1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Rewrite call/invoke instructions so as to make potential relocations 10 // performed by the garbage collector explicit in the IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/iterator_range.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/IR/ValueHandle.h" 57 #include "llvm/InitializePasses.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <set> 75 #include <string> 76 #include <utility> 77 #include <vector> 78 79 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 80 81 using namespace llvm; 82 83 // Print the liveset found at the insert location 84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 85 cl::init(false)); 86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 87 cl::init(false)); 88 89 // Print out the base pointers for debugging 90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 91 cl::init(false)); 92 93 // Cost threshold measuring when it is profitable to rematerialize value instead 94 // of relocating it 95 static cl::opt<unsigned> 96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 97 cl::init(6)); 98 99 #ifdef EXPENSIVE_CHECKS 100 static bool ClobberNonLive = true; 101 #else 102 static bool ClobberNonLive = false; 103 #endif 104 105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 106 cl::location(ClobberNonLive), 107 cl::Hidden); 108 109 static cl::opt<bool> 110 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 111 cl::Hidden, cl::init(true)); 112 113 /// The IR fed into RewriteStatepointsForGC may have had attributes and 114 /// metadata implying dereferenceability that are no longer valid/correct after 115 /// RewriteStatepointsForGC has run. This is because semantically, after 116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 117 /// heap. stripNonValidData (conservatively) restores 118 /// correctness by erasing all attributes in the module that externally imply 119 /// dereferenceability. Similar reasoning also applies to the noalias 120 /// attributes and metadata. gc.statepoint can touch the entire heap including 121 /// noalias objects. 122 /// Apart from attributes and metadata, we also remove instructions that imply 123 /// constant physical memory: llvm.invariant.start. 124 static void stripNonValidData(Module &M); 125 126 static bool shouldRewriteStatepointsIn(Function &F); 127 128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 129 ModuleAnalysisManager &AM) { 130 bool Changed = false; 131 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 132 for (Function &F : M) { 133 // Nothing to do for declarations. 134 if (F.isDeclaration() || F.empty()) 135 continue; 136 137 // Policy choice says not to rewrite - the most common reason is that we're 138 // compiling code without a GCStrategy. 139 if (!shouldRewriteStatepointsIn(F)) 140 continue; 141 142 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 143 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 144 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 145 Changed |= runOnFunction(F, DT, TTI, TLI); 146 } 147 if (!Changed) 148 return PreservedAnalyses::all(); 149 150 // stripNonValidData asserts that shouldRewriteStatepointsIn 151 // returns true for at least one function in the module. Since at least 152 // one function changed, we know that the precondition is satisfied. 153 stripNonValidData(M); 154 155 PreservedAnalyses PA; 156 PA.preserve<TargetIRAnalysis>(); 157 PA.preserve<TargetLibraryAnalysis>(); 158 return PA; 159 } 160 161 namespace { 162 163 class RewriteStatepointsForGCLegacyPass : public ModulePass { 164 RewriteStatepointsForGC Impl; 165 166 public: 167 static char ID; // Pass identification, replacement for typeid 168 169 RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() { 170 initializeRewriteStatepointsForGCLegacyPassPass( 171 *PassRegistry::getPassRegistry()); 172 } 173 174 bool runOnModule(Module &M) override { 175 bool Changed = false; 176 for (Function &F : M) { 177 // Nothing to do for declarations. 178 if (F.isDeclaration() || F.empty()) 179 continue; 180 181 // Policy choice says not to rewrite - the most common reason is that 182 // we're compiling code without a GCStrategy. 183 if (!shouldRewriteStatepointsIn(F)) 184 continue; 185 186 TargetTransformInfo &TTI = 187 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 188 const TargetLibraryInfo &TLI = 189 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 190 auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 191 192 Changed |= Impl.runOnFunction(F, DT, TTI, TLI); 193 } 194 195 if (!Changed) 196 return false; 197 198 // stripNonValidData asserts that shouldRewriteStatepointsIn 199 // returns true for at least one function in the module. Since at least 200 // one function changed, we know that the precondition is satisfied. 201 stripNonValidData(M); 202 return true; 203 } 204 205 void getAnalysisUsage(AnalysisUsage &AU) const override { 206 // We add and rewrite a bunch of instructions, but don't really do much 207 // else. We could in theory preserve a lot more analyses here. 208 AU.addRequired<DominatorTreeWrapperPass>(); 209 AU.addRequired<TargetTransformInfoWrapperPass>(); 210 AU.addRequired<TargetLibraryInfoWrapperPass>(); 211 } 212 }; 213 214 } // end anonymous namespace 215 216 char RewriteStatepointsForGCLegacyPass::ID = 0; 217 218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() { 219 return new RewriteStatepointsForGCLegacyPass(); 220 } 221 222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass, 223 "rewrite-statepoints-for-gc", 224 "Make relocations explicit at statepoints", false, false) 225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass, 228 "rewrite-statepoints-for-gc", 229 "Make relocations explicit at statepoints", false, false) 230 231 namespace { 232 233 struct GCPtrLivenessData { 234 /// Values defined in this block. 235 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 236 237 /// Values used in this block (and thus live); does not included values 238 /// killed within this block. 239 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 240 241 /// Values live into this basic block (i.e. used by any 242 /// instruction in this basic block or ones reachable from here) 243 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 244 245 /// Values live out of this basic block (i.e. live into 246 /// any successor block) 247 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 248 }; 249 250 // The type of the internal cache used inside the findBasePointers family 251 // of functions. From the callers perspective, this is an opaque type and 252 // should not be inspected. 253 // 254 // In the actual implementation this caches two relations: 255 // - The base relation itself (i.e. this pointer is based on that one) 256 // - The base defining value relation (i.e. before base_phi insertion) 257 // Generally, after the execution of a full findBasePointer call, only the 258 // base relation will remain. Internally, we add a mixture of the two 259 // types, then update all the second type to the first type 260 using DefiningValueMapTy = MapVector<Value *, Value *>; 261 using IsKnownBaseMapTy = MapVector<Value *, bool>; 262 using PointerToBaseTy = MapVector<Value *, Value *>; 263 using StatepointLiveSetTy = SetVector<Value *>; 264 using RematerializedValueMapTy = 265 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 266 267 struct PartiallyConstructedSafepointRecord { 268 /// The set of values known to be live across this safepoint 269 StatepointLiveSetTy LiveSet; 270 271 /// The *new* gc.statepoint instruction itself. This produces the token 272 /// that normal path gc.relocates and the gc.result are tied to. 273 GCStatepointInst *StatepointToken; 274 275 /// Instruction to which exceptional gc relocates are attached 276 /// Makes it easier to iterate through them during relocationViaAlloca. 277 Instruction *UnwindToken; 278 279 /// Record live values we are rematerialized instead of relocating. 280 /// They are not included into 'LiveSet' field. 281 /// Maps rematerialized copy to it's original value. 282 RematerializedValueMapTy RematerializedValues; 283 }; 284 285 struct RematerizlizationCandidateRecord { 286 // Chain from derived pointer to base. 287 SmallVector<Instruction *, 3> ChainToBase; 288 // Original base. 289 Value *RootOfChain; 290 // Cost of chain. 291 InstructionCost Cost; 292 }; 293 using RematCandTy = MapVector<Value *, RematerizlizationCandidateRecord>; 294 295 } // end anonymous namespace 296 297 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) { 298 Optional<OperandBundleUse> DeoptBundle = 299 Call->getOperandBundle(LLVMContext::OB_deopt); 300 301 if (!DeoptBundle) { 302 assert(AllowStatepointWithNoDeoptInfo && 303 "Found non-leaf call without deopt info!"); 304 return None; 305 } 306 307 return DeoptBundle->Inputs; 308 } 309 310 /// Compute the live-in set for every basic block in the function 311 static void computeLiveInValues(DominatorTree &DT, Function &F, 312 GCPtrLivenessData &Data); 313 314 /// Given results from the dataflow liveness computation, find the set of live 315 /// Values at a particular instruction. 316 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 317 StatepointLiveSetTy &out); 318 319 // TODO: Once we can get to the GCStrategy, this becomes 320 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 321 322 static bool isGCPointerType(Type *T) { 323 if (auto *PT = dyn_cast<PointerType>(T)) 324 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 325 // GC managed heap. We know that a pointer into this heap needs to be 326 // updated and that no other pointer does. 327 return PT->getAddressSpace() == 1; 328 return false; 329 } 330 331 // Return true if this type is one which a) is a gc pointer or contains a GC 332 // pointer and b) is of a type this code expects to encounter as a live value. 333 // (The insertion code will assert that a type which matches (a) and not (b) 334 // is not encountered.) 335 static bool isHandledGCPointerType(Type *T) { 336 // We fully support gc pointers 337 if (isGCPointerType(T)) 338 return true; 339 // We partially support vectors of gc pointers. The code will assert if it 340 // can't handle something. 341 if (auto VT = dyn_cast<VectorType>(T)) 342 if (isGCPointerType(VT->getElementType())) 343 return true; 344 return false; 345 } 346 347 #ifndef NDEBUG 348 /// Returns true if this type contains a gc pointer whether we know how to 349 /// handle that type or not. 350 static bool containsGCPtrType(Type *Ty) { 351 if (isGCPointerType(Ty)) 352 return true; 353 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 354 return isGCPointerType(VT->getScalarType()); 355 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 356 return containsGCPtrType(AT->getElementType()); 357 if (StructType *ST = dyn_cast<StructType>(Ty)) 358 return llvm::any_of(ST->elements(), containsGCPtrType); 359 return false; 360 } 361 362 // Returns true if this is a type which a) is a gc pointer or contains a GC 363 // pointer and b) is of a type which the code doesn't expect (i.e. first class 364 // aggregates). Used to trip assertions. 365 static bool isUnhandledGCPointerType(Type *Ty) { 366 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 367 } 368 #endif 369 370 // Return the name of the value suffixed with the provided value, or if the 371 // value didn't have a name, the default value specified. 372 static std::string suffixed_name_or(Value *V, StringRef Suffix, 373 StringRef DefaultName) { 374 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 375 } 376 377 // Conservatively identifies any definitions which might be live at the 378 // given instruction. The analysis is performed immediately before the 379 // given instruction. Values defined by that instruction are not considered 380 // live. Values used by that instruction are considered live. 381 static void analyzeParsePointLiveness( 382 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, 383 PartiallyConstructedSafepointRecord &Result) { 384 StatepointLiveSetTy LiveSet; 385 findLiveSetAtInst(Call, OriginalLivenessData, LiveSet); 386 387 if (PrintLiveSet) { 388 dbgs() << "Live Variables:\n"; 389 for (Value *V : LiveSet) 390 dbgs() << " " << V->getName() << " " << *V << "\n"; 391 } 392 if (PrintLiveSetSize) { 393 dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n"; 394 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 395 } 396 Result.LiveSet = LiveSet; 397 } 398 399 /// Returns true if V is a known base. 400 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases); 401 402 /// Caches the IsKnownBase flag for a value and asserts that it wasn't present 403 /// in the cache before. 404 static void setKnownBase(Value *V, bool IsKnownBase, 405 IsKnownBaseMapTy &KnownBases); 406 407 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, 408 IsKnownBaseMapTy &KnownBases); 409 410 /// Return a base defining value for the 'Index' element of the given vector 411 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 412 /// 'I'. As an optimization, this method will try to determine when the 413 /// element is known to already be a base pointer. If this can be established, 414 /// the second value in the returned pair will be true. Note that either a 415 /// vector or a pointer typed value can be returned. For the former, the 416 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 417 /// If the later, the return pointer is a BDV (or possibly a base) for the 418 /// particular element in 'I'. 419 static Value *findBaseDefiningValueOfVector(Value *I, DefiningValueMapTy &Cache, 420 IsKnownBaseMapTy &KnownBases) { 421 // Each case parallels findBaseDefiningValue below, see that code for 422 // detailed motivation. 423 424 auto Cached = Cache.find(I); 425 if (Cached != Cache.end()) 426 return Cached->second; 427 428 if (isa<Argument>(I)) { 429 // An incoming argument to the function is a base pointer 430 Cache[I] = I; 431 setKnownBase(I, /* IsKnownBase */true, KnownBases); 432 return I; 433 } 434 435 if (isa<Constant>(I)) { 436 // Base of constant vector consists only of constant null pointers. 437 // For reasoning see similar case inside 'findBaseDefiningValue' function. 438 auto *CAZ = ConstantAggregateZero::get(I->getType()); 439 Cache[I] = CAZ; 440 setKnownBase(CAZ, /* IsKnownBase */true, KnownBases); 441 return CAZ; 442 } 443 444 if (isa<LoadInst>(I)) { 445 Cache[I] = I; 446 setKnownBase(I, /* IsKnownBase */true, KnownBases); 447 return I; 448 } 449 450 if (isa<InsertElementInst>(I)) { 451 // We don't know whether this vector contains entirely base pointers or 452 // not. To be conservatively correct, we treat it as a BDV and will 453 // duplicate code as needed to construct a parallel vector of bases. 454 Cache[I] = I; 455 setKnownBase(I, /* IsKnownBase */false, KnownBases); 456 return I; 457 } 458 459 if (isa<ShuffleVectorInst>(I)) { 460 // We don't know whether this vector contains entirely base pointers or 461 // not. To be conservatively correct, we treat it as a BDV and will 462 // duplicate code as needed to construct a parallel vector of bases. 463 // TODO: There a number of local optimizations which could be applied here 464 // for particular sufflevector patterns. 465 Cache[I] = I; 466 setKnownBase(I, /* IsKnownBase */false, KnownBases); 467 return I; 468 } 469 470 // The behavior of getelementptr instructions is the same for vector and 471 // non-vector data types. 472 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 473 auto *BDV = 474 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); 475 Cache[GEP] = BDV; 476 return BDV; 477 } 478 479 // If the pointer comes through a bitcast of a vector of pointers to 480 // a vector of another type of pointer, then look through the bitcast 481 if (auto *BC = dyn_cast<BitCastInst>(I)) { 482 auto *BDV = findBaseDefiningValue(BC->getOperand(0), Cache, KnownBases); 483 Cache[BC] = BDV; 484 return BDV; 485 } 486 487 // We assume that functions in the source language only return base 488 // pointers. This should probably be generalized via attributes to support 489 // both source language and internal functions. 