1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstIterator.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/IR/Statepoint.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Transforms/Scalar.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/Cloning.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 44 45 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 46 47 using namespace llvm; 48 49 // Print tracing output 50 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 51 cl::init(false)); 52 53 // Print the liveset found at the insert location 54 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 55 cl::init(false)); 56 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 57 cl::init(false)); 58 // Print out the base pointers for debugging 59 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 60 cl::init(false)); 61 62 // Cost threshold measuring when it is profitable to rematerialize value instead 63 // of relocating it 64 static cl::opt<unsigned> 65 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 66 cl::init(6)); 67 68 #ifdef XDEBUG 69 static bool ClobberNonLive = true; 70 #else 71 static bool ClobberNonLive = false; 72 #endif 73 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 74 cl::location(ClobberNonLive), 75 cl::Hidden); 76 77 namespace { 78 struct RewriteStatepointsForGC : public ModulePass { 79 static char ID; // Pass identification, replacement for typeid 80 81 RewriteStatepointsForGC() : ModulePass(ID) { 82 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 83 } 84 bool runOnFunction(Function &F); 85 bool runOnModule(Module &M) override { 86 bool Changed = false; 87 for (Function &F : M) 88 Changed |= runOnFunction(F); 89 90 if (Changed) { 91 // stripDereferenceabilityInfo asserts that shouldRewriteStatepointsIn 92 // returns true for at least one function in the module. Since at least 93 // one function changed, we know that the precondition is satisfied. 94 stripDereferenceabilityInfo(M); 95 } 96 97 return Changed; 98 } 99 100 void getAnalysisUsage(AnalysisUsage &AU) const override { 101 // We add and rewrite a bunch of instructions, but don't really do much 102 // else. We could in theory preserve a lot more analyses here. 103 AU.addRequired<DominatorTreeWrapperPass>(); 104 AU.addRequired<TargetTransformInfoWrapperPass>(); 105 } 106 107 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 108 /// dereferenceability that are no longer valid/correct after 109 /// RewriteStatepointsForGC has run. This is because semantically, after 110 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 111 /// heap. stripDereferenceabilityInfo (conservatively) restores correctness 112 /// by erasing all attributes in the module that externally imply 113 /// dereferenceability. 114 /// 115 void stripDereferenceabilityInfo(Module &M); 116 117 // Helpers for stripDereferenceabilityInfo 118 void stripDereferenceabilityInfoFromBody(Function &F); 119 void stripDereferenceabilityInfoFromPrototype(Function &F); 120 }; 121 } // namespace 122 123 char RewriteStatepointsForGC::ID = 0; 124 125 ModulePass *llvm::createRewriteStatepointsForGCPass() { 126 return new RewriteStatepointsForGC(); 127 } 128 129 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 130 "Make relocations explicit at statepoints", false, false) 131 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 132 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 133 "Make relocations explicit at statepoints", false, false) 134 135 namespace { 136 struct GCPtrLivenessData { 137 /// Values defined in this block. 138 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 139 /// Values used in this block (and thus live); does not included values 140 /// killed within this block. 141 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 142 143 /// Values live into this basic block (i.e. used by any 144 /// instruction in this basic block or ones reachable from here) 145 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 146 147 /// Values live out of this basic block (i.e. live into 148 /// any successor block) 149 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 150 }; 151 152 // The type of the internal cache used inside the findBasePointers family 153 // of functions. From the callers perspective, this is an opaque type and 154 // should not be inspected. 155 // 156 // In the actual implementation this caches two relations: 157 // - The base relation itself (i.e. this pointer is based on that one) 158 // - The base defining value relation (i.e. before base_phi insertion) 159 // Generally, after the execution of a full findBasePointer call, only the 160 // base relation will remain. Internally, we add a mixture of the two 161 // types, then update all the second type to the first type 162 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 163 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 164 typedef DenseMap<Instruction *, Value *> RematerializedValueMapTy; 165 166 struct PartiallyConstructedSafepointRecord { 167 /// The set of values known to be live accross this safepoint 168 StatepointLiveSetTy liveset; 169 170 /// Mapping from live pointers to a base-defining-value 171 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 172 173 /// The *new* gc.statepoint instruction itself. This produces the token 174 /// that normal path gc.relocates and the gc.result are tied to. 175 Instruction *StatepointToken; 176 177 /// Instruction to which exceptional gc relocates are attached 178 /// Makes it easier to iterate through them during relocationViaAlloca. 179 Instruction *UnwindToken; 180 181 /// Record live values we are rematerialized instead of relocating. 182 /// They are not included into 'liveset' field. 183 /// Maps rematerialized copy to it's original value. 184 RematerializedValueMapTy RematerializedValues; 185 }; 186 } 187 188 /// Compute the live-in set for every basic block in the function 189 static void computeLiveInValues(DominatorTree &DT, Function &F, 190 GCPtrLivenessData &Data); 191 192 /// Given results from the dataflow liveness computation, find the set of live 193 /// Values at a particular instruction. 194 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 195 StatepointLiveSetTy &out); 196 197 // TODO: Once we can get to the GCStrategy, this becomes 198 // Optional<bool> isGCManagedPointer(const Value *V) const override { 199 200 static bool isGCPointerType(const Type *T) { 201 if (const PointerType *PT = dyn_cast<PointerType>(T)) 202 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 203 // GC managed heap. We know that a pointer into this heap needs to be 204 // updated and that no other pointer does. 205 return (1 == PT->getAddressSpace()); 206 return false; 207 } 208 209 // Return true if this type is one which a) is a gc pointer or contains a GC 210 // pointer and b) is of a type this code expects to encounter as a live value. 211 // (The insertion code will assert that a type which matches (a) and not (b) 212 // is not encountered.) 213 static bool isHandledGCPointerType(Type *T) { 214 // We fully support gc pointers 215 if (isGCPointerType(T)) 216 return true; 217 // We partially support vectors of gc pointers. The code will assert if it 218 // can't handle something. 219 if (auto VT = dyn_cast<VectorType>(T)) 220 if (isGCPointerType(VT->getElementType())) 221 return true; 222 return false; 223 } 224 225 #ifndef NDEBUG 226 /// Returns true if this type contains a gc pointer whether we know how to 227 /// handle that type or not. 228 static bool containsGCPtrType(Type *Ty) { 229 if (isGCPointerType(Ty)) 230 return true; 231 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 232 return isGCPointerType(VT->getScalarType()); 233 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 234 return containsGCPtrType(AT->getElementType()); 235 if (StructType *ST = dyn_cast<StructType>(Ty)) 236 return std::any_of( 237 ST->subtypes().begin(), ST->subtypes().end(), 238 [](Type *SubType) { return containsGCPtrType(SubType); }); 239 return false; 240 } 241 242 // Returns true if this is a type which a) is a gc pointer or contains a GC 243 // pointer and b) is of a type which the code doesn't expect (i.e. first class 244 // aggregates). Used to trip assertions. 245 static bool isUnhandledGCPointerType(Type *Ty) { 246 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 247 } 248 #endif 249 250 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 251 if (a->hasName() && b->hasName()) { 252 return -1 == a->getName().compare(b->getName()); 253 } else if (a->hasName() && !b->hasName()) { 254 return true; 255 } else if (!a->hasName() && b->hasName()) { 256 return false; 257 } else { 258 // Better than nothing, but not stable 259 return a < b; 260 } 261 } 262 263 // Conservatively identifies any definitions which might be live at the 264 // given instruction. The analysis is performed immediately before the 265 // given instruction. Values defined by that instruction are not considered 266 // live. Values used by that instruction are considered live. 267 static void analyzeParsePointLiveness( 268 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 269 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 270 Instruction *inst = CS.getInstruction(); 271 272 StatepointLiveSetTy liveset; 273 findLiveSetAtInst(inst, OriginalLivenessData, liveset); 274 275 if (PrintLiveSet) { 276 // Note: This output is used by several of the test cases 277 // The order of elemtns in a set is not stable, put them in a vec and sort 278 // by name 279 SmallVector<Value *, 64> temp; 280 temp.insert(temp.end(), liveset.begin(), liveset.end()); 281 std::sort(temp.begin(), temp.end(), order_by_name); 282 errs() << "Live Variables:\n"; 283 for (Value *V : temp) { 284 errs() << " " << V->getName(); // no newline 285 V->dump(); 286 } 287 } 288 if (PrintLiveSetSize) { 289 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 290 errs() << "Number live values: " << liveset.size() << "\n"; 291 } 292 result.liveset = liveset; 293 } 294 295 static Value *findBaseDefiningValue(Value *I); 296 297 /// Return a base defining value for the 'Index' element of the given vector 298 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 299 /// 'I'. As an optimization, this method will try to determine when the 300 /// element is known to already be a base pointer. If this can be established, 301 /// the second value in the returned pair will be true. Note that either a 302 /// vector or a pointer typed value can be returned. For the former, the 303 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 304 /// If the later, the return pointer is a BDV (or possibly a base) for the 305 /// particular element in 'I'. 306 static std::pair<Value *, bool> 307 findBaseDefiningValueOfVector(Value *I, Value *Index = nullptr) { 308 assert(I->getType()->isVectorTy() && 309 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 310 "Illegal to ask for the base pointer of a non-pointer type"); 311 312 // Each case parallels findBaseDefiningValue below, see that code for 313 // detailed motivation. 314 315 if (isa<Argument>(I)) 316 // An incoming argument to the function is a base pointer 317 return std::make_pair(I, true); 318 319 // We shouldn't see the address of a global as a vector value? 320 assert(!isa<GlobalVariable>(I) && 321 "unexpected global variable found in base of vector"); 322 323 // inlining could possibly introduce phi node that contains 324 // undef if callee has multiple returns 325 if (isa<UndefValue>(I)) 326 // utterly meaningless, but useful for dealing with partially optimized 327 // code. 328 return std::make_pair(I, true); 329 330 // Due to inheritance, this must be _after_ the global variable and undef 331 // checks 332 if (Constant *Con = dyn_cast<Constant>(I)) { 333 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 334 "order of checks wrong!"); 335 assert(Con->isNullValue() && "null is the only case which makes sense"); 336 return std::make_pair(Con, true); 337 } 338 339 if (isa<LoadInst>(I)) 340 return std::make_pair(I, true); 341 342 // For an insert element, we might be able to look through it if we know 343 // something about the indexes. 344 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(I)) { 345 if (Index) { 346 Value *InsertIndex = IEI->getOperand(2); 347 // This index is inserting the value, look for its BDV 348 if (InsertIndex == Index) 349 return std::make_pair(findBaseDefiningValue(IEI->getOperand(1)), false); 350 // Both constant, and can't be equal per above. This insert is definitely 351 // not relevant, look back at the rest of the vector and keep trying. 