xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 8cd7de1d1890d9ade06418694ebf2de9dda20d9d)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Rewrite an existing set of gc.statepoints such that they make potential
11 // relocations performed by the garbage collector explicit in the IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Pass.h"
16 #include "llvm/Analysis/CFG.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstIterator.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/IR/Statepoint.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/IR/Verifier.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Transforms/Utils/Cloning.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
45 
46 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
47 
48 using namespace llvm;
49 
50 // Print the liveset found at the insert location
51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
52                                   cl::init(false));
53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
54                                       cl::init(false));
55 // Print out the base pointers for debugging
56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
57                                        cl::init(false));
58 
59 // Cost threshold measuring when it is profitable to rematerialize value instead
60 // of relocating it
61 static cl::opt<unsigned>
62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
63                            cl::init(6));
64 
65 #ifdef EXPENSIVE_CHECKS
66 static bool ClobberNonLive = true;
67 #else
68 static bool ClobberNonLive = false;
69 #endif
70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
71                                                   cl::location(ClobberNonLive),
72                                                   cl::Hidden);
73 
74 static cl::opt<bool>
75     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
76                                    cl::Hidden, cl::init(true));
77 
78 namespace {
79 struct RewriteStatepointsForGC : public ModulePass {
80   static char ID; // Pass identification, replacement for typeid
81 
82   RewriteStatepointsForGC() : ModulePass(ID) {
83     initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
84   }
85   bool runOnFunction(Function &F);
86   bool runOnModule(Module &M) override {
87     bool Changed = false;
88     for (Function &F : M)
89       Changed |= runOnFunction(F);
90 
91     if (Changed) {
92       // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
93       // returns true for at least one function in the module.  Since at least
94       // one function changed, we know that the precondition is satisfied.
95       stripNonValidAttributes(M);
96     }
97 
98     return Changed;
99   }
100 
101   void getAnalysisUsage(AnalysisUsage &AU) const override {
102     // We add and rewrite a bunch of instructions, but don't really do much
103     // else.  We could in theory preserve a lot more analyses here.
104     AU.addRequired<DominatorTreeWrapperPass>();
105     AU.addRequired<TargetTransformInfoWrapperPass>();
106   }
107 
108   /// The IR fed into RewriteStatepointsForGC may have had attributes implying
109   /// dereferenceability that are no longer valid/correct after
110   /// RewriteStatepointsForGC has run.  This is because semantically, after
111   /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
112   /// heap.  stripNonValidAttributes (conservatively) restores correctness
113   /// by erasing all attributes in the module that externally imply
114   /// dereferenceability.
115   /// Similar reasoning also applies to the noalias attributes. gc.statepoint
116   /// can touch the entire heap including noalias objects.
117   void stripNonValidAttributes(Module &M);
118 
119   // Helpers for stripNonValidAttributes
120   void stripNonValidAttributesFromBody(Function &F);
121   void stripNonValidAttributesFromPrototype(Function &F);
122 };
123 } // namespace
124 
125 char RewriteStatepointsForGC::ID = 0;
126 
127 ModulePass *llvm::createRewriteStatepointsForGCPass() {
128   return new RewriteStatepointsForGC();
129 }
130 
131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
132                       "Make relocations explicit at statepoints", false, false)
133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
136                     "Make relocations explicit at statepoints", false, false)
137 
138 namespace {
139 struct GCPtrLivenessData {
140   /// Values defined in this block.
141   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
142   /// Values used in this block (and thus live); does not included values
143   /// killed within this block.
144   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
145 
146   /// Values live into this basic block (i.e. used by any
147   /// instruction in this basic block or ones reachable from here)
148   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
149 
150   /// Values live out of this basic block (i.e. live into
151   /// any successor block)
152   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
153 };
154 
155 // The type of the internal cache used inside the findBasePointers family
156 // of functions.  From the callers perspective, this is an opaque type and
157 // should not be inspected.
158 //
159 // In the actual implementation this caches two relations:
160 // - The base relation itself (i.e. this pointer is based on that one)
161 // - The base defining value relation (i.e. before base_phi insertion)
162 // Generally, after the execution of a full findBasePointer call, only the
163 // base relation will remain.  Internally, we add a mixture of the two
164 // types, then update all the second type to the first type
165 typedef MapVector<Value *, Value *> DefiningValueMapTy;
166 typedef SetVector<Value *> StatepointLiveSetTy;
167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>>
168   RematerializedValueMapTy;
169 
170 struct PartiallyConstructedSafepointRecord {
171   /// The set of values known to be live across this safepoint
172   StatepointLiveSetTy LiveSet;
173 
174   /// Mapping from live pointers to a base-defining-value
175   MapVector<Value *, Value *> PointerToBase;
176 
177   /// The *new* gc.statepoint instruction itself.  This produces the token
178   /// that normal path gc.relocates and the gc.result are tied to.
179   Instruction *StatepointToken;
180 
181   /// Instruction to which exceptional gc relocates are attached
182   /// Makes it easier to iterate through them during relocationViaAlloca.
183   Instruction *UnwindToken;
184 
185   /// Record live values we are rematerialized instead of relocating.
186   /// They are not included into 'LiveSet' field.
187   /// Maps rematerialized copy to it's original value.
188   RematerializedValueMapTy RematerializedValues;
189 };
190 }
191 
192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
193   Optional<OperandBundleUse> DeoptBundle =
194       CS.getOperandBundle(LLVMContext::OB_deopt);
195 
196   if (!DeoptBundle.hasValue()) {
197     assert(AllowStatepointWithNoDeoptInfo &&
198            "Found non-leaf call without deopt info!");
199     return None;
200   }
201 
202   return DeoptBundle.getValue().Inputs;
203 }
204 
205 /// Compute the live-in set for every basic block in the function
206 static void computeLiveInValues(DominatorTree &DT, Function &F,
207                                 GCPtrLivenessData &Data);
208 
209 /// Given results from the dataflow liveness computation, find the set of live
210 /// Values at a particular instruction.
211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
212                               StatepointLiveSetTy &out);
213 
214 // TODO: Once we can get to the GCStrategy, this becomes
215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
216 
217 static bool isGCPointerType(Type *T) {
218   if (auto *PT = dyn_cast<PointerType>(T))
219     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
220     // GC managed heap.  We know that a pointer into this heap needs to be
221     // updated and that no other pointer does.
222     return PT->getAddressSpace() == 1;
223   return false;
224 }
225 
226 // Return true if this type is one which a) is a gc pointer or contains a GC
227 // pointer and b) is of a type this code expects to encounter as a live value.
228 // (The insertion code will assert that a type which matches (a) and not (b)
229 // is not encountered.)
230 static bool isHandledGCPointerType(Type *T) {
231   // We fully support gc pointers
232   if (isGCPointerType(T))
233     return true;
234   // We partially support vectors of gc pointers. The code will assert if it
235   // can't handle something.
236   if (auto VT = dyn_cast<VectorType>(T))
237     if (isGCPointerType(VT->getElementType()))
238       return true;
239   return false;
240 }
241 
242 #ifndef NDEBUG
243 /// Returns true if this type contains a gc pointer whether we know how to
244 /// handle that type or not.
245 static bool containsGCPtrType(Type *Ty) {
246   if (isGCPointerType(Ty))
247     return true;
248   if (VectorType *VT = dyn_cast<VectorType>(Ty))
249     return isGCPointerType(VT->getScalarType());
250   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
251     return containsGCPtrType(AT->getElementType());
252   if (StructType *ST = dyn_cast<StructType>(Ty))
253     return any_of(ST->subtypes(), containsGCPtrType);
254   return false;
255 }
256 
257 // Returns true if this is a type which a) is a gc pointer or contains a GC
258 // pointer and b) is of a type which the code doesn't expect (i.e. first class
259 // aggregates).  Used to trip assertions.
260 static bool isUnhandledGCPointerType(Type *Ty) {
261   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
262 }
263 #endif
264 
265 // Return the name of the value suffixed with the provided value, or if the
266 // value didn't have a name, the default value specified.
267 static std::string suffixed_name_or(Value *V, StringRef Suffix,
268                                     StringRef DefaultName) {
269   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
270 }
271 
272 // Conservatively identifies any definitions which might be live at the
273 // given instruction. The  analysis is performed immediately before the
274 // given instruction. Values defined by that instruction are not considered
275 // live.  Values used by that instruction are considered live.
276 static void
277 analyzeParsePointLiveness(DominatorTree &DT,
278                           GCPtrLivenessData &OriginalLivenessData, CallSite CS,
279                           PartiallyConstructedSafepointRecord &Result) {
280   Instruction *Inst = CS.getInstruction();
281 
282   StatepointLiveSetTy LiveSet;
283   findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet);
284 
285   if (PrintLiveSet) {
286     dbgs() << "Live Variables:\n";
287     for (Value *V : LiveSet)
288       dbgs() << " " << V->getName() << " " << *V << "\n";
289   }
290   if (PrintLiveSetSize) {
291     dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
292     dbgs() << "Number live values: " << LiveSet.size() << "\n";
293   }
294   Result.LiveSet = LiveSet;
295 }
296 
297 static bool isKnownBaseResult(Value *V);
298 namespace {
299 /// A single base defining value - An immediate base defining value for an
300 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
301 /// For instructions which have multiple pointer [vector] inputs or that
302 /// transition between vector and scalar types, there is no immediate base
303 /// defining value.  The 'base defining value' for 'Def' is the transitive
304 /// closure of this relation stopping at the first instruction which has no
305 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
306 /// but it can also be an arbitrary derived pointer.
307 struct BaseDefiningValueResult {
308   /// Contains the value which is the base defining value.
309   Value * const BDV;
310   /// True if the base defining value is also known to be an actual base
311   /// pointer.
312   const bool IsKnownBase;
313   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
314     : BDV(BDV), IsKnownBase(IsKnownBase) {
315 #ifndef NDEBUG
316     // Check consistency between new and old means of checking whether a BDV is
317     // a base.
318     bool MustBeBase = isKnownBaseResult(BDV);
319     assert(!MustBeBase || MustBeBase == IsKnownBase);
320 #endif
321   }
322 };
323 }
324 
325 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
326 
327 /// Return a base defining value for the 'Index' element of the given vector
328 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
329 /// 'I'.  As an optimization, this method will try to determine when the
330 /// element is known to already be a base pointer.  If this can be established,
331 /// the second value in the returned pair will be true.  Note that either a
332 /// vector or a pointer typed value can be returned.  For the former, the
333 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
334 /// If the later, the return pointer is a BDV (or possibly a base) for the
335 /// particular element in 'I'.
336 static BaseDefiningValueResult
337 findBaseDefiningValueOfVector(Value *I) {
338   // Each case parallels findBaseDefiningValue below, see that code for
339   // detailed motivation.
340 
341   if (isa<Argument>(I))
342     // An incoming argument to the function is a base pointer
343     return BaseDefiningValueResult(I, true);
344 
345   if (isa<Constant>(I))
346     // Base of constant vector consists only of constant null pointers.
347     // For reasoning see similar case inside 'findBaseDefiningValue' function.
348     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
349                                    true);
350 
351   if (isa<LoadInst>(I))
352     return BaseDefiningValueResult(I, true);
353 
354   if (isa<InsertElementInst>(I))
355     // We don't know whether this vector contains entirely base pointers or
356     // not.  To be conservatively correct, we treat it as a BDV and will
357     // duplicate code as needed to construct a parallel vector of bases.
358     return BaseDefiningValueResult(I, false);
359 
360   if (isa<ShuffleVectorInst>(I))
361     // We don't know whether this vector contains entirely base pointers or
362     // not.  To be conservatively correct, we treat it as a BDV and will
363     // duplicate code as needed to construct a parallel vector of bases.
364     // TODO: There a number of local optimizations which could be applied here
365     // for particular sufflevector patterns.
366     return BaseDefiningValueResult(I, false);
367 
368   // A PHI or Select is a base defining value.  The outer findBasePointer
369   // algorithm is responsible for constructing a base value for this BDV.
