1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstIterator.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/Cloning.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 45 46 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 47 48 using namespace llvm; 49 50 // Print the liveset found at the insert location 51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 52 cl::init(false)); 53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 54 cl::init(false)); 55 // Print out the base pointers for debugging 56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 57 cl::init(false)); 58 59 // Cost threshold measuring when it is profitable to rematerialize value instead 60 // of relocating it 61 static cl::opt<unsigned> 62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 63 cl::init(6)); 64 65 #ifdef EXPENSIVE_CHECKS 66 static bool ClobberNonLive = true; 67 #else 68 static bool ClobberNonLive = false; 69 #endif 70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 71 cl::location(ClobberNonLive), 72 cl::Hidden); 73 74 static cl::opt<bool> 75 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 76 cl::Hidden, cl::init(true)); 77 78 namespace { 79 struct RewriteStatepointsForGC : public ModulePass { 80 static char ID; // Pass identification, replacement for typeid 81 82 RewriteStatepointsForGC() : ModulePass(ID) { 83 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 84 } 85 bool runOnFunction(Function &F); 86 bool runOnModule(Module &M) override { 87 bool Changed = false; 88 for (Function &F : M) 89 Changed |= runOnFunction(F); 90 91 if (Changed) { 92 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 93 // returns true for at least one function in the module. Since at least 94 // one function changed, we know that the precondition is satisfied. 95 stripNonValidAttributes(M); 96 } 97 98 return Changed; 99 } 100 101 void getAnalysisUsage(AnalysisUsage &AU) const override { 102 // We add and rewrite a bunch of instructions, but don't really do much 103 // else. We could in theory preserve a lot more analyses here. 104 AU.addRequired<DominatorTreeWrapperPass>(); 105 AU.addRequired<TargetTransformInfoWrapperPass>(); 106 } 107 108 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 109 /// dereferenceability that are no longer valid/correct after 110 /// RewriteStatepointsForGC has run. This is because semantically, after 111 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 112 /// heap. stripNonValidAttributes (conservatively) restores correctness 113 /// by erasing all attributes in the module that externally imply 114 /// dereferenceability. 115 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 116 /// can touch the entire heap including noalias objects. 117 void stripNonValidAttributes(Module &M); 118 119 // Helpers for stripNonValidAttributes 120 void stripNonValidAttributesFromBody(Function &F); 121 void stripNonValidAttributesFromPrototype(Function &F); 122 }; 123 } // namespace 124 125 char RewriteStatepointsForGC::ID = 0; 126 127 ModulePass *llvm::createRewriteStatepointsForGCPass() { 128 return new RewriteStatepointsForGC(); 129 } 130 131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 132 "Make relocations explicit at statepoints", false, false) 133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 136 "Make relocations explicit at statepoints", false, false) 137 138 namespace { 139 struct GCPtrLivenessData { 140 /// Values defined in this block. 141 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 142 /// Values used in this block (and thus live); does not included values 143 /// killed within this block. 144 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 145 146 /// Values live into this basic block (i.e. used by any 147 /// instruction in this basic block or ones reachable from here) 148 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 149 150 /// Values live out of this basic block (i.e. live into 151 /// any successor block) 152 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 153 }; 154 155 // The type of the internal cache used inside the findBasePointers family 156 // of functions. From the callers perspective, this is an opaque type and 157 // should not be inspected. 158 // 159 // In the actual implementation this caches two relations: 160 // - The base relation itself (i.e. this pointer is based on that one) 161 // - The base defining value relation (i.e. before base_phi insertion) 162 // Generally, after the execution of a full findBasePointer call, only the 163 // base relation will remain. Internally, we add a mixture of the two 164 // types, then update all the second type to the first type 165 typedef MapVector<Value *, Value *> DefiningValueMapTy; 166 typedef SetVector<Value *> StatepointLiveSetTy; 167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>> 168 RematerializedValueMapTy; 169 170 struct PartiallyConstructedSafepointRecord { 171 /// The set of values known to be live across this safepoint 172 StatepointLiveSetTy LiveSet; 173 174 /// Mapping from live pointers to a base-defining-value 175 MapVector<Value *, Value *> PointerToBase; 176 177 /// The *new* gc.statepoint instruction itself. This produces the token 178 /// that normal path gc.relocates and the gc.result are tied to. 179 Instruction *StatepointToken; 180 181 /// Instruction to which exceptional gc relocates are attached 182 /// Makes it easier to iterate through them during relocationViaAlloca. 183 Instruction *UnwindToken; 184 185 /// Record live values we are rematerialized instead of relocating. 186 /// They are not included into 'LiveSet' field. 187 /// Maps rematerialized copy to it's original value. 188 RematerializedValueMapTy RematerializedValues; 189 }; 190 } 191 192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 193 Optional<OperandBundleUse> DeoptBundle = 194 CS.getOperandBundle(LLVMContext::OB_deopt); 195 196 if (!DeoptBundle.hasValue()) { 197 assert(AllowStatepointWithNoDeoptInfo && 198 "Found non-leaf call without deopt info!"); 199 return None; 200 } 201 202 return DeoptBundle.getValue().Inputs; 203 } 204 205 /// Compute the live-in set for every basic block in the function 206 static void computeLiveInValues(DominatorTree &DT, Function &F, 207 GCPtrLivenessData &Data); 208 209 /// Given results from the dataflow liveness computation, find the set of live 210 /// Values at a particular instruction. 211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 212 StatepointLiveSetTy &out); 213 214 // TODO: Once we can get to the GCStrategy, this becomes 215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 216 217 static bool isGCPointerType(Type *T) { 218 if (auto *PT = dyn_cast<PointerType>(T)) 219 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 220 // GC managed heap. We know that a pointer into this heap needs to be 221 // updated and that no other pointer does. 222 return PT->getAddressSpace() == 1; 223 return false; 224 } 225 226 // Return true if this type is one which a) is a gc pointer or contains a GC 227 // pointer and b) is of a type this code expects to encounter as a live value. 228 // (The insertion code will assert that a type which matches (a) and not (b) 229 // is not encountered.) 230 static bool isHandledGCPointerType(Type *T) { 231 // We fully support gc pointers 232 if (isGCPointerType(T)) 233 return true; 234 // We partially support vectors of gc pointers. The code will assert if it 235 // can't handle something. 236 if (auto VT = dyn_cast<VectorType>(T)) 237 if (isGCPointerType(VT->getElementType())) 238 return true; 239 return false; 240 } 241 242 #ifndef NDEBUG 243 /// Returns true if this type contains a gc pointer whether we know how to 244 /// handle that type or not. 245 static bool containsGCPtrType(Type *Ty) { 246 if (isGCPointerType(Ty)) 247 return true; 248 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 249 return isGCPointerType(VT->getScalarType()); 250 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 251 return containsGCPtrType(AT->getElementType()); 252 if (StructType *ST = dyn_cast<StructType>(Ty)) 253 return any_of(ST->subtypes(), containsGCPtrType); 254 return false; 255 } 256 257 // Returns true if this is a type which a) is a gc pointer or contains a GC 258 // pointer and b) is of a type which the code doesn't expect (i.e. first class 259 // aggregates). Used to trip assertions. 260 static bool isUnhandledGCPointerType(Type *Ty) { 261 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 262 } 263 #endif 264 265 // Return the name of the value suffixed with the provided value, or if the 266 // value didn't have a name, the default value specified. 267 static std::string suffixed_name_or(Value *V, StringRef Suffix, 268 StringRef DefaultName) { 269 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 270 } 271 272 // Conservatively identifies any definitions which might be live at the 273 // given instruction. The analysis is performed immediately before the 274 // given instruction. Values defined by that instruction are not considered 275 // live. Values used by that instruction are considered live. 276 static void 277 analyzeParsePointLiveness(DominatorTree &DT, 278 GCPtrLivenessData &OriginalLivenessData, CallSite CS, 279 PartiallyConstructedSafepointRecord &Result) { 280 Instruction *Inst = CS.getInstruction(); 281 282 StatepointLiveSetTy LiveSet; 283 findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet); 284 285 if (PrintLiveSet) { 286 dbgs() << "Live Variables:\n"; 287 for (Value *V : LiveSet) 288 dbgs() << " " << V->getName() << " " << *V << "\n"; 289 } 290 if (PrintLiveSetSize) { 291 dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 292 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 293 } 294 Result.LiveSet = LiveSet; 295 } 296 297 static bool isKnownBaseResult(Value *V); 298 namespace { 299 /// A single base defining value - An immediate base defining value for an 300 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 301 /// For instructions which have multiple pointer [vector] inputs or that 302 /// transition between vector and scalar types, there is no immediate base 303 /// defining value. The 'base defining value' for 'Def' is the transitive 304 /// closure of this relation stopping at the first instruction which has no 305 /// immediate base defining value. The b.d.v. might itself be a base pointer, 306 /// but it can also be an arbitrary derived pointer. 307 struct BaseDefiningValueResult { 308 /// Contains the value which is the base defining value. 309 Value * const BDV; 310 /// True if the base defining value is also known to be an actual base 311 /// pointer. 312 const bool IsKnownBase; 313 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 314 : BDV(BDV), IsKnownBase(IsKnownBase) { 315 #ifndef NDEBUG 316 // Check consistency between new and old means of checking whether a BDV is 317 // a base. 318 bool MustBeBase = isKnownBaseResult(BDV); 319 assert(!MustBeBase || MustBeBase == IsKnownBase); 320 #endif 321 } 322 }; 323 } 324 325 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 326 327 /// Return a base defining value for the 'Index' element of the given vector 328 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 329 /// 'I'. As an optimization, this method will try to determine when the 330 /// element is known to already be a base pointer. If this can be established, 331 /// the second value in the returned pair will be true. Note that either a 332 /// vector or a pointer typed value can be returned. For the former, the 333 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 334 /// If the later, the return pointer is a BDV (or possibly a base) for the 335 /// particular element in 'I'. 336 static BaseDefiningValueResult 337 findBaseDefiningValueOfVector(Value *I) { 338 // Each case parallels findBaseDefiningValue below, see that code for 339 // detailed motivation. 340 341 if (isa<Argument>(I)) 342 // An incoming argument to the function is a base pointer 343 return BaseDefiningValueResult(I, true); 344 345 if (isa<Constant>(I)) 346 // Base of constant vector consists only of constant null pointers. 347 // For reasoning see similar case inside 'findBaseDefiningValue' function. 348 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 349 true); 350 351 if (isa<LoadInst>(I)) 352 return BaseDefiningValueResult(I, true); 353 354 if (isa<InsertElementInst>(I)) 355 // We don't know whether this vector contains entirely base pointers or 356 // not. To be conservatively correct, we treat it as a BDV and will 357 // duplicate code as needed to construct a parallel vector of bases. 