1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/Cloning.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 46 47 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 48 49 using namespace llvm; 50 51 // Print the liveset found at the insert location 52 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 53 cl::init(false)); 54 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 55 cl::init(false)); 56 // Print out the base pointers for debugging 57 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 58 cl::init(false)); 59 60 // Cost threshold measuring when it is profitable to rematerialize value instead 61 // of relocating it 62 static cl::opt<unsigned> 63 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 64 cl::init(6)); 65 66 #ifdef XDEBUG 67 static bool ClobberNonLive = true; 68 #else 69 static bool ClobberNonLive = false; 70 #endif 71 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 72 cl::location(ClobberNonLive), 73 cl::Hidden); 74 75 static cl::opt<bool> UseDeoptBundles("rs4gc-use-deopt-bundles", cl::Hidden, 76 cl::init(false)); 77 static cl::opt<bool> 78 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 79 cl::Hidden, cl::init(true)); 80 81 namespace { 82 struct RewriteStatepointsForGC : public ModulePass { 83 static char ID; // Pass identification, replacement for typeid 84 85 RewriteStatepointsForGC() : ModulePass(ID) { 86 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 87 } 88 bool runOnFunction(Function &F); 89 bool runOnModule(Module &M) override { 90 bool Changed = false; 91 for (Function &F : M) 92 Changed |= runOnFunction(F); 93 94 if (Changed) { 95 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 96 // returns true for at least one function in the module. Since at least 97 // one function changed, we know that the precondition is satisfied. 98 stripNonValidAttributes(M); 99 } 100 101 return Changed; 102 } 103 104 void getAnalysisUsage(AnalysisUsage &AU) const override { 105 // We add and rewrite a bunch of instructions, but don't really do much 106 // else. We could in theory preserve a lot more analyses here. 107 AU.addRequired<DominatorTreeWrapperPass>(); 108 AU.addRequired<TargetTransformInfoWrapperPass>(); 109 } 110 111 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 112 /// dereferenceability that are no longer valid/correct after 113 /// RewriteStatepointsForGC has run. This is because semantically, after 114 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 115 /// heap. stripNonValidAttributes (conservatively) restores correctness 116 /// by erasing all attributes in the module that externally imply 117 /// dereferenceability. 118 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 119 /// can touch the entire heap including noalias objects. 120 void stripNonValidAttributes(Module &M); 121 122 // Helpers for stripNonValidAttributes 123 void stripNonValidAttributesFromBody(Function &F); 124 void stripNonValidAttributesFromPrototype(Function &F); 125 }; 126 } // namespace 127 128 char RewriteStatepointsForGC::ID = 0; 129 130 ModulePass *llvm::createRewriteStatepointsForGCPass() { 131 return new RewriteStatepointsForGC(); 132 } 133 134 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 135 "Make relocations explicit at statepoints", false, false) 136 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 137 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 138 "Make relocations explicit at statepoints", false, false) 139 140 namespace { 141 struct GCPtrLivenessData { 142 /// Values defined in this block. 143 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 144 /// Values used in this block (and thus live); does not included values 145 /// killed within this block. 146 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 147 148 /// Values live into this basic block (i.e. used by any 149 /// instruction in this basic block or ones reachable from here) 150 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 151 152 /// Values live out of this basic block (i.e. live into 153 /// any successor block) 154 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 155 }; 156 157 // The type of the internal cache used inside the findBasePointers family 158 // of functions. From the callers perspective, this is an opaque type and 159 // should not be inspected. 160 // 161 // In the actual implementation this caches two relations: 162 // - The base relation itself (i.e. this pointer is based on that one) 163 // - The base defining value relation (i.e. before base_phi insertion) 164 // Generally, after the execution of a full findBasePointer call, only the 165 // base relation will remain. Internally, we add a mixture of the two 166 // types, then update all the second type to the first type 167 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 168 typedef DenseSet<Value *> StatepointLiveSetTy; 169 typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>> 170 RematerializedValueMapTy; 171 172 struct PartiallyConstructedSafepointRecord { 173 /// The set of values known to be live across this safepoint 174 StatepointLiveSetTy LiveSet; 175 176 /// Mapping from live pointers to a base-defining-value 177 DenseMap<Value *, Value *> PointerToBase; 178 179 /// The *new* gc.statepoint instruction itself. This produces the token 180 /// that normal path gc.relocates and the gc.result are tied to. 181 Instruction *StatepointToken; 182 183 /// Instruction to which exceptional gc relocates are attached 184 /// Makes it easier to iterate through them during relocationViaAlloca. 185 Instruction *UnwindToken; 186 187 /// Record live values we are rematerialized instead of relocating. 188 /// They are not included into 'LiveSet' field. 189 /// Maps rematerialized copy to it's original value. 190 RematerializedValueMapTy RematerializedValues; 191 }; 192 } 193 194 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 195 assert(UseDeoptBundles && "Should not be called otherwise!"); 196 197 Optional<OperandBundleUse> DeoptBundle = CS.getOperandBundle("deopt"); 198 199 if (!DeoptBundle.hasValue()) { 200 assert(AllowStatepointWithNoDeoptInfo && 201 "Found non-leaf call without deopt info!"); 202 return None; 203 } 204 205 return DeoptBundle.getValue().Inputs; 206 } 207 208 /// Compute the live-in set for every basic block in the function 209 static void computeLiveInValues(DominatorTree &DT, Function &F, 210 GCPtrLivenessData &Data); 211 212 /// Given results from the dataflow liveness computation, find the set of live 213 /// Values at a particular instruction. 