352 if (isa<ConstantInt>(Index) && isa<ConstantInt>(InsertIndex)) 353 return findBaseDefiningValueOfVector(IEI->getOperand(0), Index); 354 } 355 356 // We don't know whether this vector contains entirely base pointers or 357 // not. To be conservatively correct, we treat it as a BDV and will 358 // duplicate code as needed to construct a parallel vector of bases. 359 return std::make_pair(IEI, false); 360 } 361 362 if (isa<ShuffleVectorInst>(I)) 363 // We don't know whether this vector contains entirely base pointers or 364 // not. To be conservatively correct, we treat it as a BDV and will 365 // duplicate code as needed to construct a parallel vector of bases. 366 // TODO: There a number of local optimizations which could be applied here 367 // for particular sufflevector patterns. 368 return std::make_pair(I, false); 369 370 // A PHI or Select is a base defining value. The outer findBasePointer 371 // algorithm is responsible for constructing a base value for this BDV. 372 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 373 "unknown vector instruction - no base found for vector element"); 374 return std::make_pair(I, false); 375 } 376 377 static bool isKnownBaseResult(Value *V); 378 379 /// Helper function for findBasePointer - Will return a value which either a) 380 /// defines the base pointer for the input or b) blocks the simple search 381 /// (i.e. a PHI or Select of two derived pointers) 382 static Value *findBaseDefiningValue(Value *I) { 383 if (I->getType()->isVectorTy()) 384 return findBaseDefiningValueOfVector(I).first; 385 386 assert(I->getType()->isPointerTy() && 387 "Illegal to ask for the base pointer of a non-pointer type"); 388 389 // This case is a bit of a hack - it only handles extracts from vectors which 390 // trivially contain only base pointers or cases where we can directly match 391 // the index of the original extract element to an insertion into the vector. 392 // See note inside the function for how to improve this. 393 if (auto *EEI = dyn_cast<ExtractElementInst>(I)) { 394 Value *VectorOperand = EEI->getVectorOperand(); 395 Value *Index = EEI->getIndexOperand(); 396 std::pair<Value *, bool> pair = 397 findBaseDefiningValueOfVector(VectorOperand, Index); 398 Value *VectorBase = pair.first; 399 if (VectorBase->getType()->isPointerTy()) 400 // We found a BDV for this specific element with the vector. This is an 401 // optimization, but in practice it covers most of the useful cases 402 // created via scalarization. 403 return VectorBase; 404 else { 405 assert(VectorBase->getType()->isVectorTy()); 406 if (pair.second) 407 // If the entire vector returned is known to be entirely base pointers, 408 // then the extractelement is valid base for this value. 409 return EEI; 410 else { 411 // Otherwise, we have an instruction which potentially produces a 412 // derived pointer and we need findBasePointers to clone code for us 413 // such that we can create an instruction which produces the 414 // accompanying base pointer. 415 // Note: This code is currently rather incomplete. We don't currently 416 // support the general form of shufflevector of insertelement. 417 // Conceptually, these are just 'base defining values' of the same 418 // variety as phi or select instructions. We need to update the 419 // findBasePointers algorithm to insert new 'base-only' versions of the 420 // original instructions. This is relative straight forward to do, but 421 // the case which would motivate the work hasn't shown up in real 422 // workloads yet. 423 assert((isa<PHINode>(VectorBase) || isa<SelectInst>(VectorBase)) && 424 "need to extend findBasePointers for generic vector" 425 "instruction cases"); 426 return VectorBase; 427 } 428 } 429 } 430 431 if (isa<Argument>(I)) 432 // An incoming argument to the function is a base pointer 433 // We should have never reached here if this argument isn't an gc value 434 return I; 435 436 if (isa<GlobalVariable>(I)) 437 // base case 438 return I; 439 440 // inlining could possibly introduce phi node that contains 441 // undef if callee has multiple returns 442 if (isa<UndefValue>(I)) 443 // utterly meaningless, but useful for dealing with 444 // partially optimized code. 445 return I; 446 447 // Due to inheritance, this must be _after_ the global variable and undef 448 // checks 449 if (Constant *Con = dyn_cast<Constant>(I)) { 450 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 451 "order of checks wrong!"); 452 // Note: Finding a constant base for something marked for relocation 453 // doesn't really make sense. The most likely case is either a) some 454 // screwed up the address space usage or b) your validating against 455 // compiled C++ code w/o the proper separation. The only real exception 456 // is a null pointer. You could have generic code written to index of 457 // off a potentially null value and have proven it null. We also use 458 // null pointers in dead paths of relocation phis (which we might later 459 // want to find a base pointer for). 460 assert(isa<ConstantPointerNull>(Con) && 461 "null is the only case which makes sense"); 462 return Con; 463 } 464 465 if (CastInst *CI = dyn_cast<CastInst>(I)) { 466 Value *Def = CI->stripPointerCasts(); 467 // If we find a cast instruction here, it means we've found a cast which is 468 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 469 // handle int->ptr conversion. 470 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 471 return findBaseDefiningValue(Def); 472 } 473 474 if (isa<LoadInst>(I)) 475 return I; // The value loaded is an gc base itself 476 477 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 478 // The base of this GEP is the base 479 return findBaseDefiningValue(GEP->getPointerOperand()); 480 481 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 482 switch (II->getIntrinsicID()) { 483 case Intrinsic::experimental_gc_result_ptr: 484 default: 485 // fall through to general call handling 486 break; 487 case Intrinsic::experimental_gc_statepoint: 488 case Intrinsic::experimental_gc_result_float: 489 case Intrinsic::experimental_gc_result_int: 490 llvm_unreachable("these don't produce pointers"); 491 case Intrinsic::experimental_gc_relocate: { 492 // Rerunning safepoint insertion after safepoints are already 493 // inserted is not supported. It could probably be made to work, 494 // but why are you doing this? There's no good reason. 495 llvm_unreachable("repeat safepoint insertion is not supported"); 496 } 497 case Intrinsic::gcroot: 498 // Currently, this mechanism hasn't been extended to work with gcroot. 499 // There's no reason it couldn't be, but I haven't thought about the 500 // implications much. 501 llvm_unreachable( 502 "interaction with the gcroot mechanism is not supported"); 503 } 504 } 505 // We assume that functions in the source language only return base 506 // pointers. This should probably be generalized via attributes to support 507 // both source language and internal functions. 508 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 509 return I; 510 511 // I have absolutely no idea how to implement this part yet. It's not 512 // neccessarily hard, I just haven't really looked at it yet. 513 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 514 515 if (isa<AtomicCmpXchgInst>(I)) 516 // A CAS is effectively a atomic store and load combined under a 517 // predicate. From the perspective of base pointers, we just treat it 518 // like a load. 519 return I; 520 521 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 522 "binary ops which don't apply to pointers"); 523 524 // The aggregate ops. Aggregates can either be in the heap or on the 525 // stack, but in either case, this is simply a field load. As a result, 526 // this is a defining definition of the base just like a load is. 527 if (isa<ExtractValueInst>(I)) 528 return I; 529 530 // We should never see an insert vector since that would require we be 531 // tracing back a struct value not a pointer value. 532 assert(!isa<InsertValueInst>(I) && 533 "Base pointer for a struct is meaningless"); 534 535 // The last two cases here don't return a base pointer. Instead, they 536 // return a value which dynamically selects from amoung several base 537 // derived pointers (each with it's own base potentially). It's the job of 538 // the caller to resolve these. 539 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 540 "missing instruction case in findBaseDefiningValing"); 541 return I; 542 } 543 544 /// Returns the base defining value for this value. 545 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 546 Value *&Cached = Cache[I]; 547 if (!Cached) { 548 Cached = findBaseDefiningValue(I); 549 } 550 assert(Cache[I] != nullptr); 551 552 if (TraceLSP) { 553 dbgs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() 554 << "\n"; 555 } 556 return Cached; 557 } 558 559 /// Return a base pointer for this value if known. Otherwise, return it's 560 /// base defining value. 561 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 562 Value *Def = findBaseDefiningValueCached(I, Cache); 563 auto Found = Cache.find(Def); 564 if (Found != Cache.end()) { 565 // Either a base-of relation, or a self reference. Caller must check. 566 return Found->second; 567 } 568 // Only a BDV available 569 return Def; 570 } 571 572 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 573 /// is it known to be a base pointer? Or do we need to continue searching. 574 static bool isKnownBaseResult(Value *V) { 575 if (!isa<PHINode>(V) && !isa<SelectInst>(V)) { 576 // no recursion possible 577 return true; 578 } 579 if (isa<Instruction>(V) && 580 cast<Instruction>(V)->getMetadata("is_base_value")) { 581 // This is a previously inserted base phi or select. We know 582 // that this is a base value. 583 return true; 584 } 585 586 // We need to keep searching 587 return false; 588 } 589 590 // TODO: find a better name for this 591 namespace { 592 class PhiState { 593 public: 594 enum Status { Unknown, Base, Conflict }; 595 596 PhiState(Status s, Value *b = nullptr) : status(s), base(b) { 597 assert(status != Base || b); 598 } 599 PhiState(Value *b) : status(Base), base(b) {} 600 PhiState() : status(Unknown), base(nullptr) {} 601 602 Status getStatus() const { return status; } 603 Value *getBase() const { return base; } 604 605 bool isBase() const { return getStatus() == Base; } 606 bool isUnknown() const { return getStatus() == Unknown; } 607 bool isConflict() const { return getStatus() == Conflict; } 608 609 bool operator==(const PhiState &other) const { 610 return base == other.base && status == other.status; 611 } 612 613 bool operator!=(const PhiState &other) const { return !(*this == other); } 614 615 void dump() { 616 errs() << status << " (" << base << " - " 617 << (base ? base->getName() : "nullptr") << "): "; 618 } 619 620 private: 621 Status status; 622 Value *base; // non null only if status == base 623 }; 624 625 typedef DenseMap<Value *, PhiState> ConflictStateMapTy; 626 // Values of type PhiState form a lattice, and this is a helper 627 // class that implementes the meet operation. The meat of the meet 628 // operation is implemented in MeetPhiStates::pureMeet 629 class MeetPhiStates { 630 public: 631 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. 632 explicit MeetPhiStates(const ConflictStateMapTy &phiStates) 633 : phiStates(phiStates) {} 634 635 // Destructively meet the current result with the base V. V can 636 // either be a merge instruction (SelectInst / PHINode), in which 637 // case its status is looked up in the phiStates map; or a regular 638 // SSA value, in which case it is assumed to be a base. 639 void meetWith(Value *V) { 640 PhiState otherState = getStateForBDV(V); 641 assert((MeetPhiStates::pureMeet(otherState, currentResult) == 642 MeetPhiStates::pureMeet(currentResult, otherState)) && 643 "math is wrong: meet does not commute!"); 644 currentResult = MeetPhiStates::pureMeet(otherState, currentResult); 645 } 646 647 PhiState getResult() const { return currentResult; } 648 649 private: 650 const ConflictStateMapTy &phiStates; 651 PhiState currentResult; 652 653 /// Return a phi state for a base defining value. We'll generate a new 654 /// base state for known bases and expect to find a cached state otherwise 655 PhiState getStateForBDV(Value *baseValue) { 656 if (isKnownBaseResult(baseValue)) { 657 return PhiState(baseValue); 658 } else { 659 return lookupFromMap(baseValue); 660 } 661 } 662 663 PhiState lookupFromMap(Value *V) { 664 auto I = phiStates.find(V); 665 assert(I != phiStates.end() && "lookup failed!"); 666 return I->second; 667 } 668 669 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { 670 switch (stateA.getStatus()) { 671 case PhiState::Unknown: 672 return stateB; 673 674 case PhiState::Base: 675 assert(stateA.getBase() && "can't be null"); 676 if (stateB.isUnknown()) 677 return stateA; 678 679 if (stateB.isBase()) { 680 if (stateA.getBase() == stateB.getBase()) { 681 assert(stateA == stateB && "equality broken!"); 682 return stateA; 683 } 684 return PhiState(PhiState::Conflict); 685 } 686 assert(stateB.isConflict() && "only three states!"); 687 return PhiState(PhiState::Conflict); 688 689 case PhiState::Conflict: 690 return stateA; 691 } 692 llvm_unreachable("only three states!"); 693 } 694 }; 695 } 696 /// For a given value or instruction, figure out what base ptr it's derived 697 /// from. For gc objects, this is simply itself. On success, returns a value 698 /// which is the base pointer. (This is reliable and can be used for 699 /// relocation.) On failure, returns nullptr. 