358 return BaseDefiningValueResult(I, false); 359 360 if (isa<ShuffleVectorInst>(I)) 361 // We don't know whether this vector contains entirely base pointers or 362 // not. To be conservatively correct, we treat it as a BDV and will 363 // duplicate code as needed to construct a parallel vector of bases. 364 // TODO: There a number of local optimizations which could be applied here 365 // for particular sufflevector patterns. 366 return BaseDefiningValueResult(I, false); 367 368 // A PHI or Select is a base defining value. The outer findBasePointer 369 // algorithm is responsible for constructing a base value for this BDV. 370 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 371 "unknown vector instruction - no base found for vector element"); 372 return BaseDefiningValueResult(I, false); 373 } 374 375 /// Helper function for findBasePointer - Will return a value which either a) 376 /// defines the base pointer for the input, b) blocks the simple search 377 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 378 /// from pointer to vector type or back. 379 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 380 assert(I->getType()->isPtrOrPtrVectorTy() && 381 "Illegal to ask for the base pointer of a non-pointer type"); 382 383 if (I->getType()->isVectorTy()) 384 return findBaseDefiningValueOfVector(I); 385 386 if (isa<Argument>(I)) 387 // An incoming argument to the function is a base pointer 388 // We should have never reached here if this argument isn't an gc value 389 return BaseDefiningValueResult(I, true); 390 391 if (isa<Constant>(I)) { 392 // We assume that objects with a constant base (e.g. a global) can't move 393 // and don't need to be reported to the collector because they are always 394 // live. Besides global references, all kinds of constants (e.g. undef, 395 // constant expressions, null pointers) can be introduced by the inliner or 396 // the optimizer, especially on dynamically dead paths. 397 // Here we treat all of them as having single null base. By doing this we 398 // trying to avoid problems reporting various conflicts in a form of 399 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 400 // See constant.ll file for relevant test cases. 401 402 return BaseDefiningValueResult( 403 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 404 } 405 406 if (CastInst *CI = dyn_cast<CastInst>(I)) { 407 Value *Def = CI->stripPointerCasts(); 408 // If stripping pointer casts changes the address space there is an 409 // addrspacecast in between. 410 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 411 cast<PointerType>(CI->getType())->getAddressSpace() && 412 "unsupported addrspacecast"); 413 // If we find a cast instruction here, it means we've found a cast which is 414 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 415 // handle int->ptr conversion. 416 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 417 return findBaseDefiningValue(Def); 418 } 419 420 if (isa<LoadInst>(I)) 421 // The value loaded is an gc base itself 422 return BaseDefiningValueResult(I, true); 423 424 425 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 426 // The base of this GEP is the base 427 return findBaseDefiningValue(GEP->getPointerOperand()); 428 429 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 430 switch (II->getIntrinsicID()) { 431 default: 432 // fall through to general call handling 433 break; 434 case Intrinsic::experimental_gc_statepoint: 435 llvm_unreachable("statepoints don't produce pointers"); 436 case Intrinsic::experimental_gc_relocate: { 437 // Rerunning safepoint insertion after safepoints are already 438 // inserted is not supported. It could probably be made to work, 439 // but why are you doing this? There's no good reason. 440 llvm_unreachable("repeat safepoint insertion is not supported"); 441 } 442 case Intrinsic::gcroot: 443 // Currently, this mechanism hasn't been extended to work with gcroot. 444 // There's no reason it couldn't be, but I haven't thought about the 445 // implications much. 446 llvm_unreachable( 447 "interaction with the gcroot mechanism is not supported"); 448 } 449 } 450 // We assume that functions in the source language only return base 451 // pointers. This should probably be generalized via attributes to support 452 // both source language and internal functions. 453 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 454 return BaseDefiningValueResult(I, true); 455 456 // I have absolutely no idea how to implement this part yet. It's not 457 // necessarily hard, I just haven't really looked at it yet. 458 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 459 460 if (isa<AtomicCmpXchgInst>(I)) 461 // A CAS is effectively a atomic store and load combined under a 462 // predicate. From the perspective of base pointers, we just treat it 463 // like a load. 464 return BaseDefiningValueResult(I, true); 465 466 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 467 "binary ops which don't apply to pointers"); 468 469 // The aggregate ops. Aggregates can either be in the heap or on the 470 // stack, but in either case, this is simply a field load. As a result, 471 // this is a defining definition of the base just like a load is. 472 if (isa<ExtractValueInst>(I)) 473 return BaseDefiningValueResult(I, true); 474 475 // We should never see an insert vector since that would require we be 476 // tracing back a struct value not a pointer value. 477 assert(!isa<InsertValueInst>(I) && 478 "Base pointer for a struct is meaningless"); 479 480 // An extractelement produces a base result exactly when it's input does. 481 // We may need to insert a parallel instruction to extract the appropriate 482 // element out of the base vector corresponding to the input. Given this, 483 // it's analogous to the phi and select case even though it's not a merge. 484 if (isa<ExtractElementInst>(I)) 485 // Note: There a lot of obvious peephole cases here. This are deliberately 486 // handled after the main base pointer inference algorithm to make writing 487 // test cases to exercise that code easier. 488 return BaseDefiningValueResult(I, false); 489 490 // The last two cases here don't return a base pointer. Instead, they 491 // return a value which dynamically selects from among several base 492 // derived pointers (each with it's own base potentially). It's the job of 493 // the caller to resolve these. 494 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 495 "missing instruction case in findBaseDefiningValing"); 496 return BaseDefiningValueResult(I, false); 497 } 498 499 /// Returns the base defining value for this value. 500 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 501 Value *&Cached = Cache[I]; 502 if (!Cached) { 503 Cached = findBaseDefiningValue(I).BDV; 504 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 505 << Cached->getName() << "\n"); 506 } 507 assert(Cache[I] != nullptr); 508 return Cached; 509 } 510 511 /// Return a base pointer for this value if known. Otherwise, return it's 512 /// base defining value. 513 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 514 Value *Def = findBaseDefiningValueCached(I, Cache); 515 auto Found = Cache.find(Def); 516 if (Found != Cache.end()) { 517 // Either a base-of relation, or a self reference. Caller must check. 518 return Found->second; 519 } 520 // Only a BDV available 521 return Def; 522 } 523 524 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 525 /// is it known to be a base pointer? Or do we need to continue searching. 526 static bool isKnownBaseResult(Value *V) { 527 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 528 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 529 !isa<ShuffleVectorInst>(V)) { 530 // no recursion possible 531 return true; 532 } 533 if (isa<Instruction>(V) && 534 cast<Instruction>(V)->getMetadata("is_base_value")) { 535 // This is a previously inserted base phi or select. We know 536 // that this is a base value. 537 return true; 538 } 539 540 // We need to keep searching 541 return false; 542 } 543 544 namespace { 545 /// Models the state of a single base defining value in the findBasePointer 546 /// algorithm for determining where a new instruction is needed to propagate 547 /// the base of this BDV. 548 class BDVState { 549 public: 550 enum Status { Unknown, Base, Conflict }; 551 552 BDVState() : Status(Unknown), BaseValue(nullptr) {} 553 554 explicit BDVState(Status Status, Value *BaseValue = nullptr) 555 : Status(Status), BaseValue(BaseValue) { 556 assert(Status != Base || BaseValue); 557 } 558 559 explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {} 560 561 Status getStatus() const { return Status; } 562 Value *getBaseValue() const { return BaseValue; } 563 564 bool isBase() const { return getStatus() == Base; } 565 bool isUnknown() const { return getStatus() == Unknown; } 566 bool isConflict() const { return getStatus() == Conflict; } 567 568 bool operator==(const BDVState &Other) const { 569 return BaseValue == Other.BaseValue && Status == Other.Status; 570 } 571 572 bool operator!=(const BDVState &other) const { return !(*this == other); } 573 574 LLVM_DUMP_METHOD 575 void dump() const { 576 print(dbgs()); 577 dbgs() << '\n'; 578 } 579 580 void print(raw_ostream &OS) const { 581 switch (getStatus()) { 582 case Unknown: 583 OS << "U"; 584 break; 585 case Base: 586 OS << "B"; 587 break; 588 case Conflict: 589 OS << "C"; 590 break; 591 }; 592 OS << " (" << getBaseValue() << " - " 593 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): "; 594 } 595 596 private: 597 Status Status; 598 AssertingVH<Value> BaseValue; // Non-null only if Status == Base. 599 }; 600 } 601 602 #ifndef NDEBUG 603 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 604 State.print(OS); 605 return OS; 606 } 607 #endif 608 609 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) { 610 switch (LHS.getStatus()) { 611 case BDVState::Unknown: 612 return RHS; 613 614 case BDVState::Base: 615 assert(LHS.getBaseValue() && "can't be null"); 616 if (RHS.isUnknown()) 617 return LHS; 618 619 if (RHS.isBase()) { 620 if (LHS.getBaseValue() == RHS.getBaseValue()) { 621 assert(LHS == RHS && "equality broken!"); 622 return LHS; 623 } 624 return BDVState(BDVState::Conflict); 625 } 626 assert(RHS.isConflict() && "only three states!"); 627 return BDVState(BDVState::Conflict); 628 629 case BDVState::Conflict: 630 return LHS; 631 } 632 llvm_unreachable("only three states!"); 633 } 634 635 // Values of type BDVState form a lattice, and this function implements the meet 636 // operation. 637 static BDVState meetBDVState(BDVState LHS, BDVState RHS) { 638 BDVState Result = meetBDVStateImpl(LHS, RHS); 639 assert(Result == meetBDVStateImpl(RHS, LHS) && 640 "Math is wrong: meet does not commute!"); 641 return Result; 642 } 643 644 /// For a given value or instruction, figure out what base ptr its derived from. 645 /// For gc objects, this is simply itself. On success, returns a value which is 646 /// the base pointer. (This is reliable and can be used for relocation.) On 647 /// failure, returns nullptr. 648 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 649 Value *Def = findBaseOrBDV(I, Cache); 650 651 if (isKnownBaseResult(Def)) 652 return Def; 653 654 // Here's the rough algorithm: 655 // - For every SSA value, construct a mapping to either an actual base 656 // pointer or a PHI which obscures the base pointer. 657 // - Construct a mapping from PHI to unknown TOP state. Use an 658 // optimistic algorithm to propagate base pointer information. Lattice 659 // looks like: 660 // UNKNOWN 661 // b1 b2 b3 b4 662 // CONFLICT 663 // When algorithm terminates, all PHIs will either have a single concrete 664 // base or be in a conflict state. 665 // - For every conflict, insert a dummy PHI node without arguments. Add 666 // these to the base[Instruction] = BasePtr mapping. For every 667 // non-conflict, add the actual base. 668 // - For every conflict, add arguments for the base[a] of each input 669 // arguments. 670 // 671 // Note: A simpler form of this would be to add the conflict form of all 672 // PHIs without running the optimistic algorithm. This would be 673 // analogous to pessimistic data flow and would likely lead to an 674 // overall worse solution. 