xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 7dda0edb5fd58699b8252133ccef2840f3830193)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Rewrite an existing set of gc.statepoints such that they make potential
11 // relocations performed by the garbage collector explicit in the IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Pass.h"
16 #include "llvm/Analysis/CFG.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstIterator.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/IR/Statepoint.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/IR/Verifier.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Transforms/Utils/Cloning.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
45 
46 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
47 
48 using namespace llvm;
49 
50 // Print the liveset found at the insert location
51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
52                                   cl::init(false));
53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
54                                       cl::init(false));
55 // Print out the base pointers for debugging
56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
57                                        cl::init(false));
58 
59 // Cost threshold measuring when it is profitable to rematerialize value instead
60 // of relocating it
61 static cl::opt<unsigned>
62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
63                            cl::init(6));
64 
65 #ifdef EXPENSIVE_CHECKS
66 static bool ClobberNonLive = true;
67 #else
68 static bool ClobberNonLive = false;
69 #endif
70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
71                                                   cl::location(ClobberNonLive),
72                                                   cl::Hidden);
73 
74 static cl::opt<bool>
75     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
76                                    cl::Hidden, cl::init(true));
77 
78 namespace {
79 struct RewriteStatepointsForGC : public ModulePass {
80   static char ID; // Pass identification, replacement for typeid
81 
82   RewriteStatepointsForGC() : ModulePass(ID) {
83     initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
84   }
85   bool runOnFunction(Function &F);
86   bool runOnModule(Module &M) override {
87     bool Changed = false;
88     for (Function &F : M)
89       Changed |= runOnFunction(F);
90 
91     if (Changed) {
92       // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
93       // returns true for at least one function in the module.  Since at least
94       // one function changed, we know that the precondition is satisfied.
95       stripNonValidAttributes(M);
96     }
97 
98     return Changed;
99   }
100 
101   void getAnalysisUsage(AnalysisUsage &AU) const override {
102     // We add and rewrite a bunch of instructions, but don't really do much
103     // else.  We could in theory preserve a lot more analyses here.
104     AU.addRequired<DominatorTreeWrapperPass>();
105     AU.addRequired<TargetTransformInfoWrapperPass>();
106   }
107 
108   /// The IR fed into RewriteStatepointsForGC may have had attributes implying
109   /// dereferenceability that are no longer valid/correct after
110   /// RewriteStatepointsForGC has run.  This is because semantically, after
111   /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
112   /// heap.  stripNonValidAttributes (conservatively) restores correctness
113   /// by erasing all attributes in the module that externally imply
114   /// dereferenceability.
115   /// Similar reasoning also applies to the noalias attributes. gc.statepoint
116   /// can touch the entire heap including noalias objects.
117   void stripNonValidAttributes(Module &M);
118 
119   // Helpers for stripNonValidAttributes
120   void stripNonValidAttributesFromBody(Function &F);
121   void stripNonValidAttributesFromPrototype(Function &F);
122 };
123 } // namespace
124 
125 char RewriteStatepointsForGC::ID = 0;
126 
127 ModulePass *llvm::createRewriteStatepointsForGCPass() {
128   return new RewriteStatepointsForGC();
129 }
130 
131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
132                       "Make relocations explicit at statepoints", false, false)
133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
136                     "Make relocations explicit at statepoints", false, false)
137 
138 namespace {
139 struct GCPtrLivenessData {
140   /// Values defined in this block.
141   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
142   /// Values used in this block (and thus live); does not included values
143   /// killed within this block.
144   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
145 
146   /// Values live into this basic block (i.e. used by any
147   /// instruction in this basic block or ones reachable from here)
148   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
149 
150   /// Values live out of this basic block (i.e. live into
151   /// any successor block)
152   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
153 };
154 
155 // The type of the internal cache used inside the findBasePointers family
156 // of functions.  From the callers perspective, this is an opaque type and
157 // should not be inspected.
158 //
159 // In the actual implementation this caches two relations:
160 // - The base relation itself (i.e. this pointer is based on that one)
161 // - The base defining value relation (i.e. before base_phi insertion)
162 // Generally, after the execution of a full findBasePointer call, only the
163 // base relation will remain.  Internally, we add a mixture of the two
164 // types, then update all the second type to the first type
165 typedef MapVector<Value *, Value *> DefiningValueMapTy;
166 typedef SetVector<Value *> StatepointLiveSetTy;
167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>>
168   RematerializedValueMapTy;
169 
170 struct PartiallyConstructedSafepointRecord {
171   /// The set of values known to be live across this safepoint
172   StatepointLiveSetTy LiveSet;
173 
174   /// Mapping from live pointers to a base-defining-value
175   MapVector<Value *, Value *> PointerToBase;
176 
177   /// The *new* gc.statepoint instruction itself.  This produces the token
178   /// that normal path gc.relocates and the gc.result are tied to.
179   Instruction *StatepointToken;
180 
181   /// Instruction to which exceptional gc relocates are attached
182   /// Makes it easier to iterate through them during relocationViaAlloca.
183   Instruction *UnwindToken;
184 
185   /// Record live values we are rematerialized instead of relocating.
186   /// They are not included into 'LiveSet' field.
187   /// Maps rematerialized copy to it's original value.
188   RematerializedValueMapTy RematerializedValues;
189 };
190 }
191 
192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
193   Optional<OperandBundleUse> DeoptBundle =
194       CS.getOperandBundle(LLVMContext::OB_deopt);
195 
196   if (!DeoptBundle.hasValue()) {
197     assert(AllowStatepointWithNoDeoptInfo &&
198            "Found non-leaf call without deopt info!");
199     return None;
200   }
201 
202   return DeoptBundle.getValue().Inputs;
203 }
204 
205 /// Compute the live-in set for every basic block in the function
206 static void computeLiveInValues(DominatorTree &DT, Function &F,
207                                 GCPtrLivenessData &Data);
208 
209 /// Given results from the dataflow liveness computation, find the set of live
210 /// Values at a particular instruction.
211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
212                               StatepointLiveSetTy &out);
213 
214 // TODO: Once we can get to the GCStrategy, this becomes
215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
216 
217 static bool isGCPointerType(Type *T) {
218   if (auto *PT = dyn_cast<PointerType>(T))
219     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
220     // GC managed heap.  We know that a pointer into this heap needs to be
221     // updated and that no other pointer does.
222     return PT->getAddressSpace() == 1;
223   return false;
224 }
225 
226 // Return true if this type is one which a) is a gc pointer or contains a GC
227 // pointer and b) is of a type this code expects to encounter as a live value.
228 // (The insertion code will assert that a type which matches (a) and not (b)
229 // is not encountered.)
230 static bool isHandledGCPointerType(Type *T) {
231   // We fully support gc pointers
232   if (isGCPointerType(T))
233     return true;
234   // We partially support vectors of gc pointers. The code will assert if it
235   // can't handle something.
236   if (auto VT = dyn_cast<VectorType>(T))
237     if (isGCPointerType(VT->getElementType()))
238       return true;
239   return false;
240 }
241 
242 #ifndef NDEBUG
243 /// Returns true if this type contains a gc pointer whether we know how to
244 /// handle that type or not.
245 static bool containsGCPtrType(Type *Ty) {
246   if (isGCPointerType(Ty))
247     return true;
248   if (VectorType *VT = dyn_cast<VectorType>(Ty))
249     return isGCPointerType(VT->getScalarType());
250   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
251     return containsGCPtrType(AT->getElementType());
252   if (StructType *ST = dyn_cast<StructType>(Ty))
253     return any_of(ST->subtypes(), containsGCPtrType);
254   return false;
255 }
256 
257 // Returns true if this is a type which a) is a gc pointer or contains a GC
258 // pointer and b) is of a type which the code doesn't expect (i.e. first class
259 // aggregates).  Used to trip assertions.
260 static bool isUnhandledGCPointerType(Type *Ty) {
261   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
262 }
263 #endif
264 
265 // Return the name of the value suffixed with the provided value, or if the
266 // value didn't have a name, the default value specified.
267 static std::string suffixed_name_or(Value *V, StringRef Suffix,
268                                     StringRef DefaultName) {
269   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
270 }
271 
272 // Conservatively identifies any definitions which might be live at the
273 // given instruction. The  analysis is performed immediately before the
274 // given instruction. Values defined by that instruction are not considered
275 // live.  Values used by that instruction are considered live.
276 static void
277 analyzeParsePointLiveness(DominatorTree &DT,
278                           GCPtrLivenessData &OriginalLivenessData, CallSite CS,
279                           PartiallyConstructedSafepointRecord &Result) {
280   Instruction *Inst = CS.getInstruction();
281 
282   StatepointLiveSetTy LiveSet;
283   findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet);
284 
285   if (PrintLiveSet) {
286     dbgs() << "Live Variables:\n";
287     for (Value *V : LiveSet)
288       dbgs() << " " << V->getName() << " " << *V << "\n";
289   }
290   if (PrintLiveSetSize) {
291     dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
292     dbgs() << "Number live values: " << LiveSet.size() << "\n";
293   }
294   Result.LiveSet = LiveSet;
295 }
296 
297 static bool isKnownBaseResult(Value *V);
298 namespace {
299 /// A single base defining value - An immediate base defining value for an
300 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
301 /// For instructions which have multiple pointer [vector] inputs or that
302 /// transition between vector and scalar types, there is no immediate base
303 /// defining value.  The 'base defining value' for 'Def' is the transitive
304 /// closure of this relation stopping at the first instruction which has no
305 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
306 /// but it can also be an arbitrary derived pointer.
307 struct BaseDefiningValueResult {
308   /// Contains the value which is the base defining value.
309   Value * const BDV;
310   /// True if the base defining value is also known to be an actual base
311   /// pointer.
312   const bool IsKnownBase;
313   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
314     : BDV(BDV), IsKnownBase(IsKnownBase) {
315 #ifndef NDEBUG
316     // Check consistency between new and old means of checking whether a BDV is
317     // a base.
318     bool MustBeBase = isKnownBaseResult(BDV);
319     assert(!MustBeBase || MustBeBase == IsKnownBase);
320 #endif
321   }
322 };
323 }
324 
325 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
326 
327 /// Return a base defining value for the 'Index' element of the given vector
328 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
329 /// 'I'.  As an optimization, this method will try to determine when the
330 /// element is known to already be a base pointer.  If this can be established,
331 /// the second value in the returned pair will be true.  Note that either a
332 /// vector or a pointer typed value can be returned.  For the former, the
333 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
334 /// If the later, the return pointer is a BDV (or possibly a base) for the
335 /// particular element in 'I'.
336 static BaseDefiningValueResult
337 findBaseDefiningValueOfVector(Value *I) {
338   // Each case parallels findBaseDefiningValue below, see that code for
339   // detailed motivation.
340 
341   if (isa<Argument>(I))
342     // An incoming argument to the function is a base pointer
343     return BaseDefiningValueResult(I, true);
344 
345   if (isa<Constant>(I))
346     // Base of constant vector consists only of constant null pointers.
347     // For reasoning see similar case inside 'findBaseDefiningValue' function.
348     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
349                                    true);
350 
351   if (isa<LoadInst>(I))
352     return BaseDefiningValueResult(I, true);
353 
354   if (isa<InsertElementInst>(I))
355     // We don't know whether this vector contains entirely base pointers or
356     // not.  To be conservatively correct, we treat it as a BDV and will
357     // duplicate code as needed to construct a parallel vector of bases.
358     return BaseDefiningValueResult(I, false);
359 
360   if (isa<ShuffleVectorInst>(I))
361     // We don't know whether this vector contains entirely base pointers or
362     // not.  To be conservatively correct, we treat it as a BDV and will
363     // duplicate code as needed to construct a parallel vector of bases.