370   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
371          "unknown vector instruction - no base found for vector element");
372   return BaseDefiningValueResult(I, false);
373 }
374 
375 /// Helper function for findBasePointer - Will return a value which either a)
376 /// defines the base pointer for the input, b) blocks the simple search
377 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
378 /// from pointer to vector type or back.
379 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
380   assert(I->getType()->isPtrOrPtrVectorTy() &&
381          "Illegal to ask for the base pointer of a non-pointer type");
382 
383   if (I->getType()->isVectorTy())
384     return findBaseDefiningValueOfVector(I);
385 
386   if (isa<Argument>(I))
387     // An incoming argument to the function is a base pointer
388     // We should have never reached here if this argument isn't an gc value
389     return BaseDefiningValueResult(I, true);
390 
391   if (isa<Constant>(I)) {
392     // We assume that objects with a constant base (e.g. a global) can't move
393     // and don't need to be reported to the collector because they are always
394     // live. Besides global references, all kinds of constants (e.g. undef,
395     // constant expressions, null pointers) can be introduced by the inliner or
396     // the optimizer, especially on dynamically dead paths.
397     // Here we treat all of them as having single null base. By doing this we
398     // trying to avoid problems reporting various conflicts in a form of
399     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
400     // See constant.ll file for relevant test cases.
401 
402     return BaseDefiningValueResult(
403         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
404   }
405 
406   if (CastInst *CI = dyn_cast<CastInst>(I)) {
407     Value *Def = CI->stripPointerCasts();
408     // If stripping pointer casts changes the address space there is an
409     // addrspacecast in between.
410     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
411                cast<PointerType>(CI->getType())->getAddressSpace() &&
412            "unsupported addrspacecast");
413     // If we find a cast instruction here, it means we've found a cast which is
414     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
415     // handle int->ptr conversion.
416     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
417     return findBaseDefiningValue(Def);
418   }
419 
420   if (isa<LoadInst>(I))
421     // The value loaded is an gc base itself
422     return BaseDefiningValueResult(I, true);
423 
424 
425   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
426     // The base of this GEP is the base
427     return findBaseDefiningValue(GEP->getPointerOperand());
428 
429   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
430     switch (II->getIntrinsicID()) {
431     default:
432       // fall through to general call handling
433       break;
434     case Intrinsic::experimental_gc_statepoint:
435       llvm_unreachable("statepoints don't produce pointers");
436     case Intrinsic::experimental_gc_relocate: {
437       // Rerunning safepoint insertion after safepoints are already
438       // inserted is not supported.  It could probably be made to work,
439       // but why are you doing this?  There's no good reason.
440       llvm_unreachable("repeat safepoint insertion is not supported");
441     }
442     case Intrinsic::gcroot:
443       // Currently, this mechanism hasn't been extended to work with gcroot.
444       // There's no reason it couldn't be, but I haven't thought about the
445       // implications much.
446       llvm_unreachable(
447           "interaction with the gcroot mechanism is not supported");
448     }
449   }
450   // We assume that functions in the source language only return base
451   // pointers.  This should probably be generalized via attributes to support
452   // both source language and internal functions.
453   if (isa<CallInst>(I) || isa<InvokeInst>(I))
454     return BaseDefiningValueResult(I, true);
455 
456   // I have absolutely no idea how to implement this part yet.  It's not
457   // necessarily hard, I just haven't really looked at it yet.
458   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
459 
460   if (isa<AtomicCmpXchgInst>(I))
461     // A CAS is effectively a atomic store and load combined under a
462     // predicate.  From the perspective of base pointers, we just treat it
463     // like a load.
464     return BaseDefiningValueResult(I, true);
465 
466   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
467                                    "binary ops which don't apply to pointers");
468 
469   // The aggregate ops.  Aggregates can either be in the heap or on the
470   // stack, but in either case, this is simply a field load.  As a result,
471   // this is a defining definition of the base just like a load is.
472   if (isa<ExtractValueInst>(I))
473     return BaseDefiningValueResult(I, true);
474 
475   // We should never see an insert vector since that would require we be
476   // tracing back a struct value not a pointer value.
477   assert(!isa<InsertValueInst>(I) &&
478          "Base pointer for a struct is meaningless");
479 
480   // An extractelement produces a base result exactly when it's input does.
481   // We may need to insert a parallel instruction to extract the appropriate
482   // element out of the base vector corresponding to the input. Given this,
483   // it's analogous to the phi and select case even though it's not a merge.
484   if (isa<ExtractElementInst>(I))
485     // Note: There a lot of obvious peephole cases here.  This are deliberately
486     // handled after the main base pointer inference algorithm to make writing
487     // test cases to exercise that code easier.
488     return BaseDefiningValueResult(I, false);
489 
490   // The last two cases here don't return a base pointer.  Instead, they
491   // return a value which dynamically selects from among several base
492   // derived pointers (each with it's own base potentially).  It's the job of
493   // the caller to resolve these.
494   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
495          "missing instruction case in findBaseDefiningValing");
496   return BaseDefiningValueResult(I, false);
497 }
498 
499 /// Returns the base defining value for this value.
500 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
501   Value *&Cached = Cache[I];
502   if (!Cached) {
503     Cached = findBaseDefiningValue(I).BDV;
504     DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
505                  << Cached->getName() << "\n");
506   }
507   assert(Cache[I] != nullptr);
508   return Cached;
509 }
510 
511 /// Return a base pointer for this value if known.  Otherwise, return it's
512 /// base defining value.
513 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
514   Value *Def = findBaseDefiningValueCached(I, Cache);
515   auto Found = Cache.find(Def);
516   if (Found != Cache.end()) {
517     // Either a base-of relation, or a self reference.  Caller must check.
518     return Found->second;
519   }
520   // Only a BDV available
521   return Def;
522 }
523 
524 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
525 /// is it known to be a base pointer?  Or do we need to continue searching.
526 static bool isKnownBaseResult(Value *V) {
527   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
528       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
529       !isa<ShuffleVectorInst>(V)) {
530     // no recursion possible
531     return true;
532   }
533   if (isa<Instruction>(V) &&
534       cast<Instruction>(V)->getMetadata("is_base_value")) {
535     // This is a previously inserted base phi or select.  We know
536     // that this is a base value.
537     return true;
538   }
539 
540   // We need to keep searching
541   return false;
542 }
543 
544 namespace {
545 /// Models the state of a single base defining value in the findBasePointer
546 /// algorithm for determining where a new instruction is needed to propagate
547 /// the base of this BDV.
548 class BDVState {
549 public:
550   enum Status { Unknown, Base, Conflict };
551 
552   BDVState() : Status(Unknown), BaseValue(nullptr) {}
553 
554   explicit BDVState(Status Status, Value *BaseValue = nullptr)
555       : Status(Status), BaseValue(BaseValue) {
556     assert(Status != Base || BaseValue);
557   }
558 
559   explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
560 
561   Status getStatus() const { return Status; }
562   Value *getBaseValue() const { return BaseValue; }
563 
564   bool isBase() const { return getStatus() == Base; }
565   bool isUnknown() const { return getStatus() == Unknown; }
566   bool isConflict() const { return getStatus() == Conflict; }
567 
568   bool operator==(const BDVState &Other) const {
569     return BaseValue == Other.BaseValue && Status == Other.Status;
570   }
571 
572   bool operator!=(const BDVState &other) const { return !(*this == other); }
573 
574   LLVM_DUMP_METHOD
575   void dump() const {
576     print(dbgs());
577     dbgs() << '\n';
578   }
579 
580   void print(raw_ostream &OS) const {
581     switch (getStatus()) {
582     case Unknown:
583       OS << "U";
584       break;
585     case Base:
586       OS << "B";
587       break;
588     case Conflict:
589       OS << "C";
590       break;
591     };
592     OS << " (" << getBaseValue() << " - "
593        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
594   }
595 
596 private:
597   Status Status;
598   AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
599 };
600 }
601 
602 #ifndef NDEBUG
603 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
604   State.print(OS);
605   return OS;
606 }
607 #endif
608 
609 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
610   switch (LHS.getStatus()) {
611   case BDVState::Unknown:
612     return RHS;
613 
614   case BDVState::Base:
615     assert(LHS.getBaseValue() && "can't be null");
616     if (RHS.isUnknown())
617       return LHS;
618 
619     if (RHS.isBase()) {
620       if (LHS.getBaseValue() == RHS.getBaseValue()) {
621         assert(LHS == RHS && "equality broken!");
622         return LHS;
623       }
624       return BDVState(BDVState::Conflict);
625     }
626     assert(RHS.isConflict() && "only three states!");
627     return BDVState(BDVState::Conflict);
628 
629   case BDVState::Conflict:
630     return LHS;
631   }
632   llvm_unreachable("only three states!");
633 }
634 
635 // Values of type BDVState form a lattice, and this function implements the meet
636 // operation.
637 static BDVState meetBDVState(BDVState LHS, BDVState RHS) {
638   BDVState Result = meetBDVStateImpl(LHS, RHS);
639   assert(Result == meetBDVStateImpl(RHS, LHS) &&
640          "Math is wrong: meet does not commute!");
641   return Result;
642 }
643 
644 /// For a given value or instruction, figure out what base ptr its derived from.
645 /// For gc objects, this is simply itself.  On success, returns a value which is
646 /// the base pointer.  (This is reliable and can be used for relocation.)  On
647 /// failure, returns nullptr.
648 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
649   Value *Def = findBaseOrBDV(I, Cache);
650 
651   if (isKnownBaseResult(Def))
652     return Def;
653 
654   // Here's the rough algorithm:
655   // - For every SSA value, construct a mapping to either an actual base
656   //   pointer or a PHI which obscures the base pointer.
657   // - Construct a mapping from PHI to unknown TOP state.  Use an
658   //   optimistic algorithm to propagate base pointer information.  Lattice
659   //   looks like:
660   //   UNKNOWN
661   //   b1 b2 b3 b4
662   //   CONFLICT
663   //   When algorithm terminates, all PHIs will either have a single concrete
664   //   base or be in a conflict state.
665   // - For every conflict, insert a dummy PHI node without arguments.  Add
666   //   these to the base[Instruction] = BasePtr mapping.  For every
667   //   non-conflict, add the actual base.
668   //  - For every conflict, add arguments for the base[a] of each input
669   //   arguments.
670   //
671   // Note: A simpler form of this would be to add the conflict form of all
672   // PHIs without running the optimistic algorithm.  This would be
673   // analogous to pessimistic data flow and would likely lead to an
674   // overall worse solution.
675 
676 #ifndef NDEBUG
677   auto isExpectedBDVType = [](Value *BDV) {
678     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
679            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
680   };
681 #endif
682 
683   // Once populated, will contain a mapping from each potentially non-base BDV
684   // to a lattice value (described above) which corresponds to that BDV.
685   // We use the order of insertion (DFS over the def/use graph) to provide a
686   // stable deterministic ordering for visiting DenseMaps (which are unordered)
687   // below.  This is important for deterministic compilation.
688   MapVector<Value *, BDVState> States;
689 
690   // Recursively fill in all base defining values reachable from the initial
691   // one for which we don't already know a definite base value for
692   /* scope */ {
693     SmallVector<Value*, 16> Worklist;
694     Worklist.push_back(Def);
695     States.insert({Def, BDVState()});
696     while (!Worklist.empty()) {
697       Value *Current = Worklist.pop_back_val();
698       assert(!isKnownBaseResult(Current) && "why did it get added?");
699 
700       auto visitIncomingValue = [&](Value *InVal) {
701         Value *Base = findBaseOrBDV(InVal, Cache);
702         if (isKnownBaseResult(Base))
703           // Known bases won't need new instructions introduced and can be
704           // ignored safely
705           return;
706         assert(isExpectedBDVType(Base) && "the only non-base values "
707                "we see should be base defining values");
708         if (States.insert(std::make_pair(Base, BDVState())).second)
709           Worklist.push_back(Base);
710       };
711       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
712         for (Value *InVal : PN->incoming_values())
713           visitIncomingValue(InVal);
714       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
715         visitIncomingValue(SI->getTrueValue());
716         visitIncomingValue(SI->getFalseValue());
717       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
718         visitIncomingValue(EE->getVectorOperand());
719       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
720         visitIncomingValue(IE->getOperand(0)); // vector operand
721         visitIncomingValue(IE->getOperand(1)); // scalar operand
722       } else {
723         // There is one known class of instructions we know we don't handle.