700 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 701 Value *def = findBaseOrBDV(I, cache); 702 703 if (isKnownBaseResult(def)) { 704 return def; 705 } 706 707 // Here's the rough algorithm: 708 // - For every SSA value, construct a mapping to either an actual base 709 // pointer or a PHI which obscures the base pointer. 710 // - Construct a mapping from PHI to unknown TOP state. Use an 711 // optimistic algorithm to propagate base pointer information. Lattice 712 // looks like: 713 // UNKNOWN 714 // b1 b2 b3 b4 715 // CONFLICT 716 // When algorithm terminates, all PHIs will either have a single concrete 717 // base or be in a conflict state. 718 // - For every conflict, insert a dummy PHI node without arguments. Add 719 // these to the base[Instruction] = BasePtr mapping. For every 720 // non-conflict, add the actual base. 721 // - For every conflict, add arguments for the base[a] of each input 722 // arguments. 723 // 724 // Note: A simpler form of this would be to add the conflict form of all 725 // PHIs without running the optimistic algorithm. This would be 726 // analougous to pessimistic data flow and would likely lead to an 727 // overall worse solution. 728 729 ConflictStateMapTy states; 730 states[def] = PhiState(); 731 // Recursively fill in all phis & selects reachable from the initial one 732 // for which we don't already know a definite base value for 733 // TODO: This should be rewritten with a worklist 734 bool done = false; 735 while (!done) { 736 done = true; 737 // Since we're adding elements to 'states' as we run, we can't keep 738 // iterators into the set. 739 SmallVector<Value *, 16> Keys; 740 Keys.reserve(states.size()); 741 for (auto Pair : states) { 742 Value *V = Pair.first; 743 Keys.push_back(V); 744 } 745 for (Value *v : Keys) { 746 assert(!isKnownBaseResult(v) && "why did it get added?"); 747 if (PHINode *phi = dyn_cast<PHINode>(v)) { 748 assert(phi->getNumIncomingValues() > 0 && 749 "zero input phis are illegal"); 750 for (Value *InVal : phi->incoming_values()) { 751 Value *local = findBaseOrBDV(InVal, cache); 752 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 753 states[local] = PhiState(); 754 done = false; 755 } 756 } 757 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 758 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 759 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 760 states[local] = PhiState(); 761 done = false; 762 } 763 local = findBaseOrBDV(sel->getFalseValue(), cache); 764 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 765 states[local] = PhiState(); 766 done = false; 767 } 768 } 769 } 770 } 771 772 if (TraceLSP) { 773 errs() << "States after initialization:\n"; 774 for (auto Pair : states) { 775 Instruction *v = cast<Instruction>(Pair.first); 776 PhiState state = Pair.second; 777 state.dump(); 778 v->dump(); 779 } 780 } 781 782 // TODO: come back and revisit the state transitions around inputs which 783 // have reached conflict state. The current version seems too conservative. 784 785 bool progress = true; 786 while (progress) { 787 #ifndef NDEBUG 788 size_t oldSize = states.size(); 789 #endif 790 progress = false; 791 // We're only changing keys in this loop, thus safe to keep iterators 792 for (auto Pair : states) { 793 MeetPhiStates calculateMeet(states); 794 Value *v = Pair.first; 795 assert(!isKnownBaseResult(v) && "why did it get added?"); 796 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 797 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); 798 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); 799 } else 800 for (Value *Val : cast<PHINode>(v)->incoming_values()) 801 calculateMeet.meetWith(findBaseOrBDV(Val, cache)); 802 803 PhiState oldState = states[v]; 804 PhiState newState = calculateMeet.getResult(); 805 if (oldState != newState) { 806 progress = true; 807 states[v] = newState; 808 } 809 } 810 811 assert(oldSize <= states.size()); 812 assert(oldSize == states.size() || progress); 813 } 814 815 if (TraceLSP) { 816 errs() << "States after meet iteration:\n"; 817 for (auto Pair : states) { 818 Instruction *v = cast<Instruction>(Pair.first); 819 PhiState state = Pair.second; 820 state.dump(); 821 v->dump(); 822 } 823 } 824 825 // Insert Phis for all conflicts 826 // We want to keep naming deterministic in the loop that follows, so 827 // sort the keys before iteration. This is useful in allowing us to 828 // write stable tests. Note that there is no invalidation issue here. 829 SmallVector<Value *, 16> Keys; 830 Keys.reserve(states.size()); 831 for (auto Pair : states) { 832 Value *V = Pair.first; 833 Keys.push_back(V); 834 } 835 std::sort(Keys.begin(), Keys.end(), order_by_name); 836 // TODO: adjust naming patterns to avoid this order of iteration dependency 837 for (Value *V : Keys) { 838 Instruction *v = cast<Instruction>(V); 839 PhiState state = states[V]; 840 assert(!isKnownBaseResult(v) && "why did it get added?"); 841 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 842 if (!state.isConflict()) 843 continue; 844 845 if (isa<PHINode>(v)) { 846 int num_preds = 847 std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); 848 assert(num_preds > 0 && "how did we reach here"); 849 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); 850 // Add metadata marking this as a base value 851 auto *const_1 = ConstantInt::get( 852 Type::getInt32Ty( 853 v->getParent()->getParent()->getParent()->getContext()), 854 1); 855 auto MDConst = ConstantAsMetadata::get(const_1); 856 MDNode *md = MDNode::get( 857 v->getParent()->getParent()->getParent()->getContext(), MDConst); 858 phi->setMetadata("is_base_value", md); 859 states[v] = PhiState(PhiState::Conflict, phi); 860 } else { 861 SelectInst *sel = cast<SelectInst>(v); 862 // The undef will be replaced later 863 UndefValue *undef = UndefValue::get(sel->getType()); 864 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, 865 undef, "base_select", sel); 866 // Add metadata marking this as a base value 867 auto *const_1 = ConstantInt::get( 868 Type::getInt32Ty( 869 v->getParent()->getParent()->getParent()->getContext()), 870 1); 871 auto MDConst = ConstantAsMetadata::get(const_1); 872 MDNode *md = MDNode::get( 873 v->getParent()->getParent()->getParent()->getContext(), MDConst); 874 basesel->setMetadata("is_base_value", md); 875 states[v] = PhiState(PhiState::Conflict, basesel); 876 } 877 } 878 879 // Fixup all the inputs of the new PHIs 880 for (auto Pair : states) { 881 Instruction *v = cast<Instruction>(Pair.first); 882 PhiState state = Pair.second; 883 884 assert(!isKnownBaseResult(v) && "why did it get added?"); 885 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 886 if (!state.isConflict()) 887 continue; 888 889 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 890 PHINode *phi = cast<PHINode>(v); 891 unsigned NumPHIValues = phi->getNumIncomingValues(); 892 for (unsigned i = 0; i < NumPHIValues; i++) { 893 Value *InVal = phi->getIncomingValue(i); 894 BasicBlock *InBB = phi->getIncomingBlock(i); 895 896 // If we've already seen InBB, add the same incoming value 897 // we added for it earlier. The IR verifier requires phi 898 // nodes with multiple entries from the same basic block 899 // to have the same incoming value for each of those 900 // entries. If we don't do this check here and basephi 901 // has a different type than base, we'll end up adding two 902 // bitcasts (and hence two distinct values) as incoming 903 // values for the same basic block. 904 905 int blockIndex = basephi->getBasicBlockIndex(InBB); 906 if (blockIndex != -1) { 907 Value *oldBase = basephi->getIncomingValue(blockIndex); 908 basephi->addIncoming(oldBase, InBB); 909 #ifndef NDEBUG 910 Value *base = findBaseOrBDV(InVal, cache); 911 if (!isKnownBaseResult(base)) { 912 // Either conflict or base. 913 assert(states.count(base)); 914 base = states[base].getBase(); 915 assert(base != nullptr && "unknown PhiState!"); 916 } 917 918 // In essense this assert states: the only way two 919 // values incoming from the same basic block may be 920 // different is by being different bitcasts of the same 921 // value. A cleanup that remains TODO is changing 922 // findBaseOrBDV to return an llvm::Value of the correct 923 // type (and still remain pure). This will remove the 924 // need to add bitcasts. 925 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 926 "sanity -- findBaseOrBDV should be pure!"); 927 #endif 928 continue; 929 } 930 931 // Find either the defining value for the PHI or the normal base for 932 // a non-phi node 933 Value *base = findBaseOrBDV(InVal, cache); 934 if (!isKnownBaseResult(base)) { 935 // Either conflict or base. 936 assert(states.count(base)); 937 base = states[base].getBase(); 938 assert(base != nullptr && "unknown PhiState!"); 939 } 940 assert(base && "can't be null"); 941 // Must use original input BB since base may not be Instruction 942 // The cast is needed since base traversal may strip away bitcasts 943 if (base->getType() != basephi->getType()) { 944 base = new BitCastInst(base, basephi->getType(), "cast", 945 InBB->getTerminator()); 946 } 947 basephi->addIncoming(base, InBB); 948 } 949 assert(basephi->getNumIncomingValues() == NumPHIValues); 950 } else { 951 SelectInst *basesel = cast<SelectInst>(state.getBase()); 952 SelectInst *sel = cast<SelectInst>(v); 953 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 954 // something more safe and less hacky. 955 for (int i = 1; i <= 2; i++) { 956 Value *InVal = sel->getOperand(i); 957 // Find either the defining value for the PHI or the normal base for 958 // a non-phi node 959 Value *base = findBaseOrBDV(InVal, cache); 960 if (!isKnownBaseResult(base)) { 961 // Either conflict or base. 962 assert(states.count(base)); 963 base = states[base].getBase(); 964 assert(base != nullptr && "unknown PhiState!"); 965 } 966 assert(base && "can't be null"); 967 // Must use original input BB since base may not be Instruction 968 // The cast is needed since base traversal may strip away bitcasts 969 if (base->getType() != basesel->getType()) { 970 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 971 } 972 basesel->setOperand(i, base); 973 } 974 } 975 } 976 977 // Cache all of our results so we can cheaply reuse them 978 // NOTE: This is actually two caches: one of the base defining value 979 // relation and one of the base pointer relation! FIXME 980 for (auto item : states) { 981 Value *v = item.first; 982 Value *base = item.second.getBase(); 983 assert(v && base); 984 assert(!isKnownBaseResult(v) && "why did it get added?"); 985 986 if (TraceLSP) { 987 std::string fromstr = 988 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 989 : "none"; 990 errs() << "Updating base value cache" 991 << " for: " << (v->hasName() ? v->getName() : "") 992 << " from: " << fromstr 993 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 994 } 995 996 assert(isKnownBaseResult(base) && 997 "must be something we 'know' is a base pointer"); 998 if (cache.count(v)) { 999 // Once we transition from the BDV relation being store in the cache to 1000 // the base relation being stored, it must be stable 1001 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 1002 "base relation should be stable"); 1003 } 1004 cache[v] = base; 1005 } 1006 assert(cache.find(def) != cache.end()); 1007 return cache[def]; 1008 } 1009 1010 // For a set of live pointers (base and/or derived), identify the base 1011 // pointer of the object which they are derived from. This routine will 1012 // mutate the IR graph as needed to make the 'base' pointer live at the 1013 // definition site of 'derived'. This ensures that any use of 'derived' can 1014 // also use 'base'. This may involve the insertion of a number of 1015 // additional PHI nodes. 1016 // 1017 // preconditions: live is a set of pointer type Values 1018 // 1019 // side effects: may insert PHI nodes into the existing CFG, will preserve 1020 // CFG, will not remove or mutate any existing nodes 1021 // 1022 // post condition: PointerToBase contains one (derived, base) pair for every 1023 // pointer in live. Note that derived can be equal to base if the original 1024 // pointer was a base pointer. 