490 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 491 Cache[I] = I; 492 setKnownBase(I, /* IsKnownBase */true, KnownBases); 493 return I; 494 } 495 496 // A PHI or Select is a base defining value. The outer findBasePointer 497 // algorithm is responsible for constructing a base value for this BDV. 498 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 499 "unknown vector instruction - no base found for vector element"); 500 Cache[I] = I; 501 setKnownBase(I, /* IsKnownBase */false, KnownBases); 502 return I; 503 } 504 505 /// Helper function for findBasePointer - Will return a value which either a) 506 /// defines the base pointer for the input, b) blocks the simple search 507 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 508 /// from pointer to vector type or back. 509 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, 510 IsKnownBaseMapTy &KnownBases) { 511 assert(I->getType()->isPtrOrPtrVectorTy() && 512 "Illegal to ask for the base pointer of a non-pointer type"); 513 auto Cached = Cache.find(I); 514 if (Cached != Cache.end()) 515 return Cached->second; 516 517 if (I->getType()->isVectorTy()) 518 return findBaseDefiningValueOfVector(I, Cache, KnownBases); 519 520 if (isa<Argument>(I)) { 521 // An incoming argument to the function is a base pointer 522 // We should have never reached here if this argument isn't an gc value 523 Cache[I] = I; 524 setKnownBase(I, /* IsKnownBase */true, KnownBases); 525 return I; 526 } 527 528 if (isa<Constant>(I)) { 529 // We assume that objects with a constant base (e.g. a global) can't move 530 // and don't need to be reported to the collector because they are always 531 // live. Besides global references, all kinds of constants (e.g. undef, 532 // constant expressions, null pointers) can be introduced by the inliner or 533 // the optimizer, especially on dynamically dead paths. 534 // Here we treat all of them as having single null base. By doing this we 535 // trying to avoid problems reporting various conflicts in a form of 536 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 537 // See constant.ll file for relevant test cases. 538 539 auto *CPN = ConstantPointerNull::get(cast<PointerType>(I->getType())); 540 Cache[I] = CPN; 541 setKnownBase(CPN, /* IsKnownBase */true, KnownBases); 542 return CPN; 543 } 544 545 // inttoptrs in an integral address space are currently ill-defined. We 546 // treat them as defining base pointers here for consistency with the 547 // constant rule above and because we don't really have a better semantic 548 // to give them. Note that the optimizer is always free to insert undefined 549 // behavior on dynamically dead paths as well. 550 if (isa<IntToPtrInst>(I)) { 551 Cache[I] = I; 552 setKnownBase(I, /* IsKnownBase */true, KnownBases); 553 return I; 554 } 555 556 if (CastInst *CI = dyn_cast<CastInst>(I)) { 557 Value *Def = CI->stripPointerCasts(); 558 // If stripping pointer casts changes the address space there is an 559 // addrspacecast in between. 560 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 561 cast<PointerType>(CI->getType())->getAddressSpace() && 562 "unsupported addrspacecast"); 563 // If we find a cast instruction here, it means we've found a cast which is 564 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 565 // handle int->ptr conversion. 566 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 567 auto *BDV = findBaseDefiningValue(Def, Cache, KnownBases); 568 Cache[CI] = BDV; 569 return BDV; 570 } 571 572 if (isa<LoadInst>(I)) { 573 // The value loaded is an gc base itself 574 Cache[I] = I; 575 setKnownBase(I, /* IsKnownBase */true, KnownBases); 576 return I; 577 } 578 579 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 580 // The base of this GEP is the base 581 auto *BDV = 582 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); 583 Cache[GEP] = BDV; 584 return BDV; 585 } 586 587 if (auto *Freeze = dyn_cast<FreezeInst>(I)) { 588 auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases); 589 Cache[Freeze] = BDV; 590 return BDV; 591 } 592 593 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 594 switch (II->getIntrinsicID()) { 595 default: 596 // fall through to general call handling 597 break; 598 case Intrinsic::experimental_gc_statepoint: 599 llvm_unreachable("statepoints don't produce pointers"); 600 case Intrinsic::experimental_gc_relocate: 601 // Rerunning safepoint insertion after safepoints are already 602 // inserted is not supported. It could probably be made to work, 603 // but why are you doing this? There's no good reason. 604 llvm_unreachable("repeat safepoint insertion is not supported"); 605 case Intrinsic::gcroot: 606 // Currently, this mechanism hasn't been extended to work with gcroot. 607 // There's no reason it couldn't be, but I haven't thought about the 608 // implications much. 609 llvm_unreachable( 610 "interaction with the gcroot mechanism is not supported"); 611 case Intrinsic::experimental_gc_get_pointer_base: 612 auto *BDV = findBaseDefiningValue(II->getOperand(0), Cache, KnownBases); 613 Cache[II] = BDV; 614 return BDV; 615 } 616 } 617 // We assume that functions in the source language only return base 618 // pointers. This should probably be generalized via attributes to support 619 // both source language and internal functions. 620 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 621 Cache[I] = I; 622 setKnownBase(I, /* IsKnownBase */true, KnownBases); 623 return I; 624 } 625 626 // TODO: I have absolutely no idea how to implement this part yet. It's not 627 // necessarily hard, I just haven't really looked at it yet. 628 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 629 630 if (isa<AtomicCmpXchgInst>(I)) { 631 // A CAS is effectively a atomic store and load combined under a 632 // predicate. From the perspective of base pointers, we just treat it 633 // like a load. 634 Cache[I] = I; 635 setKnownBase(I, /* IsKnownBase */true, KnownBases); 636 return I; 637 } 638 639 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 640 "binary ops which don't apply to pointers"); 641 642 // The aggregate ops. Aggregates can either be in the heap or on the 643 // stack, but in either case, this is simply a field load. As a result, 644 // this is a defining definition of the base just like a load is. 645 if (isa<ExtractValueInst>(I)) { 646 Cache[I] = I; 647 setKnownBase(I, /* IsKnownBase */true, KnownBases); 648 return I; 649 } 650 651 // We should never see an insert vector since that would require we be 652 // tracing back a struct value not a pointer value. 653 assert(!isa<InsertValueInst>(I) && 654 "Base pointer for a struct is meaningless"); 655 656 // This value might have been generated by findBasePointer() called when 657 // substituting gc.get.pointer.base() intrinsic. 658 bool IsKnownBase = 659 isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value"); 660 setKnownBase(I, /* IsKnownBase */IsKnownBase, KnownBases); 661 Cache[I] = I; 662 663 // An extractelement produces a base result exactly when it's input does. 664 // We may need to insert a parallel instruction to extract the appropriate 665 // element out of the base vector corresponding to the input. Given this, 666 // it's analogous to the phi and select case even though it's not a merge. 667 if (isa<ExtractElementInst>(I)) 668 // Note: There a lot of obvious peephole cases here. This are deliberately 669 // handled after the main base pointer inference algorithm to make writing 670 // test cases to exercise that code easier. 671 return I; 672 673 // The last two cases here don't return a base pointer. Instead, they 674 // return a value which dynamically selects from among several base 675 // derived pointers (each with it's own base potentially). It's the job of 676 // the caller to resolve these. 677 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 678 "missing instruction case in findBaseDefiningValue"); 679 return I; 680 } 681 682 /// Returns the base defining value for this value. 683 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache, 684 IsKnownBaseMapTy &KnownBases) { 685 if (Cache.find(I) == Cache.end()) { 686 auto *BDV = findBaseDefiningValue(I, Cache, KnownBases); 687 Cache[I] = BDV; 688 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 689 << Cache[I]->getName() << ", is known base = " 690 << KnownBases[I] << "\n"); 691 } 692 assert(Cache[I] != nullptr); 693 assert(KnownBases.find(Cache[I]) != KnownBases.end() && 694 "Cached value must be present in known bases map"); 695 return Cache[I]; 696 } 697 698 /// Return a base pointer for this value if known. Otherwise, return it's 699 /// base defining value. 700 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache, 701 IsKnownBaseMapTy &KnownBases) { 702 Value *Def = findBaseDefiningValueCached(I, Cache, KnownBases); 703 auto Found = Cache.find(Def); 704 if (Found != Cache.end()) { 705 // Either a base-of relation, or a self reference. Caller must check. 706 return Found->second; 707 } 708 // Only a BDV available 709 return Def; 710 } 711 712 #ifndef NDEBUG 713 /// This value is a base pointer that is not generated by RS4GC, i.e. it already 714 /// exists in the code. 715 static bool isOriginalBaseResult(Value *V) { 716 // no recursion possible 717 return !isa<PHINode>(V) && !isa<SelectInst>(V) && 718 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 719 !isa<ShuffleVectorInst>(V); 720 } 721 #endif 722 723 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases) { 724 auto It = KnownBases.find(V); 725 assert(It != KnownBases.end() && "Value not present in the map"); 726 return It->second; 727 } 728 729 static void setKnownBase(Value *V, bool IsKnownBase, 730 IsKnownBaseMapTy &KnownBases) { 731 #ifndef NDEBUG 732 auto It = KnownBases.find(V); 733 if (It != KnownBases.end()) 734 assert(It->second == IsKnownBase && "Changing already present value"); 735 #endif 736 KnownBases[V] = IsKnownBase; 737 } 738 739 // Returns true if First and Second values are both scalar or both vector. 740 static bool areBothVectorOrScalar(Value *First, Value *Second) { 741 return isa<VectorType>(First->getType()) == 742 isa<VectorType>(Second->getType()); 743 } 744 745 namespace { 746 747 /// Models the state of a single base defining value in the findBasePointer 748 /// algorithm for determining where a new instruction is needed to propagate 749 /// the base of this BDV. 750 class BDVState { 751 public: 752 enum StatusTy { 753 // Starting state of lattice 754 Unknown, 755 // Some specific base value -- does *not* mean that instruction 756 // propagates the base of the object 757 // ex: gep %arg, 16 -> %arg is the base value 758 Base, 759 // Need to insert a node to represent a merge. 760 Conflict 761 }; 762 763 BDVState() { 764 llvm_unreachable("missing state in map"); 765 } 766 767 explicit BDVState(Value *OriginalValue) 768 : OriginalValue(OriginalValue) {} 769 explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr) 770 : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) { 771 assert(Status != Base || BaseValue); 772 } 773 774 StatusTy getStatus() const { return Status; } 775 Value *getOriginalValue() const { return OriginalValue; } 776 Value *getBaseValue() const { return BaseValue; } 777 778 bool isBase() const { return getStatus() == Base; } 779 bool isUnknown() const { return getStatus() == Unknown; } 780 bool isConflict() const { return getStatus() == Conflict; } 781 782 // Values of type BDVState form a lattice, and this function implements the 783 // meet 784 // operation. 785 void meet(const BDVState &Other) { 786 auto markConflict = [&]() { 787 Status = BDVState::Conflict; 788 BaseValue = nullptr; 789 }; 790 // Conflict is a final state. 791 if (isConflict()) 792 return; 793 // if we are not known - just take other state. 794 if (isUnknown()) { 795 Status = Other.getStatus(); 796 BaseValue = Other.getBaseValue(); 797 return; 798 } 799 // We are base. 800 assert(isBase() && "Unknown state"); 801 // If other is unknown - just keep our state. 802 if (Other.isUnknown()) 803 return; 804 // If other is conflict - it is a final state. 805 if (Other.isConflict()) 806 return markConflict(); 807 // Other is base as well. 808 assert(Other.isBase() && "Unknown state"); 809 // If bases are different - Conflict. 810 if (getBaseValue() != Other.getBaseValue()) 811 return markConflict(); 812 // We are identical, do nothing. 813 } 814 815 bool operator==(const BDVState &Other) const { 816 return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue && 817 Status == Other.Status; 818 } 819 820 bool operator!=(const BDVState &other) const { return !(*this == other); } 821 822 LLVM_DUMP_METHOD 823 void dump() const { 824 print(dbgs()); 825 dbgs() << '\n'; 826 } 827 828 void print(raw_ostream &OS) const { 829 switch (getStatus()) { 830 case Unknown: 831 OS << "U"; 832 break; 833 case Base: 834 OS << "B"; 835 break; 836 case Conflict: 837 OS << "C"; 838 break; 839 } 840 OS << " (base " << getBaseValue() << " - " 841 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")" 842 << " for " << OriginalValue->getName() << ":"; 843 } 844 845 private: 846 AssertingVH<Value> OriginalValue; // instruction this state corresponds to 847 StatusTy Status = Unknown; 848 AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base. 849 }; 850 851 } // end anonymous namespace 852 853 #ifndef NDEBUG 854 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 855 State.print(OS); 856 return OS; 857 } 858 #endif 859 860 /// For a given value or instruction, figure out what base ptr its derived from. 861 /// For gc objects, this is simply itself. On success, returns a value which is 862 /// the base pointer. (This is reliable and can be used for relocation.) On 863 /// failure, returns nullptr. 864 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache, 865 IsKnownBaseMapTy &KnownBases) { 866 Value *Def = findBaseOrBDV(I, Cache, KnownBases); 867 868 if (isKnownBase(Def, KnownBases) && areBothVectorOrScalar(Def, I)) 869 return Def; 870 871 // Here's the rough algorithm: 872 // - For every SSA value, construct a mapping to either an actual base 873 // pointer or a PHI which obscures the base pointer. 874 // - Construct a mapping from PHI to unknown TOP state. Use an 875 // optimistic algorithm to propagate base pointer information. Lattice 876 // looks like: 877 // UNKNOWN 878 // b1 b2 b3 b4 879 // CONFLICT 880 // When algorithm terminates, all PHIs will either have a single concrete 881 // base or be in a conflict state. 882 // - For every conflict, insert a dummy PHI node without arguments. Add 883 // these to the base[Instruction] = BasePtr mapping. For every 884 // non-conflict, add the actual base. 885 // - For every conflict, add arguments for the base[a] of each input 886 // arguments. 887 // 888 // Note: A simpler form of this would be to add the conflict form of all 889 // PHIs without running the optimistic algorithm. This would be 890 // analogous to pessimistic data flow and would likely lead to an 891 // overall worse solution. 892 893 #ifndef NDEBUG 894 auto isExpectedBDVType = [](Value *BDV) { 895 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 896 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 897 isa<ShuffleVectorInst>(BDV); 898 }; 899 #endif 900 901 // Once populated, will contain a mapping from each potentially non-base BDV 902 // to a lattice value (described above) which corresponds to that BDV. 903 // We use the order of insertion (DFS over the def/use graph) to provide a 904 // stable deterministic ordering for visiting DenseMaps (which are unordered) 905 // below. This is important for deterministic compilation. 