724         assert(isa<ShuffleVectorInst>(Current));
725         llvm_unreachable("Unimplemented instruction case");
726       }
727     }
728   }
729 
730 #ifndef NDEBUG
731   DEBUG(dbgs() << "States after initialization:\n");
732   for (auto Pair : States) {
733     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
734   }
735 #endif
736 
737   // Return a phi state for a base defining value.  We'll generate a new
738   // base state for known bases and expect to find a cached state otherwise.
739   auto getStateForBDV = [&](Value *baseValue) {
740     if (isKnownBaseResult(baseValue))
741       return BDVState(baseValue);
742     auto I = States.find(baseValue);
743     assert(I != States.end() && "lookup failed!");
744     return I->second;
745   };
746 
747   bool Progress = true;
748   while (Progress) {
749 #ifndef NDEBUG
750     const size_t OldSize = States.size();
751 #endif
752     Progress = false;
753     // We're only changing values in this loop, thus safe to keep iterators.
754     // Since this is computing a fixed point, the order of visit does not
755     // effect the result.  TODO: We could use a worklist here and make this run
756     // much faster.
757     for (auto Pair : States) {
758       Value *BDV = Pair.first;
759       assert(!isKnownBaseResult(BDV) && "why did it get added?");
760 
761       // Given an input value for the current instruction, return a BDVState
762       // instance which represents the BDV of that value.
763       auto getStateForInput = [&](Value *V) mutable {
764         Value *BDV = findBaseOrBDV(V, Cache);
765         return getStateForBDV(BDV);
766       };
767 
768       BDVState NewState;
769       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
770         NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
771         NewState =
772             meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
773       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
774         for (Value *Val : PN->incoming_values())
775           NewState = meetBDVState(NewState, getStateForInput(Val));
776       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
777         // The 'meet' for an extractelement is slightly trivial, but it's still
778         // useful in that it drives us to conflict if our input is.
779         NewState =
780             meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
781       } else {
782         // Given there's a inherent type mismatch between the operands, will
783         // *always* produce Conflict.
784         auto *IE = cast<InsertElementInst>(BDV);
785         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
786         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
787       }
788 
789       BDVState OldState = States[BDV];
790       if (OldState != NewState) {
791         Progress = true;
792         States[BDV] = NewState;
793       }
794     }
795 
796     assert(OldSize == States.size() &&
797            "fixed point shouldn't be adding any new nodes to state");
798   }
799 
800 #ifndef NDEBUG
801   DEBUG(dbgs() << "States after meet iteration:\n");
802   for (auto Pair : States) {
803     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
804   }
805 #endif
806 
807   // Insert Phis for all conflicts
808   // TODO: adjust naming patterns to avoid this order of iteration dependency
809   for (auto Pair : States) {
810     Instruction *I = cast<Instruction>(Pair.first);
811     BDVState State = Pair.second;
812     assert(!isKnownBaseResult(I) && "why did it get added?");
813     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
814 
815     // extractelement instructions are a bit special in that we may need to
816     // insert an extract even when we know an exact base for the instruction.
817     // The problem is that we need to convert from a vector base to a scalar
818     // base for the particular indice we're interested in.
819     if (State.isBase() && isa<ExtractElementInst>(I) &&
820         isa<VectorType>(State.getBaseValue()->getType())) {
821       auto *EE = cast<ExtractElementInst>(I);
822       // TODO: In many cases, the new instruction is just EE itself.  We should
823       // exploit this, but can't do it here since it would break the invariant
824       // about the BDV not being known to be a base.
825       auto *BaseInst = ExtractElementInst::Create(
826           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
827       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
828       States[I] = BDVState(BDVState::Base, BaseInst);
829     }
830 
831     // Since we're joining a vector and scalar base, they can never be the
832     // same.  As a result, we should always see insert element having reached
833     // the conflict state.
834     assert(!isa<InsertElementInst>(I) || State.isConflict());
835 
836     if (!State.isConflict())
837       continue;
838 
839     /// Create and insert a new instruction which will represent the base of
840     /// the given instruction 'I'.
841     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
842       if (isa<PHINode>(I)) {
843         BasicBlock *BB = I->getParent();
844         int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
845         assert(NumPreds > 0 && "how did we reach here");
846         std::string Name = suffixed_name_or(I, ".base", "base_phi");
847         return PHINode::Create(I->getType(), NumPreds, Name, I);
848       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
849         // The undef will be replaced later
850         UndefValue *Undef = UndefValue::get(SI->getType());
851         std::string Name = suffixed_name_or(I, ".base", "base_select");
852         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
853       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
854         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
855         std::string Name = suffixed_name_or(I, ".base", "base_ee");
856         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
857                                           EE);
858       } else {
859         auto *IE = cast<InsertElementInst>(I);
860         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
861         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
862         std::string Name = suffixed_name_or(I, ".base", "base_ie");
863         return InsertElementInst::Create(VecUndef, ScalarUndef,
864                                          IE->getOperand(2), Name, IE);
865       }
866     };
867     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
868     // Add metadata marking this as a base value
869     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
870     States[I] = BDVState(BDVState::Conflict, BaseInst);
871   }
872 
873   // Returns a instruction which produces the base pointer for a given
874   // instruction.  The instruction is assumed to be an input to one of the BDVs
875   // seen in the inference algorithm above.  As such, we must either already
876   // know it's base defining value is a base, or have inserted a new
877   // instruction to propagate the base of it's BDV and have entered that newly
878   // introduced instruction into the state table.  In either case, we are
879   // assured to be able to determine an instruction which produces it's base
880   // pointer.
881   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
882     Value *BDV = findBaseOrBDV(Input, Cache);
883     Value *Base = nullptr;
884     if (isKnownBaseResult(BDV)) {
885       Base = BDV;
886     } else {
887       // Either conflict or base.
888       assert(States.count(BDV));
889       Base = States[BDV].getBaseValue();
890     }
891     assert(Base && "Can't be null");
892     // The cast is needed since base traversal may strip away bitcasts
893     if (Base->getType() != Input->getType() && InsertPt)
894       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
895     return Base;
896   };
897 
898   // Fixup all the inputs of the new PHIs.  Visit order needs to be
899   // deterministic and predictable because we're naming newly created
900   // instructions.
901   for (auto Pair : States) {
902     Instruction *BDV = cast<Instruction>(Pair.first);
903     BDVState State = Pair.second;
904 
905     assert(!isKnownBaseResult(BDV) && "why did it get added?");
906     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
907     if (!State.isConflict())
908       continue;
909 
910     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
911       PHINode *PN = cast<PHINode>(BDV);
912       unsigned NumPHIValues = PN->getNumIncomingValues();
913       for (unsigned i = 0; i < NumPHIValues; i++) {
914         Value *InVal = PN->getIncomingValue(i);
915         BasicBlock *InBB = PN->getIncomingBlock(i);
916 
917         // If we've already seen InBB, add the same incoming value
918         // we added for it earlier.  The IR verifier requires phi
919         // nodes with multiple entries from the same basic block
920         // to have the same incoming value for each of those
921         // entries.  If we don't do this check here and basephi
922         // has a different type than base, we'll end up adding two
923         // bitcasts (and hence two distinct values) as incoming
924         // values for the same basic block.
925 
926         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
927         if (BlockIndex != -1) {
928           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
929           BasePHI->addIncoming(OldBase, InBB);
930 
931 #ifndef NDEBUG
932           Value *Base = getBaseForInput(InVal, nullptr);
933           // In essence this assert states: the only way two values
934           // incoming from the same basic block may be different is by
935           // being different bitcasts of the same value.  A cleanup
936           // that remains TODO is changing findBaseOrBDV to return an
937           // llvm::Value of the correct type (and still remain pure).
938           // This will remove the need to add bitcasts.
939           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
940                  "Sanity -- findBaseOrBDV should be pure!");
941 #endif
942           continue;
943         }
944 
945         // Find the instruction which produces the base for each input.  We may
946         // need to insert a bitcast in the incoming block.
947         // TODO: Need to split critical edges if insertion is needed
948         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
949         BasePHI->addIncoming(Base, InBB);
950       }
951       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
952     } else if (SelectInst *BaseSI =
953                    dyn_cast<SelectInst>(State.getBaseValue())) {
954       SelectInst *SI = cast<SelectInst>(BDV);
955 
956       // Find the instruction which produces the base for each input.
957       // We may need to insert a bitcast.
958       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
959       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
960     } else if (auto *BaseEE =
961                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
962       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
963       // Find the instruction which produces the base for each input.  We may
964       // need to insert a bitcast.
965       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
966     } else {
967       auto *BaseIE = cast<InsertElementInst>(State.getBaseValue());
968       auto *BdvIE = cast<InsertElementInst>(BDV);
969       auto UpdateOperand = [&](int OperandIdx) {
970         Value *InVal = BdvIE->getOperand(OperandIdx);
971         Value *Base = getBaseForInput(InVal, BaseIE);
972         BaseIE->setOperand(OperandIdx, Base);
973       };
974       UpdateOperand(0); // vector operand
975       UpdateOperand(1); // scalar operand
976     }
977   }
978 
979   // Cache all of our results so we can cheaply reuse them
980   // NOTE: This is actually two caches: one of the base defining value
981   // relation and one of the base pointer relation!  FIXME
982   for (auto Pair : States) {
983     auto *BDV = Pair.first;
984     Value *Base = Pair.second.getBaseValue();
985     assert(BDV && Base);
986     assert(!isKnownBaseResult(BDV) && "why did it get added?");
987 
988     DEBUG(dbgs() << "Updating base value cache"
989                  << " for: " << BDV->getName() << " from: "
990                  << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
991                  << " to: " << Base->getName() << "\n");
992 
993     if (Cache.count(BDV)) {
994       assert(isKnownBaseResult(Base) &&
995              "must be something we 'know' is a base pointer");
996       // Once we transition from the BDV relation being store in the Cache to
997       // the base relation being stored, it must be stable
998       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
999              "base relation should be stable");
1000     }
1001     Cache[BDV] = Base;
1002   }
1003   assert(Cache.count(Def));
1004   return Cache[Def];
1005 }
1006 
1007 // For a set of live pointers (base and/or derived), identify the base
1008 // pointer of the object which they are derived from.  This routine will
1009 // mutate the IR graph as needed to make the 'base' pointer live at the
1010 // definition site of 'derived'.  This ensures that any use of 'derived' can
1011 // also use 'base'.  This may involve the insertion of a number of
1012 // additional PHI nodes.
1013 //
1014 // preconditions: live is a set of pointer type Values
1015 //
1016 // side effects: may insert PHI nodes into the existing CFG, will preserve
1017 // CFG, will not remove or mutate any existing nodes
1018 //
1019 // post condition: PointerToBase contains one (derived, base) pair for every
1020 // pointer in live.  Note that derived can be equal to base if the original
1021 // pointer was a base pointer.
1022 static void
1023 findBasePointers(const StatepointLiveSetTy &live,
1024                  MapVector<Value *, Value *> &PointerToBase,
1025                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1026   for (Value *ptr : live) {
1027     Value *base = findBasePointer(ptr, DVCache);
1028     assert(base && "failed to find base pointer");
1029     PointerToBase[ptr] = base;
1030     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1031             DT->dominates(cast<Instruction>(base)->getParent(),
1032                           cast<Instruction>(ptr)->getParent())) &&
1033            "The base we found better dominate the derived pointer");
1034   }
1035 }
1036 
1037 /// Find the required based pointers (and adjust the live set) for the given
1038 /// parse point.