675 676 #ifndef NDEBUG 677 auto isExpectedBDVType = [](Value *BDV) { 678 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 679 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 680 }; 681 #endif 682 683 // Once populated, will contain a mapping from each potentially non-base BDV 684 // to a lattice value (described above) which corresponds to that BDV. 685 // We use the order of insertion (DFS over the def/use graph) to provide a 686 // stable deterministic ordering for visiting DenseMaps (which are unordered) 687 // below. This is important for deterministic compilation. 688 MapVector<Value *, BDVState> States; 689 690 // Recursively fill in all base defining values reachable from the initial 691 // one for which we don't already know a definite base value for 692 /* scope */ { 693 SmallVector<Value*, 16> Worklist; 694 Worklist.push_back(Def); 695 States.insert({Def, BDVState()}); 696 while (!Worklist.empty()) { 697 Value *Current = Worklist.pop_back_val(); 698 assert(!isKnownBaseResult(Current) && "why did it get added?"); 699 700 auto visitIncomingValue = [&](Value *InVal) { 701 Value *Base = findBaseOrBDV(InVal, Cache); 702 if (isKnownBaseResult(Base)) 703 // Known bases won't need new instructions introduced and can be 704 // ignored safely 705 return; 706 assert(isExpectedBDVType(Base) && "the only non-base values " 707 "we see should be base defining values"); 708 if (States.insert(std::make_pair(Base, BDVState())).second) 709 Worklist.push_back(Base); 710 }; 711 if (PHINode *PN = dyn_cast<PHINode>(Current)) { 712 for (Value *InVal : PN->incoming_values()) 713 visitIncomingValue(InVal); 714 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { 715 visitIncomingValue(SI->getTrueValue()); 716 visitIncomingValue(SI->getFalseValue()); 717 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 718 visitIncomingValue(EE->getVectorOperand()); 719 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 720 visitIncomingValue(IE->getOperand(0)); // vector operand 721 visitIncomingValue(IE->getOperand(1)); // scalar operand 722 } else { 723 // There is one known class of instructions we know we don't handle. 724 assert(isa<ShuffleVectorInst>(Current)); 725 llvm_unreachable("Unimplemented instruction case"); 726 } 727 } 728 } 729 730 #ifndef NDEBUG 731 DEBUG(dbgs() << "States after initialization:\n"); 732 for (auto Pair : States) 733 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 734 #endif 735 736 // Return a phi state for a base defining value. We'll generate a new 737 // base state for known bases and expect to find a cached state otherwise. 738 auto getStateForBDV = [&](Value *baseValue) { 739 if (isKnownBaseResult(baseValue)) 740 return BDVState(baseValue); 741 auto I = States.find(baseValue); 742 assert(I != States.end() && "lookup failed!"); 743 return I->second; 744 }; 745 746 bool Progress = true; 747 while (Progress) { 748 #ifndef NDEBUG 749 const size_t OldSize = States.size(); 750 #endif 751 Progress = false; 752 // We're only changing values in this loop, thus safe to keep iterators. 753 // Since this is computing a fixed point, the order of visit does not 754 // effect the result. TODO: We could use a worklist here and make this run 755 // much faster. 756 for (auto Pair : States) { 757 Value *BDV = Pair.first; 758 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 759 760 // Given an input value for the current instruction, return a BDVState 761 // instance which represents the BDV of that value. 762 auto getStateForInput = [&](Value *V) mutable { 763 Value *BDV = findBaseOrBDV(V, Cache); 764 return getStateForBDV(BDV); 765 }; 766 767 BDVState NewState; 768 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 769 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); 770 NewState = 771 meetBDVState(NewState, getStateForInput(SI->getFalseValue())); 772 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 773 for (Value *Val : PN->incoming_values()) 774 NewState = meetBDVState(NewState, getStateForInput(Val)); 775 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 776 // The 'meet' for an extractelement is slightly trivial, but it's still 777 // useful in that it drives us to conflict if our input is. 778 NewState = 779 meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); 780 } else { 781 // Given there's a inherent type mismatch between the operands, will 782 // *always* produce Conflict. 783 auto *IE = cast<InsertElementInst>(BDV); 784 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); 785 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); 786 } 787 788 BDVState OldState = States[BDV]; 789 if (OldState != NewState) { 790 Progress = true; 791 States[BDV] = NewState; 792 } 793 } 794 795 assert(OldSize == States.size() && 796 "fixed point shouldn't be adding any new nodes to state"); 797 } 798 799 #ifndef NDEBUG 800 DEBUG(dbgs() << "States after meet iteration:\n"); 801 for (auto Pair : States) 802 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 803 #endif 804 805 // Insert Phis for all conflicts 806 // TODO: adjust naming patterns to avoid this order of iteration dependency 807 for (auto Pair : States) { 808 Instruction *I = cast<Instruction>(Pair.first); 809 BDVState State = Pair.second; 810 assert(!isKnownBaseResult(I) && "why did it get added?"); 811 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 812 813 // extractelement instructions are a bit special in that we may need to 814 // insert an extract even when we know an exact base for the instruction. 815 // The problem is that we need to convert from a vector base to a scalar 816 // base for the particular indice we're interested in. 817 if (State.isBase() && isa<ExtractElementInst>(I) && 818 isa<VectorType>(State.getBaseValue()->getType())) { 819 auto *EE = cast<ExtractElementInst>(I); 820 // TODO: In many cases, the new instruction is just EE itself. We should 821 // exploit this, but can't do it here since it would break the invariant 822 // about the BDV not being known to be a base. 823 auto *BaseInst = ExtractElementInst::Create( 824 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 825 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 826 States[I] = BDVState(BDVState::Base, BaseInst); 827 } 828 829 // Since we're joining a vector and scalar base, they can never be the 830 // same. As a result, we should always see insert element having reached 831 // the conflict state. 832 assert(!isa<InsertElementInst>(I) || State.isConflict()); 833 834 if (!State.isConflict()) 835 continue; 836 837 /// Create and insert a new instruction which will represent the base of 838 /// the given instruction 'I'. 839 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 840 if (isa<PHINode>(I)) { 841 BasicBlock *BB = I->getParent(); 842 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 843 assert(NumPreds > 0 && "how did we reach here"); 844 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 845 return PHINode::Create(I->getType(), NumPreds, Name, I); 846 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 847 // The undef will be replaced later 848 UndefValue *Undef = UndefValue::get(SI->getType()); 849 std::string Name = suffixed_name_or(I, ".base", "base_select"); 850 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); 851 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 852 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 853 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 854 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 855 EE); 856 } else { 857 auto *IE = cast<InsertElementInst>(I); 858 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 859 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 860 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 861 return InsertElementInst::Create(VecUndef, ScalarUndef, 862 IE->getOperand(2), Name, IE); 863 } 864 }; 865 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 866 // Add metadata marking this as a base value 867 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 868 States[I] = BDVState(BDVState::Conflict, BaseInst); 869 } 870 871 // Returns a instruction which produces the base pointer for a given 872 // instruction. The instruction is assumed to be an input to one of the BDVs 873 // seen in the inference algorithm above. As such, we must either already 874 // know it's base defining value is a base, or have inserted a new 875 // instruction to propagate the base of it's BDV and have entered that newly 876 // introduced instruction into the state table. In either case, we are 877 // assured to be able to determine an instruction which produces it's base 878 // pointer. 879 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 880 Value *BDV = findBaseOrBDV(Input, Cache); 881 Value *Base = nullptr; 882 if (isKnownBaseResult(BDV)) { 883 Base = BDV; 884 } else { 885 // Either conflict or base. 886 assert(States.count(BDV)); 887 Base = States[BDV].getBaseValue(); 888 } 889 assert(Base && "Can't be null"); 890 // The cast is needed since base traversal may strip away bitcasts 891 if (Base->getType() != Input->getType() && InsertPt) 892 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 893 return Base; 894 }; 895 896 // Fixup all the inputs of the new PHIs. Visit order needs to be 897 // deterministic and predictable because we're naming newly created 898 // instructions. 899 for (auto Pair : States) { 900 Instruction *BDV = cast<Instruction>(Pair.first); 901 BDVState State = Pair.second; 902 903 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 904 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 905 if (!State.isConflict()) 906 continue; 907 908 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 909 PHINode *PN = cast<PHINode>(BDV); 910 unsigned NumPHIValues = PN->getNumIncomingValues(); 911 for (unsigned i = 0; i < NumPHIValues; i++) { 912 Value *InVal = PN->getIncomingValue(i); 913 BasicBlock *InBB = PN->getIncomingBlock(i); 914 915 // If we've already seen InBB, add the same incoming value 916 // we added for it earlier. The IR verifier requires phi 917 // nodes with multiple entries from the same basic block 918 // to have the same incoming value for each of those 919 // entries. If we don't do this check here and basephi 920 // has a different type than base, we'll end up adding two 921 // bitcasts (and hence two distinct values) as incoming 922 // values for the same basic block. 923 924 int BlockIndex = BasePHI->getBasicBlockIndex(InBB); 925 if (BlockIndex != -1) { 926 Value *OldBase = BasePHI->getIncomingValue(BlockIndex); 927 BasePHI->addIncoming(OldBase, InBB); 928 929 #ifndef NDEBUG 930 Value *Base = getBaseForInput(InVal, nullptr); 931 // In essence this assert states: the only way two values 932 // incoming from the same basic block may be different is by 933 // being different bitcasts of the same value. A cleanup 934 // that remains TODO is changing findBaseOrBDV to return an 935 // llvm::Value of the correct type (and still remain pure). 936 // This will remove the need to add bitcasts. 937 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 938 "Sanity -- findBaseOrBDV should be pure!"); 939 #endif 940 continue; 941 } 942 943 // Find the instruction which produces the base for each input. We may 944 // need to insert a bitcast in the incoming block. 945 // TODO: Need to split critical edges if insertion is needed 946 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 947 BasePHI->addIncoming(Base, InBB); 948 } 949 assert(BasePHI->getNumIncomingValues() == NumPHIValues); 950 } else if (SelectInst *BaseSI = 951 dyn_cast<SelectInst>(State.getBaseValue())) { 952 SelectInst *SI = cast<SelectInst>(BDV); 953 954 // Find the instruction which produces the base for each input. 955 // We may need to insert a bitcast. 956 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 957 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 958 } else if (auto *BaseEE = 959 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 960 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 961 // Find the instruction which produces the base for each input. We may 962 // need to insert a bitcast. 