364     // TODO: There a number of local optimizations which could be applied here
365     // for particular sufflevector patterns.
366     return BaseDefiningValueResult(I, false);
367 
368   // A PHI or Select is a base defining value.  The outer findBasePointer
369   // algorithm is responsible for constructing a base value for this BDV.
370   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
371          "unknown vector instruction - no base found for vector element");
372   return BaseDefiningValueResult(I, false);
373 }
374 
375 /// Helper function for findBasePointer - Will return a value which either a)
376 /// defines the base pointer for the input, b) blocks the simple search
377 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
378 /// from pointer to vector type or back.
379 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
380   assert(I->getType()->isPtrOrPtrVectorTy() &&
381          "Illegal to ask for the base pointer of a non-pointer type");
382 
383   if (I->getType()->isVectorTy())
384     return findBaseDefiningValueOfVector(I);
385 
386   if (isa<Argument>(I))
387     // An incoming argument to the function is a base pointer
388     // We should have never reached here if this argument isn't an gc value
389     return BaseDefiningValueResult(I, true);
390 
391   if (isa<Constant>(I)) {
392     // We assume that objects with a constant base (e.g. a global) can't move
393     // and don't need to be reported to the collector because they are always
394     // live. Besides global references, all kinds of constants (e.g. undef,
395     // constant expressions, null pointers) can be introduced by the inliner or
396     // the optimizer, especially on dynamically dead paths.
397     // Here we treat all of them as having single null base. By doing this we
398     // trying to avoid problems reporting various conflicts in a form of
399     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
400     // See constant.ll file for relevant test cases.
401 
402     return BaseDefiningValueResult(
403         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
404   }
405 
406   if (CastInst *CI = dyn_cast<CastInst>(I)) {
407     Value *Def = CI->stripPointerCasts();
408     // If stripping pointer casts changes the address space there is an
409     // addrspacecast in between.
410     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
411                cast<PointerType>(CI->getType())->getAddressSpace() &&
412            "unsupported addrspacecast");
413     // If we find a cast instruction here, it means we've found a cast which is
414     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
415     // handle int->ptr conversion.
416     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
417     return findBaseDefiningValue(Def);
418   }
419 
420   if (isa<LoadInst>(I))
421     // The value loaded is an gc base itself
422     return BaseDefiningValueResult(I, true);
423 
424 
425   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
426     // The base of this GEP is the base
427     return findBaseDefiningValue(GEP->getPointerOperand());
428 
429   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
430     switch (II->getIntrinsicID()) {
431     default:
432       // fall through to general call handling
433       break;
434     case Intrinsic::experimental_gc_statepoint:
435       llvm_unreachable("statepoints don't produce pointers");
436     case Intrinsic::experimental_gc_relocate: {
437       // Rerunning safepoint insertion after safepoints are already
438       // inserted is not supported.  It could probably be made to work,
439       // but why are you doing this?  There's no good reason.
440       llvm_unreachable("repeat safepoint insertion is not supported");
441     }
442     case Intrinsic::gcroot:
443       // Currently, this mechanism hasn't been extended to work with gcroot.
444       // There's no reason it couldn't be, but I haven't thought about the
445       // implications much.
446       llvm_unreachable(
447           "interaction with the gcroot mechanism is not supported");
448     }
449   }
450   // We assume that functions in the source language only return base
451   // pointers.  This should probably be generalized via attributes to support
452   // both source language and internal functions.
453   if (isa<CallInst>(I) || isa<InvokeInst>(I))
454     return BaseDefiningValueResult(I, true);
455 
456   // I have absolutely no idea how to implement this part yet.  It's not
457   // necessarily hard, I just haven't really looked at it yet.
458   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
459 
460   if (isa<AtomicCmpXchgInst>(I))
461     // A CAS is effectively a atomic store and load combined under a
462     // predicate.  From the perspective of base pointers, we just treat it
463     // like a load.
464     return BaseDefiningValueResult(I, true);
465 
466   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
467                                    "binary ops which don't apply to pointers");
468 
469   // The aggregate ops.  Aggregates can either be in the heap or on the
470   // stack, but in either case, this is simply a field load.  As a result,
471   // this is a defining definition of the base just like a load is.
472   if (isa<ExtractValueInst>(I))
473     return BaseDefiningValueResult(I, true);
474 
475   // We should never see an insert vector since that would require we be
476   // tracing back a struct value not a pointer value.
477   assert(!isa<InsertValueInst>(I) &&
478          "Base pointer for a struct is meaningless");
479 
480   // An extractelement produces a base result exactly when it's input does.
481   // We may need to insert a parallel instruction to extract the appropriate
482   // element out of the base vector corresponding to the input. Given this,
483   // it's analogous to the phi and select case even though it's not a merge.
484   if (isa<ExtractElementInst>(I))
485     // Note: There a lot of obvious peephole cases here.  This are deliberately
486     // handled after the main base pointer inference algorithm to make writing
487     // test cases to exercise that code easier.
488     return BaseDefiningValueResult(I, false);
489 
490   // The last two cases here don't return a base pointer.  Instead, they
491   // return a value which dynamically selects from among several base
492   // derived pointers (each with it's own base potentially).  It's the job of
493   // the caller to resolve these.
494   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
495          "missing instruction case in findBaseDefiningValing");
496   return BaseDefiningValueResult(I, false);
497 }
498 
499 /// Returns the base defining value for this value.
500 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
501   Value *&Cached = Cache[I];
502   if (!Cached) {
503     Cached = findBaseDefiningValue(I).BDV;
504     DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
505                  << Cached->getName() << "\n");
506   }
507   assert(Cache[I] != nullptr);
508   return Cached;
509 }
510 
511 /// Return a base pointer for this value if known.  Otherwise, return it's
512 /// base defining value.
513 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
514   Value *Def = findBaseDefiningValueCached(I, Cache);
515   auto Found = Cache.find(Def);
516   if (Found != Cache.end()) {
517     // Either a base-of relation, or a self reference.  Caller must check.
518     return Found->second;
519   }
520   // Only a BDV available
521   return Def;
522 }
523 
524 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
525 /// is it known to be a base pointer?  Or do we need to continue searching.
526 static bool isKnownBaseResult(Value *V) {
527   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
528       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
529       !isa<ShuffleVectorInst>(V)) {
530     // no recursion possible
531     return true;
532   }
533   if (isa<Instruction>(V) &&
534       cast<Instruction>(V)->getMetadata("is_base_value")) {
535     // This is a previously inserted base phi or select.  We know
536     // that this is a base value.
537     return true;
538   }
539 
540   // We need to keep searching
541   return false;
542 }
543 
544 namespace {
545 /// Models the state of a single base defining value in the findBasePointer
546 /// algorithm for determining where a new instruction is needed to propagate
547 /// the base of this BDV.
548 class BDVState {
549 public:
550   enum Status { Unknown, Base, Conflict };
551 
552   BDVState() : Status(Unknown), BaseValue(nullptr) {}
553 
554   explicit BDVState(Status Status, Value *BaseValue = nullptr)
555       : Status(Status), BaseValue(BaseValue) {
556     assert(Status != Base || BaseValue);
557   }
558 
559   explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
560 
561   Status getStatus() const { return Status; }
562   Value *getBaseValue() const { return BaseValue; }
563 
564   bool isBase() const { return getStatus() == Base; }
565   bool isUnknown() const { return getStatus() == Unknown; }
566   bool isConflict() const { return getStatus() == Conflict; }
567 
568   bool operator==(const BDVState &Other) const {
569     return BaseValue == Other.BaseValue && Status == Other.Status;
570   }
571 
572   bool operator!=(const BDVState &other) const { return !(*this == other); }
573 
574   LLVM_DUMP_METHOD
575   void dump() const {
576     print(dbgs());
577     dbgs() << '\n';
578   }
579 
580   void print(raw_ostream &OS) const {
581     switch (getStatus()) {
582     case Unknown:
583       OS << "U";
584       break;
585     case Base:
586       OS << "B";
587       break;
588     case Conflict:
589       OS << "C";
590       break;
591     };
592     OS << " (" << getBaseValue() << " - "
593        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
594   }
595 
596 private:
597   Status Status;
598   AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
599 };
600 }
601 
602 #ifndef NDEBUG
603 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
604   State.print(OS);
605   return OS;
606 }
607 #endif
608 
609 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
610   switch (LHS.getStatus()) {
611   case BDVState::Unknown:
612     return RHS;
613 
614   case BDVState::Base:
615     assert(LHS.getBaseValue() && "can't be null");
616     if (RHS.isUnknown())
617       return LHS;
618 
619     if (RHS.isBase()) {
620       if (LHS.getBaseValue() == RHS.getBaseValue()) {
621         assert(LHS == RHS && "equality broken!");
622         return LHS;
623       }
624       return BDVState(BDVState::Conflict);
625     }
626     assert(RHS.isConflict() && "only three states!");
627     return BDVState(BDVState::Conflict);
628 
629   case BDVState::Conflict:
630     return LHS;
631   }
632   llvm_unreachable("only three states!");
633 }
634 
635 // Values of type BDVState form a lattice, and this function implements the meet
636 // operation.
637 static BDVState meetBDVState(BDVState LHS, BDVState RHS) {
638   BDVState Result = meetBDVStateImpl(LHS, RHS);
639   assert(Result == meetBDVStateImpl(RHS, LHS) &&
640          "Math is wrong: meet does not commute!");
641   return Result;
642 }
643 
644 /// For a given value or instruction, figure out what base ptr its derived from.
645 /// For gc objects, this is simply itself.  On success, returns a value which is
646 /// the base pointer.  (This is reliable and can be used for relocation.)  On
647 /// failure, returns nullptr.
648 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
649   Value *Def = findBaseOrBDV(I, Cache);
650 
651   if (isKnownBaseResult(Def))
652     return Def;
653 
654   // Here's the rough algorithm:
655   // - For every SSA value, construct a mapping to either an actual base
656   //   pointer or a PHI which obscures the base pointer.
657   // - Construct a mapping from PHI to unknown TOP state.  Use an
658   //   optimistic algorithm to propagate base pointer information.  Lattice
659   //   looks like:
660   //   UNKNOWN
661   //   b1 b2 b3 b4
662   //   CONFLICT
663   //   When algorithm terminates, all PHIs will either have a single concrete
664   //   base or be in a conflict state.
665   // - For every conflict, insert a dummy PHI node without arguments.  Add
666   //   these to the base[Instruction] = BasePtr mapping.  For every
667   //   non-conflict, add the actual base.
668   //  - For every conflict, add arguments for the base[a] of each input
669   //   arguments.
670   //
671   // Note: A simpler form of this would be to add the conflict form of all
672   // PHIs without running the optimistic algorithm.  This would be
673   // analogous to pessimistic data flow and would likely lead to an
674   // overall worse solution.
675 
676 #ifndef NDEBUG
677   auto isExpectedBDVType = [](Value *BDV) {
678     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
679            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
680   };
681 #endif
682 
683   // Once populated, will contain a mapping from each potentially non-base BDV
684   // to a lattice value (described above) which corresponds to that BDV.
685   // We use the order of insertion (DFS over the def/use graph) to provide a
686   // stable deterministic ordering for visiting DenseMaps (which are unordered)
687   // below.  This is important for deterministic compilation.