1039 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1040                              CallSite CS,
1041                              PartiallyConstructedSafepointRecord &result) {
1042   MapVector<Value *, Value *> PointerToBase;
1043   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1044 
1045   if (PrintBasePointers) {
1046     errs() << "Base Pairs (w/o Relocation):\n";
1047     for (auto &Pair : PointerToBase) {
1048       errs() << " derived ";
1049       Pair.first->printAsOperand(errs(), false);
1050       errs() << " base ";
1051       Pair.second->printAsOperand(errs(), false);
1052       errs() << "\n";;
1053     }
1054   }
1055 
1056   result.PointerToBase = PointerToBase;
1057 }
1058 
1059 /// Given an updated version of the dataflow liveness results, update the
1060 /// liveset and base pointer maps for the call site CS.
1061 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1062                                   CallSite CS,
1063                                   PartiallyConstructedSafepointRecord &result);
1064 
1065 static void recomputeLiveInValues(
1066     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1067     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1068   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1069   // again.  The old values are still live and will help it stabilize quickly.
1070   GCPtrLivenessData RevisedLivenessData;
1071   computeLiveInValues(DT, F, RevisedLivenessData);
1072   for (size_t i = 0; i < records.size(); i++) {
1073     struct PartiallyConstructedSafepointRecord &info = records[i];
1074     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1075   }
1076 }
1077 
1078 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1079 // no uses of the original value / return value between the gc.statepoint and
1080 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1081 // starting one of the successor blocks.  We also need to be able to insert the
1082 // gc.relocates only on the path which goes through the statepoint.  We might
1083 // need to split an edge to make this possible.
1084 static BasicBlock *
1085 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1086                             DominatorTree &DT) {
1087   BasicBlock *Ret = BB;
1088   if (!BB->getUniquePredecessor())
1089     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1090 
1091   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1092   // from it
1093   FoldSingleEntryPHINodes(Ret);
1094   assert(!isa<PHINode>(Ret->begin()) &&
1095          "All PHI nodes should have been removed!");
1096 
1097   // At this point, we can safely insert a gc.relocate or gc.result as the first
1098   // instruction in Ret if needed.
1099   return Ret;
1100 }
1101 
1102 // Create new attribute set containing only attributes which can be transferred
1103 // from original call to the safepoint.
1104 static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1105   AttributeSet Ret;
1106 
1107   for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1108     unsigned Index = AS.getSlotIndex(Slot);
1109 
1110     if (Index == AttributeSet::ReturnIndex ||
1111         Index == AttributeSet::FunctionIndex) {
1112 
1113       for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
1114 
1115         // Do not allow certain attributes - just skip them
1116         // Safepoint can not be read only or read none.
1117         if (Attr.hasAttribute(Attribute::ReadNone) ||
1118             Attr.hasAttribute(Attribute::ReadOnly))
1119           continue;
1120 
1121         // These attributes control the generation of the gc.statepoint call /
1122         // invoke itself; and once the gc.statepoint is in place, they're of no
1123         // use.
1124         if (isStatepointDirectiveAttr(Attr))
1125           continue;
1126 
1127         Ret = Ret.addAttributes(
1128             AS.getContext(), Index,
1129             AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
1130       }
1131     }
1132 
1133     // Just skip parameter attributes for now
1134   }
1135 
1136   return Ret;
1137 }
1138 
1139 /// Helper function to place all gc relocates necessary for the given
1140 /// statepoint.
1141 /// Inputs:
1142 ///   liveVariables - list of variables to be relocated.
1143 ///   liveStart - index of the first live variable.
1144 ///   basePtrs - base pointers.
1145 ///   statepointToken - statepoint instruction to which relocates should be
1146 ///   bound.
1147 ///   Builder - Llvm IR builder to be used to construct new calls.
1148 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1149                               const int LiveStart,
1150                               ArrayRef<Value *> BasePtrs,
1151                               Instruction *StatepointToken,
1152                               IRBuilder<> Builder) {
1153   if (LiveVariables.empty())
1154     return;
1155 
1156   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1157     auto ValIt = find(LiveVec, Val);
1158     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1159     size_t Index = std::distance(LiveVec.begin(), ValIt);
1160     assert(Index < LiveVec.size() && "Bug in std::find?");
1161     return Index;
1162   };
1163   Module *M = StatepointToken->getModule();
1164 
1165   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1166   // element type is i8 addrspace(1)*). We originally generated unique
1167   // declarations for each pointer type, but this proved problematic because
1168   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1169   // towards a single unified pointer type anyways, we can just cast everything
1170   // to an i8* of the right address space.  A bitcast is added later to convert
1171   // gc_relocate to the actual value's type.
1172   auto getGCRelocateDecl = [&] (Type *Ty) {
1173     assert(isHandledGCPointerType(Ty));
1174     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1175     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1176     if (auto *VT = dyn_cast<VectorType>(Ty))
1177       NewTy = VectorType::get(NewTy, VT->getNumElements());
1178     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1179                                      {NewTy});
1180   };
1181 
1182   // Lazily populated map from input types to the canonicalized form mentioned
1183   // in the comment above.  This should probably be cached somewhere more
1184   // broadly.
1185   DenseMap<Type*, Value*> TypeToDeclMap;
1186 
1187   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1188     // Generate the gc.relocate call and save the result
1189     Value *BaseIdx =
1190       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1191     Value *LiveIdx = Builder.getInt32(LiveStart + i);
1192 
1193     Type *Ty = LiveVariables[i]->getType();
1194     if (!TypeToDeclMap.count(Ty))
1195       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1196     Value *GCRelocateDecl = TypeToDeclMap[Ty];
1197 
1198     // only specify a debug name if we can give a useful one
1199     CallInst *Reloc = Builder.CreateCall(
1200         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1201         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1202     // Trick CodeGen into thinking there are lots of free registers at this
1203     // fake call.
1204     Reloc->setCallingConv(CallingConv::Cold);
1205   }
1206 }
1207 
1208 namespace {
1209 
1210 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1211 /// avoids having to worry about keeping around dangling pointers to Values.
1212 class DeferredReplacement {
1213   AssertingVH<Instruction> Old;
1214   AssertingVH<Instruction> New;
1215   bool IsDeoptimize = false;
1216 
1217   DeferredReplacement() {}
1218 
1219 public:
1220   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1221     assert(Old != New && Old && New &&
1222            "Cannot RAUW equal values or to / from null!");
1223 
1224     DeferredReplacement D;
1225     D.Old = Old;
1226     D.New = New;
1227     return D;
1228   }
1229 
1230   static DeferredReplacement createDelete(Instruction *ToErase) {
1231     DeferredReplacement D;
1232     D.Old = ToErase;
1233     return D;
1234   }
1235 
1236   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1237 #ifndef NDEBUG
1238     auto *F = cast<CallInst>(Old)->getCalledFunction();
1239     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1240            "Only way to construct a deoptimize deferred replacement");
1241 #endif
1242     DeferredReplacement D;
1243     D.Old = Old;
1244     D.IsDeoptimize = true;
1245     return D;
1246   }
1247 
1248   /// Does the task represented by this instance.
1249   void doReplacement() {
1250     Instruction *OldI = Old;
1251     Instruction *NewI = New;
1252 
1253     assert(OldI != NewI && "Disallowed at construction?!");
1254     assert((!IsDeoptimize || !New) &&
1255            "Deoptimize instrinsics are not replaced!");
1256 
1257     Old = nullptr;
1258     New = nullptr;
1259 
1260     if (NewI)
1261       OldI->replaceAllUsesWith(NewI);
1262 
1263     if (IsDeoptimize) {
1264       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1265       // not necessarilly be followed by the matching return.
1266       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1267       new UnreachableInst(RI->getContext(), RI);
1268       RI->eraseFromParent();
1269     }
1270 
1271     OldI->eraseFromParent();
1272   }
1273 };
1274 }
1275 
1276 static StringRef getDeoptLowering(CallSite CS) {
1277   const char *DeoptLowering = "deopt-lowering";
1278   if (CS.hasFnAttr(DeoptLowering)) {
1279     // FIXME: CallSite has a *really* confusing interface around attributes
1280     // with values.
1281     const AttributeSet &CSAS = CS.getAttributes();
1282     if (CSAS.hasAttribute(AttributeSet::FunctionIndex,
1283                           DeoptLowering))
1284       return CSAS.getAttribute(AttributeSet::FunctionIndex,
1285                                DeoptLowering).getValueAsString();
1286     Function *F = CS.getCalledFunction();
1287     assert(F && F->hasFnAttribute(DeoptLowering));
1288     return F->getFnAttribute(DeoptLowering).getValueAsString();
1289   }
1290   return "live-through";
1291 }
1292 
1293 
1294 static void
1295 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1296                            const SmallVectorImpl<Value *> &BasePtrs,
1297                            const SmallVectorImpl<Value *> &LiveVariables,
1298                            PartiallyConstructedSafepointRecord &Result,
1299                            std::vector<DeferredReplacement> &Replacements) {
1300   assert(BasePtrs.size() == LiveVariables.size());
1301 
1302   // Then go ahead and use the builder do actually do the inserts.  We insert
1303   // immediately before the previous instruction under the assumption that all
1304   // arguments will be available here.  We can't insert afterwards since we may
1305   // be replacing a terminator.
1306   Instruction *InsertBefore = CS.getInstruction();
1307   IRBuilder<> Builder(InsertBefore);
1308 
1309   ArrayRef<Value *> GCArgs(LiveVariables);
1310   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1311   uint32_t NumPatchBytes = 0;
1312   uint32_t Flags = uint32_t(StatepointFlags::None);
1313 
1314   ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
1315   ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
1316   ArrayRef<Use> TransitionArgs;
1317   if (auto TransitionBundle =
1318       CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
1319     Flags |= uint32_t(StatepointFlags::GCTransition);
1320     TransitionArgs = TransitionBundle->Inputs;
1321   }
1322 
1323   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1324   // with a return value, we lower then as never returning calls to
1325   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1326   bool IsDeoptimize = false;
1327 
1328   StatepointDirectives SD =
1329       parseStatepointDirectivesFromAttrs(CS.getAttributes());
1330   if (SD.NumPatchBytes)
1331     NumPatchBytes = *SD.NumPatchBytes;
1332   if (SD.StatepointID)
1333     StatepointID = *SD.StatepointID;
1334 
1335   // Pass through the requested lowering if any.  The default is live-through.
1336   StringRef DeoptLowering = getDeoptLowering(CS);
1337   if (DeoptLowering.equals("live-in"))
1338     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1339   else {
1340     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1341   }
1342 
1343   Value *CallTarget = CS.getCalledValue();
1344   if (Function *F = dyn_cast<Function>(CallTarget)) {
1345     if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1346       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1347       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1348       // verifier does not allow taking the address of an intrinsic function.
1349 
1350       SmallVector<Type *, 8> DomainTy;
1351       for (Value *Arg : CallArgs)
1352         DomainTy.push_back(Arg->getType());
1353       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1354                                     /* isVarArg = */ false);
1355 
1356       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1357       // calls to @llvm.experimental.deoptimize with different argument types in
1358       // the same module.  This is fine -- we assume the frontend knew what it
1359       // was doing when generating this kind of IR.
1360       CallTarget =
1361           F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
1362 
1363       IsDeoptimize = true;
1364     }
1365   }
1366 
1367   // Create the statepoint given all the arguments
1368   Instruction *Token = nullptr;
1369   AttributeSet ReturnAttrs;
1370   if (CS.isCall()) {
1371     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1372     CallInst *Call = Builder.CreateGCStatepointCall(
1373         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1374         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1375 
1376     Call->setTailCall(ToReplace->isTailCall());
1377     Call->setCallingConv(ToReplace->getCallingConv());
1378 
1379     // Currently we will fail on parameter attributes and on certain
1380     // function attributes.