963 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 964 } else { 965 auto *BaseIE = cast<InsertElementInst>(State.getBaseValue()); 966 auto *BdvIE = cast<InsertElementInst>(BDV); 967 auto UpdateOperand = [&](int OperandIdx) { 968 Value *InVal = BdvIE->getOperand(OperandIdx); 969 Value *Base = getBaseForInput(InVal, BaseIE); 970 BaseIE->setOperand(OperandIdx, Base); 971 }; 972 UpdateOperand(0); // vector operand 973 UpdateOperand(1); // scalar operand 974 } 975 } 976 977 // Cache all of our results so we can cheaply reuse them 978 // NOTE: This is actually two caches: one of the base defining value 979 // relation and one of the base pointer relation! FIXME 980 for (auto Pair : States) { 981 auto *BDV = Pair.first; 982 Value *Base = Pair.second.getBaseValue(); 983 assert(BDV && Base); 984 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 985 986 DEBUG(dbgs() << "Updating base value cache" 987 << " for: " << BDV->getName() << " from: " 988 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 989 << " to: " << Base->getName() << "\n"); 990 991 if (Cache.count(BDV)) { 992 assert(isKnownBaseResult(Base) && 993 "must be something we 'know' is a base pointer"); 994 // Once we transition from the BDV relation being store in the Cache to 995 // the base relation being stored, it must be stable 996 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && 997 "base relation should be stable"); 998 } 999 Cache[BDV] = Base; 1000 } 1001 assert(Cache.count(Def)); 1002 return Cache[Def]; 1003 } 1004 1005 // For a set of live pointers (base and/or derived), identify the base 1006 // pointer of the object which they are derived from. This routine will 1007 // mutate the IR graph as needed to make the 'base' pointer live at the 1008 // definition site of 'derived'. This ensures that any use of 'derived' can 1009 // also use 'base'. This may involve the insertion of a number of 1010 // additional PHI nodes. 1011 // 1012 // preconditions: live is a set of pointer type Values 1013 // 1014 // side effects: may insert PHI nodes into the existing CFG, will preserve 1015 // CFG, will not remove or mutate any existing nodes 1016 // 1017 // post condition: PointerToBase contains one (derived, base) pair for every 1018 // pointer in live. Note that derived can be equal to base if the original 1019 // pointer was a base pointer. 1020 static void 1021 findBasePointers(const StatepointLiveSetTy &live, 1022 MapVector<Value *, Value *> &PointerToBase, 1023 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1024 for (Value *ptr : live) { 1025 Value *base = findBasePointer(ptr, DVCache); 1026 assert(base && "failed to find base pointer"); 1027 PointerToBase[ptr] = base; 1028 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1029 DT->dominates(cast<Instruction>(base)->getParent(), 1030 cast<Instruction>(ptr)->getParent())) && 1031 "The base we found better dominate the derived pointer"); 1032 } 1033 } 1034 1035 /// Find the required based pointers (and adjust the live set) for the given 1036 /// parse point. 1037 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1038 CallSite CS, 1039 PartiallyConstructedSafepointRecord &result) { 1040 MapVector<Value *, Value *> PointerToBase; 1041 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1042 1043 if (PrintBasePointers) { 1044 errs() << "Base Pairs (w/o Relocation):\n"; 1045 for (auto &Pair : PointerToBase) { 1046 errs() << " derived "; 1047 Pair.first->printAsOperand(errs(), false); 1048 errs() << " base "; 1049 Pair.second->printAsOperand(errs(), false); 1050 errs() << "\n";; 1051 } 1052 } 1053 1054 result.PointerToBase = PointerToBase; 1055 } 1056 1057 /// Given an updated version of the dataflow liveness results, update the 1058 /// liveset and base pointer maps for the call site CS. 1059 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1060 CallSite CS, 1061 PartiallyConstructedSafepointRecord &result); 1062 1063 static void recomputeLiveInValues( 1064 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1065 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1066 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1067 // again. The old values are still live and will help it stabilize quickly. 1068 GCPtrLivenessData RevisedLivenessData; 1069 computeLiveInValues(DT, F, RevisedLivenessData); 1070 for (size_t i = 0; i < records.size(); i++) { 1071 struct PartiallyConstructedSafepointRecord &info = records[i]; 1072 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1073 } 1074 } 1075 1076 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1077 // no uses of the original value / return value between the gc.statepoint and 1078 // the gc.relocate / gc.result call. One case which can arise is a phi node 1079 // starting one of the successor blocks. We also need to be able to insert the 1080 // gc.relocates only on the path which goes through the statepoint. We might 1081 // need to split an edge to make this possible. 1082 static BasicBlock * 1083 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1084 DominatorTree &DT) { 1085 BasicBlock *Ret = BB; 1086 if (!BB->getUniquePredecessor()) 1087 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1088 1089 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1090 // from it 1091 FoldSingleEntryPHINodes(Ret); 1092 assert(!isa<PHINode>(Ret->begin()) && 1093 "All PHI nodes should have been removed!"); 1094 1095 // At this point, we can safely insert a gc.relocate or gc.result as the first 1096 // instruction in Ret if needed. 1097 return Ret; 1098 } 1099 1100 // Create new attribute set containing only attributes which can be transferred 1101 // from original call to the safepoint. 1102 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1103 AttributeSet Ret; 1104 1105 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1106 unsigned Index = AS.getSlotIndex(Slot); 1107 1108 if (Index == AttributeSet::ReturnIndex || 1109 Index == AttributeSet::FunctionIndex) { 1110 1111 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { 1112 1113 // Do not allow certain attributes - just skip them 1114 // Safepoint can not be read only or read none. 1115 if (Attr.hasAttribute(Attribute::ReadNone) || 1116 Attr.hasAttribute(Attribute::ReadOnly)) 1117 continue; 1118 1119 // These attributes control the generation of the gc.statepoint call / 1120 // invoke itself; and once the gc.statepoint is in place, they're of no 1121 // use. 1122 if (isStatepointDirectiveAttr(Attr)) 1123 continue; 1124 1125 Ret = Ret.addAttributes( 1126 AS.getContext(), Index, 1127 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); 1128 } 1129 } 1130 1131 // Just skip parameter attributes for now 1132 } 1133 1134 return Ret; 1135 } 1136 1137 /// Helper function to place all gc relocates necessary for the given 1138 /// statepoint. 1139 /// Inputs: 1140 /// liveVariables - list of variables to be relocated. 1141 /// liveStart - index of the first live variable. 1142 /// basePtrs - base pointers. 1143 /// statepointToken - statepoint instruction to which relocates should be 1144 /// bound. 1145 /// Builder - Llvm IR builder to be used to construct new calls. 1146 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1147 const int LiveStart, 1148 ArrayRef<Value *> BasePtrs, 1149 Instruction *StatepointToken, 1150 IRBuilder<> Builder) { 1151 if (LiveVariables.empty()) 1152 return; 1153 1154 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1155 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val); 1156 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1157 size_t Index = std::distance(LiveVec.begin(), ValIt); 1158 assert(Index < LiveVec.size() && "Bug in std::find?"); 1159 return Index; 1160 }; 1161 Module *M = StatepointToken->getModule(); 1162 1163 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1164 // element type is i8 addrspace(1)*). We originally generated unique 1165 // declarations for each pointer type, but this proved problematic because 1166 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1167 // towards a single unified pointer type anyways, we can just cast everything 1168 // to an i8* of the right address space. A bitcast is added later to convert 1169 // gc_relocate to the actual value's type. 1170 auto getGCRelocateDecl = [&] (Type *Ty) { 1171 assert(isHandledGCPointerType(Ty)); 1172 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1173 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1174 if (auto *VT = dyn_cast<VectorType>(Ty)) 1175 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1176 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1177 {NewTy}); 1178 }; 1179 1180 // Lazily populated map from input types to the canonicalized form mentioned 1181 // in the comment above. This should probably be cached somewhere more 1182 // broadly. 1183 DenseMap<Type*, Value*> TypeToDeclMap; 1184 1185 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1186 // Generate the gc.relocate call and save the result 1187 Value *BaseIdx = 1188 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1189 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1190 1191 Type *Ty = LiveVariables[i]->getType(); 1192 if (!TypeToDeclMap.count(Ty)) 1193 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1194 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1195 1196 // only specify a debug name if we can give a useful one 1197 CallInst *Reloc = Builder.CreateCall( 1198 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1199 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1200 // Trick CodeGen into thinking there are lots of free registers at this 1201 // fake call. 1202 Reloc->setCallingConv(CallingConv::Cold); 1203 } 1204 } 1205 1206 namespace { 1207 1208 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1209 /// avoids having to worry about keeping around dangling pointers to Values. 1210 class DeferredReplacement { 1211 AssertingVH<Instruction> Old; 1212 AssertingVH<Instruction> New; 1213 bool IsDeoptimize = false; 1214 1215 DeferredReplacement() {} 1216 1217 public: 1218 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1219 assert(Old != New && Old && New && 1220 "Cannot RAUW equal values or to / from null!"); 1221 1222 DeferredReplacement D; 1223 D.Old = Old; 1224 D.New = New; 1225 return D; 1226 } 1227 1228 static DeferredReplacement createDelete(Instruction *ToErase) { 1229 DeferredReplacement D; 1230 D.Old = ToErase; 1231 return D; 1232 } 1233 1234 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1235 #ifndef NDEBUG 1236 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1237 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1238 "Only way to construct a deoptimize deferred replacement"); 1239 #endif 1240 DeferredReplacement D; 1241 D.Old = Old; 1242 D.IsDeoptimize = true; 1243 return D; 1244 } 1245 1246 /// Does the task represented by this instance. 1247 void doReplacement() { 1248 Instruction *OldI = Old; 1249 Instruction *NewI = New; 1250 1251 assert(OldI != NewI && "Disallowed at construction?!"); 1252 assert((!IsDeoptimize || !New) && 1253 "Deoptimize instrinsics are not replaced!"); 1254 1255 Old = nullptr; 1256 New = nullptr; 1257 1258 if (NewI) 1259 OldI->replaceAllUsesWith(NewI); 1260 1261 if (IsDeoptimize) { 1262 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1263 // not necessarilly be followed by the matching return. 1264 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1265 new UnreachableInst(RI->getContext(), RI); 1266 RI->eraseFromParent(); 1267 } 1268 1269 OldI->eraseFromParent(); 1270 } 1271 }; 1272 } 1273 1274 static void 1275 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1276 const SmallVectorImpl<Value *> &BasePtrs, 1277 const SmallVectorImpl<Value *> &LiveVariables, 1278 PartiallyConstructedSafepointRecord &Result, 1279 std::vector<DeferredReplacement> &Replacements) { 1280 assert(BasePtrs.size() == LiveVariables.size()); 1281 1282 // Then go ahead and use the builder do actually do the inserts. We insert 1283 // immediately before the previous instruction under the assumption that all 1284 // arguments will be available here. We can't insert afterwards since we may 1285 // be replacing a terminator. 1286 Instruction *InsertBefore = CS.getInstruction(); 1287 IRBuilder<> Builder(InsertBefore); 1288 1289 ArrayRef<Value *> GCArgs(LiveVariables); 1290 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1291 uint32_t NumPatchBytes = 0; 1292 uint32_t Flags = uint32_t(StatepointFlags::None); 1293 1294 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1295 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1296 ArrayRef<Use> TransitionArgs; 1297 if (auto TransitionBundle = 1298 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1299 Flags |= uint32_t(StatepointFlags::GCTransition); 1300 TransitionArgs = TransitionBundle->Inputs; 1301 } 1302 1303 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1304 // with a return value, we lower then as never returning calls to 1305 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1306 bool IsDeoptimize = false; 1307 1308 StatepointDirectives SD = 1309 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1310 if (SD.NumPatchBytes) 1311 NumPatchBytes = *SD.NumPatchBytes; 1312 if (SD.StatepointID) 1313 StatepointID = *SD.StatepointID; 1314 1315 Value *CallTarget = CS.getCalledValue(); 1316 if (Function *F = dyn_cast<Function>(CallTarget)) { 1317 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1318 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1319 // __llvm_deoptimize symbol. We want to resolve this now, since the 1320 // verifier does not allow taking the address of an intrinsic function. 