906 MapVector<Value *, BDVState> States; 907 908 #ifndef NDEBUG 909 auto VerifyStates = [&]() { 910 for (auto &Entry : States) { 911 assert(Entry.first == Entry.second.getOriginalValue()); 912 } 913 }; 914 #endif 915 916 auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) { 917 if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 918 for (Value *InVal : PN->incoming_values()) 919 F(InVal); 920 } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 921 F(SI->getTrueValue()); 922 F(SI->getFalseValue()); 923 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 924 F(EE->getVectorOperand()); 925 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) { 926 F(IE->getOperand(0)); 927 F(IE->getOperand(1)); 928 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) { 929 // For a canonical broadcast, ignore the undef argument 930 // (without this, we insert a parallel base shuffle for every broadcast) 931 F(SV->getOperand(0)); 932 if (!SV->isZeroEltSplat()) 933 F(SV->getOperand(1)); 934 } else { 935 llvm_unreachable("unexpected BDV type"); 936 } 937 }; 938 939 940 // Recursively fill in all base defining values reachable from the initial 941 // one for which we don't already know a definite base value for 942 /* scope */ { 943 SmallVector<Value*, 16> Worklist; 944 Worklist.push_back(Def); 945 States.insert({Def, BDVState(Def)}); 946 while (!Worklist.empty()) { 947 Value *Current = Worklist.pop_back_val(); 948 assert(!isOriginalBaseResult(Current) && "why did it get added?"); 949 950 auto visitIncomingValue = [&](Value *InVal) { 951 Value *Base = findBaseOrBDV(InVal, Cache, KnownBases); 952 if (isKnownBase(Base, KnownBases) && areBothVectorOrScalar(Base, InVal)) 953 // Known bases won't need new instructions introduced and can be 954 // ignored safely. However, this can only be done when InVal and Base 955 // are both scalar or both vector. Otherwise, we need to find a 956 // correct BDV for InVal, by creating an entry in the lattice 957 // (States). 958 return; 959 assert(isExpectedBDVType(Base) && "the only non-base values " 960 "we see should be base defining values"); 961 if (States.insert(std::make_pair(Base, BDVState(Base))).second) 962 Worklist.push_back(Base); 963 }; 964 965 visitBDVOperands(Current, visitIncomingValue); 966 } 967 } 968 969 #ifndef NDEBUG 970 VerifyStates(); 971 LLVM_DEBUG(dbgs() << "States after initialization:\n"); 972 for (const auto &Pair : States) { 973 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 974 } 975 #endif 976 977 // Iterate forward through the value graph pruning any node from the state 978 // list where all of the inputs are base pointers. The purpose of this is to 979 // reuse existing values when the derived pointer we were asked to materialize 980 // a base pointer for happens to be a base pointer itself. (Or a sub-graph 981 // feeding it does.) 982 SmallVector<Value *> ToRemove; 983 do { 984 ToRemove.clear(); 985 for (auto Pair : States) { 986 Value *BDV = Pair.first; 987 auto canPruneInput = [&](Value *V) { 988 // If the input of the BDV is the BDV itself we can prune it. This is 989 // only possible if the BDV is a PHI node. 990 if (V->stripPointerCasts() == BDV) 991 return true; 992 Value *VBDV = findBaseOrBDV(V, Cache, KnownBases); 993 if (V->stripPointerCasts() != VBDV) 994 return false; 995 // The assumption is that anything not in the state list is 996 // propagates a base pointer. 997 return States.count(VBDV) == 0; 998 }; 999 1000 bool CanPrune = true; 1001 visitBDVOperands(BDV, [&](Value *Op) { 1002 CanPrune = CanPrune && canPruneInput(Op); 1003 }); 1004 if (CanPrune) 1005 ToRemove.push_back(BDV); 1006 } 1007 for (Value *V : ToRemove) { 1008 States.erase(V); 1009 // Cache the fact V is it's own base for later usage. 1010 Cache[V] = V; 1011 } 1012 } while (!ToRemove.empty()); 1013 1014 // Did we manage to prove that Def itself must be a base pointer? 1015 if (!States.count(Def)) 1016 return Def; 1017 1018 // Return a phi state for a base defining value. We'll generate a new 1019 // base state for known bases and expect to find a cached state otherwise. 1020 auto GetStateForBDV = [&](Value *BaseValue, Value *Input) { 1021 auto I = States.find(BaseValue); 1022 if (I != States.end()) 1023 return I->second; 1024 assert(areBothVectorOrScalar(BaseValue, Input)); 1025 return BDVState(BaseValue, BDVState::Base, BaseValue); 1026 }; 1027 1028 bool Progress = true; 1029 while (Progress) { 1030 #ifndef NDEBUG 1031 const size_t OldSize = States.size(); 1032 #endif 1033 Progress = false; 1034 // We're only changing values in this loop, thus safe to keep iterators. 1035 // Since this is computing a fixed point, the order of visit does not 1036 // effect the result. TODO: We could use a worklist here and make this run 1037 // much faster. 1038 for (auto Pair : States) { 1039 Value *BDV = Pair.first; 1040 // Only values that do not have known bases or those that have differing 1041 // type (scalar versus vector) from a possible known base should be in the 1042 // lattice. 1043 assert((!isKnownBase(BDV, KnownBases) || 1044 !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) && 1045 "why did it get added?"); 1046 1047 BDVState NewState(BDV); 1048 visitBDVOperands(BDV, [&](Value *Op) { 1049 Value *BDV = findBaseOrBDV(Op, Cache, KnownBases); 1050 auto OpState = GetStateForBDV(BDV, Op); 1051 NewState.meet(OpState); 1052 }); 1053 1054 BDVState OldState = States[BDV]; 1055 if (OldState != NewState) { 1056 Progress = true; 1057 States[BDV] = NewState; 1058 } 1059 } 1060 1061 assert(OldSize == States.size() && 1062 "fixed point shouldn't be adding any new nodes to state"); 1063 } 1064 1065 #ifndef NDEBUG 1066 VerifyStates(); 1067 LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); 1068 for (const auto &Pair : States) { 1069 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 1070 } 1071 #endif 1072 1073 // Handle all instructions that have a vector BDV, but the instruction itself 1074 // is of scalar type. 1075 for (auto Pair : States) { 1076 Instruction *I = cast<Instruction>(Pair.first); 1077 BDVState State = Pair.second; 1078 auto *BaseValue = State.getBaseValue(); 1079 // Only values that do not have known bases or those that have differing 1080 // type (scalar versus vector) from a possible known base should be in the 1081 // lattice. 1082 assert( 1083 (!isKnownBase(I, KnownBases) || !areBothVectorOrScalar(I, BaseValue)) && 1084 "why did it get added?"); 1085 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1086 1087 if (!State.isBase() || !isa<VectorType>(BaseValue->getType())) 1088 continue; 1089 // extractelement instructions are a bit special in that we may need to 1090 // insert an extract even when we know an exact base for the instruction. 1091 // The problem is that we need to convert from a vector base to a scalar 1092 // base for the particular indice we're interested in. 1093 if (isa<ExtractElementInst>(I)) { 1094 auto *EE = cast<ExtractElementInst>(I); 1095 // TODO: In many cases, the new instruction is just EE itself. We should 1096 // exploit this, but can't do it here since it would break the invariant 1097 // about the BDV not being known to be a base. 1098 auto *BaseInst = ExtractElementInst::Create( 1099 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 1100 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1101 States[I] = BDVState(I, BDVState::Base, BaseInst); 1102 setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases); 1103 } else if (!isa<VectorType>(I->getType())) { 1104 // We need to handle cases that have a vector base but the instruction is 1105 // a scalar type (these could be phis or selects or any instruction that 1106 // are of scalar type, but the base can be a vector type). We 1107 // conservatively set this as conflict. Setting the base value for these 1108 // conflicts is handled in the next loop which traverses States. 1109 States[I] = BDVState(I, BDVState::Conflict); 1110 } 1111 } 1112 1113 #ifndef NDEBUG 1114 VerifyStates(); 1115 #endif 1116 1117 // Insert Phis for all conflicts 1118 // TODO: adjust naming patterns to avoid this order of iteration dependency 1119 for (auto Pair : States) { 1120 Instruction *I = cast<Instruction>(Pair.first); 1121 BDVState State = Pair.second; 1122 // Only values that do not have known bases or those that have differing 1123 // type (scalar versus vector) from a possible known base should be in the 1124 // lattice. 1125 assert((!isKnownBase(I, KnownBases) || 1126 !areBothVectorOrScalar(I, State.getBaseValue())) && 1127 "why did it get added?"); 1128 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1129 1130 // Since we're joining a vector and scalar base, they can never be the 1131 // same. As a result, we should always see insert element having reached 1132 // the conflict state. 1133 assert(!isa<InsertElementInst>(I) || State.isConflict()); 1134 1135 if (!State.isConflict()) 1136 continue; 1137 1138 auto getMangledName = [](Instruction *I) -> std::string { 1139 if (isa<PHINode>(I)) { 1140 return suffixed_name_or(I, ".base", "base_phi"); 1141 } else if (isa<SelectInst>(I)) { 1142 return suffixed_name_or(I, ".base", "base_select"); 1143 } else if (isa<ExtractElementInst>(I)) { 1144 return suffixed_name_or(I, ".base", "base_ee"); 1145 } else if (isa<InsertElementInst>(I)) { 1146 return suffixed_name_or(I, ".base", "base_ie"); 1147 } else { 1148 return suffixed_name_or(I, ".base", "base_sv"); 1149 } 1150 }; 1151 1152 Instruction *BaseInst = I->clone(); 1153 BaseInst->insertBefore(I); 1154 BaseInst->setName(getMangledName(I)); 1155 // Add metadata marking this as a base value 1156 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1157 States[I] = BDVState(I, BDVState::Conflict, BaseInst); 1158 setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases); 1159 } 1160 1161 #ifndef NDEBUG 1162 VerifyStates(); 1163 #endif 1164 1165 // Returns a instruction which produces the base pointer for a given 1166 // instruction. The instruction is assumed to be an input to one of the BDVs 1167 // seen in the inference algorithm above. As such, we must either already 1168 // know it's base defining value is a base, or have inserted a new 1169 // instruction to propagate the base of it's BDV and have entered that newly 1170 // introduced instruction into the state table. In either case, we are 1171 // assured to be able to determine an instruction which produces it's base 1172 // pointer. 1173 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1174 Value *BDV = findBaseOrBDV(Input, Cache, KnownBases); 1175 Value *Base = nullptr; 1176 if (!States.count(BDV)) { 1177 assert(areBothVectorOrScalar(BDV, Input)); 1178 Base = BDV; 1179 } else { 1180 // Either conflict or base. 1181 assert(States.count(BDV)); 1182 Base = States[BDV].getBaseValue(); 1183 } 1184 assert(Base && "Can't be null"); 1185 // The cast is needed since base traversal may strip away bitcasts 1186 if (Base->getType() != Input->getType() && InsertPt) 1187 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 1188 return Base; 1189 }; 1190 1191 // Fixup all the inputs of the new PHIs. Visit order needs to be 1192 // deterministic and predictable because we're naming newly created 1193 // instructions. 1194 for (auto Pair : States) { 1195 Instruction *BDV = cast<Instruction>(Pair.first); 1196 BDVState State = Pair.second; 1197 1198 // Only values that do not have known bases or those that have differing 1199 // type (scalar versus vector) from a possible known base should be in the 1200 // lattice. 1201 assert((!isKnownBase(BDV, KnownBases) || 1202 !areBothVectorOrScalar(BDV, State.getBaseValue())) && 1203 "why did it get added?"); 1204 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1205 if (!State.isConflict()) 1206 continue; 1207 1208 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1209 PHINode *PN = cast<PHINode>(BDV); 1210 const unsigned NumPHIValues = PN->getNumIncomingValues(); 1211 1212 // The IR verifier requires phi nodes with multiple entries from the 1213 // same basic block to have the same incoming value for each of those 1214 // entries. Since we're inserting bitcasts in the loop, make sure we 1215 // do so at least once per incoming block. 1216 DenseMap<BasicBlock *, Value*> BlockToValue; 1217 for (unsigned i = 0; i < NumPHIValues; i++) { 1218 Value *InVal = PN->getIncomingValue(i); 1219 BasicBlock *InBB = PN->getIncomingBlock(i); 1220 if (!BlockToValue.count(InBB)) 1221 BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator()); 1222 else { 1223 #ifndef NDEBUG 1224 Value *OldBase = BlockToValue[InBB]; 1225 Value *Base = getBaseForInput(InVal, nullptr); 1226 1227 // We can't use `stripPointerCasts` instead of this function because 1228 // `stripPointerCasts` doesn't handle vectors of pointers. 1229 auto StripBitCasts = [](Value *V) -> Value * { 1230 while (auto *BC = dyn_cast<BitCastInst>(V)) 1231 V = BC->getOperand(0); 1232 return V; 1233 }; 1234 // In essence this assert states: the only way two values 1235 // incoming from the same basic block may be different is by 1236 // being different bitcasts of the same value. A cleanup 1237 // that remains TODO is changing findBaseOrBDV to return an 1238 // llvm::Value of the correct type (and still remain pure). 1239 // This will remove the need to add bitcasts. 1240 assert(StripBitCasts(Base) == StripBitCasts(OldBase) && 1241 "findBaseOrBDV should be pure!"); 1242 #endif 1243 } 1244 Value *Base = BlockToValue[InBB]; 1245 BasePHI->setIncomingValue(i, Base); 1246 } 1247 } else if (SelectInst *BaseSI = 1248 dyn_cast<SelectInst>(State.getBaseValue())) { 1249 SelectInst *SI = cast<SelectInst>(BDV); 1250 1251 // Find the instruction which produces the base for each input. 1252 // We may need to insert a bitcast. 1253 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1254 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1255 } else if (auto *BaseEE = 1256 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1257 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1258 // Find the instruction which produces the base for each input. We may 1259 // need to insert a bitcast. 1260 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1261 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1262 auto *BdvIE = cast<InsertElementInst>(BDV); 1263 auto UpdateOperand = [&](int OperandIdx) { 1264 Value *InVal = BdvIE->getOperand(OperandIdx); 1265 Value *Base = getBaseForInput(InVal, BaseIE); 1266 BaseIE->setOperand(OperandIdx, Base); 1267 }; 1268 UpdateOperand(0); // vector operand 1269 UpdateOperand(1); // scalar operand 1270 } else { 1271 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1272 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1273 auto UpdateOperand = [&](int OperandIdx) { 1274 Value *InVal = BdvSV->getOperand(OperandIdx); 1275 Value *Base = getBaseForInput(InVal, BaseSV); 1276 BaseSV->setOperand(OperandIdx, Base); 1277 }; 1278 UpdateOperand(0); // vector operand 1279 if (!BdvSV->isZeroEltSplat()) 1280 UpdateOperand(1); // vector operand 1281 else { 1282 // Never read, so just use undef 1283 Value *InVal = BdvSV->getOperand(1); 1284 BaseSV->setOperand(1, UndefValue::get(InVal->getType())); 1285 } 1286 } 1287 } 1288 1289 #ifndef NDEBUG 1290 VerifyStates(); 1291 #endif 1292 1293 // Cache all of our results so we can cheaply reuse them 1294 // NOTE: This is actually two caches: one of the base defining value 1295 // relation and one of the base pointer relation! FIXME 1296 for (auto Pair : States) { 1297 auto *BDV = Pair.first; 1298 Value *Base = Pair.second.getBaseValue(); 1299 assert(BDV && Base); 1300 // Only values that do not have known bases or those that have differing 1301 // type (scalar versus vector) from a possible known base should be in the 1302 // lattice. 