1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Statepoint.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 41 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 42 43 using namespace llvm; 44 45 // Print tracing output 46 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 47 cl::init(false)); 48 49 // Print the liveset found at the insert location 50 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 51 cl::init(false)); 52 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", 53 cl::Hidden, cl::init(false)); 54 // Print out the base pointers for debugging 55 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", 56 cl::Hidden, cl::init(false)); 57 58 namespace { 59 struct RewriteStatepointsForGC : public FunctionPass { 60 static char ID; // Pass identification, replacement for typeid 61 62 RewriteStatepointsForGC() : FunctionPass(ID) { 63 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 64 } 65 bool runOnFunction(Function &F) override; 66 67 void getAnalysisUsage(AnalysisUsage &AU) const override { 68 // We add and rewrite a bunch of instructions, but don't really do much 69 // else. We could in theory preserve a lot more analyses here. 70 AU.addRequired<DominatorTreeWrapperPass>(); 71 } 72 }; 73 } // namespace 74 75 char RewriteStatepointsForGC::ID = 0; 76 77 FunctionPass *llvm::createRewriteStatepointsForGCPass() { 78 return new RewriteStatepointsForGC(); 79 } 80 81 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 82 "Make relocations explicit at statepoints", false, false) 83 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 84 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 85 "Make relocations explicit at statepoints", false, false) 86 87 namespace { 88 // The type of the internal cache used inside the findBasePointers family 89 // of functions. From the callers perspective, this is an opaque type and 90 // should not be inspected. 91 // 92 // In the actual implementation this caches two relations: 93 // - The base relation itself (i.e. this pointer is based on that one) 94 // - The base defining value relation (i.e. before base_phi insertion) 95 // Generally, after the execution of a full findBasePointer call, only the 96 // base relation will remain. Internally, we add a mixture of the two 97 // types, then update all the second type to the first type 98 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 99 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 100 101 struct PartiallyConstructedSafepointRecord { 102 /// The set of values known to be live accross this safepoint 103 StatepointLiveSetTy liveset; 104 105 /// Mapping from live pointers to a base-defining-value 106 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 107 108 /// Any new values which were added to the IR during base pointer analysis 109 /// for this safepoint 110 DenseSet<llvm::Value *> NewInsertedDefs; 111 112 /// The *new* gc.statepoint instruction itself. This produces the token 113 /// that normal path gc.relocates and the gc.result are tied to. 114 Instruction *StatepointToken; 115 116 /// Instruction to which exceptional gc relocates are attached 117 /// Makes it easier to iterate through them during relocationViaAlloca. 118 Instruction *UnwindToken; 119 }; 120 } 121 122 // TODO: Once we can get to the GCStrategy, this becomes 123 // Optional<bool> isGCManagedPointer(const Value *V) const override { 124 125 static bool isGCPointerType(const Type *T) { 126 if (const PointerType *PT = dyn_cast<PointerType>(T)) 127 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 128 // GC managed heap. We know that a pointer into this heap needs to be 129 // updated and that no other pointer does. 130 return (1 == PT->getAddressSpace()); 131 return false; 132 } 133 134 // Return true if this type is one which a) is a gc pointer or contains a GC 135 // pointer and b) is of a type this code expects to encounter as a live value. 136 // (The insertion code will assert that a type which matches (a) and not (b) 137 // is not encountered.) 138 static bool isHandledGCPointerType(Type *T) { 139 // We fully support gc pointers 140 if (isGCPointerType(T)) 141 return true; 142 // We partially support vectors of gc pointers. The code will assert if it 143 // can't handle something. 144 if (auto VT = dyn_cast<VectorType>(T)) 145 if (isGCPointerType(VT->getElementType())) 146 return true; 147 return false; 148 } 149 150 #ifndef NDEBUG 151 /// Returns true if this type contains a gc pointer whether we know how to 152 /// handle that type or not. 153 static bool containsGCPtrType(Type *Ty) { 154 if(isGCPointerType(Ty)) 155 return true; 156 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 157 return isGCPointerType(VT->getScalarType()); 158 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 159 return containsGCPtrType(AT->getElementType()); 160 if (StructType *ST = dyn_cast<StructType>(Ty)) 161 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 162 [](Type *SubType) { 163 return containsGCPtrType(SubType); 164 }); 165 return false; 166 } 167 168 // Returns true if this is a type which a) is a gc pointer or contains a GC 169 // pointer and b) is of a type which the code doesn't expect (i.e. first class 170 // aggregates). Used to trip assertions. 171 static bool isUnhandledGCPointerType(Type *Ty) { 172 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 173 } 174 #endif 175 176 /// Return true if the Value is a gc reference type which is potentially used 177 /// after the instruction 'loc'. This is only used with the edge reachability 178 /// liveness code. Note: It is assumed the V dominates loc. 179 static bool isLiveGCReferenceAt(Value &V, Instruction *Loc, DominatorTree &DT, 180 LoopInfo *LI) { 181 if (!isHandledGCPointerType(V.getType())) 182 return false; 183 184 if (V.use_empty()) 185 return false; 186 187 // Given assumption that V dominates loc, this may be live 188 return true; 189 } 190 191 // Conservatively identifies any definitions which might be live at the 192 // given instruction. The analysis is performed immediately before the 193 // given instruction. Values defined by that instruction are not considered 194 // live. Values used by that instruction are considered live. 195 // 196 // preconditions: valid IR graph, term is either a terminator instruction or 197 // a call instruction, pred is the basic block of term, DT, LI are valid 198 // 199 // side effects: none, does not mutate IR 200 // 201 // postconditions: populates liveValues as discussed above 202 static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred, 203 DominatorTree &DT, LoopInfo *LI, 204 StatepointLiveSetTy &liveValues) { 205 liveValues.clear(); 206 207 assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator()); 208 209 Function *F = pred->getParent(); 210 211 auto is_live_gc_reference = 212 [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); }; 213 214 // Are there any gc pointer arguments live over this point? This needs to be 215 // special cased since arguments aren't defined in basic blocks. 216 for (Argument &arg : F->args()) { 217 assert(!isUnhandledGCPointerType(arg.getType()) && 218 "support for FCA unimplemented"); 219 220 if (is_live_gc_reference(arg)) { 221 liveValues.insert(&arg); 222 } 223 } 224 225 // Walk through all dominating blocks - the ones which can contain 226 // definitions used in this block - and check to see if any of the values 227 // they define are used in locations potentially reachable from the 228 // interesting instruction. 229 BasicBlock *BBI = pred; 230 while (true) { 231 if (TraceLSP) { 232 errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n"; 233 } 234 assert(DT.dominates(BBI, pred)); 235 assert(isPotentiallyReachable(BBI, pred, &DT) && 236 "dominated block must be reachable"); 237 238 // Walk through the instructions in dominating blocks and keep any 239 // that have a use potentially reachable from the block we're 240 // considering putting the safepoint in 241 for (Instruction &inst : *BBI) { 242 if (TraceLSP) { 243 errs() << "[LSP] Looking at instruction "; 244 inst.dump(); 245 } 246 247 if (pred == BBI && (&inst) == term) { 248 if (TraceLSP) { 249 errs() << "[LSP] stopped because we encountered the safepoint " 250 "instruction.\n"; 251 } 252 253 // If we're in the block which defines the interesting instruction, 254 // we don't want to include any values as live which are defined 255 // _after_ the interesting line or as part of the line itself 256 // i.e. "term" is the call instruction for a call safepoint, the 257 // results of the call should not be considered live in that stackmap 258 break; 259 } 260 261 assert(!isUnhandledGCPointerType(inst.getType()) && 262 "support for FCA unimplemented"); 263 264 if (is_live_gc_reference(inst)) { 265 if (TraceLSP) { 266 errs() << "[LSP] found live value for this safepoint "; 267 inst.dump(); 268 term->dump(); 269 } 270 liveValues.insert(&inst); 271 } 272 } 273 if (!DT.getNode(BBI)->getIDom()) { 274 assert(BBI == &F->getEntryBlock() && 275 "failed to find a dominator for something other than " 276 "the entry block"); 277 break; 278 } 279 BBI = DT.getNode(BBI)->getIDom()->getBlock(); 280 } 281 } 282 283 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 284 if (a->hasName() && b->hasName()) { 285 return -1 == a->getName().compare(b->getName()); 286 } else if (a->hasName() && !b->hasName()) { 287 return true; 288 } else if (!a->hasName() && b->hasName()) { 289 return false; 290 } else { 291 // Better than nothing, but not stable 292 return a < b; 293 } 294 } 295 296 /// Find the initial live set. Note that due to base pointer 297 /// insertion, the live set may be incomplete. 