214 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 215 StatepointLiveSetTy &out); 216 217 // TODO: Once we can get to the GCStrategy, this becomes 218 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 219 220 static bool isGCPointerType(Type *T) { 221 if (auto *PT = dyn_cast<PointerType>(T)) 222 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 223 // GC managed heap. We know that a pointer into this heap needs to be 224 // updated and that no other pointer does. 225 return (1 == PT->getAddressSpace()); 226 return false; 227 } 228 229 // Return true if this type is one which a) is a gc pointer or contains a GC 230 // pointer and b) is of a type this code expects to encounter as a live value. 231 // (The insertion code will assert that a type which matches (a) and not (b) 232 // is not encountered.) 233 static bool isHandledGCPointerType(Type *T) { 234 // We fully support gc pointers 235 if (isGCPointerType(T)) 236 return true; 237 // We partially support vectors of gc pointers. The code will assert if it 238 // can't handle something. 239 if (auto VT = dyn_cast<VectorType>(T)) 240 if (isGCPointerType(VT->getElementType())) 241 return true; 242 return false; 243 } 244 245 #ifndef NDEBUG 246 /// Returns true if this type contains a gc pointer whether we know how to 247 /// handle that type or not. 248 static bool containsGCPtrType(Type *Ty) { 249 if (isGCPointerType(Ty)) 250 return true; 251 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 252 return isGCPointerType(VT->getScalarType()); 253 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 254 return containsGCPtrType(AT->getElementType()); 255 if (StructType *ST = dyn_cast<StructType>(Ty)) 256 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 257 containsGCPtrType); 258 return false; 259 } 260 261 // Returns true if this is a type which a) is a gc pointer or contains a GC 262 // pointer and b) is of a type which the code doesn't expect (i.e. first class 263 // aggregates). Used to trip assertions. 264 static bool isUnhandledGCPointerType(Type *Ty) { 265 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 266 } 267 #endif 268 269 static bool order_by_name(Value *a, Value *b) { 270 if (a->hasName() && b->hasName()) { 271 return -1 == a->getName().compare(b->getName()); 272 } else if (a->hasName() && !b->hasName()) { 273 return true; 274 } else if (!a->hasName() && b->hasName()) { 275 return false; 276 } else { 277 // Better than nothing, but not stable 278 return a < b; 279 } 280 } 281 282 // Return the name of the value suffixed with the provided value, or if the 283 // value didn't have a name, the default value specified. 284 static std::string suffixed_name_or(Value *V, StringRef Suffix, 285 StringRef DefaultName) { 286 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 287 } 288 289 // Conservatively identifies any definitions which might be live at the 290 // given instruction. The analysis is performed immediately before the 291 // given instruction. Values defined by that instruction are not considered 292 // live. Values used by that instruction are considered live. 293 static void analyzeParsePointLiveness( 294 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 295 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 296 Instruction *inst = CS.getInstruction(); 297 298 StatepointLiveSetTy LiveSet; 299 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet); 300 301 if (PrintLiveSet) { 302 // Note: This output is used by several of the test cases 303 // The order of elements in a set is not stable, put them in a vec and sort 304 // by name 305 SmallVector<Value *, 64> Temp; 306 Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end()); 307 std::sort(Temp.begin(), Temp.end(), order_by_name); 308 errs() << "Live Variables:\n"; 309 for (Value *V : Temp) 310 dbgs() << " " << V->getName() << " " << *V << "\n"; 311 } 312 if (PrintLiveSetSize) { 313 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 314 errs() << "Number live values: " << LiveSet.size() << "\n"; 315 } 316 result.LiveSet = LiveSet; 317 } 318 319 static bool isKnownBaseResult(Value *V); 320 namespace { 321 /// A single base defining value - An immediate base defining value for an 322 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 323 /// For instructions which have multiple pointer [vector] inputs or that 324 /// transition between vector and scalar types, there is no immediate base 325 /// defining value. The 'base defining value' for 'Def' is the transitive 326 /// closure of this relation stopping at the first instruction which has no 327 /// immediate base defining value. The b.d.v. might itself be a base pointer, 328 /// but it can also be an arbitrary derived pointer. 329 struct BaseDefiningValueResult { 330 /// Contains the value which is the base defining value. 331 Value * const BDV; 332 /// True if the base defining value is also known to be an actual base 333 /// pointer. 334 const bool IsKnownBase; 335 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 336 : BDV(BDV), IsKnownBase(IsKnownBase) { 337 #ifndef NDEBUG 338 // Check consistency between new and old means of checking whether a BDV is 339 // a base. 340 bool MustBeBase = isKnownBaseResult(BDV); 341 assert(!MustBeBase || MustBeBase == IsKnownBase); 342 #endif 343 } 344 }; 345 } 346 347 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 348 349 /// Return a base defining value for the 'Index' element of the given vector 350 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 351 /// 'I'. As an optimization, this method will try to determine when the 352 /// element is known to already be a base pointer. If this can be established, 353 /// the second value in the returned pair will be true. Note that either a 354 /// vector or a pointer typed value can be returned. For the former, the 355 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 356 /// If the later, the return pointer is a BDV (or possibly a base) for the 357 /// particular element in 'I'. 358 static BaseDefiningValueResult 359 findBaseDefiningValueOfVector(Value *I) { 360 assert(I->getType()->isVectorTy() && 361 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 362 "Illegal to ask for the base pointer of a non-pointer type"); 363 364 // Each case parallels findBaseDefiningValue below, see that code for 365 // detailed motivation. 366 367 if (isa<Argument>(I)) 368 // An incoming argument to the function is a base pointer 369 return BaseDefiningValueResult(I, true); 370 371 // We shouldn't see the address of a global as a vector value? 