1303 assert( 1304 (!isKnownBase(BDV, KnownBases) || !areBothVectorOrScalar(BDV, Base)) && 1305 "why did it get added?"); 1306 1307 LLVM_DEBUG( 1308 dbgs() << "Updating base value cache" 1309 << " for: " << BDV->getName() << " from: " 1310 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1311 << " to: " << Base->getName() << "\n"); 1312 1313 Cache[BDV] = Base; 1314 } 1315 assert(Cache.count(Def)); 1316 return Cache[Def]; 1317 } 1318 1319 // For a set of live pointers (base and/or derived), identify the base 1320 // pointer of the object which they are derived from. This routine will 1321 // mutate the IR graph as needed to make the 'base' pointer live at the 1322 // definition site of 'derived'. This ensures that any use of 'derived' can 1323 // also use 'base'. This may involve the insertion of a number of 1324 // additional PHI nodes. 1325 // 1326 // preconditions: live is a set of pointer type Values 1327 // 1328 // side effects: may insert PHI nodes into the existing CFG, will preserve 1329 // CFG, will not remove or mutate any existing nodes 1330 // 1331 // post condition: PointerToBase contains one (derived, base) pair for every 1332 // pointer in live. Note that derived can be equal to base if the original 1333 // pointer was a base pointer. 1334 static void findBasePointers(const StatepointLiveSetTy &live, 1335 PointerToBaseTy &PointerToBase, DominatorTree *DT, 1336 DefiningValueMapTy &DVCache, 1337 IsKnownBaseMapTy &KnownBases) { 1338 for (Value *ptr : live) { 1339 Value *base = findBasePointer(ptr, DVCache, KnownBases); 1340 assert(base && "failed to find base pointer"); 1341 PointerToBase[ptr] = base; 1342 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1343 DT->dominates(cast<Instruction>(base)->getParent(), 1344 cast<Instruction>(ptr)->getParent())) && 1345 "The base we found better dominate the derived pointer"); 1346 } 1347 } 1348 1349 /// Find the required based pointers (and adjust the live set) for the given 1350 /// parse point. 1351 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1352 CallBase *Call, 1353 PartiallyConstructedSafepointRecord &result, 1354 PointerToBaseTy &PointerToBase, 1355 IsKnownBaseMapTy &KnownBases) { 1356 StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet; 1357 // We assume that all pointers passed to deopt are base pointers; as an 1358 // optimization, we can use this to avoid seperately materializing the base 1359 // pointer graph. This is only relevant since we're very conservative about 1360 // generating new conflict nodes during base pointer insertion. If we were 1361 // smarter there, this would be irrelevant. 1362 if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt)) 1363 for (Value *V : Opt->Inputs) { 1364 if (!PotentiallyDerivedPointers.count(V)) 1365 continue; 1366 PotentiallyDerivedPointers.remove(V); 1367 PointerToBase[V] = V; 1368 } 1369 findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache, 1370 KnownBases); 1371 } 1372 1373 /// Given an updated version of the dataflow liveness results, update the 1374 /// liveset and base pointer maps for the call site CS. 1375 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1376 CallBase *Call, 1377 PartiallyConstructedSafepointRecord &result, 1378 PointerToBaseTy &PointerToBase); 1379 1380 static void recomputeLiveInValues( 1381 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 1382 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records, 1383 PointerToBaseTy &PointerToBase) { 1384 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1385 // again. The old values are still live and will help it stabilize quickly. 1386 GCPtrLivenessData RevisedLivenessData; 1387 computeLiveInValues(DT, F, RevisedLivenessData); 1388 for (size_t i = 0; i < records.size(); i++) { 1389 struct PartiallyConstructedSafepointRecord &info = records[i]; 1390 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info, 1391 PointerToBase); 1392 } 1393 } 1394 1395 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1396 // no uses of the original value / return value between the gc.statepoint and 1397 // the gc.relocate / gc.result call. One case which can arise is a phi node 1398 // starting one of the successor blocks. We also need to be able to insert the 1399 // gc.relocates only on the path which goes through the statepoint. We might 1400 // need to split an edge to make this possible. 1401 static BasicBlock * 1402 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1403 DominatorTree &DT) { 1404 BasicBlock *Ret = BB; 1405 if (!BB->getUniquePredecessor()) 1406 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1407 1408 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1409 // from it 1410 FoldSingleEntryPHINodes(Ret); 1411 assert(!isa<PHINode>(Ret->begin()) && 1412 "All PHI nodes should have been removed!"); 1413 1414 // At this point, we can safely insert a gc.relocate or gc.result as the first 1415 // instruction in Ret if needed. 1416 return Ret; 1417 } 1418 1419 // List of all function attributes which must be stripped when lowering from 1420 // abstract machine model to physical machine model. Essentially, these are 1421 // all the effects a safepoint might have which we ignored in the abstract 1422 // machine model for purposes of optimization. We have to strip these on 1423 // both function declarations and call sites. 1424 static constexpr Attribute::AttrKind FnAttrsToStrip[] = 1425 {Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly, 1426 Attribute::ArgMemOnly, Attribute::InaccessibleMemOnly, 1427 Attribute::InaccessibleMemOrArgMemOnly, 1428 Attribute::NoSync, Attribute::NoFree}; 1429 1430 // Create new attribute set containing only attributes which can be transferred 1431 // from original call to the safepoint. 1432 static AttributeList legalizeCallAttributes(LLVMContext &Ctx, 1433 AttributeList OrigAL, 1434 AttributeList StatepointAL) { 1435 if (OrigAL.isEmpty()) 1436 return StatepointAL; 1437 1438 // Remove the readonly, readnone, and statepoint function attributes. 1439 AttrBuilder FnAttrs(Ctx, OrigAL.getFnAttrs()); 1440 for (auto Attr : FnAttrsToStrip) 1441 FnAttrs.removeAttribute(Attr); 1442 1443 for (Attribute A : OrigAL.getFnAttrs()) { 1444 if (isStatepointDirectiveAttr(A)) 1445 FnAttrs.removeAttribute(A); 1446 } 1447 1448 // Just skip parameter and return attributes for now 1449 return StatepointAL.addFnAttributes(Ctx, FnAttrs); 1450 } 1451 1452 /// Helper function to place all gc relocates necessary for the given 1453 /// statepoint. 1454 /// Inputs: 1455 /// liveVariables - list of variables to be relocated. 1456 /// basePtrs - base pointers. 1457 /// statepointToken - statepoint instruction to which relocates should be 1458 /// bound. 1459 /// Builder - Llvm IR builder to be used to construct new calls. 1460 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1461 ArrayRef<Value *> BasePtrs, 1462 Instruction *StatepointToken, 1463 IRBuilder<> &Builder) { 1464 if (LiveVariables.empty()) 1465 return; 1466 1467 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1468 auto ValIt = llvm::find(LiveVec, Val); 1469 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1470 size_t Index = std::distance(LiveVec.begin(), ValIt); 1471 assert(Index < LiveVec.size() && "Bug in std::find?"); 1472 return Index; 1473 }; 1474 Module *M = StatepointToken->getModule(); 1475 1476 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1477 // element type is i8 addrspace(1)*). We originally generated unique 1478 // declarations for each pointer type, but this proved problematic because 1479 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1480 // towards a single unified pointer type anyways, we can just cast everything 1481 // to an i8* of the right address space. A bitcast is added later to convert 1482 // gc_relocate to the actual value's type. 1483 auto getGCRelocateDecl = [&] (Type *Ty) { 1484 assert(isHandledGCPointerType(Ty)); 1485 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1486 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1487 if (auto *VT = dyn_cast<VectorType>(Ty)) 1488 NewTy = FixedVectorType::get(NewTy, 1489 cast<FixedVectorType>(VT)->getNumElements()); 1490 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1491 {NewTy}); 1492 }; 1493 1494 // Lazily populated map from input types to the canonicalized form mentioned 1495 // in the comment above. This should probably be cached somewhere more 1496 // broadly. 1497 DenseMap<Type *, Function *> TypeToDeclMap; 1498 1499 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1500 // Generate the gc.relocate call and save the result 1501 Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i])); 1502 Value *LiveIdx = Builder.getInt32(i); 1503 1504 Type *Ty = LiveVariables[i]->getType(); 1505 if (!TypeToDeclMap.count(Ty)) 1506 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1507 Function *GCRelocateDecl = TypeToDeclMap[Ty]; 1508 1509 // only specify a debug name if we can give a useful one 1510 CallInst *Reloc = Builder.CreateCall( 1511 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1512 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1513 // Trick CodeGen into thinking there are lots of free registers at this 1514 // fake call. 1515 Reloc->setCallingConv(CallingConv::Cold); 1516 } 1517 } 1518 1519 namespace { 1520 1521 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1522 /// avoids having to worry about keeping around dangling pointers to Values. 1523 class DeferredReplacement { 1524 AssertingVH<Instruction> Old; 1525 AssertingVH<Instruction> New; 1526 bool IsDeoptimize = false; 1527 1528 DeferredReplacement() = default; 1529 1530 public: 1531 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1532 assert(Old != New && Old && New && 1533 "Cannot RAUW equal values or to / from null!"); 1534 1535 DeferredReplacement D; 1536 D.Old = Old; 1537 D.New = New; 1538 return D; 1539 } 1540 1541 static DeferredReplacement createDelete(Instruction *ToErase) { 1542 DeferredReplacement D; 1543 D.Old = ToErase; 1544 return D; 1545 } 1546 1547 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1548 #ifndef NDEBUG 1549 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1550 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1551 "Only way to construct a deoptimize deferred replacement"); 1552 #endif 1553 DeferredReplacement D; 1554 D.Old = Old; 1555 D.IsDeoptimize = true; 1556 return D; 1557 } 1558 1559 /// Does the task represented by this instance. 1560 void doReplacement() { 1561 Instruction *OldI = Old; 1562 Instruction *NewI = New; 1563 1564 assert(OldI != NewI && "Disallowed at construction?!"); 1565 assert((!IsDeoptimize || !New) && 1566 "Deoptimize intrinsics are not replaced!"); 1567 1568 Old = nullptr; 1569 New = nullptr; 1570 1571 if (NewI) 1572 OldI->replaceAllUsesWith(NewI); 1573 1574 if (IsDeoptimize) { 1575 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1576 // not necessarily be followed by the matching return. 1577 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1578 new UnreachableInst(RI->getContext(), RI); 1579 RI->eraseFromParent(); 1580 } 1581 1582 OldI->eraseFromParent(); 1583 } 1584 }; 1585 1586 } // end anonymous namespace 1587 1588 static StringRef getDeoptLowering(CallBase *Call) { 1589 const char *DeoptLowering = "deopt-lowering"; 1590 if (Call->hasFnAttr(DeoptLowering)) { 1591 // FIXME: Calls have a *really* confusing interface around attributes 1592 // with values. 1593 const AttributeList &CSAS = Call->getAttributes(); 1594 if (CSAS.hasFnAttr(DeoptLowering)) 1595 return CSAS.getFnAttr(DeoptLowering).getValueAsString(); 1596 Function *F = Call->getCalledFunction(); 1597 assert(F && F->hasFnAttribute(DeoptLowering)); 1598 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1599 } 1600 return "live-through"; 1601 } 1602 1603 static void 1604 makeStatepointExplicitImpl(CallBase *Call, /* to replace */ 1605 const SmallVectorImpl<Value *> &BasePtrs, 1606 const SmallVectorImpl<Value *> &LiveVariables, 1607 PartiallyConstructedSafepointRecord &Result, 1608 std::vector<DeferredReplacement> &Replacements, 1609 const PointerToBaseTy &PointerToBase) { 1610 assert(BasePtrs.size() == LiveVariables.size()); 1611 1612 // Then go ahead and use the builder do actually do the inserts. We insert 1613 // immediately before the previous instruction under the assumption that all 1614 // arguments will be available here. We can't insert afterwards since we may 1615 // be replacing a terminator. 1616 IRBuilder<> Builder(Call); 1617 1618 ArrayRef<Value *> GCArgs(LiveVariables); 1619 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1620 uint32_t NumPatchBytes = 0; 1621 uint32_t Flags = uint32_t(StatepointFlags::None); 1622 1623 SmallVector<Value *, 8> CallArgs(Call->args()); 1624 Optional<ArrayRef<Use>> DeoptArgs; 1625 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt)) 1626 DeoptArgs = Bundle->Inputs; 1627 Optional<ArrayRef<Use>> TransitionArgs; 1628 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) { 1629 TransitionArgs = Bundle->Inputs; 1630 // TODO: This flag no longer serves a purpose and can be removed later 1631 Flags |= uint32_t(StatepointFlags::GCTransition); 1632 } 1633 1634 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1635 // with a return value, we lower then as never returning calls to 1636 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1637 bool IsDeoptimize = false; 1638 1639 StatepointDirectives SD = 1640 parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1641 if (SD.NumPatchBytes) 1642 NumPatchBytes = *SD.NumPatchBytes; 1643 if (SD.StatepointID) 1644 StatepointID = *SD.StatepointID; 1645 1646 // Pass through the requested lowering if any. The default is live-through. 1647 StringRef DeoptLowering = getDeoptLowering(Call); 1648 if (DeoptLowering.equals("live-in")) 1649 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1650 else { 1651 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1652 } 1653 1654 FunctionCallee CallTarget(Call->getFunctionType(), Call->getCalledOperand()); 1655 if (Function *F = dyn_cast<Function>(CallTarget.getCallee())) { 1656 auto IID = F->getIntrinsicID(); 1657 if (IID == Intrinsic::experimental_deoptimize) { 1658 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1659 // __llvm_deoptimize symbol. We want to resolve this now, since the 1660 // verifier does not allow taking the address of an intrinsic function. 1661 1662 SmallVector<Type *, 8> DomainTy; 1663 for (Value *Arg : CallArgs) 1664 DomainTy.push_back(Arg->getType()); 1665 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1666 /* isVarArg = */ false); 1667 1668 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1669 // calls to @llvm.experimental.deoptimize with different argument types in 1670 // the same module. This is fine -- we assume the frontend knew what it 1671 // was doing when generating this kind of IR. 1672 CallTarget = F->getParent() 1673 ->getOrInsertFunction("__llvm_deoptimize", FTy); 1674 1675 IsDeoptimize = true; 1676 } else if (IID == Intrinsic::memcpy_element_unordered_atomic || 1677 IID == Intrinsic::memmove_element_unordered_atomic) { 1678 // Unordered atomic memcpy and memmove intrinsics which are not explicitly 1679 // marked as "gc-leaf-function" should be lowered in a GC parseable way. 1680 // Specifically, these calls should be lowered to the 1681 // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols. 1682 // Similarly to __llvm_deoptimize we want to resolve this now, since the 1683 // verifier does not allow taking the address of an intrinsic function. 1684 // 1685 // Moreover we need to shuffle the arguments for the call in order to 1686 // accommodate GC. The underlying source and destination objects might be 1687 // relocated during copy operation should the GC occur. To relocate the 1688 // derived source and destination pointers the implementation of the 1689 // intrinsic should know the corresponding base pointers. 