688   MapVector<Value *, BDVState> States;
689 
690   // Recursively fill in all base defining values reachable from the initial
691   // one for which we don't already know a definite base value for
692   /* scope */ {
693     SmallVector<Value*, 16> Worklist;
694     Worklist.push_back(Def);
695     States.insert({Def, BDVState()});
696     while (!Worklist.empty()) {
697       Value *Current = Worklist.pop_back_val();
698       assert(!isKnownBaseResult(Current) && "why did it get added?");
699 
700       auto visitIncomingValue = [&](Value *InVal) {
701         Value *Base = findBaseOrBDV(InVal, Cache);
702         if (isKnownBaseResult(Base))
703           // Known bases won't need new instructions introduced and can be
704           // ignored safely
705           return;
706         assert(isExpectedBDVType(Base) && "the only non-base values "
707                "we see should be base defining values");
708         if (States.insert(std::make_pair(Base, BDVState())).second)
709           Worklist.push_back(Base);
710       };
711       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
712         for (Value *InVal : PN->incoming_values())
713           visitIncomingValue(InVal);
714       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
715         visitIncomingValue(SI->getTrueValue());
716         visitIncomingValue(SI->getFalseValue());
717       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
718         visitIncomingValue(EE->getVectorOperand());
719       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
720         visitIncomingValue(IE->getOperand(0)); // vector operand
721         visitIncomingValue(IE->getOperand(1)); // scalar operand
722       } else {
723         // There is one known class of instructions we know we don't handle.
724         assert(isa<ShuffleVectorInst>(Current));
725         llvm_unreachable("Unimplemented instruction case");
726       }
727     }
728   }
729 
730 #ifndef NDEBUG
731   DEBUG(dbgs() << "States after initialization:\n");
732   for (auto Pair : States)
733     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
734 #endif
735 
736   // Return a phi state for a base defining value.  We'll generate a new
737   // base state for known bases and expect to find a cached state otherwise.
738   auto getStateForBDV = [&](Value *baseValue) {
739     if (isKnownBaseResult(baseValue))
740       return BDVState(baseValue);
741     auto I = States.find(baseValue);
742     assert(I != States.end() && "lookup failed!");
743     return I->second;
744   };
745 
746   bool Progress = true;
747   while (Progress) {
748 #ifndef NDEBUG
749     const size_t OldSize = States.size();
750 #endif
751     Progress = false;
752     // We're only changing values in this loop, thus safe to keep iterators.
753     // Since this is computing a fixed point, the order of visit does not
754     // effect the result.  TODO: We could use a worklist here and make this run
755     // much faster.
756     for (auto Pair : States) {
757       Value *BDV = Pair.first;
758       assert(!isKnownBaseResult(BDV) && "why did it get added?");
759 
760       // Given an input value for the current instruction, return a BDVState
761       // instance which represents the BDV of that value.
762       auto getStateForInput = [&](Value *V) mutable {
763         Value *BDV = findBaseOrBDV(V, Cache);
764         return getStateForBDV(BDV);
765       };
766 
767       BDVState NewState;
768       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
769         NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
770         NewState =
771             meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
772       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
773         for (Value *Val : PN->incoming_values())
774           NewState = meetBDVState(NewState, getStateForInput(Val));
775       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
776         // The 'meet' for an extractelement is slightly trivial, but it's still
777         // useful in that it drives us to conflict if our input is.
778         NewState =
779             meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
780       } else {
781         // Given there's a inherent type mismatch between the operands, will
782         // *always* produce Conflict.
783         auto *IE = cast<InsertElementInst>(BDV);
784         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
785         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
786       }
787 
788       BDVState OldState = States[BDV];
789       if (OldState != NewState) {
790         Progress = true;
791         States[BDV] = NewState;
792       }
793     }
794 
795     assert(OldSize == States.size() &&
796            "fixed point shouldn't be adding any new nodes to state");
797   }
798 
799 #ifndef NDEBUG
800   DEBUG(dbgs() << "States after meet iteration:\n");
801   for (auto Pair : States)
802     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
803 #endif
804 
805   // Insert Phis for all conflicts
806   // TODO: adjust naming patterns to avoid this order of iteration dependency
807   for (auto Pair : States) {
808     Instruction *I = cast<Instruction>(Pair.first);
809     BDVState State = Pair.second;
810     assert(!isKnownBaseResult(I) && "why did it get added?");
811     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
812 
813     // extractelement instructions are a bit special in that we may need to
814     // insert an extract even when we know an exact base for the instruction.
815     // The problem is that we need to convert from a vector base to a scalar
816     // base for the particular indice we're interested in.
817     if (State.isBase() && isa<ExtractElementInst>(I) &&
818         isa<VectorType>(State.getBaseValue()->getType())) {
819       auto *EE = cast<ExtractElementInst>(I);
820       // TODO: In many cases, the new instruction is just EE itself.  We should
821       // exploit this, but can't do it here since it would break the invariant
822       // about the BDV not being known to be a base.
823       auto *BaseInst = ExtractElementInst::Create(
824           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
825       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
826       States[I] = BDVState(BDVState::Base, BaseInst);
827     }
828 
829     // Since we're joining a vector and scalar base, they can never be the
830     // same.  As a result, we should always see insert element having reached
831     // the conflict state.
832     assert(!isa<InsertElementInst>(I) || State.isConflict());
833 
834     if (!State.isConflict())
835       continue;
836 
837     /// Create and insert a new instruction which will represent the base of
838     /// the given instruction 'I'.
839     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
840       if (isa<PHINode>(I)) {
841         BasicBlock *BB = I->getParent();
842         int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
843         assert(NumPreds > 0 && "how did we reach here");
844         std::string Name = suffixed_name_or(I, ".base", "base_phi");
845         return PHINode::Create(I->getType(), NumPreds, Name, I);
846       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
847         // The undef will be replaced later
848         UndefValue *Undef = UndefValue::get(SI->getType());
849         std::string Name = suffixed_name_or(I, ".base", "base_select");
850         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
851       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
852         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
853         std::string Name = suffixed_name_or(I, ".base", "base_ee");
854         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
855                                           EE);
856       } else {
857         auto *IE = cast<InsertElementInst>(I);
858         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
859         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
860         std::string Name = suffixed_name_or(I, ".base", "base_ie");
861         return InsertElementInst::Create(VecUndef, ScalarUndef,
862                                          IE->getOperand(2), Name, IE);
863       }
864     };
865     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
866     // Add metadata marking this as a base value
867     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
868     States[I] = BDVState(BDVState::Conflict, BaseInst);
869   }
870 
871   // Returns a instruction which produces the base pointer for a given
872   // instruction.  The instruction is assumed to be an input to one of the BDVs
873   // seen in the inference algorithm above.  As such, we must either already
874   // know it's base defining value is a base, or have inserted a new
875   // instruction to propagate the base of it's BDV and have entered that newly
876   // introduced instruction into the state table.  In either case, we are
877   // assured to be able to determine an instruction which produces it's base
878   // pointer.
879   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
880     Value *BDV = findBaseOrBDV(Input, Cache);
881     Value *Base = nullptr;
882     if (isKnownBaseResult(BDV)) {
883       Base = BDV;
884     } else {
885       // Either conflict or base.
886       assert(States.count(BDV));
887       Base = States[BDV].getBaseValue();
888     }
889     assert(Base && "Can't be null");
890     // The cast is needed since base traversal may strip away bitcasts
891     if (Base->getType() != Input->getType() && InsertPt)
892       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
893     return Base;
894   };
895 
896   // Fixup all the inputs of the new PHIs.  Visit order needs to be
897   // deterministic and predictable because we're naming newly created
898   // instructions.
899   for (auto Pair : States) {
900     Instruction *BDV = cast<Instruction>(Pair.first);
901     BDVState State = Pair.second;
902 
903     assert(!isKnownBaseResult(BDV) && "why did it get added?");
904     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
905     if (!State.isConflict())
906       continue;
907 
908     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
909       PHINode *PN = cast<PHINode>(BDV);
910       unsigned NumPHIValues = PN->getNumIncomingValues();
911       for (unsigned i = 0; i < NumPHIValues; i++) {
912         Value *InVal = PN->getIncomingValue(i);
913         BasicBlock *InBB = PN->getIncomingBlock(i);
914 
915         // If we've already seen InBB, add the same incoming value
916         // we added for it earlier.  The IR verifier requires phi
917         // nodes with multiple entries from the same basic block
918         // to have the same incoming value for each of those
919         // entries.  If we don't do this check here and basephi
920         // has a different type than base, we'll end up adding two
921         // bitcasts (and hence two distinct values) as incoming
922         // values for the same basic block.
923 
924         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
925         if (BlockIndex != -1) {
926           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
927           BasePHI->addIncoming(OldBase, InBB);
928 
929 #ifndef NDEBUG
930           Value *Base = getBaseForInput(InVal, nullptr);
931           // In essence this assert states: the only way two values
932           // incoming from the same basic block may be different is by
933           // being different bitcasts of the same value.  A cleanup
934           // that remains TODO is changing findBaseOrBDV to return an
935           // llvm::Value of the correct type (and still remain pure).
936           // This will remove the need to add bitcasts.
937           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
938                  "Sanity -- findBaseOrBDV should be pure!");
939 #endif
940           continue;
941         }
942 
943         // Find the instruction which produces the base for each input.  We may
944         // need to insert a bitcast in the incoming block.
945         // TODO: Need to split critical edges if insertion is needed
946         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
947         BasePHI->addIncoming(Base, InBB);
948       }
949       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
950     } else if (SelectInst *BaseSI =
951                    dyn_cast<SelectInst>(State.getBaseValue())) {
952       SelectInst *SI = cast<SelectInst>(BDV);
953 
954       // Find the instruction which produces the base for each input.
955       // We may need to insert a bitcast.
956       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
957       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
958     } else if (auto *BaseEE =
959                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
960       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
961       // Find the instruction which produces the base for each input.  We may
962       // need to insert a bitcast.
963       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
964     } else {
965       auto *BaseIE = cast<InsertElementInst>(State.getBaseValue());
966       auto *BdvIE = cast<InsertElementInst>(BDV);
967       auto UpdateOperand = [&](int OperandIdx) {
968         Value *InVal = BdvIE->getOperand(OperandIdx);
969         Value *Base = getBaseForInput(InVal, BaseIE);
970         BaseIE->setOperand(OperandIdx, Base);
971       };
972       UpdateOperand(0); // vector operand
973       UpdateOperand(1); // scalar operand
974     }
975   }
976 
977   // Cache all of our results so we can cheaply reuse them
978   // NOTE: This is actually two caches: one of the base defining value
979   // relation and one of the base pointer relation!  FIXME
980   for (auto Pair : States) {
981     auto *BDV = Pair.first;
982     Value *Base = Pair.second.getBaseValue();
983     assert(BDV && Base);
984     assert(!isKnownBaseResult(BDV) && "why did it get added?");
985 
986     DEBUG(dbgs() << "Updating base value cache"
987                  << " for: " << BDV->getName() << " from: "
988                  << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
989                  << " to: " << Base->getName() << "\n");
990 
991     if (Cache.count(BDV)) {
992       assert(isKnownBaseResult(Base) &&
993              "must be something we 'know' is a base pointer");
994       // Once we transition from the BDV relation being store in the Cache to
995       // the base relation being stored, it must be stable
996       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
997              "base relation should be stable");
998     }
999     Cache[BDV] = Base;
1000   }
1001   assert(Cache.count(Def));
1002   return Cache[Def];
1003 }
1004 
1005 // For a set of live pointers (base and/or derived), identify the base
1006 // pointer of the object which they are derived from.  This routine will
1007 // mutate the IR graph as needed to make the 'base' pointer live at the
1008 // definition site of 'derived'.  This ensures that any use of 'derived' can
1009 // also use 'base'.  This may involve the insertion of a number of
1010 // additional PHI nodes.
