1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Statepoint.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 41 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 42 43 using namespace llvm; 44 45 // Print tracing output 46 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 47 cl::init(false)); 48 49 // Print the liveset found at the insert location 50 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 51 cl::init(false)); 52 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", 53 cl::Hidden, cl::init(false)); 54 // Print out the base pointers for debugging 55 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", 56 cl::Hidden, cl::init(false)); 57 58 namespace { 59 struct RewriteStatepointsForGC : public FunctionPass { 60 static char ID; // Pass identification, replacement for typeid 61 62 RewriteStatepointsForGC() : FunctionPass(ID) { 63 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 64 } 65 bool runOnFunction(Function &F) override; 66 67 void getAnalysisUsage(AnalysisUsage &AU) const override { 68 // We add and rewrite a bunch of instructions, but don't really do much 69 // else. We could in theory preserve a lot more analyses here. 70 AU.addRequired<DominatorTreeWrapperPass>(); 71 } 72 }; 73 } // namespace 74 75 char RewriteStatepointsForGC::ID = 0; 76 77 FunctionPass *llvm::createRewriteStatepointsForGCPass() { 78 return new RewriteStatepointsForGC(); 79 } 80 81 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 82 "Make relocations explicit at statepoints", false, false) 83 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 84 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 85 "Make relocations explicit at statepoints", false, false) 86 87 namespace { 88 // The type of the internal cache used inside the findBasePointers family 89 // of functions. From the callers perspective, this is an opaque type and 90 // should not be inspected. 91 // 92 // In the actual implementation this caches two relations: 93 // - The base relation itself (i.e. this pointer is based on that one) 94 // - The base defining value relation (i.e. before base_phi insertion) 95 // Generally, after the execution of a full findBasePointer call, only the 96 // base relation will remain. Internally, we add a mixture of the two 97 // types, then update all the second type to the first type 98 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 99 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 100 101 struct PartiallyConstructedSafepointRecord { 102 /// The set of values known to be live accross this safepoint 103 StatepointLiveSetTy liveset; 104 105 /// Mapping from live pointers to a base-defining-value 106 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 107 108 /// Any new values which were added to the IR during base pointer analysis 109 /// for this safepoint 110 DenseSet<llvm::Value *> NewInsertedDefs; 111 112 /// The *new* gc.statepoint instruction itself. This produces the token 113 /// that normal path gc.relocates and the gc.result are tied to. 114 Instruction *StatepointToken; 115 116 /// Instruction to which exceptional gc relocates are attached 117 /// Makes it easier to iterate through them during relocationViaAlloca. 118 Instruction *UnwindToken; 119 }; 120 } 121 122 // TODO: Once we can get to the GCStrategy, this becomes 123 // Optional<bool> isGCManagedPointer(const Value *V) const override { 124 125 static bool isGCPointerType(const Type *T) { 126 if (const PointerType *PT = dyn_cast<PointerType>(T)) 127 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 128 // GC managed heap. We know that a pointer into this heap needs to be 129 // updated and that no other pointer does. 130 return (1 == PT->getAddressSpace()); 131 return false; 132 } 133 134 /// Return true if the Value is a gc reference type which is potentially used 135 /// after the instruction 'loc'. This is only used with the edge reachability 136 /// liveness code. Note: It is assumed the V dominates loc. 137 static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT, 138 LoopInfo *LI) { 139 if (!isGCPointerType(V.getType())) 140 return false; 141 142 if (V.use_empty()) 143 return false; 144 145 // Given assumption that V dominates loc, this may be live 146 return true; 147 } 148 149 #ifndef NDEBUG 150 static bool isAggWhichContainsGCPtrType(Type *Ty) { 151 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 152 return isGCPointerType(VT->getScalarType()); 153 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 154 return isGCPointerType(AT->getElementType()) || 155 isAggWhichContainsGCPtrType(AT->getElementType()); 156 if (StructType *ST = dyn_cast<StructType>(Ty)) 157 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 158 [](Type *SubType) { 159 return isGCPointerType(SubType) || 160 isAggWhichContainsGCPtrType(SubType); 161 }); 162 return false; 163 } 164 #endif 165 166 // Conservatively identifies any definitions which might be live at the 167 // given instruction. The analysis is performed immediately before the 168 // given instruction. Values defined by that instruction are not considered 169 // live. Values used by that instruction are considered live. 170 // 171 // preconditions: valid IR graph, term is either a terminator instruction or 172 // a call instruction, pred is the basic block of term, DT, LI are valid 173 // 174 // side effects: none, does not mutate IR 175 // 176 // postconditions: populates liveValues as discussed above 177 static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred, 178 DominatorTree &DT, LoopInfo *LI, 179 StatepointLiveSetTy &liveValues) { 180 liveValues.clear(); 181 182 assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator()); 183 184 Function *F = pred->getParent(); 185 186 auto is_live_gc_reference = 187 [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); }; 188 189 // Are there any gc pointer arguments live over this point? This needs to be 190 // special cased since arguments aren't defined in basic blocks. 191 for (Argument &arg : F->args()) { 192 assert(!isAggWhichContainsGCPtrType(arg.getType()) && 193 "support for FCA unimplemented"); 194 195 if (is_live_gc_reference(arg)) { 196 liveValues.insert(&arg); 197 } 198 } 199 200 // Walk through all dominating blocks - the ones which can contain 201 // definitions used in this block - and check to see if any of the values 202 // they define are used in locations potentially reachable from the 203 // interesting instruction. 204 BasicBlock *BBI = pred; 205 while (true) { 206 if (TraceLSP) { 207 errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n"; 208 } 209 assert(DT.dominates(BBI, pred)); 210 assert(isPotentiallyReachable(BBI, pred, &DT) && 211 "dominated block must be reachable"); 212 213 // Walk through the instructions in dominating blocks and keep any 214 // that have a use potentially reachable from the block we're 215 // considering putting the safepoint in 216 for (Instruction &inst : *BBI) { 217 if (TraceLSP) { 218 errs() << "[LSP] Looking at instruction "; 219 inst.dump(); 220 } 221 222 if (pred == BBI && (&inst) == term) { 223 if (TraceLSP) { 224 errs() << "[LSP] stopped because we encountered the safepoint " 225 "instruction.\n"; 226 } 227 228 // If we're in the block which defines the interesting instruction, 229 // we don't want to include any values as live which are defined 230 // _after_ the interesting line or as part of the line itself 231 // i.e. "term" is the call instruction for a call safepoint, the 232 // results of the call should not be considered live in that stackmap 233 break; 234 } 235 236 assert(!isAggWhichContainsGCPtrType(inst.getType()) && 237 "support for FCA unimplemented"); 238 239 if (is_live_gc_reference(inst)) { 240 if (TraceLSP) { 241 errs() << "[LSP] found live value for this safepoint "; 242 inst.dump(); 243 term->dump(); 244 } 245 liveValues.insert(&inst); 246 } 247 } 248 if (!DT.getNode(BBI)->getIDom()) { 249 assert(BBI == &F->getEntryBlock() && 250 "failed to find a dominator for something other than " 251 "the entry block"); 252 break; 253 } 254 BBI = DT.getNode(BBI)->getIDom()->getBlock(); 255 } 256 } 257 258 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 259 if (a->hasName() && b->hasName()) { 260 return -1 == a->getName().compare(b->getName()); 261 } else if (a->hasName() && !b->hasName()) { 262 return true; 263 } else if (!a->hasName() && b->hasName()) { 264 return false; 265 } else { 266 // Better than nothing, but not stable 267 return a < b; 268 } 269 } 270 271 /// Find the initial live set. Note that due to base pointer 272 /// insertion, the live set may be incomplete. 