372 assert(!isa<GlobalVariable>(I) && 373 "unexpected global variable found in base of vector"); 374 375 // inlining could possibly introduce phi node that contains 376 // undef if callee has multiple returns 377 if (isa<UndefValue>(I)) 378 // utterly meaningless, but useful for dealing with partially optimized 379 // code. 380 return BaseDefiningValueResult(I, true); 381 382 // Due to inheritance, this must be _after_ the global variable and undef 383 // checks 384 if (Constant *Con = dyn_cast<Constant>(I)) { 385 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 386 "order of checks wrong!"); 387 assert(Con->isNullValue() && "null is the only case which makes sense"); 388 return BaseDefiningValueResult(Con, true); 389 } 390 391 if (isa<LoadInst>(I)) 392 return BaseDefiningValueResult(I, true); 393 394 if (isa<InsertElementInst>(I)) 395 // We don't know whether this vector contains entirely base pointers or 396 // not. To be conservatively correct, we treat it as a BDV and will 397 // duplicate code as needed to construct a parallel vector of bases. 398 return BaseDefiningValueResult(I, false); 399 400 if (isa<ShuffleVectorInst>(I)) 401 // We don't know whether this vector contains entirely base pointers or 402 // not. To be conservatively correct, we treat it as a BDV and will 403 // duplicate code as needed to construct a parallel vector of bases. 404 // TODO: There a number of local optimizations which could be applied here 405 // for particular sufflevector patterns. 406 return BaseDefiningValueResult(I, false); 407 408 // A PHI or Select is a base defining value. The outer findBasePointer 409 // algorithm is responsible for constructing a base value for this BDV. 410 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 411 "unknown vector instruction - no base found for vector element"); 412 return BaseDefiningValueResult(I, false); 413 } 414 415 /// Helper function for findBasePointer - Will return a value which either a) 416 /// defines the base pointer for the input, b) blocks the simple search 417 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 418 /// from pointer to vector type or back. 419 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 420 if (I->getType()->isVectorTy()) 421 return findBaseDefiningValueOfVector(I); 422 423 assert(I->getType()->isPointerTy() && 424 "Illegal to ask for the base pointer of a non-pointer type"); 425 426 if (isa<Argument>(I)) 427 // An incoming argument to the function is a base pointer 428 // We should have never reached here if this argument isn't an gc value 429 return BaseDefiningValueResult(I, true); 430 431 if (isa<Constant>(I)) 432 // We assume that objects with a constant base (e.g. a global) can't move 433 // and don't need to be reported to the collector because they are always 434 // live. All constants have constant bases. Besides global references, all 435 // kinds of constants (e.g. undef, constant expressions, null pointers) can 436 // be introduced by the inliner or the optimizer, especially on dynamically 437 // dead paths. See e.g. test4 in constants.ll. 438 return BaseDefiningValueResult(I, true); 439 440 if (CastInst *CI = dyn_cast<CastInst>(I)) { 441 Value *Def = CI->stripPointerCasts(); 442 // If stripping pointer casts changes the address space there is an 443 // addrspacecast in between. 444 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 445 cast<PointerType>(CI->getType())->getAddressSpace() && 446 "unsupported addrspacecast"); 447 // If we find a cast instruction here, it means we've found a cast which is 448 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 449 // handle int->ptr conversion. 450 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 451 return findBaseDefiningValue(Def); 452 } 453 454 if (isa<LoadInst>(I)) 455 // The value loaded is an gc base itself 456 return BaseDefiningValueResult(I, true); 457 458 459 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 460 // The base of this GEP is the base 461 return findBaseDefiningValue(GEP->getPointerOperand()); 462 463 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 464 switch (II->getIntrinsicID()) { 465 default: 466 // fall through to general call handling 467 break; 468 case Intrinsic::experimental_gc_statepoint: 469 llvm_unreachable("statepoints don't produce pointers"); 470 case Intrinsic::experimental_gc_relocate: { 471 // Rerunning safepoint insertion after safepoints are already 472 // inserted is not supported. It could probably be made to work, 473 // but why are you doing this? There's no good reason. 474 llvm_unreachable("repeat safepoint insertion is not supported"); 475 } 476 case Intrinsic::gcroot: 477 // Currently, this mechanism hasn't been extended to work with gcroot. 478 // There's no reason it couldn't be, but I haven't thought about the 479 // implications much. 480 llvm_unreachable( 481 "interaction with the gcroot mechanism is not supported"); 482 } 483 } 484 // We assume that functions in the source language only return base 485 // pointers. This should probably be generalized via attributes to support 486 // both source language and internal functions. 487 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 488 return BaseDefiningValueResult(I, true); 489 490 // I have absolutely no idea how to implement this part yet. It's not 491 // necessarily hard, I just haven't really looked at it yet. 492 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 493 494 if (isa<AtomicCmpXchgInst>(I)) 495 // A CAS is effectively a atomic store and load combined under a 496 // predicate. From the perspective of base pointers, we just treat it 497 // like a load. 498 return BaseDefiningValueResult(I, true); 499 500 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 501 "binary ops which don't apply to pointers"); 502 503 // The aggregate ops. Aggregates can either be in the heap or on the 504 // stack, but in either case, this is simply a field load. As a result, 505 // this is a defining definition of the base just like a load is. 506 if (isa<ExtractValueInst>(I)) 507 return BaseDefiningValueResult(I, true); 508 509 // We should never see an insert vector since that would require we be 510 // tracing back a struct value not a pointer value. 511 assert(!isa<InsertValueInst>(I) && 512 "Base pointer for a struct is meaningless"); 513 514 // An extractelement produces a base result exactly when it's input does. 515 // We may need to insert a parallel instruction to extract the appropriate 516 // element out of the base vector corresponding to the input. Given this, 517 // it's analogous to the phi and select case even though it's not a merge. 518 if (isa<ExtractElementInst>(I)) 519 // Note: There a lot of obvious peephole cases here. This are deliberately 520 // handled after the main base pointer inference algorithm to make writing 521 // test cases to exercise that code easier. 522 return BaseDefiningValueResult(I, false); 523 524 // The last two cases here don't return a base pointer. Instead, they 525 // return a value which dynamically selects from among several base 526 // derived pointers (each with it's own base potentially). It's the job of 527 // the caller to resolve these. 