1011 //
1012 // preconditions: live is a set of pointer type Values
1013 //
1014 // side effects: may insert PHI nodes into the existing CFG, will preserve
1015 // CFG, will not remove or mutate any existing nodes
1016 //
1017 // post condition: PointerToBase contains one (derived, base) pair for every
1018 // pointer in live.  Note that derived can be equal to base if the original
1019 // pointer was a base pointer.
1020 static void
1021 findBasePointers(const StatepointLiveSetTy &live,
1022                  MapVector<Value *, Value *> &PointerToBase,
1023                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1024   for (Value *ptr : live) {
1025     Value *base = findBasePointer(ptr, DVCache);
1026     assert(base && "failed to find base pointer");
1027     PointerToBase[ptr] = base;
1028     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1029             DT->dominates(cast<Instruction>(base)->getParent(),
1030                           cast<Instruction>(ptr)->getParent())) &&
1031            "The base we found better dominate the derived pointer");
1032   }
1033 }
1034 
1035 /// Find the required based pointers (and adjust the live set) for the given
1036 /// parse point.
1037 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1038                              CallSite CS,
1039                              PartiallyConstructedSafepointRecord &result) {
1040   MapVector<Value *, Value *> PointerToBase;
1041   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1042 
1043   if (PrintBasePointers) {
1044     errs() << "Base Pairs (w/o Relocation):\n";
1045     for (auto &Pair : PointerToBase) {
1046       errs() << " derived ";
1047       Pair.first->printAsOperand(errs(), false);
1048       errs() << " base ";
1049       Pair.second->printAsOperand(errs(), false);
1050       errs() << "\n";;
1051     }
1052   }
1053 
1054   result.PointerToBase = PointerToBase;
1055 }
1056 
1057 /// Given an updated version of the dataflow liveness results, update the
1058 /// liveset and base pointer maps for the call site CS.
1059 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1060                                   CallSite CS,
1061                                   PartiallyConstructedSafepointRecord &result);
1062 
1063 static void recomputeLiveInValues(
1064     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1065     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1066   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1067   // again.  The old values are still live and will help it stabilize quickly.
1068   GCPtrLivenessData RevisedLivenessData;
1069   computeLiveInValues(DT, F, RevisedLivenessData);
1070   for (size_t i = 0; i < records.size(); i++) {
1071     struct PartiallyConstructedSafepointRecord &info = records[i];
1072     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1073   }
1074 }
1075 
1076 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1077 // no uses of the original value / return value between the gc.statepoint and
1078 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1079 // starting one of the successor blocks.  We also need to be able to insert the
1080 // gc.relocates only on the path which goes through the statepoint.  We might
1081 // need to split an edge to make this possible.
1082 static BasicBlock *
1083 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1084                             DominatorTree &DT) {
1085   BasicBlock *Ret = BB;
1086   if (!BB->getUniquePredecessor())
1087     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1088 
1089   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1090   // from it
1091   FoldSingleEntryPHINodes(Ret);
1092   assert(!isa<PHINode>(Ret->begin()) &&
1093          "All PHI nodes should have been removed!");
1094 
1095   // At this point, we can safely insert a gc.relocate or gc.result as the first
1096   // instruction in Ret if needed.
1097   return Ret;
1098 }
1099 
1100 // Create new attribute set containing only attributes which can be transferred
1101 // from original call to the safepoint.
1102 static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1103   AttributeSet Ret;
1104 
1105   for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1106     unsigned Index = AS.getSlotIndex(Slot);
1107 
1108     if (Index == AttributeSet::ReturnIndex ||
1109         Index == AttributeSet::FunctionIndex) {
1110 
1111       for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
1112 
1113         // Do not allow certain attributes - just skip them
1114         // Safepoint can not be read only or read none.
1115         if (Attr.hasAttribute(Attribute::ReadNone) ||
1116             Attr.hasAttribute(Attribute::ReadOnly))
1117           continue;
1118 
1119         // These attributes control the generation of the gc.statepoint call /
1120         // invoke itself; and once the gc.statepoint is in place, they're of no
1121         // use.
1122         if (isStatepointDirectiveAttr(Attr))
1123           continue;
1124 
1125         Ret = Ret.addAttributes(
1126             AS.getContext(), Index,
1127             AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
1128       }
1129     }
1130 
1131     // Just skip parameter attributes for now
1132   }
1133 
1134   return Ret;
1135 }
1136 
1137 /// Helper function to place all gc relocates necessary for the given
1138 /// statepoint.
1139 /// Inputs:
1140 ///   liveVariables - list of variables to be relocated.
1141 ///   liveStart - index of the first live variable.
1142 ///   basePtrs - base pointers.
1143 ///   statepointToken - statepoint instruction to which relocates should be
1144 ///   bound.
1145 ///   Builder - Llvm IR builder to be used to construct new calls.
1146 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1147                               const int LiveStart,
1148                               ArrayRef<Value *> BasePtrs,
1149                               Instruction *StatepointToken,
1150                               IRBuilder<> Builder) {
1151   if (LiveVariables.empty())
1152     return;
1153 
1154   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1155     auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
1156     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1157     size_t Index = std::distance(LiveVec.begin(), ValIt);
1158     assert(Index < LiveVec.size() && "Bug in std::find?");
1159     return Index;
1160   };
1161   Module *M = StatepointToken->getModule();
1162 
1163   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1164   // element type is i8 addrspace(1)*). We originally generated unique
1165   // declarations for each pointer type, but this proved problematic because
1166   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1167   // towards a single unified pointer type anyways, we can just cast everything
1168   // to an i8* of the right address space.  A bitcast is added later to convert
1169   // gc_relocate to the actual value's type.
1170   auto getGCRelocateDecl = [&] (Type *Ty) {
1171     assert(isHandledGCPointerType(Ty));
1172     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1173     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1174     if (auto *VT = dyn_cast<VectorType>(Ty))
1175       NewTy = VectorType::get(NewTy, VT->getNumElements());
1176     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1177                                      {NewTy});
1178   };
1179 
1180   // Lazily populated map from input types to the canonicalized form mentioned
1181   // in the comment above.  This should probably be cached somewhere more
1182   // broadly.
1183   DenseMap<Type*, Value*> TypeToDeclMap;
1184 
1185   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1186     // Generate the gc.relocate call and save the result
1187     Value *BaseIdx =
1188       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1189     Value *LiveIdx = Builder.getInt32(LiveStart + i);
1190 
1191     Type *Ty = LiveVariables[i]->getType();
1192     if (!TypeToDeclMap.count(Ty))
1193       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1194     Value *GCRelocateDecl = TypeToDeclMap[Ty];
1195 
1196     // only specify a debug name if we can give a useful one
1197     CallInst *Reloc = Builder.CreateCall(
1198         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1199         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1200     // Trick CodeGen into thinking there are lots of free registers at this
1201     // fake call.
1202     Reloc->setCallingConv(CallingConv::Cold);
1203   }
1204 }
1205 
1206 namespace {
1207 
1208 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1209 /// avoids having to worry about keeping around dangling pointers to Values.
1210 class DeferredReplacement {
1211   AssertingVH<Instruction> Old;
1212   AssertingVH<Instruction> New;
1213   bool IsDeoptimize = false;
1214 
1215   DeferredReplacement() {}
1216 
1217 public:
1218   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1219     assert(Old != New && Old && New &&
1220            "Cannot RAUW equal values or to / from null!");
1221 
1222     DeferredReplacement D;
1223     D.Old = Old;
1224     D.New = New;
1225     return D;
1226   }
1227 
1228   static DeferredReplacement createDelete(Instruction *ToErase) {
1229     DeferredReplacement D;
1230     D.Old = ToErase;
1231     return D;
1232   }
1233 
1234   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1235 #ifndef NDEBUG
1236     auto *F = cast<CallInst>(Old)->getCalledFunction();
1237     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1238            "Only way to construct a deoptimize deferred replacement");
1239 #endif
1240     DeferredReplacement D;
1241     D.Old = Old;
1242     D.IsDeoptimize = true;
1243     return D;
1244   }
1245 
1246   /// Does the task represented by this instance.
1247   void doReplacement() {
1248     Instruction *OldI = Old;
1249     Instruction *NewI = New;
1250 
1251     assert(OldI != NewI && "Disallowed at construction?!");
1252     assert((!IsDeoptimize || !New) &&
1253            "Deoptimize instrinsics are not replaced!");
1254 
1255     Old = nullptr;
1256     New = nullptr;
1257 
1258     if (NewI)
1259       OldI->replaceAllUsesWith(NewI);
1260 
1261     if (IsDeoptimize) {
1262       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1263       // not necessarilly be followed by the matching return.
1264       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1265       new UnreachableInst(RI->getContext(), RI);
1266       RI->eraseFromParent();
1267     }
1268 
1269     OldI->eraseFromParent();
1270   }
1271 };
1272 }
1273 
1274 static void
1275 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1276                            const SmallVectorImpl<Value *> &BasePtrs,
1277                            const SmallVectorImpl<Value *> &LiveVariables,
1278                            PartiallyConstructedSafepointRecord &Result,
1279                            std::vector<DeferredReplacement> &Replacements) {
1280   assert(BasePtrs.size() == LiveVariables.size());
1281 
1282   // Then go ahead and use the builder do actually do the inserts.  We insert
1283   // immediately before the previous instruction under the assumption that all
1284   // arguments will be available here.  We can't insert afterwards since we may
1285   // be replacing a terminator.
1286   Instruction *InsertBefore = CS.getInstruction();
1287   IRBuilder<> Builder(InsertBefore);
1288 
1289   ArrayRef<Value *> GCArgs(LiveVariables);
1290   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1291   uint32_t NumPatchBytes = 0;
1292   uint32_t Flags = uint32_t(StatepointFlags::None);
1293 
1294   ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
1295   ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
1296   ArrayRef<Use> TransitionArgs;
1297   if (auto TransitionBundle =
1298       CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
1299     Flags |= uint32_t(StatepointFlags::GCTransition);
1300     TransitionArgs = TransitionBundle->Inputs;
1301   }
1302 
1303   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1304   // with a return value, we lower then as never returning calls to
1305   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1306   bool IsDeoptimize = false;
1307 
1308   StatepointDirectives SD =
1309       parseStatepointDirectivesFromAttrs(CS.getAttributes());
1310   if (SD.NumPatchBytes)
1311     NumPatchBytes = *SD.NumPatchBytes;
1312   if (SD.StatepointID)
1313     StatepointID = *SD.StatepointID;
1314 
1315   Value *CallTarget = CS.getCalledValue();
1316   if (Function *F = dyn_cast<Function>(CallTarget)) {
1317     if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1318       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1319       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1320       // verifier does not allow taking the address of an intrinsic function.
1321 
1322       SmallVector<Type *, 8> DomainTy;
1323       for (Value *Arg : CallArgs)
1324         DomainTy.push_back(Arg->getType());
1325       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1326                                     /* isVarArg = */ false);
1327 
1328       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1329       // calls to @llvm.experimental.deoptimize with different argument types in
1330       // the same module.  This is fine -- we assume the frontend knew what it
1331       // was doing when generating this kind of IR.
1332       CallTarget =
1333           F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
1334 
1335       IsDeoptimize = true;
1336     }
1337   }
1338 
1339   // Create the statepoint given all the arguments
1340   Instruction *Token = nullptr;
1341   AttributeSet ReturnAttrs;
1342   if (CS.isCall()) {
1343     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1344     CallInst *Call = Builder.CreateGCStatepointCall(
1345         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1346         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1347 
1348     Call->setTailCall(ToReplace->isTailCall());
1349     Call->setCallingConv(ToReplace->getCallingConv());
1350 
1351     // Currently we will fail on parameter attributes and on certain
1352     // function attributes.