273 static void 274 analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS, 275 PartiallyConstructedSafepointRecord &result) { 276 Instruction *inst = CS.getInstruction(); 277 278 BasicBlock *BB = inst->getParent(); 279 StatepointLiveSetTy liveset; 280 findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset); 281 282 if (PrintLiveSet) { 283 // Note: This output is used by several of the test cases 284 // The order of elemtns in a set is not stable, put them in a vec and sort 285 // by name 286 SmallVector<Value *, 64> temp; 287 temp.insert(temp.end(), liveset.begin(), liveset.end()); 288 std::sort(temp.begin(), temp.end(), order_by_name); 289 errs() << "Live Variables:\n"; 290 for (Value *V : temp) { 291 errs() << " " << V->getName(); // no newline 292 V->dump(); 293 } 294 } 295 if (PrintLiveSetSize) { 296 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 297 errs() << "Number live values: " << liveset.size() << "\n"; 298 } 299 result.liveset = liveset; 300 } 301 302 /// True iff this value is the null pointer constant (of any pointer type) 303 static bool isNullConstant(Value *V) { 304 return isa<Constant>(V) && isa<PointerType>(V->getType()) && 305 cast<Constant>(V)->isNullValue(); 306 } 307 308 /// Helper function for findBasePointer - Will return a value which either a) 309 /// defines the base pointer for the input or b) blocks the simple search 310 /// (i.e. a PHI or Select of two derived pointers) 311 static Value *findBaseDefiningValue(Value *I) { 312 assert(I->getType()->isPointerTy() && 313 "Illegal to ask for the base pointer of a non-pointer type"); 314 315 // There are instructions which can never return gc pointer values. Sanity 316 // check 317 // that this is actually true. 318 assert(!isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) && 319 !isa<ShuffleVectorInst>(I) && "Vector types are not gc pointers"); 320 assert((!isa<Instruction>(I) || isa<InvokeInst>(I) || 321 !cast<Instruction>(I)->isTerminator()) && 322 "With the exception of invoke terminators don't define values"); 323 assert(!isa<StoreInst>(I) && !isa<FenceInst>(I) && 324 "Can't be definitions to start with"); 325 assert(!isa<ICmpInst>(I) && !isa<FCmpInst>(I) && 326 "Comparisons don't give ops"); 327 // There's a bunch of instructions which just don't make sense to apply to 328 // a pointer. The only valid reason for this would be pointer bit 329 // twiddling which we're just not going to support. 330 assert((!isa<Instruction>(I) || !cast<Instruction>(I)->isBinaryOp()) && 331 "Binary ops on pointer values are meaningless. Unless your " 332 "bit-twiddling which we don't support"); 333 334 if (Argument *Arg = dyn_cast<Argument>(I)) { 335 // An incoming argument to the function is a base pointer 336 // We should have never reached here if this argument isn't an gc value 337 assert(Arg->getType()->isPointerTy() && 338 "Base for pointer must be another pointer"); 339 return Arg; 340 } 341 342 if (GlobalVariable *global = dyn_cast<GlobalVariable>(I)) { 343 // base case 344 assert(global->getType()->isPointerTy() && 345 "Base for pointer must be another pointer"); 346 return global; 347 } 348 349 // inlining could possibly introduce phi node that contains 350 // undef if callee has multiple returns 351 if (UndefValue *undef = dyn_cast<UndefValue>(I)) { 352 assert(undef->getType()->isPointerTy() && 353 "Base for pointer must be another pointer"); 354 return undef; // utterly meaningless, but useful for dealing with 355 // partially optimized code. 356 } 357 358 // Due to inheritance, this must be _after_ the global variable and undef 359 // checks 360 if (Constant *con = dyn_cast<Constant>(I)) { 361 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 362 "order of checks wrong!"); 363 // Note: Finding a constant base for something marked for relocation 364 // doesn't really make sense. The most likely case is either a) some 365 // screwed up the address space usage or b) your validating against 366 // compiled C++ code w/o the proper separation. The only real exception 367 // is a null pointer. You could have generic code written to index of 368 // off a potentially null value and have proven it null. We also use 369 // null pointers in dead paths of relocation phis (which we might later 370 // want to find a base pointer for). 371 assert(con->getType()->isPointerTy() && 372 "Base for pointer must be another pointer"); 373 assert(con->isNullValue() && "null is the only case which makes sense"); 374 return con; 375 } 376 377 if (CastInst *CI = dyn_cast<CastInst>(I)) { 378 Value *def = CI->stripPointerCasts(); 379 assert(def->getType()->isPointerTy() && 380 "Base for pointer must be another pointer"); 381 // If we find a cast instruction here, it means we've found a cast which is 382 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 383 // handle int->ptr conversion. 384 assert(!isa<CastInst>(def) && "shouldn't find another cast here"); 385 return findBaseDefiningValue(def); 386 } 387 388 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 389 if (LI->getType()->isPointerTy()) { 390 Value *Op = LI->getOperand(0); 391 (void)Op; 392 // Has to be a pointer to an gc object, or possibly an array of such? 393 assert(Op->getType()->isPointerTy()); 394 return LI; // The value loaded is an gc base itself 395 } 396 } 397 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 398 Value *Op = GEP->getOperand(0); 399 if (Op->getType()->isPointerTy()) { 400 return findBaseDefiningValue(Op); // The base of this GEP is the base 401 } 402 } 403 404 if (AllocaInst *alloc = dyn_cast<AllocaInst>(I)) { 405 // An alloca represents a conceptual stack slot. It's the slot itself 406 // that the GC needs to know about, not the value in the slot. 407 assert(alloc->getType()->isPointerTy() && 408 "Base for pointer must be another pointer"); 409 return alloc; 410 } 411 412 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 413 switch (II->getIntrinsicID()) { 414 default: 415 // fall through to general call handling 416 break; 417 case Intrinsic::experimental_gc_statepoint: 418 case Intrinsic::experimental_gc_result_float: 419 case Intrinsic::experimental_gc_result_int: 420 llvm_unreachable("these don't produce pointers"); 421 case Intrinsic::experimental_gc_result_ptr: 422 // This is just a special case of the CallInst check below to handle a 423 // statepoint with deopt args which hasn't been rewritten for GC yet. 424 // TODO: Assert that the statepoint isn't rewritten yet. 425 return II; 426 case Intrinsic::experimental_gc_relocate: { 427 // Rerunning safepoint insertion after safepoints are already 428 // inserted is not supported. It could probably be made to work, 429 // but why are you doing this? There's no good reason. 430 llvm_unreachable("repeat safepoint insertion is not supported"); 431 } 432 case Intrinsic::gcroot: 433 // Currently, this mechanism hasn't been extended to work with gcroot. 434 // There's no reason it couldn't be, but I haven't thought about the 435 // implications much. 436 llvm_unreachable( 437 "interaction with the gcroot mechanism is not supported"); 438 } 439 } 440 // We assume that functions in the source language only return base 441 // pointers. This should probably be generalized via attributes to support 442 // both source language and internal functions. 443 if (CallInst *call = dyn_cast<CallInst>(I)) { 444 assert(call->getType()->isPointerTy() && 445 "Base for pointer must be another pointer"); 446 return call; 447 } 448 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 449 assert(invoke->getType()->isPointerTy() && 450 "Base for pointer must be another pointer"); 451 return invoke; 452 } 453 454 // I have absolutely no idea how to implement this part yet. It's not 455 // neccessarily hard, I just haven't really looked at it yet. 456 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 457 458 if (AtomicCmpXchgInst *cas = dyn_cast<AtomicCmpXchgInst>(I)) { 459 // A CAS is effectively a atomic store and load combined under a 460 // predicate. From the perspective of base pointers, we just treat it 461 // like a load. We loaded a pointer from a address in memory, that value 462 // had better be a valid base pointer. 463 return cas->getPointerOperand(); 464 } 465 if (AtomicRMWInst *atomic = dyn_cast<AtomicRMWInst>(I)) { 466 assert(AtomicRMWInst::Xchg == atomic->getOperation() && 467 "All others are binary ops which don't apply to base pointers"); 468 // semantically, a load, store pair. Treat it the same as a standard load 469 return atomic->getPointerOperand(); 470 } 471 472 // The aggregate ops. Aggregates can either be in the heap or on the 473 // stack, but in either case, this is simply a field load. As a result, 474 // this is a defining definition of the base just like a load is. 475 if (ExtractValueInst *ev = dyn_cast<ExtractValueInst>(I)) { 476 return ev; 477 } 478 479 // We should never see an insert vector since that would require we be 480 // tracing back a struct value not a pointer value. 481 assert(!isa<InsertValueInst>(I) && 482 "Base pointer for a struct is meaningless"); 483 484 // The last two cases here don't return a base pointer. Instead, they 485 // return a value which dynamically selects from amoung several base 486 // derived pointers (each with it's own base potentially). It's the job of 487 // the caller to resolve these. 