1025 static void 1026 findBasePointers(const StatepointLiveSetTy &live, 1027 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 1028 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1029 // For the naming of values inserted to be deterministic - which makes for 1030 // much cleaner and more stable tests - we need to assign an order to the 1031 // live values. DenseSets do not provide a deterministic order across runs. 1032 SmallVector<Value *, 64> Temp; 1033 Temp.insert(Temp.end(), live.begin(), live.end()); 1034 std::sort(Temp.begin(), Temp.end(), order_by_name); 1035 for (Value *ptr : Temp) { 1036 Value *base = findBasePointer(ptr, DVCache); 1037 assert(base && "failed to find base pointer"); 1038 PointerToBase[ptr] = base; 1039 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1040 DT->dominates(cast<Instruction>(base)->getParent(), 1041 cast<Instruction>(ptr)->getParent())) && 1042 "The base we found better dominate the derived pointer"); 1043 1044 // If you see this trip and like to live really dangerously, the code should 1045 // be correct, just with idioms the verifier can't handle. You can try 1046 // disabling the verifier at your own substaintial risk. 1047 assert(!isa<ConstantPointerNull>(base) && 1048 "the relocation code needs adjustment to handle the relocation of " 1049 "a null pointer constant without causing false positives in the " 1050 "safepoint ir verifier."); 1051 } 1052 } 1053 1054 /// Find the required based pointers (and adjust the live set) for the given 1055 /// parse point. 1056 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1057 const CallSite &CS, 1058 PartiallyConstructedSafepointRecord &result) { 1059 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 1060 findBasePointers(result.liveset, PointerToBase, &DT, DVCache); 1061 1062 if (PrintBasePointers) { 1063 // Note: Need to print these in a stable order since this is checked in 1064 // some tests. 1065 errs() << "Base Pairs (w/o Relocation):\n"; 1066 SmallVector<Value *, 64> Temp; 1067 Temp.reserve(PointerToBase.size()); 1068 for (auto Pair : PointerToBase) { 1069 Temp.push_back(Pair.first); 1070 } 1071 std::sort(Temp.begin(), Temp.end(), order_by_name); 1072 for (Value *Ptr : Temp) { 1073 Value *Base = PointerToBase[Ptr]; 1074 errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() 1075 << "\n"; 1076 } 1077 } 1078 1079 result.PointerToBase = PointerToBase; 1080 } 1081 1082 /// Given an updated version of the dataflow liveness results, update the 1083 /// liveset and base pointer maps for the call site CS. 1084 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1085 const CallSite &CS, 1086 PartiallyConstructedSafepointRecord &result); 1087 1088 static void recomputeLiveInValues( 1089 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1090 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1091 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1092 // again. The old values are still live and will help it stablize quickly. 1093 GCPtrLivenessData RevisedLivenessData; 1094 computeLiveInValues(DT, F, RevisedLivenessData); 1095 for (size_t i = 0; i < records.size(); i++) { 1096 struct PartiallyConstructedSafepointRecord &info = records[i]; 1097 const CallSite &CS = toUpdate[i]; 1098 recomputeLiveInValues(RevisedLivenessData, CS, info); 1099 } 1100 } 1101 1102 // When inserting gc.relocate calls, we need to ensure there are no uses 1103 // of the original value between the gc.statepoint and the gc.relocate call. 1104 // One case which can arise is a phi node starting one of the successor blocks. 1105 // We also need to be able to insert the gc.relocates only on the path which 1106 // goes through the statepoint. We might need to split an edge to make this 1107 // possible. 1108 static BasicBlock * 1109 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1110 DominatorTree &DT) { 1111 BasicBlock *Ret = BB; 1112 if (!BB->getUniquePredecessor()) { 1113 Ret = SplitBlockPredecessors(BB, InvokeParent, "", nullptr, &DT); 1114 } 1115 1116 // Now that 'ret' has unique predecessor we can safely remove all phi nodes 1117 // from it 1118 FoldSingleEntryPHINodes(Ret); 1119 assert(!isa<PHINode>(Ret->begin())); 1120 1121 // At this point, we can safely insert a gc.relocate as the first instruction 1122 // in Ret if needed. 1123 return Ret; 1124 } 1125 1126 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1127 auto itr = std::find(livevec.begin(), livevec.end(), val); 1128 assert(livevec.end() != itr); 1129 size_t index = std::distance(livevec.begin(), itr); 1130 assert(index < livevec.size()); 1131 return index; 1132 } 1133 1134 // Create new attribute set containing only attributes which can be transfered 1135 // from original call to the safepoint. 1136 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1137 AttributeSet ret; 1138 1139 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1140 unsigned index = AS.getSlotIndex(Slot); 1141 1142 if (index == AttributeSet::ReturnIndex || 1143 index == AttributeSet::FunctionIndex) { 1144 1145 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1146 ++it) { 1147 Attribute attr = *it; 1148 1149 // Do not allow certain attributes - just skip them 1150 // Safepoint can not be read only or read none. 1151 if (attr.hasAttribute(Attribute::ReadNone) || 1152 attr.hasAttribute(Attribute::ReadOnly)) 1153 continue; 1154 1155 ret = ret.addAttributes( 1156 AS.getContext(), index, 1157 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1158 } 1159 } 1160 1161 // Just skip parameter attributes for now 1162 } 1163 1164 return ret; 1165 } 1166 1167 /// Helper function to place all gc relocates necessary for the given 1168 /// statepoint. 1169 /// Inputs: 1170 /// liveVariables - list of variables to be relocated. 1171 /// liveStart - index of the first live variable. 1172 /// basePtrs - base pointers. 1173 /// statepointToken - statepoint instruction to which relocates should be 1174 /// bound. 1175 /// Builder - Llvm IR builder to be used to construct new calls. 1176 static void CreateGCRelocates(ArrayRef<llvm::Value *> LiveVariables, 1177 const int LiveStart, 1178 ArrayRef<llvm::Value *> BasePtrs, 1179 Instruction *StatepointToken, 1180 IRBuilder<> Builder) { 1181 SmallVector<Instruction *, 64> NewDefs; 1182 NewDefs.reserve(LiveVariables.size()); 1183 1184 Module *M = StatepointToken->getParent()->getParent()->getParent(); 1185 1186 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1187 // We generate a (potentially) unique declaration for every pointer type 1188 // combination. This results is some blow up the function declarations in 1189 // the IR, but removes the need for argument bitcasts which shrinks the IR 1190 // greatly and makes it much more readable. 1191 SmallVector<Type *, 1> Types; // one per 'any' type 1192 // All gc_relocate are set to i8 addrspace(1)* type. This could help avoid 1193 // cases where the actual value's type mangling is not supported by llvm. A 1194 // bitcast is added later to convert gc_relocate to the actual value's type. 1195 Types.push_back(Type::getInt8PtrTy(M->getContext(), 1)); 1196 Value *GCRelocateDecl = Intrinsic::getDeclaration( 1197 M, Intrinsic::experimental_gc_relocate, Types); 1198 1199 // Generate the gc.relocate call and save the result 1200 Value *BaseIdx = 1201 ConstantInt::get(Type::getInt32Ty(M->getContext()), 1202 LiveStart + find_index(LiveVariables, BasePtrs[i])); 1203 Value *LiveIdx = ConstantInt::get( 1204 Type::getInt32Ty(M->getContext()), 1205 LiveStart + find_index(LiveVariables, LiveVariables[i])); 1206 1207 // only specify a debug name if we can give a useful one 1208 Value *Reloc = Builder.CreateCall( 1209 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1210 LiveVariables[i]->hasName() ? LiveVariables[i]->getName() + ".relocated" 1211 : ""); 1212 // Trick CodeGen into thinking there are lots of free registers at this 1213 // fake call. 1214 cast<CallInst>(Reloc)->setCallingConv(CallingConv::Cold); 1215 1216 NewDefs.push_back(cast<Instruction>(Reloc)); 1217 } 1218 assert(NewDefs.size() == LiveVariables.size() && 1219 "missing or extra redefinition at safepoint"); 1220 } 1221 1222 static void 1223 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1224 const SmallVectorImpl<llvm::Value *> &basePtrs, 1225 const SmallVectorImpl<llvm::Value *> &liveVariables, 1226 Pass *P, 1227 PartiallyConstructedSafepointRecord &result) { 1228 assert(basePtrs.size() == liveVariables.size()); 1229 assert(isStatepoint(CS) && 1230 "This method expects to be rewriting a statepoint"); 1231 1232 BasicBlock *BB = CS.getInstruction()->getParent(); 1233 assert(BB); 1234 Function *F = BB->getParent(); 1235 assert(F && "must be set"); 1236 Module *M = F->getParent(); 1237 (void)M; 1238 assert(M && "must be set"); 1239 1240 // We're not changing the function signature of the statepoint since the gc 1241 // arguments go into the var args section. 1242 Function *gc_statepoint_decl = CS.getCalledFunction(); 1243 1244 // Then go ahead and use the builder do actually do the inserts. We insert 1245 // immediately before the previous instruction under the assumption that all 1246 // arguments will be available here. We can't insert afterwards since we may 1247 // be replacing a terminator. 1248 Instruction *insertBefore = CS.getInstruction(); 1249 IRBuilder<> Builder(insertBefore); 1250 // Copy all of the arguments from the original statepoint - this includes the 1251 // target, call args, and deopt args 1252 SmallVector<llvm::Value *, 64> args; 1253 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1254 // TODO: Clear the 'needs rewrite' flag 1255 1256 // add all the pointers to be relocated (gc arguments) 1257 // Capture the start of the live variable list for use in the gc_relocates 1258 const int live_start = args.size(); 1259 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1260 1261 // Create the statepoint given all the arguments 1262 Instruction *token = nullptr; 1263 AttributeSet return_attributes; 1264 if (CS.isCall()) { 1265 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1266 CallInst *call = 1267 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1268 call->setTailCall(toReplace->isTailCall()); 1269 call->setCallingConv(toReplace->getCallingConv()); 1270 1271 // Currently we will fail on parameter attributes and on certain 1272 // function attributes. 1273 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1274 // In case if we can handle this set of sttributes - set up function attrs 1275 // directly on statepoint and return attrs later for gc_result intrinsic. 1276 call->setAttributes(new_attrs.getFnAttributes()); 1277 return_attributes = new_attrs.getRetAttributes(); 1278 1279 token = call; 1280 1281 // Put the following gc_result and gc_relocate calls immediately after the 1282 // the old call (which we're about to delete) 1283 BasicBlock::iterator next(toReplace); 1284 assert(BB->end() != next && "not a terminator, must have next"); 1285 next++; 1286 Instruction *IP = &*(next); 1287 Builder.SetInsertPoint(IP); 1288 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1289 1290 } else { 1291 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1292 1293 // Insert the new invoke into the old block. We'll remove the old one in a 1294 // moment at which point this will become the new terminator for the 1295 // original block. 1296 InvokeInst *invoke = InvokeInst::Create( 1297 gc_statepoint_decl, toReplace->getNormalDest(), 1298 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1299 invoke->setCallingConv(toReplace->getCallingConv()); 1300 1301 // Currently we will fail on parameter attributes and on certain 1302 // function attributes. 1303 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1304 // In case if we can handle this set of sttributes - set up function attrs 1305 // directly on statepoint and return attrs later for gc_result intrinsic. 1306 invoke->setAttributes(new_attrs.getFnAttributes()); 1307 return_attributes = new_attrs.getRetAttributes(); 1308 1309 token = invoke; 1310 1311 // Generate gc relocates in exceptional path 1312 BasicBlock *unwindBlock = toReplace->getUnwindDest(); 1313 assert(!isa<PHINode>(unwindBlock->begin()) && 1314 unwindBlock->getUniquePredecessor() && 1315 "can't safely insert in this block!"); 1316 1317 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1318 Builder.SetInsertPoint(IP); 1319 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1320 1321 // Extract second element from landingpad return value. We will attach 1322 // exceptional gc relocates to it. 1323 const unsigned idx = 1; 1324 Instruction *exceptional_token = 1325 cast<Instruction>(Builder.CreateExtractValue( 1326 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1327 result.UnwindToken = exceptional_token; 1328 1329 // Just throw away return value. We will use the one we got for normal 1330 // block. 