1321 1322 SmallVector<Type *, 8> DomainTy; 1323 for (Value *Arg : CallArgs) 1324 DomainTy.push_back(Arg->getType()); 1325 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1326 /* isVarArg = */ false); 1327 1328 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1329 // calls to @llvm.experimental.deoptimize with different argument types in 1330 // the same module. This is fine -- we assume the frontend knew what it 1331 // was doing when generating this kind of IR. 1332 CallTarget = 1333 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1334 1335 IsDeoptimize = true; 1336 } 1337 } 1338 1339 // Create the statepoint given all the arguments 1340 Instruction *Token = nullptr; 1341 AttributeSet ReturnAttrs; 1342 if (CS.isCall()) { 1343 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1344 CallInst *Call = Builder.CreateGCStatepointCall( 1345 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1346 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1347 1348 Call->setTailCall(ToReplace->isTailCall()); 1349 Call->setCallingConv(ToReplace->getCallingConv()); 1350 1351 // Currently we will fail on parameter attributes and on certain 1352 // function attributes. 1353 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1354 // In case if we can handle this set of attributes - set up function attrs 1355 // directly on statepoint and return attrs later for gc_result intrinsic. 1356 Call->setAttributes(NewAttrs.getFnAttributes()); 1357 ReturnAttrs = NewAttrs.getRetAttributes(); 1358 1359 Token = Call; 1360 1361 // Put the following gc_result and gc_relocate calls immediately after the 1362 // the old call (which we're about to delete) 1363 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1364 Builder.SetInsertPoint(ToReplace->getNextNode()); 1365 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1366 } else { 1367 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1368 1369 // Insert the new invoke into the old block. We'll remove the old one in a 1370 // moment at which point this will become the new terminator for the 1371 // original block. 1372 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1373 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1374 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1375 GCArgs, "statepoint_token"); 1376 1377 Invoke->setCallingConv(ToReplace->getCallingConv()); 1378 1379 // Currently we will fail on parameter attributes and on certain 1380 // function attributes. 1381 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1382 // In case if we can handle this set of attributes - set up function attrs 1383 // directly on statepoint and return attrs later for gc_result intrinsic. 1384 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1385 ReturnAttrs = NewAttrs.getRetAttributes(); 1386 1387 Token = Invoke; 1388 1389 // Generate gc relocates in exceptional path 1390 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1391 assert(!isa<PHINode>(UnwindBlock->begin()) && 1392 UnwindBlock->getUniquePredecessor() && 1393 "can't safely insert in this block!"); 1394 1395 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1396 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1397 1398 // Attach exceptional gc relocates to the landingpad. 1399 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1400 Result.UnwindToken = ExceptionalToken; 1401 1402 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1403 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1404 Builder); 1405 1406 // Generate gc relocates and returns for normal block 1407 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1408 assert(!isa<PHINode>(NormalDest->begin()) && 1409 NormalDest->getUniquePredecessor() && 1410 "can't safely insert in this block!"); 1411 1412 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1413 1414 // gc relocates will be generated later as if it were regular call 1415 // statepoint 1416 } 1417 assert(Token && "Should be set in one of the above branches!"); 1418 1419 if (IsDeoptimize) { 1420 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1421 // transform the tail-call like structure to a call to a void function 1422 // followed by unreachable to get better codegen. 1423 Replacements.push_back( 1424 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1425 } else { 1426 Token->setName("statepoint_token"); 1427 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1428 StringRef Name = 1429 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1430 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1431 GCResult->setAttributes(CS.getAttributes().getRetAttributes()); 1432 1433 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1434 // live set of some other safepoint, in which case that safepoint's 1435 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1436 // llvm::Instruction. Instead, we defer the replacement and deletion to 1437 // after the live sets have been made explicit in the IR, and we no longer 1438 // have raw pointers to worry about. 1439 Replacements.emplace_back( 1440 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1441 } else { 1442 Replacements.emplace_back( 1443 DeferredReplacement::createDelete(CS.getInstruction())); 1444 } 1445 } 1446 1447 Result.StatepointToken = Token; 1448 1449 // Second, create a gc.relocate for every live variable 1450 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1451 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1452 } 1453 1454 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1455 // which make the relocations happening at this safepoint explicit. 1456 // 1457 // WARNING: Does not do any fixup to adjust users of the original live 1458 // values. That's the callers responsibility. 1459 static void 1460 makeStatepointExplicit(DominatorTree &DT, CallSite CS, 1461 PartiallyConstructedSafepointRecord &Result, 1462 std::vector<DeferredReplacement> &Replacements) { 1463 const auto &LiveSet = Result.LiveSet; 1464 const auto &PointerToBase = Result.PointerToBase; 1465 1466 // Convert to vector for efficient cross referencing. 1467 SmallVector<Value *, 64> BaseVec, LiveVec; 1468 LiveVec.reserve(LiveSet.size()); 1469 BaseVec.reserve(LiveSet.size()); 1470 for (Value *L : LiveSet) { 1471 LiveVec.push_back(L); 1472 assert(PointerToBase.count(L)); 1473 Value *Base = PointerToBase.find(L)->second; 1474 BaseVec.push_back(Base); 1475 } 1476 assert(LiveVec.size() == BaseVec.size()); 1477 1478 // Do the actual rewriting and delete the old statepoint 1479 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1480 } 1481 1482 // Helper function for the relocationViaAlloca. 1483 // 1484 // It receives iterator to the statepoint gc relocates and emits a store to the 1485 // assigned location (via allocaMap) for the each one of them. It adds the 1486 // visited values into the visitedLiveValues set, which we will later use them 1487 // for sanity checking. 1488 static void 1489 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1490 DenseMap<Value *, Value *> &AllocaMap, 1491 DenseSet<Value *> &VisitedLiveValues) { 1492 1493 for (User *U : GCRelocs) { 1494 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1495 if (!Relocate) 1496 continue; 1497 1498 Value *OriginalValue = Relocate->getDerivedPtr(); 1499 assert(AllocaMap.count(OriginalValue)); 1500 Value *Alloca = AllocaMap[OriginalValue]; 1501 1502 // Emit store into the related alloca 1503 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1504 // the correct type according to alloca. 1505 assert(Relocate->getNextNode() && 1506 "Should always have one since it's not a terminator"); 1507 IRBuilder<> Builder(Relocate->getNextNode()); 1508 Value *CastedRelocatedValue = 1509 Builder.CreateBitCast(Relocate, 1510 cast<AllocaInst>(Alloca)->getAllocatedType(), 1511 suffixed_name_or(Relocate, ".casted", "")); 1512 1513 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1514 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1515 1516 #ifndef NDEBUG 1517 VisitedLiveValues.insert(OriginalValue); 1518 #endif 1519 } 1520 } 1521 1522 // Helper function for the "relocationViaAlloca". Similar to the 1523 // "insertRelocationStores" but works for rematerialized values. 1524 static void insertRematerializationStores( 1525 const RematerializedValueMapTy &RematerializedValues, 1526 DenseMap<Value *, Value *> &AllocaMap, 1527 DenseSet<Value *> &VisitedLiveValues) { 1528 1529 for (auto RematerializedValuePair: RematerializedValues) { 1530 Instruction *RematerializedValue = RematerializedValuePair.first; 1531 Value *OriginalValue = RematerializedValuePair.second; 1532 1533 assert(AllocaMap.count(OriginalValue) && 1534 "Can not find alloca for rematerialized value"); 1535 Value *Alloca = AllocaMap[OriginalValue]; 1536 1537 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1538 Store->insertAfter(RematerializedValue); 1539 1540 #ifndef NDEBUG 1541 VisitedLiveValues.insert(OriginalValue); 1542 #endif 1543 } 1544 } 1545 1546 /// Do all the relocation update via allocas and mem2reg 1547 static void relocationViaAlloca( 1548 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1549 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1550 #ifndef NDEBUG 1551 // record initial number of (static) allocas; we'll check we have the same 1552 // number when we get done. 1553 int InitialAllocaNum = 0; 1554 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1555 I++) 1556 if (isa<AllocaInst>(*I)) 1557 InitialAllocaNum++; 1558 #endif 1559 1560 // TODO-PERF: change data structures, reserve 1561 DenseMap<Value *, Value *> AllocaMap; 1562 SmallVector<AllocaInst *, 200> PromotableAllocas; 1563 // Used later to chack that we have enough allocas to store all values 1564 std::size_t NumRematerializedValues = 0; 1565 PromotableAllocas.reserve(Live.size()); 1566 1567 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1568 // "PromotableAllocas" 1569 auto emitAllocaFor = [&](Value *LiveValue) { 1570 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1571 F.getEntryBlock().getFirstNonPHI()); 1572 AllocaMap[LiveValue] = Alloca; 1573 PromotableAllocas.push_back(Alloca); 1574 }; 1575 1576 // Emit alloca for each live gc pointer 1577 for (Value *V : Live) 1578 emitAllocaFor(V); 1579 1580 // Emit allocas for rematerialized values 1581 for (const auto &Info : Records) 1582 for (auto RematerializedValuePair : Info.RematerializedValues) { 1583 Value *OriginalValue = RematerializedValuePair.second; 1584 if (AllocaMap.count(OriginalValue) != 0) 1585 continue; 1586 1587 emitAllocaFor(OriginalValue); 1588 ++NumRematerializedValues; 1589 } 1590 1591 // The next two loops are part of the same conceptual operation. We need to 1592 // insert a store to the alloca after the original def and at each 1593 // redefinition. We need to insert a load before each use. These are split 1594 // into distinct loops for performance reasons. 1595 1596 // Update gc pointer after each statepoint: either store a relocated value or 1597 // null (if no relocated value was found for this gc pointer and it is not a 1598 // gc_result). This must happen before we update the statepoint with load of 1599 // alloca otherwise we lose the link between statepoint and old def. 1600 for (const auto &Info : Records) { 1601 Value *Statepoint = Info.StatepointToken; 1602 1603 // This will be used for consistency check 1604 DenseSet<Value *> VisitedLiveValues; 1605 1606 // Insert stores for normal statepoint gc relocates 1607 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1608 1609 // In case if it was invoke statepoint 1610 // we will insert stores for exceptional path gc relocates. 