1381     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1382     // In case if we can handle this set of attributes - set up function attrs
1383     // directly on statepoint and return attrs later for gc_result intrinsic.
1384     Call->setAttributes(NewAttrs.getFnAttributes());
1385     ReturnAttrs = NewAttrs.getRetAttributes();
1386 
1387     Token = Call;
1388 
1389     // Put the following gc_result and gc_relocate calls immediately after the
1390     // the old call (which we're about to delete)
1391     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1392     Builder.SetInsertPoint(ToReplace->getNextNode());
1393     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1394   } else {
1395     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1396 
1397     // Insert the new invoke into the old block.  We'll remove the old one in a
1398     // moment at which point this will become the new terminator for the
1399     // original block.
1400     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1401         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1402         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1403         GCArgs, "statepoint_token");
1404 
1405     Invoke->setCallingConv(ToReplace->getCallingConv());
1406 
1407     // Currently we will fail on parameter attributes and on certain
1408     // function attributes.
1409     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1410     // In case if we can handle this set of attributes - set up function attrs
1411     // directly on statepoint and return attrs later for gc_result intrinsic.
1412     Invoke->setAttributes(NewAttrs.getFnAttributes());
1413     ReturnAttrs = NewAttrs.getRetAttributes();
1414 
1415     Token = Invoke;
1416 
1417     // Generate gc relocates in exceptional path
1418     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1419     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1420            UnwindBlock->getUniquePredecessor() &&
1421            "can't safely insert in this block!");
1422 
1423     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1424     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1425 
1426     // Attach exceptional gc relocates to the landingpad.
1427     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1428     Result.UnwindToken = ExceptionalToken;
1429 
1430     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1431     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1432                       Builder);
1433 
1434     // Generate gc relocates and returns for normal block
1435     BasicBlock *NormalDest = ToReplace->getNormalDest();
1436     assert(!isa<PHINode>(NormalDest->begin()) &&
1437            NormalDest->getUniquePredecessor() &&
1438            "can't safely insert in this block!");
1439 
1440     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1441 
1442     // gc relocates will be generated later as if it were regular call
1443     // statepoint
1444   }
1445   assert(Token && "Should be set in one of the above branches!");
1446 
1447   if (IsDeoptimize) {
1448     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1449     // transform the tail-call like structure to a call to a void function
1450     // followed by unreachable to get better codegen.
1451     Replacements.push_back(
1452         DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
1453   } else {
1454     Token->setName("statepoint_token");
1455     if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1456       StringRef Name =
1457           CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1458       CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1459       GCResult->setAttributes(CS.getAttributes().getRetAttributes());
1460 
1461       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1462       // live set of some other safepoint, in which case that safepoint's
1463       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1464       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1465       // after the live sets have been made explicit in the IR, and we no longer
1466       // have raw pointers to worry about.
1467       Replacements.emplace_back(
1468           DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
1469     } else {
1470       Replacements.emplace_back(
1471           DeferredReplacement::createDelete(CS.getInstruction()));
1472     }
1473   }
1474 
1475   Result.StatepointToken = Token;
1476 
1477   // Second, create a gc.relocate for every live variable
1478   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1479   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1480 }
1481 
1482 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1483 // which make the relocations happening at this safepoint explicit.
1484 //
1485 // WARNING: Does not do any fixup to adjust users of the original live
1486 // values.  That's the callers responsibility.
1487 static void
1488 makeStatepointExplicit(DominatorTree &DT, CallSite CS,
1489                        PartiallyConstructedSafepointRecord &Result,
1490                        std::vector<DeferredReplacement> &Replacements) {
1491   const auto &LiveSet = Result.LiveSet;
1492   const auto &PointerToBase = Result.PointerToBase;
1493 
1494   // Convert to vector for efficient cross referencing.
1495   SmallVector<Value *, 64> BaseVec, LiveVec;
1496   LiveVec.reserve(LiveSet.size());
1497   BaseVec.reserve(LiveSet.size());
1498   for (Value *L : LiveSet) {
1499     LiveVec.push_back(L);
1500     assert(PointerToBase.count(L));
1501     Value *Base = PointerToBase.find(L)->second;
1502     BaseVec.push_back(Base);
1503   }
1504   assert(LiveVec.size() == BaseVec.size());
1505 
1506   // Do the actual rewriting and delete the old statepoint
1507   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1508 }
1509 
1510 // Helper function for the relocationViaAlloca.
1511 //
1512 // It receives iterator to the statepoint gc relocates and emits a store to the
1513 // assigned location (via allocaMap) for the each one of them.  It adds the
1514 // visited values into the visitedLiveValues set, which we will later use them
1515 // for sanity checking.
1516 static void
1517 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1518                        DenseMap<Value *, Value *> &AllocaMap,
1519                        DenseSet<Value *> &VisitedLiveValues) {
1520 
1521   for (User *U : GCRelocs) {
1522     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1523     if (!Relocate)
1524       continue;
1525 
1526     Value *OriginalValue = Relocate->getDerivedPtr();
1527     assert(AllocaMap.count(OriginalValue));
1528     Value *Alloca = AllocaMap[OriginalValue];
1529 
1530     // Emit store into the related alloca
1531     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1532     // the correct type according to alloca.
1533     assert(Relocate->getNextNode() &&
1534            "Should always have one since it's not a terminator");
1535     IRBuilder<> Builder(Relocate->getNextNode());
1536     Value *CastedRelocatedValue =
1537       Builder.CreateBitCast(Relocate,
1538                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1539                             suffixed_name_or(Relocate, ".casted", ""));
1540 
1541     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1542     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1543 
1544 #ifndef NDEBUG
1545     VisitedLiveValues.insert(OriginalValue);
1546 #endif
1547   }
1548 }
1549 
1550 // Helper function for the "relocationViaAlloca". Similar to the
1551 // "insertRelocationStores" but works for rematerialized values.
1552 static void insertRematerializationStores(
1553     const RematerializedValueMapTy &RematerializedValues,
1554     DenseMap<Value *, Value *> &AllocaMap,
1555     DenseSet<Value *> &VisitedLiveValues) {
1556 
1557   for (auto RematerializedValuePair: RematerializedValues) {
1558     Instruction *RematerializedValue = RematerializedValuePair.first;
1559     Value *OriginalValue = RematerializedValuePair.second;
1560 
1561     assert(AllocaMap.count(OriginalValue) &&
1562            "Can not find alloca for rematerialized value");
1563     Value *Alloca = AllocaMap[OriginalValue];
1564 
1565     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1566     Store->insertAfter(RematerializedValue);
1567 
1568 #ifndef NDEBUG
1569     VisitedLiveValues.insert(OriginalValue);
1570 #endif
1571   }
1572 }
1573 
1574 /// Do all the relocation update via allocas and mem2reg
1575 static void relocationViaAlloca(
1576     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1577     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1578 #ifndef NDEBUG
1579   // record initial number of (static) allocas; we'll check we have the same
1580   // number when we get done.
1581   int InitialAllocaNum = 0;
1582   for (Instruction &I : F.getEntryBlock())
1583     if (isa<AllocaInst>(I))
1584       InitialAllocaNum++;
1585 #endif
1586 
1587   // TODO-PERF: change data structures, reserve
1588   DenseMap<Value *, Value *> AllocaMap;
1589   SmallVector<AllocaInst *, 200> PromotableAllocas;
1590   // Used later to chack that we have enough allocas to store all values
1591   std::size_t NumRematerializedValues = 0;
1592   PromotableAllocas.reserve(Live.size());
1593 
1594   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1595   // "PromotableAllocas"
1596   auto emitAllocaFor = [&](Value *LiveValue) {
1597     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1598                                         F.getEntryBlock().getFirstNonPHI());
1599     AllocaMap[LiveValue] = Alloca;
1600     PromotableAllocas.push_back(Alloca);
1601   };
1602 
1603   // Emit alloca for each live gc pointer
1604   for (Value *V : Live)
1605     emitAllocaFor(V);
1606 
1607   // Emit allocas for rematerialized values
1608   for (const auto &Info : Records)
1609     for (auto RematerializedValuePair : Info.RematerializedValues) {
1610       Value *OriginalValue = RematerializedValuePair.second;
1611       if (AllocaMap.count(OriginalValue) != 0)
1612         continue;
1613 
1614       emitAllocaFor(OriginalValue);
1615       ++NumRematerializedValues;
1616     }
1617 
1618   // The next two loops are part of the same conceptual operation.  We need to
1619   // insert a store to the alloca after the original def and at each
1620   // redefinition.  We need to insert a load before each use.  These are split
1621   // into distinct loops for performance reasons.
1622 
1623   // Update gc pointer after each statepoint: either store a relocated value or
1624   // null (if no relocated value was found for this gc pointer and it is not a
1625   // gc_result).  This must happen before we update the statepoint with load of
1626   // alloca otherwise we lose the link between statepoint and old def.
1627   for (const auto &Info : Records) {
1628     Value *Statepoint = Info.StatepointToken;
1629 
1630     // This will be used for consistency check
1631     DenseSet<Value *> VisitedLiveValues;
1632 
1633     // Insert stores for normal statepoint gc relocates
1634     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1635 
1636     // In case if it was invoke statepoint
1637     // we will insert stores for exceptional path gc relocates.
1638     if (isa<InvokeInst>(Statepoint)) {
1639       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1640                              VisitedLiveValues);
1641     }
1642 
1643     // Do similar thing with rematerialized values
1644     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1645                                   VisitedLiveValues);
1646 
1647     if (ClobberNonLive) {
1648       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1649       // the gc.statepoint.  This will turn some subtle GC problems into
1650       // slightly easier to debug SEGVs.  Note that on large IR files with
1651       // lots of gc.statepoints this is extremely costly both memory and time
1652       // wise.
1653       SmallVector<AllocaInst *, 64> ToClobber;
1654       for (auto Pair : AllocaMap) {
1655         Value *Def = Pair.first;
1656         AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1657 
1658         // This value was relocated
1659         if (VisitedLiveValues.count(Def)) {
1660           continue;
1661         }
1662         ToClobber.push_back(Alloca);
1663       }
1664 
1665       auto InsertClobbersAt = [&](Instruction *IP) {
1666         for (auto *AI : ToClobber) {
1667           auto PT = cast<PointerType>(AI->getAllocatedType());
1668           Constant *CPN = ConstantPointerNull::get(PT);
1669           StoreInst *Store = new StoreInst(CPN, AI);
1670           Store->insertBefore(IP);
1671         }
1672       };
1673 
1674       // Insert the clobbering stores.  These may get intermixed with the
1675       // gc.results and gc.relocates, but that's fine.
1676       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1677         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1678         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1679       } else {
1680         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1681       }
1682     }
1683   }
1684 
1685   // Update use with load allocas and add store for gc_relocated.
1686   for (auto Pair : AllocaMap) {
1687     Value *Def = Pair.first;
1688     Value *Alloca = Pair.second;
1689 
1690     // We pre-record the uses of allocas so that we dont have to worry about
1691     // later update that changes the user information..
1692 
1693     SmallVector<Instruction *, 20> Uses;
1694     // PERF: trade a linear scan for repeated reallocation
1695     Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1696     for (User *U : Def->users()) {
1697       if (!isa<ConstantExpr>(U)) {
1698         // If the def has a ConstantExpr use, then the def is either a
1699         // ConstantExpr use itself or null.  In either case
1700         // (recursively in the first, directly in the second), the oop
1701         // it is ultimately dependent on is null and this particular
1702         // use does not need to be fixed up.