1353     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1354     // In case if we can handle this set of attributes - set up function attrs
1355     // directly on statepoint and return attrs later for gc_result intrinsic.
1356     Call->setAttributes(NewAttrs.getFnAttributes());
1357     ReturnAttrs = NewAttrs.getRetAttributes();
1358 
1359     Token = Call;
1360 
1361     // Put the following gc_result and gc_relocate calls immediately after the
1362     // the old call (which we're about to delete)
1363     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1364     Builder.SetInsertPoint(ToReplace->getNextNode());
1365     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1366   } else {
1367     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1368 
1369     // Insert the new invoke into the old block.  We'll remove the old one in a
1370     // moment at which point this will become the new terminator for the
1371     // original block.
1372     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1373         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1374         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1375         GCArgs, "statepoint_token");
1376 
1377     Invoke->setCallingConv(ToReplace->getCallingConv());
1378 
1379     // Currently we will fail on parameter attributes and on certain
1380     // function attributes.
1381     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1382     // In case if we can handle this set of attributes - set up function attrs
1383     // directly on statepoint and return attrs later for gc_result intrinsic.
1384     Invoke->setAttributes(NewAttrs.getFnAttributes());
1385     ReturnAttrs = NewAttrs.getRetAttributes();
1386 
1387     Token = Invoke;
1388 
1389     // Generate gc relocates in exceptional path
1390     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1391     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1392            UnwindBlock->getUniquePredecessor() &&
1393            "can't safely insert in this block!");
1394 
1395     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1396     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1397 
1398     // Attach exceptional gc relocates to the landingpad.
1399     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1400     Result.UnwindToken = ExceptionalToken;
1401 
1402     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1403     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1404                       Builder);
1405 
1406     // Generate gc relocates and returns for normal block
1407     BasicBlock *NormalDest = ToReplace->getNormalDest();
1408     assert(!isa<PHINode>(NormalDest->begin()) &&
1409            NormalDest->getUniquePredecessor() &&
1410            "can't safely insert in this block!");
1411 
1412     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1413 
1414     // gc relocates will be generated later as if it were regular call
1415     // statepoint
1416   }
1417   assert(Token && "Should be set in one of the above branches!");
1418 
1419   if (IsDeoptimize) {
1420     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1421     // transform the tail-call like structure to a call to a void function
1422     // followed by unreachable to get better codegen.
1423     Replacements.push_back(
1424         DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
1425   } else {
1426     Token->setName("statepoint_token");
1427     if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1428       StringRef Name =
1429           CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1430       CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1431       GCResult->setAttributes(CS.getAttributes().getRetAttributes());
1432 
1433       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1434       // live set of some other safepoint, in which case that safepoint's
1435       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1436       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1437       // after the live sets have been made explicit in the IR, and we no longer
1438       // have raw pointers to worry about.
1439       Replacements.emplace_back(
1440           DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
1441     } else {
1442       Replacements.emplace_back(
1443           DeferredReplacement::createDelete(CS.getInstruction()));
1444     }
1445   }
1446 
1447   Result.StatepointToken = Token;
1448 
1449   // Second, create a gc.relocate for every live variable
1450   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1451   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1452 }
1453 
1454 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1455 // which make the relocations happening at this safepoint explicit.
1456 //
1457 // WARNING: Does not do any fixup to adjust users of the original live
1458 // values.  That's the callers responsibility.
1459 static void
1460 makeStatepointExplicit(DominatorTree &DT, CallSite CS,
1461                        PartiallyConstructedSafepointRecord &Result,
1462                        std::vector<DeferredReplacement> &Replacements) {
1463   const auto &LiveSet = Result.LiveSet;
1464   const auto &PointerToBase = Result.PointerToBase;
1465 
1466   // Convert to vector for efficient cross referencing.
1467   SmallVector<Value *, 64> BaseVec, LiveVec;
1468   LiveVec.reserve(LiveSet.size());
1469   BaseVec.reserve(LiveSet.size());
1470   for (Value *L : LiveSet) {
1471     LiveVec.push_back(L);
1472     assert(PointerToBase.count(L));
1473     Value *Base = PointerToBase.find(L)->second;
1474     BaseVec.push_back(Base);
1475   }
1476   assert(LiveVec.size() == BaseVec.size());
1477 
1478   // Do the actual rewriting and delete the old statepoint
1479   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1480 }
1481 
1482 // Helper function for the relocationViaAlloca.
1483 //
1484 // It receives iterator to the statepoint gc relocates and emits a store to the
1485 // assigned location (via allocaMap) for the each one of them.  It adds the
1486 // visited values into the visitedLiveValues set, which we will later use them
1487 // for sanity checking.
1488 static void
1489 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1490                        DenseMap<Value *, Value *> &AllocaMap,
1491                        DenseSet<Value *> &VisitedLiveValues) {
1492 
1493   for (User *U : GCRelocs) {
1494     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1495     if (!Relocate)
1496       continue;
1497 
1498     Value *OriginalValue = Relocate->getDerivedPtr();
1499     assert(AllocaMap.count(OriginalValue));
1500     Value *Alloca = AllocaMap[OriginalValue];
1501 
1502     // Emit store into the related alloca
1503     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1504     // the correct type according to alloca.
1505     assert(Relocate->getNextNode() &&
1506            "Should always have one since it's not a terminator");
1507     IRBuilder<> Builder(Relocate->getNextNode());
1508     Value *CastedRelocatedValue =
1509       Builder.CreateBitCast(Relocate,
1510                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1511                             suffixed_name_or(Relocate, ".casted", ""));
1512 
1513     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1514     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1515 
1516 #ifndef NDEBUG
1517     VisitedLiveValues.insert(OriginalValue);
1518 #endif
1519   }
1520 }
1521 
1522 // Helper function for the "relocationViaAlloca". Similar to the
1523 // "insertRelocationStores" but works for rematerialized values.
1524 static void insertRematerializationStores(
1525     const RematerializedValueMapTy &RematerializedValues,
1526     DenseMap<Value *, Value *> &AllocaMap,
1527     DenseSet<Value *> &VisitedLiveValues) {
1528 
1529   for (auto RematerializedValuePair: RematerializedValues) {
1530     Instruction *RematerializedValue = RematerializedValuePair.first;
1531     Value *OriginalValue = RematerializedValuePair.second;
1532 
1533     assert(AllocaMap.count(OriginalValue) &&
1534            "Can not find alloca for rematerialized value");
1535     Value *Alloca = AllocaMap[OriginalValue];
1536 
1537     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1538     Store->insertAfter(RematerializedValue);
1539 
1540 #ifndef NDEBUG
1541     VisitedLiveValues.insert(OriginalValue);
1542 #endif
1543   }
1544 }
1545 
1546 /// Do all the relocation update via allocas and mem2reg
1547 static void relocationViaAlloca(
1548     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1549     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1550 #ifndef NDEBUG
1551   // record initial number of (static) allocas; we'll check we have the same
1552   // number when we get done.
1553   int InitialAllocaNum = 0;
1554   for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1555        I++)
1556     if (isa<AllocaInst>(*I))
1557       InitialAllocaNum++;
1558 #endif
1559 
1560   // TODO-PERF: change data structures, reserve
1561   DenseMap<Value *, Value *> AllocaMap;
1562   SmallVector<AllocaInst *, 200> PromotableAllocas;
1563   // Used later to chack that we have enough allocas to store all values
1564   std::size_t NumRematerializedValues = 0;
1565   PromotableAllocas.reserve(Live.size());
1566 
1567   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1568   // "PromotableAllocas"
1569   auto emitAllocaFor = [&](Value *LiveValue) {
1570     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1571                                         F.getEntryBlock().getFirstNonPHI());
1572     AllocaMap[LiveValue] = Alloca;
1573     PromotableAllocas.push_back(Alloca);
1574   };
1575 
1576   // Emit alloca for each live gc pointer
1577   for (Value *V : Live)
1578     emitAllocaFor(V);
1579 
1580   // Emit allocas for rematerialized values
1581   for (const auto &Info : Records)
1582     for (auto RematerializedValuePair : Info.RematerializedValues) {
1583       Value *OriginalValue = RematerializedValuePair.second;
1584       if (AllocaMap.count(OriginalValue) != 0)
1585         continue;
1586 
1587       emitAllocaFor(OriginalValue);
1588       ++NumRematerializedValues;
1589     }
1590 
1591   // The next two loops are part of the same conceptual operation.  We need to
1592   // insert a store to the alloca after the original def and at each
1593   // redefinition.  We need to insert a load before each use.  These are split
1594   // into distinct loops for performance reasons.
1595 
1596   // Update gc pointer after each statepoint: either store a relocated value or
1597   // null (if no relocated value was found for this gc pointer and it is not a
1598   // gc_result).  This must happen before we update the statepoint with load of
1599   // alloca otherwise we lose the link between statepoint and old def.
1600   for (const auto &Info : Records) {
1601     Value *Statepoint = Info.StatepointToken;
1602 
1603     // This will be used for consistency check
1604     DenseSet<Value *> VisitedLiveValues;
1605 
1606     // Insert stores for normal statepoint gc relocates
1607     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1608 
1609     // In case if it was invoke statepoint
1610     // we will insert stores for exceptional path gc relocates.
1611     if (isa<InvokeInst>(Statepoint)) {
1612       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1613                              VisitedLiveValues);
1614     }
1615 
1616     // Do similar thing with rematerialized values
1617     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1618                                   VisitedLiveValues);
1619 
1620     if (ClobberNonLive) {
1621       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1622       // the gc.statepoint.  This will turn some subtle GC problems into
1623       // slightly easier to debug SEGVs.  Note that on large IR files with
1624       // lots of gc.statepoints this is extremely costly both memory and time
1625       // wise.
1626       SmallVector<AllocaInst *, 64> ToClobber;
1627       for (auto Pair : AllocaMap) {
1628         Value *Def = Pair.first;
1629         AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1630 
1631         // This value was relocated
1632         if (VisitedLiveValues.count(Def)) {
1633           continue;
1634         }
1635         ToClobber.push_back(Alloca);
1636       }
1637 
1638       auto InsertClobbersAt = [&](Instruction *IP) {
1639         for (auto *AI : ToClobber) {
1640           auto PT = cast<PointerType>(AI->getAllocatedType());
1641           Constant *CPN = ConstantPointerNull::get(PT);
1642           StoreInst *Store = new StoreInst(CPN, AI);
1643           Store->insertBefore(IP);
1644         }
1645       };
1646 
1647       // Insert the clobbering stores.  These may get intermixed with the
1648       // gc.results and gc.relocates, but that's fine.
1649       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1650         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1651         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1652       } else {
1653         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1654       }
1655     }
1656   }
1657 
1658   // Update use with load allocas and add store for gc_relocated.
1659   for (auto Pair : AllocaMap) {
1660     Value *Def = Pair.first;
1661     Value *Alloca = Pair.second;
1662 
1663     // We pre-record the uses of allocas so that we dont have to worry about
1664     // later update that changes the user information..
1665 
1666     SmallVector<Instruction *, 20> Uses;
1667     // PERF: trade a linear scan for repeated reallocation
1668     Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1669     for (User *U : Def->users()) {
1670       if (!isa<ConstantExpr>(U)) {
1671         // If the def has a ConstantExpr use, then the def is either a
1672         // ConstantExpr use itself or null.  In either case
1673         // (recursively in the first, directly in the second), the oop
1674         // it is ultimately dependent on is null and this particular
1675         // use does not need to be fixed up.