298 static void 299 analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS, 300 PartiallyConstructedSafepointRecord &result) { 301 Instruction *inst = CS.getInstruction(); 302 303 BasicBlock *BB = inst->getParent(); 304 StatepointLiveSetTy liveset; 305 findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset); 306 307 if (PrintLiveSet) { 308 // Note: This output is used by several of the test cases 309 // The order of elemtns in a set is not stable, put them in a vec and sort 310 // by name 311 SmallVector<Value *, 64> temp; 312 temp.insert(temp.end(), liveset.begin(), liveset.end()); 313 std::sort(temp.begin(), temp.end(), order_by_name); 314 errs() << "Live Variables:\n"; 315 for (Value *V : temp) { 316 errs() << " " << V->getName(); // no newline 317 V->dump(); 318 } 319 } 320 if (PrintLiveSetSize) { 321 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 322 errs() << "Number live values: " << liveset.size() << "\n"; 323 } 324 result.liveset = liveset; 325 } 326 327 /// If we can trivially determine that this vector contains only base pointers, 328 /// return the base instruction. 329 static Value *findBaseOfVector(Value *I) { 330 assert(I->getType()->isVectorTy() && 331 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 332 "Illegal to ask for the base pointer of a non-pointer type"); 333 334 // Each case parallels findBaseDefiningValue below, see that code for 335 // detailed motivation. 336 337 if (isa<Argument>(I)) 338 // An incoming argument to the function is a base pointer 339 return I; 340 341 // We shouldn't see the address of a global as a vector value? 342 assert(!isa<GlobalVariable>(I) && 343 "unexpected global variable found in base of vector"); 344 345 // inlining could possibly introduce phi node that contains 346 // undef if callee has multiple returns 347 if (isa<UndefValue>(I)) 348 // utterly meaningless, but useful for dealing with partially optimized 349 // code. 350 return I; 351 352 // Due to inheritance, this must be _after_ the global variable and undef 353 // checks 354 if (Constant *Con = dyn_cast<Constant>(I)) { 355 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 356 "order of checks wrong!"); 357 assert(Con->isNullValue() && "null is the only case which makes sense"); 358 return Con; 359 } 360 361 if (isa<LoadInst>(I)) 362 return I; 363 364 // Note: This code is currently rather incomplete. We are essentially only 365 // handling cases where the vector element is trivially a base pointer. We 366 // need to update the entire base pointer construction algorithm to know how 367 // to track vector elements and potentially scalarize, but the case which 368 // would motivate the work hasn't shown up in real workloads yet. 369 llvm_unreachable("no base found for vector element"); 370 } 371 372 /// Helper function for findBasePointer - Will return a value which either a) 373 /// defines the base pointer for the input or b) blocks the simple search 374 /// (i.e. a PHI or Select of two derived pointers) 375 static Value *findBaseDefiningValue(Value *I) { 376 assert(I->getType()->isPointerTy() && 377 "Illegal to ask for the base pointer of a non-pointer type"); 378 379 // This case is a bit of a hack - it only handles extracts from vectors which 380 // trivially contain only base pointers. See note inside the function for 381 // how to improve this. 382 if (auto *EEI = dyn_cast<ExtractElementInst>(I)) { 383 Value *VectorOperand = EEI->getVectorOperand(); 384 Value *VectorBase = findBaseOfVector(VectorOperand); 385 assert(VectorBase && "extract element not known to be a trivial base"); 386 return EEI; 387 } 388 389 if (isa<Argument>(I)) 390 // An incoming argument to the function is a base pointer 391 // We should have never reached here if this argument isn't an gc value 392 return I; 393 394 if (isa<GlobalVariable>(I)) 395 // base case 396 return I; 397 398 // inlining could possibly introduce phi node that contains 399 // undef if callee has multiple returns 400 if (isa<UndefValue>(I)) 401 // utterly meaningless, but useful for dealing with 402 // partially optimized code. 403 return I; 404 405 // Due to inheritance, this must be _after_ the global variable and undef 406 // checks 407 if (Constant *Con = dyn_cast<Constant>(I)) { 408 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 409 "order of checks wrong!"); 410 // Note: Finding a constant base for something marked for relocation 411 // doesn't really make sense. The most likely case is either a) some 412 // screwed up the address space usage or b) your validating against 413 // compiled C++ code w/o the proper separation. The only real exception 414 // is a null pointer. You could have generic code written to index of 415 // off a potentially null value and have proven it null. We also use 416 // null pointers in dead paths of relocation phis (which we might later 417 // want to find a base pointer for). 418 assert(isa<ConstantPointerNull>(Con) && 419 "null is the only case which makes sense"); 420 return Con; 421 } 422 423 if (CastInst *CI = dyn_cast<CastInst>(I)) { 424 Value *Def = CI->stripPointerCasts(); 425 // If we find a cast instruction here, it means we've found a cast which is 426 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 427 // handle int->ptr conversion. 428 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 429 return findBaseDefiningValue(Def); 430 } 431 432 if (isa<LoadInst>(I)) 433 return I; // The value loaded is an gc base itself 434 435 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 436 // The base of this GEP is the base 437 return findBaseDefiningValue(GEP->getPointerOperand()); 438 439 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 440 switch (II->getIntrinsicID()) { 441 case Intrinsic::experimental_gc_result_ptr: 442 default: 443 // fall through to general call handling 444 break; 445 case Intrinsic::experimental_gc_statepoint: 446 case Intrinsic::experimental_gc_result_float: 447 case Intrinsic::experimental_gc_result_int: 448 llvm_unreachable("these don't produce pointers"); 449 case Intrinsic::experimental_gc_relocate: { 450 // Rerunning safepoint insertion after safepoints are already 451 // inserted is not supported. It could probably be made to work, 452 // but why are you doing this? There's no good reason. 453 llvm_unreachable("repeat safepoint insertion is not supported"); 454 } 455 case Intrinsic::gcroot: 456 // Currently, this mechanism hasn't been extended to work with gcroot. 457 // There's no reason it couldn't be, but I haven't thought about the 458 // implications much. 459 llvm_unreachable( 460 "interaction with the gcroot mechanism is not supported"); 461 } 462 } 463 // We assume that functions in the source language only return base 464 // pointers. This should probably be generalized via attributes to support 465 // both source language and internal functions. 466 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 467 return I; 468 469 // I have absolutely no idea how to implement this part yet. It's not 470 // neccessarily hard, I just haven't really looked at it yet. 471 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 472 473 if (isa<AtomicCmpXchgInst>(I)) 474 // A CAS is effectively a atomic store and load combined under a 475 // predicate. From the perspective of base pointers, we just treat it 476 // like a load. 477 return I; 478 479 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 480 "binary ops which don't apply to pointers"); 481 482 // The aggregate ops. Aggregates can either be in the heap or on the 483 // stack, but in either case, this is simply a field load. As a result, 484 // this is a defining definition of the base just like a load is. 485 if (isa<ExtractValueInst>(I)) 486 return I; 487 488 // We should never see an insert vector since that would require we be 489 // tracing back a struct value not a pointer value. 490 assert(!isa<InsertValueInst>(I) && 491 "Base pointer for a struct is meaningless"); 492 493 // The last two cases here don't return a base pointer. Instead, they 494 // return a value which dynamically selects from amoung several base 495 // derived pointers (each with it's own base potentially). It's the job of 496 // the caller to resolve these. 497 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 498 "missing instruction case in findBaseDefiningValing"); 499 return I; 500 } 501 502 /// Returns the base defining value for this value. 503 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 504 Value *&Cached = Cache[I]; 505 if (!Cached) { 506 Cached = findBaseDefiningValue(I); 507 } 508 assert(Cache[I] != nullptr); 509 510 if (TraceLSP) { 511 dbgs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() 512 << "\n"; 513 } 514 return Cached; 515 } 516 517 /// Return a base pointer for this value if known. Otherwise, return it's 518 /// base defining value. 519 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 520 Value *Def = findBaseDefiningValueCached(I, Cache); 521 auto Found = Cache.find(Def); 522 if (Found != Cache.end()) { 523 // Either a base-of relation, or a self reference. Caller must check. 524 return Found->second; 525 } 526 // Only a BDV available 527 return Def; 528 } 529 530 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 531 /// is it known to be a base pointer? Or do we need to continue searching. 532 static bool isKnownBaseResult(Value *V) { 533 if (!isa<PHINode>(V) && !isa<SelectInst>(V)) { 534 // no recursion possible 535 return true; 536 } 537 if (isa<Instruction>(V) && 538 cast<Instruction>(V)->getMetadata("is_base_value")) { 539 // This is a previously inserted base phi or select. We know 540 // that this is a base value. 541 return true; 542 } 543 544 // We need to keep searching 545 return false; 546 } 547 548 // TODO: find a better name for this 549 namespace { 550 class PhiState { 551 public: 552 enum Status { Unknown, Base, Conflict }; 553 554 PhiState(Status s, Value *b = nullptr) : status(s), base(b) { 555 assert(status != Base || b); 556 } 557 PhiState(Value *b) : status(Base), base(b) {} 558 PhiState() : status(Unknown), base(nullptr) {} 559 560 Status getStatus() const { return status; } 561 Value *getBase() const { return base; } 562 563 bool isBase() const { return getStatus() == Base; } 564 bool isUnknown() const { return getStatus() == Unknown; } 565 bool isConflict() const { return getStatus() == Conflict; } 566 567 bool operator==(const PhiState &other) const { 568 return base == other.base && status == other.status; 569 } 570 571 bool operator!