 277 static void 278 analyzeParsePointLiveness(DominatorTree &DT, 279 GCPtrLivenessData &OriginalLivenessData, CallSite CS, 280 PartiallyConstructedSafepointRecord &result) { 281 Instruction *inst = CS.getInstruction(); 282 283 StatepointLiveSetTy LiveSet; 284 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet); 285 286 if (PrintLiveSet) { 287 errs() << "Live Variables:\n"; 288 for (Value *V : LiveSet) 289 dbgs() << " " << V->getName() << " " << *V << "\n"; 290 } 291 if (PrintLiveSetSize) { 292 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 293 errs() << "Number live values: " << LiveSet.size() << "\n"; 294 } 295 result.LiveSet = LiveSet; 296 } 297 298 static bool isKnownBaseResult(Value *V); 299 namespace { 300 /// A single base defining value - An immediate base defining value for an 301 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 302 /// For instructions which have multiple pointer [vector] inputs or that 303 /// transition between vector and scalar types, there is no immediate base 304 /// defining value. The 'base defining value' for 'Def' is the transitive 305 /// closure of this relation stopping at the first instruction which has no 306 /// immediate base defining value. The b.d.v. might itself be a base pointer, 307 /// but it can also be an arbitrary derived pointer. 308 struct BaseDefiningValueResult { 309 /// Contains the value which is the base defining value. 310 Value * const BDV; 311 /// True if the base defining value is also known to be an actual base 312 /// pointer. 313 const bool IsKnownBase; 314 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 315 : BDV(BDV), IsKnownBase(IsKnownBase) { 316 #ifndef NDEBUG 317 // Check consistency between new and old means of checking whether a BDV is 318 // a base. 319 bool MustBeBase = isKnownBaseResult(BDV); 320 assert(!MustBeBase || MustBeBase == IsKnownBase); 321 #endif 322 } 323 }; 324 } 325 326 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 327 328 /// Return a base defining value for the 'Index' element of the given vector 329 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 330 /// 'I'. As an optimization, this method will try to determine when the 331 /// element is known to already be a base pointer. If this can be established, 332 /// the second value in the returned pair will be true. Note that either a 333 /// vector or a pointer typed value can be returned. For the former, the 334 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 335 /// If the later, the return pointer is a BDV (or possibly a base) for the 336 /// particular element in 'I'. 337 static BaseDefiningValueResult 338 findBaseDefiningValueOfVector(Value *I) { 339 // Each case parallels findBaseDefiningValue below, see that code for 340 // detailed motivation. 341 342 if (isa<Argument>(I)) 343 // An incoming argument to the function is a base pointer 344 return BaseDefiningValueResult(I, true); 345 346 if (isa<Constant>(I)) 347 // Base of constant vector consists only of constant null pointers. 348 // For reasoning see similar case inside 'findBaseDefiningValue' function. 349 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 350 true); 351 352 if (isa<LoadInst>(I)) 353 return BaseDefiningValueResult(I, true); 354 355 if (isa<InsertElementInst>(I)) 356 // We don't know whether this vector contains entirely base pointers or 357 // not. To be conservatively correct, we treat it as a BDV and will 358 // duplicate code as needed to construct a parallel vector of bases. 359 return BaseDefiningValueResult(I, false); 360 361 if (isa<ShuffleVectorInst>(I)) 362 // We don't know whether this vector contains entirely base pointers or 363 // not. To be conservatively correct, we treat it as a BDV and will 364 // duplicate code as needed to construct a parallel vector of bases. 365 // TODO: There a number of local optimizations which could be applied here 366 // for particular sufflevector patterns. 367 return BaseDefiningValueResult(I, false); 368 369 // A PHI or Select is a base defining value. The outer findBasePointer 370 // algorithm is responsible for constructing a base value for this BDV. 371 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 372 "unknown vector instruction - no base found for vector element"); 373 return BaseDefiningValueResult(I, false); 374 } 375 376 /// Helper function for findBasePointer - Will return a value which either a) 377 /// defines the base pointer for the input, b) blocks the simple search 378 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 379 /// from pointer to vector type or back. 380 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 381 assert(I->getType()->isPtrOrPtrVectorTy() && 382 "Illegal to ask for the base pointer of a non-pointer type"); 383 384 if (I->getType()->isVectorTy()) 385 return findBaseDefiningValueOfVector(I); 386 387 if (isa<Argument>(I)) 388 // An incoming argument to the function is a base pointer 389 // We should have never reached here if this argument isn't an gc value 390 return BaseDefiningValueResult(I, true); 391 392 if (isa<Constant>(I)) { 393 // We assume that objects with a constant base (e.g. a global) can't move 394 // and don't need to be reported to the collector because they are always 395 // live. Besides global references, all kinds of constants (e.g. undef, 396 // constant expressions, null pointers) can be introduced by the inliner or 397 // the optimizer, especially on dynamically dead paths. 398 // Here we treat all of them as having single null base. By doing this we 399 // trying to avoid problems reporting various conflicts in a form of 400 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 401 // See constant.ll file for relevant test cases. 402 403 return BaseDefiningValueResult( 404 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 405 } 406 407 if (CastInst *CI = dyn_cast<CastInst>(I)) { 408 Value *Def = CI->stripPointerCasts(); 409 // If stripping pointer casts changes the address space there is an 410 // addrspacecast in between. 411 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 412 cast<PointerType>(CI->getType())->getAddressSpace() && 413 "unsupported addrspacecast"); 414 // If we find a cast instruction here, it means we've found a cast which is 415 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 416 // handle int->ptr conversion. 417 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 418 return findBaseDefiningValue(Def); 419 } 420 421 if (isa<LoadInst>(I)) 422 // The value loaded is an gc base itself 423 return BaseDefiningValueResult(I, true); 424 425 426 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 427 // The base of this GEP is the base 428 return findBaseDefiningValue(GEP->getPointerOperand()); 429 430 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 431 switch (II->getIntrinsicID()) { 432 default: 433 // fall through to general call handling 434 break; 435 case Intrinsic::experimental_gc_statepoint: 436 llvm_unreachable("statepoints don't produce pointers"); 437 case Intrinsic::experimental_gc_relocate: { 438 // Rerunning safepoint insertion after safepoints are already 439 // inserted is not supported. It could probably be made to work, 440 // but why are you doing this? There's no good reason. 441 llvm_unreachable("repeat safepoint insertion is not supported"); 442 } 443 case Intrinsic::gcroot: 444 // Currently, this mechanism hasn't been extended to work with gcroot. 445 // There's no reason it couldn't be, but I haven't thought about the 446 // implications much. 447 llvm_unreachable( 448 "interaction with the gcroot mechanism is not supported"); 449 } 450 } 451 // We assume that functions in the source language only return base 452 // pointers. This should probably be generalized via attributes to support 453 // both source language and internal functions. 454 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 455 return BaseDefiningValueResult(I, true); 456 457 // I have absolutely no idea how to implement this part yet. It's not 458 // necessarily hard, I just haven't really looked at it yet. 459 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 460 461 if (isa<AtomicCmpXchgInst>(I)) 462 // A CAS is effectively a atomic store and load combined under a 463 // predicate. From the perspective of base pointers, we just treat it 464 // like a load. 465 return BaseDefiningValueResult(I, true); 466 467 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 468 "binary ops which don't apply to pointers"); 469 470 // The aggregate ops. Aggregates can either be in the heap or on the 471 // stack, but in either case, this is simply a field load. As a result, 472 // this is a defining definition of the base just like a load is. 473 if (isa<ExtractValueInst>(I)) 474 return BaseDefiningValueResult(I, true); 475 476 // We should never see an insert vector since that would require we be 477 // tracing back a struct value not a pointer value. 478 assert(!isa<InsertValueInst>(I) && 479 "Base pointer for a struct is meaningless"); 480 481 // An extractelement produces a base result exactly when it's input does. 482 // We may need to insert a parallel instruction to extract the appropriate 483 // element out of the base vector corresponding to the input. Given this, 484 // it's analogous to the phi and select case even though it's not a merge. 485 if (isa<ExtractElementInst>(I)) 486 // Note: There a lot of obvious peephole cases here. This are deliberately 487 // handled after the main base pointer inference algorithm to make writing 488 // test cases to exercise that code easier. 489 return BaseDefiningValueResult(I, false); 490 491 // The last two cases here don't return a base pointer. Instead, they 492 // return a value which dynamically selects from among several base 493 // derived pointers (each with it's own base potentially). It's the job of 494 // the caller to resolve these. 495 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 496 "missing instruction case in findBaseDefiningValing"); 497 return BaseDefiningValueResult(I, false); 498 } 499 500 /// Returns the base defining value for this value. 501 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 502 Value *&Cached = Cache[I]; 503 if (!Cached) { 504 Cached = findBaseDefiningValue(I).BDV; 505 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 506 << Cached->getName() << "\n"); 507 } 508 assert(Cache[I] != nullptr); 509 return Cached; 510 } 511 512 /// Return a base pointer for this value if known. Otherwise, return it's 513 /// base defining value. 514 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 515 Value *Def = findBaseDefiningValueCached(I, Cache); 516 auto Found = Cache.find(Def); 517 if (Found != Cache.end()) { 518 // Either a base-of relation, or a self reference. Caller must check. 519 return Found->second; 520 } 521 // Only a BDV available 522 return Def; 523 } 524 525 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 526 /// is it known to be a base pointer? Or do we need to continue searching. 527 static bool isKnownBaseResult(Value *V) { 528 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 529 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 530 !isa<ShuffleVectorInst>(V)) { 531 // no recursion possible 532 return true; 533 } 534 if (isa<Instruction>(V) && 535 cast<Instruction>(V)->getMetadata("is_base_value")) { 536 // This is a previously inserted base phi or select. We know 537 // that this is a base value. 