528 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 529 "missing instruction case in findBaseDefiningValing"); 530 return BaseDefiningValueResult(I, false); 531 } 532 533 /// Returns the base defining value for this value. 534 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 535 Value *&Cached = Cache[I]; 536 if (!Cached) { 537 Cached = findBaseDefiningValue(I).BDV; 538 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 539 << Cached->getName() << "\n"); 540 } 541 assert(Cache[I] != nullptr); 542 return Cached; 543 } 544 545 /// Return a base pointer for this value if known. Otherwise, return it's 546 /// base defining value. 547 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 548 Value *Def = findBaseDefiningValueCached(I, Cache); 549 auto Found = Cache.find(Def); 550 if (Found != Cache.end()) { 551 // Either a base-of relation, or a self reference. Caller must check. 552 return Found->second; 553 } 554 // Only a BDV available 555 return Def; 556 } 557 558 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 559 /// is it known to be a base pointer? Or do we need to continue searching. 560 static bool isKnownBaseResult(Value *V) { 561 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 562 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 563 !isa<ShuffleVectorInst>(V)) { 564 // no recursion possible 565 return true; 566 } 567 if (isa<Instruction>(V) && 568 cast<Instruction>(V)->getMetadata("is_base_value")) { 569 // This is a previously inserted base phi or select. We know 570 // that this is a base value. 571 return true; 572 } 573 574 // We need to keep searching 575 return false; 576 } 577 578 namespace { 579 /// Models the state of a single base defining value in the findBasePointer 580 /// algorithm for determining where a new instruction is needed to propagate 581 /// the base of this BDV. 582 class BDVState { 583 public: 584 enum Status { Unknown, Base, Conflict }; 585 586 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 587 assert(status != Base || b); 588 } 589 explicit BDVState(Value *b) : status(Base), base(b) {} 590 BDVState() : status(Unknown), base(nullptr) {} 591 592 Status getStatus() const { return status; } 593 Value *getBase() const { return base; } 594 595 bool isBase() const { return getStatus() == Base; } 596 bool isUnknown() const { return getStatus() == Unknown; } 597 bool isConflict() const { return getStatus() == Conflict; } 598 599 bool operator==(const BDVState &other) const { 600 return base == other.base && status == other.status; 601 } 602 603 bool operator!=(const BDVState &other) const { return !(*this == other); } 604 605 LLVM_DUMP_METHOD 606 void dump() const { print(dbgs()); dbgs() << '\n'; } 607 608 void print(raw_ostream &OS) const { 609 switch (status) { 610 case Unknown: 611 OS << "U"; 612 break; 613 case Base: 614 OS << "B"; 615 break; 616 case Conflict: 617 OS << "C"; 618 break; 619 }; 620 OS << " (" << base << " - " 621 << (base ? base->getName() : "nullptr") << "): "; 622 } 623 624 private: 625 Status status; 626 AssertingVH<Value> base; // non null only if status == base 627 }; 628 } 629 630 #ifndef NDEBUG 631 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 632 State.print(OS); 633 return OS; 634 } 635 #endif 636 637 namespace { 638 // Values of type BDVState form a lattice, and this is a helper 639 // class that implementes the meet operation. The meat of the meet 640 // operation is implemented in MeetBDVStates::pureMeet 641 class MeetBDVStates { 642 public: 643 /// Initializes the currentResult to the TOP state so that if can be met with 644 /// any other state to produce that state. 645 MeetBDVStates() {} 646 647 // Destructively meet the current result with the given BDVState 648 void meetWith(BDVState otherState) { 649 currentResult = meet(otherState, currentResult); 650 } 651 652 BDVState getResult() const { return currentResult; } 653 654 private: 655 BDVState currentResult; 656 657 /// Perform a meet operation on two elements of the BDVState lattice. 658 static BDVState meet(BDVState LHS, BDVState RHS) { 659 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 660 "math is wrong: meet does not commute!"); 661 BDVState Result = pureMeet(LHS, RHS); 662 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 663 << " produced " << Result << "\n"); 664 return Result; 665 } 666 667 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 668 switch (stateA.getStatus()) { 669 case BDVState::Unknown: 670 return stateB; 671 672 case BDVState::Base: 673 assert(stateA.getBase() && "can't be null"); 674 if (stateB.isUnknown()) 675 return stateA; 676 677 if (stateB.isBase()) { 678 if (stateA.getBase() == stateB.getBase()) { 679 assert(stateA == stateB && "equality broken!"); 680 return stateA; 681 } 682 return BDVState(BDVState::Conflict); 683 } 684 assert(stateB.isConflict() && "only three states!"); 685 return BDVState(BDVState::Conflict); 686 687 case BDVState::Conflict: 688 return stateA; 689 } 690 llvm_unreachable("only three states!"); 691 } 692 }; 693 } 694 695 696 /// For a given value or instruction, figure out what base ptr it's derived 697 /// from. For gc objects, this is simply itself. On success, returns a value 698 /// which is the base pointer. (This is reliable and can be used for 699 /// relocation.) On failure, returns nullptr. 700 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 701 Value *def = findBaseOrBDV(I, cache); 702 703 if (isKnownBaseResult(def)) { 704 return def; 705 } 706 707 // Here's the rough algorithm: 708 // - For every SSA value, construct a mapping to either an actual base 709 // pointer or a PHI which obscures the base pointer. 710 // - Construct a mapping from PHI to unknown TOP state. Use an 711 // optimistic algorithm to propagate base pointer information. Lattice 712 // looks like: 713 // UNKNOWN 714 // b1 b2 b3 b4 715 // CONFLICT 716 // When algorithm terminates, all PHIs will either have a single concrete 717 // base or be in a conflict state. 718 // - For every conflict, insert a dummy PHI node without arguments. Add 719 // these to the base[Instruction] = BasePtr mapping. For every 720 // non-conflict, add the actual base. 721 // - For every conflict, add arguments for the base[a] of each input 722 // arguments. 723 // 724 // Note: A simpler form of this would be to add the conflict form of all 725 // PHIs without running the optimistic algorithm. This would be 726 // analogous to pessimistic data flow and would likely lead to an 727 // overall worse solution. 