1676         Uses.push_back(cast<Instruction>(U));
1677       }
1678     }
1679 
1680     std::sort(Uses.begin(), Uses.end());
1681     auto Last = std::unique(Uses.begin(), Uses.end());
1682     Uses.erase(Last, Uses.end());
1683 
1684     for (Instruction *Use : Uses) {
1685       if (isa<PHINode>(Use)) {
1686         PHINode *Phi = cast<PHINode>(Use);
1687         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1688           if (Def == Phi->getIncomingValue(i)) {
1689             LoadInst *Load = new LoadInst(
1690                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1691             Phi->setIncomingValue(i, Load);
1692           }
1693         }
1694       } else {
1695         LoadInst *Load = new LoadInst(Alloca, "", Use);
1696         Use->replaceUsesOfWith(Def, Load);
1697       }
1698     }
1699 
1700     // Emit store for the initial gc value.  Store must be inserted after load,
1701     // otherwise store will be in alloca's use list and an extra load will be
1702     // inserted before it.
1703     StoreInst *Store = new StoreInst(Def, Alloca);
1704     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1705       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1706         // InvokeInst is a TerminatorInst so the store need to be inserted
1707         // into its normal destination block.
1708         BasicBlock *NormalDest = Invoke->getNormalDest();
1709         Store->insertBefore(NormalDest->getFirstNonPHI());
1710       } else {
1711         assert(!Inst->isTerminator() &&
1712                "The only TerminatorInst that can produce a value is "
1713                "InvokeInst which is handled above.");
1714         Store->insertAfter(Inst);
1715       }
1716     } else {
1717       assert(isa<Argument>(Def));
1718       Store->insertAfter(cast<Instruction>(Alloca));
1719     }
1720   }
1721 
1722   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1723          "we must have the same allocas with lives");
1724   if (!PromotableAllocas.empty()) {
1725     // Apply mem2reg to promote alloca to SSA
1726     PromoteMemToReg(PromotableAllocas, DT);
1727   }
1728 
1729 #ifndef NDEBUG
1730   for (auto &I : F.getEntryBlock())
1731     if (isa<AllocaInst>(I))
1732       InitialAllocaNum--;
1733   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1734 #endif
1735 }
1736 
1737 /// Implement a unique function which doesn't require we sort the input
1738 /// vector.  Doing so has the effect of changing the output of a couple of
1739 /// tests in ways which make them less useful in testing fused safepoints.
1740 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1741   SmallSet<T, 8> Seen;
1742   Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1743               return !Seen.insert(V).second;
1744             }), Vec.end());
1745 }
1746 
1747 /// Insert holders so that each Value is obviously live through the entire
1748 /// lifetime of the call.
1749 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1750                                  SmallVectorImpl<CallInst *> &Holders) {
1751   if (Values.empty())
1752     // No values to hold live, might as well not insert the empty holder
1753     return;
1754 
1755   Module *M = CS.getInstruction()->getModule();
1756   // Use a dummy vararg function to actually hold the values live
1757   Function *Func = cast<Function>(M->getOrInsertFunction(
1758       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1759   if (CS.isCall()) {
1760     // For call safepoints insert dummy calls right after safepoint
1761     Holders.push_back(CallInst::Create(Func, Values, "",
1762                                        &*++CS.getInstruction()->getIterator()));
1763     return;
1764   }
1765   // For invoke safepooints insert dummy calls both in normal and
1766   // exceptional destination blocks
1767   auto *II = cast<InvokeInst>(CS.getInstruction());
1768   Holders.push_back(CallInst::Create(
1769       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1770   Holders.push_back(CallInst::Create(
1771       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1772 }
1773 
1774 static void findLiveReferences(
1775     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1776     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1777   GCPtrLivenessData OriginalLivenessData;
1778   computeLiveInValues(DT, F, OriginalLivenessData);
1779   for (size_t i = 0; i < records.size(); i++) {
1780     struct PartiallyConstructedSafepointRecord &info = records[i];
1781     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
1782   }
1783 }
1784 
1785 // Helper function for the "rematerializeLiveValues". It walks use chain
1786 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
1787 // values are visited (currently it is GEP's and casts). Returns true if it
1788 // successfully reached "BaseValue" and false otherwise.
1789 // Fills "ChainToBase" array with all visited values. "BaseValue" is not
1790 // recorded.
1791 static bool findRematerializableChainToBasePointer(
1792   SmallVectorImpl<Instruction*> &ChainToBase,
1793   Value *CurrentValue, Value *BaseValue) {
1794 
1795   // We have found a base value
1796   if (CurrentValue == BaseValue) {
1797     return true;
1798   }
1799 
1800   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1801     ChainToBase.push_back(GEP);
1802     return findRematerializableChainToBasePointer(ChainToBase,
1803                                                   GEP->getPointerOperand(),
1804                                                   BaseValue);
1805   }
1806 
1807   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1808     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1809       return false;
1810 
1811     ChainToBase.push_back(CI);
1812     return findRematerializableChainToBasePointer(ChainToBase,
1813                                                   CI->getOperand(0), BaseValue);
1814   }
1815 
1816   // Not supported instruction in the chain
1817   return false;
1818 }
1819 
1820 // Helper function for the "rematerializeLiveValues". Compute cost of the use
1821 // chain we are going to rematerialize.
1822 static unsigned
1823 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1824                        TargetTransformInfo &TTI) {
1825   unsigned Cost = 0;
1826 
1827   for (Instruction *Instr : Chain) {
1828     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1829       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1830              "non noop cast is found during rematerialization");
1831 
1832       Type *SrcTy = CI->getOperand(0)->getType();
1833       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
1834 
1835     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1836       // Cost of the address calculation
1837       Type *ValTy = GEP->getSourceElementType();
1838       Cost += TTI.getAddressComputationCost(ValTy);
1839 
1840       // And cost of the GEP itself
1841       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1842       //       allowed for the external usage)
1843       if (!GEP->hasAllConstantIndices())
1844         Cost += 2;
1845 
1846     } else {
1847       llvm_unreachable("unsupported instruciton type during rematerialization");
1848     }
1849   }
1850 
1851   return Cost;
1852 }
1853 
1854 // From the statepoint live set pick values that are cheaper to recompute then
1855 // to relocate. Remove this values from the live set, rematerialize them after
1856 // statepoint and record them in "Info" structure. Note that similar to
1857 // relocated values we don't do any user adjustments here.
1858 static void rematerializeLiveValues(CallSite CS,
1859                                     PartiallyConstructedSafepointRecord &Info,
1860                                     TargetTransformInfo &TTI) {
1861   const unsigned int ChainLengthThreshold = 10;
1862 
1863   // Record values we are going to delete from this statepoint live set.
1864   // We can not di this in following loop due to iterator invalidation.
1865   SmallVector<Value *, 32> LiveValuesToBeDeleted;
1866 
1867   for (Value *LiveValue: Info.LiveSet) {
1868     // For each live pointer find it's defining chain
1869     SmallVector<Instruction *, 3> ChainToBase;
1870     assert(Info.PointerToBase.count(LiveValue));
1871     bool FoundChain =
1872       findRematerializableChainToBasePointer(ChainToBase,
1873                                              LiveValue,
1874                                              Info.PointerToBase[LiveValue]);
1875     // Nothing to do, or chain is too long
1876     if (!FoundChain ||
1877         ChainToBase.size() == 0 ||
1878         ChainToBase.size() > ChainLengthThreshold)
1879       continue;
1880 
1881     // Compute cost of this chain
1882     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
1883     // TODO: We can also account for cases when we will be able to remove some
1884     //       of the rematerialized values by later optimization passes. I.e if
1885     //       we rematerialized several intersecting chains. Or if original values
1886     //       don't have any uses besides this statepoint.
1887 
1888     // For invokes we need to rematerialize each chain twice - for normal and
1889     // for unwind basic blocks. Model this by multiplying cost by two.
1890     if (CS.isInvoke()) {
1891       Cost *= 2;
1892     }
1893     // If it's too expensive - skip it
1894     if (Cost >= RematerializationThreshold)
1895       continue;
1896 
1897     // Remove value from the live set
1898     LiveValuesToBeDeleted.push_back(LiveValue);
1899 
1900     // Clone instructions and record them inside "Info" structure
1901 
1902     // Walk backwards to visit top-most instructions first
1903     std::reverse(ChainToBase.begin(), ChainToBase.end());
1904 
1905     // Utility function which clones all instructions from "ChainToBase"
1906     // and inserts them before "InsertBefore". Returns rematerialized value
1907     // which should be used after statepoint.
1908     auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
1909       Instruction *LastClonedValue = nullptr;
1910       Instruction *LastValue = nullptr;
1911       for (Instruction *Instr: ChainToBase) {
1912         // Only GEP's and casts are suported as we need to be careful to not
1913         // introduce any new uses of pointers not in the liveset.
1914         // Note that it's fine to introduce new uses of pointers which were
1915         // otherwise not used after this statepoint.
1916         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
1917 
1918         Instruction *ClonedValue = Instr->clone();
1919         ClonedValue->insertBefore(InsertBefore);
1920         ClonedValue->setName(Instr->getName() + ".remat");
1921 
1922         // If it is not first instruction in the chain then it uses previously
1923         // cloned value. We should update it to use cloned value.
1924         if (LastClonedValue) {
1925           assert(LastValue);
1926           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
1927 #ifndef NDEBUG
1928           // Assert that cloned instruction does not use any instructions from
1929           // this chain other than LastClonedValue
1930           for (auto OpValue : ClonedValue->operand_values()) {
1931             assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
1932                        ChainToBase.end() &&
1933                    "incorrect use in rematerialization chain");
1934           }
1935 #endif
1936         }
1937 
1938         LastClonedValue = ClonedValue;
1939         LastValue = Instr;
1940       }
1941       assert(LastClonedValue);
1942       return LastClonedValue;
1943     };
1944 
1945     // Different cases for calls and invokes. For invokes we need to clone
1946     // instructions both on normal and unwind path.
1947     if (CS.isCall()) {
1948       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
1949       assert(InsertBefore);
1950       Instruction *RematerializedValue = rematerializeChain(InsertBefore);
1951       Info.RematerializedValues[RematerializedValue] = LiveValue;
1952     } else {
1953       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
1954 
1955       Instruction *NormalInsertBefore =
1956           &*Invoke->getNormalDest()->getFirstInsertionPt();
1957       Instruction *UnwindInsertBefore =
1958           &*Invoke->getUnwindDest()->getFirstInsertionPt();
1959 
1960       Instruction *NormalRematerializedValue =
1961           rematerializeChain(NormalInsertBefore);
1962       Instruction *UnwindRematerializedValue =
1963           rematerializeChain(UnwindInsertBefore);
1964 
1965       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
1966       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
1967     }
1968   }
1969 
1970   // Remove rematerializaed values from the live set
1971   for (auto LiveValue: LiveValuesToBeDeleted) {
1972     Info.LiveSet.remove(LiveValue);
1973   }
1974 }
1975 
1976 static bool insertParsePoints(Function &F, DominatorTree &DT,
1977                               TargetTransformInfo &TTI,
1978                               SmallVectorImpl<CallSite> &ToUpdate) {
1979 #ifndef NDEBUG
1980   // sanity check the input
1981   std::set<CallSite> Uniqued;
1982   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
1983   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
1984 
1985   for (CallSite CS : ToUpdate)
1986     assert(CS.getInstruction()->getFunction() == &F);
1987 #endif
1988 
1989   // When inserting gc.relocates for invokes, we need to be able to insert at
1990   // the top of the successor blocks.  See the comment on
1991   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
1992   // may restructure the CFG.