=(const PhiState &other) const { return !(*this == other); } 572 573 void dump() { 574 errs() << status << " (" << base << " - " 575 << (base ? base->getName() : "nullptr") << "): "; 576 } 577 578 private: 579 Status status; 580 Value *base; // non null only if status == base 581 }; 582 583 typedef DenseMap<Value *, PhiState> ConflictStateMapTy; 584 // Values of type PhiState form a lattice, and this is a helper 585 // class that implementes the meet operation. The meat of the meet 586 // operation is implemented in MeetPhiStates::pureMeet 587 class MeetPhiStates { 588 public: 589 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. 590 explicit MeetPhiStates(const ConflictStateMapTy &phiStates) 591 : phiStates(phiStates) {} 592 593 // Destructively meet the current result with the base V. V can 594 // either be a merge instruction (SelectInst / PHINode), in which 595 // case its status is looked up in the phiStates map; or a regular 596 // SSA value, in which case it is assumed to be a base. 597 void meetWith(Value *V) { 598 PhiState otherState = getStateForBDV(V); 599 assert((MeetPhiStates::pureMeet(otherState, currentResult) == 600 MeetPhiStates::pureMeet(currentResult, otherState)) && 601 "math is wrong: meet does not commute!"); 602 currentResult = MeetPhiStates::pureMeet(otherState, currentResult); 603 } 604 605 PhiState getResult() const { return currentResult; } 606 607 private: 608 const ConflictStateMapTy &phiStates; 609 PhiState currentResult; 610 611 /// Return a phi state for a base defining value. We'll generate a new 612 /// base state for known bases and expect to find a cached state otherwise 613 PhiState getStateForBDV(Value *baseValue) { 614 if (isKnownBaseResult(baseValue)) { 615 return PhiState(baseValue); 616 } else { 617 return lookupFromMap(baseValue); 618 } 619 } 620 621 PhiState lookupFromMap(Value *V) { 622 auto I = phiStates.find(V); 623 assert(I != phiStates.end() && "lookup failed!"); 624 return I->second; 625 } 626 627 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { 628 switch (stateA.getStatus()) { 629 case PhiState::Unknown: 630 return stateB; 631 632 case PhiState::Base: 633 assert(stateA.getBase() && "can't be null"); 634 if (stateB.isUnknown()) 635 return stateA; 636 637 if (stateB.isBase()) { 638 if (stateA.getBase() == stateB.getBase()) { 639 assert(stateA == stateB && "equality broken!"); 640 return stateA; 641 } 642 return PhiState(PhiState::Conflict); 643 } 644 assert(stateB.isConflict() && "only three states!"); 645 return PhiState(PhiState::Conflict); 646 647 case PhiState::Conflict: 648 return stateA; 649 } 650 llvm_unreachable("only three states!"); 651 } 652 }; 653 } 654 /// For a given value or instruction, figure out what base ptr it's derived 655 /// from. For gc objects, this is simply itself. On success, returns a value 656 /// which is the base pointer. (This is reliable and can be used for 657 /// relocation.) On failure, returns nullptr. 658 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache, 659 DenseSet<llvm::Value *> &NewInsertedDefs) { 660 Value *def = findBaseOrBDV(I, cache); 661 662 if (isKnownBaseResult(def)) { 663 return def; 664 } 665 666 // Here's the rough algorithm: 667 // - For every SSA value, construct a mapping to either an actual base 668 // pointer or a PHI which obscures the base pointer. 669 // - Construct a mapping from PHI to unknown TOP state. Use an 670 // optimistic algorithm to propagate base pointer information. Lattice 671 // looks like: 672 // UNKNOWN 673 // b1 b2 b3 b4 674 // CONFLICT 675 // When algorithm terminates, all PHIs will either have a single concrete 676 // base or be in a conflict state. 677 // - For every conflict, insert a dummy PHI node without arguments. Add 678 // these to the base[Instruction] = BasePtr mapping. For every 679 // non-conflict, add the actual base. 680 // - For every conflict, add arguments for the base[a] of each input 681 // arguments. 682 // 683 // Note: A simpler form of this would be to add the conflict form of all 684 // PHIs without running the optimistic algorithm. This would be 685 // analougous to pessimistic data flow and would likely lead to an 686 // overall worse solution. 687 688 ConflictStateMapTy states; 689 states[def] = PhiState(); 690 // Recursively fill in all phis & selects reachable from the initial one 691 // for which we don't already know a definite base value for 692 // TODO: This should be rewritten with a worklist 693 bool done = false; 694 while (!done) { 695 done = true; 696 // Since we're adding elements to 'states' as we run, we can't keep 697 // iterators into the set. 698 SmallVector<Value*, 16> Keys; 699 Keys.reserve(states.size()); 700 for (auto Pair : states) { 701 Value *V = Pair.first; 702 Keys.push_back(V); 703 } 704 for (Value *v : Keys) { 705 assert(!isKnownBaseResult(v) && "why did it get added?"); 706 if (PHINode *phi = dyn_cast<PHINode>(v)) { 707 assert(phi->getNumIncomingValues() > 0 && 708 "zero input phis are illegal"); 709 for (Value *InVal : phi->incoming_values()) { 710 Value *local = findBaseOrBDV(InVal, cache); 711 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 712 states[local] = PhiState(); 713 done = false; 714 } 715 } 716 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 717 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 718 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 719 states[local] = PhiState(); 720 done = false; 721 } 722 local = findBaseOrBDV(sel->getFalseValue(), cache); 723 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 724 states[local] = PhiState(); 725 done = false; 726 } 727 } 728 } 729 } 730 731 if (TraceLSP) { 732 errs() << "States after initialization:\n"; 733 for (auto Pair : states) { 734 Instruction *v = cast<Instruction>(Pair.first); 735 PhiState state = Pair.second; 736 state.dump(); 737 v->dump(); 738 } 739 } 740 741 // TODO: come back and revisit the state transitions around inputs which 742 // have reached conflict state. The current version seems too conservative. 743 744 bool progress = true; 745 while (progress) { 746 #ifndef NDEBUG 747 size_t oldSize = states.size(); 748 #endif 749 progress = false; 750 // We're only changing keys in this loop, thus safe to keep iterators 751 for (auto Pair : states) { 752 MeetPhiStates calculateMeet(states); 753 Value *v = Pair.first; 754 assert(!isKnownBaseResult(v) && "why did it get added?"); 755 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 756 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); 757 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); 758 } else 759 for (Value *Val : cast<PHINode>(v)->incoming_values()) 760 calculateMeet.meetWith(findBaseOrBDV(Val, cache)); 761 762 PhiState oldState = states[v]; 763 PhiState newState = calculateMeet.getResult(); 764 if (oldState != newState) { 765 progress = true; 766 states[v] = newState; 767 } 768 } 769 770 assert(oldSize <= states.size()); 771 assert(oldSize == states.size() || progress); 772 } 773 774 if (TraceLSP) { 775 errs() << "States after meet iteration:\n"; 776 for (auto Pair : states) { 777 Instruction *v = cast<Instruction>(Pair.first); 778 PhiState state = Pair.second; 779 state.dump(); 780 v->dump(); 781 } 782 } 783 784 // Insert Phis for all conflicts 785 // We want to keep naming deterministic in the loop that follows, so 786 // sort the keys before iteration. This is useful in allowing us to 787 // write stable tests. Note that there is no invalidation issue here. 788 SmallVector<Value*, 16> Keys; 789 Keys.reserve(states.size()); 790 for (auto Pair : states) { 791 Value *V = Pair.first; 792 Keys.push_back(V); 793 } 794 std::sort(Keys.begin(), Keys.end(), order_by_name); 795 // TODO: adjust naming patterns to avoid this order of iteration dependency 796 for (Value *V : Keys) { 797 Instruction *v = cast<Instruction>(V); 798 PhiState state = states[V]; 799 assert(!isKnownBaseResult(v) && "why did it get added?"); 800 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 801 if (!state.isConflict()) 802 continue; 803 804 if (isa<PHINode>(v)) { 805 int num_preds = 806 std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); 807 assert(num_preds > 0 && "how did we reach here"); 808 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); 809 NewInsertedDefs.insert(phi); 810 // Add metadata marking this as a base value 811 auto *const_1 = ConstantInt::get( 812 Type::getInt32Ty( 813 v->getParent()->getParent()->getParent()->getContext()), 814 1); 815 auto MDConst = ConstantAsMetadata::get(const_1); 816 MDNode *md = MDNode::get( 817 v->getParent()->getParent()->getParent()->getContext(), MDConst); 818 phi->setMetadata("is_base_value", md); 819 states[v] = PhiState(PhiState::Conflict, phi); 820 } else { 821 SelectInst *sel = cast<SelectInst>(v); 822 // The undef will be replaced later 823 UndefValue *undef = UndefValue::get(sel->getType()); 824 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, 825 undef, "base_select", sel); 826 NewInsertedDefs.insert(basesel); 827 // Add metadata marking this as a base value 828 auto *const_1 = ConstantInt::get( 829 Type::getInt32Ty( 830 v->getParent()->getParent()->getParent()->getContext()), 831 1); 832 auto MDConst = ConstantAsMetadata::get(const_1); 833 MDNode *md = MDNode::get( 834 v->getParent()->getParent()->getParent()->getContext(), MDConst); 835 basesel->setMetadata("is_base_value", md); 836 states[v] = PhiState(PhiState::Conflict, basesel); 837 } 838 } 839 840 // Fixup all the inputs of the new PHIs 841 for (auto Pair : states) { 842 Instruction *v = cast<Instruction>(Pair.first); 843 PhiState state = Pair.second; 844 845 assert(!isKnownBaseResult(v) && "why did it get added?"); 846 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 847 if (!state.isConflict()) 848 continue; 849 850 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 851 PHINode *phi = cast<PHINode>(v); 852 unsigned NumPHIValues = phi->getNumIncomingValues(); 853 for (unsigned i = 0; i < NumPHIValues; i++) { 854 Value *InVal = phi->getIncomingValue(i); 855 BasicBlock *InBB = phi->getIncomingBlock(i); 856 857 // If we've already seen InBB, add the same incoming value 858 // we added for it earlier. The IR verifier requires phi 859 // nodes with multiple entries from the same basic block 860 // to have the same incoming value for each of those 861 // entries. If we don't do this check here and basephi 862 // has a different type than base, we'll end up adding two 863 // bitcasts (and hence two distinct values) as incoming 864 // values for the same basic block. 