1331 (void)CreateGCRelocates(liveVariables, live_start, basePtrs, 1332 exceptional_token, Builder); 1333 1334 // Generate gc relocates and returns for normal block 1335 BasicBlock *normalDest = toReplace->getNormalDest(); 1336 assert(!isa<PHINode>(normalDest->begin()) && 1337 normalDest->getUniquePredecessor() && 1338 "can't safely insert in this block!"); 1339 1340 IP = &*(normalDest->getFirstInsertionPt()); 1341 Builder.SetInsertPoint(IP); 1342 1343 // gc relocates will be generated later as if it were regular call 1344 // statepoint 1345 } 1346 assert(token); 1347 1348 // Take the name of the original value call if it had one. 1349 token->takeName(CS.getInstruction()); 1350 1351 // The GCResult is already inserted, we just need to find it 1352 #ifndef NDEBUG 1353 Instruction *toReplace = CS.getInstruction(); 1354 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1355 "only valid use before rewrite is gc.result"); 1356 assert(!toReplace->hasOneUse() || 1357 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1358 #endif 1359 1360 // Update the gc.result of the original statepoint (if any) to use the newly 1361 // inserted statepoint. This is safe to do here since the token can't be 1362 // considered a live reference. 1363 CS.getInstruction()->replaceAllUsesWith(token); 1364 1365 result.StatepointToken = token; 1366 1367 // Second, create a gc.relocate for every live variable 1368 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1369 } 1370 1371 namespace { 1372 struct name_ordering { 1373 Value *base; 1374 Value *derived; 1375 bool operator()(name_ordering const &a, name_ordering const &b) { 1376 return -1 == a.derived->getName().compare(b.derived->getName()); 1377 } 1378 }; 1379 } 1380 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1381 SmallVectorImpl<Value *> &livevec) { 1382 assert(basevec.size() == livevec.size()); 1383 1384 SmallVector<name_ordering, 64> temp; 1385 for (size_t i = 0; i < basevec.size(); i++) { 1386 name_ordering v; 1387 v.base = basevec[i]; 1388 v.derived = livevec[i]; 1389 temp.push_back(v); 1390 } 1391 std::sort(temp.begin(), temp.end(), name_ordering()); 1392 for (size_t i = 0; i < basevec.size(); i++) { 1393 basevec[i] = temp[i].base; 1394 livevec[i] = temp[i].derived; 1395 } 1396 } 1397 1398 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1399 // which make the relocations happening at this safepoint explicit. 1400 // 1401 // WARNING: Does not do any fixup to adjust users of the original live 1402 // values. That's the callers responsibility. 1403 static void 1404 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1405 PartiallyConstructedSafepointRecord &result) { 1406 auto liveset = result.liveset; 1407 auto PointerToBase = result.PointerToBase; 1408 1409 // Convert to vector for efficient cross referencing. 1410 SmallVector<Value *, 64> basevec, livevec; 1411 livevec.reserve(liveset.size()); 1412 basevec.reserve(liveset.size()); 1413 for (Value *L : liveset) { 1414 livevec.push_back(L); 1415 1416 assert(PointerToBase.find(L) != PointerToBase.end()); 1417 Value *base = PointerToBase[L]; 1418 basevec.push_back(base); 1419 } 1420 assert(livevec.size() == basevec.size()); 1421 1422 // To make the output IR slightly more stable (for use in diffs), ensure a 1423 // fixed order of the values in the safepoint (by sorting the value name). 1424 // The order is otherwise meaningless. 1425 stablize_order(basevec, livevec); 1426 1427 // Do the actual rewriting and delete the old statepoint 1428 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1429 CS.getInstruction()->eraseFromParent(); 1430 } 1431 1432 // Helper function for the relocationViaAlloca. 1433 // It receives iterator to the statepoint gc relocates and emits store to the 1434 // assigned 1435 // location (via allocaMap) for the each one of them. 1436 // Add visited values into the visitedLiveValues set we will later use them 1437 // for sanity check. 1438 static void 1439 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1440 DenseMap<Value *, Value *> &AllocaMap, 1441 DenseSet<Value *> &VisitedLiveValues) { 1442 1443 for (User *U : GCRelocs) { 1444 if (!isa<IntrinsicInst>(U)) 1445 continue; 1446 1447 IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U); 1448 1449 // We only care about relocates 1450 if (RelocatedValue->getIntrinsicID() != 1451 Intrinsic::experimental_gc_relocate) { 1452 continue; 1453 } 1454 1455 GCRelocateOperands RelocateOperands(RelocatedValue); 1456 Value *OriginalValue = 1457 const_cast<Value *>(RelocateOperands.getDerivedPtr()); 1458 assert(AllocaMap.count(OriginalValue)); 1459 Value *Alloca = AllocaMap[OriginalValue]; 1460 1461 // Emit store into the related alloca 1462 // All gc_relocate are i8 addrspace(1)* typed, and it must be bitcasted to 1463 // the correct type according to alloca. 1464 assert(RelocatedValue->getNextNode() && "Should always have one since it's not a terminator"); 1465 IRBuilder<> Builder(RelocatedValue->getNextNode()); 1466 Value *CastedRelocatedValue = 1467 Builder.CreateBitCast(RelocatedValue, cast<AllocaInst>(Alloca)->getAllocatedType(), 1468 RelocatedValue->hasName() ? RelocatedValue->getName() + ".casted" : ""); 1469 1470 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1471 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1472 1473 #ifndef NDEBUG 1474 VisitedLiveValues.insert(OriginalValue); 1475 #endif 1476 } 1477 } 1478 1479 // Helper function for the "relocationViaAlloca". Similar to the 1480 // "insertRelocationStores" but works for rematerialized values. 1481 static void 1482 insertRematerializationStores( 1483 RematerializedValueMapTy RematerializedValues, 1484 DenseMap<Value *, Value *> &AllocaMap, 1485 DenseSet<Value *> &VisitedLiveValues) { 1486 1487 for (auto RematerializedValuePair: RematerializedValues) { 1488 Instruction *RematerializedValue = RematerializedValuePair.first; 1489 Value *OriginalValue = RematerializedValuePair.second; 1490 1491 assert(AllocaMap.count(OriginalValue) && 1492 "Can not find alloca for rematerialized value"); 1493 Value *Alloca = AllocaMap[OriginalValue]; 1494 1495 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1496 Store->insertAfter(RematerializedValue); 1497 1498 #ifndef NDEBUG 1499 VisitedLiveValues.insert(OriginalValue); 1500 #endif 1501 } 1502 } 1503 1504 /// do all the relocation update via allocas and mem2reg 1505 static void relocationViaAlloca( 1506 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1507 ArrayRef<struct PartiallyConstructedSafepointRecord> Records) { 1508 #ifndef NDEBUG 1509 // record initial number of (static) allocas; we'll check we have the same 1510 // number when we get done. 1511 int InitialAllocaNum = 0; 1512 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1513 I++) 1514 if (isa<AllocaInst>(*I)) 1515 InitialAllocaNum++; 1516 #endif 1517 1518 // TODO-PERF: change data structures, reserve 1519 DenseMap<Value *, Value *> AllocaMap; 1520 SmallVector<AllocaInst *, 200> PromotableAllocas; 1521 // Used later to chack that we have enough allocas to store all values 1522 std::size_t NumRematerializedValues = 0; 1523 PromotableAllocas.reserve(Live.size()); 1524 1525 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1526 // "PromotableAllocas" 1527 auto emitAllocaFor = [&](Value *LiveValue) { 1528 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1529 F.getEntryBlock().getFirstNonPHI()); 1530 AllocaMap[LiveValue] = Alloca; 1531 PromotableAllocas.push_back(Alloca); 1532 }; 1533 1534 // emit alloca for each live gc pointer 1535 for (unsigned i = 0; i < Live.size(); i++) { 1536 emitAllocaFor(Live[i]); 1537 } 1538 1539 // emit allocas for rematerialized values 1540 for (size_t i = 0; i < Records.size(); i++) { 1541 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1542 1543 for (auto RematerializedValuePair : Info.RematerializedValues) { 1544 Value *OriginalValue = RematerializedValuePair.second; 1545 if (AllocaMap.count(OriginalValue) != 0) 1546 continue; 1547 1548 emitAllocaFor(OriginalValue); 1549 ++NumRematerializedValues; 1550 } 1551 } 1552 1553 // The next two loops are part of the same conceptual operation. We need to 1554 // insert a store to the alloca after the original def and at each 1555 // redefinition. We need to insert a load before each use. These are split 1556 // into distinct loops for performance reasons. 1557 1558 // update gc pointer after each statepoint 1559 // either store a relocated value or null (if no relocated value found for 1560 // this gc pointer and it is not a gc_result) 1561 // this must happen before we update the statepoint with load of alloca 1562 // otherwise we lose the link between statepoint and old def 1563 for (size_t i = 0; i < Records.size(); i++) { 1564 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1565 Value *Statepoint = Info.StatepointToken; 1566 1567 // This will be used for consistency check 1568 DenseSet<Value *> VisitedLiveValues; 1569 1570 // Insert stores for normal statepoint gc relocates 1571 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1572 1573 // In case if it was invoke statepoint 1574 // we will insert stores for exceptional path gc relocates. 1575 if (isa<InvokeInst>(Statepoint)) { 1576 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1577 VisitedLiveValues); 1578 } 1579 1580 // Do similar thing with rematerialized values 1581 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1582 VisitedLiveValues); 1583 1584 if (ClobberNonLive) { 1585 // As a debuging aid, pretend that an unrelocated pointer becomes null at 1586 // the gc.statepoint. This will turn some subtle GC problems into 1587 // slightly easier to debug SEGVs. Note that on large IR files with 1588 // lots of gc.statepoints this is extremely costly both memory and time 1589 // wise. 1590 SmallVector<AllocaInst *, 64> ToClobber; 1591 for (auto Pair : AllocaMap) { 1592 Value *Def = Pair.first; 1593 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1594 1595 // This value was relocated 1596 if (VisitedLiveValues.count(Def)) { 1597 continue; 1598 } 1599 ToClobber.push_back(Alloca); 1600 } 1601 1602 auto InsertClobbersAt = [&](Instruction *IP) { 1603 for (auto *AI : ToClobber) { 1604 auto AIType = cast<PointerType>(AI->getType()); 1605 auto PT = cast<PointerType>(AIType->getElementType()); 1606 Constant *CPN = ConstantPointerNull::get(PT); 1607 StoreInst *Store = new StoreInst(CPN, AI); 1608 Store->insertBefore(IP); 1609 } 1610 }; 1611 1612 // Insert the clobbering stores. These may get intermixed with the 1613 // gc.results and gc.relocates, but that's fine. 1614 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1615 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1616 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1617 } else { 1618 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1619 Next++; 1620 InsertClobbersAt(Next); 1621 } 1622 } 1623 } 1624 // update use with load allocas and add store for gc_relocated 1625 for (auto Pair : AllocaMap) { 1626 Value *Def = Pair.first; 1627 Value *Alloca = Pair.second; 1628 1629 // we pre-record the uses of allocas so that we dont have to worry about 1630 // later update 1631 // that change the user information. 1632 SmallVector<Instruction *, 20> Uses; 1633 // PERF: trade a linear scan for repeated reallocation 1634 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1635 for (User *U : Def->users()) { 1636 if (!isa<ConstantExpr>(U)) { 1637 // If the def has a ConstantExpr use, then the def is either a 1638 // ConstantExpr use itself or null. In either case 1639 // (recursively in the first, directly in the second), the oop 1640 // it is ultimately dependent on is null and this particular 1641 // use does not need to be fixed up. 1642 Uses.push_back(cast<Instruction>(U)); 1643 } 1644 } 1645 1646 std::sort(Uses.begin(), Uses.end()); 1647 auto Last = std::unique(Uses.begin(), Uses.end()); 1648 Uses.erase(Last, Uses.end()); 1649 1650 for (Instruction *Use : Uses) { 1651 if (isa<PHINode>(Use)) { 1652 PHINode *Phi = cast<PHINode>(Use); 1653 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1654 if (Def == Phi->getIncomingValue(i)) { 1655 LoadInst *Load = new LoadInst( 1656 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1657 Phi->setIncomingValue(i, Load); 1658 } 1659 } 1660 } else { 1661 LoadInst *Load = new LoadInst(Alloca, "", Use); 1662 Use->replaceUsesOfWith(Def, Load); 1663 } 1664 } 1665 1666 // emit store for the initial gc value 1667 // store must be inserted after load, otherwise store will be in alloca's 1668 // use list and an extra load will be inserted before it 1669 StoreInst *Store = new StoreInst(Def, Alloca); 1670 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1671 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1672 // InvokeInst is a TerminatorInst so the store need to be inserted 1673 // into its normal destination block. 