488 if (SelectInst *select = dyn_cast<SelectInst>(I)) { 489 return select; 490 } 491 492 return cast<PHINode>(I); 493 } 494 495 /// Returns the base defining value for this value. 496 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &cache) { 497 Value *&Cached = cache[I]; 498 if (!Cached) { 499 Cached = findBaseDefiningValue(I); 500 } 501 assert(cache[I] != nullptr); 502 503 if (TraceLSP) { 504 errs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() 505 << "\n"; 506 } 507 return Cached; 508 } 509 510 /// Return a base pointer for this value if known. Otherwise, return it's 511 /// base defining value. 512 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &cache) { 513 Value *def = findBaseDefiningValueCached(I, cache); 514 auto Found = cache.find(def); 515 if (Found != cache.end()) { 516 // Either a base-of relation, or a self reference. Caller must check. 517 return Found->second; 518 } 519 // Only a BDV available 520 return def; 521 } 522 523 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 524 /// is it known to be a base pointer? Or do we need to continue searching. 525 static bool isKnownBaseResult(Value *v) { 526 if (!isa<PHINode>(v) && !isa<SelectInst>(v)) { 527 // no recursion possible 528 return true; 529 } 530 if (cast<Instruction>(v)->getMetadata("is_base_value")) { 531 // This is a previously inserted base phi or select. We know 532 // that this is a base value. 533 return true; 534 } 535 536 // We need to keep searching 537 return false; 538 } 539 540 // TODO: find a better name for this 541 namespace { 542 class PhiState { 543 public: 544 enum Status { Unknown, Base, Conflict }; 545 546 PhiState(Status s, Value *b = nullptr) : status(s), base(b) { 547 assert(status != Base || b); 548 } 549 PhiState(Value *b) : status(Base), base(b) {} 550 PhiState() : status(Unknown), base(nullptr) {} 551 PhiState(const PhiState &other) : status(other.status), base(other.base) { 552 assert(status != Base || base); 553 } 554 555 Status getStatus() const { return status; } 556 Value *getBase() const { return base; } 557 558 bool isBase() const { return getStatus() == Base; } 559 bool isUnknown() const { return getStatus() == Unknown; } 560 bool isConflict() const { return getStatus() == Conflict; } 561 562 bool operator==(const PhiState &other) const { 563 return base == other.base && status == other.status; 564 } 565 566 bool operator!=(const PhiState &other) const { return !(*this == other); } 567 568 void dump() { 569 errs() << status << " (" << base << " - " 570 << (base ? base->getName() : "nullptr") << "): "; 571 } 572 573 private: 574 Status status; 575 Value *base; // non null only if status == base 576 }; 577 578 typedef DenseMap<Value *, PhiState> ConflictStateMapTy; 579 // Values of type PhiState form a lattice, and this is a helper 580 // class that implementes the meet operation. The meat of the meet 581 // operation is implemented in MeetPhiStates::pureMeet 582 class MeetPhiStates { 583 public: 584 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. 585 explicit MeetPhiStates(const ConflictStateMapTy &phiStates) 586 : phiStates(phiStates) {} 587 588 // Destructively meet the current result with the base V. V can 589 // either be a merge instruction (SelectInst / PHINode), in which 590 // case its status is looked up in the phiStates map; or a regular 591 // SSA value, in which case it is assumed to be a base. 592 void meetWith(Value *V) { 593 PhiState otherState = getStateForBDV(V); 594 assert((MeetPhiStates::pureMeet(otherState, currentResult) == 595 MeetPhiStates::pureMeet(currentResult, otherState)) && 596 "math is wrong: meet does not commute!"); 597 currentResult = MeetPhiStates::pureMeet(otherState, currentResult); 598 } 599 600 PhiState getResult() const { return currentResult; } 601 602 private: 603 const ConflictStateMapTy &phiStates; 604 PhiState currentResult; 605 606 /// Return a phi state for a base defining value. We'll generate a new 607 /// base state for known bases and expect to find a cached state otherwise 608 PhiState getStateForBDV(Value *baseValue) { 609 if (isKnownBaseResult(baseValue)) { 610 return PhiState(baseValue); 611 } else { 612 return lookupFromMap(baseValue); 613 } 614 } 615 616 PhiState lookupFromMap(Value *V) { 617 auto I = phiStates.find(V); 618 assert(I != phiStates.end() && "lookup failed!"); 619 return I->second; 620 } 621 622 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { 623 switch (stateA.getStatus()) { 624 case PhiState::Unknown: 625 return stateB; 626 627 case PhiState::Base: 628 assert(stateA.getBase() && "can't be null"); 629 if (stateB.isUnknown()) 630 return stateA; 631 632 if (stateB.isBase()) { 633 if (stateA.getBase() == stateB.getBase()) { 634 assert(stateA == stateB && "equality broken!"); 635 return stateA; 636 } 637 return PhiState(PhiState::Conflict); 638 } 639 assert(stateB.isConflict() && "only three states!"); 640 return PhiState(PhiState::Conflict); 641 642 case PhiState::Conflict: 643 return stateA; 644 } 645 llvm_unreachable("only three states!"); 646 } 647 }; 648 } 649 /// For a given value or instruction, figure out what base ptr it's derived 650 /// from. For gc objects, this is simply itself. On success, returns a value 651 /// which is the base pointer. (This is reliable and can be used for 652 /// relocation.) On failure, returns nullptr. 653 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache, 654 DenseSet<llvm::Value *> &NewInsertedDefs) { 655 Value *def = findBaseOrBDV(I, cache); 656 657 if (isKnownBaseResult(def)) { 658 return def; 659 } 660 661 // Here's the rough algorithm: 662 // - For every SSA value, construct a mapping to either an actual base 663 // pointer or a PHI which obscures the base pointer. 664 // - Construct a mapping from PHI to unknown TOP state. Use an 665 // optimistic algorithm to propagate base pointer information. Lattice 666 // looks like: 667 // UNKNOWN 668 // b1 b2 b3 b4 669 // CONFLICT 670 // When algorithm terminates, all PHIs will either have a single concrete 671 // base or be in a conflict state. 672 // - For every conflict, insert a dummy PHI node without arguments. Add 673 // these to the base[Instruction] = BasePtr mapping. For every 674 // non-conflict, add the actual base. 675 // - For every conflict, add arguments for the base[a] of each input 676 // arguments. 677 // 678 // Note: A simpler form of this would be to add the conflict form of all 679 // PHIs without running the optimistic algorithm. This would be 680 // analougous to pessimistic data flow and would likely lead to an 681 // overall worse solution. 682 683 ConflictStateMapTy states; 684 states[def] = PhiState(); 685 // Recursively fill in all phis & selects reachable from the initial one 686 // for which we don't already know a definite base value for 687 // PERF: Yes, this is as horribly inefficient as it looks. 688 bool done = false; 689 while (!done) { 690 done = true; 691 for (auto Pair : states) { 692 Value *v = Pair.first; 693 assert(!isKnownBaseResult(v) && "why did it get added?"); 694 if (PHINode *phi = dyn_cast<PHINode>(v)) { 695 assert(phi->getNumIncomingValues() > 0 && 696 "zero input phis are illegal"); 697 for (Value *InVal : phi->incoming_values()) { 698 Value *local = findBaseOrBDV(InVal, cache); 699 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 700 states[local] = PhiState(); 701 done = false; 702 } 703 } 704 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 705 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 706 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 707 states[local] = PhiState(); 708 done = false; 709 } 710 local = findBaseOrBDV(sel->getFalseValue(), cache); 711 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 712 states[local] = PhiState(); 713 done = false; 714 } 715 } 716 } 717 } 718 719 if (TraceLSP) { 720 errs() << "States after initialization:\n"; 721 for (auto Pair : states) { 722 Instruction *v = cast<Instruction>(Pair.first); 723 PhiState state = Pair.second; 724 state.dump(); 725 v->dump(); 726 } 727 } 728 729 // TODO: come back and revisit the state transitions around inputs which 730 // have reached conflict state. The current version seems too conservative. 