538 return true; 539 } 540 541 // We need to keep searching 542 return false; 543 } 544 545 namespace { 546 /// Models the state of a single base defining value in the findBasePointer 547 /// algorithm for determining where a new instruction is needed to propagate 548 /// the base of this BDV. 549 class BDVState { 550 public: 551 enum Status { Unknown, Base, Conflict }; 552 553 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 554 assert(status != Base || b); 555 } 556 explicit BDVState(Value *b) : status(Base), base(b) {} 557 BDVState() : status(Unknown), base(nullptr) {} 558 559 Status getStatus() const { return status; } 560 Value *getBase() const { return base; } 561 562 bool isBase() const { return getStatus() == Base; } 563 bool isUnknown() const { return getStatus() == Unknown; } 564 bool isConflict() const { return getStatus() == Conflict; } 565 566 bool operator==(const BDVState &other) const { 567 return base == other.base && status == other.status; 568 } 569 570 bool operator!=(const BDVState &other) const { return !(*this == other); } 571 572 LLVM_DUMP_METHOD 573 void dump() const { print(dbgs()); dbgs() << '\n'; } 574 575 void print(raw_ostream &OS) const { 576 switch (status) { 577 case Unknown: 578 OS << "U"; 579 break; 580 case Base: 581 OS << "B"; 582 break; 583 case Conflict: 584 OS << "C"; 585 break; 586 }; 587 OS << " (" << base << " - " 588 << (base ? base->getName() : "nullptr") << "): "; 589 } 590 591 private: 592 Status status; 593 AssertingVH<Value> base; // non null only if status == base 594 }; 595 } 596 597 #ifndef NDEBUG 598 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 599 State.print(OS); 600 return OS; 601 } 602 #endif 603 604 namespace { 605 // Values of type BDVState form a lattice, and this is a helper 606 // class that implementes the meet operation. The meat of the meet 607 // operation is implemented in MeetBDVStates::pureMeet 608 class MeetBDVStates { 609 public: 610 /// Initializes the currentResult to the TOP state so that if can be met with 611 /// any other state to produce that state. 612 MeetBDVStates() {} 613 614 // Destructively meet the current result with the given BDVState 615 void meetWith(BDVState otherState) { 616 currentResult = meet(otherState, currentResult); 617 } 618 619 BDVState getResult() const { return currentResult; } 620 621 private: 622 BDVState currentResult; 623 624 /// Perform a meet operation on two elements of the BDVState lattice. 625 static BDVState meet(BDVState LHS, BDVState RHS) { 626 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 627 "math is wrong: meet does not commute!"); 628 BDVState Result = pureMeet(LHS, RHS); 629 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 630 << " produced " << Result << "\n"); 631 return Result; 632 } 633 634 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 635 switch (stateA.getStatus()) { 636 case BDVState::Unknown: 637 return stateB; 638 639 case BDVState::Base: 640 assert(stateA.getBase() && "can't be null"); 641 if (stateB.isUnknown()) 642 return stateA; 643 644 if (stateB.isBase()) { 645 if (stateA.getBase() == stateB.getBase()) { 646 assert(stateA == stateB && "equality broken!"); 647 return stateA; 648 } 649 return BDVState(BDVState::Conflict); 650 } 651 assert(stateB.isConflict() && "only three states!"); 652 return BDVState(BDVState::Conflict); 653 654 case BDVState::Conflict: 655 return stateA; 656 } 657 llvm_unreachable("only three states!"); 658 } 659 }; 660 } 661 662 663 /// For a given value or instruction, figure out what base ptr its derived from. 664 /// For gc objects, this is simply itself. On success, returns a value which is 665 /// the base pointer. (This is reliable and can be used for relocation.) On 666 /// failure, returns nullptr. 667 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 668 Value *Def = findBaseOrBDV(I, Cache); 669 670 if (isKnownBaseResult(Def)) 671 return Def; 672 673 // Here's the rough algorithm: 674 // - For every SSA value, construct a mapping to either an actual base 675 // pointer or a PHI which obscures the base pointer. 676 // - Construct a mapping from PHI to unknown TOP state. Use an 677 // optimistic algorithm to propagate base pointer information. Lattice 678 // looks like: 679 // UNKNOWN 680 // b1 b2 b3 b4 681 // CONFLICT 682 // When algorithm terminates, all PHIs will either have a single concrete 683 // base or be in a conflict state. 684 // - For every conflict, insert a dummy PHI node without arguments. Add 685 // these to the base[Instruction] = BasePtr mapping. For every 686 // non-conflict, add the actual base. 687 // - For every conflict, add arguments for the base[a] of each input 688 // arguments. 689 // 690 // Note: A simpler form of this would be to add the conflict form of all 691 // PHIs without running the optimistic algorithm. This would be 692 // analogous to pessimistic data flow and would likely lead to an 693 // overall worse solution. 694 695 #ifndef NDEBUG 696 auto isExpectedBDVType = [](Value *BDV) { 697 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 698 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 699 }; 700 #endif 701 702 // Once populated, will contain a mapping from each potentially non-base BDV 703 // to a lattice value (described above) which corresponds to that BDV. 704 // We use the order of insertion (DFS over the def/use graph) to provide a 705 // stable deterministic ordering for visiting DenseMaps (which are unordered) 706 // below. This is important for deterministic compilation. 707 MapVector<Value *, BDVState> States; 708 709 // Recursively fill in all base defining values reachable from the initial 710 // one for which we don't already know a definite base value for 711 /* scope */ { 712 SmallVector<Value*, 16> Worklist; 713 Worklist.push_back(Def); 714 States.insert({Def, BDVState()}); 715 while (!Worklist.empty()) { 716 Value *Current = Worklist.pop_back_val(); 717 assert(!isKnownBaseResult(Current) && "why did it get added?"); 718 719 auto visitIncomingValue = [&](Value *InVal) { 720 Value *Base = findBaseOrBDV(InVal, Cache); 721 if (isKnownBaseResult(Base)) 722 // Known bases won't need new instructions introduced and can be 723 // ignored safely 724 return; 725 assert(isExpectedBDVType(Base) && "the only non-base values " 726 "we see should be base defining values"); 727 if (States.insert(std::make_pair(Base, BDVState())).second) 728 Worklist.push_back(Base); 729 }; 730 if (PHINode *PN = dyn_cast<PHINode>(Current)) { 731 for (Value *InVal : PN->incoming_values()) 732 visitIncomingValue(InVal); 733 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { 734 visitIncomingValue(SI->getTrueValue()); 735 visitIncomingValue(SI->getFalseValue()); 736 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 737 visitIncomingValue(EE->getVectorOperand()); 738 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 739 visitIncomingValue(IE->getOperand(0)); // vector operand 740 visitIncomingValue(IE->getOperand(1)); // scalar operand 741 } else { 742 // There is one known class of instructions we know we don't handle. 743 assert(isa<ShuffleVectorInst>(Current)); 744 llvm_unreachable("Unimplemented instruction case"); 745 } 746 } 747 } 748 749 #ifndef NDEBUG 750 DEBUG(dbgs() << "States after initialization:\n"); 751 for (auto Pair : States) 752 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 753 #endif 754 755 // Return a phi state for a base defining value. We'll generate a new 756 // base state for known bases and expect to find a cached state otherwise. 757 auto getStateForBDV = [&](Value *baseValue) { 758 if (isKnownBaseResult(baseValue)) 759 return BDVState(baseValue); 760 auto I = States.find(baseValue); 761 assert(I != States.end() && "lookup failed!"); 762 return I->second; 763 }; 764 765 bool Progress = true; 766 while (Progress) { 767 #ifndef NDEBUG 768 const size_t OldSize = States.size(); 769 #endif 770 Progress = false; 771 // We're only changing values in this loop, thus safe to keep iterators. 772 // Since this is computing a fixed point, the order of visit does not 773 // effect the result. TODO: We could use a worklist here and make this run 774 // much faster. 775 for (auto Pair : States) { 776 Value *BDV = Pair.first; 777 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 778 779 // Given an input value for the current instruction, return a BDVState 780 // instance which represents the BDV of that value. 781 auto getStateForInput = [&](Value *V) mutable { 782 Value *BDV = findBaseOrBDV(V, Cache); 783 return getStateForBDV(BDV); 784 }; 785 786 MeetBDVStates CalculateMeet; 787 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 788 CalculateMeet.meetWith(getStateForInput(SI->getTrueValue())); 789 CalculateMeet.meetWith(getStateForInput(SI->getFalseValue())); 790 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 791 for (Value *Val : PN->incoming_values()) 792 CalculateMeet.meetWith(getStateForInput(Val)); 793 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 794 // The 'meet' for an extractelement is slightly trivial, but it's still 795 // useful in that it drives us to conflict if our input is. 796 CalculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 797 } else { 798 // Given there's a inherent type mismatch between the operands, will 799 // *always* produce Conflict. 800 auto *IE = cast<InsertElementInst>(BDV); 801 CalculateMeet.meetWith(getStateForInput(IE->getOperand(0))); 802 CalculateMeet.meetWith(getStateForInput(IE->getOperand(1))); 803 } 804 805 BDVState OldState = States[BDV]; 806 BDVState NewState = CalculateMeet.getResult(); 807 if (OldState != NewState) { 808 Progress = true; 809 States[BDV] = NewState; 810 } 811 } 812 813 assert(OldSize == States.size() && 814 "fixed point shouldn't be adding any new nodes to state"); 815 } 816 817 #ifndef NDEBUG 818 DEBUG(dbgs() << "States after meet iteration:\n"); 819 for (auto Pair : States) 820 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 821 #endif 822 823 // Insert Phis for all conflicts 824 // TODO: adjust naming patterns to avoid this order of iteration dependency 825 for (auto Pair : States) { 826 Instruction *I = cast<Instruction>(Pair.first); 827 BDVState State = Pair.second; 828 assert(!isKnownBaseResult(I) && "why did it get added?"); 829 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 830 831 // extractelement instructions are a bit special in that we may need to 832 // insert an extract even when we know an exact base for the instruction. 833 // The problem is that we need to convert from a vector base to a scalar 834 // base for the particular indice we're interested in. 835 if (State.isBase() && isa<ExtractElementInst>(I) && 836 isa<VectorType>(State.getBase()->getType())) { 837 auto *EE = cast<ExtractElementInst>(I); 838 // TODO: In many cases, the new instruction is just EE itself. We should 839 // exploit this, but can't do it here since it would break the invariant 840 // about the BDV not being known to be a base. 841 auto *BaseInst = ExtractElementInst::Create( 842 State.getBase(), EE->getIndexOperand(), "base_ee", EE); 843 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 844 States[I] = BDVState(BDVState::Base, BaseInst); 845 } 846 847 // Since we're joining a vector and scalar base, they can never be the 848 // same. As a result, we should always see insert element having reached 849 // the conflict state. 850 assert(!isa<InsertElementInst>(I) || State.isConflict()); 851 852 if (!State.isConflict()) 853 continue; 854 855 /// Create and insert a new instruction which will represent the base of 856 /// the given instruction 'I'. 