1674 BasicBlock *NormalDest = Invoke->getNormalDest(); 1675 Store->insertBefore(NormalDest->getFirstNonPHI()); 1676 } else { 1677 assert(!Inst->isTerminator() && 1678 "The only TerminatorInst that can produce a value is " 1679 "InvokeInst which is handled above."); 1680 Store->insertAfter(Inst); 1681 } 1682 } else { 1683 assert(isa<Argument>(Def)); 1684 Store->insertAfter(cast<Instruction>(Alloca)); 1685 } 1686 } 1687 1688 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1689 "we must have the same allocas with lives"); 1690 if (!PromotableAllocas.empty()) { 1691 // apply mem2reg to promote alloca to SSA 1692 PromoteMemToReg(PromotableAllocas, DT); 1693 } 1694 1695 #ifndef NDEBUG 1696 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1697 I++) 1698 if (isa<AllocaInst>(*I)) 1699 InitialAllocaNum--; 1700 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1701 #endif 1702 } 1703 1704 /// Implement a unique function which doesn't require we sort the input 1705 /// vector. Doing so has the effect of changing the output of a couple of 1706 /// tests in ways which make them less useful in testing fused safepoints. 1707 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1708 SmallSet<T, 8> Seen; 1709 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1710 return !Seen.insert(V).second; 1711 }), Vec.end()); 1712 } 1713 1714 /// Insert holders so that each Value is obviously live through the entire 1715 /// lifetime of the call. 1716 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1717 SmallVectorImpl<CallInst *> &Holders) { 1718 if (Values.empty()) 1719 // No values to hold live, might as well not insert the empty holder 1720 return; 1721 1722 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1723 // Use a dummy vararg function to actually hold the values live 1724 Function *Func = cast<Function>(M->getOrInsertFunction( 1725 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1726 if (CS.isCall()) { 1727 // For call safepoints insert dummy calls right after safepoint 1728 BasicBlock::iterator Next(CS.getInstruction()); 1729 Next++; 1730 Holders.push_back(CallInst::Create(Func, Values, "", Next)); 1731 return; 1732 } 1733 // For invoke safepooints insert dummy calls both in normal and 1734 // exceptional destination blocks 1735 auto *II = cast<InvokeInst>(CS.getInstruction()); 1736 Holders.push_back(CallInst::Create( 1737 Func, Values, "", II->getNormalDest()->getFirstInsertionPt())); 1738 Holders.push_back(CallInst::Create( 1739 Func, Values, "", II->getUnwindDest()->getFirstInsertionPt())); 1740 } 1741 1742 static void findLiveReferences( 1743 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1744 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1745 GCPtrLivenessData OriginalLivenessData; 1746 computeLiveInValues(DT, F, OriginalLivenessData); 1747 for (size_t i = 0; i < records.size(); i++) { 1748 struct PartiallyConstructedSafepointRecord &info = records[i]; 1749 const CallSite &CS = toUpdate[i]; 1750 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1751 } 1752 } 1753 1754 /// Remove any vector of pointers from the liveset by scalarizing them over the 1755 /// statepoint instruction. Adds the scalarized pieces to the liveset. It 1756 /// would be preferrable to include the vector in the statepoint itself, but 1757 /// the lowering code currently does not handle that. Extending it would be 1758 /// slightly non-trivial since it requires a format change. Given how rare 1759 /// such cases are (for the moment?) scalarizing is an acceptable comprimise. 1760 static void splitVectorValues(Instruction *StatepointInst, 1761 StatepointLiveSetTy &LiveSet, 1762 DenseMap<Value *, Value *>& PointerToBase, 1763 DominatorTree &DT) { 1764 SmallVector<Value *, 16> ToSplit; 1765 for (Value *V : LiveSet) 1766 if (isa<VectorType>(V->getType())) 1767 ToSplit.push_back(V); 1768 1769 if (ToSplit.empty()) 1770 return; 1771 1772 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1773 1774 Function &F = *(StatepointInst->getParent()->getParent()); 1775 1776 DenseMap<Value *, AllocaInst *> AllocaMap; 1777 // First is normal return, second is exceptional return (invoke only) 1778 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1779 for (Value *V : ToSplit) { 1780 AllocaInst *Alloca = 1781 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1782 AllocaMap[V] = Alloca; 1783 1784 VectorType *VT = cast<VectorType>(V->getType()); 1785 IRBuilder<> Builder(StatepointInst); 1786 SmallVector<Value *, 16> Elements; 1787 for (unsigned i = 0; i < VT->getNumElements(); i++) 1788 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1789 ElementMapping[V] = Elements; 1790 1791 auto InsertVectorReform = [&](Instruction *IP) { 1792 Builder.SetInsertPoint(IP); 1793 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1794 Value *ResultVec = UndefValue::get(VT); 1795 for (unsigned i = 0; i < VT->getNumElements(); i++) 1796 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1797 Builder.getInt32(i)); 1798 return ResultVec; 1799 }; 1800 1801 if (isa<CallInst>(StatepointInst)) { 1802 BasicBlock::iterator Next(StatepointInst); 1803 Next++; 1804 Instruction *IP = &*(Next); 1805 Replacements[V].first = InsertVectorReform(IP); 1806 Replacements[V].second = nullptr; 1807 } else { 1808 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 1809 // We've already normalized - check that we don't have shared destination 1810 // blocks 1811 BasicBlock *NormalDest = Invoke->getNormalDest(); 1812 assert(!isa<PHINode>(NormalDest->begin())); 1813 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 1814 assert(!isa<PHINode>(UnwindDest->begin())); 1815 // Insert insert element sequences in both successors 1816 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 1817 Replacements[V].first = InsertVectorReform(IP); 1818 IP = &*(UnwindDest->getFirstInsertionPt()); 1819 Replacements[V].second = InsertVectorReform(IP); 1820 } 1821 } 1822 1823 for (Value *V : ToSplit) { 1824 AllocaInst *Alloca = AllocaMap[V]; 1825 1826 // Capture all users before we start mutating use lists 1827 SmallVector<Instruction *, 16> Users; 1828 for (User *U : V->users()) 1829 Users.push_back(cast<Instruction>(U)); 1830 1831 for (Instruction *I : Users) { 1832 if (auto Phi = dyn_cast<PHINode>(I)) { 1833 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 1834 if (V == Phi->getIncomingValue(i)) { 1835 LoadInst *Load = new LoadInst( 1836 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1837 Phi->setIncomingValue(i, Load); 1838 } 1839 } else { 1840 LoadInst *Load = new LoadInst(Alloca, "", I); 1841 I->replaceUsesOfWith(V, Load); 1842 } 1843 } 1844 1845 // Store the original value and the replacement value into the alloca 1846 StoreInst *Store = new StoreInst(V, Alloca); 1847 if (auto I = dyn_cast<Instruction>(V)) 1848 Store->insertAfter(I); 1849 else 1850 Store->insertAfter(Alloca); 1851 1852 // Normal return for invoke, or call return 1853 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 1854 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1855 // Unwind return for invoke only 1856 Replacement = cast_or_null<Instruction>(Replacements[V].second); 1857 if (Replacement) 1858 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1859 } 1860 1861 // apply mem2reg to promote alloca to SSA 1862 SmallVector<AllocaInst *, 16> Allocas; 1863 for (Value *V : ToSplit) 1864 Allocas.push_back(AllocaMap[V]); 1865 PromoteMemToReg(Allocas, DT); 1866 1867 // Update our tracking of live pointers and base mappings to account for the 1868 // changes we just made. 1869 for (Value *V : ToSplit) { 1870 auto &Elements = ElementMapping[V]; 1871 1872 LiveSet.erase(V); 1873 LiveSet.insert(Elements.begin(), Elements.end()); 1874 // We need to update the base mapping as well. 1875 assert(PointerToBase.count(V)); 1876 Value *OldBase = PointerToBase[V]; 1877 auto &BaseElements = ElementMapping[OldBase]; 1878 PointerToBase.erase(V); 1879 assert(Elements.size() == BaseElements.size()); 1880 for (unsigned i = 0; i < Elements.size(); i++) { 1881 Value *Elem = Elements[i]; 1882 PointerToBase[Elem] = BaseElements[i]; 1883 } 1884 } 1885 } 1886 1887 // Helper function for the "rematerializeLiveValues". It walks use chain 1888 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1889 // values are visited (currently it is GEP's and casts). Returns true if it 1890 // sucessfully reached "BaseValue" and false otherwise. 1891 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1892 // recorded. 1893 static bool findRematerializableChainToBasePointer( 1894 SmallVectorImpl<Instruction*> &ChainToBase, 1895 Value *CurrentValue, Value *BaseValue) { 1896 1897 // We have found a base value 1898 if (CurrentValue == BaseValue) { 1899 return true; 1900 } 1901 1902 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1903 ChainToBase.push_back(GEP); 1904 return findRematerializableChainToBasePointer(ChainToBase, 1905 GEP->getPointerOperand(), 1906 BaseValue); 1907 } 1908 1909 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1910 Value *Def = CI->stripPointerCasts(); 1911 1912 // This two checks are basically similar. First one is here for the 1913 // consistency with findBasePointers logic. 1914 assert(!isa<CastInst>(Def) && "not a pointer cast found"); 1915 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1916 return false; 1917 1918 ChainToBase.push_back(CI); 1919 return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue); 1920 } 1921 1922 // Not supported instruction in the chain 1923 return false; 1924 } 1925 1926 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1927 // chain we are going to rematerialize. 1928 static unsigned 1929 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1930 TargetTransformInfo &TTI) { 1931 unsigned Cost = 0; 1932 1933 for (Instruction *Instr : Chain) { 1934 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1935 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1936 "non noop cast is found during rematerialization"); 1937 1938 Type *SrcTy = CI->getOperand(0)->getType(); 1939 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 1940 1941 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1942 // Cost of the address calculation 1943 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); 1944 Cost += TTI.getAddressComputationCost(ValTy); 1945 1946 // And cost of the GEP itself 1947 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1948 // allowed for the external usage) 1949 if (!GEP->hasAllConstantIndices()) 1950 Cost += 2; 1951 1952 } else { 1953 llvm_unreachable("unsupported instruciton type during rematerialization"); 1954 } 1955 } 1956 1957 return Cost; 1958 } 1959 1960 // From the statepoint liveset pick values that are cheaper to recompute then to 1961 // relocate. Remove this values from the liveset, rematerialize them after 1962 // statepoint and record them in "Info" structure. Note that similar to 1963 // relocated values we don't do any user adjustments here. 1964 static void rematerializeLiveValues(CallSite CS, 1965 PartiallyConstructedSafepointRecord &Info, 1966 TargetTransformInfo &TTI) { 1967 const unsigned int ChainLengthThreshold = 10; 1968 1969 // Record values we are going to delete from this statepoint live set. 1970 // We can not di this in following loop due to iterator invalidation. 1971 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1972 1973 for (Value *LiveValue: Info.liveset) { 1974 // For each live pointer find it's defining chain 1975 SmallVector<Instruction *, 3> ChainToBase; 1976 assert(Info.PointerToBase.find(LiveValue) != Info.PointerToBase.end()); 1977 bool FoundChain = 1978 findRematerializableChainToBasePointer(ChainToBase, 1979 LiveValue, 1980 Info.PointerToBase[LiveValue]); 1981 // Nothing to do, or chain is too long 1982 if (!FoundChain || 1983 ChainToBase.size() == 0 || 1984 ChainToBase.size() > ChainLengthThreshold) 1985 continue; 1986 1987 // Compute cost of this chain 1988 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1989 // TODO: We can also account for cases when we will be able to remove some 1990 // of the rematerialized values by later optimization passes. I.e if 1991 // we rematerialized several intersecting chains. Or if original values 1992 // don't have any uses besides this statepoint. 1993 1994 // For invokes we need to rematerialize each chain twice - for normal and 1995 // for unwind basic blocks. Model this by multiplying cost by two. 1996 if (CS.isInvoke()) { 1997 Cost *= 2; 1998 } 1999 // If it's too expensive - skip it 2000 if (Cost >= RematerializationThreshold) 2001 continue; 2002 2003 // Remove value from the live set 2004 LiveValuesToBeDeleted.push_back(LiveValue); 2005 2006 // Clone instructions and record them inside "Info" structure 2007 2008 // Walk backwards to visit top-most instructions first 2009 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2010 2011 // Utility function which clones all instructions from "ChainToBase" 2012 // and inserts them before "InsertBefore". Returns rematerialized value 2013 // which should be used after statepoint. 