1690 // 1691 // To make the base pointers available pass them explicitly as arguments: 1692 // memcpy(dest_derived, source_derived, ...) => 1693 // memcpy(dest_base, dest_offset, source_base, source_offset, ...) 1694 auto &Context = Call->getContext(); 1695 auto &DL = Call->getModule()->getDataLayout(); 1696 auto GetBaseAndOffset = [&](Value *Derived) { 1697 assert(PointerToBase.count(Derived)); 1698 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 1699 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 1700 Value *Base = PointerToBase.find(Derived)->second; 1701 Value *Base_int = Builder.CreatePtrToInt( 1702 Base, Type::getIntNTy(Context, IntPtrSize)); 1703 Value *Derived_int = Builder.CreatePtrToInt( 1704 Derived, Type::getIntNTy(Context, IntPtrSize)); 1705 return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int)); 1706 }; 1707 1708 auto *Dest = CallArgs[0]; 1709 Value *DestBase, *DestOffset; 1710 std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest); 1711 1712 auto *Source = CallArgs[1]; 1713 Value *SourceBase, *SourceOffset; 1714 std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source); 1715 1716 auto *LengthInBytes = CallArgs[2]; 1717 auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]); 1718 1719 CallArgs.clear(); 1720 CallArgs.push_back(DestBase); 1721 CallArgs.push_back(DestOffset); 1722 CallArgs.push_back(SourceBase); 1723 CallArgs.push_back(SourceOffset); 1724 CallArgs.push_back(LengthInBytes); 1725 1726 SmallVector<Type *, 8> DomainTy; 1727 for (Value *Arg : CallArgs) 1728 DomainTy.push_back(Arg->getType()); 1729 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1730 /* isVarArg = */ false); 1731 1732 auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) { 1733 uint64_t ElementSize = ElementSizeCI->getZExtValue(); 1734 if (IID == Intrinsic::memcpy_element_unordered_atomic) { 1735 switch (ElementSize) { 1736 case 1: 1737 return "__llvm_memcpy_element_unordered_atomic_safepoint_1"; 1738 case 2: 1739 return "__llvm_memcpy_element_unordered_atomic_safepoint_2"; 1740 case 4: 1741 return "__llvm_memcpy_element_unordered_atomic_safepoint_4"; 1742 case 8: 1743 return "__llvm_memcpy_element_unordered_atomic_safepoint_8"; 1744 case 16: 1745 return "__llvm_memcpy_element_unordered_atomic_safepoint_16"; 1746 default: 1747 llvm_unreachable("unexpected element size!"); 1748 } 1749 } 1750 assert(IID == Intrinsic::memmove_element_unordered_atomic); 1751 switch (ElementSize) { 1752 case 1: 1753 return "__llvm_memmove_element_unordered_atomic_safepoint_1"; 1754 case 2: 1755 return "__llvm_memmove_element_unordered_atomic_safepoint_2"; 1756 case 4: 1757 return "__llvm_memmove_element_unordered_atomic_safepoint_4"; 1758 case 8: 1759 return "__llvm_memmove_element_unordered_atomic_safepoint_8"; 1760 case 16: 1761 return "__llvm_memmove_element_unordered_atomic_safepoint_16"; 1762 default: 1763 llvm_unreachable("unexpected element size!"); 1764 } 1765 }; 1766 1767 CallTarget = 1768 F->getParent() 1769 ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy); 1770 } 1771 } 1772 1773 // Create the statepoint given all the arguments 1774 GCStatepointInst *Token = nullptr; 1775 if (auto *CI = dyn_cast<CallInst>(Call)) { 1776 CallInst *SPCall = Builder.CreateGCStatepointCall( 1777 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1778 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1779 1780 SPCall->setTailCallKind(CI->getTailCallKind()); 1781 SPCall->setCallingConv(CI->getCallingConv()); 1782 1783 // Currently we will fail on parameter attributes and on certain 1784 // function attributes. In case if we can handle this set of attributes - 1785 // set up function attrs directly on statepoint and return attrs later for 1786 // gc_result intrinsic. 1787 SPCall->setAttributes(legalizeCallAttributes( 1788 CI->getContext(), CI->getAttributes(), SPCall->getAttributes())); 1789 1790 Token = cast<GCStatepointInst>(SPCall); 1791 1792 // Put the following gc_result and gc_relocate calls immediately after the 1793 // the old call (which we're about to delete) 1794 assert(CI->getNextNode() && "Not a terminator, must have next!"); 1795 Builder.SetInsertPoint(CI->getNextNode()); 1796 Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); 1797 } else { 1798 auto *II = cast<InvokeInst>(Call); 1799 1800 // Insert the new invoke into the old block. We'll remove the old one in a 1801 // moment at which point this will become the new terminator for the 1802 // original block. 1803 InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( 1804 StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(), 1805 II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, 1806 "statepoint_token"); 1807 1808 SPInvoke->setCallingConv(II->getCallingConv()); 1809 1810 // Currently we will fail on parameter attributes and on certain 1811 // function attributes. In case if we can handle this set of attributes - 1812 // set up function attrs directly on statepoint and return attrs later for 1813 // gc_result intrinsic. 1814 SPInvoke->setAttributes(legalizeCallAttributes( 1815 II->getContext(), II->getAttributes(), SPInvoke->getAttributes())); 1816 1817 Token = cast<GCStatepointInst>(SPInvoke); 1818 1819 // Generate gc relocates in exceptional path 1820 BasicBlock *UnwindBlock = II->getUnwindDest(); 1821 assert(!isa<PHINode>(UnwindBlock->begin()) && 1822 UnwindBlock->getUniquePredecessor() && 1823 "can't safely insert in this block!"); 1824 1825 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1826 Builder.SetCurrentDebugLocation(II->getDebugLoc()); 1827 1828 // Attach exceptional gc relocates to the landingpad. 1829 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1830 Result.UnwindToken = ExceptionalToken; 1831 1832 CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder); 1833 1834 // Generate gc relocates and returns for normal block 1835 BasicBlock *NormalDest = II->getNormalDest(); 1836 assert(!isa<PHINode>(NormalDest->begin()) && 1837 NormalDest->getUniquePredecessor() && 1838 "can't safely insert in this block!"); 1839 1840 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1841 1842 // gc relocates will be generated later as if it were regular call 1843 // statepoint 1844 } 1845 assert(Token && "Should be set in one of the above branches!"); 1846 1847 if (IsDeoptimize) { 1848 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1849 // transform the tail-call like structure to a call to a void function 1850 // followed by unreachable to get better codegen. 1851 Replacements.push_back( 1852 DeferredReplacement::createDeoptimizeReplacement(Call)); 1853 } else { 1854 Token->setName("statepoint_token"); 1855 if (!Call->getType()->isVoidTy() && !Call->use_empty()) { 1856 StringRef Name = Call->hasName() ? Call->getName() : ""; 1857 CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name); 1858 GCResult->setAttributes( 1859 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1860 Call->getAttributes().getRetAttrs())); 1861 1862 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1863 // live set of some other safepoint, in which case that safepoint's 1864 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1865 // llvm::Instruction. Instead, we defer the replacement and deletion to 1866 // after the live sets have been made explicit in the IR, and we no longer 1867 // have raw pointers to worry about. 1868 Replacements.emplace_back( 1869 DeferredReplacement::createRAUW(Call, GCResult)); 1870 } else { 1871 Replacements.emplace_back(DeferredReplacement::createDelete(Call)); 1872 } 1873 } 1874 1875 Result.StatepointToken = Token; 1876 1877 // Second, create a gc.relocate for every live variable 1878 CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder); 1879 } 1880 1881 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1882 // which make the relocations happening at this safepoint explicit. 1883 // 1884 // WARNING: Does not do any fixup to adjust users of the original live 1885 // values. That's the callers responsibility. 1886 static void 1887 makeStatepointExplicit(DominatorTree &DT, CallBase *Call, 1888 PartiallyConstructedSafepointRecord &Result, 1889 std::vector<DeferredReplacement> &Replacements, 1890 const PointerToBaseTy &PointerToBase) { 1891 const auto &LiveSet = Result.LiveSet; 1892 1893 // Convert to vector for efficient cross referencing. 1894 SmallVector<Value *, 64> BaseVec, LiveVec; 1895 LiveVec.reserve(LiveSet.size()); 1896 BaseVec.reserve(LiveSet.size()); 1897 for (Value *L : LiveSet) { 1898 LiveVec.push_back(L); 1899 assert(PointerToBase.count(L)); 1900 Value *Base = PointerToBase.find(L)->second; 1901 BaseVec.push_back(Base); 1902 } 1903 assert(LiveVec.size() == BaseVec.size()); 1904 1905 // Do the actual rewriting and delete the old statepoint 1906 makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements, 1907 PointerToBase); 1908 } 1909 1910 // Helper function for the relocationViaAlloca. 1911 // 1912 // It receives iterator to the statepoint gc relocates and emits a store to the 1913 // assigned location (via allocaMap) for the each one of them. It adds the 1914 // visited values into the visitedLiveValues set, which we will later use them 1915 // for validation checking. 1916 static void 1917 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1918 DenseMap<Value *, AllocaInst *> &AllocaMap, 1919 DenseSet<Value *> &VisitedLiveValues) { 1920 for (User *U : GCRelocs) { 1921 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1922 if (!Relocate) 1923 continue; 1924 1925 Value *OriginalValue = Relocate->getDerivedPtr(); 1926 assert(AllocaMap.count(OriginalValue)); 1927 Value *Alloca = AllocaMap[OriginalValue]; 1928 1929 // Emit store into the related alloca 1930 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1931 // the correct type according to alloca. 1932 assert(Relocate->getNextNode() && 1933 "Should always have one since it's not a terminator"); 1934 IRBuilder<> Builder(Relocate->getNextNode()); 1935 Value *CastedRelocatedValue = 1936 Builder.CreateBitCast(Relocate, 1937 cast<AllocaInst>(Alloca)->getAllocatedType(), 1938 suffixed_name_or(Relocate, ".casted", "")); 1939 1940 new StoreInst(CastedRelocatedValue, Alloca, 1941 cast<Instruction>(CastedRelocatedValue)->getNextNode()); 1942 1943 #ifndef NDEBUG 1944 VisitedLiveValues.insert(OriginalValue); 1945 #endif 1946 } 1947 } 1948 1949 // Helper function for the "relocationViaAlloca". Similar to the 1950 // "insertRelocationStores" but works for rematerialized values. 1951 static void insertRematerializationStores( 1952 const RematerializedValueMapTy &RematerializedValues, 1953 DenseMap<Value *, AllocaInst *> &AllocaMap, 1954 DenseSet<Value *> &VisitedLiveValues) { 1955 for (auto RematerializedValuePair: RematerializedValues) { 1956 Instruction *RematerializedValue = RematerializedValuePair.first; 1957 Value *OriginalValue = RematerializedValuePair.second; 1958 1959 assert(AllocaMap.count(OriginalValue) && 1960 "Can not find alloca for rematerialized value"); 1961 Value *Alloca = AllocaMap[OriginalValue]; 1962 1963 new StoreInst(RematerializedValue, Alloca, 1964 RematerializedValue->getNextNode()); 1965 1966 #ifndef NDEBUG 1967 VisitedLiveValues.insert(OriginalValue); 1968 #endif 1969 } 1970 } 1971 1972 /// Do all the relocation update via allocas and mem2reg 1973 static void relocationViaAlloca( 1974 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1975 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1976 #ifndef NDEBUG 1977 // record initial number of (static) allocas; we'll check we have the same 1978 // number when we get done. 1979 int InitialAllocaNum = 0; 1980 for (Instruction &I : F.getEntryBlock()) 1981 if (isa<AllocaInst>(I)) 1982 InitialAllocaNum++; 1983 #endif 1984 1985 // TODO-PERF: change data structures, reserve 1986 DenseMap<Value *, AllocaInst *> AllocaMap; 1987 SmallVector<AllocaInst *, 200> PromotableAllocas; 1988 // Used later to chack that we have enough allocas to store all values 1989 std::size_t NumRematerializedValues = 0; 1990 PromotableAllocas.reserve(Live.size()); 1991 1992 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1993 // "PromotableAllocas" 1994 const DataLayout &DL = F.getParent()->getDataLayout(); 1995 auto emitAllocaFor = [&](Value *LiveValue) { 1996 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 1997 DL.getAllocaAddrSpace(), "", 1998 F.getEntryBlock().getFirstNonPHI()); 1999 AllocaMap[LiveValue] = Alloca; 2000 PromotableAllocas.push_back(Alloca); 2001 }; 2002 2003 // Emit alloca for each live gc pointer 2004 for (Value *V : Live) 2005 emitAllocaFor(V); 2006 2007 // Emit allocas for rematerialized values 2008 for (const auto &Info : Records) 2009 for (auto RematerializedValuePair : Info.RematerializedValues) { 2010 Value *OriginalValue = RematerializedValuePair.second; 2011 if (AllocaMap.count(OriginalValue) != 0) 2012 continue; 2013 2014 emitAllocaFor(OriginalValue); 2015 ++NumRematerializedValues; 2016 } 2017 2018 // The next two loops are part of the same conceptual operation. We need to 2019 // insert a store to the alloca after the original def and at each 2020 // redefinition. We need to insert a load before each use. These are split 2021 // into distinct loops for performance reasons. 2022 2023 // Update gc pointer after each statepoint: either store a relocated value or 2024 // null (if no relocated value was found for this gc pointer and it is not a 2025 // gc_result). This must happen before we update the statepoint with load of 2026 // alloca otherwise we lose the link between statepoint and old def. 2027 for (const auto &Info : Records) { 2028 Value *Statepoint = Info.StatepointToken; 2029 2030 // This will be used for consistency check 2031 DenseSet<Value *> VisitedLiveValues; 2032 2033 // Insert stores for normal statepoint gc relocates 2034 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 2035 2036 // In case if it was invoke statepoint 2037 // we will insert stores for exceptional path gc relocates. 2038 if (isa<InvokeInst>(Statepoint)) { 2039 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 2040 VisitedLiveValues); 2041 } 2042 2043 // Do similar thing with rematerialized values 2044 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 2045 VisitedLiveValues); 2046 2047 if (ClobberNonLive) { 2048 // As a debugging aid, pretend that an unrelocated pointer becomes null at 2049 // the gc.statepoint. This will turn some subtle GC problems into 2050 // slightly easier to debug SEGVs. Note that on large IR files with 2051 // lots of gc.statepoints this is extremely costly both memory and time 2052 // wise. 2053 SmallVector<AllocaInst *, 64> ToClobber; 2054 for (auto Pair : AllocaMap) { 2055 Value *Def = Pair.first; 2056 AllocaInst *Alloca = Pair.second; 2057 2058 // This value was relocated 2059 if (VisitedLiveValues.count(Def)) { 2060 continue; 2061 } 2062 ToClobber.push_back(Alloca); 2063 } 2064 2065 auto InsertClobbersAt = [&](Instruction *IP) { 2066 for (auto *AI : ToClobber) { 2067 auto PT = cast<PointerType>(AI->getAllocatedType()); 2068 Constant *CPN = ConstantPointerNull::get(PT); 2069 new StoreInst(CPN, AI, IP); 2070 } 2071 }; 2072 2073 // Insert the clobbering stores. These may get intermixed with the 2074 // gc.results and gc.relocates, but that's fine. 2075 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 2076 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 2077 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 2078 } else { 2079 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 2080 } 2081 } 2082 } 2083 2084 // Update use with load allocas and add store for gc_relocated. 