728 729 #ifndef NDEBUG 730 auto isExpectedBDVType = [](Value *BDV) { 731 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 732 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 733 }; 734 #endif 735 736 // Once populated, will contain a mapping from each potentially non-base BDV 737 // to a lattice value (described above) which corresponds to that BDV. 738 // We use the order of insertion (DFS over the def/use graph) to provide a 739 // stable deterministic ordering for visiting DenseMaps (which are unordered) 740 // below. This is important for deterministic compilation. 741 MapVector<Value *, BDVState> States; 742 743 // Recursively fill in all base defining values reachable from the initial 744 // one for which we don't already know a definite base value for 745 /* scope */ { 746 SmallVector<Value*, 16> Worklist; 747 Worklist.push_back(def); 748 States.insert(std::make_pair(def, BDVState())); 749 while (!Worklist.empty()) { 750 Value *Current = Worklist.pop_back_val(); 751 assert(!isKnownBaseResult(Current) && "why did it get added?"); 752 753 auto visitIncomingValue = [&](Value *InVal) { 754 Value *Base = findBaseOrBDV(InVal, cache); 755 if (isKnownBaseResult(Base)) 756 // Known bases won't need new instructions introduced and can be 757 // ignored safely 758 return; 759 assert(isExpectedBDVType(Base) && "the only non-base values " 760 "we see should be base defining values"); 761 if (States.insert(std::make_pair(Base, BDVState())).second) 762 Worklist.push_back(Base); 763 }; 764 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 765 for (Value *InVal : Phi->incoming_values()) 766 visitIncomingValue(InVal); 767 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 768 visitIncomingValue(Sel->getTrueValue()); 769 visitIncomingValue(Sel->getFalseValue()); 770 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 771 visitIncomingValue(EE->getVectorOperand()); 772 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 773 visitIncomingValue(IE->getOperand(0)); // vector operand 774 visitIncomingValue(IE->getOperand(1)); // scalar operand 775 } else { 776 // There is one known class of instructions we know we don't handle. 777 assert(isa<ShuffleVectorInst>(Current)); 778 llvm_unreachable("unimplemented instruction case"); 779 } 780 } 781 } 782 783 #ifndef NDEBUG 784 DEBUG(dbgs() << "States after initialization:\n"); 785 for (auto Pair : States) { 786 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 787 } 788 #endif 789 790 // Return a phi state for a base defining value. We'll generate a new 791 // base state for known bases and expect to find a cached state otherwise. 792 auto getStateForBDV = [&](Value *baseValue) { 793 if (isKnownBaseResult(baseValue)) 794 return BDVState(baseValue); 795 auto I = States.find(baseValue); 796 assert(I != States.end() && "lookup failed!"); 797 return I->second; 798 }; 799 800 bool progress = true; 801 while (progress) { 802 #ifndef NDEBUG 803 const size_t oldSize = States.size(); 804 #endif 805 progress = false; 806 // We're only changing values in this loop, thus safe to keep iterators. 807 // Since this is computing a fixed point, the order of visit does not 808 // effect the result. TODO: We could use a worklist here and make this run 809 // much faster. 810 for (auto Pair : States) { 811 Value *BDV = Pair.first; 812 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 813 814 // Given an input value for the current instruction, return a BDVState 815 // instance which represents the BDV of that value. 816 auto getStateForInput = [&](Value *V) mutable { 817 Value *BDV = findBaseOrBDV(V, cache); 818 return getStateForBDV(BDV); 819 }; 820 821 MeetBDVStates calculateMeet; 822 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) { 823 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 824 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 825 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) { 826 for (Value *Val : Phi->incoming_values()) 827 calculateMeet.meetWith(getStateForInput(Val)); 828 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 829 // The 'meet' for an extractelement is slightly trivial, but it's still 830 // useful in that it drives us to conflict if our input is. 831 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 832 } else { 833 // Given there's a inherent type mismatch between the operands, will 834 // *always* produce Conflict. 835 auto *IE = cast<InsertElementInst>(BDV); 836 calculateMeet.meetWith(getStateForInput(IE->getOperand(0))); 837 calculateMeet.meetWith(getStateForInput(IE->getOperand(1))); 838 } 839 840 BDVState oldState = States[BDV]; 841 BDVState newState = calculateMeet.getResult(); 842 if (oldState != newState) { 843 progress = true; 844 States[BDV] = newState; 845 } 846 } 847 848 assert(oldSize == States.size() && 849 "fixed point shouldn't be adding any new nodes to state"); 850 } 851 852 #ifndef NDEBUG 853 DEBUG(dbgs() << "States after meet iteration:\n"); 854 for (auto Pair : States) { 855 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 856 } 857 #endif 858 859 // Insert Phis for all conflicts 860 // TODO: adjust naming patterns to avoid this order of iteration dependency 861 for (auto Pair : States) { 862 Instruction *I = cast<Instruction>(Pair.first); 863 BDVState State = Pair.second; 864 assert(!isKnownBaseResult(I) && "why did it get added?"); 865 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 866 867 // extractelement instructions are a bit special in that we may need to 868 // insert an extract even when we know an exact base for the instruction. 869 // The problem is that we need to convert from a vector base to a scalar 870 // base for the particular indice we're interested in. 871 if (State.isBase() && isa<ExtractElementInst>(I) && 872 isa<VectorType>(State.getBase()->getType())) { 873 auto *EE = cast<ExtractElementInst>(I); 874 // TODO: In many cases, the new instruction is just EE itself. We should 875 // exploit this, but can't do it here since it would break the invariant 876 // about the BDV not being known to be a base. 877 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 878 EE->getIndexOperand(), 879 "base_ee", EE); 880 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 881 States[I] = BDVState(BDVState::Base, BaseInst); 882 } 883 884 // Since we're joining a vector and scalar base, they can never be the 885 // same. As a result, we should always see insert element having reached 886 // the conflict state. 887 if (isa<InsertElementInst>(I)) { 888 assert(State.isConflict()); 889 } 890 891 if (!State.isConflict()) 892 continue; 893 894 /// Create and insert a new instruction which will represent the base of 895 /// the given instruction 'I'. 