731 732 bool progress = true; 733 size_t oldSize = 0; 734 while (progress) { 735 oldSize = states.size(); 736 progress = false; 737 for (auto Pair : states) { 738 MeetPhiStates calculateMeet(states); 739 Value *v = Pair.first; 740 assert(!isKnownBaseResult(v) && "why did it get added?"); 741 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 742 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); 743 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); 744 } else 745 for (Value *Val : cast<PHINode>(v)->incoming_values()) 746 calculateMeet.meetWith(findBaseOrBDV(Val, cache)); 747 748 PhiState oldState = states[v]; 749 PhiState newState = calculateMeet.getResult(); 750 if (oldState != newState) { 751 progress = true; 752 states[v] = newState; 753 } 754 } 755 756 assert(oldSize <= states.size()); 757 assert(oldSize == states.size() || progress); 758 } 759 760 if (TraceLSP) { 761 errs() << "States after meet iteration:\n"; 762 for (auto Pair : states) { 763 Instruction *v = cast<Instruction>(Pair.first); 764 PhiState state = Pair.second; 765 state.dump(); 766 v->dump(); 767 } 768 } 769 770 // Insert Phis for all conflicts 771 for (auto Pair : states) { 772 Instruction *v = cast<Instruction>(Pair.first); 773 PhiState state = Pair.second; 774 assert(!isKnownBaseResult(v) && "why did it get added?"); 775 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 776 if (state.isConflict()) { 777 if (isa<PHINode>(v)) { 778 int num_preds = 779 std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); 780 assert(num_preds > 0 && "how did we reach here"); 781 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); 782 NewInsertedDefs.insert(phi); 783 // Add metadata marking this as a base value 784 auto *const_1 = ConstantInt::get( 785 Type::getInt32Ty( 786 v->getParent()->getParent()->getParent()->getContext()), 787 1); 788 auto MDConst = ConstantAsMetadata::get(const_1); 789 MDNode *md = MDNode::get( 790 v->getParent()->getParent()->getParent()->getContext(), MDConst); 791 phi->setMetadata("is_base_value", md); 792 states[v] = PhiState(PhiState::Conflict, phi); 793 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 794 // The undef will be replaced later 795 UndefValue *undef = UndefValue::get(sel->getType()); 796 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, 797 undef, "base_select", sel); 798 NewInsertedDefs.insert(basesel); 799 // Add metadata marking this as a base value 800 auto *const_1 = ConstantInt::get( 801 Type::getInt32Ty( 802 v->getParent()->getParent()->getParent()->getContext()), 803 1); 804 auto MDConst = ConstantAsMetadata::get(const_1); 805 MDNode *md = MDNode::get( 806 v->getParent()->getParent()->getParent()->getContext(), MDConst); 807 basesel->setMetadata("is_base_value", md); 808 states[v] = PhiState(PhiState::Conflict, basesel); 809 } else 810 llvm_unreachable("unknown conflict type"); 811 } 812 } 813 814 // Fixup all the inputs of the new PHIs 815 for (auto Pair : states) { 816 Instruction *v = cast<Instruction>(Pair.first); 817 PhiState state = Pair.second; 818 819 assert(!isKnownBaseResult(v) && "why did it get added?"); 820 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 821 if (state.isConflict()) { 822 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 823 PHINode *phi = cast<PHINode>(v); 824 unsigned NumPHIValues = phi->getNumIncomingValues(); 825 for (unsigned i = 0; i < NumPHIValues; i++) { 826 Value *InVal = phi->getIncomingValue(i); 827 BasicBlock *InBB = phi->getIncomingBlock(i); 828 829 // If we've already seen InBB, add the same incoming value 830 // we added for it earlier. The IR verifier requires phi 831 // nodes with multiple entries from the same basic block 832 // to have the same incoming value for each of those 833 // entries. If we don't do this check here and basephi 834 // has a different type than base, we'll end up adding two 835 // bitcasts (and hence two distinct values) as incoming 836 // values for the same basic block. 837 838 int blockIndex = basephi->getBasicBlockIndex(InBB); 839 if (blockIndex != -1) { 840 Value *oldBase = basephi->getIncomingValue(blockIndex); 841 basephi->addIncoming(oldBase, InBB); 842 #ifndef NDEBUG 843 Value *base = findBaseOrBDV(InVal, cache); 844 if (!isKnownBaseResult(base)) { 845 // Either conflict or base. 846 assert(states.count(base)); 847 base = states[base].getBase(); 848 assert(base != nullptr && "unknown PhiState!"); 849 assert(NewInsertedDefs.count(base) && 850 "should have already added this in a prev. iteration!"); 851 } 852 853 // In essense this assert states: the only way two 854 // values incoming from the same basic block may be 855 // different is by being different bitcasts of the same 856 // value. A cleanup that remains TODO is changing 857 // findBaseOrBDV to return an llvm::Value of the correct 858 // type (and still remain pure). This will remove the 859 // need to add bitcasts. 860 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 861 "sanity -- findBaseOrBDV should be pure!"); 862 #endif 863 continue; 864 } 865 866 // Find either the defining value for the PHI or the normal base for 867 // a non-phi node 868 Value *base = findBaseOrBDV(InVal, cache); 869 if (!isKnownBaseResult(base)) { 870 // Either conflict or base. 871 assert(states.count(base)); 872 base = states[base].getBase(); 873 assert(base != nullptr && "unknown PhiState!"); 874 } 875 assert(base && "can't be null"); 876 // Must use original input BB since base may not be Instruction 877 // The cast is needed since base traversal may strip away bitcasts 878 if (base->getType() != basephi->getType()) { 879 base = new BitCastInst(base, basephi->getType(), "cast", 880 InBB->getTerminator()); 881 NewInsertedDefs.insert(base); 882 } 883 basephi->addIncoming(base, InBB); 884 } 885 assert(basephi->getNumIncomingValues() == NumPHIValues); 886 } else if (SelectInst *basesel = dyn_cast<SelectInst>(state.getBase())) { 887 SelectInst *sel = cast<SelectInst>(v); 888 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 889 // something more safe and less hacky. 890 for (int i = 1; i <= 2; i++) { 891 Value *InVal = sel->getOperand(i); 892 // Find either the defining value for the PHI or the normal base for 893 // a non-phi node 894 Value *base = findBaseOrBDV(InVal, cache); 895 if (!isKnownBaseResult(base)) { 896 // Either conflict or base. 897 assert(states.count(base)); 898 base = states[base].getBase(); 899 assert(base != nullptr && "unknown PhiState!"); 900 } 901 assert(base && "can't be null"); 902 // Must use original input BB since base may not be Instruction 903 // The cast is needed since base traversal may strip away bitcasts 904 if (base->getType() != basesel->getType()) { 905 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 906 NewInsertedDefs.insert(base); 907 } 908 basesel->setOperand(i, base); 909 } 910 } else 911 llvm_unreachable("unexpected conflict type"); 912 } 913 } 914 915 // Cache all of our results so we can cheaply reuse them 916 // NOTE: This is actually two caches: one of the base defining value 917 // relation and one of the base pointer relation! FIXME 918 for (auto item : states) { 919 Value *v = item.first; 920 Value *base = item.second.getBase(); 921 assert(v && base); 922 assert(!isKnownBaseResult(v) && "why did it get added?"); 923 924 if (TraceLSP) { 925 std::string fromstr = 926 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 927 : "none"; 928 errs() << "Updating base value cache" 929 << " for: " << (v->hasName() ? v->getName() : "") 930 << " from: " << fromstr 931 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 932 } 933 934 assert(isKnownBaseResult(base) && 935 "must be something we 'know' is a base pointer"); 936 if (cache.count(v)) { 937 // Once we transition from the BDV relation being store in the cache to 938 // the base relation being stored, it must be stable 939 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 940 "base relation should be stable"); 941 } 942 cache[v] = base; 943 } 944 assert(cache.find(def) != cache.end()); 945 return cache[def]; 946 } 947 948 // For a set of live pointers (base and/or derived), identify the base 949 // pointer of the object which they are derived from. This routine will 950 // mutate the IR graph as needed to make the 'base' pointer live at the 951 // definition site of 'derived'. This ensures that any use of 'derived' can 952 // also use 'base'. This may involve the insertion of a number of 953 // additional PHI nodes. 954 // 955 // preconditions: live is a set of pointer type Values 956 // 957 // side effects: may insert PHI nodes into the existing CFG, will preserve 958 // CFG, will not remove or mutate any existing nodes 959 // 960 // post condition: PointerToBase contains one (derived, base) pair for every 961 // pointer in live. Note that derived can be equal to base if the original 962 // pointer was a base pointer. 963 static void findBasePointers(const StatepointLiveSetTy &live, 964 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 965 DominatorTree *DT, DefiningValueMapTy &DVCache, 966 DenseSet<llvm::Value *> &NewInsertedDefs) { 967 for (Value *ptr : live) { 968 Value *base = findBasePointer(ptr, DVCache, NewInsertedDefs); 969 assert(base && "failed to find base pointer"); 970 PointerToBase[ptr] = base; 971 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 972 DT->dominates(cast<Instruction>(base)->getParent(), 973 cast<Instruction>(ptr)->getParent())) && 974 "The base we found better dominate the derived pointer"); 975 976 // If you see this trip and like to live really dangerously, the code should 977 // be correct, just with idioms the verifier can't handle. You can try 978 // disabling the verifier at your own substaintial risk. 979 assert(!isNullConstant(base) && "the relocation code needs adjustment to " 980 "handle the relocation of a null pointer " 981 "constant without causing false positives " 982 "in the safepoint ir verifier."); 983 } 984 } 985 986 /// Find the required based pointers (and adjust the live set) for the given 987 /// parse point. 