1703         Uses.push_back(cast<Instruction>(U));
1704       }
1705     }
1706 
1707     std::sort(Uses.begin(), Uses.end());
1708     auto Last = std::unique(Uses.begin(), Uses.end());
1709     Uses.erase(Last, Uses.end());
1710 
1711     for (Instruction *Use : Uses) {
1712       if (isa<PHINode>(Use)) {
1713         PHINode *Phi = cast<PHINode>(Use);
1714         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1715           if (Def == Phi->getIncomingValue(i)) {
1716             LoadInst *Load = new LoadInst(
1717                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1718             Phi->setIncomingValue(i, Load);
1719           }
1720         }
1721       } else {
1722         LoadInst *Load = new LoadInst(Alloca, "", Use);
1723         Use->replaceUsesOfWith(Def, Load);
1724       }
1725     }
1726 
1727     // Emit store for the initial gc value.  Store must be inserted after load,
1728     // otherwise store will be in alloca's use list and an extra load will be
1729     // inserted before it.
1730     StoreInst *Store = new StoreInst(Def, Alloca);
1731     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1732       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1733         // InvokeInst is a TerminatorInst so the store need to be inserted
1734         // into its normal destination block.
1735         BasicBlock *NormalDest = Invoke->getNormalDest();
1736         Store->insertBefore(NormalDest->getFirstNonPHI());
1737       } else {
1738         assert(!Inst->isTerminator() &&
1739                "The only TerminatorInst that can produce a value is "
1740                "InvokeInst which is handled above.");
1741         Store->insertAfter(Inst);
1742       }
1743     } else {
1744       assert(isa<Argument>(Def));
1745       Store->insertAfter(cast<Instruction>(Alloca));
1746     }
1747   }
1748 
1749   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1750          "we must have the same allocas with lives");
1751   if (!PromotableAllocas.empty()) {
1752     // Apply mem2reg to promote alloca to SSA
1753     PromoteMemToReg(PromotableAllocas, DT);
1754   }
1755 
1756 #ifndef NDEBUG
1757   for (auto &I : F.getEntryBlock())
1758     if (isa<AllocaInst>(I))
1759       InitialAllocaNum--;
1760   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1761 #endif
1762 }
1763 
1764 /// Implement a unique function which doesn't require we sort the input
1765 /// vector.  Doing so has the effect of changing the output of a couple of
1766 /// tests in ways which make them less useful in testing fused safepoints.
1767 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1768   SmallSet<T, 8> Seen;
1769   Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }),
1770             Vec.end());
1771 }
1772 
1773 /// Insert holders so that each Value is obviously live through the entire
1774 /// lifetime of the call.
1775 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1776                                  SmallVectorImpl<CallInst *> &Holders) {
1777   if (Values.empty())
1778     // No values to hold live, might as well not insert the empty holder
1779     return;
1780 
1781   Module *M = CS.getInstruction()->getModule();
1782   // Use a dummy vararg function to actually hold the values live
1783   Function *Func = cast<Function>(M->getOrInsertFunction(
1784       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1785   if (CS.isCall()) {
1786     // For call safepoints insert dummy calls right after safepoint
1787     Holders.push_back(CallInst::Create(Func, Values, "",
1788                                        &*++CS.getInstruction()->getIterator()));
1789     return;
1790   }
1791   // For invoke safepooints insert dummy calls both in normal and
1792   // exceptional destination blocks
1793   auto *II = cast<InvokeInst>(CS.getInstruction());
1794   Holders.push_back(CallInst::Create(
1795       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1796   Holders.push_back(CallInst::Create(
1797       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1798 }
1799 
1800 static void findLiveReferences(
1801     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1802     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1803   GCPtrLivenessData OriginalLivenessData;
1804   computeLiveInValues(DT, F, OriginalLivenessData);
1805   for (size_t i = 0; i < records.size(); i++) {
1806     struct PartiallyConstructedSafepointRecord &info = records[i];
1807     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
1808   }
1809 }
1810 
1811 // Helper function for the "rematerializeLiveValues". It walks use chain
1812 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
1813 // the base or a value it cannot process. Only "simple" values are processed
1814 // (currently it is GEP's and casts). The returned root is  examined by the
1815 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
1816 // with all visited values.
1817 static Value* findRematerializableChainToBasePointer(
1818   SmallVectorImpl<Instruction*> &ChainToBase,
1819   Value *CurrentValue) {
1820 
1821   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1822     ChainToBase.push_back(GEP);
1823     return findRematerializableChainToBasePointer(ChainToBase,
1824                                                   GEP->getPointerOperand());
1825   }
1826 
1827   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1828     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1829       return CI;
1830 
1831     ChainToBase.push_back(CI);
1832     return findRematerializableChainToBasePointer(ChainToBase,
1833                                                   CI->getOperand(0));
1834   }
1835 
1836   // We have reached the root of the chain, which is either equal to the base or
1837   // is the first unsupported value along the use chain.
1838   return CurrentValue;
1839 }
1840 
1841 // Helper function for the "rematerializeLiveValues". Compute cost of the use
1842 // chain we are going to rematerialize.
1843 static unsigned
1844 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1845                        TargetTransformInfo &TTI) {
1846   unsigned Cost = 0;
1847 
1848   for (Instruction *Instr : Chain) {
1849     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1850       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1851              "non noop cast is found during rematerialization");
1852 
1853       Type *SrcTy = CI->getOperand(0)->getType();
1854       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
1855 
1856     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1857       // Cost of the address calculation
1858       Type *ValTy = GEP->getSourceElementType();
1859       Cost += TTI.getAddressComputationCost(ValTy);
1860 
1861       // And cost of the GEP itself
1862       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1863       //       allowed for the external usage)
1864       if (!GEP->hasAllConstantIndices())
1865         Cost += 2;
1866 
1867     } else {
1868       llvm_unreachable("unsupported instruciton type during rematerialization");
1869     }
1870   }
1871 
1872   return Cost;
1873 }
1874 
1875 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
1876 
1877   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
1878   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
1879       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
1880     return false;
1881   // Map of incoming values and their corresponding basic blocks of
1882   // OrigRootPhi.
1883   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
1884   for (unsigned i = 0; i < PhiNum; i++)
1885     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
1886         OrigRootPhi.getIncomingBlock(i);
1887 
1888   // Both current and base PHIs should have same incoming values and
1889   // the same basic blocks corresponding to the incoming values.
1890   for (unsigned i = 0; i < PhiNum; i++) {
1891     auto CIVI =
1892         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
1893     if (CIVI == CurrentIncomingValues.end())
1894       return false;
1895     BasicBlock *CurrentIncomingBB = CIVI->second;
1896     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
1897       return false;
1898   }
1899   return true;
1900 
1901 }
1902 
1903 // From the statepoint live set pick values that are cheaper to recompute then
1904 // to relocate. Remove this values from the live set, rematerialize them after
1905 // statepoint and record them in "Info" structure. Note that similar to
1906 // relocated values we don't do any user adjustments here.
1907 static void rematerializeLiveValues(CallSite CS,
1908                                     PartiallyConstructedSafepointRecord &Info,
1909                                     TargetTransformInfo &TTI) {
1910   const unsigned int ChainLengthThreshold = 10;
1911 
1912   // Record values we are going to delete from this statepoint live set.
1913   // We can not di this in following loop due to iterator invalidation.
1914   SmallVector<Value *, 32> LiveValuesToBeDeleted;
1915 
1916   for (Value *LiveValue: Info.LiveSet) {
1917     // For each live pointer find it's defining chain
1918     SmallVector<Instruction *, 3> ChainToBase;
1919     assert(Info.PointerToBase.count(LiveValue));
1920     Value *RootOfChain =
1921       findRematerializableChainToBasePointer(ChainToBase,
1922                                              LiveValue);
1923 
1924     // Nothing to do, or chain is too long
1925     if ( ChainToBase.size() == 0 ||
1926         ChainToBase.size() > ChainLengthThreshold)
1927       continue;
1928 
1929     // Handle the scenario where the RootOfChain is not equal to the
1930     // Base Value, but they are essentially the same phi values.
1931     if (RootOfChain != Info.PointerToBase[LiveValue]) {
1932       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
1933       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
1934       if (!OrigRootPhi || !AlternateRootPhi)
1935         continue;
1936       // PHI nodes that have the same incoming values, and belonging to the same
1937       // basic blocks are essentially the same SSA value.  When the original phi
1938       // has incoming values with different base pointers, the original phi is
1939       // marked as conflict, and an additional `AlternateRootPhi` with the same
1940       // incoming values get generated by the findBasePointer function. We need
1941       // to identify the newly generated AlternateRootPhi (.base version of phi)
1942       // and RootOfChain (the original phi node itself) are the same, so that we
1943       // can rematerialize the gep and casts. This is a workaround for the
1944       // deficieny in the findBasePointer algorithm.
1945       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
1946         continue;
1947       // Now that the phi nodes are proved to be the same, assert that
1948       // findBasePointer's newly generated AlternateRootPhi is present in the
1949       // liveset of the call.
1950       assert(Info.LiveSet.count(AlternateRootPhi));
1951     }
1952     // Compute cost of this chain
1953     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
1954     // TODO: We can also account for cases when we will be able to remove some
1955     //       of the rematerialized values by later optimization passes. I.e if
1956     //       we rematerialized several intersecting chains. Or if original values
1957     //       don't have any uses besides this statepoint.
1958 
1959     // For invokes we need to rematerialize each chain twice - for normal and
1960     // for unwind basic blocks. Model this by multiplying cost by two.
1961     if (CS.isInvoke()) {
1962       Cost *= 2;
1963     }
1964     // If it's too expensive - skip it
1965     if (Cost >= RematerializationThreshold)
1966       continue;
1967 
1968     // Remove value from the live set
1969     LiveValuesToBeDeleted.push_back(LiveValue);
1970 
1971     // Clone instructions and record them inside "Info" structure
1972 
1973     // Walk backwards to visit top-most instructions first
1974     std::reverse(ChainToBase.begin(), ChainToBase.end());
1975 
1976     // Utility function which clones all instructions from "ChainToBase"
1977     // and inserts them before "InsertBefore". Returns rematerialized value
1978     // which should be used after statepoint.
1979     auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
1980       Instruction *LastClonedValue = nullptr;
1981       Instruction *LastValue = nullptr;
1982       for (Instruction *Instr: ChainToBase) {
1983         // Only GEP's and casts are suported as we need to be careful to not
1984         // introduce any new uses of pointers not in the liveset.
1985         // Note that it's fine to introduce new uses of pointers which were
1986         // otherwise not used after this statepoint.
1987         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
1988 
1989         Instruction *ClonedValue = Instr->clone();
1990         ClonedValue->insertBefore(InsertBefore);
1991         ClonedValue->setName(Instr->getName() + ".remat");
1992 
1993         // If it is not first instruction in the chain then it uses previously
1994         // cloned value. We should update it to use cloned value.
1995         if (LastClonedValue) {
1996           assert(LastValue);
1997           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
1998 #ifndef NDEBUG
1999           // Assert that cloned instruction does not use any instructions from
2000           // this chain other than LastClonedValue
2001           for (auto OpValue : ClonedValue->operand_values()) {
2002             assert(!is_contained(ChainToBase, OpValue) &&
2003                    "incorrect use in rematerialization chain");
2004           }
2005 #endif
2006         }
2007 
2008         LastClonedValue = ClonedValue;
2009         LastValue = Instr;
2010       }
2011       assert(LastClonedValue);
2012       return LastClonedValue;
2013     };
2014 
2015     // Different cases for calls and invokes. For invokes we need to clone
2016     // instructions both on normal and unwind path.