865 866 int blockIndex = basephi->getBasicBlockIndex(InBB); 867 if (blockIndex != -1) { 868 Value *oldBase = basephi->getIncomingValue(blockIndex); 869 basephi->addIncoming(oldBase, InBB); 870 #ifndef NDEBUG 871 Value *base = findBaseOrBDV(InVal, cache); 872 if (!isKnownBaseResult(base)) { 873 // Either conflict or base. 874 assert(states.count(base)); 875 base = states[base].getBase(); 876 assert(base != nullptr && "unknown PhiState!"); 877 assert(NewInsertedDefs.count(base) && 878 "should have already added this in a prev. iteration!"); 879 } 880 881 // In essense this assert states: the only way two 882 // values incoming from the same basic block may be 883 // different is by being different bitcasts of the same 884 // value. A cleanup that remains TODO is changing 885 // findBaseOrBDV to return an llvm::Value of the correct 886 // type (and still remain pure). This will remove the 887 // need to add bitcasts. 888 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 889 "sanity -- findBaseOrBDV should be pure!"); 890 #endif 891 continue; 892 } 893 894 // Find either the defining value for the PHI or the normal base for 895 // a non-phi node 896 Value *base = findBaseOrBDV(InVal, cache); 897 if (!isKnownBaseResult(base)) { 898 // Either conflict or base. 899 assert(states.count(base)); 900 base = states[base].getBase(); 901 assert(base != nullptr && "unknown PhiState!"); 902 } 903 assert(base && "can't be null"); 904 // Must use original input BB since base may not be Instruction 905 // The cast is needed since base traversal may strip away bitcasts 906 if (base->getType() != basephi->getType()) { 907 base = new BitCastInst(base, basephi->getType(), "cast", 908 InBB->getTerminator()); 909 NewInsertedDefs.insert(base); 910 } 911 basephi->addIncoming(base, InBB); 912 } 913 assert(basephi->getNumIncomingValues() == NumPHIValues); 914 } else { 915 SelectInst *basesel = cast<SelectInst>(state.getBase()); 916 SelectInst *sel = cast<SelectInst>(v); 917 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 918 // something more safe and less hacky. 919 for (int i = 1; i <= 2; i++) { 920 Value *InVal = sel->getOperand(i); 921 // Find either the defining value for the PHI or the normal base for 922 // a non-phi node 923 Value *base = findBaseOrBDV(InVal, cache); 924 if (!isKnownBaseResult(base)) { 925 // Either conflict or base. 926 assert(states.count(base)); 927 base = states[base].getBase(); 928 assert(base != nullptr && "unknown PhiState!"); 929 } 930 assert(base && "can't be null"); 931 // Must use original input BB since base may not be Instruction 932 // The cast is needed since base traversal may strip away bitcasts 933 if (base->getType() != basesel->getType()) { 934 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 935 NewInsertedDefs.insert(base); 936 } 937 basesel->setOperand(i, base); 938 } 939 } 940 } 941 942 // Cache all of our results so we can cheaply reuse them 943 // NOTE: This is actually two caches: one of the base defining value 944 // relation and one of the base pointer relation! FIXME 945 for (auto item : states) { 946 Value *v = item.first; 947 Value *base = item.second.getBase(); 948 assert(v && base); 949 assert(!isKnownBaseResult(v) && "why did it get added?"); 950 951 if (TraceLSP) { 952 std::string fromstr = 953 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 954 : "none"; 955 errs() << "Updating base value cache" 956 << " for: " << (v->hasName() ? v->getName() : "") 957 << " from: " << fromstr 958 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 959 } 960 961 assert(isKnownBaseResult(base) && 962 "must be something we 'know' is a base pointer"); 963 if (cache.count(v)) { 964 // Once we transition from the BDV relation being store in the cache to 965 // the base relation being stored, it must be stable 966 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 967 "base relation should be stable"); 968 } 969 cache[v] = base; 970 } 971 assert(cache.find(def) != cache.end()); 972 return cache[def]; 973 } 974 975 // For a set of live pointers (base and/or derived), identify the base 976 // pointer of the object which they are derived from. This routine will 977 // mutate the IR graph as needed to make the 'base' pointer live at the 978 // definition site of 'derived'. This ensures that any use of 'derived' can 979 // also use 'base'. This may involve the insertion of a number of 980 // additional PHI nodes. 981 // 982 // preconditions: live is a set of pointer type Values 983 // 984 // side effects: may insert PHI nodes into the existing CFG, will preserve 985 // CFG, will not remove or mutate any existing nodes 986 // 987 // post condition: PointerToBase contains one (derived, base) pair for every 988 // pointer in live. Note that derived can be equal to base if the original 989 // pointer was a base pointer. 990 static void findBasePointers(const StatepointLiveSetTy &live, 991 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 992 DominatorTree *DT, DefiningValueMapTy &DVCache, 993 DenseSet<llvm::Value *> &NewInsertedDefs) { 994 // For the naming of values inserted to be deterministic - which makes for 995 // much cleaner and more stable tests - we need to assign an order to the 996 // live values. DenseSets do not provide a deterministic order across runs. 997 SmallVector<Value*, 64> Temp; 998 Temp.insert(Temp.end(), live.begin(), live.end()); 999 std::sort(Temp.begin(), Temp.end(), order_by_name); 1000 for (Value *ptr : Temp) { 1001 Value *base = findBasePointer(ptr, DVCache, NewInsertedDefs); 1002 assert(base && "failed to find base pointer"); 1003 PointerToBase[ptr] = base; 1004 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1005 DT->dominates(cast<Instruction>(base)->getParent(), 1006 cast<Instruction>(ptr)->getParent())) && 1007 "The base we found better dominate the derived pointer"); 1008 1009 // If you see this trip and like to live really dangerously, the code should 1010 // be correct, just with idioms the verifier can't handle. You can try 1011 // disabling the verifier at your own substaintial risk. 1012 assert(!isa<ConstantPointerNull>(base) && 1013 "the relocation code needs adjustment to handle the relocation of " 1014 "a null pointer constant without causing false positives in the " 1015 "safepoint ir verifier."); 1016 } 1017 } 1018 1019 /// Find the required based pointers (and adjust the live set) for the given 1020 /// parse point. 1021 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1022 const CallSite &CS, 1023 PartiallyConstructedSafepointRecord &result) { 1024 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 1025 DenseSet<llvm::Value *> NewInsertedDefs; 1026 findBasePointers(result.liveset, PointerToBase, &DT, DVCache, NewInsertedDefs); 1027 1028 if (PrintBasePointers) { 1029 // Note: Need to print these in a stable order since this is checked in 1030 // some tests. 1031 errs() << "Base Pairs (w/o Relocation):\n"; 1032 SmallVector<Value*, 64> Temp; 1033 Temp.reserve(PointerToBase.size()); 1034 for (auto Pair : PointerToBase) { 1035 Temp.push_back(Pair.first); 1036 } 1037 std::sort(Temp.begin(), Temp.end(), order_by_name); 1038 for (Value *Ptr : Temp) { 1039 Value *Base = PointerToBase[Ptr]; 1040 errs() << " derived %" << Ptr->getName() << " base %" 1041 << Base->getName() << "\n"; 1042 } 1043 } 1044 1045 result.PointerToBase = PointerToBase; 1046 result.NewInsertedDefs = NewInsertedDefs; 1047 } 1048 1049 /// Check for liveness of items in the insert defs and add them to the live 1050 /// and base pointer sets 1051 static void fixupLiveness(DominatorTree &DT, const CallSite &CS, 1052 const DenseSet<Value *> &allInsertedDefs, 1053 PartiallyConstructedSafepointRecord &result) { 1054 Instruction *inst = CS.getInstruction(); 1055 1056 auto liveset = result.liveset; 1057 auto PointerToBase = result.PointerToBase; 1058 1059 auto is_live_gc_reference = 1060 [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); }; 1061 1062 // For each new definition, check to see if a) the definition dominates the 1063 // instruction we're interested in, and b) one of the uses of that definition 1064 // is edge-reachable from the instruction we're interested in. This is the 1065 // same definition of liveness we used in the intial liveness analysis 1066 for (Value *newDef : allInsertedDefs) { 1067 if (liveset.count(newDef)) { 1068 // already live, no action needed 1069 continue; 1070 } 1071 1072 // PERF: Use DT to check instruction domination might not be good for 1073 // compilation time, and we could change to optimal solution if this 1074 // turn to be a issue 1075 if (!DT.dominates(cast<Instruction>(newDef), inst)) { 1076 // can't possibly be live at inst 1077 continue; 1078 } 1079 1080 if (is_live_gc_reference(*newDef)) { 1081 // Add the live new defs into liveset and PointerToBase 1082 liveset.insert(newDef); 1083 PointerToBase[newDef] = newDef; 1084 } 1085 } 1086 1087 result.liveset = liveset; 1088 result.PointerToBase = PointerToBase; 1089 } 1090 1091 static void fixupLiveReferences( 1092 Function &F, DominatorTree &DT, Pass *P, 1093 const DenseSet<llvm::Value *> &allInsertedDefs, 1094 ArrayRef<CallSite> toUpdate, 1095 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1096 for (size_t i = 0; i < records.size(); i++) { 1097 struct PartiallyConstructedSafepointRecord &info = records[i]; 1098 const CallSite &CS = toUpdate[i]; 1099 fixupLiveness(DT, CS, allInsertedDefs, info); 1100 } 1101 } 1102 1103 // Normalize basic block to make it ready to be target of invoke statepoint. 