1993   for (CallSite CS : ToUpdate) {
1994     if (!CS.isInvoke())
1995       continue;
1996     auto *II = cast<InvokeInst>(CS.getInstruction());
1997     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
1998     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
1999   }
2000 
2001   // A list of dummy calls added to the IR to keep various values obviously
2002   // live in the IR.  We'll remove all of these when done.
2003   SmallVector<CallInst *, 64> Holders;
2004 
2005   // Insert a dummy call with all of the arguments to the vm_state we'll need
2006   // for the actual safepoint insertion.  This ensures reference arguments in
2007   // the deopt argument list are considered live through the safepoint (and
2008   // thus makes sure they get relocated.)
2009   for (CallSite CS : ToUpdate) {
2010     SmallVector<Value *, 64> DeoptValues;
2011 
2012     for (Value *Arg : GetDeoptBundleOperands(CS)) {
2013       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2014              "support for FCA unimplemented");
2015       if (isHandledGCPointerType(Arg->getType()))
2016         DeoptValues.push_back(Arg);
2017     }
2018 
2019     insertUseHolderAfter(CS, DeoptValues, Holders);
2020   }
2021 
2022   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2023 
2024   // A) Identify all gc pointers which are statically live at the given call
2025   // site.
2026   findLiveReferences(F, DT, ToUpdate, Records);
2027 
2028   // B) Find the base pointers for each live pointer
2029   /* scope for caching */ {
2030     // Cache the 'defining value' relation used in the computation and
2031     // insertion of base phis and selects.  This ensures that we don't insert
2032     // large numbers of duplicate base_phis.
2033     DefiningValueMapTy DVCache;
2034 
2035     for (size_t i = 0; i < Records.size(); i++) {
2036       PartiallyConstructedSafepointRecord &info = Records[i];
2037       findBasePointers(DT, DVCache, ToUpdate[i], info);
2038     }
2039   } // end of cache scope
2040 
2041   // The base phi insertion logic (for any safepoint) may have inserted new
2042   // instructions which are now live at some safepoint.  The simplest such
2043   // example is:
2044   // loop:
2045   //   phi a  <-- will be a new base_phi here
2046   //   safepoint 1 <-- that needs to be live here
2047   //   gep a + 1
2048   //   safepoint 2
2049   //   br loop
2050   // We insert some dummy calls after each safepoint to definitely hold live
2051   // the base pointers which were identified for that safepoint.  We'll then
2052   // ask liveness for _every_ base inserted to see what is now live.  Then we
2053   // remove the dummy calls.
2054   Holders.reserve(Holders.size() + Records.size());
2055   for (size_t i = 0; i < Records.size(); i++) {
2056     PartiallyConstructedSafepointRecord &Info = Records[i];
2057 
2058     SmallVector<Value *, 128> Bases;
2059     for (auto Pair : Info.PointerToBase)
2060       Bases.push_back(Pair.second);
2061 
2062     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2063   }
2064 
2065   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2066   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2067   // not the key issue.
2068   recomputeLiveInValues(F, DT, ToUpdate, Records);
2069 
2070   if (PrintBasePointers) {
2071     for (auto &Info : Records) {
2072       errs() << "Base Pairs: (w/Relocation)\n";
2073       for (auto Pair : Info.PointerToBase) {
2074         errs() << " derived ";
2075         Pair.first->printAsOperand(errs(), false);
2076         errs() << " base ";
2077         Pair.second->printAsOperand(errs(), false);
2078         errs() << "\n";
2079       }
2080     }
2081   }
2082 
2083   // It is possible that non-constant live variables have a constant base.  For
2084   // example, a GEP with a variable offset from a global.  In this case we can
2085   // remove it from the liveset.  We already don't add constants to the liveset
2086   // because we assume they won't move at runtime and the GC doesn't need to be
2087   // informed about them.  The same reasoning applies if the base is constant.
2088   // Note that the relocation placement code relies on this filtering for
2089   // correctness as it expects the base to be in the liveset, which isn't true
2090   // if the base is constant.
2091   for (auto &Info : Records)
2092     for (auto &BasePair : Info.PointerToBase)
2093       if (isa<Constant>(BasePair.second))
2094         Info.LiveSet.remove(BasePair.first);
2095 
2096   for (CallInst *CI : Holders)
2097     CI->eraseFromParent();
2098 
2099   Holders.clear();
2100 
2101   // In order to reduce live set of statepoint we might choose to rematerialize
2102   // some values instead of relocating them. This is purely an optimization and
2103   // does not influence correctness.
2104   for (size_t i = 0; i < Records.size(); i++)
2105     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2106 
2107   // We need this to safely RAUW and delete call or invoke return values that
2108   // may themselves be live over a statepoint.  For details, please see usage in
2109   // makeStatepointExplicitImpl.
2110   std::vector<DeferredReplacement> Replacements;
2111 
2112   // Now run through and replace the existing statepoints with new ones with
2113   // the live variables listed.  We do not yet update uses of the values being
2114   // relocated. We have references to live variables that need to
2115   // survive to the last iteration of this loop.  (By construction, the
2116   // previous statepoint can not be a live variable, thus we can and remove
2117   // the old statepoint calls as we go.)
2118   for (size_t i = 0; i < Records.size(); i++)
2119     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2120 
2121   ToUpdate.clear(); // prevent accident use of invalid CallSites
2122 
2123   for (auto &PR : Replacements)
2124     PR.doReplacement();
2125 
2126   Replacements.clear();
2127 
2128   for (auto &Info : Records) {
2129     // These live sets may contain state Value pointers, since we replaced calls
2130     // with operand bundles with calls wrapped in gc.statepoint, and some of
2131     // those calls may have been def'ing live gc pointers.  Clear these out to
2132     // avoid accidentally using them.
2133     //
2134     // TODO: We should create a separate data structure that does not contain
2135     // these live sets, and migrate to using that data structure from this point
2136     // onward.
2137     Info.LiveSet.clear();
2138     Info.PointerToBase.clear();
2139   }
2140 
2141   // Do all the fixups of the original live variables to their relocated selves
2142   SmallVector<Value *, 128> Live;
2143   for (size_t i = 0; i < Records.size(); i++) {
2144     PartiallyConstructedSafepointRecord &Info = Records[i];
2145 
2146     // We can't simply save the live set from the original insertion.  One of
2147     // the live values might be the result of a call which needs a safepoint.
2148     // That Value* no longer exists and we need to use the new gc_result.
2149     // Thankfully, the live set is embedded in the statepoint (and updated), so
2150     // we just grab that.
2151     Statepoint Statepoint(Info.StatepointToken);
2152     Live.insert(Live.end(), Statepoint.gc_args_begin(),
2153                 Statepoint.gc_args_end());
2154 #ifndef NDEBUG
2155     // Do some basic sanity checks on our liveness results before performing
2156     // relocation.  Relocation can and will turn mistakes in liveness results
2157     // into non-sensical code which is must harder to debug.
2158     // TODO: It would be nice to test consistency as well
2159     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2160            "statepoint must be reachable or liveness is meaningless");
2161     for (Value *V : Statepoint.gc_args()) {
2162       if (!isa<Instruction>(V))
2163         // Non-instruction values trivial dominate all possible uses
2164         continue;
2165       auto *LiveInst = cast<Instruction>(V);
2166       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2167              "unreachable values should never be live");
2168       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2169              "basic SSA liveness expectation violated by liveness analysis");
2170     }
2171 #endif
2172   }
2173   unique_unsorted(Live);
2174 
2175 #ifndef NDEBUG
2176   // sanity check
2177   for (auto *Ptr : Live)
2178     assert(isHandledGCPointerType(Ptr->getType()) &&
2179            "must be a gc pointer type");
2180 #endif
2181 
2182   relocationViaAlloca(F, DT, Live, Records);
2183   return !Records.empty();
2184 }
2185 
2186 // Handles both return values and arguments for Functions and CallSites.
2187 template <typename AttrHolder>
2188 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2189                                       unsigned Index) {
2190   AttrBuilder R;
2191   if (AH.getDereferenceableBytes(Index))
2192     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2193                                   AH.getDereferenceableBytes(Index)));
2194   if (AH.getDereferenceableOrNullBytes(Index))
2195     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2196                                   AH.getDereferenceableOrNullBytes(Index)));
2197   if (AH.doesNotAlias(Index))
2198     R.addAttribute(Attribute::NoAlias);
2199 
2200   if (!R.empty())
2201     AH.setAttributes(AH.getAttributes().removeAttributes(
2202         Ctx, Index, AttributeSet::get(Ctx, Index, R)));
2203 }
2204 
2205 void
2206 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
2207   LLVMContext &Ctx = F.getContext();
2208 
2209   for (Argument &A : F.args())
2210     if (isa<PointerType>(A.getType()))
2211       RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
2212 
2213   if (isa<PointerType>(F.getReturnType()))
2214     RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
2215 }
2216 
2217 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
2218   if (F.empty())
2219     return;
2220 
2221   LLVMContext &Ctx = F.getContext();
2222   MDBuilder Builder(Ctx);
2223 
2224   for (Instruction &I : instructions(F)) {
2225     if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2226       assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2227       bool IsImmutableTBAA =
2228           MD->getNumOperands() == 4 &&
2229           mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2230 
2231       if (!IsImmutableTBAA)
2232         continue; // no work to do, MD_tbaa is already marked mutable
2233 
2234       MDNode *Base = cast<MDNode>(MD->getOperand(0));
2235       MDNode *Access = cast<MDNode>(MD->getOperand(1));
2236       uint64_t Offset =
2237           mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2238 
2239       MDNode *MutableTBAA =
2240           Builder.createTBAAStructTagNode(Base, Access, Offset);
2241       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2242     }
2243 
2244     if (CallSite CS = CallSite(&I)) {
2245       for (int i = 0, e = CS.arg_size(); i != e; i++)
2246         if (isa<PointerType>(CS.getArgument(i)->getType()))
2247           RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
2248       if (isa<PointerType>(CS.getType()))
2249         RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
2250     }
2251   }
2252 }
2253 
2254 /// Returns true if this function should be rewritten by this pass.  The main
2255 /// point of this function is as an extension point for custom logic.
2256 static bool shouldRewriteStatepointsIn(Function &F) {
2257   // TODO: This should check the GCStrategy
2258   if (F.hasGC()) {
2259     const auto &FunctionGCName = F.getGC();
2260     const StringRef StatepointExampleName("statepoint-example");
2261     const StringRef CoreCLRName("coreclr");
2262     return (StatepointExampleName == FunctionGCName) ||
2263            (CoreCLRName == FunctionGCName);
2264   } else
2265     return false;
2266 }
2267 
2268 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
2269 #ifndef NDEBUG
2270   assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2271          "precondition!");
2272 #endif
2273 
2274   for (Function &F : M)
2275     stripNonValidAttributesFromPrototype(F);
2276 
2277   for (Function &F : M)
2278     stripNonValidAttributesFromBody(F);
2279 }
2280 
2281 bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2282   // Nothing to do for declarations.
2283   if (F.isDeclaration() || F.empty())
2284     return false;
2285 
2286   // Policy choice says not to rewrite - the most common reason is that we're
2287   // compiling code without a GCStrategy.
2288   if (!shouldRewriteStatepointsIn(F))
2289     return false;
2290 
2291   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2292   TargetTransformInfo &TTI =
2293       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2294 
2295   auto NeedsRewrite = [](Instruction &I) {
2296     if (ImmutableCallSite CS = ImmutableCallSite(&I))
2297       return !callsGCLeafFunction(CS) && !isStatepoint(CS);
2298     return false;
2299   };
2300 
2301   // Gather all the statepoints which need rewritten.  Be careful to only
2302   // consider those in reachable code since we need to ask dominance queries
2303   // when rewriting.  We'll delete the unreachable ones in a moment.