896 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 897 if (isa<PHINode>(I)) { 898 BasicBlock *BB = I->getParent(); 899 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 900 assert(NumPreds > 0 && "how did we reach here"); 901 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 902 return PHINode::Create(I->getType(), NumPreds, Name, I); 903 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 904 // The undef will be replaced later 905 UndefValue *Undef = UndefValue::get(Sel->getType()); 906 std::string Name = suffixed_name_or(I, ".base", "base_select"); 907 return SelectInst::Create(Sel->getCondition(), Undef, 908 Undef, Name, Sel); 909 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 910 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 911 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 912 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 913 EE); 914 } else { 915 auto *IE = cast<InsertElementInst>(I); 916 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 917 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 918 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 919 return InsertElementInst::Create(VecUndef, ScalarUndef, 920 IE->getOperand(2), Name, IE); 921 } 922 923 }; 924 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 925 // Add metadata marking this as a base value 926 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 927 States[I] = BDVState(BDVState::Conflict, BaseInst); 928 } 929 930 // Returns a instruction which produces the base pointer for a given 931 // instruction. The instruction is assumed to be an input to one of the BDVs 932 // seen in the inference algorithm above. As such, we must either already 933 // know it's base defining value is a base, or have inserted a new 934 // instruction to propagate the base of it's BDV and have entered that newly 935 // introduced instruction into the state table. In either case, we are 936 // assured to be able to determine an instruction which produces it's base 937 // pointer. 938 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 939 Value *BDV = findBaseOrBDV(Input, cache); 940 Value *Base = nullptr; 941 if (isKnownBaseResult(BDV)) { 942 Base = BDV; 943 } else { 944 // Either conflict or base. 945 assert(States.count(BDV)); 946 Base = States[BDV].getBase(); 947 } 948 assert(Base && "can't be null"); 949 // The cast is needed since base traversal may strip away bitcasts 950 if (Base->getType() != Input->getType() && 951 InsertPt) { 952 Base = new BitCastInst(Base, Input->getType(), "cast", 953 InsertPt); 954 } 955 return Base; 956 }; 957 958 // Fixup all the inputs of the new PHIs. Visit order needs to be 959 // deterministic and predictable because we're naming newly created 960 // instructions. 961 for (auto Pair : States) { 962 Instruction *BDV = cast<Instruction>(Pair.first); 963 BDVState State = Pair.second; 964 965 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 966 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 967 if (!State.isConflict()) 968 continue; 969 970 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) { 971 PHINode *phi = cast<PHINode>(BDV); 972 unsigned NumPHIValues = phi->getNumIncomingValues(); 973 for (unsigned i = 0; i < NumPHIValues; i++) { 974 Value *InVal = phi->getIncomingValue(i); 975 BasicBlock *InBB = phi->getIncomingBlock(i); 976 977 // If we've already seen InBB, add the same incoming value 978 // we added for it earlier. The IR verifier requires phi 979 // nodes with multiple entries from the same basic block 980 // to have the same incoming value for each of those 981 // entries. If we don't do this check here and basephi 982 // has a different type than base, we'll end up adding two 983 // bitcasts (and hence two distinct values) as incoming 984 // values for the same basic block. 985 986 int blockIndex = basephi->getBasicBlockIndex(InBB); 987 if (blockIndex != -1) { 988 Value *oldBase = basephi->getIncomingValue(blockIndex); 989 basephi->addIncoming(oldBase, InBB); 990 991 #ifndef NDEBUG 992 Value *Base = getBaseForInput(InVal, nullptr); 993 // In essence this assert states: the only way two 994 // values incoming from the same basic block may be 995 // different is by being different bitcasts of the same 996 // value. A cleanup that remains TODO is changing 997 // findBaseOrBDV to return an llvm::Value of the correct 998 // type (and still remain pure). This will remove the 999 // need to add bitcasts. 1000 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() && 1001 "sanity -- findBaseOrBDV should be pure!"); 1002 #endif 1003 continue; 1004 } 1005 1006 // Find the instruction which produces the base for each input. We may 1007 // need to insert a bitcast in the incoming block. 1008 // TODO: Need to split critical edges if insertion is needed 1009 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1010 basephi->addIncoming(Base, InBB); 1011 } 1012 assert(basephi->getNumIncomingValues() == NumPHIValues); 1013 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) { 1014 SelectInst *Sel = cast<SelectInst>(BDV); 1015 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 1016 // something more safe and less hacky. 1017 for (int i = 1; i <= 2; i++) { 1018 Value *InVal = Sel->getOperand(i); 1019 // Find the instruction which produces the base for each input. We may 1020 // need to insert a bitcast. 1021 Value *Base = getBaseForInput(InVal, BaseSel); 1022 BaseSel->setOperand(i, Base); 1023 } 1024 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 1025 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1026 // Find the instruction which produces the base for each input. We may 1027 // need to insert a bitcast. 1028 Value *Base = getBaseForInput(InVal, BaseEE); 1029 BaseEE->setOperand(0, Base); 1030 } else { 1031 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 1032 auto *BdvIE = cast<InsertElementInst>(BDV); 1033 auto UpdateOperand = [&](int OperandIdx) { 1034 Value *InVal = BdvIE->getOperand(OperandIdx); 1035 Value *Base = getBaseForInput(InVal, BaseIE); 1036 BaseIE->setOperand(OperandIdx, Base); 1037 }; 1038 UpdateOperand(0); // vector operand 1039 UpdateOperand(1); // scalar operand 1040 } 1041 1042 } 1043 1044 // Now that we're done with the algorithm, see if we can optimize the 1045 // results slightly by reducing the number of new instructions needed. 1046 // Arguably, this should be integrated into the algorithm above, but 1047 // doing as a post process step is easier to reason about for the moment. 