857 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 858 if (isa<PHINode>(I)) { 859 BasicBlock *BB = I->getParent(); 860 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 861 assert(NumPreds > 0 && "how did we reach here"); 862 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 863 return PHINode::Create(I->getType(), NumPreds, Name, I); 864 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 865 // The undef will be replaced later 866 UndefValue *Undef = UndefValue::get(SI->getType()); 867 std::string Name = suffixed_name_or(I, ".base", "base_select"); 868 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); 869 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 870 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 871 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 872 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 873 EE); 874 } else { 875 auto *IE = cast<InsertElementInst>(I); 876 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 877 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 878 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 879 return InsertElementInst::Create(VecUndef, ScalarUndef, 880 IE->getOperand(2), Name, IE); 881 } 882 }; 883 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 884 // Add metadata marking this as a base value 885 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 886 States[I] = BDVState(BDVState::Conflict, BaseInst); 887 } 888 889 // Returns a instruction which produces the base pointer for a given 890 // instruction. The instruction is assumed to be an input to one of the BDVs 891 // seen in the inference algorithm above. As such, we must either already 892 // know it's base defining value is a base, or have inserted a new 893 // instruction to propagate the base of it's BDV and have entered that newly 894 // introduced instruction into the state table. In either case, we are 895 // assured to be able to determine an instruction which produces it's base 896 // pointer. 897 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 898 Value *BDV = findBaseOrBDV(Input, Cache); 899 Value *Base = nullptr; 900 if (isKnownBaseResult(BDV)) { 901 Base = BDV; 902 } else { 903 // Either conflict or base. 904 assert(States.count(BDV)); 905 Base = States[BDV].getBase(); 906 } 907 assert(Base && "Can't be null"); 908 // The cast is needed since base traversal may strip away bitcasts 909 if (Base->getType() != Input->getType() && InsertPt) 910 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 911 return Base; 912 }; 913 914 // Fixup all the inputs of the new PHIs. Visit order needs to be 915 // deterministic and predictable because we're naming newly created 916 // instructions. 917 for (auto Pair : States) { 918 Instruction *BDV = cast<Instruction>(Pair.first); 919 BDVState State = Pair.second; 920 921 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 922 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 923 if (!State.isConflict()) 924 continue; 925 926 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBase())) { 927 PHINode *PN = cast<PHINode>(BDV); 928 unsigned NumPHIValues = PN->getNumIncomingValues(); 929 for (unsigned i = 0; i < NumPHIValues; i++) { 930 Value *InVal = PN->getIncomingValue(i); 931 BasicBlock *InBB = PN->getIncomingBlock(i); 932 933 // If we've already seen InBB, add the same incoming value 934 // we added for it earlier. The IR verifier requires phi 935 // nodes with multiple entries from the same basic block 936 // to have the same incoming value for each of those 937 // entries. If we don't do this check here and basephi 938 // has a different type than base, we'll end up adding two 939 // bitcasts (and hence two distinct values) as incoming 940 // values for the same basic block. 941 942 int BlockIndex = BasePHI->getBasicBlockIndex(InBB); 943 if (BlockIndex != -1) { 944 Value *OldBase = BasePHI->getIncomingValue(BlockIndex); 945 BasePHI->addIncoming(OldBase, InBB); 946 947 #ifndef NDEBUG 948 Value *Base = getBaseForInput(InVal, nullptr); 949 // In essence this assert states: the only way two values 950 // incoming from the same basic block may be different is by 951 // being different bitcasts of the same value. A cleanup 952 // that remains TODO is changing findBaseOrBDV to return an 953 // llvm::Value of the correct type (and still remain pure). 954 // This will remove the need to add bitcasts. 955 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 956 "Sanity -- findBaseOrBDV should be pure!"); 957 #endif 958 continue; 959 } 960 961 // Find the instruction which produces the base for each input. We may 962 // need to insert a bitcast in the incoming block. 963 // TODO: Need to split critical edges if insertion is needed 964 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 965 BasePHI->addIncoming(Base, InBB); 966 } 967 assert(BasePHI->getNumIncomingValues() == NumPHIValues); 968 } else if (SelectInst *BaseSI = dyn_cast<SelectInst>(State.getBase())) { 969 SelectInst *SI = cast<SelectInst>(BDV); 970 971 // Find the instruction which produces the base for each input. 972 // We may need to insert a bitcast. 973 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 974 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 975 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 976 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 977 // Find the instruction which produces the base for each input. We may 978 // need to insert a bitcast. 979 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 980 } else { 981 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 982 auto *BdvIE = cast<InsertElementInst>(BDV); 983 auto UpdateOperand = [&](int OperandIdx) { 984 Value *InVal = BdvIE->getOperand(OperandIdx); 985 Value *Base = getBaseForInput(InVal, BaseIE); 986 BaseIE->setOperand(OperandIdx, Base); 987 }; 988 UpdateOperand(0); // vector operand 989 UpdateOperand(1); // scalar operand 990 } 991 } 992 993 // Cache all of our results so we can cheaply reuse them 994 // NOTE: This is actually two caches: one of the base defining value 995 // relation and one of the base pointer relation! FIXME 996 for (auto Pair : States) { 997 auto *BDV = Pair.first; 998 Value *Base = Pair.second.getBase(); 999 assert(BDV && Base); 1000 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1001 1002 DEBUG(dbgs() << "Updating base value cache" 1003 << " for: " << BDV->getName() << " from: " 1004 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1005 << " to: " << Base->getName() << "\n"); 1006 1007 if (Cache.count(BDV)) { 1008 assert(isKnownBaseResult(Base) && 1009 "must be something we 'know' is a base pointer"); 1010 // Once we transition from the BDV relation being store in the Cache to 1011 // the base relation being stored, it must be stable 1012 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && 1013 "base relation should be stable"); 1014 } 1015 Cache[BDV] = Base; 1016 } 1017 assert(Cache.count(Def)); 1018 return Cache[Def]; 1019 } 1020 1021 // For a set of live pointers (base and/or derived), identify the base 1022 // pointer of the object which they are derived from. This routine will 1023 // mutate the IR graph as needed to make the 'base' pointer live at the 1024 // definition site of 'derived'. This ensures that any use of 'derived' can 1025 // also use 'base'. This may involve the insertion of a number of 1026 // additional PHI nodes. 1027 // 1028 // preconditions: live is a set of pointer type Values 1029 // 1030 // side effects: may insert PHI nodes into the existing CFG, will preserve 1031 // CFG, will not remove or mutate any existing nodes 1032 // 1033 // post condition: PointerToBase contains one (derived, base) pair for every 1034 // pointer in live. Note that derived can be equal to base if the original 1035 // pointer was a base pointer. 1036 static void 1037 findBasePointers(const StatepointLiveSetTy &live, 1038 MapVector<Value *, Value *> &PointerToBase, 1039 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1040 for (Value *ptr : live) { 1041 Value *base = findBasePointer(ptr, DVCache); 1042 assert(base && "failed to find base pointer"); 1043 PointerToBase[ptr] = base; 1044 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1045 DT->dominates(cast<Instruction>(base)->getParent(), 1046 cast<Instruction>(ptr)->getParent())) && 1047 "The base we found better dominate the derived pointer"); 1048 } 1049 } 1050 1051 /// Find the required based pointers (and adjust the live set) for the given 1052 /// parse point. 1053 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1054 CallSite CS, 1055 PartiallyConstructedSafepointRecord &result) { 1056 MapVector<Value *, Value *> PointerToBase; 1057 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1058 1059 if (PrintBasePointers) { 1060 errs() << "Base Pairs (w/o Relocation):\n"; 1061 for (auto &Pair : PointerToBase) { 1062 errs() << " derived "; 1063 Pair.first->printAsOperand(errs(), false); 1064 errs() << " base "; 1065 Pair.second->printAsOperand(errs(), false); 1066 errs() << "\n";; 1067 } 1068 } 1069 1070 result.PointerToBase = PointerToBase; 1071 } 1072 1073 /// Given an updated version of the dataflow liveness results, update the 1074 /// liveset and base pointer maps for the call site CS. 1075 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1076 CallSite CS, 1077 PartiallyConstructedSafepointRecord &result); 1078 1079 static void recomputeLiveInValues( 1080 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1081 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1082 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1083 // again. The old values are still live and will help it stabilize quickly. 1084 GCPtrLivenessData RevisedLivenessData; 1085 computeLiveInValues(DT, F, RevisedLivenessData); 1086 for (size_t i = 0; i < records.size(); i++) { 1087 struct PartiallyConstructedSafepointRecord &info = records[i]; 1088 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1089 } 1090 } 1091 1092 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1093 // no uses of the original value / return value between the gc.statepoint and 1094 // the gc.relocate / gc.result call. One case which can arise is a phi node 1095 // starting one of the successor blocks. We also need to be able to insert the 1096 // gc.relocates only on the path which goes through the statepoint. We might 1097 // need to split an edge to make this possible. 1098 static BasicBlock * 1099 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1100 DominatorTree &DT) { 1101 BasicBlock *Ret = BB; 1102 if (!BB->getUniquePredecessor()) 1103 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1104 1105 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1106 // from it 1107 FoldSingleEntryPHINodes(Ret); 1108 assert(!isa<PHINode>(Ret->begin()) && 1109 "All PHI nodes should have been removed!"); 1110 1111 // At this point, we can safely insert a gc.relocate or gc.result as the first 1112 // instruction in Ret if needed. 1113 return Ret; 1114 } 1115 1116 // Create new attribute set containing only attributes which can be transferred 1117 // from original call to the safepoint. 