988 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 989 const CallSite &CS, 990 PartiallyConstructedSafepointRecord &result) { 991 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 992 DenseSet<llvm::Value *> NewInsertedDefs; 993 findBasePointers(result.liveset, PointerToBase, &DT, DVCache, NewInsertedDefs); 994 995 if (PrintBasePointers) { 996 errs() << "Base Pairs (w/o Relocation):\n"; 997 for (auto Pair : PointerToBase) { 998 errs() << " derived %" << Pair.first->getName() << " base %" 999 << Pair.second->getName() << "\n"; 1000 } 1001 } 1002 1003 result.PointerToBase = PointerToBase; 1004 result.NewInsertedDefs = NewInsertedDefs; 1005 } 1006 1007 /// Check for liveness of items in the insert defs and add them to the live 1008 /// and base pointer sets 1009 static void fixupLiveness(DominatorTree &DT, const CallSite &CS, 1010 const DenseSet<Value *> &allInsertedDefs, 1011 PartiallyConstructedSafepointRecord &result) { 1012 Instruction *inst = CS.getInstruction(); 1013 1014 auto liveset = result.liveset; 1015 auto PointerToBase = result.PointerToBase; 1016 1017 auto is_live_gc_reference = 1018 [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); }; 1019 1020 // For each new definition, check to see if a) the definition dominates the 1021 // instruction we're interested in, and b) one of the uses of that definition 1022 // is edge-reachable from the instruction we're interested in. This is the 1023 // same definition of liveness we used in the intial liveness analysis 1024 for (Value *newDef : allInsertedDefs) { 1025 if (liveset.count(newDef)) { 1026 // already live, no action needed 1027 continue; 1028 } 1029 1030 // PERF: Use DT to check instruction domination might not be good for 1031 // compilation time, and we could change to optimal solution if this 1032 // turn to be a issue 1033 if (!DT.dominates(cast<Instruction>(newDef), inst)) { 1034 // can't possibly be live at inst 1035 continue; 1036 } 1037 1038 if (is_live_gc_reference(*newDef)) { 1039 // Add the live new defs into liveset and PointerToBase 1040 liveset.insert(newDef); 1041 PointerToBase[newDef] = newDef; 1042 } 1043 } 1044 1045 result.liveset = liveset; 1046 result.PointerToBase = PointerToBase; 1047 } 1048 1049 static void fixupLiveReferences( 1050 Function &F, DominatorTree &DT, Pass *P, 1051 const DenseSet<llvm::Value *> &allInsertedDefs, 1052 ArrayRef<CallSite> toUpdate, 1053 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1054 for (size_t i = 0; i < records.size(); i++) { 1055 struct PartiallyConstructedSafepointRecord &info = records[i]; 1056 const CallSite &CS = toUpdate[i]; 1057 fixupLiveness(DT, CS, allInsertedDefs, info); 1058 } 1059 } 1060 1061 // Normalize basic block to make it ready to be target of invoke statepoint. 1062 // It means spliting it to have single predecessor. Return newly created BB 1063 // ready to be successor of invoke statepoint. 1064 static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB, 1065 BasicBlock *InvokeParent, 1066 Pass *P) { 1067 BasicBlock *ret = BB; 1068 1069 if (!BB->getUniquePredecessor()) { 1070 ret = SplitBlockPredecessors(BB, InvokeParent, ""); 1071 } 1072 1073 // Another requirement for such basic blocks is to not have any phi nodes. 1074 // Since we just ensured that new BB will have single predecessor, 1075 // all phi nodes in it will have one value. Here it would be naturall place 1076 // to 1077 // remove them all. But we can not do this because we are risking to remove 1078 // one of the values stored in liveset of another statepoint. We will do it 1079 // later after placing all safepoints. 1080 1081 return ret; 1082 } 1083 1084 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1085 auto itr = std::find(livevec.begin(), livevec.end(), val); 1086 assert(livevec.end() != itr); 1087 size_t index = std::distance(livevec.begin(), itr); 1088 assert(index < livevec.size()); 1089 return index; 1090 } 1091 1092 // Create new attribute set containing only attributes which can be transfered 1093 // from original call to the safepoint. 1094 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1095 AttributeSet ret; 1096 1097 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1098 unsigned index = AS.getSlotIndex(Slot); 1099 1100 if (index == AttributeSet::ReturnIndex || 1101 index == AttributeSet::FunctionIndex) { 1102 1103 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1104 ++it) { 1105 Attribute attr = *it; 1106 1107 // Do not allow certain attributes - just skip them 1108 // Safepoint can not be read only or read none. 1109 if (attr.hasAttribute(Attribute::ReadNone) || 1110 attr.hasAttribute(Attribute::ReadOnly)) 1111 continue; 1112 1113 ret = ret.addAttributes( 1114 AS.getContext(), index, 1115 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1116 } 1117 } 1118 1119 // Just skip parameter attributes for now 1120 } 1121 1122 return ret; 1123 } 1124 1125 /// Helper function to place all gc relocates necessary for the given 1126 /// statepoint. 1127 /// Inputs: 1128 /// liveVariables - list of variables to be relocated. 1129 /// liveStart - index of the first live variable. 1130 /// basePtrs - base pointers. 1131 /// statepointToken - statepoint instruction to which relocates should be 1132 /// bound. 1133 /// Builder - Llvm IR builder to be used to construct new calls. 1134 void CreateGCRelocates(ArrayRef<llvm::Value *> liveVariables, 1135 const int liveStart, 1136 ArrayRef<llvm::Value *> basePtrs, 1137 Instruction *statepointToken, IRBuilder<> Builder) { 1138 1139 SmallVector<Instruction *, 64> NewDefs; 1140 NewDefs.reserve(liveVariables.size()); 1141 1142 Module *M = statepointToken->getParent()->getParent()->getParent(); 1143 1144 for (unsigned i = 0; i < liveVariables.size(); i++) { 1145 // We generate a (potentially) unique declaration for every pointer type 1146 // combination. This results is some blow up the function declarations in 1147 // the IR, but removes the need for argument bitcasts which shrinks the IR 1148 // greatly and makes it much more readable. 1149 SmallVector<Type *, 1> types; // one per 'any' type 1150 types.push_back(liveVariables[i]->getType()); // result type 1151 Value *gc_relocate_decl = Intrinsic::getDeclaration( 1152 M, Intrinsic::experimental_gc_relocate, types); 1153 1154 // Generate the gc.relocate call and save the result 1155 Value *baseIdx = 1156 ConstantInt::get(Type::getInt32Ty(M->getContext()), 1157 liveStart + find_index(liveVariables, basePtrs[i])); 1158 Value *liveIdx = ConstantInt::get( 1159 Type::getInt32Ty(M->getContext()), 1160 liveStart + find_index(liveVariables, liveVariables[i])); 1161 1162 // only specify a debug name if we can give a useful one 1163 Value *reloc = Builder.CreateCall3( 1164 gc_relocate_decl, statepointToken, baseIdx, liveIdx, 1165 liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" 1166 : ""); 1167 // Trick CodeGen into thinking there are lots of free registers at this 1168 // fake call. 1169 cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold); 1170 1171 NewDefs.push_back(cast<Instruction>(reloc)); 1172 } 1173 assert(NewDefs.size() == liveVariables.size() && 1174 "missing or extra redefinition at safepoint"); 1175 } 1176 1177 static void 1178 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1179 const SmallVectorImpl<llvm::Value *> &basePtrs, 1180 const SmallVectorImpl<llvm::Value *> &liveVariables, 1181 Pass *P, 1182 PartiallyConstructedSafepointRecord &result) { 1183 assert(basePtrs.size() == liveVariables.size()); 1184 assert(isStatepoint(CS) && 1185 "This method expects to be rewriting a statepoint"); 1186 1187 BasicBlock *BB = CS.getInstruction()->getParent(); 1188 assert(BB); 1189 Function *F = BB->getParent(); 1190 assert(F && "must be set"); 1191 Module *M = F->getParent(); 1192 (void)M; 1193 assert(M && "must be set"); 1194 1195 // We're not changing the function signature of the statepoint since the gc 1196 // arguments go into the var args section. 1197 Function *gc_statepoint_decl = CS.getCalledFunction(); 1198 1199 // Then go ahead and use the builder do actually do the inserts. We insert 1200 // immediately before the previous instruction under the assumption that all 1201 // arguments will be available here. We can't insert afterwards since we may 1202 // be replacing a terminator. 