1611 if (isa<InvokeInst>(Statepoint)) { 1612 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1613 VisitedLiveValues); 1614 } 1615 1616 // Do similar thing with rematerialized values 1617 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1618 VisitedLiveValues); 1619 1620 if (ClobberNonLive) { 1621 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1622 // the gc.statepoint. This will turn some subtle GC problems into 1623 // slightly easier to debug SEGVs. Note that on large IR files with 1624 // lots of gc.statepoints this is extremely costly both memory and time 1625 // wise. 1626 SmallVector<AllocaInst *, 64> ToClobber; 1627 for (auto Pair : AllocaMap) { 1628 Value *Def = Pair.first; 1629 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1630 1631 // This value was relocated 1632 if (VisitedLiveValues.count(Def)) { 1633 continue; 1634 } 1635 ToClobber.push_back(Alloca); 1636 } 1637 1638 auto InsertClobbersAt = [&](Instruction *IP) { 1639 for (auto *AI : ToClobber) { 1640 auto PT = cast<PointerType>(AI->getAllocatedType()); 1641 Constant *CPN = ConstantPointerNull::get(PT); 1642 StoreInst *Store = new StoreInst(CPN, AI); 1643 Store->insertBefore(IP); 1644 } 1645 }; 1646 1647 // Insert the clobbering stores. These may get intermixed with the 1648 // gc.results and gc.relocates, but that's fine. 1649 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1650 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1651 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1652 } else { 1653 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1654 } 1655 } 1656 } 1657 1658 // Update use with load allocas and add store for gc_relocated. 1659 for (auto Pair : AllocaMap) { 1660 Value *Def = Pair.first; 1661 Value *Alloca = Pair.second; 1662 1663 // We pre-record the uses of allocas so that we dont have to worry about 1664 // later update that changes the user information.. 1665 1666 SmallVector<Instruction *, 20> Uses; 1667 // PERF: trade a linear scan for repeated reallocation 1668 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1669 for (User *U : Def->users()) { 1670 if (!isa<ConstantExpr>(U)) { 1671 // If the def has a ConstantExpr use, then the def is either a 1672 // ConstantExpr use itself or null. In either case 1673 // (recursively in the first, directly in the second), the oop 1674 // it is ultimately dependent on is null and this particular 1675 // use does not need to be fixed up. 1676 Uses.push_back(cast<Instruction>(U)); 1677 } 1678 } 1679 1680 std::sort(Uses.begin(), Uses.end()); 1681 auto Last = std::unique(Uses.begin(), Uses.end()); 1682 Uses.erase(Last, Uses.end()); 1683 1684 for (Instruction *Use : Uses) { 1685 if (isa<PHINode>(Use)) { 1686 PHINode *Phi = cast<PHINode>(Use); 1687 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1688 if (Def == Phi->getIncomingValue(i)) { 1689 LoadInst *Load = new LoadInst( 1690 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1691 Phi->setIncomingValue(i, Load); 1692 } 1693 } 1694 } else { 1695 LoadInst *Load = new LoadInst(Alloca, "", Use); 1696 Use->replaceUsesOfWith(Def, Load); 1697 } 1698 } 1699 1700 // Emit store for the initial gc value. Store must be inserted after load, 1701 // otherwise store will be in alloca's use list and an extra load will be 1702 // inserted before it. 1703 StoreInst *Store = new StoreInst(Def, Alloca); 1704 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1705 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1706 // InvokeInst is a TerminatorInst so the store need to be inserted 1707 // into its normal destination block. 1708 BasicBlock *NormalDest = Invoke->getNormalDest(); 1709 Store->insertBefore(NormalDest->getFirstNonPHI()); 1710 } else { 1711 assert(!Inst->isTerminator() && 1712 "The only TerminatorInst that can produce a value is " 1713 "InvokeInst which is handled above."); 1714 Store->insertAfter(Inst); 1715 } 1716 } else { 1717 assert(isa<Argument>(Def)); 1718 Store->insertAfter(cast<Instruction>(Alloca)); 1719 } 1720 } 1721 1722 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1723 "we must have the same allocas with lives"); 1724 if (!PromotableAllocas.empty()) { 1725 // Apply mem2reg to promote alloca to SSA 1726 PromoteMemToReg(PromotableAllocas, DT); 1727 } 1728 1729 #ifndef NDEBUG 1730 for (auto &I : F.getEntryBlock()) 1731 if (isa<AllocaInst>(I)) 1732 InitialAllocaNum--; 1733 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1734 #endif 1735 } 1736 1737 /// Implement a unique function which doesn't require we sort the input 1738 /// vector. Doing so has the effect of changing the output of a couple of 1739 /// tests in ways which make them less useful in testing fused safepoints. 1740 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1741 SmallSet<T, 8> Seen; 1742 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1743 return !Seen.insert(V).second; 1744 }), Vec.end()); 1745 } 1746 1747 /// Insert holders so that each Value is obviously live through the entire 1748 /// lifetime of the call. 1749 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1750 SmallVectorImpl<CallInst *> &Holders) { 1751 if (Values.empty()) 1752 // No values to hold live, might as well not insert the empty holder 1753 return; 1754 1755 Module *M = CS.getInstruction()->getModule(); 1756 // Use a dummy vararg function to actually hold the values live 1757 Function *Func = cast<Function>(M->getOrInsertFunction( 1758 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1759 if (CS.isCall()) { 1760 // For call safepoints insert dummy calls right after safepoint 1761 Holders.push_back(CallInst::Create(Func, Values, "", 1762 &*++CS.getInstruction()->getIterator())); 1763 return; 1764 } 1765 // For invoke safepooints insert dummy calls both in normal and 1766 // exceptional destination blocks 1767 auto *II = cast<InvokeInst>(CS.getInstruction()); 1768 Holders.push_back(CallInst::Create( 1769 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1770 Holders.push_back(CallInst::Create( 1771 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1772 } 1773 1774 static void findLiveReferences( 1775 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1776 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1777 GCPtrLivenessData OriginalLivenessData; 1778 computeLiveInValues(DT, F, OriginalLivenessData); 1779 for (size_t i = 0; i < records.size(); i++) { 1780 struct PartiallyConstructedSafepointRecord &info = records[i]; 1781 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1782 } 1783 } 1784 1785 // Helper function for the "rematerializeLiveValues". It walks use chain 1786 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1787 // values are visited (currently it is GEP's and casts). Returns true if it 1788 // successfully reached "BaseValue" and false otherwise. 1789 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1790 // recorded. 1791 static bool findRematerializableChainToBasePointer( 1792 SmallVectorImpl<Instruction*> &ChainToBase, 1793 Value *CurrentValue, Value *BaseValue) { 1794 1795 // We have found a base value 1796 if (CurrentValue == BaseValue) { 1797 return true; 1798 } 1799 1800 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1801 ChainToBase.push_back(GEP); 1802 return findRematerializableChainToBasePointer(ChainToBase, 1803 GEP->getPointerOperand(), 1804 BaseValue); 1805 } 1806 1807 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1808 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1809 return false; 1810 1811 ChainToBase.push_back(CI); 1812 return findRematerializableChainToBasePointer(ChainToBase, 1813 CI->getOperand(0), BaseValue); 1814 } 1815 1816 // Not supported instruction in the chain 1817 return false; 1818 } 1819 1820 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1821 // chain we are going to rematerialize. 1822 static unsigned 1823 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1824 TargetTransformInfo &TTI) { 1825 unsigned Cost = 0; 1826 1827 for (Instruction *Instr : Chain) { 1828 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1829 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1830 "non noop cast is found during rematerialization"); 1831 1832 Type *SrcTy = CI->getOperand(0)->getType(); 1833 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 1834 1835 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1836 // Cost of the address calculation 1837 Type *ValTy = GEP->getSourceElementType(); 1838 Cost += TTI.getAddressComputationCost(ValTy); 1839 1840 // And cost of the GEP itself 1841 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1842 // allowed for the external usage) 1843 if (!GEP->hasAllConstantIndices()) 1844 Cost += 2; 1845 1846 } else { 1847 llvm_unreachable("unsupported instruciton type during rematerialization"); 1848 } 1849 } 1850 1851 return Cost; 1852 } 1853 1854 // From the statepoint live set pick values that are cheaper to recompute then 1855 // to relocate. Remove this values from the live set, rematerialize them after 1856 // statepoint and record them in "Info" structure. Note that similar to 1857 // relocated values we don't do any user adjustments here. 1858 static void rematerializeLiveValues(CallSite CS, 1859 PartiallyConstructedSafepointRecord &Info, 1860 TargetTransformInfo &TTI) { 1861 const unsigned int ChainLengthThreshold = 10; 1862 1863 // Record values we are going to delete from this statepoint live set. 1864 // We can not di this in following loop due to iterator invalidation. 1865 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1866 1867 for (Value *LiveValue: Info.LiveSet) { 1868 // For each live pointer find it's defining chain 1869 SmallVector<Instruction *, 3> ChainToBase; 1870 assert(Info.PointerToBase.count(LiveValue)); 1871 bool FoundChain = 1872 findRematerializableChainToBasePointer(ChainToBase, 1873 LiveValue, 1874 Info.PointerToBase[LiveValue]); 1875 // Nothing to do, or chain is too long 1876 if (!FoundChain || 1877 ChainToBase.size() == 0 || 1878 ChainToBase.size() > ChainLengthThreshold) 1879 continue; 1880 1881 // Compute cost of this chain 1882 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1883 // TODO: We can also account for cases when we will be able to remove some 1884 // of the rematerialized values by later optimization passes. I.e if 1885 // we rematerialized several intersecting chains. Or if original values 1886 // don't have any uses besides this statepoint. 1887 1888 // For invokes we need to rematerialize each chain twice - for normal and 1889 // for unwind basic blocks. Model this by multiplying cost by two. 1890 if (CS.isInvoke()) { 1891 Cost *= 2; 1892 } 1893 // If it's too expensive - skip it 1894 if (Cost >= RematerializationThreshold) 1895 continue; 1896 1897 // Remove value from the live set 1898 LiveValuesToBeDeleted.push_back(LiveValue); 1899 1900 // Clone instructions and record them inside "Info" structure 1901 1902 // Walk backwards to visit top-most instructions first 1903 std::reverse(ChainToBase.begin(), ChainToBase.end()); 1904 1905 // Utility function which clones all instructions from "ChainToBase" 1906 // and inserts them before "InsertBefore". Returns rematerialized value 1907 // which should be used after statepoint. 1908 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 1909 Instruction *LastClonedValue = nullptr; 1910 Instruction *LastValue = nullptr; 1911 for (Instruction *Instr: ChainToBase) { 1912 // Only GEP's and casts are suported as we need to be careful to not 1913 // introduce any new uses of pointers not in the liveset. 1914 // Note that it's fine to introduce new uses of pointers which were 1915 // otherwise not used after this statepoint. 1916 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 1917 1918 Instruction *ClonedValue = Instr->clone(); 1919 ClonedValue->insertBefore(InsertBefore); 1920 ClonedValue->setName(Instr->getName() + ".remat"); 1921 1922 // If it is not first instruction in the chain then it uses previously 1923 // cloned value. We should update it to use cloned value. 