1118 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1119 AttributeSet Ret; 1120 1121 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1122 unsigned Index = AS.getSlotIndex(Slot); 1123 1124 if (Index == AttributeSet::ReturnIndex || 1125 Index == AttributeSet::FunctionIndex) { 1126 1127 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { 1128 1129 // Do not allow certain attributes - just skip them 1130 // Safepoint can not be read only or read none. 1131 if (Attr.hasAttribute(Attribute::ReadNone) || 1132 Attr.hasAttribute(Attribute::ReadOnly)) 1133 continue; 1134 1135 // These attributes control the generation of the gc.statepoint call / 1136 // invoke itself; and once the gc.statepoint is in place, they're of no 1137 // use. 1138 if (isStatepointDirectiveAttr(Attr)) 1139 continue; 1140 1141 Ret = Ret.addAttributes( 1142 AS.getContext(), Index, 1143 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); 1144 } 1145 } 1146 1147 // Just skip parameter attributes for now 1148 } 1149 1150 return Ret; 1151 } 1152 1153 /// Helper function to place all gc relocates necessary for the given 1154 /// statepoint. 1155 /// Inputs: 1156 /// liveVariables - list of variables to be relocated. 1157 /// liveStart - index of the first live variable. 1158 /// basePtrs - base pointers. 1159 /// statepointToken - statepoint instruction to which relocates should be 1160 /// bound. 1161 /// Builder - Llvm IR builder to be used to construct new calls. 1162 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1163 const int LiveStart, 1164 ArrayRef<Value *> BasePtrs, 1165 Instruction *StatepointToken, 1166 IRBuilder<> Builder) { 1167 if (LiveVariables.empty()) 1168 return; 1169 1170 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1171 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val); 1172 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1173 size_t Index = std::distance(LiveVec.begin(), ValIt); 1174 assert(Index < LiveVec.size() && "Bug in std::find?"); 1175 return Index; 1176 }; 1177 Module *M = StatepointToken->getModule(); 1178 1179 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1180 // element type is i8 addrspace(1)*). We originally generated unique 1181 // declarations for each pointer type, but this proved problematic because 1182 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1183 // towards a single unified pointer type anyways, we can just cast everything 1184 // to an i8* of the right address space. A bitcast is added later to convert 1185 // gc_relocate to the actual value's type. 1186 auto getGCRelocateDecl = [&] (Type *Ty) { 1187 assert(isHandledGCPointerType(Ty)); 1188 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1189 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1190 if (auto *VT = dyn_cast<VectorType>(Ty)) 1191 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1192 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1193 {NewTy}); 1194 }; 1195 1196 // Lazily populated map from input types to the canonicalized form mentioned 1197 // in the comment above. This should probably be cached somewhere more 1198 // broadly. 1199 DenseMap<Type*, Value*> TypeToDeclMap; 1200 1201 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1202 // Generate the gc.relocate call and save the result 1203 Value *BaseIdx = 1204 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1205 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1206 1207 Type *Ty = LiveVariables[i]->getType(); 1208 if (!TypeToDeclMap.count(Ty)) 1209 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1210 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1211 1212 // only specify a debug name if we can give a useful one 1213 CallInst *Reloc = Builder.CreateCall( 1214 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1215 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1216 // Trick CodeGen into thinking there are lots of free registers at this 1217 // fake call. 1218 Reloc->setCallingConv(CallingConv::Cold); 1219 } 1220 } 1221 1222 namespace { 1223 1224 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1225 /// avoids having to worry about keeping around dangling pointers to Values. 1226 class DeferredReplacement { 1227 AssertingVH<Instruction> Old; 1228 AssertingVH<Instruction> New; 1229 bool IsDeoptimize = false; 1230 1231 DeferredReplacement() {} 1232 1233 public: 1234 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1235 assert(Old != New && Old && New && 1236 "Cannot RAUW equal values or to / from null!"); 1237 1238 DeferredReplacement D; 1239 D.Old = Old; 1240 D.New = New; 1241 return D; 1242 } 1243 1244 static DeferredReplacement createDelete(Instruction *ToErase) { 1245 DeferredReplacement D; 1246 D.Old = ToErase; 1247 return D; 1248 } 1249 1250 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1251 #ifndef NDEBUG 1252 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1253 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1254 "Only way to construct a deoptimize deferred replacement"); 1255 #endif 1256 DeferredReplacement D; 1257 D.Old = Old; 1258 D.IsDeoptimize = true; 1259 return D; 1260 } 1261 1262 /// Does the task represented by this instance. 1263 void doReplacement() { 1264 Instruction *OldI = Old; 1265 Instruction *NewI = New; 1266 1267 assert(OldI != NewI && "Disallowed at construction?!"); 1268 assert((!IsDeoptimize || !New) && 1269 "Deoptimize instrinsics are not replaced!"); 1270 1271 Old = nullptr; 1272 New = nullptr; 1273 1274 if (NewI) 1275 OldI->replaceAllUsesWith(NewI); 1276 1277 if (IsDeoptimize) { 1278 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1279 // not necessarilly be followed by the matching return. 1280 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1281 new UnreachableInst(RI->getContext(), RI); 1282 RI->eraseFromParent(); 1283 } 1284 1285 OldI->eraseFromParent(); 1286 } 1287 }; 1288 } 1289 1290 static void 1291 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1292 const SmallVectorImpl<Value *> &BasePtrs, 1293 const SmallVectorImpl<Value *> &LiveVariables, 1294 PartiallyConstructedSafepointRecord &Result, 1295 std::vector<DeferredReplacement> &Replacements) { 1296 assert(BasePtrs.size() == LiveVariables.size()); 1297 1298 // Then go ahead and use the builder do actually do the inserts. We insert 1299 // immediately before the previous instruction under the assumption that all 1300 // arguments will be available here. We can't insert afterwards since we may 1301 // be replacing a terminator. 1302 Instruction *InsertBefore = CS.getInstruction(); 1303 IRBuilder<> Builder(InsertBefore); 1304 1305 ArrayRef<Value *> GCArgs(LiveVariables); 1306 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1307 uint32_t NumPatchBytes = 0; 1308 uint32_t Flags = uint32_t(StatepointFlags::None); 1309 1310 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1311 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1312 ArrayRef<Use> TransitionArgs; 1313 if (auto TransitionBundle = 1314 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1315 Flags |= uint32_t(StatepointFlags::GCTransition); 1316 TransitionArgs = TransitionBundle->Inputs; 1317 } 1318 1319 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1320 // with a return value, we lower then as never returning calls to 1321 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1322 bool IsDeoptimize = false; 1323 1324 StatepointDirectives SD = 1325 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1326 if (SD.NumPatchBytes) 1327 NumPatchBytes = *SD.NumPatchBytes; 1328 if (SD.StatepointID) 1329 StatepointID = *SD.StatepointID; 1330 1331 Value *CallTarget = CS.getCalledValue(); 1332 if (Function *F = dyn_cast<Function>(CallTarget)) { 1333 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1334 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1335 // __llvm_deoptimize symbol. We want to resolve this now, since the 1336 // verifier does not allow taking the address of an intrinsic function. 1337 1338 SmallVector<Type *, 8> DomainTy; 1339 for (Value *Arg : CallArgs) 1340 DomainTy.push_back(Arg->getType()); 1341 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1342 /* isVarArg = */ false); 1343 1344 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1345 // calls to @llvm.experimental.deoptimize with different argument types in 1346 // the same module. This is fine -- we assume the frontend knew what it 1347 // was doing when generating this kind of IR. 1348 CallTarget = 1349 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1350 1351 IsDeoptimize = true; 1352 } 1353 } 1354 1355 // Create the statepoint given all the arguments 1356 Instruction *Token = nullptr; 1357 AttributeSet ReturnAttrs; 1358 if (CS.isCall()) { 1359 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1360 CallInst *Call = Builder.CreateGCStatepointCall( 1361 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1362 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1363 1364 Call->setTailCall(ToReplace->isTailCall()); 1365 Call->setCallingConv(ToReplace->getCallingConv()); 1366 1367 // Currently we will fail on parameter attributes and on certain 1368 // function attributes. 1369 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1370 // In case if we can handle this set of attributes - set up function attrs 1371 // directly on statepoint and return attrs later for gc_result intrinsic. 1372 Call->setAttributes(NewAttrs.getFnAttributes()); 1373 ReturnAttrs = NewAttrs.getRetAttributes(); 1374 1375 Token = Call; 1376 1377 // Put the following gc_result and gc_relocate calls immediately after the 1378 // the old call (which we're about to delete) 1379 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1380 Builder.SetInsertPoint(ToReplace->getNextNode()); 1381 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1382 } else { 1383 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1384 1385 // Insert the new invoke into the old block. We'll remove the old one in a 1386 // moment at which point this will become the new terminator for the 1387 // original block. 1388 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1389 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1390 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1391 GCArgs, "statepoint_token"); 1392 1393 Invoke->setCallingConv(ToReplace->getCallingConv()); 1394 1395 // Currently we will fail on parameter attributes and on certain 1396 // function attributes. 1397 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1398 // In case if we can handle this set of attributes - set up function attrs 1399 // directly on statepoint and return attrs later for gc_result intrinsic. 1400 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1401 ReturnAttrs = NewAttrs.getRetAttributes(); 1402 1403 Token = Invoke; 1404 1405 // Generate gc relocates in exceptional path 1406 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1407 assert(!isa<PHINode>(UnwindBlock->begin()) && 1408 UnwindBlock->getUniquePredecessor() && 1409 "can't safely insert in this block!"); 1410 1411 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1412 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1413 1414 // Attach exceptional gc relocates to the landingpad. 1415 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1416 Result.UnwindToken = ExceptionalToken; 1417 1418 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1419 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1420 Builder); 1421 1422 // Generate gc relocates and returns for normal block 1423 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1424 assert(!isa<PHINode>(NormalDest->begin()) && 1425 NormalDest->getUniquePredecessor() && 1426 "can't safely insert in this block!"); 1427 1428 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1429 1430 // gc relocates will be generated later as if it were regular call 1431 // statepoint 1432 } 1433 assert(Token && "Should be set in one of the above branches!"); 1434 1435 if (IsDeoptimize) { 1436 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1437 // transform the tail-call like structure to a call to a void function 1438 // followed by unreachable to get better codegen. 