1104 // It means spliting it to have single predecessor. Return newly created BB 1105 // ready to be successor of invoke statepoint. 1106 static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB, 1107 BasicBlock *InvokeParent, 1108 Pass *P) { 1109 BasicBlock *ret = BB; 1110 1111 if (!BB->getUniquePredecessor()) { 1112 ret = SplitBlockPredecessors(BB, InvokeParent, ""); 1113 } 1114 1115 // Another requirement for such basic blocks is to not have any phi nodes. 1116 // Since we just ensured that new BB will have single predecessor, 1117 // all phi nodes in it will have one value. Here it would be naturall place 1118 // to 1119 // remove them all. But we can not do this because we are risking to remove 1120 // one of the values stored in liveset of another statepoint. We will do it 1121 // later after placing all safepoints. 1122 1123 return ret; 1124 } 1125 1126 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1127 auto itr = std::find(livevec.begin(), livevec.end(), val); 1128 assert(livevec.end() != itr); 1129 size_t index = std::distance(livevec.begin(), itr); 1130 assert(index < livevec.size()); 1131 return index; 1132 } 1133 1134 // Create new attribute set containing only attributes which can be transfered 1135 // from original call to the safepoint. 1136 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1137 AttributeSet ret; 1138 1139 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1140 unsigned index = AS.getSlotIndex(Slot); 1141 1142 if (index == AttributeSet::ReturnIndex || 1143 index == AttributeSet::FunctionIndex) { 1144 1145 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1146 ++it) { 1147 Attribute attr = *it; 1148 1149 // Do not allow certain attributes - just skip them 1150 // Safepoint can not be read only or read none. 1151 if (attr.hasAttribute(Attribute::ReadNone) || 1152 attr.hasAttribute(Attribute::ReadOnly)) 1153 continue; 1154 1155 ret = ret.addAttributes( 1156 AS.getContext(), index, 1157 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1158 } 1159 } 1160 1161 // Just skip parameter attributes for now 1162 } 1163 1164 return ret; 1165 } 1166 1167 /// Helper function to place all gc relocates necessary for the given 1168 /// statepoint. 1169 /// Inputs: 1170 /// liveVariables - list of variables to be relocated. 1171 /// liveStart - index of the first live variable. 1172 /// basePtrs - base pointers. 1173 /// statepointToken - statepoint instruction to which relocates should be 1174 /// bound. 1175 /// Builder - Llvm IR builder to be used to construct new calls. 1176 static void CreateGCRelocates(ArrayRef<llvm::Value *> liveVariables, 1177 const int liveStart, 1178 ArrayRef<llvm::Value *> basePtrs, 1179 Instruction *statepointToken, 1180 IRBuilder<> Builder) { 1181 SmallVector<Instruction *, 64> NewDefs; 1182 NewDefs.reserve(liveVariables.size()); 1183 1184 Module *M = statepointToken->getParent()->getParent()->getParent(); 1185 1186 for (unsigned i = 0; i < liveVariables.size(); i++) { 1187 // We generate a (potentially) unique declaration for every pointer type 1188 // combination. This results is some blow up the function declarations in 1189 // the IR, but removes the need for argument bitcasts which shrinks the IR 1190 // greatly and makes it much more readable. 1191 SmallVector<Type *, 1> types; // one per 'any' type 1192 types.push_back(liveVariables[i]->getType()); // result type 1193 Value *gc_relocate_decl = Intrinsic::getDeclaration( 1194 M, Intrinsic::experimental_gc_relocate, types); 1195 1196 // Generate the gc.relocate call and save the result 1197 Value *baseIdx = 1198 ConstantInt::get(Type::getInt32Ty(M->getContext()), 1199 liveStart + find_index(liveVariables, basePtrs[i])); 1200 Value *liveIdx = ConstantInt::get( 1201 Type::getInt32Ty(M->getContext()), 1202 liveStart + find_index(liveVariables, liveVariables[i])); 1203 1204 // only specify a debug name if we can give a useful one 1205 Value *reloc = Builder.CreateCall3( 1206 gc_relocate_decl, statepointToken, baseIdx, liveIdx, 1207 liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" 1208 : ""); 1209 // Trick CodeGen into thinking there are lots of free registers at this 1210 // fake call. 1211 cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold); 1212 1213 NewDefs.push_back(cast<Instruction>(reloc)); 1214 } 1215 assert(NewDefs.size() == liveVariables.size() && 1216 "missing or extra redefinition at safepoint"); 1217 } 1218 1219 static void 1220 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1221 const SmallVectorImpl<llvm::Value *> &basePtrs, 1222 const SmallVectorImpl<llvm::Value *> &liveVariables, 1223 Pass *P, 1224 PartiallyConstructedSafepointRecord &result) { 1225 assert(basePtrs.size() == liveVariables.size()); 1226 assert(isStatepoint(CS) && 1227 "This method expects to be rewriting a statepoint"); 1228 1229 BasicBlock *BB = CS.getInstruction()->getParent(); 1230 assert(BB); 1231 Function *F = BB->getParent(); 1232 assert(F && "must be set"); 1233 Module *M = F->getParent(); 1234 (void)M; 1235 assert(M && "must be set"); 1236 1237 // We're not changing the function signature of the statepoint since the gc 1238 // arguments go into the var args section. 1239 Function *gc_statepoint_decl = CS.getCalledFunction(); 1240 1241 // Then go ahead and use the builder do actually do the inserts. We insert 1242 // immediately before the previous instruction under the assumption that all 1243 // arguments will be available here. We can't insert afterwards since we may 1244 // be replacing a terminator. 1245 Instruction *insertBefore = CS.getInstruction(); 1246 IRBuilder<> Builder(insertBefore); 1247 // Copy all of the arguments from the original statepoint - this includes the 1248 // target, call args, and deopt args 1249 SmallVector<llvm::Value *, 64> args; 1250 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1251 // TODO: Clear the 'needs rewrite' flag 1252 1253 // add all the pointers to be relocated (gc arguments) 1254 // Capture the start of the live variable list for use in the gc_relocates 1255 const int live_start = args.size(); 1256 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1257 1258 // Create the statepoint given all the arguments 1259 Instruction *token = nullptr; 1260 AttributeSet return_attributes; 1261 if (CS.isCall()) { 1262 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1263 CallInst *call = 1264 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1265 call->setTailCall(toReplace->isTailCall()); 1266 call->setCallingConv(toReplace->getCallingConv()); 1267 1268 // Currently we will fail on parameter attributes and on certain 1269 // function attributes. 1270 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1271 // In case if we can handle this set of sttributes - set up function attrs 1272 // directly on statepoint and return attrs later for gc_result intrinsic. 1273 call->setAttributes(new_attrs.getFnAttributes()); 1274 return_attributes = new_attrs.getRetAttributes(); 1275 1276 token = call; 1277 1278 // Put the following gc_result and gc_relocate calls immediately after the 1279 // the old call (which we're about to delete) 1280 BasicBlock::iterator next(toReplace); 1281 assert(BB->end() != next && "not a terminator, must have next"); 1282 next++; 1283 Instruction *IP = &*(next); 1284 Builder.SetInsertPoint(IP); 1285 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1286 1287 } else { 1288 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1289 1290 // Insert the new invoke into the old block. We'll remove the old one in a 1291 // moment at which point this will become the new terminator for the 1292 // original block. 1293 InvokeInst *invoke = InvokeInst::Create( 1294 gc_statepoint_decl, toReplace->getNormalDest(), 1295 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1296 invoke->setCallingConv(toReplace->getCallingConv()); 1297 1298 // Currently we will fail on parameter attributes and on certain 1299 // function attributes. 1300 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1301 // In case if we can handle this set of sttributes - set up function attrs 1302 // directly on statepoint and return attrs later for gc_result intrinsic. 1303 invoke->setAttributes(new_attrs.getFnAttributes()); 1304 return_attributes = new_attrs.getRetAttributes(); 1305 1306 token = invoke; 1307 1308 // Generate gc relocates in exceptional path 1309 BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint( 1310 toReplace->getUnwindDest(), invoke->getParent(), P); 1311 1312 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1313 Builder.SetInsertPoint(IP); 1314 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1315 1316 // Extract second element from landingpad return value. We will attach 1317 // exceptional gc relocates to it. 1318 const unsigned idx = 1; 1319 Instruction *exceptional_token = 1320 cast<Instruction>(Builder.CreateExtractValue( 1321 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1322 result.UnwindToken = exceptional_token; 1323 1324 // Just throw away return value. We will use the one we got for normal 1325 // block. 