1048 DenseMap<Value *, Value *> ReverseMap; 1049 SmallPtrSet<Instruction *, 16> NewInsts; 1050 SmallSetVector<AssertingVH<Instruction>, 16> Worklist; 1051 // Note: We need to visit the states in a deterministic order. We uses the 1052 // Keys we sorted above for this purpose. Note that we are papering over a 1053 // bigger problem with the algorithm above - it's visit order is not 1054 // deterministic. A larger change is needed to fix this. 1055 for (auto Pair : States) { 1056 auto *BDV = Pair.first; 1057 auto State = Pair.second; 1058 Value *Base = State.getBase(); 1059 assert(BDV && Base); 1060 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1061 assert(isKnownBaseResult(Base) && 1062 "must be something we 'know' is a base pointer"); 1063 if (!State.isConflict()) 1064 continue; 1065 1066 ReverseMap[Base] = BDV; 1067 if (auto *BaseI = dyn_cast<Instruction>(Base)) { 1068 NewInsts.insert(BaseI); 1069 Worklist.insert(BaseI); 1070 } 1071 } 1072 auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI, 1073 Value *Replacement) { 1074 // Add users which are new instructions (excluding self references) 1075 for (User *U : BaseI->users()) 1076 if (auto *UI = dyn_cast<Instruction>(U)) 1077 if (NewInsts.count(UI) && UI != BaseI) 1078 Worklist.insert(UI); 1079 // Then do the actual replacement 1080 NewInsts.erase(BaseI); 1081 ReverseMap.erase(BaseI); 1082 BaseI->replaceAllUsesWith(Replacement); 1083 assert(States.count(BDV)); 1084 assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI); 1085 States[BDV] = BDVState(BDVState::Conflict, Replacement); 1086 BaseI->eraseFromParent(); 1087 }; 1088 const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout(); 1089 while (!Worklist.empty()) { 1090 Instruction *BaseI = Worklist.pop_back_val(); 1091 assert(NewInsts.count(BaseI)); 1092 Value *Bdv = ReverseMap[BaseI]; 1093 if (auto *BdvI = dyn_cast<Instruction>(Bdv)) 1094 if (BaseI->isIdenticalTo(BdvI)) { 1095 DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n"); 1096 ReplaceBaseInstWith(Bdv, BaseI, Bdv); 1097 continue; 1098 } 1099 if (Value *V = SimplifyInstruction(BaseI, DL)) { 1100 DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n"); 1101 ReplaceBaseInstWith(Bdv, BaseI, V); 1102 continue; 1103 } 1104 } 1105 1106 // Cache all of our results so we can cheaply reuse them 1107 // NOTE: This is actually two caches: one of the base defining value 1108 // relation and one of the base pointer relation! FIXME 1109 for (auto Pair : States) { 1110 auto *BDV = Pair.first; 1111 Value *base = Pair.second.getBase(); 1112 assert(BDV && base); 1113 1114 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none"; 1115 DEBUG(dbgs() << "Updating base value cache" 1116 << " for: " << BDV->getName() 1117 << " from: " << fromstr 1118 << " to: " << base->getName() << "\n"); 1119 1120 if (cache.count(BDV)) { 1121 // Once we transition from the BDV relation being store in the cache to 1122 // the base relation being stored, it must be stable 1123 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) && 1124 "base relation should be stable"); 1125 } 1126 cache[BDV] = base; 1127 } 1128 assert(cache.count(def)); 1129 return cache[def]; 1130 } 1131 1132 // For a set of live pointers (base and/or derived), identify the base 1133 // pointer of the object which they are derived from. This routine will 1134 // mutate the IR graph as needed to make the 'base' pointer live at the 1135 // definition site of 'derived'. This ensures that any use of 'derived' can 1136 // also use 'base'. This may involve the insertion of a number of 1137 // additional PHI nodes. 1138 // 1139 // preconditions: live is a set of pointer type Values 1140 // 1141 // side effects: may insert PHI nodes into the existing CFG, will preserve 1142 // CFG, will not remove or mutate any existing nodes 1143 // 1144 // post condition: PointerToBase contains one (derived, base) pair for every 1145 // pointer in live. Note that derived can be equal to base if the original 1146 // pointer was a base pointer. 1147 static void 1148 findBasePointers(const StatepointLiveSetTy &live, 1149 DenseMap<Value *, Value *> &PointerToBase, 1150 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1151 // For the naming of values inserted to be deterministic - which makes for 1152 // much cleaner and more stable tests - we need to assign an order to the 1153 // live values. DenseSets do not provide a deterministic order across runs. 1154 SmallVector<Value *, 64> Temp; 1155 Temp.insert(Temp.end(), live.begin(), live.end()); 1156 std::sort(Temp.begin(), Temp.end(), order_by_name); 1157 for (Value *ptr : Temp) { 1158 Value *base = findBasePointer(ptr, DVCache); 1159 assert(base && "failed to find base pointer"); 1160 PointerToBase[ptr] = base; 1161 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1162 DT->dominates(cast<Instruction>(base)->getParent(), 1163 cast<Instruction>(ptr)->getParent())) && 1164 "The base we found better dominate the derived pointer"); 1165 1166 // If you see this trip and like to live really dangerously, the code should 1167 // be correct, just with idioms the verifier can't handle. You can try 1168 // disabling the verifier at your own substantial risk. 1169 assert(!isa<ConstantPointerNull>(base) && 1170 "the relocation code needs adjustment to handle the relocation of " 1171 "a null pointer constant without causing false positives in the " 1172 "safepoint ir verifier."); 1173 } 1174 } 1175 1176 /// Find the required based pointers (and adjust the live set) for the given 1177 /// parse point. 1178 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1179 const CallSite &CS, 1180 PartiallyConstructedSafepointRecord &result) { 1181 DenseMap<Value *, Value *> PointerToBase; 1182 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1183 1184 if (PrintBasePointers) { 1185 // Note: Need to print these in a stable order since this is checked in 1186 // some tests. 1187 errs() << "Base Pairs (w/o Relocation):\n"; 1188 SmallVector<Value *, 64> Temp; 1189 Temp.reserve(PointerToBase.size()); 1190 for (auto Pair : PointerToBase) { 1191 Temp.push_back(Pair.first); 1192 } 1193 std::sort(Temp.begin(), Temp.end(), order_by_name); 1194 for (Value *Ptr : Temp) { 1195 Value *Base = PointerToBase[Ptr]; 1196 errs() << " derived "; 1197 Ptr->printAsOperand(errs(), false); 1198 errs() << " base "; 1199 Base->printAsOperand(errs(), false); 1200 errs() << "\n";; 1201 } 1202 } 1203 1204 result.PointerToBase = PointerToBase; 1205 } 1206 1207 /// Given an updated version of the dataflow liveness results, update the 1208 /// liveset and base pointer maps for the call site CS. 1209 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1210 const CallSite &CS, 1211 PartiallyConstructedSafepointRecord &result); 1212 1213 static void recomputeLiveInValues( 1214 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1215 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1216 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1217 // again. The old values are still live and will help it stabilize quickly. 