2017     if (CS.isCall()) {
2018       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
2019       assert(InsertBefore);
2020       Instruction *RematerializedValue = rematerializeChain(InsertBefore);
2021       Info.RematerializedValues[RematerializedValue] = LiveValue;
2022     } else {
2023       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
2024 
2025       Instruction *NormalInsertBefore =
2026           &*Invoke->getNormalDest()->getFirstInsertionPt();
2027       Instruction *UnwindInsertBefore =
2028           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2029 
2030       Instruction *NormalRematerializedValue =
2031           rematerializeChain(NormalInsertBefore);
2032       Instruction *UnwindRematerializedValue =
2033           rematerializeChain(UnwindInsertBefore);
2034 
2035       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2036       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2037     }
2038   }
2039 
2040   // Remove rematerializaed values from the live set
2041   for (auto LiveValue: LiveValuesToBeDeleted) {
2042     Info.LiveSet.remove(LiveValue);
2043   }
2044 }
2045 
2046 static bool insertParsePoints(Function &F, DominatorTree &DT,
2047                               TargetTransformInfo &TTI,
2048                               SmallVectorImpl<CallSite> &ToUpdate) {
2049 #ifndef NDEBUG
2050   // sanity check the input
2051   std::set<CallSite> Uniqued;
2052   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2053   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2054 
2055   for (CallSite CS : ToUpdate)
2056     assert(CS.getInstruction()->getFunction() == &F);
2057 #endif
2058 
2059   // When inserting gc.relocates for invokes, we need to be able to insert at
2060   // the top of the successor blocks.  See the comment on
2061   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2062   // may restructure the CFG.
2063   for (CallSite CS : ToUpdate) {
2064     if (!CS.isInvoke())
2065       continue;
2066     auto *II = cast<InvokeInst>(CS.getInstruction());
2067     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2068     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2069   }
2070 
2071   // A list of dummy calls added to the IR to keep various values obviously
2072   // live in the IR.  We'll remove all of these when done.
2073   SmallVector<CallInst *, 64> Holders;
2074 
2075   // Insert a dummy call with all of the arguments to the vm_state we'll need
2076   // for the actual safepoint insertion.  This ensures reference arguments in
2077   // the deopt argument list are considered live through the safepoint (and
2078   // thus makes sure they get relocated.)
2079   for (CallSite CS : ToUpdate) {
2080     SmallVector<Value *, 64> DeoptValues;
2081 
2082     for (Value *Arg : GetDeoptBundleOperands(CS)) {
2083       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2084              "support for FCA unimplemented");
2085       if (isHandledGCPointerType(Arg->getType()))
2086         DeoptValues.push_back(Arg);
2087     }
2088 
2089     insertUseHolderAfter(CS, DeoptValues, Holders);
2090   }
2091 
2092   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2093 
2094   // A) Identify all gc pointers which are statically live at the given call
2095   // site.
2096   findLiveReferences(F, DT, ToUpdate, Records);
2097 
2098   // B) Find the base pointers for each live pointer
2099   /* scope for caching */ {
2100     // Cache the 'defining value' relation used in the computation and
2101     // insertion of base phis and selects.  This ensures that we don't insert
2102     // large numbers of duplicate base_phis.
2103     DefiningValueMapTy DVCache;
2104 
2105     for (size_t i = 0; i < Records.size(); i++) {
2106       PartiallyConstructedSafepointRecord &info = Records[i];
2107       findBasePointers(DT, DVCache, ToUpdate[i], info);
2108     }
2109   } // end of cache scope
2110 
2111   // The base phi insertion logic (for any safepoint) may have inserted new
2112   // instructions which are now live at some safepoint.  The simplest such
2113   // example is:
2114   // loop:
2115   //   phi a  <-- will be a new base_phi here
2116   //   safepoint 1 <-- that needs to be live here
2117   //   gep a + 1
2118   //   safepoint 2
2119   //   br loop
2120   // We insert some dummy calls after each safepoint to definitely hold live
2121   // the base pointers which were identified for that safepoint.  We'll then
2122   // ask liveness for _every_ base inserted to see what is now live.  Then we
2123   // remove the dummy calls.
2124   Holders.reserve(Holders.size() + Records.size());
2125   for (size_t i = 0; i < Records.size(); i++) {
2126     PartiallyConstructedSafepointRecord &Info = Records[i];
2127 
2128     SmallVector<Value *, 128> Bases;
2129     for (auto Pair : Info.PointerToBase)
2130       Bases.push_back(Pair.second);
2131 
2132     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2133   }
2134 
2135   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2136   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2137   // not the key issue.
2138   recomputeLiveInValues(F, DT, ToUpdate, Records);
2139 
2140   if (PrintBasePointers) {
2141     for (auto &Info : Records) {
2142       errs() << "Base Pairs: (w/Relocation)\n";
2143       for (auto Pair : Info.PointerToBase) {
2144         errs() << " derived ";
2145         Pair.first->printAsOperand(errs(), false);
2146         errs() << " base ";
2147         Pair.second->printAsOperand(errs(), false);
2148         errs() << "\n";
2149       }
2150     }
2151   }
2152 
2153   // It is possible that non-constant live variables have a constant base.  For
2154   // example, a GEP with a variable offset from a global.  In this case we can
2155   // remove it from the liveset.  We already don't add constants to the liveset
2156   // because we assume they won't move at runtime and the GC doesn't need to be
2157   // informed about them.  The same reasoning applies if the base is constant.
2158   // Note that the relocation placement code relies on this filtering for
2159   // correctness as it expects the base to be in the liveset, which isn't true
2160   // if the base is constant.
2161   for (auto &Info : Records)
2162     for (auto &BasePair : Info.PointerToBase)
2163       if (isa<Constant>(BasePair.second))
2164         Info.LiveSet.remove(BasePair.first);
2165 
2166   for (CallInst *CI : Holders)
2167     CI->eraseFromParent();
2168 
2169   Holders.clear();
2170 
2171   // In order to reduce live set of statepoint we might choose to rematerialize
2172   // some values instead of relocating them. This is purely an optimization and
2173   // does not influence correctness.
2174   for (size_t i = 0; i < Records.size(); i++)
2175     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2176 
2177   // We need this to safely RAUW and delete call or invoke return values that
2178   // may themselves be live over a statepoint.  For details, please see usage in
2179   // makeStatepointExplicitImpl.
2180   std::vector<DeferredReplacement> Replacements;
2181 
2182   // Now run through and replace the existing statepoints with new ones with
2183   // the live variables listed.  We do not yet update uses of the values being
2184   // relocated. We have references to live variables that need to
2185   // survive to the last iteration of this loop.  (By construction, the
2186   // previous statepoint can not be a live variable, thus we can and remove
2187   // the old statepoint calls as we go.)
2188   for (size_t i = 0; i < Records.size(); i++)
2189     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2190 
2191   ToUpdate.clear(); // prevent accident use of invalid CallSites
2192 
2193   for (auto &PR : Replacements)
2194     PR.doReplacement();
2195 
2196   Replacements.clear();
2197 
2198   for (auto &Info : Records) {
2199     // These live sets may contain state Value pointers, since we replaced calls
2200     // with operand bundles with calls wrapped in gc.statepoint, and some of
2201     // those calls may have been def'ing live gc pointers.  Clear these out to
2202     // avoid accidentally using them.
2203     //
2204     // TODO: We should create a separate data structure that does not contain
2205     // these live sets, and migrate to using that data structure from this point
2206     // onward.
2207     Info.LiveSet.clear();
2208     Info.PointerToBase.clear();
2209   }
2210 
2211   // Do all the fixups of the original live variables to their relocated selves
2212   SmallVector<Value *, 128> Live;
2213   for (size_t i = 0; i < Records.size(); i++) {
2214     PartiallyConstructedSafepointRecord &Info = Records[i];
2215 
2216     // We can't simply save the live set from the original insertion.  One of
2217     // the live values might be the result of a call which needs a safepoint.
2218     // That Value* no longer exists and we need to use the new gc_result.
2219     // Thankfully, the live set is embedded in the statepoint (and updated), so
2220     // we just grab that.
2221     Statepoint Statepoint(Info.StatepointToken);
2222     Live.insert(Live.end(), Statepoint.gc_args_begin(),
2223                 Statepoint.gc_args_end());
2224 #ifndef NDEBUG
2225     // Do some basic sanity checks on our liveness results before performing
2226     // relocation.  Relocation can and will turn mistakes in liveness results
2227     // into non-sensical code which is must harder to debug.
2228     // TODO: It would be nice to test consistency as well
2229     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2230            "statepoint must be reachable or liveness is meaningless");
2231     for (Value *V : Statepoint.gc_args()) {
2232       if (!isa<Instruction>(V))
2233         // Non-instruction values trivial dominate all possible uses
2234         continue;
2235       auto *LiveInst = cast<Instruction>(V);
2236       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2237              "unreachable values should never be live");
2238       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2239              "basic SSA liveness expectation violated by liveness analysis");
2240     }
2241 #endif
2242   }
2243   unique_unsorted(Live);
2244 
2245 #ifndef NDEBUG
2246   // sanity check
2247   for (auto *Ptr : Live)
2248     assert(isHandledGCPointerType(Ptr->getType()) &&
2249            "must be a gc pointer type");
2250 #endif
2251 
2252   relocationViaAlloca(F, DT, Live, Records);
2253   return !Records.empty();
2254 }
2255 
2256 // Handles both return values and arguments for Functions and CallSites.
2257 template <typename AttrHolder>
2258 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2259                                       unsigned Index) {
2260   AttrBuilder R;
2261   if (AH.getDereferenceableBytes(Index))
2262     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2263                                   AH.getDereferenceableBytes(Index)));
2264   if (AH.getDereferenceableOrNullBytes(Index))
2265     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2266                                   AH.getDereferenceableOrNullBytes(Index)));
2267   if (AH.doesNotAlias(Index))
2268     R.addAttribute(Attribute::NoAlias);
2269 
2270   if (!R.empty())
2271     AH.setAttributes(AH.getAttributes().removeAttributes(
2272         Ctx, Index, AttributeSet::get(Ctx, Index, R)));
2273 }
2274 
2275 void
2276 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
2277   LLVMContext &Ctx = F.getContext();
2278 
2279   for (Argument &A : F.args())
2280     if (isa<PointerType>(A.getType()))
2281       RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
2282 
2283   if (isa<PointerType>(F.getReturnType()))
2284     RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
2285 }
2286 
2287 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
2288   if (F.empty())
2289     return;
2290 
2291   LLVMContext &Ctx = F.getContext();
2292   MDBuilder Builder(Ctx);
2293 
2294   for (Instruction &I : instructions(F)) {
2295     if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2296       assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2297       bool IsImmutableTBAA =
2298           MD->getNumOperands() == 4 &&
2299           mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2300 
2301       if (!IsImmutableTBAA)
2302         continue; // no work to do, MD_tbaa is already marked mutable
2303 
2304       MDNode *Base = cast<MDNode>(MD->getOperand(0));
2305       MDNode *Access = cast<MDNode>(MD->getOperand(1));
2306       uint64_t Offset =
2307           mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2308 
2309       MDNode *MutableTBAA =
2310           Builder.createTBAAStructTagNode(Base, Access, Offset);
2311       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2312     }
2313 
2314     if (CallSite CS = CallSite(&I)) {
2315       for (int i = 0, e = CS.arg_size(); i != e; i++)
2316         if (isa<PointerType>(CS.getArgument(i)->getType()))
2317           RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
2318       if (isa<PointerType>(CS.getType()))
2319         RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
2320     }
2321   }
2322 }
2323 
2324 /// Returns true if this function should be rewritten by this pass.  The main
2325 /// point of this function is as an extension point for custom logic.
2326 static bool shouldRewriteStatepointsIn(Function &F) {
2327   // TODO: This should check the GCStrategy
2328   if (F.hasGC()) {
2329     const auto &FunctionGCName = F.getGC();
2330     const StringRef StatepointExampleName("statepoint-example");
2331     const StringRef CoreCLRName("coreclr");
2332     return (StatepointExampleName == FunctionGCName) ||
2333            (CoreCLRName == FunctionGCName);
2334   } else
2335     return false;
2336 }
2337 
2338 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
2339 #ifndef NDEBUG
2340   assert(any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2341 #endif
2342 
2343   for (Function &F : M)
2344     stripNonValidAttributesFromPrototype(F);
2345 
2346   for (Function &F : M)
2347     stripNonValidAttributesFromBody(F);
2348 }
2349 
2350 bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2351   // Nothing to do for declarations.