2085 for (auto Pair : AllocaMap) { 2086 Value *Def = Pair.first; 2087 AllocaInst *Alloca = Pair.second; 2088 2089 // We pre-record the uses of allocas so that we dont have to worry about 2090 // later update that changes the user information.. 2091 2092 SmallVector<Instruction *, 20> Uses; 2093 // PERF: trade a linear scan for repeated reallocation 2094 Uses.reserve(Def->getNumUses()); 2095 for (User *U : Def->users()) { 2096 if (!isa<ConstantExpr>(U)) { 2097 // If the def has a ConstantExpr use, then the def is either a 2098 // ConstantExpr use itself or null. In either case 2099 // (recursively in the first, directly in the second), the oop 2100 // it is ultimately dependent on is null and this particular 2101 // use does not need to be fixed up. 2102 Uses.push_back(cast<Instruction>(U)); 2103 } 2104 } 2105 2106 llvm::sort(Uses); 2107 auto Last = std::unique(Uses.begin(), Uses.end()); 2108 Uses.erase(Last, Uses.end()); 2109 2110 for (Instruction *Use : Uses) { 2111 if (isa<PHINode>(Use)) { 2112 PHINode *Phi = cast<PHINode>(Use); 2113 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 2114 if (Def == Phi->getIncomingValue(i)) { 2115 LoadInst *Load = 2116 new LoadInst(Alloca->getAllocatedType(), Alloca, "", 2117 Phi->getIncomingBlock(i)->getTerminator()); 2118 Phi->setIncomingValue(i, Load); 2119 } 2120 } 2121 } else { 2122 LoadInst *Load = 2123 new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use); 2124 Use->replaceUsesOfWith(Def, Load); 2125 } 2126 } 2127 2128 // Emit store for the initial gc value. Store must be inserted after load, 2129 // otherwise store will be in alloca's use list and an extra load will be 2130 // inserted before it. 2131 StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false, 2132 DL.getABITypeAlign(Def->getType())); 2133 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 2134 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 2135 // InvokeInst is a terminator so the store need to be inserted into its 2136 // normal destination block. 2137 BasicBlock *NormalDest = Invoke->getNormalDest(); 2138 Store->insertBefore(NormalDest->getFirstNonPHI()); 2139 } else { 2140 assert(!Inst->isTerminator() && 2141 "The only terminator that can produce a value is " 2142 "InvokeInst which is handled above."); 2143 Store->insertAfter(Inst); 2144 } 2145 } else { 2146 assert(isa<Argument>(Def)); 2147 Store->insertAfter(cast<Instruction>(Alloca)); 2148 } 2149 } 2150 2151 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 2152 "we must have the same allocas with lives"); 2153 (void) NumRematerializedValues; 2154 if (!PromotableAllocas.empty()) { 2155 // Apply mem2reg to promote alloca to SSA 2156 PromoteMemToReg(PromotableAllocas, DT); 2157 } 2158 2159 #ifndef NDEBUG 2160 for (auto &I : F.getEntryBlock()) 2161 if (isa<AllocaInst>(I)) 2162 InitialAllocaNum--; 2163 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 2164 #endif 2165 } 2166 2167 /// Implement a unique function which doesn't require we sort the input 2168 /// vector. Doing so has the effect of changing the output of a couple of 2169 /// tests in ways which make them less useful in testing fused safepoints. 2170 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 2171 SmallSet<T, 8> Seen; 2172 erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }); 2173 } 2174 2175 /// Insert holders so that each Value is obviously live through the entire 2176 /// lifetime of the call. 2177 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values, 2178 SmallVectorImpl<CallInst *> &Holders) { 2179 if (Values.empty()) 2180 // No values to hold live, might as well not insert the empty holder 2181 return; 2182 2183 Module *M = Call->getModule(); 2184 // Use a dummy vararg function to actually hold the values live 2185 FunctionCallee Func = M->getOrInsertFunction( 2186 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); 2187 if (isa<CallInst>(Call)) { 2188 // For call safepoints insert dummy calls right after safepoint 2189 Holders.push_back( 2190 CallInst::Create(Func, Values, "", &*++Call->getIterator())); 2191 return; 2192 } 2193 // For invoke safepooints insert dummy calls both in normal and 2194 // exceptional destination blocks 2195 auto *II = cast<InvokeInst>(Call); 2196 Holders.push_back(CallInst::Create( 2197 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 2198 Holders.push_back(CallInst::Create( 2199 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 2200 } 2201 2202 static void findLiveReferences( 2203 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 2204 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 2205 GCPtrLivenessData OriginalLivenessData; 2206 computeLiveInValues(DT, F, OriginalLivenessData); 2207 for (size_t i = 0; i < records.size(); i++) { 2208 struct PartiallyConstructedSafepointRecord &info = records[i]; 2209 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 2210 } 2211 } 2212 2213 // Helper function for the "rematerializeLiveValues". It walks use chain 2214 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 2215 // the base or a value it cannot process. Only "simple" values are processed 2216 // (currently it is GEP's and casts). The returned root is examined by the 2217 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 2218 // with all visited values. 2219 static Value* findRematerializableChainToBasePointer( 2220 SmallVectorImpl<Instruction*> &ChainToBase, 2221 Value *CurrentValue) { 2222 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2223 ChainToBase.push_back(GEP); 2224 return findRematerializableChainToBasePointer(ChainToBase, 2225 GEP->getPointerOperand()); 2226 } 2227 2228 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2229 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2230 return CI; 2231 2232 ChainToBase.push_back(CI); 2233 return findRematerializableChainToBasePointer(ChainToBase, 2234 CI->getOperand(0)); 2235 } 2236 2237 // We have reached the root of the chain, which is either equal to the base or 2238 // is the first unsupported value along the use chain. 2239 return CurrentValue; 2240 } 2241 2242 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2243 // chain we are going to rematerialize. 2244 static InstructionCost 2245 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain, 2246 TargetTransformInfo &TTI) { 2247 InstructionCost Cost = 0; 2248 2249 for (Instruction *Instr : Chain) { 2250 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2251 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2252 "non noop cast is found during rematerialization"); 2253 2254 Type *SrcTy = CI->getOperand(0)->getType(); 2255 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, 2256 TTI::getCastContextHint(CI), 2257 TargetTransformInfo::TCK_SizeAndLatency, CI); 2258 2259 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2260 // Cost of the address calculation 2261 Type *ValTy = GEP->getSourceElementType(); 2262 Cost += TTI.getAddressComputationCost(ValTy); 2263 2264 // And cost of the GEP itself 2265 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2266 // allowed for the external usage) 2267 if (!GEP->hasAllConstantIndices()) 2268 Cost += 2; 2269 2270 } else { 2271 llvm_unreachable("unsupported instruction type during rematerialization"); 2272 } 2273 } 2274 2275 return Cost; 2276 } 2277 2278 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 2279 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 2280 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 2281 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 2282 return false; 2283 // Map of incoming values and their corresponding basic blocks of 2284 // OrigRootPhi. 2285 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 2286 for (unsigned i = 0; i < PhiNum; i++) 2287 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 2288 OrigRootPhi.getIncomingBlock(i); 2289 2290 // Both current and base PHIs should have same incoming values and 2291 // the same basic blocks corresponding to the incoming values. 2292 for (unsigned i = 0; i < PhiNum; i++) { 2293 auto CIVI = 2294 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2295 if (CIVI == CurrentIncomingValues.end()) 2296 return false; 2297 BasicBlock *CurrentIncomingBB = CIVI->second; 2298 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2299 return false; 2300 } 2301 return true; 2302 } 2303 2304 // Find derived pointers that can be recomputed cheap enough and fill 2305 // RematerizationCandidates with such candidates. 2306 static void 2307 findRematerializationCandidates(PointerToBaseTy PointerToBase, 2308 RematCandTy &RematerizationCandidates, 2309 TargetTransformInfo &TTI) { 2310 const unsigned int ChainLengthThreshold = 10; 2311 2312 for (auto P2B : PointerToBase) { 2313 auto *Derived = P2B.first; 2314 auto *Base = P2B.second; 2315 // Consider only derived pointers. 2316 if (Derived == Base) 2317 continue; 2318 2319 // For each live pointer find its defining chain. 2320 SmallVector<Instruction *, 3> ChainToBase; 2321 Value *RootOfChain = 2322 findRematerializableChainToBasePointer(ChainToBase, Derived); 2323 2324 // Nothing to do, or chain is too long 2325 if ( ChainToBase.size() == 0 || 2326 ChainToBase.size() > ChainLengthThreshold) 2327 continue; 2328 2329 // Handle the scenario where the RootOfChain is not equal to the 2330 // Base Value, but they are essentially the same phi values. 2331 if (RootOfChain != PointerToBase[Derived]) { 2332 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2333 PHINode *AlternateRootPhi = dyn_cast<PHINode>(PointerToBase[Derived]); 2334 if (!OrigRootPhi || !AlternateRootPhi) 2335 continue; 2336 // PHI nodes that have the same incoming values, and belonging to the same 2337 // basic blocks are essentially the same SSA value. When the original phi 2338 // has incoming values with different base pointers, the original phi is 2339 // marked as conflict, and an additional `AlternateRootPhi` with the same 2340 // incoming values get generated by the findBasePointer function. We need 2341 // to identify the newly generated AlternateRootPhi (.base version of phi) 2342 // and RootOfChain (the original phi node itself) are the same, so that we 2343 // can rematerialize the gep and casts. This is a workaround for the 2344 // deficiency in the findBasePointer algorithm. 2345 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2346 continue; 2347 } 2348 // Compute cost of this chain. 2349 InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI); 2350 // TODO: We can also account for cases when we will be able to remove some 2351 // of the rematerialized values by later optimization passes. I.e if 2352 // we rematerialized several intersecting chains. Or if original values 2353 // don't have any uses besides this statepoint. 2354 2355 // Ok, there is a candidate. 2356 RematerizlizationCandidateRecord Record; 2357 Record.ChainToBase = ChainToBase; 2358 Record.RootOfChain = RootOfChain; 2359 Record.Cost = Cost; 2360 RematerizationCandidates.insert({ Derived, Record }); 2361 } 2362 } 2363 2364 // From the statepoint live set pick values that are cheaper to recompute then 2365 // to relocate. Remove this values from the live set, rematerialize them after 2366 // statepoint and record them in "Info" structure. Note that similar to 2367 // relocated values we don't do any user adjustments here. 2368 static void rematerializeLiveValues(CallBase *Call, 2369 PartiallyConstructedSafepointRecord &Info, 2370 PointerToBaseTy &PointerToBase, 2371 RematCandTy &RematerizationCandidates, 2372 TargetTransformInfo &TTI) { 2373 // Record values we are going to delete from this statepoint live set. 2374 // We can not di this in following loop due to iterator invalidation. 2375 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2376 2377 for (Value *LiveValue : Info.LiveSet) { 2378 auto It = RematerizationCandidates.find(LiveValue); 2379 if (It == RematerizationCandidates.end()) 2380 continue; 2381 2382 RematerizlizationCandidateRecord &Record = It->second; 2383 2384 InstructionCost Cost = Record.Cost; 2385 // For invokes we need to rematerialize each chain twice - for normal and 2386 // for unwind basic blocks. Model this by multiplying cost by two. 2387 if (isa<InvokeInst>(Call)) 2388 Cost *= 2; 2389 2390 // If it's too expensive - skip it. 2391 if (Cost >= RematerializationThreshold) 2392 continue; 2393 2394 // Remove value from the live set 2395 LiveValuesToBeDeleted.push_back(LiveValue); 2396 2397 // Clone instructions and record them inside "Info" structure. 2398 2399 // For each live pointer find get its defining chain. 2400 SmallVector<Instruction *, 3> ChainToBase = Record.ChainToBase; 2401 // Walk backwards to visit top-most instructions first. 2402 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2403 2404 // Utility function which clones all instructions from "ChainToBase" 2405 // and inserts them before "InsertBefore". Returns rematerialized value 2406 // which should be used after statepoint. 2407 auto rematerializeChain = [&ChainToBase]( 2408 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 2409 Instruction *LastClonedValue = nullptr; 2410 Instruction *LastValue = nullptr; 2411 for (Instruction *Instr: ChainToBase) { 2412 // Only GEP's and casts are supported as we need to be careful to not 2413 // introduce any new uses of pointers not in the liveset. 2414 // Note that it's fine to introduce new uses of pointers which were 2415 // otherwise not used after this statepoint. 2416 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2417 2418 Instruction *ClonedValue = Instr->clone(); 2419 ClonedValue->insertBefore(InsertBefore); 2420 ClonedValue->setName(Instr->getName() + ".remat"); 2421 2422 // If it is not first instruction in the chain then it uses previously 2423 // cloned value. We should update it to use cloned value. 2424 if (LastClonedValue) { 2425 assert(LastValue); 2426 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2427 #ifndef NDEBUG 2428 for (auto OpValue : ClonedValue->operand_values()) { 2429 // Assert that cloned instruction does not use any instructions from 2430 // this chain other than LastClonedValue 2431 assert(!is_contained(ChainToBase, OpValue) && 2432 "incorrect use in rematerialization chain"); 2433 // Assert that the cloned instruction does not use the RootOfChain 2434 // or the AlternateLiveBase. 