1326 (void)CreateGCRelocates(liveVariables, live_start, basePtrs, 1327 exceptional_token, Builder); 1328 1329 // Generate gc relocates and returns for normal block 1330 BasicBlock *normalDest = normalizeBBForInvokeSafepoint( 1331 toReplace->getNormalDest(), invoke->getParent(), P); 1332 1333 IP = &*(normalDest->getFirstInsertionPt()); 1334 Builder.SetInsertPoint(IP); 1335 1336 // gc relocates will be generated later as if it were regular call 1337 // statepoint 1338 } 1339 assert(token); 1340 1341 // Take the name of the original value call if it had one. 1342 token->takeName(CS.getInstruction()); 1343 1344 // The GCResult is already inserted, we just need to find it 1345 #ifndef NDEBUG 1346 Instruction *toReplace = CS.getInstruction(); 1347 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1348 "only valid use before rewrite is gc.result"); 1349 assert(!toReplace->hasOneUse() || 1350 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1351 #endif 1352 1353 // Update the gc.result of the original statepoint (if any) to use the newly 1354 // inserted statepoint. This is safe to do here since the token can't be 1355 // considered a live reference. 1356 CS.getInstruction()->replaceAllUsesWith(token); 1357 1358 result.StatepointToken = token; 1359 1360 // Second, create a gc.relocate for every live variable 1361 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1362 1363 } 1364 1365 namespace { 1366 struct name_ordering { 1367 Value *base; 1368 Value *derived; 1369 bool operator()(name_ordering const &a, name_ordering const &b) { 1370 return -1 == a.derived->getName().compare(b.derived->getName()); 1371 } 1372 }; 1373 } 1374 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1375 SmallVectorImpl<Value *> &livevec) { 1376 assert(basevec.size() == livevec.size()); 1377 1378 SmallVector<name_ordering, 64> temp; 1379 for (size_t i = 0; i < basevec.size(); i++) { 1380 name_ordering v; 1381 v.base = basevec[i]; 1382 v.derived = livevec[i]; 1383 temp.push_back(v); 1384 } 1385 std::sort(temp.begin(), temp.end(), name_ordering()); 1386 for (size_t i = 0; i < basevec.size(); i++) { 1387 basevec[i] = temp[i].base; 1388 livevec[i] = temp[i].derived; 1389 } 1390 } 1391 1392 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1393 // which make the relocations happening at this safepoint explicit. 1394 // 1395 // WARNING: Does not do any fixup to adjust users of the original live 1396 // values. That's the callers responsibility. 1397 static void 1398 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1399 PartiallyConstructedSafepointRecord &result) { 1400 auto liveset = result.liveset; 1401 auto PointerToBase = result.PointerToBase; 1402 1403 // Convert to vector for efficient cross referencing. 1404 SmallVector<Value *, 64> basevec, livevec; 1405 livevec.reserve(liveset.size()); 1406 basevec.reserve(liveset.size()); 1407 for (Value *L : liveset) { 1408 livevec.push_back(L); 1409 1410 assert(PointerToBase.find(L) != PointerToBase.end()); 1411 Value *base = PointerToBase[L]; 1412 basevec.push_back(base); 1413 } 1414 assert(livevec.size() == basevec.size()); 1415 1416 // To make the output IR slightly more stable (for use in diffs), ensure a 1417 // fixed order of the values in the safepoint (by sorting the value name). 1418 // The order is otherwise meaningless. 1419 stablize_order(basevec, livevec); 1420 1421 // Do the actual rewriting and delete the old statepoint 1422 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1423 CS.getInstruction()->eraseFromParent(); 1424 } 1425 1426 // Helper function for the relocationViaAlloca. 1427 // It receives iterator to the statepoint gc relocates and emits store to the 1428 // assigned 1429 // location (via allocaMap) for the each one of them. 1430 // Add visited values into the visitedLiveValues set we will later use them 1431 // for sanity check. 1432 static void 1433 insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs, 1434 DenseMap<Value *, Value *> &allocaMap, 1435 DenseSet<Value *> &visitedLiveValues) { 1436 1437 for (User *U : gcRelocs) { 1438 if (!isa<IntrinsicInst>(U)) 1439 continue; 1440 1441 IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U); 1442 1443 // We only care about relocates 1444 if (relocatedValue->getIntrinsicID() != 1445 Intrinsic::experimental_gc_relocate) { 1446 continue; 1447 } 1448 1449 GCRelocateOperands relocateOperands(relocatedValue); 1450 Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr()); 1451 assert(allocaMap.count(originalValue)); 1452 Value *alloca = allocaMap[originalValue]; 1453 1454 // Emit store into the related alloca 1455 StoreInst *store = new StoreInst(relocatedValue, alloca); 1456 store->insertAfter(relocatedValue); 1457 1458 #ifndef NDEBUG 1459 visitedLiveValues.insert(originalValue); 1460 #endif 1461 } 1462 } 1463 1464 /// do all the relocation update via allocas and mem2reg 1465 static void relocationViaAlloca( 1466 Function &F, DominatorTree &DT, ArrayRef<Value *> live, 1467 ArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1468 #ifndef NDEBUG 1469 // record initial number of (static) allocas; we'll check we have the same 1470 // number when we get done. 1471 int InitialAllocaNum = 0; 1472 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); 1473 I != E; I++) 1474 if (isa<AllocaInst>(*I)) 1475 InitialAllocaNum++; 1476 #endif 1477 1478 // TODO-PERF: change data structures, reserve 1479 DenseMap<Value *, Value *> allocaMap; 1480 SmallVector<AllocaInst *, 200> PromotableAllocas; 1481 PromotableAllocas.reserve(live.size()); 1482 1483 // emit alloca for each live gc pointer 1484 for (unsigned i = 0; i < live.size(); i++) { 1485 Value *liveValue = live[i]; 1486 AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", 1487 F.getEntryBlock().getFirstNonPHI()); 1488 allocaMap[liveValue] = alloca; 1489 PromotableAllocas.push_back(alloca); 1490 } 1491 1492 // The next two loops are part of the same conceptual operation. We need to 1493 // insert a store to the alloca after the original def and at each 1494 // redefinition. We need to insert a load before each use. These are split 1495 // into distinct loops for performance reasons. 1496 1497 // update gc pointer after each statepoint 1498 // either store a relocated value or null (if no relocated value found for 1499 // this gc pointer and it is not a gc_result) 1500 // this must happen before we update the statepoint with load of alloca 1501 // otherwise we lose the link between statepoint and old def 1502 for (size_t i = 0; i < records.size(); i++) { 1503 const struct PartiallyConstructedSafepointRecord &info = records[i]; 1504 Value *Statepoint = info.StatepointToken; 1505 1506 // This will be used for consistency check 1507 DenseSet<Value *> visitedLiveValues; 1508 1509 // Insert stores for normal statepoint gc relocates 1510 insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues); 1511 1512 // In case if it was invoke statepoint 1513 // we will insert stores for exceptional path gc relocates. 1514 if (isa<InvokeInst>(Statepoint)) { 1515 insertRelocationStores(info.UnwindToken->users(), 1516 allocaMap, visitedLiveValues); 1517 } 1518 1519 #ifndef NDEBUG 1520 // As a debuging aid, pretend that an unrelocated pointer becomes null at 1521 // the gc.statepoint. This will turn some subtle GC problems into slightly 1522 // easier to debug SEGVs 1523 SmallVector<AllocaInst *, 64> ToClobber; 1524 for (auto Pair : allocaMap) { 1525 Value *Def = Pair.first; 1526 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1527 1528 // This value was relocated 1529 if (visitedLiveValues.count(Def)) { 1530 continue; 1531 } 1532 ToClobber.push_back(Alloca); 1533 } 1534 1535 auto InsertClobbersAt = [&](Instruction *IP) { 1536 for (auto *AI : ToClobber) { 1537 auto AIType = cast<PointerType>(AI->getType()); 1538 auto PT = cast<PointerType>(AIType->getElementType()); 1539 Constant *CPN = ConstantPointerNull::get(PT); 1540 StoreInst *store = new StoreInst(CPN, AI); 1541 store->insertBefore(IP); 1542 } 1543 }; 1544 1545 // Insert the clobbering stores. These may get intermixed with the 1546 // gc.results and gc.relocates, but that's fine. 1547 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1548 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1549 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1550 } else { 1551 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1552 Next++; 1553 InsertClobbersAt(Next); 1554 } 1555 #endif 1556 } 1557 // update use with load allocas and add store for gc_relocated 1558 for (auto Pair : allocaMap) { 1559 Value *def = Pair.first; 1560 Value *alloca = Pair.second; 1561 1562 // we pre-record the uses of allocas so that we dont have to worry about 1563 // later update 1564 // that change the user information. 1565 SmallVector<Instruction *, 20> uses; 1566 // PERF: trade a linear scan for repeated reallocation 1567 uses.reserve(std::distance(def->user_begin(), def->user_end())); 1568 for (User *U : def->users()) { 1569 if (!isa<ConstantExpr>(U)) { 1570 // If the def has a ConstantExpr use, then the def is either a 1571 // ConstantExpr use itself or null. In either case 1572 // (recursively in the first, directly in the second), the oop 1573 // it is ultimately dependent on is null and this particular 1574 // use does not need to be fixed up. 1575 uses.push_back(cast<Instruction>(U)); 1576 } 1577 } 1578 1579 std::sort(uses.begin(), uses.end()); 1580 auto last = std::unique(uses.begin(), uses.end()); 1581 uses.erase(last, uses.end()); 1582 1583 for (Instruction *use : uses) { 1584 if (isa<PHINode>(use)) { 1585 PHINode *phi = cast<PHINode>(use); 1586 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 1587 if (def == phi->getIncomingValue(i)) { 1588 LoadInst *load = new LoadInst( 1589 alloca, "", phi->getIncomingBlock(i)->getTerminator()); 1590 phi->setIncomingValue(i, load); 1591 } 1592 } 1593 } else { 1594 LoadInst *load = new LoadInst(alloca, "", use); 1595 use->replaceUsesOfWith(def, load); 1596 } 1597 } 1598 1599 // emit store for the initial gc value 1600 // store must be inserted after load, otherwise store will be in alloca's 1601 // use list and an extra load will be inserted before it 1602 StoreInst *store = new StoreInst(def, alloca); 1603 if (Instruction *inst = dyn_cast<Instruction>(def)) { 1604 if (InvokeInst *invoke = dyn_cast<InvokeInst>(inst)) { 1605 // InvokeInst is a TerminatorInst so the store need to be inserted 1606 // into its normal destination block. 