1439 Replacements.push_back( 1440 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1441 } else { 1442 Token->setName("statepoint_token"); 1443 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1444 StringRef Name = 1445 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1446 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1447 GCResult->setAttributes(CS.getAttributes().getRetAttributes()); 1448 1449 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1450 // live set of some other safepoint, in which case that safepoint's 1451 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1452 // llvm::Instruction. Instead, we defer the replacement and deletion to 1453 // after the live sets have been made explicit in the IR, and we no longer 1454 // have raw pointers to worry about. 1455 Replacements.emplace_back( 1456 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1457 } else { 1458 Replacements.emplace_back( 1459 DeferredReplacement::createDelete(CS.getInstruction())); 1460 } 1461 } 1462 1463 Result.StatepointToken = Token; 1464 1465 // Second, create a gc.relocate for every live variable 1466 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1467 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1468 } 1469 1470 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1471 // which make the relocations happening at this safepoint explicit. 1472 // 1473 // WARNING: Does not do any fixup to adjust users of the original live 1474 // values. That's the callers responsibility. 1475 static void 1476 makeStatepointExplicit(DominatorTree &DT, CallSite CS, 1477 PartiallyConstructedSafepointRecord &Result, 1478 std::vector<DeferredReplacement> &Replacements) { 1479 const auto &LiveSet = Result.LiveSet; 1480 const auto &PointerToBase = Result.PointerToBase; 1481 1482 // Convert to vector for efficient cross referencing. 1483 SmallVector<Value *, 64> BaseVec, LiveVec; 1484 LiveVec.reserve(LiveSet.size()); 1485 BaseVec.reserve(LiveSet.size()); 1486 for (Value *L : LiveSet) { 1487 LiveVec.push_back(L); 1488 assert(PointerToBase.count(L)); 1489 Value *Base = PointerToBase.find(L)->second; 1490 BaseVec.push_back(Base); 1491 } 1492 assert(LiveVec.size() == BaseVec.size()); 1493 1494 // Do the actual rewriting and delete the old statepoint 1495 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1496 } 1497 1498 // Helper function for the relocationViaAlloca. 1499 // 1500 // It receives iterator to the statepoint gc relocates and emits a store to the 1501 // assigned location (via allocaMap) for the each one of them. It adds the 1502 // visited values into the visitedLiveValues set, which we will later use them 1503 // for sanity checking. 1504 static void 1505 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1506 DenseMap<Value *, Value *> &AllocaMap, 1507 DenseSet<Value *> &VisitedLiveValues) { 1508 1509 for (User *U : GCRelocs) { 1510 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1511 if (!Relocate) 1512 continue; 1513 1514 Value *OriginalValue = Relocate->getDerivedPtr(); 1515 assert(AllocaMap.count(OriginalValue)); 1516 Value *Alloca = AllocaMap[OriginalValue]; 1517 1518 // Emit store into the related alloca 1519 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1520 // the correct type according to alloca. 1521 assert(Relocate->getNextNode() && 1522 "Should always have one since it's not a terminator"); 1523 IRBuilder<> Builder(Relocate->getNextNode()); 1524 Value *CastedRelocatedValue = 1525 Builder.CreateBitCast(Relocate, 1526 cast<AllocaInst>(Alloca)->getAllocatedType(), 1527 suffixed_name_or(Relocate, ".casted", "")); 1528 1529 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1530 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1531 1532 #ifndef NDEBUG 1533 VisitedLiveValues.insert(OriginalValue); 1534 #endif 1535 } 1536 } 1537 1538 // Helper function for the "relocationViaAlloca". Similar to the 1539 // "insertRelocationStores" but works for rematerialized values. 1540 static void insertRematerializationStores( 1541 const RematerializedValueMapTy &RematerializedValues, 1542 DenseMap<Value *, Value *> &AllocaMap, 1543 DenseSet<Value *> &VisitedLiveValues) { 1544 1545 for (auto RematerializedValuePair: RematerializedValues) { 1546 Instruction *RematerializedValue = RematerializedValuePair.first; 1547 Value *OriginalValue = RematerializedValuePair.second; 1548 1549 assert(AllocaMap.count(OriginalValue) && 1550 "Can not find alloca for rematerialized value"); 1551 Value *Alloca = AllocaMap[OriginalValue]; 1552 1553 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1554 Store->insertAfter(RematerializedValue); 1555 1556 #ifndef NDEBUG 1557 VisitedLiveValues.insert(OriginalValue); 1558 #endif 1559 } 1560 } 1561 1562 /// Do all the relocation update via allocas and mem2reg 1563 static void relocationViaAlloca( 1564 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1565 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1566 #ifndef NDEBUG 1567 // record initial number of (static) allocas; we'll check we have the same 1568 // number when we get done. 1569 int InitialAllocaNum = 0; 1570 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1571 I++) 1572 if (isa<AllocaInst>(*I)) 1573 InitialAllocaNum++; 1574 #endif 1575 1576 // TODO-PERF: change data structures, reserve 1577 DenseMap<Value *, Value *> AllocaMap; 1578 SmallVector<AllocaInst *, 200> PromotableAllocas; 1579 // Used later to chack that we have enough allocas to store all values 1580 std::size_t NumRematerializedValues = 0; 1581 PromotableAllocas.reserve(Live.size()); 1582 1583 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1584 // "PromotableAllocas" 1585 auto emitAllocaFor = [&](Value *LiveValue) { 1586 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1587 F.getEntryBlock().getFirstNonPHI()); 1588 AllocaMap[LiveValue] = Alloca; 1589 PromotableAllocas.push_back(Alloca); 1590 }; 1591 1592 // Emit alloca for each live gc pointer 1593 for (Value *V : Live) 1594 emitAllocaFor(V); 1595 1596 // Emit allocas for rematerialized values 1597 for (const auto &Info : Records) 1598 for (auto RematerializedValuePair : Info.RematerializedValues) { 1599 Value *OriginalValue = RematerializedValuePair.second; 1600 if (AllocaMap.count(OriginalValue) != 0) 1601 continue; 1602 1603 emitAllocaFor(OriginalValue); 1604 ++NumRematerializedValues; 1605 } 1606 1607 // The next two loops are part of the same conceptual operation. We need to 1608 // insert a store to the alloca after the original def and at each 1609 // redefinition. We need to insert a load before each use. These are split 1610 // into distinct loops for performance reasons. 1611 1612 // Update gc pointer after each statepoint: either store a relocated value or 1613 // null (if no relocated value was found for this gc pointer and it is not a 1614 // gc_result). This must happen before we update the statepoint with load of 1615 // alloca otherwise we lose the link between statepoint and old def. 1616 for (const auto &Info : Records) { 1617 Value *Statepoint = Info.StatepointToken; 1618 1619 // This will be used for consistency check 1620 DenseSet<Value *> VisitedLiveValues; 1621 1622 // Insert stores for normal statepoint gc relocates 1623 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1624 1625 // In case if it was invoke statepoint 1626 // we will insert stores for exceptional path gc relocates. 1627 if (isa<InvokeInst>(Statepoint)) { 1628 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1629 VisitedLiveValues); 1630 } 1631 1632 // Do similar thing with rematerialized values 1633 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1634 VisitedLiveValues); 1635 1636 if (ClobberNonLive) { 1637 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1638 // the gc.statepoint. This will turn some subtle GC problems into 1639 // slightly easier to debug SEGVs. Note that on large IR files with 1640 // lots of gc.statepoints this is extremely costly both memory and time 1641 // wise. 1642 SmallVector<AllocaInst *, 64> ToClobber; 1643 for (auto Pair : AllocaMap) { 1644 Value *Def = Pair.first; 1645 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1646 1647 // This value was relocated 1648 if (VisitedLiveValues.count(Def)) { 1649 continue; 1650 } 1651 ToClobber.push_back(Alloca); 1652 } 1653 1654 auto InsertClobbersAt = [&](Instruction *IP) { 1655 for (auto *AI : ToClobber) { 1656 auto PT = cast<PointerType>(AI->getAllocatedType()); 1657 Constant *CPN = ConstantPointerNull::get(PT); 1658 StoreInst *Store = new StoreInst(CPN, AI); 1659 Store->insertBefore(IP); 1660 } 1661 }; 1662 1663 // Insert the clobbering stores. These may get intermixed with the 1664 // gc.results and gc.relocates, but that's fine. 1665 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1666 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1667 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1668 } else { 1669 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1670 } 1671 } 1672 } 1673 1674 // Update use with load allocas and add store for gc_relocated. 1675 for (auto Pair : AllocaMap) { 1676 Value *Def = Pair.first; 1677 Value *Alloca = Pair.second; 1678 1679 // We pre-record the uses of allocas so that we dont have to worry about 1680 // later update that changes the user information.. 1681 1682 SmallVector<Instruction *, 20> Uses; 1683 // PERF: trade a linear scan for repeated reallocation 1684 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1685 for (User *U : Def->users()) { 1686 if (!isa<ConstantExpr>(U)) { 1687 // If the def has a ConstantExpr use, then the def is either a 1688 // ConstantExpr use itself or null. In either case 1689 // (recursively in the first, directly in the second), the oop 1690 // it is ultimately dependent on is null and this particular 1691 // use does not need to be fixed up. 1692 Uses.push_back(cast<Instruction>(U)); 1693 } 1694 } 1695 1696 std::sort(Uses.begin(), Uses.end()); 1697 auto Last = std::unique(Uses.begin(), Uses.end()); 1698 Uses.erase(Last, Uses.end()); 1699 1700 for (Instruction *Use : Uses) { 1701 if (isa<PHINode>(Use)) { 1702 PHINode *Phi = cast<PHINode>(Use); 1703 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1704 if (Def == Phi->getIncomingValue(i)) { 1705 LoadInst *Load = new LoadInst( 1706 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1707 Phi->setIncomingValue(i, Load); 1708 } 1709 } 1710 } else { 1711 LoadInst *Load = new LoadInst(Alloca, "", Use); 1712 Use->replaceUsesOfWith(Def, Load); 1713 } 1714 } 1715 1716 // Emit store for the initial gc value. Store must be inserted after load, 1717 // otherwise store will be in alloca's use list and an extra load will be 1718 // inserted before it. 1719 StoreInst *Store = new StoreInst(Def, Alloca); 1720 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1721 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1722 // InvokeInst is a TerminatorInst so the store need to be inserted 1723 // into its normal destination block. 