2304   SmallVector<CallSite, 64> ParsePointNeeded;
2305   bool HasUnreachableStatepoint = false;
2306   for (Instruction &I : instructions(F)) {
2307     // TODO: only the ones with the flag set!
2308     if (NeedsRewrite(I)) {
2309       if (DT.isReachableFromEntry(I.getParent()))
2310         ParsePointNeeded.push_back(CallSite(&I));
2311       else
2312         HasUnreachableStatepoint = true;
2313     }
2314   }
2315 
2316   bool MadeChange = false;
2317 
2318   // Delete any unreachable statepoints so that we don't have unrewritten
2319   // statepoints surviving this pass.  This makes testing easier and the
2320   // resulting IR less confusing to human readers.  Rather than be fancy, we
2321   // just reuse a utility function which removes the unreachable blocks.
2322   if (HasUnreachableStatepoint)
2323     MadeChange |= removeUnreachableBlocks(F);
2324 
2325   // Return early if no work to do.
2326   if (ParsePointNeeded.empty())
2327     return MadeChange;
2328 
2329   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2330   // These are created by LCSSA.  They have the effect of increasing the size
2331   // of liveness sets for no good reason.  It may be harder to do this post
2332   // insertion since relocations and base phis can confuse things.
2333   for (BasicBlock &BB : F)
2334     if (BB.getUniquePredecessor()) {
2335       MadeChange = true;
2336       FoldSingleEntryPHINodes(&BB);
2337     }
2338 
2339   // Before we start introducing relocations, we want to tweak the IR a bit to
2340   // avoid unfortunate code generation effects.  The main example is that we
2341   // want to try to make sure the comparison feeding a branch is after any
2342   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2343   // values feeding a branch after relocation.  This is semantically correct,
2344   // but results in extra register pressure since both the pre-relocation and
2345   // post-relocation copies must be available in registers.  For code without
2346   // relocations this is handled elsewhere, but teaching the scheduler to
2347   // reverse the transform we're about to do would be slightly complex.
2348   // Note: This may extend the live range of the inputs to the icmp and thus
2349   // increase the liveset of any statepoint we move over.  This is profitable
2350   // as long as all statepoints are in rare blocks.  If we had in-register
2351   // lowering for live values this would be a much safer transform.
2352   auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2353     if (auto *BI = dyn_cast<BranchInst>(TI))
2354       if (BI->isConditional())
2355         return dyn_cast<Instruction>(BI->getCondition());
2356     // TODO: Extend this to handle switches
2357     return nullptr;
2358   };
2359   for (BasicBlock &BB : F) {
2360     TerminatorInst *TI = BB.getTerminator();
2361     if (auto *Cond = getConditionInst(TI))
2362       // TODO: Handle more than just ICmps here.  We should be able to move
2363       // most instructions without side effects or memory access.
2364       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2365         MadeChange = true;
2366         Cond->moveBefore(TI);
2367       }
2368   }
2369 
2370   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2371   return MadeChange;
2372 }
2373 
2374 // liveness computation via standard dataflow
2375 // -------------------------------------------------------------------
2376 
2377 // TODO: Consider using bitvectors for liveness, the set of potentially
2378 // interesting values should be small and easy to pre-compute.
2379 
2380 /// Compute the live-in set for the location rbegin starting from
2381 /// the live-out set of the basic block
2382 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2383                                 BasicBlock::reverse_iterator End,
2384                                 SetVector<Value *> &LiveTmp) {
2385   for (auto &I : make_range(Begin, End)) {
2386     // KILL/Def - Remove this definition from LiveIn
2387     LiveTmp.remove(&I);
2388 
2389     // Don't consider *uses* in PHI nodes, we handle their contribution to
2390     // predecessor blocks when we seed the LiveOut sets
2391     if (isa<PHINode>(I))
2392       continue;
2393 
2394     // USE - Add to the LiveIn set for this instruction
2395     for (Value *V : I.operands()) {
2396       assert(!isUnhandledGCPointerType(V->getType()) &&
2397              "support for FCA unimplemented");
2398       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2399         // The choice to exclude all things constant here is slightly subtle.
2400         // There are two independent reasons:
2401         // - We assume that things which are constant (from LLVM's definition)
2402         // do not move at runtime.  For example, the address of a global
2403         // variable is fixed, even though it's contents may not be.
2404         // - Second, we can't disallow arbitrary inttoptr constants even
2405         // if the language frontend does.  Optimization passes are free to
2406         // locally exploit facts without respect to global reachability.  This
2407         // can create sections of code which are dynamically unreachable and
2408         // contain just about anything.  (see constants.ll in tests)
2409         LiveTmp.insert(V);
2410       }
2411     }
2412   }
2413 }
2414 
2415 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2416   for (BasicBlock *Succ : successors(BB)) {
2417     for (auto &I : *Succ) {
2418       PHINode *PN = dyn_cast<PHINode>(&I);
2419       if (!PN)
2420         break;
2421 
2422       Value *V = PN->getIncomingValueForBlock(BB);
2423       assert(!isUnhandledGCPointerType(V->getType()) &&
2424              "support for FCA unimplemented");
2425       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2426         LiveTmp.insert(V);
2427     }
2428   }
2429 }
2430 
2431 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2432   SetVector<Value *> KillSet;
2433   for (Instruction &I : *BB)
2434     if (isHandledGCPointerType(I.getType()))
2435       KillSet.insert(&I);
2436   return KillSet;
2437 }
2438 
2439 #ifndef NDEBUG
2440 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2441 /// sanity check for the liveness computation.
2442 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2443                           TerminatorInst *TI, bool TermOkay = false) {
2444   for (Value *V : Live) {
2445     if (auto *I = dyn_cast<Instruction>(V)) {
2446       // The terminator can be a member of the LiveOut set.  LLVM's definition
2447       // of instruction dominance states that V does not dominate itself.  As
2448       // such, we need to special case this to allow it.
2449       if (TermOkay && TI == I)
2450         continue;
2451       assert(DT.dominates(I, TI) &&
2452              "basic SSA liveness expectation violated by liveness analysis");
2453     }
2454   }
2455 }
2456 
2457 /// Check that all the liveness sets used during the computation of liveness
2458 /// obey basic SSA properties.  This is useful for finding cases where we miss
2459 /// a def.
2460 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2461                           BasicBlock &BB) {
2462   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2463   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2464   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2465 }
2466 #endif
2467 
2468 static void computeLiveInValues(DominatorTree &DT, Function &F,
2469                                 GCPtrLivenessData &Data) {
2470   SmallSetVector<BasicBlock *, 32> Worklist;
2471 
2472   // Seed the liveness for each individual block
2473   for (BasicBlock &BB : F) {
2474     Data.KillSet[&BB] = computeKillSet(&BB);
2475     Data.LiveSet[&BB].clear();
2476     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2477 
2478 #ifndef NDEBUG
2479     for (Value *Kill : Data.KillSet[&BB])
2480       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2481 #endif
2482 
2483     Data.LiveOut[&BB] = SetVector<Value *>();
2484     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2485     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2486     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2487     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2488     if (!Data.LiveIn[&BB].empty())
2489       Worklist.insert(pred_begin(&BB), pred_end(&BB));
2490   }
2491 
2492   // Propagate that liveness until stable
2493   while (!Worklist.empty()) {
2494     BasicBlock *BB = Worklist.pop_back_val();
2495 
2496     // Compute our new liveout set, then exit early if it hasn't changed despite
2497     // the contribution of our successor.
2498     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2499     const auto OldLiveOutSize = LiveOut.size();
2500     for (BasicBlock *Succ : successors(BB)) {
2501       assert(Data.LiveIn.count(Succ));
2502       LiveOut.set_union(Data.LiveIn[Succ]);
2503     }
2504     // assert OutLiveOut is a subset of LiveOut
2505     if (OldLiveOutSize == LiveOut.size()) {
2506       // If the sets are the same size, then we didn't actually add anything
2507       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
2508       // hasn't changed.
2509       continue;
2510     }
2511     Data.LiveOut[BB] = LiveOut;
2512 
2513     // Apply the effects of this basic block
2514     SetVector<Value *> LiveTmp = LiveOut;
2515     LiveTmp.set_union(Data.LiveSet[BB]);
2516     LiveTmp.set_subtract(Data.KillSet[BB]);
2517 
2518     assert(Data.LiveIn.count(BB));
2519     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2520     // assert: OldLiveIn is a subset of LiveTmp
2521     if (OldLiveIn.size() != LiveTmp.size()) {
2522       Data.LiveIn[BB] = LiveTmp;
2523       Worklist.insert(pred_begin(BB), pred_end(BB));
2524     }
2525   } // while (!Worklist.empty())
2526 
2527 #ifndef NDEBUG
2528   // Sanity check our output against SSA properties.  This helps catch any
2529   // missing kills during the above iteration.
2530   for (BasicBlock &BB : F)
2531     checkBasicSSA(DT, Data, BB);
2532 #endif
2533 }
2534 
2535 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2536                               StatepointLiveSetTy &Out) {
2537 
2538   BasicBlock *BB = Inst->getParent();
2539 
2540   // Note: The copy is intentional and required
2541   assert(Data.LiveOut.count(BB));
2542   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2543 
2544   // We want to handle the statepoint itself oddly.  It's
2545   // call result is not live (normal), nor are it's arguments
2546   // (unless they're used again later).  This adjustment is
2547   // specifically what we need to relocate
2548   BasicBlock::reverse_iterator rend(Inst->getIterator());
2549   computeLiveInValues(BB->rbegin(), rend, LiveOut);
2550   LiveOut.remove(Inst);
2551   Out.insert(LiveOut.begin(), LiveOut.end());
2552 }
2553 
2554 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2555                                   CallSite CS,
2556                                   PartiallyConstructedSafepointRecord &Info) {
2557   Instruction *Inst = CS.getInstruction();
2558   StatepointLiveSetTy Updated;
2559   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2560 
2561 #ifndef NDEBUG
2562   DenseSet<Value *> Bases;
2563   for (auto KVPair : Info.PointerToBase)
2564     Bases.insert(KVPair.second);
2565 #endif
2566 
2567   // We may have base pointers which are now live that weren't before.  We need
2568   // to update the PointerToBase structure to reflect this.
2569   for (auto V : Updated)
2570     if (Info.PointerToBase.insert({V, V}).second) {
2571       assert(Bases.count(V) && "Can't find base for unexpected live value!");
2572       continue;
2573     }
2574 
2575 #ifndef NDEBUG
2576   for (auto V : Updated)
2577     assert(Info.PointerToBase.count(V) &&
2578            "Must be able to find base for live value!");
2579 #endif
2580 
2581   // Remove any stale base mappings - this can happen since our liveness is
2582   // more precise then the one inherent in the base pointer analysis.
2583   DenseSet<Value *> ToErase;
2584   for (auto KVPair : Info.PointerToBase)
2585     if (!Updated.count(KVPair.first))
2586       ToErase.insert(KVPair.first);
2587 
2588   for (auto *V : ToErase)
2589     Info.PointerToBase.erase(V);
2590 
2591 #ifndef NDEBUG
2592   for (auto KVPair : Info.PointerToBase)
2593     assert(Updated.count(KVPair.first) && "record for non-live value");
2594 #endif
2595 
2596   Info.LiveSet = Updated;
2597 }
2598