2014 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 2015 Instruction *LastClonedValue = nullptr; 2016 Instruction *LastValue = nullptr; 2017 for (Instruction *Instr: ChainToBase) { 2018 // Only GEP's and casts are suported as we need to be careful to not 2019 // introduce any new uses of pointers not in the liveset. 2020 // Note that it's fine to introduce new uses of pointers which were 2021 // otherwise not used after this statepoint. 2022 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2023 2024 Instruction *ClonedValue = Instr->clone(); 2025 ClonedValue->insertBefore(InsertBefore); 2026 ClonedValue->setName(Instr->getName() + ".remat"); 2027 2028 // If it is not first instruction in the chain then it uses previously 2029 // cloned value. We should update it to use cloned value. 2030 if (LastClonedValue) { 2031 assert(LastValue); 2032 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2033 #ifndef NDEBUG 2034 // Assert that cloned instruction does not use any instructions from 2035 // this chain other than LastClonedValue 2036 for (auto OpValue : ClonedValue->operand_values()) { 2037 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2038 ChainToBase.end() && 2039 "incorrect use in rematerialization chain"); 2040 } 2041 #endif 2042 } 2043 2044 LastClonedValue = ClonedValue; 2045 LastValue = Instr; 2046 } 2047 assert(LastClonedValue); 2048 return LastClonedValue; 2049 }; 2050 2051 // Different cases for calls and invokes. For invokes we need to clone 2052 // instructions both on normal and unwind path. 2053 if (CS.isCall()) { 2054 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2055 assert(InsertBefore); 2056 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2057 Info.RematerializedValues[RematerializedValue] = LiveValue; 2058 } else { 2059 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2060 2061 Instruction *NormalInsertBefore = 2062 Invoke->getNormalDest()->getFirstInsertionPt(); 2063 Instruction *UnwindInsertBefore = 2064 Invoke->getUnwindDest()->getFirstInsertionPt(); 2065 2066 Instruction *NormalRematerializedValue = 2067 rematerializeChain(NormalInsertBefore); 2068 Instruction *UnwindRematerializedValue = 2069 rematerializeChain(UnwindInsertBefore); 2070 2071 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2072 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2073 } 2074 } 2075 2076 // Remove rematerializaed values from the live set 2077 for (auto LiveValue: LiveValuesToBeDeleted) { 2078 Info.liveset.erase(LiveValue); 2079 } 2080 } 2081 2082 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 2083 SmallVectorImpl<CallSite> &toUpdate) { 2084 #ifndef NDEBUG 2085 // sanity check the input 2086 std::set<CallSite> uniqued; 2087 uniqued.insert(toUpdate.begin(), toUpdate.end()); 2088 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 2089 2090 for (size_t i = 0; i < toUpdate.size(); i++) { 2091 CallSite &CS = toUpdate[i]; 2092 assert(CS.getInstruction()->getParent()->getParent() == &F); 2093 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 2094 } 2095 #endif 2096 2097 // When inserting gc.relocates for invokes, we need to be able to insert at 2098 // the top of the successor blocks. See the comment on 2099 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2100 // may restructure the CFG. 2101 for (CallSite CS : toUpdate) { 2102 if (!CS.isInvoke()) 2103 continue; 2104 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 2105 normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(), 2106 DT); 2107 normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(), 2108 DT); 2109 } 2110 2111 // A list of dummy calls added to the IR to keep various values obviously 2112 // live in the IR. We'll remove all of these when done. 2113 SmallVector<CallInst *, 64> holders; 2114 2115 // Insert a dummy call with all of the arguments to the vm_state we'll need 2116 // for the actual safepoint insertion. This ensures reference arguments in 2117 // the deopt argument list are considered live through the safepoint (and 2118 // thus makes sure they get relocated.) 2119 for (size_t i = 0; i < toUpdate.size(); i++) { 2120 CallSite &CS = toUpdate[i]; 2121 Statepoint StatepointCS(CS); 2122 2123 SmallVector<Value *, 64> DeoptValues; 2124 for (Use &U : StatepointCS.vm_state_args()) { 2125 Value *Arg = cast<Value>(&U); 2126 assert(!isUnhandledGCPointerType(Arg->getType()) && 2127 "support for FCA unimplemented"); 2128 if (isHandledGCPointerType(Arg->getType())) 2129 DeoptValues.push_back(Arg); 2130 } 2131 insertUseHolderAfter(CS, DeoptValues, holders); 2132 } 2133 2134 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 2135 records.reserve(toUpdate.size()); 2136 for (size_t i = 0; i < toUpdate.size(); i++) { 2137 struct PartiallyConstructedSafepointRecord info; 2138 records.push_back(info); 2139 } 2140 assert(records.size() == toUpdate.size()); 2141 2142 // A) Identify all gc pointers which are staticly live at the given call 2143 // site. 2144 findLiveReferences(F, DT, P, toUpdate, records); 2145 2146 // B) Find the base pointers for each live pointer 2147 /* scope for caching */ { 2148 // Cache the 'defining value' relation used in the computation and 2149 // insertion of base phis and selects. This ensures that we don't insert 2150 // large numbers of duplicate base_phis. 2151 DefiningValueMapTy DVCache; 2152 2153 for (size_t i = 0; i < records.size(); i++) { 2154 struct PartiallyConstructedSafepointRecord &info = records[i]; 2155 CallSite &CS = toUpdate[i]; 2156 findBasePointers(DT, DVCache, CS, info); 2157 } 2158 } // end of cache scope 2159 2160 // The base phi insertion logic (for any safepoint) may have inserted new 2161 // instructions which are now live at some safepoint. The simplest such 2162 // example is: 2163 // loop: 2164 // phi a <-- will be a new base_phi here 2165 // safepoint 1 <-- that needs to be live here 2166 // gep a + 1 2167 // safepoint 2 2168 // br loop 2169 // We insert some dummy calls after each safepoint to definitely hold live 2170 // the base pointers which were identified for that safepoint. We'll then 2171 // ask liveness for _every_ base inserted to see what is now live. Then we 2172 // remove the dummy calls. 2173 holders.reserve(holders.size() + records.size()); 2174 for (size_t i = 0; i < records.size(); i++) { 2175 struct PartiallyConstructedSafepointRecord &info = records[i]; 2176 CallSite &CS = toUpdate[i]; 2177 2178 SmallVector<Value *, 128> Bases; 2179 for (auto Pair : info.PointerToBase) { 2180 Bases.push_back(Pair.second); 2181 } 2182 insertUseHolderAfter(CS, Bases, holders); 2183 } 2184 2185 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2186 // need to rerun liveness. We may *also* have inserted new defs, but that's 2187 // not the key issue. 2188 recomputeLiveInValues(F, DT, P, toUpdate, records); 2189 2190 if (PrintBasePointers) { 2191 for (size_t i = 0; i < records.size(); i++) { 2192 struct PartiallyConstructedSafepointRecord &info = records[i]; 2193 errs() << "Base Pairs: (w/Relocation)\n"; 2194 for (auto Pair : info.PointerToBase) { 2195 errs() << " derived %" << Pair.first->getName() << " base %" 2196 << Pair.second->getName() << "\n"; 2197 } 2198 } 2199 } 2200 for (size_t i = 0; i < holders.size(); i++) { 2201 holders[i]->eraseFromParent(); 2202 holders[i] = nullptr; 2203 } 2204 holders.clear(); 2205 2206 // Do a limited scalarization of any live at safepoint vector values which 2207 // contain pointers. This enables this pass to run after vectorization at 2208 // the cost of some possible performance loss. TODO: it would be nice to 2209 // natively support vectors all the way through the backend so we don't need 2210 // to scalarize here. 2211 for (size_t i = 0; i < records.size(); i++) { 2212 struct PartiallyConstructedSafepointRecord &info = records[i]; 2213 Instruction *statepoint = toUpdate[i].getInstruction(); 2214 splitVectorValues(cast<Instruction>(statepoint), info.liveset, 2215 info.PointerToBase, DT); 2216 } 2217 2218 // In order to reduce live set of statepoint we might choose to rematerialize 2219 // some values instead of relocating them. This is purelly an optimization and 2220 // does not influence correctness. 2221 TargetTransformInfo &TTI = 2222 P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2223 2224 for (size_t i = 0; i < records.size(); i++) { 2225 struct PartiallyConstructedSafepointRecord &info = records[i]; 2226 CallSite &CS = toUpdate[i]; 2227 2228 rematerializeLiveValues(CS, info, TTI); 2229 } 2230 2231 // Now run through and replace the existing statepoints with new ones with 2232 // the live variables listed. We do not yet update uses of the values being 2233 // relocated. We have references to live variables that need to 2234 // survive to the last iteration of this loop. (By construction, the 2235 // previous statepoint can not be a live variable, thus we can and remove 2236 // the old statepoint calls as we go.) 2237 for (size_t i = 0; i < records.size(); i++) { 2238 struct PartiallyConstructedSafepointRecord &info = records[i]; 2239 CallSite &CS = toUpdate[i]; 2240 makeStatepointExplicit(DT, CS, P, info); 2241 } 2242 toUpdate.clear(); // prevent accident use of invalid CallSites 2243 2244 // Do all the fixups of the original live variables to their relocated selves 2245 SmallVector<Value *, 128> live; 2246 for (size_t i = 0; i < records.size(); i++) { 2247 struct PartiallyConstructedSafepointRecord &info = records[i]; 2248 // We can't simply save the live set from the original insertion. One of 2249 // the live values might be the result of a call which needs a safepoint. 2250 // That Value* no longer exists and we need to use the new gc_result. 2251 // Thankfully, the liveset is embedded in the statepoint (and updated), so 2252 // we just grab that. 2253 Statepoint statepoint(info.StatepointToken); 2254 live.insert(live.end(), statepoint.gc_args_begin(), 2255 statepoint.gc_args_end()); 2256 #ifndef NDEBUG 2257 // Do some basic sanity checks on our liveness results before performing 2258 // relocation. Relocation can and will turn mistakes in liveness results 2259 // into non-sensical code which is must harder to debug. 2260 // TODO: It would be nice to test consistency as well 2261 assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) && 2262 "statepoint must be reachable or liveness is meaningless"); 2263 for (Value *V : statepoint.gc_args()) { 2264 if (!isa<Instruction>(V)) 2265 // Non-instruction values trivial dominate all possible uses 2266 continue; 2267 auto LiveInst = cast<Instruction>(V); 2268 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2269 "unreachable values should never be live"); 2270 assert(DT.dominates(LiveInst, info.StatepointToken) && 2271 "basic SSA liveness expectation violated by liveness analysis"); 2272 } 2273 #endif 2274 } 2275 unique_unsorted(live); 2276 2277 #ifndef NDEBUG 2278 // sanity check 2279 for (auto ptr : live) { 2280 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 2281 } 2282 #endif 2283 2284 relocationViaAlloca(F, DT, live, records); 2285 return !records.empty(); 2286 } 2287 2288 // Handles both return values and arguments for Functions and CallSites. 2289 template <typename AttrHolder> 2290 static void RemoveDerefAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2291 unsigned Index) { 2292 AttrBuilder R; 2293 if (AH.getDereferenceableBytes(Index)) 2294 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2295 AH.getDereferenceableBytes(Index))); 2296 if (AH.getDereferenceableOrNullBytes(Index)) 2297 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2298 AH.getDereferenceableOrNullBytes(Index))); 2299 2300 if (!R.empty()) 2301 AH.setAttributes(AH.getAttributes().removeAttributes( 2302 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2303 } 2304 2305 void 2306 RewriteStatepointsForGC::stripDereferenceabilityInfoFromPrototype(Function &F) { 2307 LLVMContext &Ctx = F.getContext(); 2308 2309 for (Argument &A : F.args()) 2310 if (isa<PointerType>(A.getType())) 2311 RemoveDerefAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2312 2313 if (isa<PointerType>(F.getReturnType())) 2314 RemoveDerefAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2315 } 2316 2317 void RewriteStatepointsForGC::stripDereferenceabilityInfoFromBody(Function &F) { 2318 if (F.empty()) 2319 return; 2320 2321 LLVMContext &Ctx = F.getContext(); 2322 MDBuilder Builder(Ctx); 2323 2324 for (Instruction &I : inst_range(F)) { 2325 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2326 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2327 bool IsImmutableTBAA = 2328 MD->getNumOperands() == 4 && 2329 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2330 2331 if (!IsImmutableTBAA) 2332 continue; // no work to do, MD_tbaa is already marked mutable 2333 2334 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2335 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2336 uint64_t Offset = 2337 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2338 2339 MDNode *MutableTBAA = 2340 Builder.createTBAAStructTagNode(Base, Access, Offset); 2341 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2342 } 2343 2344 if (CallSite CS = CallSite(&I)) { 2345 for (int i = 0, e = CS.arg_size(); i != e; i++) 2346 if (isa<PointerType>(CS.getArgument(i)->getType())) 2347 RemoveDerefAttrAtIndex(Ctx, CS, i + 1); 2348 if (isa<PointerType>(CS.getType())) 2349 RemoveDerefAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2350 } 2351 } 2352 } 2353 2354 /// Returns true if this function should be rewritten by this pass. The main 2355 /// point of this function is as an extension point for custom logic. 