1724 BasicBlock *NormalDest = Invoke->getNormalDest(); 1725 Store->insertBefore(NormalDest->getFirstNonPHI()); 1726 } else { 1727 assert(!Inst->isTerminator() && 1728 "The only TerminatorInst that can produce a value is " 1729 "InvokeInst which is handled above."); 1730 Store->insertAfter(Inst); 1731 } 1732 } else { 1733 assert(isa<Argument>(Def)); 1734 Store->insertAfter(cast<Instruction>(Alloca)); 1735 } 1736 } 1737 1738 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1739 "we must have the same allocas with lives"); 1740 if (!PromotableAllocas.empty()) { 1741 // Apply mem2reg to promote alloca to SSA 1742 PromoteMemToReg(PromotableAllocas, DT); 1743 } 1744 1745 #ifndef NDEBUG 1746 for (auto &I : F.getEntryBlock()) 1747 if (isa<AllocaInst>(I)) 1748 InitialAllocaNum--; 1749 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1750 #endif 1751 } 1752 1753 /// Implement a unique function which doesn't require we sort the input 1754 /// vector. Doing so has the effect of changing the output of a couple of 1755 /// tests in ways which make them less useful in testing fused safepoints. 1756 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1757 SmallSet<T, 8> Seen; 1758 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1759 return !Seen.insert(V).second; 1760 }), Vec.end()); 1761 } 1762 1763 /// Insert holders so that each Value is obviously live through the entire 1764 /// lifetime of the call. 1765 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1766 SmallVectorImpl<CallInst *> &Holders) { 1767 if (Values.empty()) 1768 // No values to hold live, might as well not insert the empty holder 1769 return; 1770 1771 Module *M = CS.getInstruction()->getModule(); 1772 // Use a dummy vararg function to actually hold the values live 1773 Function *Func = cast<Function>(M->getOrInsertFunction( 1774 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1775 if (CS.isCall()) { 1776 // For call safepoints insert dummy calls right after safepoint 1777 Holders.push_back(CallInst::Create(Func, Values, "", 1778 &*++CS.getInstruction()->getIterator())); 1779 return; 1780 } 1781 // For invoke safepooints insert dummy calls both in normal and 1782 // exceptional destination blocks 1783 auto *II = cast<InvokeInst>(CS.getInstruction()); 1784 Holders.push_back(CallInst::Create( 1785 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1786 Holders.push_back(CallInst::Create( 1787 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1788 } 1789 1790 static void findLiveReferences( 1791 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1792 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1793 GCPtrLivenessData OriginalLivenessData; 1794 computeLiveInValues(DT, F, OriginalLivenessData); 1795 for (size_t i = 0; i < records.size(); i++) { 1796 struct PartiallyConstructedSafepointRecord &info = records[i]; 1797 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1798 } 1799 } 1800 1801 // Helper function for the "rematerializeLiveValues". It walks use chain 1802 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1803 // values are visited (currently it is GEP's and casts). Returns true if it 1804 // successfully reached "BaseValue" and false otherwise. 1805 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1806 // recorded. 1807 static bool findRematerializableChainToBasePointer( 1808 SmallVectorImpl<Instruction*> &ChainToBase, 1809 Value *CurrentValue, Value *BaseValue) { 1810 1811 // We have found a base value 1812 if (CurrentValue == BaseValue) { 1813 return true; 1814 } 1815 1816 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1817 ChainToBase.push_back(GEP); 1818 return findRematerializableChainToBasePointer(ChainToBase, 1819 GEP->getPointerOperand(), 1820 BaseValue); 1821 } 1822 1823 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1824 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1825 return false; 1826 1827 ChainToBase.push_back(CI); 1828 return findRematerializableChainToBasePointer(ChainToBase, 1829 CI->getOperand(0), BaseValue); 1830 } 1831 1832 // Not supported instruction in the chain 1833 return false; 1834 } 1835 1836 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1837 // chain we are going to rematerialize. 1838 static unsigned 1839 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1840 TargetTransformInfo &TTI) { 1841 unsigned Cost = 0; 1842 1843 for (Instruction *Instr : Chain) { 1844 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1845 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1846 "non noop cast is found during rematerialization"); 1847 1848 Type *SrcTy = CI->getOperand(0)->getType(); 1849 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 1850 1851 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1852 // Cost of the address calculation 1853 Type *ValTy = GEP->getSourceElementType(); 1854 Cost += TTI.getAddressComputationCost(ValTy); 1855 1856 // And cost of the GEP itself 1857 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1858 // allowed for the external usage) 1859 if (!GEP->hasAllConstantIndices()) 1860 Cost += 2; 1861 1862 } else { 1863 llvm_unreachable("unsupported instruciton type during rematerialization"); 1864 } 1865 } 1866 1867 return Cost; 1868 } 1869 1870 // From the statepoint live set pick values that are cheaper to recompute then 1871 // to relocate. Remove this values from the live set, rematerialize them after 1872 // statepoint and record them in "Info" structure. Note that similar to 1873 // relocated values we don't do any user adjustments here. 1874 static void rematerializeLiveValues(CallSite CS, 1875 PartiallyConstructedSafepointRecord &Info, 1876 TargetTransformInfo &TTI) { 1877 const unsigned int ChainLengthThreshold = 10; 1878 1879 // Record values we are going to delete from this statepoint live set. 1880 // We can not di this in following loop due to iterator invalidation. 1881 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1882 1883 for (Value *LiveValue: Info.LiveSet) { 1884 // For each live pointer find it's defining chain 1885 SmallVector<Instruction *, 3> ChainToBase; 1886 assert(Info.PointerToBase.count(LiveValue)); 1887 bool FoundChain = 1888 findRematerializableChainToBasePointer(ChainToBase, 1889 LiveValue, 1890 Info.PointerToBase[LiveValue]); 1891 // Nothing to do, or chain is too long 1892 if (!FoundChain || 1893 ChainToBase.size() == 0 || 1894 ChainToBase.size() > ChainLengthThreshold) 1895 continue; 1896 1897 // Compute cost of this chain 1898 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1899 // TODO: We can also account for cases when we will be able to remove some 1900 // of the rematerialized values by later optimization passes. I.e if 1901 // we rematerialized several intersecting chains. Or if original values 1902 // don't have any uses besides this statepoint. 1903 1904 // For invokes we need to rematerialize each chain twice - for normal and 1905 // for unwind basic blocks. Model this by multiplying cost by two. 1906 if (CS.isInvoke()) { 1907 Cost *= 2; 1908 } 1909 // If it's too expensive - skip it 1910 if (Cost >= RematerializationThreshold) 1911 continue; 1912 1913 // Remove value from the live set 1914 LiveValuesToBeDeleted.push_back(LiveValue); 1915 1916 // Clone instructions and record them inside "Info" structure 1917 1918 // Walk backwards to visit top-most instructions first 1919 std::reverse(ChainToBase.begin(), ChainToBase.end()); 1920 1921 // Utility function which clones all instructions from "ChainToBase" 1922 // and inserts them before "InsertBefore". Returns rematerialized value 1923 // which should be used after statepoint. 1924 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 1925 Instruction *LastClonedValue = nullptr; 1926 Instruction *LastValue = nullptr; 1927 for (Instruction *Instr: ChainToBase) { 1928 // Only GEP's and casts are suported as we need to be careful to not 1929 // introduce any new uses of pointers not in the liveset. 1930 // Note that it's fine to introduce new uses of pointers which were 1931 // otherwise not used after this statepoint. 1932 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 1933 1934 Instruction *ClonedValue = Instr->clone(); 1935 ClonedValue->insertBefore(InsertBefore); 1936 ClonedValue->setName(Instr->getName() + ".remat"); 1937 1938 // If it is not first instruction in the chain then it uses previously 1939 // cloned value. We should update it to use cloned value. 1940 if (LastClonedValue) { 1941 assert(LastValue); 1942 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 1943 #ifndef NDEBUG 1944 // Assert that cloned instruction does not use any instructions from 1945 // this chain other than LastClonedValue 1946 for (auto OpValue : ClonedValue->operand_values()) { 1947 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 1948 ChainToBase.end() && 1949 "incorrect use in rematerialization chain"); 1950 } 1951 #endif 1952 } 1953 1954 LastClonedValue = ClonedValue; 1955 LastValue = Instr; 1956 } 1957 assert(LastClonedValue); 1958 return LastClonedValue; 1959 }; 1960 1961 // Different cases for calls and invokes. For invokes we need to clone 1962 // instructions both on normal and unwind path. 1963 if (CS.isCall()) { 1964 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 1965 assert(InsertBefore); 1966 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 1967 Info.RematerializedValues[RematerializedValue] = LiveValue; 1968 } else { 1969 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 1970 1971 Instruction *NormalInsertBefore = 1972 &*Invoke->getNormalDest()->getFirstInsertionPt(); 1973 Instruction *UnwindInsertBefore = 1974 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 1975 1976 Instruction *NormalRematerializedValue = 1977 rematerializeChain(NormalInsertBefore); 1978 Instruction *UnwindRematerializedValue = 1979 rematerializeChain(UnwindInsertBefore); 1980 1981 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 1982 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 1983 } 1984 } 1985 1986 // Remove rematerializaed values from the live set 1987 for (auto LiveValue: LiveValuesToBeDeleted) { 1988 Info.LiveSet.remove(LiveValue); 1989 } 1990 } 1991 1992 static bool insertParsePoints(Function &F, DominatorTree &DT, 1993 TargetTransformInfo &TTI, 1994 SmallVectorImpl<CallSite> &ToUpdate) { 1995 #ifndef NDEBUG 1996 // sanity check the input 1997 std::set<CallSite> Uniqued; 1998 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 1999 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2000 2001 for (CallSite CS : ToUpdate) 2002 assert(CS.getInstruction()->getFunction() == &F); 2003 #endif 2004 2005 // When inserting gc.relocates for invokes, we need to be able to insert at 2006 // the top of the successor blocks. See the comment on 2007 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2008 // may restructure the CFG. 2009 for (CallSite CS : ToUpdate) { 2010 if (!CS.isInvoke()) 2011 continue; 2012 auto *II = cast<InvokeInst>(CS.getInstruction()); 2013 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2014 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2015 } 2016 2017 // A list of dummy calls added to the IR to keep various values obviously 2018 // live in the IR. We'll remove all of these when done. 2019 SmallVector<CallInst *, 64> Holders; 2020 2021 // Insert a dummy call with all of the arguments to the vm_state we'll need 2022 // for the actual safepoint insertion. This ensures reference arguments in 2023 // the deopt argument list are considered live through the safepoint (and 2024 // thus makes sure they get relocated.) 