1607 BasicBlock *normalDest = invoke->getNormalDest(); 1608 store->insertBefore(normalDest->getFirstNonPHI()); 1609 } else { 1610 assert(!inst->isTerminator() && 1611 "The only TerminatorInst that can produce a value is " 1612 "InvokeInst which is handled above."); 1613 store->insertAfter(inst); 1614 } 1615 } else { 1616 assert((isa<Argument>(def) || isa<GlobalVariable>(def) || 1617 isa<ConstantPointerNull>(def)) && 1618 "Must be argument or global"); 1619 store->insertAfter(cast<Instruction>(alloca)); 1620 } 1621 } 1622 1623 assert(PromotableAllocas.size() == live.size() && 1624 "we must have the same allocas with lives"); 1625 if (!PromotableAllocas.empty()) { 1626 // apply mem2reg to promote alloca to SSA 1627 PromoteMemToReg(PromotableAllocas, DT); 1628 } 1629 1630 #ifndef NDEBUG 1631 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); 1632 I != E; I++) 1633 if (isa<AllocaInst>(*I)) 1634 InitialAllocaNum--; 1635 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1636 #endif 1637 } 1638 1639 /// Implement a unique function which doesn't require we sort the input 1640 /// vector. Doing so has the effect of changing the output of a couple of 1641 /// tests in ways which make them less useful in testing fused safepoints. 1642 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1643 DenseSet<T> Seen; 1644 SmallVector<T, 128> TempVec; 1645 TempVec.reserve(Vec.size()); 1646 for (auto Element : Vec) 1647 TempVec.push_back(Element); 1648 Vec.clear(); 1649 for (auto V : TempVec) { 1650 if (Seen.insert(V).second) { 1651 Vec.push_back(V); 1652 } 1653 } 1654 } 1655 1656 static Function *getUseHolder(Module &M) { 1657 FunctionType *ftype = 1658 FunctionType::get(Type::getVoidTy(M.getContext()), true); 1659 Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype)); 1660 return Func; 1661 } 1662 1663 /// Insert holders so that each Value is obviously live through the entire 1664 /// liftetime of the call. 1665 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1666 SmallVectorImpl<CallInst *> &holders) { 1667 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1668 Function *Func = getUseHolder(*M); 1669 if (CS.isCall()) { 1670 // For call safepoints insert dummy calls right after safepoint 1671 BasicBlock::iterator next(CS.getInstruction()); 1672 next++; 1673 CallInst *base_holder = CallInst::Create(Func, Values, "", next); 1674 holders.push_back(base_holder); 1675 } else if (CS.isInvoke()) { 1676 // For invoke safepooints insert dummy calls both in normal and 1677 // exceptional destination blocks 1678 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 1679 CallInst *normal_holder = CallInst::Create( 1680 Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt()); 1681 CallInst *unwind_holder = CallInst::Create( 1682 Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt()); 1683 holders.push_back(normal_holder); 1684 holders.push_back(unwind_holder); 1685 } else 1686 llvm_unreachable("unsupported call type"); 1687 } 1688 1689 static void findLiveReferences( 1690 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1691 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1692 for (size_t i = 0; i < records.size(); i++) { 1693 struct PartiallyConstructedSafepointRecord &info = records[i]; 1694 const CallSite &CS = toUpdate[i]; 1695 analyzeParsePointLiveness(DT, CS, info); 1696 } 1697 } 1698 1699 static void addBasesAsLiveValues(StatepointLiveSetTy &liveset, 1700 DenseMap<Value *, Value *> &PointerToBase) { 1701 // Identify any base pointers which are used in this safepoint, but not 1702 // themselves relocated. We need to relocate them so that later inserted 1703 // safepoints can get the properly relocated base register. 1704 DenseSet<Value *> missing; 1705 for (Value *L : liveset) { 1706 assert(PointerToBase.find(L) != PointerToBase.end()); 1707 Value *base = PointerToBase[L]; 1708 assert(base); 1709 if (liveset.find(base) == liveset.end()) { 1710 assert(PointerToBase.find(base) == PointerToBase.end()); 1711 // uniqued by set insert 1712 missing.insert(base); 1713 } 1714 } 1715 1716 // Note that we want these at the end of the list, otherwise 1717 // register placement gets screwed up once we lower to STATEPOINT 1718 // instructions. This is an utter hack, but there doesn't seem to be a 1719 // better one. 1720 for (Value *base : missing) { 1721 assert(base); 1722 liveset.insert(base); 1723 PointerToBase[base] = base; 1724 } 1725 assert(liveset.size() == PointerToBase.size()); 1726 } 1727 1728 /// Remove any vector of pointers from the liveset by scalarizing them over the 1729 /// statepoint instruction. Adds the scalarized pieces to the liveset. It 1730 /// would be preferrable to include the vector in the statepoint itself, but 1731 /// the lowering code currently does not handle that. Extending it would be 1732 /// slightly non-trivial since it requires a format change. Given how rare 1733 /// such cases are (for the moment?) scalarizing is an acceptable comprimise. 1734 static void splitVectorValues(Instruction *StatepointInst, 1735 StatepointLiveSetTy& LiveSet, DominatorTree &DT) { 1736 SmallVector<Value *, 16> ToSplit; 1737 for (Value *V : LiveSet) 1738 if (isa<VectorType>(V->getType())) 1739 ToSplit.push_back(V); 1740 1741 if (ToSplit.empty()) 1742 return; 1743 1744 Function &F = *(StatepointInst->getParent()->getParent()); 1745 1746 DenseMap<Value*, AllocaInst*> AllocaMap; 1747 // First is normal return, second is exceptional return (invoke only) 1748 DenseMap<Value*, std::pair<Value*,Value*>> Replacements; 1749 for (Value *V : ToSplit) { 1750 LiveSet.erase(V); 1751 1752 AllocaInst *Alloca = new AllocaInst(V->getType(), "", 1753 F.getEntryBlock().getFirstNonPHI()); 1754 AllocaMap[V] = Alloca; 1755 1756 VectorType *VT = cast<VectorType>(V->getType()); 1757 IRBuilder<> Builder(StatepointInst); 1758 SmallVector<Value*, 16> Elements; 1759 for (unsigned i = 0; i < VT->getNumElements(); i++) 1760 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1761 LiveSet.insert(Elements.begin(), Elements.end()); 1762 1763 auto InsertVectorReform = [&](Instruction *IP) { 1764 Builder.SetInsertPoint(IP); 1765 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1766 Value *ResultVec = UndefValue::get(VT); 1767 for (unsigned i = 0; i < VT->getNumElements(); i++) 1768 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1769 Builder.getInt32(i)); 1770 return ResultVec; 1771 }; 1772 1773 if (isa<CallInst>(StatepointInst)) { 1774 BasicBlock::iterator Next(StatepointInst); 1775 Next++; 1776 Instruction *IP = &*(Next); 1777 Replacements[V].first = InsertVectorReform(IP); 1778 Replacements[V].second = nullptr; 1779 } else { 1780 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 1781 // We've already normalized - check that we don't have shared destination 1782 // blocks 1783 BasicBlock *NormalDest = Invoke->getNormalDest(); 1784 assert(!isa<PHINode>(NormalDest->begin())); 1785 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 1786 assert(!isa<PHINode>(UnwindDest->begin())); 1787 // Insert insert element sequences in both successors 1788 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 1789 Replacements[V].first = InsertVectorReform(IP); 1790 IP = &*(UnwindDest->getFirstInsertionPt()); 1791 Replacements[V].second = InsertVectorReform(IP); 1792 } 1793 } 1794 for (Value *V : ToSplit) { 1795 AllocaInst *Alloca = AllocaMap[V]; 1796 1797 // Capture all users before we start mutating use lists 1798 SmallVector<Instruction*, 16> Users; 1799 for (User *U : V->users()) 1800 Users.push_back(cast<Instruction>(U)); 1801 1802 for (Instruction *I : Users) { 1803 if (auto Phi = dyn_cast<PHINode>(I)) { 1804 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 1805 if (V == Phi->getIncomingValue(i)) { 1806 LoadInst *Load = new LoadInst(Alloca, "", 1807 Phi->getIncomingBlock(i)->getTerminator()); 1808 Phi->setIncomingValue(i, Load); 1809 } 1810 } else { 1811 LoadInst *Load = new LoadInst(Alloca, "", I); 1812 I->replaceUsesOfWith(V, Load); 1813 } 1814 } 1815 1816 // Store the original value and the replacement value into the alloca 1817 StoreInst *Store = new StoreInst(V, Alloca); 1818 if (auto I = dyn_cast<Instruction>(V)) 1819 Store->insertAfter(I); 1820 else 1821 Store->insertAfter(Alloca); 1822 1823 // Normal return for invoke, or call return 1824 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 1825 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1826 // Unwind return for invoke only 1827 Replacement = cast_or_null<Instruction>(Replacements[V].second); 1828 if (Replacement) 1829 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1830 } 1831 1832 // apply mem2reg to promote alloca to SSA 1833 SmallVector<AllocaInst*, 16> Allocas; 1834 for (Value *V : ToSplit) 1835 Allocas.push_back(AllocaMap[V]); 1836 PromoteMemToReg(Allocas, DT); 1837 } 1838 1839 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 1840 SmallVectorImpl<CallSite> &toUpdate) { 1841 #ifndef NDEBUG 1842 // sanity check the input 1843 std::set<CallSite> uniqued; 1844 uniqued.insert(toUpdate.begin(), toUpdate.end()); 1845 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 1846 1847 for (size_t i = 0; i < toUpdate.size(); i++) { 1848 CallSite &CS = toUpdate[i]; 1849 assert(CS.getInstruction()->getParent()->getParent() == &F); 1850 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 1851 } 1852 #endif 1853 1854 // A list of dummy calls added to the IR to keep various values obviously 1855 // live in the IR. We'll remove all of these when done. 1856 SmallVector<CallInst *, 64> holders; 1857 1858 // Insert a dummy call with all of the arguments to the vm_state we'll need 1859 // for the actual safepoint insertion. This ensures reference arguments in 1860 // the deopt argument list are considered live through the safepoint (and 1861 // thus makes sure they get relocated.) 