2356 static bool shouldRewriteStatepointsIn(Function &F) { 2357 // TODO: This should check the GCStrategy 2358 if (F.hasGC()) { 2359 const char *FunctionGCName = F.getGC(); 2360 const StringRef StatepointExampleName("statepoint-example"); 2361 const StringRef CoreCLRName("coreclr"); 2362 return (StatepointExampleName == FunctionGCName) || 2363 (CoreCLRName == FunctionGCName); 2364 } else 2365 return false; 2366 } 2367 2368 void RewriteStatepointsForGC::stripDereferenceabilityInfo(Module &M) { 2369 #ifndef NDEBUG 2370 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2371 "precondition!"); 2372 #endif 2373 2374 for (Function &F : M) 2375 stripDereferenceabilityInfoFromPrototype(F); 2376 2377 for (Function &F : M) 2378 stripDereferenceabilityInfoFromBody(F); 2379 } 2380 2381 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2382 // Nothing to do for declarations. 2383 if (F.isDeclaration() || F.empty()) 2384 return false; 2385 2386 // Policy choice says not to rewrite - the most common reason is that we're 2387 // compiling code without a GCStrategy. 2388 if (!shouldRewriteStatepointsIn(F)) 2389 return false; 2390 2391 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2392 2393 // Gather all the statepoints which need rewritten. Be careful to only 2394 // consider those in reachable code since we need to ask dominance queries 2395 // when rewriting. We'll delete the unreachable ones in a moment. 2396 SmallVector<CallSite, 64> ParsePointNeeded; 2397 bool HasUnreachableStatepoint = false; 2398 for (Instruction &I : inst_range(F)) { 2399 // TODO: only the ones with the flag set! 2400 if (isStatepoint(I)) { 2401 if (DT.isReachableFromEntry(I.getParent())) 2402 ParsePointNeeded.push_back(CallSite(&I)); 2403 else 2404 HasUnreachableStatepoint = true; 2405 } 2406 } 2407 2408 bool MadeChange = false; 2409 2410 // Delete any unreachable statepoints so that we don't have unrewritten 2411 // statepoints surviving this pass. This makes testing easier and the 2412 // resulting IR less confusing to human readers. Rather than be fancy, we 2413 // just reuse a utility function which removes the unreachable blocks. 2414 if (HasUnreachableStatepoint) 2415 MadeChange |= removeUnreachableBlocks(F); 2416 2417 // Return early if no work to do. 2418 if (ParsePointNeeded.empty()) 2419 return MadeChange; 2420 2421 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2422 // These are created by LCSSA. They have the effect of increasing the size 2423 // of liveness sets for no good reason. It may be harder to do this post 2424 // insertion since relocations and base phis can confuse things. 2425 for (BasicBlock &BB : F) 2426 if (BB.getUniquePredecessor()) { 2427 MadeChange = true; 2428 FoldSingleEntryPHINodes(&BB); 2429 } 2430 2431 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); 2432 return MadeChange; 2433 } 2434 2435 // liveness computation via standard dataflow 2436 // ------------------------------------------------------------------- 2437 2438 // TODO: Consider using bitvectors for liveness, the set of potentially 2439 // interesting values should be small and easy to pre-compute. 2440 2441 /// Compute the live-in set for the location rbegin starting from 2442 /// the live-out set of the basic block 2443 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2444 BasicBlock::reverse_iterator rend, 2445 DenseSet<Value *> &LiveTmp) { 2446 2447 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2448 Instruction *I = &*ritr; 2449 2450 // KILL/Def - Remove this definition from LiveIn 2451 LiveTmp.erase(I); 2452 2453 // Don't consider *uses* in PHI nodes, we handle their contribution to 2454 // predecessor blocks when we seed the LiveOut sets 2455 if (isa<PHINode>(I)) 2456 continue; 2457 2458 // USE - Add to the LiveIn set for this instruction 2459 for (Value *V : I->operands()) { 2460 assert(!isUnhandledGCPointerType(V->getType()) && 2461 "support for FCA unimplemented"); 2462 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2463 // The choice to exclude all things constant here is slightly subtle. 2464 // There are two idependent reasons: 2465 // - We assume that things which are constant (from LLVM's definition) 2466 // do not move at runtime. For example, the address of a global 2467 // variable is fixed, even though it's contents may not be. 2468 // - Second, we can't disallow arbitrary inttoptr constants even 2469 // if the language frontend does. Optimization passes are free to 2470 // locally exploit facts without respect to global reachability. This 2471 // can create sections of code which are dynamically unreachable and 2472 // contain just about anything. (see constants.ll in tests) 2473 LiveTmp.insert(V); 2474 } 2475 } 2476 } 2477 } 2478 2479 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2480 2481 for (BasicBlock *Succ : successors(BB)) { 2482 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2483 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2484 PHINode *Phi = cast<PHINode>(&*I); 2485 Value *V = Phi->getIncomingValueForBlock(BB); 2486 assert(!isUnhandledGCPointerType(V->getType()) && 2487 "support for FCA unimplemented"); 2488 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2489 LiveTmp.insert(V); 2490 } 2491 } 2492 } 2493 } 2494 2495 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2496 DenseSet<Value *> KillSet; 2497 for (Instruction &I : *BB) 2498 if (isHandledGCPointerType(I.getType())) 2499 KillSet.insert(&I); 2500 return KillSet; 2501 } 2502 2503 #ifndef NDEBUG 2504 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2505 /// sanity check for the liveness computation. 2506 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2507 TerminatorInst *TI, bool TermOkay = false) { 2508 for (Value *V : Live) { 2509 if (auto *I = dyn_cast<Instruction>(V)) { 2510 // The terminator can be a member of the LiveOut set. LLVM's definition 2511 // of instruction dominance states that V does not dominate itself. As 2512 // such, we need to special case this to allow it. 2513 if (TermOkay && TI == I) 2514 continue; 2515 assert(DT.dominates(I, TI) && 2516 "basic SSA liveness expectation violated by liveness analysis"); 2517 } 2518 } 2519 } 2520 2521 /// Check that all the liveness sets used during the computation of liveness 2522 /// obey basic SSA properties. This is useful for finding cases where we miss 2523 /// a def. 2524 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2525 BasicBlock &BB) { 2526 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2527 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2528 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2529 } 2530 #endif 2531 2532 static void computeLiveInValues(DominatorTree &DT, Function &F, 2533 GCPtrLivenessData &Data) { 2534 2535 SmallSetVector<BasicBlock *, 200> Worklist; 2536 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2537 // We use a SetVector so that we don't have duplicates in the worklist. 2538 Worklist.insert(pred_begin(BB), pred_end(BB)); 2539 }; 2540 auto NextItem = [&]() { 2541 BasicBlock *BB = Worklist.back(); 2542 Worklist.pop_back(); 2543 return BB; 2544 }; 2545 2546 // Seed the liveness for each individual block 2547 for (BasicBlock &BB : F) { 2548 Data.KillSet[&BB] = computeKillSet(&BB); 2549 Data.LiveSet[&BB].clear(); 2550 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2551 2552 #ifndef NDEBUG 2553 for (Value *Kill : Data.KillSet[&BB]) 2554 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2555 #endif 2556 2557 Data.LiveOut[&BB] = DenseSet<Value *>(); 2558 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2559 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2560 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2561 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2562 if (!Data.LiveIn[&BB].empty()) 2563 AddPredsToWorklist(&BB); 2564 } 2565 2566 // Propagate that liveness until stable 2567 while (!Worklist.empty()) { 2568 BasicBlock *BB = NextItem(); 2569 2570 // Compute our new liveout set, then exit early if it hasn't changed 2571 // despite the contribution of our successor. 2572 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2573 const auto OldLiveOutSize = LiveOut.size(); 2574 for (BasicBlock *Succ : successors(BB)) { 2575 assert(Data.LiveIn.count(Succ)); 2576 set_union(LiveOut, Data.LiveIn[Succ]); 2577 } 2578 // assert OutLiveOut is a subset of LiveOut 2579 if (OldLiveOutSize == LiveOut.size()) { 2580 // If the sets are the same size, then we didn't actually add anything 2581 // when unioning our successors LiveIn Thus, the LiveIn of this block 2582 // hasn't changed. 2583 continue; 2584 } 2585 Data.LiveOut[BB] = LiveOut; 2586 2587 // Apply the effects of this basic block 2588 DenseSet<Value *> LiveTmp = LiveOut; 2589 set_union(LiveTmp, Data.LiveSet[BB]); 2590 set_subtract(LiveTmp, Data.KillSet[BB]); 2591 2592 assert(Data.LiveIn.count(BB)); 2593 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2594 // assert: OldLiveIn is a subset of LiveTmp 2595 if (OldLiveIn.size() != LiveTmp.size()) { 2596 Data.LiveIn[BB] = LiveTmp; 2597 AddPredsToWorklist(BB); 2598 } 2599 } // while( !worklist.empty() ) 2600 2601 #ifndef NDEBUG 2602 // Sanity check our ouput against SSA properties. This helps catch any 2603 // missing kills during the above iteration. 2604 for (BasicBlock &BB : F) { 2605 checkBasicSSA(DT, Data, BB); 2606 } 2607 #endif 2608 } 2609 2610 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2611 StatepointLiveSetTy &Out) { 2612 2613 BasicBlock *BB = Inst->getParent(); 2614 2615 // Note: The copy is intentional and required 2616 assert(Data.LiveOut.count(BB)); 2617 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2618 2619 // We want to handle the statepoint itself oddly. It's 2620 // call result is not live (normal), nor are it's arguments 2621 // (unless they're used again later). This adjustment is 2622 // specifically what we need to relocate 2623 BasicBlock::reverse_iterator rend(Inst); 2624 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2625 LiveOut.erase(Inst); 2626 Out.insert(LiveOut.begin(), LiveOut.end()); 2627 } 2628 2629 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2630 const CallSite &CS, 2631 PartiallyConstructedSafepointRecord &Info) { 2632 Instruction *Inst = CS.getInstruction(); 2633 StatepointLiveSetTy Updated; 2634 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2635 2636 #ifndef NDEBUG 2637 DenseSet<Value *> Bases; 2638 for (auto KVPair : Info.PointerToBase) { 2639 Bases.insert(KVPair.second); 2640 } 2641 #endif 2642 // We may have base pointers which are now live that weren't before. We need 2643 // to update the PointerToBase structure to reflect this. 2644 for (auto V : Updated) 2645 if (!Info.PointerToBase.count(V)) { 2646 assert(Bases.count(V) && "can't find base for unexpected live value"); 2647 Info.PointerToBase[V] = V; 2648 continue; 2649 } 2650 2651 #ifndef NDEBUG 2652 for (auto V : Updated) { 2653 assert(Info.PointerToBase.count(V) && 2654 "must be able to find base for live value"); 2655 } 2656 #endif 2657 2658 // Remove any stale base mappings - this can happen since our liveness is 2659 // more precise then the one inherent in the base pointer analysis 2660 DenseSet<Value *> ToErase; 2661 for (auto KVPair : Info.PointerToBase) 2662 if (!Updated.count(KVPair.first)) 2663 ToErase.insert(KVPair.first); 2664 for (auto V : ToErase) 2665 Info.PointerToBase.erase(V); 2666 2667 #ifndef NDEBUG 2668 for (auto KVPair : Info.PointerToBase) 2669 assert(Updated.count(KVPair.first) && "record for non-live value"); 2670 #endif 2671 2672 Info.liveset = Updated; 2673 } 2674