2025 for (CallSite CS : ToUpdate) { 2026 SmallVector<Value *, 64> DeoptValues; 2027 2028 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2029 assert(!isUnhandledGCPointerType(Arg->getType()) && 2030 "support for FCA unimplemented"); 2031 if (isHandledGCPointerType(Arg->getType())) 2032 DeoptValues.push_back(Arg); 2033 } 2034 2035 insertUseHolderAfter(CS, DeoptValues, Holders); 2036 } 2037 2038 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2039 2040 // A) Identify all gc pointers which are statically live at the given call 2041 // site. 2042 findLiveReferences(F, DT, ToUpdate, Records); 2043 2044 // B) Find the base pointers for each live pointer 2045 /* scope for caching */ { 2046 // Cache the 'defining value' relation used in the computation and 2047 // insertion of base phis and selects. This ensures that we don't insert 2048 // large numbers of duplicate base_phis. 2049 DefiningValueMapTy DVCache; 2050 2051 for (size_t i = 0; i < Records.size(); i++) { 2052 PartiallyConstructedSafepointRecord &info = Records[i]; 2053 findBasePointers(DT, DVCache, ToUpdate[i], info); 2054 } 2055 } // end of cache scope 2056 2057 // The base phi insertion logic (for any safepoint) may have inserted new 2058 // instructions which are now live at some safepoint. The simplest such 2059 // example is: 2060 // loop: 2061 // phi a <-- will be a new base_phi here 2062 // safepoint 1 <-- that needs to be live here 2063 // gep a + 1 2064 // safepoint 2 2065 // br loop 2066 // We insert some dummy calls after each safepoint to definitely hold live 2067 // the base pointers which were identified for that safepoint. We'll then 2068 // ask liveness for _every_ base inserted to see what is now live. Then we 2069 // remove the dummy calls. 2070 Holders.reserve(Holders.size() + Records.size()); 2071 for (size_t i = 0; i < Records.size(); i++) { 2072 PartiallyConstructedSafepointRecord &Info = Records[i]; 2073 2074 SmallVector<Value *, 128> Bases; 2075 for (auto Pair : Info.PointerToBase) 2076 Bases.push_back(Pair.second); 2077 2078 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2079 } 2080 2081 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2082 // need to rerun liveness. We may *also* have inserted new defs, but that's 2083 // not the key issue. 2084 recomputeLiveInValues(F, DT, ToUpdate, Records); 2085 2086 if (PrintBasePointers) { 2087 for (auto &Info : Records) { 2088 errs() << "Base Pairs: (w/Relocation)\n"; 2089 for (auto Pair : Info.PointerToBase) { 2090 errs() << " derived "; 2091 Pair.first->printAsOperand(errs(), false); 2092 errs() << " base "; 2093 Pair.second->printAsOperand(errs(), false); 2094 errs() << "\n"; 2095 } 2096 } 2097 } 2098 2099 // It is possible that non-constant live variables have a constant base. For 2100 // example, a GEP with a variable offset from a global. In this case we can 2101 // remove it from the liveset. We already don't add constants to the liveset 2102 // because we assume they won't move at runtime and the GC doesn't need to be 2103 // informed about them. The same reasoning applies if the base is constant. 2104 // Note that the relocation placement code relies on this filtering for 2105 // correctness as it expects the base to be in the liveset, which isn't true 2106 // if the base is constant. 2107 for (auto &Info : Records) 2108 for (auto &BasePair : Info.PointerToBase) 2109 if (isa<Constant>(BasePair.second)) 2110 Info.LiveSet.remove(BasePair.first); 2111 2112 for (CallInst *CI : Holders) 2113 CI->eraseFromParent(); 2114 2115 Holders.clear(); 2116 2117 // In order to reduce live set of statepoint we might choose to rematerialize 2118 // some values instead of relocating them. This is purely an optimization and 2119 // does not influence correctness. 2120 for (size_t i = 0; i < Records.size(); i++) 2121 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2122 2123 // We need this to safely RAUW and delete call or invoke return values that 2124 // may themselves be live over a statepoint. For details, please see usage in 2125 // makeStatepointExplicitImpl. 2126 std::vector<DeferredReplacement> Replacements; 2127 2128 // Now run through and replace the existing statepoints with new ones with 2129 // the live variables listed. We do not yet update uses of the values being 2130 // relocated. We have references to live variables that need to 2131 // survive to the last iteration of this loop. (By construction, the 2132 // previous statepoint can not be a live variable, thus we can and remove 2133 // the old statepoint calls as we go.) 2134 for (size_t i = 0; i < Records.size(); i++) 2135 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2136 2137 ToUpdate.clear(); // prevent accident use of invalid CallSites 2138 2139 for (auto &PR : Replacements) 2140 PR.doReplacement(); 2141 2142 Replacements.clear(); 2143 2144 for (auto &Info : Records) { 2145 // These live sets may contain state Value pointers, since we replaced calls 2146 // with operand bundles with calls wrapped in gc.statepoint, and some of 2147 // those calls may have been def'ing live gc pointers. Clear these out to 2148 // avoid accidentally using them. 2149 // 2150 // TODO: We should create a separate data structure that does not contain 2151 // these live sets, and migrate to using that data structure from this point 2152 // onward. 2153 Info.LiveSet.clear(); 2154 Info.PointerToBase.clear(); 2155 } 2156 2157 // Do all the fixups of the original live variables to their relocated selves 2158 SmallVector<Value *, 128> Live; 2159 for (size_t i = 0; i < Records.size(); i++) { 2160 PartiallyConstructedSafepointRecord &Info = Records[i]; 2161 2162 // We can't simply save the live set from the original insertion. One of 2163 // the live values might be the result of a call which needs a safepoint. 2164 // That Value* no longer exists and we need to use the new gc_result. 2165 // Thankfully, the live set is embedded in the statepoint (and updated), so 2166 // we just grab that. 2167 Statepoint Statepoint(Info.StatepointToken); 2168 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2169 Statepoint.gc_args_end()); 2170 #ifndef NDEBUG 2171 // Do some basic sanity checks on our liveness results before performing 2172 // relocation. Relocation can and will turn mistakes in liveness results 2173 // into non-sensical code which is must harder to debug. 2174 // TODO: It would be nice to test consistency as well 2175 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2176 "statepoint must be reachable or liveness is meaningless"); 2177 for (Value *V : Statepoint.gc_args()) { 2178 if (!isa<Instruction>(V)) 2179 // Non-instruction values trivial dominate all possible uses 2180 continue; 2181 auto *LiveInst = cast<Instruction>(V); 2182 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2183 "unreachable values should never be live"); 2184 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2185 "basic SSA liveness expectation violated by liveness analysis"); 2186 } 2187 #endif 2188 } 2189 unique_unsorted(Live); 2190 2191 #ifndef NDEBUG 2192 // sanity check 2193 for (auto *Ptr : Live) 2194 assert(isHandledGCPointerType(Ptr->getType()) && 2195 "must be a gc pointer type"); 2196 #endif 2197 2198 relocationViaAlloca(F, DT, Live, Records); 2199 return !Records.empty(); 2200 } 2201 2202 // Handles both return values and arguments for Functions and CallSites. 2203 template <typename AttrHolder> 2204 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2205 unsigned Index) { 2206 AttrBuilder R; 2207 if (AH.getDereferenceableBytes(Index)) 2208 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2209 AH.getDereferenceableBytes(Index))); 2210 if (AH.getDereferenceableOrNullBytes(Index)) 2211 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2212 AH.getDereferenceableOrNullBytes(Index))); 2213 if (AH.doesNotAlias(Index)) 2214 R.addAttribute(Attribute::NoAlias); 2215 2216 if (!R.empty()) 2217 AH.setAttributes(AH.getAttributes().removeAttributes( 2218 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2219 } 2220 2221 void 2222 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2223 LLVMContext &Ctx = F.getContext(); 2224 2225 for (Argument &A : F.args()) 2226 if (isa<PointerType>(A.getType())) 2227 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2228 2229 if (isa<PointerType>(F.getReturnType())) 2230 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2231 } 2232 2233 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2234 if (F.empty()) 2235 return; 2236 2237 LLVMContext &Ctx = F.getContext(); 2238 MDBuilder Builder(Ctx); 2239 2240 for (Instruction &I : instructions(F)) { 2241 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2242 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2243 bool IsImmutableTBAA = 2244 MD->getNumOperands() == 4 && 2245 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2246 2247 if (!IsImmutableTBAA) 2248 continue; // no work to do, MD_tbaa is already marked mutable 2249 2250 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2251 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2252 uint64_t Offset = 2253 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2254 2255 MDNode *MutableTBAA = 2256 Builder.createTBAAStructTagNode(Base, Access, Offset); 2257 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2258 } 2259 2260 if (CallSite CS = CallSite(&I)) { 2261 for (int i = 0, e = CS.arg_size(); i != e; i++) 2262 if (isa<PointerType>(CS.getArgument(i)->getType())) 2263 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); 2264 if (isa<PointerType>(CS.getType())) 2265 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2266 } 2267 } 2268 } 2269 2270 /// Returns true if this function should be rewritten by this pass. The main 2271 /// point of this function is as an extension point for custom logic. 2272 static bool shouldRewriteStatepointsIn(Function &F) { 2273 // TODO: This should check the GCStrategy 2274 if (F.hasGC()) { 2275 const auto &FunctionGCName = F.getGC(); 2276 const StringRef StatepointExampleName("statepoint-example"); 2277 const StringRef CoreCLRName("coreclr"); 2278 return (StatepointExampleName == FunctionGCName) || 2279 (CoreCLRName == FunctionGCName); 2280 } else 2281 return false; 2282 } 2283 2284 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2285 #ifndef NDEBUG 2286 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2287 "precondition!"); 2288 #endif 2289 2290 for (Function &F : M) 2291 stripNonValidAttributesFromPrototype(F); 2292 2293 for (Function &F : M) 2294 stripNonValidAttributesFromBody(F); 2295 } 2296 2297 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2298 // Nothing to do for declarations. 2299 if (F.isDeclaration() || F.empty()) 2300 return false; 2301 2302 // Policy choice says not to rewrite - the most common reason is that we're 2303 // compiling code without a GCStrategy. 2304 if (!shouldRewriteStatepointsIn(F)) 2305 return false; 2306 2307 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2308 TargetTransformInfo &TTI = 2309 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2310 2311 auto NeedsRewrite = [](Instruction &I) { 2312 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2313 return !callsGCLeafFunction(CS) && !isStatepoint(CS); 2314 return false; 2315 }; 2316 2317 // Gather all the statepoints which need rewritten. Be careful to only 2318 // consider those in reachable code since we need to ask dominance queries 2319 // when rewriting. We'll delete the unreachable ones in a moment. 