1924 if (LastClonedValue) { 1925 assert(LastValue); 1926 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 1927 #ifndef NDEBUG 1928 // Assert that cloned instruction does not use any instructions from 1929 // this chain other than LastClonedValue 1930 for (auto OpValue : ClonedValue->operand_values()) { 1931 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 1932 ChainToBase.end() && 1933 "incorrect use in rematerialization chain"); 1934 } 1935 #endif 1936 } 1937 1938 LastClonedValue = ClonedValue; 1939 LastValue = Instr; 1940 } 1941 assert(LastClonedValue); 1942 return LastClonedValue; 1943 }; 1944 1945 // Different cases for calls and invokes. For invokes we need to clone 1946 // instructions both on normal and unwind path. 1947 if (CS.isCall()) { 1948 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 1949 assert(InsertBefore); 1950 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 1951 Info.RematerializedValues[RematerializedValue] = LiveValue; 1952 } else { 1953 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 1954 1955 Instruction *NormalInsertBefore = 1956 &*Invoke->getNormalDest()->getFirstInsertionPt(); 1957 Instruction *UnwindInsertBefore = 1958 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 1959 1960 Instruction *NormalRematerializedValue = 1961 rematerializeChain(NormalInsertBefore); 1962 Instruction *UnwindRematerializedValue = 1963 rematerializeChain(UnwindInsertBefore); 1964 1965 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 1966 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 1967 } 1968 } 1969 1970 // Remove rematerializaed values from the live set 1971 for (auto LiveValue: LiveValuesToBeDeleted) { 1972 Info.LiveSet.remove(LiveValue); 1973 } 1974 } 1975 1976 static bool insertParsePoints(Function &F, DominatorTree &DT, 1977 TargetTransformInfo &TTI, 1978 SmallVectorImpl<CallSite> &ToUpdate) { 1979 #ifndef NDEBUG 1980 // sanity check the input 1981 std::set<CallSite> Uniqued; 1982 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 1983 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 1984 1985 for (CallSite CS : ToUpdate) 1986 assert(CS.getInstruction()->getFunction() == &F); 1987 #endif 1988 1989 // When inserting gc.relocates for invokes, we need to be able to insert at 1990 // the top of the successor blocks. See the comment on 1991 // normalForInvokeSafepoint on exactly what is needed. Note that this step 1992 // may restructure the CFG. 1993 for (CallSite CS : ToUpdate) { 1994 if (!CS.isInvoke()) 1995 continue; 1996 auto *II = cast<InvokeInst>(CS.getInstruction()); 1997 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 1998 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 1999 } 2000 2001 // A list of dummy calls added to the IR to keep various values obviously 2002 // live in the IR. We'll remove all of these when done. 2003 SmallVector<CallInst *, 64> Holders; 2004 2005 // Insert a dummy call with all of the arguments to the vm_state we'll need 2006 // for the actual safepoint insertion. This ensures reference arguments in 2007 // the deopt argument list are considered live through the safepoint (and 2008 // thus makes sure they get relocated.) 2009 for (CallSite CS : ToUpdate) { 2010 SmallVector<Value *, 64> DeoptValues; 2011 2012 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2013 assert(!isUnhandledGCPointerType(Arg->getType()) && 2014 "support for FCA unimplemented"); 2015 if (isHandledGCPointerType(Arg->getType())) 2016 DeoptValues.push_back(Arg); 2017 } 2018 2019 insertUseHolderAfter(CS, DeoptValues, Holders); 2020 } 2021 2022 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2023 2024 // A) Identify all gc pointers which are statically live at the given call 2025 // site. 2026 findLiveReferences(F, DT, ToUpdate, Records); 2027 2028 // B) Find the base pointers for each live pointer 2029 /* scope for caching */ { 2030 // Cache the 'defining value' relation used in the computation and 2031 // insertion of base phis and selects. This ensures that we don't insert 2032 // large numbers of duplicate base_phis. 2033 DefiningValueMapTy DVCache; 2034 2035 for (size_t i = 0; i < Records.size(); i++) { 2036 PartiallyConstructedSafepointRecord &info = Records[i]; 2037 findBasePointers(DT, DVCache, ToUpdate[i], info); 2038 } 2039 } // end of cache scope 2040 2041 // The base phi insertion logic (for any safepoint) may have inserted new 2042 // instructions which are now live at some safepoint. The simplest such 2043 // example is: 2044 // loop: 2045 // phi a <-- will be a new base_phi here 2046 // safepoint 1 <-- that needs to be live here 2047 // gep a + 1 2048 // safepoint 2 2049 // br loop 2050 // We insert some dummy calls after each safepoint to definitely hold live 2051 // the base pointers which were identified for that safepoint. We'll then 2052 // ask liveness for _every_ base inserted to see what is now live. Then we 2053 // remove the dummy calls. 2054 Holders.reserve(Holders.size() + Records.size()); 2055 for (size_t i = 0; i < Records.size(); i++) { 2056 PartiallyConstructedSafepointRecord &Info = Records[i]; 2057 2058 SmallVector<Value *, 128> Bases; 2059 for (auto Pair : Info.PointerToBase) 2060 Bases.push_back(Pair.second); 2061 2062 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2063 } 2064 2065 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2066 // need to rerun liveness. We may *also* have inserted new defs, but that's 2067 // not the key issue. 2068 recomputeLiveInValues(F, DT, ToUpdate, Records); 2069 2070 if (PrintBasePointers) { 2071 for (auto &Info : Records) { 2072 errs() << "Base Pairs: (w/Relocation)\n"; 2073 for (auto Pair : Info.PointerToBase) { 2074 errs() << " derived "; 2075 Pair.first->printAsOperand(errs(), false); 2076 errs() << " base "; 2077 Pair.second->printAsOperand(errs(), false); 2078 errs() << "\n"; 2079 } 2080 } 2081 } 2082 2083 // It is possible that non-constant live variables have a constant base. For 2084 // example, a GEP with a variable offset from a global. In this case we can 2085 // remove it from the liveset. We already don't add constants to the liveset 2086 // because we assume they won't move at runtime and the GC doesn't need to be 2087 // informed about them. The same reasoning applies if the base is constant. 2088 // Note that the relocation placement code relies on this filtering for 2089 // correctness as it expects the base to be in the liveset, which isn't true 2090 // if the base is constant. 2091 for (auto &Info : Records) 2092 for (auto &BasePair : Info.PointerToBase) 2093 if (isa<Constant>(BasePair.second)) 2094 Info.LiveSet.remove(BasePair.first); 2095 2096 for (CallInst *CI : Holders) 2097 CI->eraseFromParent(); 2098 2099 Holders.clear(); 2100 2101 // In order to reduce live set of statepoint we might choose to rematerialize 2102 // some values instead of relocating them. This is purely an optimization and 2103 // does not influence correctness. 2104 for (size_t i = 0; i < Records.size(); i++) 2105 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2106 2107 // We need this to safely RAUW and delete call or invoke return values that 2108 // may themselves be live over a statepoint. For details, please see usage in 2109 // makeStatepointExplicitImpl. 2110 std::vector<DeferredReplacement> Replacements; 2111 2112 // Now run through and replace the existing statepoints with new ones with 2113 // the live variables listed. We do not yet update uses of the values being 2114 // relocated. We have references to live variables that need to 2115 // survive to the last iteration of this loop. (By construction, the 2116 // previous statepoint can not be a live variable, thus we can and remove 2117 // the old statepoint calls as we go.) 2118 for (size_t i = 0; i < Records.size(); i++) 2119 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2120 2121 ToUpdate.clear(); // prevent accident use of invalid CallSites 2122 2123 for (auto &PR : Replacements) 2124 PR.doReplacement(); 2125 2126 Replacements.clear(); 2127 2128 for (auto &Info : Records) { 2129 // These live sets may contain state Value pointers, since we replaced calls 2130 // with operand bundles with calls wrapped in gc.statepoint, and some of 2131 // those calls may have been def'ing live gc pointers. Clear these out to 2132 // avoid accidentally using them. 2133 // 2134 // TODO: We should create a separate data structure that does not contain 2135 // these live sets, and migrate to using that data structure from this point 2136 // onward. 2137 Info.LiveSet.clear(); 2138 Info.PointerToBase.clear(); 2139 } 2140 2141 // Do all the fixups of the original live variables to their relocated selves 2142 SmallVector<Value *, 128> Live; 2143 for (size_t i = 0; i < Records.size(); i++) { 2144 PartiallyConstructedSafepointRecord &Info = Records[i]; 2145 2146 // We can't simply save the live set from the original insertion. One of 2147 // the live values might be the result of a call which needs a safepoint. 2148 // That Value* no longer exists and we need to use the new gc_result. 2149 // Thankfully, the live set is embedded in the statepoint (and updated), so 2150 // we just grab that. 2151 Statepoint Statepoint(Info.StatepointToken); 2152 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2153 Statepoint.gc_args_end()); 2154 #ifndef NDEBUG 2155 // Do some basic sanity checks on our liveness results before performing 2156 // relocation. Relocation can and will turn mistakes in liveness results 2157 // into non-sensical code which is must harder to debug. 2158 // TODO: It would be nice to test consistency as well 2159 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2160 "statepoint must be reachable or liveness is meaningless"); 2161 for (Value *V : Statepoint.gc_args()) { 2162 if (!isa<Instruction>(V)) 2163 // Non-instruction values trivial dominate all possible uses 2164 continue; 2165 auto *LiveInst = cast<Instruction>(V); 2166 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2167 "unreachable values should never be live"); 2168 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2169 "basic SSA liveness expectation violated by liveness analysis"); 2170 } 2171 #endif 2172 } 2173 unique_unsorted(Live); 2174 2175 #ifndef NDEBUG 2176 // sanity check 2177 for (auto *Ptr : Live) 2178 assert(isHandledGCPointerType(Ptr->getType()) && 2179 "must be a gc pointer type"); 2180 #endif 2181 2182 relocationViaAlloca(F, DT, Live, Records); 2183 return !Records.empty(); 2184 } 2185 2186 // Handles both return values and arguments for Functions and CallSites. 2187 template <typename AttrHolder> 2188 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2189 unsigned Index) { 2190 AttrBuilder R; 2191 if (AH.getDereferenceableBytes(Index)) 2192 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2193 AH.getDereferenceableBytes(Index))); 2194 if (AH.getDereferenceableOrNullBytes(Index)) 2195 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2196 AH.getDereferenceableOrNullBytes(Index))); 2197 if (AH.doesNotAlias(Index)) 2198 R.addAttribute(Attribute::NoAlias); 2199 2200 if (!R.empty()) 2201 AH.setAttributes(AH.getAttributes().removeAttributes( 2202 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2203 } 2204 2205 void 2206 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2207 LLVMContext &Ctx = F.getContext(); 2208 2209 for (Argument &A : F.args()) 2210 if (isa<PointerType>(A.getType())) 2211 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2212 2213 if (isa<PointerType>(F.getReturnType())) 2214 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2215 } 2216 2217 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2218 if (F.empty()) 2219 return; 2220 2221 LLVMContext &Ctx = F.getContext(); 2222 MDBuilder Builder(Ctx); 2223 2224 for (Instruction &I : instructions(F)) { 2225 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2226 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2227 bool IsImmutableTBAA = 2228 MD->getNumOperands() == 4 && 2229 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2230 2231 if (!IsImmutableTBAA) 2232 continue; // no work to do, MD_tbaa is already marked mutable 2233 2234 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2235 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2236 uint64_t Offset = 2237 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2238 2239 MDNode *MutableTBAA = 2240 Builder.createTBAAStructTagNode(Base, Access, Offset); 2241 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2242 } 2243 2244 if (CallSite CS = CallSite(&I)) { 2245 for (int i = 0, e = CS.arg_size(); i != e; i++) 2246 if (isa<PointerType>(CS.getArgument(i)->getType())) 2247 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); 2248 if (isa<PointerType>(CS.getType())) 2249 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2250 } 2251 } 2252 } 2253 2254 /// Returns true if this function should be rewritten by this pass. The main 2255 /// point of this function is as an extension point for custom logic. 2256 static bool shouldRewriteStatepointsIn(Function &F) { 2257 // TODO: This should check the GCStrategy 2258 if (F.hasGC()) { 2259 const auto &FunctionGCName = F.getGC(); 2260 const StringRef StatepointExampleName("statepoint-example"); 2261 const StringRef CoreCLRName("coreclr"); 2262 return (StatepointExampleName == FunctionGCName) || 2263 (CoreCLRName == FunctionGCName); 2264 } else 2265 return false; 2266 } 2267 2268 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2269 #ifndef NDEBUG 2270 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2271 "precondition!"); 2272 #endif 2273 2274 for (Function &F : M) 2275 stripNonValidAttributesFromPrototype(F); 2276 2277 for (Function &F : M) 2278 stripNonValidAttributesFromBody(F); 2279 } 2280 2281 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2282 // Nothing to do for declarations. 