1203 Instruction *insertBefore = CS.getInstruction(); 1204 IRBuilder<> Builder(insertBefore); 1205 // Copy all of the arguments from the original statepoint - this includes the 1206 // target, call args, and deopt args 1207 SmallVector<llvm::Value *, 64> args; 1208 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1209 // TODO: Clear the 'needs rewrite' flag 1210 1211 // add all the pointers to be relocated (gc arguments) 1212 // Capture the start of the live variable list for use in the gc_relocates 1213 const int live_start = args.size(); 1214 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1215 1216 // Create the statepoint given all the arguments 1217 Instruction *token = nullptr; 1218 AttributeSet return_attributes; 1219 if (CS.isCall()) { 1220 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1221 CallInst *call = 1222 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1223 call->setTailCall(toReplace->isTailCall()); 1224 call->setCallingConv(toReplace->getCallingConv()); 1225 1226 // Currently we will fail on parameter attributes and on certain 1227 // function attributes. 1228 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1229 // In case if we can handle this set of sttributes - set up function attrs 1230 // directly on statepoint and return attrs later for gc_result intrinsic. 1231 call->setAttributes(new_attrs.getFnAttributes()); 1232 return_attributes = new_attrs.getRetAttributes(); 1233 1234 token = call; 1235 1236 // Put the following gc_result and gc_relocate calls immediately after the 1237 // the old call (which we're about to delete) 1238 BasicBlock::iterator next(toReplace); 1239 assert(BB->end() != next && "not a terminator, must have next"); 1240 next++; 1241 Instruction *IP = &*(next); 1242 Builder.SetInsertPoint(IP); 1243 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1244 1245 } else { 1246 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1247 1248 // Insert the new invoke into the old block. We'll remove the old one in a 1249 // moment at which point this will become the new terminator for the 1250 // original block. 1251 InvokeInst *invoke = InvokeInst::Create( 1252 gc_statepoint_decl, toReplace->getNormalDest(), 1253 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1254 invoke->setCallingConv(toReplace->getCallingConv()); 1255 1256 // Currently we will fail on parameter attributes and on certain 1257 // function attributes. 1258 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1259 // In case if we can handle this set of sttributes - set up function attrs 1260 // directly on statepoint and return attrs later for gc_result intrinsic. 1261 invoke->setAttributes(new_attrs.getFnAttributes()); 1262 return_attributes = new_attrs.getRetAttributes(); 1263 1264 token = invoke; 1265 1266 // Generate gc relocates in exceptional path 1267 BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint( 1268 toReplace->getUnwindDest(), invoke->getParent(), P); 1269 1270 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1271 Builder.SetInsertPoint(IP); 1272 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1273 1274 // Extract second element from landingpad return value. We will attach 1275 // exceptional gc relocates to it. 1276 const unsigned idx = 1; 1277 Instruction *exceptional_token = 1278 cast<Instruction>(Builder.CreateExtractValue( 1279 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1280 result.UnwindToken = exceptional_token; 1281 1282 // Just throw away return value. We will use the one we got for normal 1283 // block. 1284 (void)CreateGCRelocates(liveVariables, live_start, basePtrs, 1285 exceptional_token, Builder); 1286 1287 // Generate gc relocates and returns for normal block 1288 BasicBlock *normalDest = normalizeBBForInvokeSafepoint( 1289 toReplace->getNormalDest(), invoke->getParent(), P); 1290 1291 IP = &*(normalDest->getFirstInsertionPt()); 1292 Builder.SetInsertPoint(IP); 1293 1294 // gc relocates will be generated later as if it were regular call 1295 // statepoint 1296 } 1297 assert(token); 1298 1299 // Take the name of the original value call if it had one. 1300 token->takeName(CS.getInstruction()); 1301 1302 // The GCResult is already inserted, we just need to find it 1303 /* scope */ { 1304 Instruction *toReplace = CS.getInstruction(); 1305 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1306 "only valid use before rewrite is gc.result"); 1307 if (toReplace->hasOneUse()) { 1308 Instruction *GCResult = cast<Instruction>(*toReplace->user_begin()); 1309 assert(isGCResult(GCResult)); 1310 } 1311 } 1312 1313 // Update the gc.result of the original statepoint (if any) to use the newly 1314 // inserted statepoint. This is safe to do here since the token can't be 1315 // considered a live reference. 1316 CS.getInstruction()->replaceAllUsesWith(token); 1317 1318 result.StatepointToken = token; 1319 1320 // Second, create a gc.relocate for every live variable 1321 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1322 1323 } 1324 1325 namespace { 1326 struct name_ordering { 1327 Value *base; 1328 Value *derived; 1329 bool operator()(name_ordering const &a, name_ordering const &b) { 1330 return -1 == a.derived->getName().compare(b.derived->getName()); 1331 } 1332 }; 1333 } 1334 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1335 SmallVectorImpl<Value *> &livevec) { 1336 assert(basevec.size() == livevec.size()); 1337 1338 SmallVector<name_ordering, 64> temp; 1339 for (size_t i = 0; i < basevec.size(); i++) { 1340 name_ordering v; 1341 v.base = basevec[i]; 1342 v.derived = livevec[i]; 1343 temp.push_back(v); 1344 } 1345 std::sort(temp.begin(), temp.end(), name_ordering()); 1346 for (size_t i = 0; i < basevec.size(); i++) { 1347 basevec[i] = temp[i].base; 1348 livevec[i] = temp[i].derived; 1349 } 1350 } 1351 1352 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1353 // which make the relocations happening at this safepoint explicit. 1354 // 1355 // WARNING: Does not do any fixup to adjust users of the original live 1356 // values. That's the callers responsibility. 1357 static void 1358 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1359 PartiallyConstructedSafepointRecord &result) { 1360 auto liveset = result.liveset; 1361 auto PointerToBase = result.PointerToBase; 1362 1363 // Convert to vector for efficient cross referencing. 1364 SmallVector<Value *, 64> basevec, livevec; 1365 livevec.reserve(liveset.size()); 1366 basevec.reserve(liveset.size()); 1367 for (Value *L : liveset) { 1368 livevec.push_back(L); 1369 1370 assert(PointerToBase.find(L) != PointerToBase.end()); 1371 Value *base = PointerToBase[L]; 1372 basevec.push_back(base); 1373 } 1374 assert(livevec.size() == basevec.size()); 1375 1376 // To make the output IR slightly more stable (for use in diffs), ensure a 1377 // fixed order of the values in the safepoint (by sorting the value name). 1378 // The order is otherwise meaningless. 1379 stablize_order(basevec, livevec); 1380 1381 // Do the actual rewriting and delete the old statepoint 1382 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1383 CS.getInstruction()->eraseFromParent(); 1384 } 1385 1386 // Helper function for the relocationViaAlloca. 1387 // It receives iterator to the statepoint gc relocates and emits store to the 1388 // assigned 1389 // location (via allocaMap) for the each one of them. 1390 // Add visited values into the visitedLiveValues set we will later use them 1391 // for sanity check. 1392 static void 1393 insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs, 1394 DenseMap<Value *, Value *> &allocaMap, 1395 DenseSet<Value *> &visitedLiveValues) { 1396 1397 for (User *U : gcRelocs) { 1398 if (!isa<IntrinsicInst>(U)) 1399 continue; 1400 1401 IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U); 1402 1403 // We only care about relocates 1404 if (relocatedValue->getIntrinsicID() != 1405 Intrinsic::experimental_gc_relocate) { 1406 continue; 1407 } 1408 1409 GCRelocateOperands relocateOperands(relocatedValue); 1410 Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr()); 1411 assert(allocaMap.count(originalValue)); 1412 Value *alloca = allocaMap[originalValue]; 1413 1414 // Emit store into the related alloca 1415 StoreInst *store = new StoreInst(relocatedValue, alloca); 1416 store->insertAfter(relocatedValue); 1417 1418 #ifndef NDEBUG 1419 visitedLiveValues.insert(originalValue); 1420 #endif 1421 } 1422 } 1423 1424 /// do all the relocation update via allocas and mem2reg 1425 static void relocationViaAlloca( 1426 Function &F, DominatorTree &DT, ArrayRef<Value *> live, 1427 ArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1428 #ifndef NDEBUG 1429 int initialAllocaNum = 0; 1430 1431 // record initial number of allocas 1432 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1433 itr++) { 1434 if (isa<AllocaInst>(*itr)) 1435 initialAllocaNum++; 1436 } 1437 #endif 1438 1439 // TODO-PERF: change data structures, reserve 1440 DenseMap<Value *, Value *> allocaMap; 1441 SmallVector<AllocaInst *, 200> PromotableAllocas; 1442 PromotableAllocas.reserve(live.size()); 1443 1444 // emit alloca for each live gc pointer 1445 for (unsigned i = 0; i < live.size(); i++) { 1446 Value *liveValue = live[i]; 1447 AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", 1448 F.getEntryBlock().getFirstNonPHI()); 1449 allocaMap[liveValue] = alloca; 1450 PromotableAllocas.push_back(alloca); 1451 } 1452 1453 // The next two loops are part of the same conceptual operation. We need to 1454 // insert a store to the alloca after the original def and at each 1455 // redefinition. We need to insert a load before each use. These are split 1456 // into distinct loops for performance reasons. 