2435 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2436 } 2437 #endif 2438 } else { 2439 // For the first instruction, replace the use of unrelocated base i.e. 2440 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2441 // live set. They have been proved to be the same PHI nodes. Note 2442 // that the *only* use of the RootOfChain in the ChainToBase list is 2443 // the first Value in the list. 2444 if (RootOfChain != AlternateLiveBase) 2445 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2446 } 2447 2448 LastClonedValue = ClonedValue; 2449 LastValue = Instr; 2450 } 2451 assert(LastClonedValue); 2452 return LastClonedValue; 2453 }; 2454 2455 // Different cases for calls and invokes. For invokes we need to clone 2456 // instructions both on normal and unwind path. 2457 if (isa<CallInst>(Call)) { 2458 Instruction *InsertBefore = Call->getNextNode(); 2459 assert(InsertBefore); 2460 Instruction *RematerializedValue = rematerializeChain( 2461 InsertBefore, Record.RootOfChain, PointerToBase[LiveValue]); 2462 Info.RematerializedValues[RematerializedValue] = LiveValue; 2463 } else { 2464 auto *Invoke = cast<InvokeInst>(Call); 2465 2466 Instruction *NormalInsertBefore = 2467 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2468 Instruction *UnwindInsertBefore = 2469 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2470 2471 Instruction *NormalRematerializedValue = rematerializeChain( 2472 NormalInsertBefore, Record.RootOfChain, PointerToBase[LiveValue]); 2473 Instruction *UnwindRematerializedValue = rematerializeChain( 2474 UnwindInsertBefore, Record.RootOfChain, PointerToBase[LiveValue]); 2475 2476 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2477 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2478 } 2479 } 2480 2481 // Remove rematerializaed values from the live set 2482 for (auto LiveValue: LiveValuesToBeDeleted) { 2483 Info.LiveSet.remove(LiveValue); 2484 } 2485 } 2486 2487 static bool inlineGetBaseAndOffset(Function &F, 2488 SmallVectorImpl<CallInst *> &Intrinsics, 2489 DefiningValueMapTy &DVCache, 2490 IsKnownBaseMapTy &KnownBases) { 2491 auto &Context = F.getContext(); 2492 auto &DL = F.getParent()->getDataLayout(); 2493 bool Changed = false; 2494 2495 for (auto *Callsite : Intrinsics) 2496 switch (Callsite->getIntrinsicID()) { 2497 case Intrinsic::experimental_gc_get_pointer_base: { 2498 Changed = true; 2499 Value *Base = 2500 findBasePointer(Callsite->getOperand(0), DVCache, KnownBases); 2501 assert(!DVCache.count(Callsite)); 2502 auto *BaseBC = IRBuilder<>(Callsite).CreateBitCast( 2503 Base, Callsite->getType(), suffixed_name_or(Base, ".cast", "")); 2504 if (BaseBC != Base) 2505 DVCache[BaseBC] = Base; 2506 Callsite->replaceAllUsesWith(BaseBC); 2507 if (!BaseBC->hasName()) 2508 BaseBC->takeName(Callsite); 2509 Callsite->eraseFromParent(); 2510 break; 2511 } 2512 case Intrinsic::experimental_gc_get_pointer_offset: { 2513 Changed = true; 2514 Value *Derived = Callsite->getOperand(0); 2515 Value *Base = findBasePointer(Derived, DVCache, KnownBases); 2516 assert(!DVCache.count(Callsite)); 2517 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 2518 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 2519 IRBuilder<> Builder(Callsite); 2520 Value *BaseInt = 2521 Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize), 2522 suffixed_name_or(Base, ".int", "")); 2523 Value *DerivedInt = 2524 Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize), 2525 suffixed_name_or(Derived, ".int", "")); 2526 Value *Offset = Builder.CreateSub(DerivedInt, BaseInt); 2527 Callsite->replaceAllUsesWith(Offset); 2528 Offset->takeName(Callsite); 2529 Callsite->eraseFromParent(); 2530 break; 2531 } 2532 default: 2533 llvm_unreachable("Unknown intrinsic"); 2534 } 2535 2536 return Changed; 2537 } 2538 2539 static bool insertParsePoints(Function &F, DominatorTree &DT, 2540 TargetTransformInfo &TTI, 2541 SmallVectorImpl<CallBase *> &ToUpdate, 2542 DefiningValueMapTy &DVCache, 2543 IsKnownBaseMapTy &KnownBases) { 2544 #ifndef NDEBUG 2545 // Validate the input 2546 std::set<CallBase *> Uniqued; 2547 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2548 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2549 2550 for (CallBase *Call : ToUpdate) 2551 assert(Call->getFunction() == &F); 2552 #endif 2553 2554 // When inserting gc.relocates for invokes, we need to be able to insert at 2555 // the top of the successor blocks. See the comment on 2556 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2557 // may restructure the CFG. 2558 for (CallBase *Call : ToUpdate) { 2559 auto *II = dyn_cast<InvokeInst>(Call); 2560 if (!II) 2561 continue; 2562 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2563 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2564 } 2565 2566 // A list of dummy calls added to the IR to keep various values obviously 2567 // live in the IR. We'll remove all of these when done. 2568 SmallVector<CallInst *, 64> Holders; 2569 2570 // Insert a dummy call with all of the deopt operands we'll need for the 2571 // actual safepoint insertion as arguments. This ensures reference operands 2572 // in the deopt argument list are considered live through the safepoint (and 2573 // thus makes sure they get relocated.) 2574 for (CallBase *Call : ToUpdate) { 2575 SmallVector<Value *, 64> DeoptValues; 2576 2577 for (Value *Arg : GetDeoptBundleOperands(Call)) { 2578 assert(!isUnhandledGCPointerType(Arg->getType()) && 2579 "support for FCA unimplemented"); 2580 if (isHandledGCPointerType(Arg->getType())) 2581 DeoptValues.push_back(Arg); 2582 } 2583 2584 insertUseHolderAfter(Call, DeoptValues, Holders); 2585 } 2586 2587 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2588 2589 // A) Identify all gc pointers which are statically live at the given call 2590 // site. 2591 findLiveReferences(F, DT, ToUpdate, Records); 2592 2593 /// Global mapping from live pointers to a base-defining-value. 2594 PointerToBaseTy PointerToBase; 2595 2596 // B) Find the base pointers for each live pointer 2597 for (size_t i = 0; i < Records.size(); i++) { 2598 PartiallyConstructedSafepointRecord &info = Records[i]; 2599 findBasePointers(DT, DVCache, ToUpdate[i], info, PointerToBase, KnownBases); 2600 } 2601 if (PrintBasePointers) { 2602 errs() << "Base Pairs (w/o Relocation):\n"; 2603 for (auto &Pair : PointerToBase) { 2604 errs() << " derived "; 2605 Pair.first->printAsOperand(errs(), false); 2606 errs() << " base "; 2607 Pair.second->printAsOperand(errs(), false); 2608 errs() << "\n"; 2609 ; 2610 } 2611 } 2612 2613 // The base phi insertion logic (for any safepoint) may have inserted new 2614 // instructions which are now live at some safepoint. The simplest such 2615 // example is: 2616 // loop: 2617 // phi a <-- will be a new base_phi here 2618 // safepoint 1 <-- that needs to be live here 2619 // gep a + 1 2620 // safepoint 2 2621 // br loop 2622 // We insert some dummy calls after each safepoint to definitely hold live 2623 // the base pointers which were identified for that safepoint. We'll then 2624 // ask liveness for _every_ base inserted to see what is now live. Then we 2625 // remove the dummy calls. 2626 Holders.reserve(Holders.size() + Records.size()); 2627 for (size_t i = 0; i < Records.size(); i++) { 2628 PartiallyConstructedSafepointRecord &Info = Records[i]; 2629 2630 SmallVector<Value *, 128> Bases; 2631 for (auto *Derived : Info.LiveSet) { 2632 assert(PointerToBase.count(Derived) && "Missed base for derived pointer"); 2633 Bases.push_back(PointerToBase[Derived]); 2634 } 2635 2636 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2637 } 2638 2639 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2640 // need to rerun liveness. We may *also* have inserted new defs, but that's 2641 // not the key issue. 2642 recomputeLiveInValues(F, DT, ToUpdate, Records, PointerToBase); 2643 2644 if (PrintBasePointers) { 2645 errs() << "Base Pairs: (w/Relocation)\n"; 2646 for (auto Pair : PointerToBase) { 2647 errs() << " derived "; 2648 Pair.first->printAsOperand(errs(), false); 2649 errs() << " base "; 2650 Pair.second->printAsOperand(errs(), false); 2651 errs() << "\n"; 2652 } 2653 } 2654 2655 // It is possible that non-constant live variables have a constant base. For 2656 // example, a GEP with a variable offset from a global. In this case we can 2657 // remove it from the liveset. We already don't add constants to the liveset 2658 // because we assume they won't move at runtime and the GC doesn't need to be 2659 // informed about them. The same reasoning applies if the base is constant. 2660 // Note that the relocation placement code relies on this filtering for 2661 // correctness as it expects the base to be in the liveset, which isn't true 2662 // if the base is constant. 2663 for (auto &Info : Records) { 2664 Info.LiveSet.remove_if([&](Value *LiveV) { 2665 assert(PointerToBase.count(LiveV) && "Missed base for derived pointer"); 2666 return isa<Constant>(PointerToBase[LiveV]); 2667 }); 2668 } 2669 2670 for (CallInst *CI : Holders) 2671 CI->eraseFromParent(); 2672 2673 Holders.clear(); 2674 2675 // Compute the cost of possible re-materialization of derived pointers. 2676 RematCandTy RematerizationCandidates; 2677 findRematerializationCandidates(PointerToBase, RematerizationCandidates, TTI); 2678 2679 // In order to reduce live set of statepoint we might choose to rematerialize 2680 // some values instead of relocating them. This is purely an optimization and 2681 // does not influence correctness. 2682 for (size_t i = 0; i < Records.size(); i++) 2683 rematerializeLiveValues(ToUpdate[i], Records[i], PointerToBase, 2684 RematerizationCandidates, TTI); 2685 2686 // We need this to safely RAUW and delete call or invoke return values that 2687 // may themselves be live over a statepoint. For details, please see usage in 2688 // makeStatepointExplicitImpl. 2689 std::vector<DeferredReplacement> Replacements; 2690 2691 // Now run through and replace the existing statepoints with new ones with 2692 // the live variables listed. We do not yet update uses of the values being 2693 // relocated. We have references to live variables that need to 2694 // survive to the last iteration of this loop. (By construction, the 2695 // previous statepoint can not be a live variable, thus we can and remove 2696 // the old statepoint calls as we go.) 2697 for (size_t i = 0; i < Records.size(); i++) 2698 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements, 2699 PointerToBase); 2700 2701 ToUpdate.clear(); // prevent accident use of invalid calls. 2702 2703 for (auto &PR : Replacements) 2704 PR.doReplacement(); 2705 2706 Replacements.clear(); 2707 2708 for (auto &Info : Records) { 2709 // These live sets may contain state Value pointers, since we replaced calls 2710 // with operand bundles with calls wrapped in gc.statepoint, and some of 2711 // those calls may have been def'ing live gc pointers. Clear these out to 2712 // avoid accidentally using them. 2713 // 2714 // TODO: We should create a separate data structure that does not contain 2715 // these live sets, and migrate to using that data structure from this point 2716 // onward. 2717 Info.LiveSet.clear(); 2718 } 2719 PointerToBase.clear(); 2720 2721 // Do all the fixups of the original live variables to their relocated selves 2722 SmallVector<Value *, 128> Live; 2723 for (size_t i = 0; i < Records.size(); i++) { 2724 PartiallyConstructedSafepointRecord &Info = Records[i]; 2725 2726 // We can't simply save the live set from the original insertion. One of 2727 // the live values might be the result of a call which needs a safepoint. 2728 // That Value* no longer exists and we need to use the new gc_result. 2729 // Thankfully, the live set is embedded in the statepoint (and updated), so 2730 // we just grab that. 2731 llvm::append_range(Live, Info.StatepointToken->gc_args()); 2732 #ifndef NDEBUG 2733 // Do some basic validation checking on our liveness results before 2734 // performing relocation. Relocation can and will turn mistakes in liveness 2735 // results into non-sensical code which is must harder to debug. 2736 // TODO: It would be nice to test consistency as well 2737 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2738 "statepoint must be reachable or liveness is meaningless"); 2739 for (Value *V : Info.StatepointToken->gc_args()) { 2740 if (!isa<Instruction>(V)) 2741 // Non-instruction values trivial dominate all possible uses 2742 continue; 2743 auto *LiveInst = cast<Instruction>(V); 2744 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2745 "unreachable values should never be live"); 2746 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2747 "basic SSA liveness expectation violated by liveness analysis"); 2748 } 2749 #endif 2750 } 2751 unique_unsorted(Live); 2752 2753 #ifndef NDEBUG 2754 // Validation check 2755 for (auto *Ptr : Live) 2756 assert(isHandledGCPointerType(Ptr->getType()) && 2757 "must be a gc pointer type"); 2758 #endif 2759 2760 relocationViaAlloca(F, DT, Live, Records); 2761 return !Records.empty(); 2762 } 2763 2764 // List of all parameter and return attributes which must be stripped when 2765 // lowering from the abstract machine model. Note that we list attributes 2766 // here which aren't valid as return attributes, that is okay. 2767 static AttributeMask getParamAndReturnAttributesToRemove() { 2768 AttributeMask R; 2769 R.addAttribute(Attribute::Dereferenceable); 2770 R.addAttribute(Attribute::DereferenceableOrNull); 2771 R.addAttribute(Attribute::ReadNone); 2772 R.addAttribute(Attribute::ReadOnly); 2773 R.addAttribute(Attribute::WriteOnly); 2774 R.addAttribute(Attribute::NoAlias); 2775 R.addAttribute(Attribute::NoFree); 2776 return R; 2777 } 2778 2779 static void stripNonValidAttributesFromPrototype(Function &F) { 2780 LLVMContext &Ctx = F.getContext(); 2781 2782 // Intrinsics are very delicate. Lowering sometimes depends the presence 2783 // of certain attributes for correctness, but we may have also inferred 2784 // additional ones in the abstract machine model which need stripped. This 2785 // assumes that the attributes defined in Intrinsic.td are conservatively 2786 // correct for both physical and abstract model. 2787 if (Intrinsic::ID id = F.getIntrinsicID()) { 2788 F.setAttributes(Intrinsic::getAttributes(Ctx, id)); 2789 return; 2790 } 2791 2792 AttributeMask R = getParamAndReturnAttributesToRemove(); 2793 for (Argument &A : F.args()) 2794 if (isa<PointerType>(A.getType())) 2795 F.removeParamAttrs(A.getArgNo(), R); 2796 2797 if (isa<PointerType>(F.getReturnType())) 2798 F.removeRetAttrs(R); 2799 2800 for (auto Attr : FnAttrsToStrip) 2801 F.removeFnAttr(Attr); 2802 } 2803 2804 /// Certain metadata on instructions are invalid after running RS4GC. 2805 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2806 /// optimize functions. We drop such metadata on the instruction. 2807 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2808 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2809 return; 2810 // These are the attributes that are still valid on loads and stores after 2811 // RS4GC. 2812 // The metadata implying dereferenceability and noalias are (conservatively) 2813 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2814 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2815 // touch the entire heap including noalias objects. Note: The reasoning is 2816 // same as stripping the dereferenceability and noalias attributes that are 2817 // analogous to the metadata counterparts. 2818 // We also drop the invariant.load metadata on the load because that metadata 2819 // implies the address operand to the load points to memory that is never 2820 // changed once it became dereferenceable. This is no longer true after RS4GC. 2821 // Similar reasoning applies to invariant.group metadata, which applies to 2822 // loads within a group. 2823 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2824 LLVMContext::MD_range, 2825 LLVMContext::MD_alias_scope, 2826 LLVMContext::MD_nontemporal, 2827 LLVMContext::MD_nonnull, 2828 LLVMContext::MD_align, 2829 LLVMContext::MD_type}; 2830 2831 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2832 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2833 } 2834 2835 static void stripNonValidDataFromBody(Function &F) { 2836 if (F.empty()) 2837 return; 2838 2839 LLVMContext &Ctx = F.getContext(); 2840 MDBuilder Builder(Ctx); 2841 2842 // Set of invariantstart instructions that we need to remove. 2843 // Use this to avoid invalidating the instruction iterator. 2844 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2845 2846 for (Instruction &I : instructions(F)) { 2847 // invariant.start on memory location implies that the referenced memory 2848 // location is constant and unchanging. This is no longer true after 2849 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2850 // which frees the entire heap and the presence of invariant.start allows 2851 // the optimizer to sink the load of a memory location past a statepoint, 2852 // which is incorrect. 