2283 if (F.isDeclaration() || F.empty()) 2284 return false; 2285 2286 // Policy choice says not to rewrite - the most common reason is that we're 2287 // compiling code without a GCStrategy. 2288 if (!shouldRewriteStatepointsIn(F)) 2289 return false; 2290 2291 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2292 TargetTransformInfo &TTI = 2293 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2294 2295 auto NeedsRewrite = [](Instruction &I) { 2296 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2297 return !callsGCLeafFunction(CS) && !isStatepoint(CS); 2298 return false; 2299 }; 2300 2301 // Gather all the statepoints which need rewritten. Be careful to only 2302 // consider those in reachable code since we need to ask dominance queries 2303 // when rewriting. We'll delete the unreachable ones in a moment. 2304 SmallVector<CallSite, 64> ParsePointNeeded; 2305 bool HasUnreachableStatepoint = false; 2306 for (Instruction &I : instructions(F)) { 2307 // TODO: only the ones with the flag set! 2308 if (NeedsRewrite(I)) { 2309 if (DT.isReachableFromEntry(I.getParent())) 2310 ParsePointNeeded.push_back(CallSite(&I)); 2311 else 2312 HasUnreachableStatepoint = true; 2313 } 2314 } 2315 2316 bool MadeChange = false; 2317 2318 // Delete any unreachable statepoints so that we don't have unrewritten 2319 // statepoints surviving this pass. This makes testing easier and the 2320 // resulting IR less confusing to human readers. Rather than be fancy, we 2321 // just reuse a utility function which removes the unreachable blocks. 2322 if (HasUnreachableStatepoint) 2323 MadeChange |= removeUnreachableBlocks(F); 2324 2325 // Return early if no work to do. 2326 if (ParsePointNeeded.empty()) 2327 return MadeChange; 2328 2329 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2330 // These are created by LCSSA. They have the effect of increasing the size 2331 // of liveness sets for no good reason. It may be harder to do this post 2332 // insertion since relocations and base phis can confuse things. 2333 for (BasicBlock &BB : F) 2334 if (BB.getUniquePredecessor()) { 2335 MadeChange = true; 2336 FoldSingleEntryPHINodes(&BB); 2337 } 2338 2339 // Before we start introducing relocations, we want to tweak the IR a bit to 2340 // avoid unfortunate code generation effects. The main example is that we 2341 // want to try to make sure the comparison feeding a branch is after any 2342 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2343 // values feeding a branch after relocation. This is semantically correct, 2344 // but results in extra register pressure since both the pre-relocation and 2345 // post-relocation copies must be available in registers. For code without 2346 // relocations this is handled elsewhere, but teaching the scheduler to 2347 // reverse the transform we're about to do would be slightly complex. 2348 // Note: This may extend the live range of the inputs to the icmp and thus 2349 // increase the liveset of any statepoint we move over. This is profitable 2350 // as long as all statepoints are in rare blocks. If we had in-register 2351 // lowering for live values this would be a much safer transform. 2352 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2353 if (auto *BI = dyn_cast<BranchInst>(TI)) 2354 if (BI->isConditional()) 2355 return dyn_cast<Instruction>(BI->getCondition()); 2356 // TODO: Extend this to handle switches 2357 return nullptr; 2358 }; 2359 for (BasicBlock &BB : F) { 2360 TerminatorInst *TI = BB.getTerminator(); 2361 if (auto *Cond = getConditionInst(TI)) 2362 // TODO: Handle more than just ICmps here. We should be able to move 2363 // most instructions without side effects or memory access. 2364 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2365 MadeChange = true; 2366 Cond->moveBefore(TI); 2367 } 2368 } 2369 2370 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2371 return MadeChange; 2372 } 2373 2374 // liveness computation via standard dataflow 2375 // ------------------------------------------------------------------- 2376 2377 // TODO: Consider using bitvectors for liveness, the set of potentially 2378 // interesting values should be small and easy to pre-compute. 2379 2380 /// Compute the live-in set for the location rbegin starting from 2381 /// the live-out set of the basic block 2382 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 2383 BasicBlock::reverse_iterator End, 2384 SetVector<Value *> &LiveTmp) { 2385 for (auto &I : make_range(Begin, End)) { 2386 // KILL/Def - Remove this definition from LiveIn 2387 LiveTmp.remove(&I); 2388 2389 // Don't consider *uses* in PHI nodes, we handle their contribution to 2390 // predecessor blocks when we seed the LiveOut sets 2391 if (isa<PHINode>(I)) 2392 continue; 2393 2394 // USE - Add to the LiveIn set for this instruction 2395 for (Value *V : I.operands()) { 2396 assert(!isUnhandledGCPointerType(V->getType()) && 2397 "support for FCA unimplemented"); 2398 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2399 // The choice to exclude all things constant here is slightly subtle. 2400 // There are two independent reasons: 2401 // - We assume that things which are constant (from LLVM's definition) 2402 // do not move at runtime. For example, the address of a global 2403 // variable is fixed, even though it's contents may not be. 2404 // - Second, we can't disallow arbitrary inttoptr constants even 2405 // if the language frontend does. Optimization passes are free to 2406 // locally exploit facts without respect to global reachability. This 2407 // can create sections of code which are dynamically unreachable and 2408 // contain just about anything. (see constants.ll in tests) 2409 LiveTmp.insert(V); 2410 } 2411 } 2412 } 2413 } 2414 2415 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2416 for (BasicBlock *Succ : successors(BB)) { 2417 for (auto &I : *Succ) { 2418 PHINode *PN = dyn_cast<PHINode>(&I); 2419 if (!PN) 2420 break; 2421 2422 Value *V = PN->getIncomingValueForBlock(BB); 2423 assert(!isUnhandledGCPointerType(V->getType()) && 2424 "support for FCA unimplemented"); 2425 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 2426 LiveTmp.insert(V); 2427 } 2428 } 2429 } 2430 2431 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2432 SetVector<Value *> KillSet; 2433 for (Instruction &I : *BB) 2434 if (isHandledGCPointerType(I.getType())) 2435 KillSet.insert(&I); 2436 return KillSet; 2437 } 2438 2439 #ifndef NDEBUG 2440 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2441 /// sanity check for the liveness computation. 2442 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2443 TerminatorInst *TI, bool TermOkay = false) { 2444 for (Value *V : Live) { 2445 if (auto *I = dyn_cast<Instruction>(V)) { 2446 // The terminator can be a member of the LiveOut set. LLVM's definition 2447 // of instruction dominance states that V does not dominate itself. As 2448 // such, we need to special case this to allow it. 2449 if (TermOkay && TI == I) 2450 continue; 2451 assert(DT.dominates(I, TI) && 2452 "basic SSA liveness expectation violated by liveness analysis"); 2453 } 2454 } 2455 } 2456 2457 /// Check that all the liveness sets used during the computation of liveness 2458 /// obey basic SSA properties. This is useful for finding cases where we miss 2459 /// a def. 2460 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2461 BasicBlock &BB) { 2462 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2463 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2464 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2465 } 2466 #endif 2467 2468 static void computeLiveInValues(DominatorTree &DT, Function &F, 2469 GCPtrLivenessData &Data) { 2470 SmallSetVector<BasicBlock *, 32> Worklist; 2471 2472 // Seed the liveness for each individual block 2473 for (BasicBlock &BB : F) { 2474 Data.KillSet[&BB] = computeKillSet(&BB); 2475 Data.LiveSet[&BB].clear(); 2476 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2477 2478 #ifndef NDEBUG 2479 for (Value *Kill : Data.KillSet[&BB]) 2480 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2481 #endif 2482 2483 Data.LiveOut[&BB] = SetVector<Value *>(); 2484 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2485 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2486 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2487 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2488 if (!Data.LiveIn[&BB].empty()) 2489 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 2490 } 2491 2492 // Propagate that liveness until stable 2493 while (!Worklist.empty()) { 2494 BasicBlock *BB = Worklist.pop_back_val(); 2495 2496 // Compute our new liveout set, then exit early if it hasn't changed despite 2497 // the contribution of our successor. 2498 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2499 const auto OldLiveOutSize = LiveOut.size(); 2500 for (BasicBlock *Succ : successors(BB)) { 2501 assert(Data.LiveIn.count(Succ)); 2502 LiveOut.set_union(Data.LiveIn[Succ]); 2503 } 2504 // assert OutLiveOut is a subset of LiveOut 2505 if (OldLiveOutSize == LiveOut.size()) { 2506 // If the sets are the same size, then we didn't actually add anything 2507 // when unioning our successors LiveIn. Thus, the LiveIn of this block 2508 // hasn't changed. 2509 continue; 2510 } 2511 Data.LiveOut[BB] = LiveOut; 2512 2513 // Apply the effects of this basic block 2514 SetVector<Value *> LiveTmp = LiveOut; 2515 LiveTmp.set_union(Data.LiveSet[BB]); 2516 LiveTmp.set_subtract(Data.KillSet[BB]); 2517 2518 assert(Data.LiveIn.count(BB)); 2519 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2520 // assert: OldLiveIn is a subset of LiveTmp 2521 if (OldLiveIn.size() != LiveTmp.size()) { 2522 Data.LiveIn[BB] = LiveTmp; 2523 Worklist.insert(pred_begin(BB), pred_end(BB)); 2524 } 2525 } // while (!Worklist.empty()) 2526 2527 #ifndef NDEBUG 2528 // Sanity check our output against SSA properties. This helps catch any 2529 // missing kills during the above iteration. 2530 for (BasicBlock &BB : F) 2531 checkBasicSSA(DT, Data, BB); 2532 #endif 2533 } 2534 2535 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2536 StatepointLiveSetTy &Out) { 2537 2538 BasicBlock *BB = Inst->getParent(); 2539 2540 // Note: The copy is intentional and required 2541 assert(Data.LiveOut.count(BB)); 2542 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2543 2544 // We want to handle the statepoint itself oddly. It's 2545 // call result is not live (normal), nor are it's arguments 2546 // (unless they're used again later). This adjustment is 2547 // specifically what we need to relocate 2548 BasicBlock::reverse_iterator rend(Inst->getIterator()); 2549 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2550 LiveOut.remove(Inst); 2551 Out.insert(LiveOut.begin(), LiveOut.end()); 2552 } 2553 2554 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2555 CallSite CS, 2556 PartiallyConstructedSafepointRecord &Info) { 2557 Instruction *Inst = CS.getInstruction(); 2558 StatepointLiveSetTy Updated; 2559 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2560 2561 #ifndef NDEBUG 2562 DenseSet<Value *> Bases; 2563 for (auto KVPair : Info.PointerToBase) 2564 Bases.insert(KVPair.second); 2565 #endif 2566 2567 // We may have base pointers which are now live that weren't before. We need 2568 // to update the PointerToBase structure to reflect this. 2569 for (auto V : Updated) 2570 if (Info.PointerToBase.insert({V, V}).second) { 2571 assert(Bases.count(V) && "Can't find base for unexpected live value!"); 2572 continue; 2573 } 2574 2575 #ifndef NDEBUG 2576 for (auto V : Updated) 2577 assert(Info.PointerToBase.count(V) && 2578 "Must be able to find base for live value!"); 2579 #endif 2580 2581 // Remove any stale base mappings - this can happen since our liveness is 2582 // more precise then the one inherent in the base pointer analysis. 2583 DenseSet<Value *> ToErase; 2584 for (auto KVPair : Info.PointerToBase) 2585 if (!Updated.count(KVPair.first)) 2586 ToErase.insert(KVPair.first); 2587 2588 for (auto *V : ToErase) 2589 Info.PointerToBase.erase(V); 2590 2591 #ifndef NDEBUG 2592 for (auto KVPair : Info.PointerToBase) 2593 assert(Updated.count(KVPair.first) && "record for non-live value"); 2594 #endif 2595 2596 Info.LiveSet = Updated; 2597 } 2598