1457 1458 // update gc pointer after each statepoint 1459 // either store a relocated value or null (if no relocated value found for 1460 // this gc pointer and it is not a gc_result) 1461 // this must happen before we update the statepoint with load of alloca 1462 // otherwise we lose the link between statepoint and old def 1463 for (size_t i = 0; i < records.size(); i++) { 1464 const struct PartiallyConstructedSafepointRecord &info = records[i]; 1465 Value *Statepoint = info.StatepointToken; 1466 1467 // This will be used for consistency check 1468 DenseSet<Value *> visitedLiveValues; 1469 1470 // Insert stores for normal statepoint gc relocates 1471 insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues); 1472 1473 // In case if it was invoke statepoint 1474 // we will insert stores for exceptional path gc relocates. 1475 if (isa<InvokeInst>(Statepoint)) { 1476 insertRelocationStores(info.UnwindToken->users(), 1477 allocaMap, visitedLiveValues); 1478 } 1479 1480 #ifndef NDEBUG 1481 // As a debuging aid, pretend that an unrelocated pointer becomes null at 1482 // the gc.statepoint. This will turn some subtle GC problems into slightly 1483 // easier to debug SEGVs 1484 SmallVector<AllocaInst *, 64> ToClobber; 1485 for (auto Pair : allocaMap) { 1486 Value *Def = Pair.first; 1487 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1488 1489 // This value was relocated 1490 if (visitedLiveValues.count(Def)) { 1491 continue; 1492 } 1493 ToClobber.push_back(Alloca); 1494 } 1495 1496 auto InsertClobbersAt = [&](Instruction *IP) { 1497 for (auto *AI : ToClobber) { 1498 auto AIType = cast<PointerType>(AI->getType()); 1499 auto PT = cast<PointerType>(AIType->getElementType()); 1500 Constant *CPN = ConstantPointerNull::get(PT); 1501 StoreInst *store = new StoreInst(CPN, AI); 1502 store->insertBefore(IP); 1503 } 1504 }; 1505 1506 // Insert the clobbering stores. These may get intermixed with the 1507 // gc.results and gc.relocates, but that's fine. 1508 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1509 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1510 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1511 } else { 1512 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1513 Next++; 1514 InsertClobbersAt(Next); 1515 } 1516 #endif 1517 } 1518 // update use with load allocas and add store for gc_relocated 1519 for (auto Pair : allocaMap) { 1520 Value *def = Pair.first; 1521 Value *alloca = Pair.second; 1522 1523 // we pre-record the uses of allocas so that we dont have to worry about 1524 // later update 1525 // that change the user information. 1526 SmallVector<Instruction *, 20> uses; 1527 // PERF: trade a linear scan for repeated reallocation 1528 uses.reserve(std::distance(def->user_begin(), def->user_end())); 1529 for (User *U : def->users()) { 1530 if (!isa<ConstantExpr>(U)) { 1531 // If the def has a ConstantExpr use, then the def is either a 1532 // ConstantExpr use itself or null. In either case 1533 // (recursively in the first, directly in the second), the oop 1534 // it is ultimately dependent on is null and this particular 1535 // use does not need to be fixed up. 1536 uses.push_back(cast<Instruction>(U)); 1537 } 1538 } 1539 1540 std::sort(uses.begin(), uses.end()); 1541 auto last = std::unique(uses.begin(), uses.end()); 1542 uses.erase(last, uses.end()); 1543 1544 for (Instruction *use : uses) { 1545 if (isa<PHINode>(use)) { 1546 PHINode *phi = cast<PHINode>(use); 1547 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 1548 if (def == phi->getIncomingValue(i)) { 1549 LoadInst *load = new LoadInst( 1550 alloca, "", phi->getIncomingBlock(i)->getTerminator()); 1551 phi->setIncomingValue(i, load); 1552 } 1553 } 1554 } else { 1555 LoadInst *load = new LoadInst(alloca, "", use); 1556 use->replaceUsesOfWith(def, load); 1557 } 1558 } 1559 1560 // emit store for the initial gc value 1561 // store must be inserted after load, otherwise store will be in alloca's 1562 // use list and an extra load will be inserted before it 1563 StoreInst *store = new StoreInst(def, alloca); 1564 if (isa<Instruction>(def)) { 1565 store->insertAfter(cast<Instruction>(def)); 1566 } else { 1567 assert((isa<Argument>(def) || isa<GlobalVariable>(def) || 1568 (isa<Constant>(def) && cast<Constant>(def)->isNullValue())) && 1569 "Must be argument or global"); 1570 store->insertAfter(cast<Instruction>(alloca)); 1571 } 1572 } 1573 1574 assert(PromotableAllocas.size() == live.size() && 1575 "we must have the same allocas with lives"); 1576 if (!PromotableAllocas.empty()) { 1577 // apply mem2reg to promote alloca to SSA 1578 PromoteMemToReg(PromotableAllocas, DT); 1579 } 1580 1581 #ifndef NDEBUG 1582 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1583 itr++) { 1584 if (isa<AllocaInst>(*itr)) 1585 initialAllocaNum--; 1586 } 1587 assert(initialAllocaNum == 0 && "We must not introduce any extra allocas"); 1588 #endif 1589 } 1590 1591 /// Implement a unique function which doesn't require we sort the input 1592 /// vector. Doing so has the effect of changing the output of a couple of 1593 /// tests in ways which make them less useful in testing fused safepoints. 1594 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1595 DenseSet<T> Seen; 1596 SmallVector<T, 128> TempVec; 1597 TempVec.reserve(Vec.size()); 1598 for (auto Element : Vec) 1599 TempVec.push_back(Element); 1600 Vec.clear(); 1601 for (auto V : TempVec) { 1602 if (Seen.insert(V).second) { 1603 Vec.push_back(V); 1604 } 1605 } 1606 } 1607 1608 static Function *getUseHolder(Module &M) { 1609 FunctionType *ftype = 1610 FunctionType::get(Type::getVoidTy(M.getContext()), true); 1611 Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype)); 1612 return Func; 1613 } 1614 1615 /// Insert holders so that each Value is obviously live through the entire 1616 /// liftetime of the call. 1617 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1618 SmallVectorImpl<CallInst *> &holders) { 1619 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1620 Function *Func = getUseHolder(*M); 1621 if (CS.isCall()) { 1622 // For call safepoints insert dummy calls right after safepoint 1623 BasicBlock::iterator next(CS.getInstruction()); 1624 next++; 1625 CallInst *base_holder = CallInst::Create(Func, Values, "", next); 1626 holders.push_back(base_holder); 1627 } else if (CS.isInvoke()) { 1628 // For invoke safepooints insert dummy calls both in normal and 1629 // exceptional destination blocks 1630 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 1631 CallInst *normal_holder = CallInst::Create( 1632 Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt()); 1633 CallInst *unwind_holder = CallInst::Create( 1634 Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt()); 1635 holders.push_back(normal_holder); 1636 holders.push_back(unwind_holder); 1637 } else 1638 llvm_unreachable("unsupported call type"); 1639 } 1640 1641 static void findLiveReferences( 1642 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1643 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1644 for (size_t i = 0; i < records.size(); i++) { 1645 struct PartiallyConstructedSafepointRecord &info = records[i]; 1646 const CallSite &CS = toUpdate[i]; 1647 analyzeParsePointLiveness(DT, CS, info); 1648 } 1649 } 1650 1651 static void addBasesAsLiveValues(StatepointLiveSetTy &liveset, 1652 DenseMap<Value *, Value *> &PointerToBase) { 1653 // Identify any base pointers which are used in this safepoint, but not 1654 // themselves relocated. We need to relocate them so that later inserted 1655 // safepoints can get the properly relocated base register. 