2853 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2854 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2855 InvariantStartInstructions.push_back(II); 2856 continue; 2857 } 2858 2859 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2860 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2861 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2862 } 2863 2864 stripInvalidMetadataFromInstruction(I); 2865 2866 AttributeMask R = getParamAndReturnAttributesToRemove(); 2867 if (auto *Call = dyn_cast<CallBase>(&I)) { 2868 for (int i = 0, e = Call->arg_size(); i != e; i++) 2869 if (isa<PointerType>(Call->getArgOperand(i)->getType())) 2870 Call->removeParamAttrs(i, R); 2871 if (isa<PointerType>(Call->getType())) 2872 Call->removeRetAttrs(R); 2873 } 2874 } 2875 2876 // Delete the invariant.start instructions and RAUW undef. 2877 for (auto *II : InvariantStartInstructions) { 2878 II->replaceAllUsesWith(UndefValue::get(II->getType())); 2879 II->eraseFromParent(); 2880 } 2881 } 2882 2883 /// Returns true if this function should be rewritten by this pass. The main 2884 /// point of this function is as an extension point for custom logic. 2885 static bool shouldRewriteStatepointsIn(Function &F) { 2886 // TODO: This should check the GCStrategy 2887 if (F.hasGC()) { 2888 const auto &FunctionGCName = F.getGC(); 2889 const StringRef StatepointExampleName("statepoint-example"); 2890 const StringRef CoreCLRName("coreclr"); 2891 return (StatepointExampleName == FunctionGCName) || 2892 (CoreCLRName == FunctionGCName); 2893 } else 2894 return false; 2895 } 2896 2897 static void stripNonValidData(Module &M) { 2898 #ifndef NDEBUG 2899 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2900 #endif 2901 2902 for (Function &F : M) 2903 stripNonValidAttributesFromPrototype(F); 2904 2905 for (Function &F : M) 2906 stripNonValidDataFromBody(F); 2907 } 2908 2909 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 2910 TargetTransformInfo &TTI, 2911 const TargetLibraryInfo &TLI) { 2912 assert(!F.isDeclaration() && !F.empty() && 2913 "need function body to rewrite statepoints in"); 2914 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 2915 2916 auto NeedsRewrite = [&TLI](Instruction &I) { 2917 if (const auto *Call = dyn_cast<CallBase>(&I)) { 2918 if (isa<GCStatepointInst>(Call)) 2919 return false; 2920 if (callsGCLeafFunction(Call, TLI)) 2921 return false; 2922 2923 // Normally it's up to the frontend to make sure that non-leaf calls also 2924 // have proper deopt state if it is required. We make an exception for 2925 // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics 2926 // these are non-leaf by default. They might be generated by the optimizer 2927 // which doesn't know how to produce a proper deopt state. So if we see a 2928 // non-leaf memcpy/memmove without deopt state just treat it as a leaf 2929 // copy and don't produce a statepoint. 2930 if (!AllowStatepointWithNoDeoptInfo && 2931 !Call->getOperandBundle(LLVMContext::OB_deopt)) { 2932 assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) && 2933 "Don't expect any other calls here!"); 2934 return false; 2935 } 2936 return true; 2937 } 2938 return false; 2939 }; 2940 2941 // Delete any unreachable statepoints so that we don't have unrewritten 2942 // statepoints surviving this pass. This makes testing easier and the 2943 // resulting IR less confusing to human readers. 2944 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 2945 bool MadeChange = removeUnreachableBlocks(F, &DTU); 2946 // Flush the Dominator Tree. 2947 DTU.getDomTree(); 2948 2949 // Gather all the statepoints which need rewritten. Be careful to only 2950 // consider those in reachable code since we need to ask dominance queries 2951 // when rewriting. We'll delete the unreachable ones in a moment. 2952 SmallVector<CallBase *, 64> ParsePointNeeded; 2953 SmallVector<CallInst *, 64> Intrinsics; 2954 for (Instruction &I : instructions(F)) { 2955 // TODO: only the ones with the flag set! 2956 if (NeedsRewrite(I)) { 2957 // NOTE removeUnreachableBlocks() is stronger than 2958 // DominatorTree::isReachableFromEntry(). In other words 2959 // removeUnreachableBlocks can remove some blocks for which 2960 // isReachableFromEntry() returns true. 2961 assert(DT.isReachableFromEntry(I.getParent()) && 2962 "no unreachable blocks expected"); 2963 ParsePointNeeded.push_back(cast<CallBase>(&I)); 2964 } 2965 if (auto *CI = dyn_cast<CallInst>(&I)) 2966 if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base || 2967 CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset) 2968 Intrinsics.emplace_back(CI); 2969 } 2970 2971 // Return early if no work to do. 2972 if (ParsePointNeeded.empty() && Intrinsics.empty()) 2973 return MadeChange; 2974 2975 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2976 // These are created by LCSSA. They have the effect of increasing the size 2977 // of liveness sets for no good reason. It may be harder to do this post 2978 // insertion since relocations and base phis can confuse things. 2979 for (BasicBlock &BB : F) 2980 if (BB.getUniquePredecessor()) 2981 MadeChange |= FoldSingleEntryPHINodes(&BB); 2982 2983 // Before we start introducing relocations, we want to tweak the IR a bit to 2984 // avoid unfortunate code generation effects. The main example is that we 2985 // want to try to make sure the comparison feeding a branch is after any 2986 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2987 // values feeding a branch after relocation. This is semantically correct, 2988 // but results in extra register pressure since both the pre-relocation and 2989 // post-relocation copies must be available in registers. For code without 2990 // relocations this is handled elsewhere, but teaching the scheduler to 2991 // reverse the transform we're about to do would be slightly complex. 2992 // Note: This may extend the live range of the inputs to the icmp and thus 2993 // increase the liveset of any statepoint we move over. This is profitable 2994 // as long as all statepoints are in rare blocks. If we had in-register 2995 // lowering for live values this would be a much safer transform. 2996 auto getConditionInst = [](Instruction *TI) -> Instruction * { 2997 if (auto *BI = dyn_cast<BranchInst>(TI)) 2998 if (BI->isConditional()) 2999 return dyn_cast<Instruction>(BI->getCondition()); 3000 // TODO: Extend this to handle switches 3001 return nullptr; 3002 }; 3003 for (BasicBlock &BB : F) { 3004 Instruction *TI = BB.getTerminator(); 3005 if (auto *Cond = getConditionInst(TI)) 3006 // TODO: Handle more than just ICmps here. We should be able to move 3007 // most instructions without side effects or memory access. 3008 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 3009 MadeChange = true; 3010 Cond->moveBefore(TI); 3011 } 3012 } 3013 3014 // Nasty workaround - The base computation code in the main algorithm doesn't 3015 // consider the fact that a GEP can be used to convert a scalar to a vector. 3016 // The right fix for this is to integrate GEPs into the base rewriting 3017 // algorithm properly, this is just a short term workaround to prevent 3018 // crashes by canonicalizing such GEPs into fully vector GEPs. 3019 for (Instruction &I : instructions(F)) { 3020 if (!isa<GetElementPtrInst>(I)) 3021 continue; 3022 3023 unsigned VF = 0; 3024 for (unsigned i = 0; i < I.getNumOperands(); i++) 3025 if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) { 3026 assert(VF == 0 || 3027 VF == cast<FixedVectorType>(OpndVTy)->getNumElements()); 3028 VF = cast<FixedVectorType>(OpndVTy)->getNumElements(); 3029 } 3030 3031 // It's the vector to scalar traversal through the pointer operand which 3032 // confuses base pointer rewriting, so limit ourselves to that case. 3033 if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { 3034 IRBuilder<> B(&I); 3035 auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); 3036 I.setOperand(0, Splat); 3037 MadeChange = true; 3038 } 3039 } 3040 3041 // Cache the 'defining value' relation used in the computation and 3042 // insertion of base phis and selects. This ensures that we don't insert 3043 // large numbers of duplicate base_phis. Use one cache for both 3044 // inlineGetBaseAndOffset() and insertParsePoints(). 3045 DefiningValueMapTy DVCache; 3046 3047 // Mapping between a base values and a flag indicating whether it's a known 3048 // base or not. 3049 IsKnownBaseMapTy KnownBases; 3050 3051 if (!Intrinsics.empty()) 3052 // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding 3053 // live references. 3054 MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache, KnownBases); 3055 3056 if (!ParsePointNeeded.empty()) 3057 MadeChange |= 3058 insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache, KnownBases); 3059 3060 return MadeChange; 3061 } 3062 3063 // liveness computation via standard dataflow 3064 // ------------------------------------------------------------------- 3065 3066 // TODO: Consider using bitvectors for liveness, the set of potentially 3067 // interesting values should be small and easy to pre-compute. 3068 3069 /// Compute the live-in set for the location rbegin starting from 3070 /// the live-out set of the basic block 3071 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 3072 BasicBlock::reverse_iterator End, 3073 SetVector<Value *> &LiveTmp) { 3074 for (auto &I : make_range(Begin, End)) { 3075 // KILL/Def - Remove this definition from LiveIn 3076 LiveTmp.remove(&I); 3077 3078 // Don't consider *uses* in PHI nodes, we handle their contribution to 3079 // predecessor blocks when we seed the LiveOut sets 3080 if (isa<PHINode>(I)) 3081 continue; 3082 3083 // USE - Add to the LiveIn set for this instruction 3084 for (Value *V : I.operands()) { 3085 assert(!isUnhandledGCPointerType(V->getType()) && 3086 "support for FCA unimplemented"); 3087 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 3088 // The choice to exclude all things constant here is slightly subtle. 3089 // There are two independent reasons: 3090 // - We assume that things which are constant (from LLVM's definition) 3091 // do not move at runtime. For example, the address of a global 3092 // variable is fixed, even though it's contents may not be. 3093 // - Second, we can't disallow arbitrary inttoptr constants even 3094 // if the language frontend does. Optimization passes are free to 3095 // locally exploit facts without respect to global reachability. This 3096 // can create sections of code which are dynamically unreachable and 3097 // contain just about anything. (see constants.ll in tests) 3098 LiveTmp.insert(V); 3099 } 3100 } 3101 } 3102 } 3103 3104 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 3105 for (BasicBlock *Succ : successors(BB)) { 3106 for (auto &I : *Succ) { 3107 PHINode *PN = dyn_cast<PHINode>(&I); 3108 if (!PN) 3109 break; 3110 3111 Value *V = PN->getIncomingValueForBlock(BB); 3112 assert(!isUnhandledGCPointerType(V->getType()) && 3113 "support for FCA unimplemented"); 3114 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 3115 LiveTmp.insert(V); 3116 } 3117 } 3118 } 3119 3120 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 3121 SetVector<Value *> KillSet; 3122 for (Instruction &I : *BB) 3123 if (isHandledGCPointerType(I.getType())) 3124 KillSet.insert(&I); 3125 return KillSet; 3126 } 3127 3128 #ifndef NDEBUG 3129 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 3130 /// validation check for the liveness computation. 3131 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 3132 Instruction *TI, bool TermOkay = false) { 3133 for (Value *V : Live) { 3134 if (auto *I = dyn_cast<Instruction>(V)) { 3135 // The terminator can be a member of the LiveOut set. LLVM's definition 3136 // of instruction dominance states that V does not dominate itself. As 3137 // such, we need to special case this to allow it. 3138 if (TermOkay && TI == I) 3139 continue; 3140 assert(DT.dominates(I, TI) && 3141 "basic SSA liveness expectation violated by liveness analysis"); 3142 } 3143 } 3144 } 3145 3146 /// Check that all the liveness sets used during the computation of liveness 3147 /// obey basic SSA properties. This is useful for finding cases where we miss 3148 /// a def. 3149 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 3150 BasicBlock &BB) { 3151 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 3152 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 3153 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 3154 } 3155 #endif 3156 3157 static void computeLiveInValues(DominatorTree &DT, Function &F, 3158 GCPtrLivenessData &Data) { 3159 SmallSetVector<BasicBlock *, 32> Worklist; 3160 3161 // Seed the liveness for each individual block 3162 for (BasicBlock &BB : F) { 3163 Data.KillSet[&BB] = computeKillSet(&BB); 3164 Data.LiveSet[&BB].clear(); 3165 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 3166 3167 #ifndef NDEBUG 3168 for (Value *Kill : Data.KillSet[&BB]) 3169 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 3170 #endif 3171 3172 Data.LiveOut[&BB] = SetVector<Value *>(); 3173 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 3174 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 3175 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 3176 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 3177 if (!Data.LiveIn[&BB].empty()) 3178 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 3179 } 3180 3181 // Propagate that liveness until stable 3182 while (!Worklist.empty()) { 3183 BasicBlock *BB = Worklist.pop_back_val(); 3184 3185 // Compute our new liveout set, then exit early if it hasn't changed despite 3186 // the contribution of our successor. 3187 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3188 const auto OldLiveOutSize = LiveOut.size(); 3189 for (BasicBlock *Succ : successors(BB)) { 3190 assert(Data.LiveIn.count(Succ)); 3191 LiveOut.set_union(Data.LiveIn[Succ]); 3192 } 3193 // assert OutLiveOut is a subset of LiveOut 3194 if (OldLiveOutSize == LiveOut.size()) { 3195 // If the sets are the same size, then we didn't actually add anything 3196 // when unioning our successors LiveIn. Thus, the LiveIn of this block 3197 // hasn't changed. 3198 continue; 3199 } 3200 Data.LiveOut[BB] = LiveOut; 3201 3202 // Apply the effects of this basic block 3203 SetVector<Value *> LiveTmp = LiveOut; 3204 LiveTmp.set_union(Data.LiveSet[BB]); 3205 LiveTmp.set_subtract(Data.KillSet[BB]); 3206 3207 assert(Data.LiveIn.count(BB)); 3208 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 3209 // assert: OldLiveIn is a subset of LiveTmp 3210 if (OldLiveIn.size() != LiveTmp.size()) { 3211 Data.LiveIn[BB] = LiveTmp; 3212 Worklist.insert(pred_begin(BB), pred_end(BB)); 3213 } 3214 } // while (!Worklist.empty()) 3215 3216 #ifndef NDEBUG 3217 // Verify our output against SSA properties. This helps catch any 3218 // missing kills during the above iteration. 3219 for (BasicBlock &BB : F) 3220 checkBasicSSA(DT, Data, BB); 3221 #endif 3222 } 3223 3224 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 3225 StatepointLiveSetTy &Out) { 3226 BasicBlock *BB = Inst->getParent(); 3227 3228 // Note: The copy is intentional and required 3229 assert(Data.LiveOut.count(BB)); 3230 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3231 3232 // We want to handle the statepoint itself oddly. It's 3233 // call result is not live (normal), nor are it's arguments 3234 // (unless they're used again later). This adjustment is 3235 // specifically what we need to relocate 3236 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 3237 LiveOut); 3238 LiveOut.remove(Inst); 3239 Out.insert(LiveOut.begin(), LiveOut.end()); 3240 } 3241 3242 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 3243 CallBase *Call, 3244 PartiallyConstructedSafepointRecord &Info, 3245 PointerToBaseTy &PointerToBase) { 3246 StatepointLiveSetTy Updated; 3247 findLiveSetAtInst(Call, RevisedLivenessData, Updated); 3248 3249 // We may have base pointers which are now live that weren't before. We need 3250 // to update the PointerToBase structure to reflect this. 3251 for (auto V : Updated) 3252 PointerToBase.insert({ V, V }); 3253 3254 Info.LiveSet = Updated; 3255 } 3256