2320 SmallVector<CallSite, 64> ParsePointNeeded; 2321 bool HasUnreachableStatepoint = false; 2322 for (Instruction &I : instructions(F)) { 2323 // TODO: only the ones with the flag set! 2324 if (NeedsRewrite(I)) { 2325 if (DT.isReachableFromEntry(I.getParent())) 2326 ParsePointNeeded.push_back(CallSite(&I)); 2327 else 2328 HasUnreachableStatepoint = true; 2329 } 2330 } 2331 2332 bool MadeChange = false; 2333 2334 // Delete any unreachable statepoints so that we don't have unrewritten 2335 // statepoints surviving this pass. This makes testing easier and the 2336 // resulting IR less confusing to human readers. Rather than be fancy, we 2337 // just reuse a utility function which removes the unreachable blocks. 2338 if (HasUnreachableStatepoint) 2339 MadeChange |= removeUnreachableBlocks(F); 2340 2341 // Return early if no work to do. 2342 if (ParsePointNeeded.empty()) 2343 return MadeChange; 2344 2345 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2346 // These are created by LCSSA. They have the effect of increasing the size 2347 // of liveness sets for no good reason. It may be harder to do this post 2348 // insertion since relocations and base phis can confuse things. 2349 for (BasicBlock &BB : F) 2350 if (BB.getUniquePredecessor()) { 2351 MadeChange = true; 2352 FoldSingleEntryPHINodes(&BB); 2353 } 2354 2355 // Before we start introducing relocations, we want to tweak the IR a bit to 2356 // avoid unfortunate code generation effects. The main example is that we 2357 // want to try to make sure the comparison feeding a branch is after any 2358 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2359 // values feeding a branch after relocation. This is semantically correct, 2360 // but results in extra register pressure since both the pre-relocation and 2361 // post-relocation copies must be available in registers. For code without 2362 // relocations this is handled elsewhere, but teaching the scheduler to 2363 // reverse the transform we're about to do would be slightly complex. 2364 // Note: This may extend the live range of the inputs to the icmp and thus 2365 // increase the liveset of any statepoint we move over. This is profitable 2366 // as long as all statepoints are in rare blocks. If we had in-register 2367 // lowering for live values this would be a much safer transform. 2368 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2369 if (auto *BI = dyn_cast<BranchInst>(TI)) 2370 if (BI->isConditional()) 2371 return dyn_cast<Instruction>(BI->getCondition()); 2372 // TODO: Extend this to handle switches 2373 return nullptr; 2374 }; 2375 for (BasicBlock &BB : F) { 2376 TerminatorInst *TI = BB.getTerminator(); 2377 if (auto *Cond = getConditionInst(TI)) 2378 // TODO: Handle more than just ICmps here. We should be able to move 2379 // most instructions without side effects or memory access. 2380 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2381 MadeChange = true; 2382 Cond->moveBefore(TI); 2383 } 2384 } 2385 2386 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2387 return MadeChange; 2388 } 2389 2390 // liveness computation via standard dataflow 2391 // ------------------------------------------------------------------- 2392 2393 // TODO: Consider using bitvectors for liveness, the set of potentially 2394 // interesting values should be small and easy to pre-compute. 2395 2396 /// Compute the live-in set for the location rbegin starting from 2397 /// the live-out set of the basic block 2398 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2399 BasicBlock::reverse_iterator rend, 2400 SetVector<Value *> &LiveTmp) { 2401 2402 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2403 Instruction *I = &*ritr; 2404 2405 // KILL/Def - Remove this definition from LiveIn 2406 LiveTmp.remove(I); 2407 2408 // Don't consider *uses* in PHI nodes, we handle their contribution to 2409 // predecessor blocks when we seed the LiveOut sets 2410 if (isa<PHINode>(I)) 2411 continue; 2412 2413 // USE - Add to the LiveIn set for this instruction 2414 for (Value *V : I->operands()) { 2415 assert(!isUnhandledGCPointerType(V->getType()) && 2416 "support for FCA unimplemented"); 2417 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2418 // The choice to exclude all things constant here is slightly subtle. 2419 // There are two independent reasons: 2420 // - We assume that things which are constant (from LLVM's definition) 2421 // do not move at runtime. For example, the address of a global 2422 // variable is fixed, even though it's contents may not be. 2423 // - Second, we can't disallow arbitrary inttoptr constants even 2424 // if the language frontend does. Optimization passes are free to 2425 // locally exploit facts without respect to global reachability. This 2426 // can create sections of code which are dynamically unreachable and 2427 // contain just about anything. (see constants.ll in tests) 2428 LiveTmp.insert(V); 2429 } 2430 } 2431 } 2432 } 2433 2434 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2435 2436 for (BasicBlock *Succ : successors(BB)) { 2437 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2438 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2439 PHINode *Phi = cast<PHINode>(&*I); 2440 Value *V = Phi->getIncomingValueForBlock(BB); 2441 assert(!isUnhandledGCPointerType(V->getType()) && 2442 "support for FCA unimplemented"); 2443 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2444 LiveTmp.insert(V); 2445 } 2446 } 2447 } 2448 } 2449 2450 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2451 SetVector<Value *> KillSet; 2452 for (Instruction &I : *BB) 2453 if (isHandledGCPointerType(I.getType())) 2454 KillSet.insert(&I); 2455 return KillSet; 2456 } 2457 2458 #ifndef NDEBUG 2459 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2460 /// sanity check for the liveness computation. 2461 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2462 TerminatorInst *TI, bool TermOkay = false) { 2463 for (Value *V : Live) { 2464 if (auto *I = dyn_cast<Instruction>(V)) { 2465 // The terminator can be a member of the LiveOut set. LLVM's definition 2466 // of instruction dominance states that V does not dominate itself. As 2467 // such, we need to special case this to allow it. 2468 if (TermOkay && TI == I) 2469 continue; 2470 assert(DT.dominates(I, TI) && 2471 "basic SSA liveness expectation violated by liveness analysis"); 2472 } 2473 } 2474 } 2475 2476 /// Check that all the liveness sets used during the computation of liveness 2477 /// obey basic SSA properties. This is useful for finding cases where we miss 2478 /// a def. 2479 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2480 BasicBlock &BB) { 2481 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2482 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2483 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2484 } 2485 #endif 2486 2487 static void computeLiveInValues(DominatorTree &DT, Function &F, 2488 GCPtrLivenessData &Data) { 2489 2490 SmallSetVector<BasicBlock *, 32> Worklist; 2491 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2492 // We use a SetVector so that we don't have duplicates in the worklist. 2493 Worklist.insert(pred_begin(BB), pred_end(BB)); 2494 }; 2495 auto NextItem = [&]() { 2496 BasicBlock *BB = Worklist.back(); 2497 Worklist.pop_back(); 2498 return BB; 2499 }; 2500 2501 // Seed the liveness for each individual block 2502 for (BasicBlock &BB : F) { 2503 Data.KillSet[&BB] = computeKillSet(&BB); 2504 Data.LiveSet[&BB].clear(); 2505 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2506 2507 #ifndef NDEBUG 2508 for (Value *Kill : Data.KillSet[&BB]) 2509 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2510 #endif 2511 2512 Data.LiveOut[&BB] = SetVector<Value *>(); 2513 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2514 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2515 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2516 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2517 if (!Data.LiveIn[&BB].empty()) 2518 AddPredsToWorklist(&BB); 2519 } 2520 2521 // Propagate that liveness until stable 2522 while (!Worklist.empty()) { 2523 BasicBlock *BB = NextItem(); 2524 2525 // Compute our new liveout set, then exit early if it hasn't changed 2526 // despite the contribution of our successor. 2527 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2528 const auto OldLiveOutSize = LiveOut.size(); 2529 for (BasicBlock *Succ : successors(BB)) { 2530 assert(Data.LiveIn.count(Succ)); 2531 LiveOut.set_union(Data.LiveIn[Succ]); 2532 } 2533 // assert OutLiveOut is a subset of LiveOut 2534 if (OldLiveOutSize == LiveOut.size()) { 2535 // If the sets are the same size, then we didn't actually add anything 2536 // when unioning our successors LiveIn Thus, the LiveIn of this block 2537 // hasn't changed. 2538 continue; 2539 } 2540 Data.LiveOut[BB] = LiveOut; 2541 2542 // Apply the effects of this basic block 2543 SetVector<Value *> LiveTmp = LiveOut; 2544 LiveTmp.set_union(Data.LiveSet[BB]); 2545 LiveTmp.set_subtract(Data.KillSet[BB]); 2546 2547 assert(Data.LiveIn.count(BB)); 2548 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2549 // assert: OldLiveIn is a subset of LiveTmp 2550 if (OldLiveIn.size() != LiveTmp.size()) { 2551 Data.LiveIn[BB] = LiveTmp; 2552 AddPredsToWorklist(BB); 2553 } 2554 } // while( !worklist.empty() ) 2555 2556 #ifndef NDEBUG 2557 // Sanity check our output against SSA properties. This helps catch any 2558 // missing kills during the above iteration. 2559 for (BasicBlock &BB : F) { 2560 checkBasicSSA(DT, Data, BB); 2561 } 2562 #endif 2563 } 2564 2565 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2566 StatepointLiveSetTy &Out) { 2567 2568 BasicBlock *BB = Inst->getParent(); 2569 2570 // Note: The copy is intentional and required 2571 assert(Data.LiveOut.count(BB)); 2572 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2573 2574 // We want to handle the statepoint itself oddly. It's 2575 // call result is not live (normal), nor are it's arguments 2576 // (unless they're used again later). This adjustment is 2577 // specifically what we need to relocate 2578 BasicBlock::reverse_iterator rend(Inst->getIterator()); 2579 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2580 LiveOut.remove(Inst); 2581 Out.insert(LiveOut.begin(), LiveOut.end()); 2582 } 2583 2584 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2585 CallSite CS, 2586 PartiallyConstructedSafepointRecord &Info) { 2587 Instruction *Inst = CS.getInstruction(); 2588 StatepointLiveSetTy Updated; 2589 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2590 2591 #ifndef NDEBUG 2592 DenseSet<Value *> Bases; 2593 for (auto KVPair : Info.PointerToBase) { 2594 Bases.insert(KVPair.second); 2595 } 2596 #endif 2597 // We may have base pointers which are now live that weren't before. We need 2598 // to update the PointerToBase structure to reflect this. 2599 for (auto V : Updated) 2600 if (Info.PointerToBase.insert(std::make_pair(V, V)).second) { 2601 assert(Bases.count(V) && "can't find base for unexpected live value"); 2602 continue; 2603 } 2604 2605 #ifndef NDEBUG 2606 for (auto V : Updated) { 2607 assert(Info.PointerToBase.count(V) && 2608 "must be able to find base for live value"); 2609 } 2610 #endif 2611 2612 // Remove any stale base mappings - this can happen since our liveness is 2613 // more precise then the one inherent in the base pointer analysis 2614 DenseSet<Value *> ToErase; 2615 for (auto KVPair : Info.PointerToBase) 2616 if (!Updated.count(KVPair.first)) 2617 ToErase.insert(KVPair.first); 2618 for (auto V : ToErase) 2619 Info.PointerToBase.erase(V); 2620 2621 #ifndef NDEBUG 2622 for (auto KVPair : Info.PointerToBase) 2623 assert(Updated.count(KVPair.first) && "record for non-live value"); 2624 #endif 2625 2626 Info.LiveSet = Updated; 2627 } 2628