1656 DenseSet<Value *> missing; 1657 for (Value *L : liveset) { 1658 assert(PointerToBase.find(L) != PointerToBase.end()); 1659 Value *base = PointerToBase[L]; 1660 assert(base); 1661 if (liveset.find(base) == liveset.end()) { 1662 assert(PointerToBase.find(base) == PointerToBase.end()); 1663 // uniqued by set insert 1664 missing.insert(base); 1665 } 1666 } 1667 1668 // Note that we want these at the end of the list, otherwise 1669 // register placement gets screwed up once we lower to STATEPOINT 1670 // instructions. This is an utter hack, but there doesn't seem to be a 1671 // better one. 1672 for (Value *base : missing) { 1673 assert(base); 1674 liveset.insert(base); 1675 PointerToBase[base] = base; 1676 } 1677 assert(liveset.size() == PointerToBase.size()); 1678 } 1679 1680 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 1681 SmallVectorImpl<CallSite> &toUpdate) { 1682 #ifndef NDEBUG 1683 // sanity check the input 1684 std::set<CallSite> uniqued; 1685 uniqued.insert(toUpdate.begin(), toUpdate.end()); 1686 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 1687 1688 for (size_t i = 0; i < toUpdate.size(); i++) { 1689 CallSite &CS = toUpdate[i]; 1690 assert(CS.getInstruction()->getParent()->getParent() == &F); 1691 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 1692 } 1693 #endif 1694 1695 // A list of dummy calls added to the IR to keep various values obviously 1696 // live in the IR. We'll remove all of these when done. 1697 SmallVector<CallInst *, 64> holders; 1698 1699 // Insert a dummy call with all of the arguments to the vm_state we'll need 1700 // for the actual safepoint insertion. This ensures reference arguments in 1701 // the deopt argument list are considered live through the safepoint (and 1702 // thus makes sure they get relocated.) 1703 for (size_t i = 0; i < toUpdate.size(); i++) { 1704 CallSite &CS = toUpdate[i]; 1705 Statepoint StatepointCS(CS); 1706 1707 SmallVector<Value *, 64> DeoptValues; 1708 for (Use &U : StatepointCS.vm_state_args()) { 1709 Value *Arg = cast<Value>(&U); 1710 if (isGCPointerType(Arg->getType())) 1711 DeoptValues.push_back(Arg); 1712 } 1713 insertUseHolderAfter(CS, DeoptValues, holders); 1714 } 1715 1716 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 1717 records.reserve(toUpdate.size()); 1718 for (size_t i = 0; i < toUpdate.size(); i++) { 1719 struct PartiallyConstructedSafepointRecord info; 1720 records.push_back(info); 1721 } 1722 assert(records.size() == toUpdate.size()); 1723 1724 // A) Identify all gc pointers which are staticly live at the given call 1725 // site. 1726 findLiveReferences(F, DT, P, toUpdate, records); 1727 1728 // B) Find the base pointers for each live pointer 1729 /* scope for caching */ { 1730 // Cache the 'defining value' relation used in the computation and 1731 // insertion of base phis and selects. This ensures that we don't insert 1732 // large numbers of duplicate base_phis. 1733 DefiningValueMapTy DVCache; 1734 1735 for (size_t i = 0; i < records.size(); i++) { 1736 struct PartiallyConstructedSafepointRecord &info = records[i]; 1737 CallSite &CS = toUpdate[i]; 1738 findBasePointers(DT, DVCache, CS, info); 1739 } 1740 } // end of cache scope 1741 1742 // The base phi insertion logic (for any safepoint) may have inserted new 1743 // instructions which are now live at some safepoint. The simplest such 1744 // example is: 1745 // loop: 1746 // phi a <-- will be a new base_phi here 1747 // safepoint 1 <-- that needs to be live here 1748 // gep a + 1 1749 // safepoint 2 1750 // br loop 1751 DenseSet<llvm::Value *> allInsertedDefs; 1752 for (size_t i = 0; i < records.size(); i++) { 1753 struct PartiallyConstructedSafepointRecord &info = records[i]; 1754 allInsertedDefs.insert(info.NewInsertedDefs.begin(), 1755 info.NewInsertedDefs.end()); 1756 } 1757 1758 // We insert some dummy calls after each safepoint to definitely hold live 1759 // the base pointers which were identified for that safepoint. We'll then 1760 // ask liveness for _every_ base inserted to see what is now live. Then we 1761 // remove the dummy calls. 1762 holders.reserve(holders.size() + records.size()); 1763 for (size_t i = 0; i < records.size(); i++) { 1764 struct PartiallyConstructedSafepointRecord &info = records[i]; 1765 CallSite &CS = toUpdate[i]; 1766 1767 SmallVector<Value *, 128> Bases; 1768 for (auto Pair : info.PointerToBase) { 1769 Bases.push_back(Pair.second); 1770 } 1771 insertUseHolderAfter(CS, Bases, holders); 1772 } 1773 1774 // Add the bases explicitly to the live vector set. This may result in a few 1775 // extra relocations, but the base has to be available whenever a pointer 1776 // derived from it is used. Thus, we need it to be part of the statepoint's 1777 // gc arguments list. TODO: Introduce an explicit notion (in the following 1778 // code) of the GC argument list as seperate from the live Values at a 1779 // given statepoint. 1780 for (size_t i = 0; i < records.size(); i++) { 1781 struct PartiallyConstructedSafepointRecord &info = records[i]; 1782 addBasesAsLiveValues(info.liveset, info.PointerToBase); 1783 } 1784 1785 // If we inserted any new values, we need to adjust our notion of what is 1786 // live at a particular safepoint. 1787 if (!allInsertedDefs.empty()) { 1788 fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records); 1789 } 1790 if (PrintBasePointers) { 1791 for (size_t i = 0; i < records.size(); i++) { 1792 struct PartiallyConstructedSafepointRecord &info = records[i]; 1793 errs() << "Base Pairs: (w/Relocation)\n"; 1794 for (auto Pair : info.PointerToBase) { 1795 errs() << " derived %" << Pair.first->getName() << " base %" 1796 << Pair.second->getName() << "\n"; 1797 } 1798 } 1799 } 1800 for (size_t i = 0; i < holders.size(); i++) { 1801 holders[i]->eraseFromParent(); 1802 holders[i] = nullptr; 1803 } 1804 holders.clear(); 1805 1806 // Now run through and replace the existing statepoints with new ones with 1807 // the live variables listed. We do not yet update uses of the values being 1808 // relocated. We have references to live variables that need to 1809 // survive to the last iteration of this loop. (By construction, the 1810 // previous statepoint can not be a live variable, thus we can and remove 1811 // the old statepoint calls as we go.) 1812 for (size_t i = 0; i < records.size(); i++) { 1813 struct PartiallyConstructedSafepointRecord &info = records[i]; 1814 CallSite &CS = toUpdate[i]; 1815 makeStatepointExplicit(DT, CS, P, info); 1816 } 1817 toUpdate.clear(); // prevent accident use of invalid CallSites 1818 1819 // In case if we inserted relocates in a different basic block than the 1820 // original safepoint (this can happen for invokes). We need to be sure that 1821 // original values were not used in any of the phi nodes at the 1822 // beginning of basic block containing them. Because we know that all such 1823 // blocks will have single predecessor we can safely assume that all phi 1824 // nodes have single entry (because of normalizeBBForInvokeSafepoint). 1825 // Just remove them all here. 1826 for (size_t i = 0; i < records.size(); i++) { 1827 Instruction *I = records[i].StatepointToken; 1828 1829 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 1830 FoldSingleEntryPHINodes(invoke->getNormalDest()); 1831 assert(!isa<PHINode>(invoke->getNormalDest()->begin())); 1832 1833 FoldSingleEntryPHINodes(invoke->getUnwindDest()); 1834 assert(!isa<PHINode>(invoke->getUnwindDest()->begin())); 1835 } 1836 } 1837 1838 // Do all the fixups of the original live variables to their relocated selves 1839 SmallVector<Value *, 128> live; 1840 for (size_t i = 0; i < records.size(); i++) { 1841 struct PartiallyConstructedSafepointRecord &info = records[i]; 1842 // We can't simply save the live set from the original insertion. One of 1843 // the live values might be the result of a call which needs a safepoint. 1844 // That Value* no longer exists and we need to use the new gc_result. 1845 // Thankfully, the liveset is embedded in the statepoint (and updated), so 1846 // we just grab that. 1847 Statepoint statepoint(info.StatepointToken); 1848 live.insert(live.end(), statepoint.gc_args_begin(), 1849 statepoint.gc_args_end()); 1850 } 1851 unique_unsorted(live); 1852 1853 #ifndef NDEBUG 1854 // sanity check 1855 for (auto ptr : live) { 1856 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 1857 } 1858 #endif 1859 1860 relocationViaAlloca(F, DT, live, records); 1861 return !records.empty(); 1862 } 1863 1864 /// Returns true if this function should be rewritten by this pass. The main 1865 /// point of this function is as an extension point for custom logic. 1866 static bool shouldRewriteStatepointsIn(Function &F) { 1867 // TODO: This should check the GCStrategy 1868 if (F.hasGC()) { 1869 const std::string StatepointExampleName("statepoint-example"); 1870 return StatepointExampleName == F.getGC(); 1871 } else 1872 return false; 1873 } 1874 1875 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 1876 // Nothing to do for declarations. 1877 if (F.isDeclaration() || F.empty()) 1878 return false; 1879 1880 // Policy choice says not to rewrite - the most common reason is that we're 1881 // compiling code without a GCStrategy. 1882 if (!shouldRewriteStatepointsIn(F)) 1883 return false; 1884 1885 // Gather all the statepoints which need rewritten. 1886 SmallVector<CallSite, 64> ParsePointNeeded; 1887 for (Instruction &I : inst_range(F)) { 1888 // TODO: only the ones with the flag set! 1889 if (isStatepoint(I)) 1890 ParsePointNeeded.push_back(CallSite(&I)); 1891 } 1892 1893 // Return early if no work to do. 1894 if (ParsePointNeeded.empty()) 1895 return false; 1896 1897 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1898 return insertParsePoints(F, DT, this, ParsePointNeeded); 1899 } 1900