2352   if (F.isDeclaration() || F.empty())
2353     return false;
2354 
2355   // Policy choice says not to rewrite - the most common reason is that we're
2356   // compiling code without a GCStrategy.
2357   if (!shouldRewriteStatepointsIn(F))
2358     return false;
2359 
2360   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2361   TargetTransformInfo &TTI =
2362       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2363 
2364   auto NeedsRewrite = [](Instruction &I) {
2365     if (ImmutableCallSite CS = ImmutableCallSite(&I))
2366       return !callsGCLeafFunction(CS) && !isStatepoint(CS);
2367     return false;
2368   };
2369 
2370   // Gather all the statepoints which need rewritten.  Be careful to only
2371   // consider those in reachable code since we need to ask dominance queries
2372   // when rewriting.  We'll delete the unreachable ones in a moment.
2373   SmallVector<CallSite, 64> ParsePointNeeded;
2374   bool HasUnreachableStatepoint = false;
2375   for (Instruction &I : instructions(F)) {
2376     // TODO: only the ones with the flag set!
2377     if (NeedsRewrite(I)) {
2378       if (DT.isReachableFromEntry(I.getParent()))
2379         ParsePointNeeded.push_back(CallSite(&I));
2380       else
2381         HasUnreachableStatepoint = true;
2382     }
2383   }
2384 
2385   bool MadeChange = false;
2386 
2387   // Delete any unreachable statepoints so that we don't have unrewritten
2388   // statepoints surviving this pass.  This makes testing easier and the
2389   // resulting IR less confusing to human readers.  Rather than be fancy, we
2390   // just reuse a utility function which removes the unreachable blocks.
2391   if (HasUnreachableStatepoint)
2392     MadeChange |= removeUnreachableBlocks(F);
2393 
2394   // Return early if no work to do.
2395   if (ParsePointNeeded.empty())
2396     return MadeChange;
2397 
2398   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2399   // These are created by LCSSA.  They have the effect of increasing the size
2400   // of liveness sets for no good reason.  It may be harder to do this post
2401   // insertion since relocations and base phis can confuse things.
2402   for (BasicBlock &BB : F)
2403     if (BB.getUniquePredecessor()) {
2404       MadeChange = true;
2405       FoldSingleEntryPHINodes(&BB);
2406     }
2407 
2408   // Before we start introducing relocations, we want to tweak the IR a bit to
2409   // avoid unfortunate code generation effects.  The main example is that we
2410   // want to try to make sure the comparison feeding a branch is after any
2411   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2412   // values feeding a branch after relocation.  This is semantically correct,
2413   // but results in extra register pressure since both the pre-relocation and
2414   // post-relocation copies must be available in registers.  For code without
2415   // relocations this is handled elsewhere, but teaching the scheduler to
2416   // reverse the transform we're about to do would be slightly complex.
2417   // Note: This may extend the live range of the inputs to the icmp and thus
2418   // increase the liveset of any statepoint we move over.  This is profitable
2419   // as long as all statepoints are in rare blocks.  If we had in-register
2420   // lowering for live values this would be a much safer transform.
2421   auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2422     if (auto *BI = dyn_cast<BranchInst>(TI))
2423       if (BI->isConditional())
2424         return dyn_cast<Instruction>(BI->getCondition());
2425     // TODO: Extend this to handle switches
2426     return nullptr;
2427   };
2428   for (BasicBlock &BB : F) {
2429     TerminatorInst *TI = BB.getTerminator();
2430     if (auto *Cond = getConditionInst(TI))
2431       // TODO: Handle more than just ICmps here.  We should be able to move
2432       // most instructions without side effects or memory access.
2433       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2434         MadeChange = true;
2435         Cond->moveBefore(TI);
2436       }
2437   }
2438 
2439   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2440   return MadeChange;
2441 }
2442 
2443 // liveness computation via standard dataflow
2444 // -------------------------------------------------------------------
2445 
2446 // TODO: Consider using bitvectors for liveness, the set of potentially
2447 // interesting values should be small and easy to pre-compute.
2448 
2449 /// Compute the live-in set for the location rbegin starting from
2450 /// the live-out set of the basic block
2451 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2452                                 BasicBlock::reverse_iterator End,
2453                                 SetVector<Value *> &LiveTmp) {
2454   for (auto &I : make_range(Begin, End)) {
2455     // KILL/Def - Remove this definition from LiveIn
2456     LiveTmp.remove(&I);
2457 
2458     // Don't consider *uses* in PHI nodes, we handle their contribution to
2459     // predecessor blocks when we seed the LiveOut sets
2460     if (isa<PHINode>(I))
2461       continue;
2462 
2463     // USE - Add to the LiveIn set for this instruction
2464     for (Value *V : I.operands()) {
2465       assert(!isUnhandledGCPointerType(V->getType()) &&
2466              "support for FCA unimplemented");
2467       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2468         // The choice to exclude all things constant here is slightly subtle.
2469         // There are two independent reasons:
2470         // - We assume that things which are constant (from LLVM's definition)
2471         // do not move at runtime.  For example, the address of a global
2472         // variable is fixed, even though it's contents may not be.
2473         // - Second, we can't disallow arbitrary inttoptr constants even
2474         // if the language frontend does.  Optimization passes are free to
2475         // locally exploit facts without respect to global reachability.  This
2476         // can create sections of code which are dynamically unreachable and
2477         // contain just about anything.  (see constants.ll in tests)
2478         LiveTmp.insert(V);
2479       }
2480     }
2481   }
2482 }
2483 
2484 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2485   for (BasicBlock *Succ : successors(BB)) {
2486     for (auto &I : *Succ) {
2487       PHINode *PN = dyn_cast<PHINode>(&I);
2488       if (!PN)
2489         break;
2490 
2491       Value *V = PN->getIncomingValueForBlock(BB);
2492       assert(!isUnhandledGCPointerType(V->getType()) &&
2493              "support for FCA unimplemented");
2494       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2495         LiveTmp.insert(V);
2496     }
2497   }
2498 }
2499 
2500 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2501   SetVector<Value *> KillSet;
2502   for (Instruction &I : *BB)
2503     if (isHandledGCPointerType(I.getType()))
2504       KillSet.insert(&I);
2505   return KillSet;
2506 }
2507 
2508 #ifndef NDEBUG
2509 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2510 /// sanity check for the liveness computation.
2511 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2512                           TerminatorInst *TI, bool TermOkay = false) {
2513   for (Value *V : Live) {
2514     if (auto *I = dyn_cast<Instruction>(V)) {
2515       // The terminator can be a member of the LiveOut set.  LLVM's definition
2516       // of instruction dominance states that V does not dominate itself.  As
2517       // such, we need to special case this to allow it.
2518       if (TermOkay && TI == I)
2519         continue;
2520       assert(DT.dominates(I, TI) &&
2521              "basic SSA liveness expectation violated by liveness analysis");
2522     }
2523   }
2524 }
2525 
2526 /// Check that all the liveness sets used during the computation of liveness
2527 /// obey basic SSA properties.  This is useful for finding cases where we miss
2528 /// a def.
2529 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2530                           BasicBlock &BB) {
2531   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2532   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2533   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2534 }
2535 #endif
2536 
2537 static void computeLiveInValues(DominatorTree &DT, Function &F,
2538                                 GCPtrLivenessData &Data) {
2539   SmallSetVector<BasicBlock *, 32> Worklist;
2540 
2541   // Seed the liveness for each individual block
2542   for (BasicBlock &BB : F) {
2543     Data.KillSet[&BB] = computeKillSet(&BB);
2544     Data.LiveSet[&BB].clear();
2545     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2546 
2547 #ifndef NDEBUG
2548     for (Value *Kill : Data.KillSet[&BB])
2549       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2550 #endif
2551 
2552     Data.LiveOut[&BB] = SetVector<Value *>();
2553     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2554     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2555     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2556     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2557     if (!Data.LiveIn[&BB].empty())
2558       Worklist.insert(pred_begin(&BB), pred_end(&BB));
2559   }
2560 
2561   // Propagate that liveness until stable
2562   while (!Worklist.empty()) {
2563     BasicBlock *BB = Worklist.pop_back_val();
2564 
2565     // Compute our new liveout set, then exit early if it hasn't changed despite
2566     // the contribution of our successor.
2567     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2568     const auto OldLiveOutSize = LiveOut.size();
2569     for (BasicBlock *Succ : successors(BB)) {
2570       assert(Data.LiveIn.count(Succ));
2571       LiveOut.set_union(Data.LiveIn[Succ]);
2572     }
2573     // assert OutLiveOut is a subset of LiveOut
2574     if (OldLiveOutSize == LiveOut.size()) {
2575       // If the sets are the same size, then we didn't actually add anything
2576       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
2577       // hasn't changed.
2578       continue;
2579     }
2580     Data.LiveOut[BB] = LiveOut;
2581 
2582     // Apply the effects of this basic block
2583     SetVector<Value *> LiveTmp = LiveOut;
2584     LiveTmp.set_union(Data.LiveSet[BB]);
2585     LiveTmp.set_subtract(Data.KillSet[BB]);
2586 
2587     assert(Data.LiveIn.count(BB));
2588     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2589     // assert: OldLiveIn is a subset of LiveTmp
2590     if (OldLiveIn.size() != LiveTmp.size()) {
2591       Data.LiveIn[BB] = LiveTmp;
2592       Worklist.insert(pred_begin(BB), pred_end(BB));
2593     }
2594   } // while (!Worklist.empty())
2595 
2596 #ifndef NDEBUG
2597   // Sanity check our output against SSA properties.  This helps catch any
2598   // missing kills during the above iteration.
2599   for (BasicBlock &BB : F)
2600     checkBasicSSA(DT, Data, BB);
2601 #endif
2602 }
2603 
2604 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2605                               StatepointLiveSetTy &Out) {
2606 
2607   BasicBlock *BB = Inst->getParent();
2608 
2609   // Note: The copy is intentional and required
2610   assert(Data.LiveOut.count(BB));
2611   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2612 
2613   // We want to handle the statepoint itself oddly.  It's
2614   // call result is not live (normal), nor are it's arguments
2615   // (unless they're used again later).  This adjustment is
2616   // specifically what we need to relocate
2617   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
2618                       LiveOut);
2619   LiveOut.remove(Inst);
2620   Out.insert(LiveOut.begin(), LiveOut.end());
2621 }
2622 
2623 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2624                                   CallSite CS,
2625                                   PartiallyConstructedSafepointRecord &Info) {
2626   Instruction *Inst = CS.getInstruction();
2627   StatepointLiveSetTy Updated;
2628   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2629 
2630 #ifndef NDEBUG
2631   DenseSet<Value *> Bases;
2632   for (auto KVPair : Info.PointerToBase)
2633     Bases.insert(KVPair.second);
2634 #endif
2635 
2636   // We may have base pointers which are now live that weren't before.  We need
2637   // to update the PointerToBase structure to reflect this.
2638   for (auto V : Updated)
2639     if (Info.PointerToBase.insert({V, V}).second) {
2640       assert(Bases.count(V) && "Can't find base for unexpected live value!");
2641       continue;
2642     }
2643 
2644 #ifndef NDEBUG
2645   for (auto V : Updated)
2646     assert(Info.PointerToBase.count(V) &&
2647            "Must be able to find base for live value!");
2648 #endif
2649 
2650   // Remove any stale base mappings - this can happen since our liveness is
2651   // more precise then the one inherent in the base pointer analysis.
2652   DenseSet<Value *> ToErase;
2653   for (auto KVPair : Info.PointerToBase)
2654     if (!Updated.count(KVPair.first))
2655       ToErase.insert(KVPair.first);
2656 
2657   for (auto *V : ToErase)
2658     Info.PointerToBase.erase(V);
2659 
2660 #ifndef NDEBUG
2661   for (auto KVPair : Info.PointerToBase)
2662     assert(Updated.count(KVPair.first) && "record for non-live value");
2663 #endif
2664 
2665   Info.LiveSet = Updated;
2666 }
2667