1862 for (size_t i = 0; i < toUpdate.size(); i++) { 1863 CallSite &CS = toUpdate[i]; 1864 Statepoint StatepointCS(CS); 1865 1866 SmallVector<Value *, 64> DeoptValues; 1867 for (Use &U : StatepointCS.vm_state_args()) { 1868 Value *Arg = cast<Value>(&U); 1869 assert(!isUnhandledGCPointerType(Arg->getType()) && 1870 "support for FCA unimplemented"); 1871 if (isHandledGCPointerType(Arg->getType())) 1872 DeoptValues.push_back(Arg); 1873 } 1874 insertUseHolderAfter(CS, DeoptValues, holders); 1875 } 1876 1877 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 1878 records.reserve(toUpdate.size()); 1879 for (size_t i = 0; i < toUpdate.size(); i++) { 1880 struct PartiallyConstructedSafepointRecord info; 1881 records.push_back(info); 1882 } 1883 assert(records.size() == toUpdate.size()); 1884 1885 // A) Identify all gc pointers which are staticly live at the given call 1886 // site. 1887 findLiveReferences(F, DT, P, toUpdate, records); 1888 1889 // Do a limited scalarization of any live at safepoint vector values which 1890 // contain pointers. This enables this pass to run after vectorization at 1891 // the cost of some possible performance loss. TODO: it would be nice to 1892 // natively support vectors all the way through the backend so we don't need 1893 // to scalarize here. 1894 for (size_t i = 0; i < records.size(); i++) { 1895 struct PartiallyConstructedSafepointRecord &info = records[i]; 1896 Instruction *statepoint = toUpdate[i].getInstruction(); 1897 splitVectorValues(cast<Instruction>(statepoint), info.liveset, DT); 1898 } 1899 1900 // B) Find the base pointers for each live pointer 1901 /* scope for caching */ { 1902 // Cache the 'defining value' relation used in the computation and 1903 // insertion of base phis and selects. This ensures that we don't insert 1904 // large numbers of duplicate base_phis. 1905 DefiningValueMapTy DVCache; 1906 1907 for (size_t i = 0; i < records.size(); i++) { 1908 struct PartiallyConstructedSafepointRecord &info = records[i]; 1909 CallSite &CS = toUpdate[i]; 1910 findBasePointers(DT, DVCache, CS, info); 1911 } 1912 } // end of cache scope 1913 1914 // The base phi insertion logic (for any safepoint) may have inserted new 1915 // instructions which are now live at some safepoint. The simplest such 1916 // example is: 1917 // loop: 1918 // phi a <-- will be a new base_phi here 1919 // safepoint 1 <-- that needs to be live here 1920 // gep a + 1 1921 // safepoint 2 1922 // br loop 1923 DenseSet<llvm::Value *> allInsertedDefs; 1924 for (size_t i = 0; i < records.size(); i++) { 1925 struct PartiallyConstructedSafepointRecord &info = records[i]; 1926 allInsertedDefs.insert(info.NewInsertedDefs.begin(), 1927 info.NewInsertedDefs.end()); 1928 } 1929 1930 // We insert some dummy calls after each safepoint to definitely hold live 1931 // the base pointers which were identified for that safepoint. We'll then 1932 // ask liveness for _every_ base inserted to see what is now live. Then we 1933 // remove the dummy calls. 1934 holders.reserve(holders.size() + records.size()); 1935 for (size_t i = 0; i < records.size(); i++) { 1936 struct PartiallyConstructedSafepointRecord &info = records[i]; 1937 CallSite &CS = toUpdate[i]; 1938 1939 SmallVector<Value *, 128> Bases; 1940 for (auto Pair : info.PointerToBase) { 1941 Bases.push_back(Pair.second); 1942 } 1943 insertUseHolderAfter(CS, Bases, holders); 1944 } 1945 1946 // Add the bases explicitly to the live vector set. This may result in a few 1947 // extra relocations, but the base has to be available whenever a pointer 1948 // derived from it is used. Thus, we need it to be part of the statepoint's 1949 // gc arguments list. TODO: Introduce an explicit notion (in the following 1950 // code) of the GC argument list as seperate from the live Values at a 1951 // given statepoint. 1952 for (size_t i = 0; i < records.size(); i++) { 1953 struct PartiallyConstructedSafepointRecord &info = records[i]; 1954 addBasesAsLiveValues(info.liveset, info.PointerToBase); 1955 } 1956 1957 // If we inserted any new values, we need to adjust our notion of what is 1958 // live at a particular safepoint. 1959 if (!allInsertedDefs.empty()) { 1960 fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records); 1961 } 1962 if (PrintBasePointers) { 1963 for (size_t i = 0; i < records.size(); i++) { 1964 struct PartiallyConstructedSafepointRecord &info = records[i]; 1965 errs() << "Base Pairs: (w/Relocation)\n"; 1966 for (auto Pair : info.PointerToBase) { 1967 errs() << " derived %" << Pair.first->getName() << " base %" 1968 << Pair.second->getName() << "\n"; 1969 } 1970 } 1971 } 1972 for (size_t i = 0; i < holders.size(); i++) { 1973 holders[i]->eraseFromParent(); 1974 holders[i] = nullptr; 1975 } 1976 holders.clear(); 1977 1978 // Now run through and replace the existing statepoints with new ones with 1979 // the live variables listed. We do not yet update uses of the values being 1980 // relocated. We have references to live variables that need to 1981 // survive to the last iteration of this loop. (By construction, the 1982 // previous statepoint can not be a live variable, thus we can and remove 1983 // the old statepoint calls as we go.) 1984 for (size_t i = 0; i < records.size(); i++) { 1985 struct PartiallyConstructedSafepointRecord &info = records[i]; 1986 CallSite &CS = toUpdate[i]; 1987 makeStatepointExplicit(DT, CS, P, info); 1988 } 1989 toUpdate.clear(); // prevent accident use of invalid CallSites 1990 1991 // In case if we inserted relocates in a different basic block than the 1992 // original safepoint (this can happen for invokes). We need to be sure that 1993 // original values were not used in any of the phi nodes at the 1994 // beginning of basic block containing them. Because we know that all such 1995 // blocks will have single predecessor we can safely assume that all phi 1996 // nodes have single entry (because of normalizeBBForInvokeSafepoint). 1997 // Just remove them all here. 1998 for (size_t i = 0; i < records.size(); i++) { 1999 Instruction *I = records[i].StatepointToken; 2000 2001 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 2002 FoldSingleEntryPHINodes(invoke->getNormalDest()); 2003 assert(!isa<PHINode>(invoke->getNormalDest()->begin())); 2004 2005 FoldSingleEntryPHINodes(invoke->getUnwindDest()); 2006 assert(!isa<PHINode>(invoke->getUnwindDest()->begin())); 2007 } 2008 } 2009 2010 // Do all the fixups of the original live variables to their relocated selves 2011 SmallVector<Value *, 128> live; 2012 for (size_t i = 0; i < records.size(); i++) { 2013 struct PartiallyConstructedSafepointRecord &info = records[i]; 2014 // We can't simply save the live set from the original insertion. One of 2015 // the live values might be the result of a call which needs a safepoint. 2016 // That Value* no longer exists and we need to use the new gc_result. 2017 // Thankfully, the liveset is embedded in the statepoint (and updated), so 2018 // we just grab that. 2019 Statepoint statepoint(info.StatepointToken); 2020 live.insert(live.end(), statepoint.gc_args_begin(), 2021 statepoint.gc_args_end()); 2022 } 2023 unique_unsorted(live); 2024 2025 #ifndef NDEBUG 2026 // sanity check 2027 for (auto ptr : live) { 2028 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 2029 } 2030 #endif 2031 2032 relocationViaAlloca(F, DT, live, records); 2033 return !records.empty(); 2034 } 2035 2036 /// Returns true if this function should be rewritten by this pass. The main 2037 /// point of this function is as an extension point for custom logic. 2038 static bool shouldRewriteStatepointsIn(Function &F) { 2039 // TODO: This should check the GCStrategy 2040 if (F.hasGC()) { 2041 const std::string StatepointExampleName("statepoint-example"); 2042 return StatepointExampleName == F.getGC(); 2043 } else 2044 return false; 2045 } 2046 2047 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2048 // Nothing to do for declarations. 2049 if (F.isDeclaration() || F.empty()) 2050 return false; 2051 2052 // Policy choice says not to rewrite - the most common reason is that we're 2053 // compiling code without a GCStrategy. 2054 if (!shouldRewriteStatepointsIn(F)) 2055 return false; 2056 2057 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2058 2059 // Gather all the statepoints which need rewritten. Be careful to only 2060 // consider those in reachable code since we need to ask dominance queries 2061 // when rewriting. We'll delete the unreachable ones in a moment. 2062 SmallVector<CallSite, 64> ParsePointNeeded; 2063 SmallVector<CallSite, 16> UnreachableStatepoints; 2064 for (Instruction &I : inst_range(F)) { 2065 // TODO: only the ones with the flag set! 2066 if (isStatepoint(I)) { 2067 if (DT.isReachableFromEntry(I.getParent())) 2068 ParsePointNeeded.push_back(CallSite(&I)); 2069 else 2070 UnreachableStatepoints.push_back(CallSite(&I)); 2071 } 2072 } 2073 2074 bool MadeChange = false; 2075 2076 // Delete any unreachable statepoints so that we don't have unrewritten 2077 // statepoints surviving this pass. This makes testing easier and the 2078 // resulting IR less confusing to human readers. Rather than be fancy, we 2079 // just reuse a utility function which removes the unreachable blocks. 2080 if (!UnreachableStatepoints.empty()) 2081 MadeChange |= removeUnreachableBlocks(F); 2082 2083 // Return early if no work to do. 2084 if (ParsePointNeeded.empty()) 2085 return MadeChange; 2086 2087 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2088 // These are created by LCSSA. They have the effect of increasing the size 2089 // of liveness sets for no good reason. It may be harder to do this post 2090 // insertion since relocations and base phis can confuse things. 2091 for (BasicBlock &BB : F) 2092 if (BB.getUniquePredecessor()) { 2093 MadeChange = true; 2094 FoldSingleEntryPHINodes(&BB); 2095 } 2096 2097 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); 2098 return MadeChange; 2099 } 2100