1218 GCPtrLivenessData RevisedLivenessData; 1219 computeLiveInValues(DT, F, RevisedLivenessData); 1220 for (size_t i = 0; i < records.size(); i++) { 1221 struct PartiallyConstructedSafepointRecord &info = records[i]; 1222 const CallSite &CS = toUpdate[i]; 1223 recomputeLiveInValues(RevisedLivenessData, CS, info); 1224 } 1225 } 1226 1227 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1228 // no uses of the original value / return value between the gc.statepoint and 1229 // the gc.relocate / gc.result call. One case which can arise is a phi node 1230 // starting one of the successor blocks. We also need to be able to insert the 1231 // gc.relocates only on the path which goes through the statepoint. We might 1232 // need to split an edge to make this possible. 1233 static BasicBlock * 1234 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1235 DominatorTree &DT) { 1236 BasicBlock *Ret = BB; 1237 if (!BB->getUniquePredecessor()) 1238 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1239 1240 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1241 // from it 1242 FoldSingleEntryPHINodes(Ret); 1243 assert(!isa<PHINode>(Ret->begin()) && 1244 "All PHI nodes should have been removed!"); 1245 1246 // At this point, we can safely insert a gc.relocate or gc.result as the first 1247 // instruction in Ret if needed. 1248 return Ret; 1249 } 1250 1251 // Create new attribute set containing only attributes which can be transferred 1252 // from original call to the safepoint. 1253 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1254 AttributeSet Ret; 1255 1256 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1257 unsigned Index = AS.getSlotIndex(Slot); 1258 1259 if (Index == AttributeSet::ReturnIndex || 1260 Index == AttributeSet::FunctionIndex) { 1261 1262 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { 1263 1264 // Do not allow certain attributes - just skip them 1265 // Safepoint can not be read only or read none. 1266 if (Attr.hasAttribute(Attribute::ReadNone) || 1267 Attr.hasAttribute(Attribute::ReadOnly)) 1268 continue; 1269 1270 // These attributes control the generation of the gc.statepoint call / 1271 // invoke itself; and once the gc.statepoint is in place, they're of no 1272 // use. 1273 if (Attr.hasAttribute("statepoint-num-patch-bytes") || 1274 Attr.hasAttribute("statepoint-id")) 1275 continue; 1276 1277 Ret = Ret.addAttributes( 1278 AS.getContext(), Index, 1279 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); 1280 } 1281 } 1282 1283 // Just skip parameter attributes for now 1284 } 1285 1286 return Ret; 1287 } 1288 1289 /// Helper function to place all gc relocates necessary for the given 1290 /// statepoint. 1291 /// Inputs: 1292 /// liveVariables - list of variables to be relocated. 1293 /// liveStart - index of the first live variable. 1294 /// basePtrs - base pointers. 1295 /// statepointToken - statepoint instruction to which relocates should be 1296 /// bound. 1297 /// Builder - Llvm IR builder to be used to construct new calls. 1298 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1299 const int LiveStart, 1300 ArrayRef<Value *> BasePtrs, 1301 Instruction *StatepointToken, 1302 IRBuilder<> Builder) { 1303 if (LiveVariables.empty()) 1304 return; 1305 1306 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1307 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val); 1308 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1309 size_t Index = std::distance(LiveVec.begin(), ValIt); 1310 assert(Index < LiveVec.size() && "Bug in std::find?"); 1311 return Index; 1312 }; 1313 1314 // All gc_relocate are set to i8 addrspace(1)* type. We originally generated 1315 // unique declarations for each pointer type, but this proved problematic 1316 // because the intrinsic mangling code is incomplete and fragile. Since 1317 // we're moving towards a single unified pointer type anyways, we can just 1318 // cast everything to an i8* of the right address space. A bitcast is added 1319 // later to convert gc_relocate to the actual value's type. 1320 Module *M = StatepointToken->getModule(); 1321 auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace(); 1322 Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)}; 1323 Value *GCRelocateDecl = 1324 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); 1325 1326 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1327 // Generate the gc.relocate call and save the result 1328 Value *BaseIdx = 1329 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1330 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1331 1332 // only specify a debug name if we can give a useful one 1333 CallInst *Reloc = Builder.CreateCall( 1334 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1335 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1336 // Trick CodeGen into thinking there are lots of free registers at this 1337 // fake call. 1338 Reloc->setCallingConv(CallingConv::Cold); 1339 } 1340 } 1341 1342 namespace { 1343 1344 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1345 /// avoids having to worry about keeping around dangling pointers to Values. 1346 class DeferredReplacement { 1347 AssertingVH<Instruction> Old; 1348 AssertingVH<Instruction> New; 1349 1350 public: 1351 explicit DeferredReplacement(Instruction *Old, Instruction *New) : 1352 Old(Old), New(New) { 1353 assert(Old != New && "Not allowed!"); 1354 } 1355 1356 /// Does the task represented by this instance. 1357 void doReplacement() { 1358 Instruction *OldI = Old; 1359 Instruction *NewI = New; 1360 1361 assert(OldI != NewI && "Disallowed at construction?!"); 1362 1363 Old = nullptr; 1364 New = nullptr; 1365 1366 if (NewI) 1367 OldI->replaceAllUsesWith(NewI); 1368 OldI->eraseFromParent(); 1369 } 1370 }; 1371 } 1372 1373 static void 1374 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1375 const SmallVectorImpl<Value *> &BasePtrs, 1376 const SmallVectorImpl<Value *> &LiveVariables, 1377 PartiallyConstructedSafepointRecord &Result, 1378 std::vector<DeferredReplacement> &Replacements) { 1379 assert(BasePtrs.size() == LiveVariables.size()); 1380 assert((UseDeoptBundles || isStatepoint(CS)) && 1381 "This method expects to be rewriting a statepoint"); 1382 1383 // Then go ahead and use the builder do actually do the inserts. We insert 1384 // immediately before the previous instruction under the assumption that all 1385 // arguments will be available here. We can't insert afterwards since we may 1386 // be replacing a terminator. 1387 Instruction *InsertBefore = CS.getInstruction(); 1388 IRBuilder<> Builder(InsertBefore); 1389 1390 ArrayRef<Value *> GCArgs(LiveVariables); 1391 uint64_t StatepointID = 0xABCDEF00; 1392 uint32_t NumPatchBytes = 0; 1393 uint32_t Flags = uint32_t(StatepointFlags::None); 1394 1395 ArrayRef<Use> CallArgs; 1396 ArrayRef<Use> DeoptArgs; 1397 ArrayRef<Use> TransitionArgs; 1398 1399 Value *CallTarget = nullptr; 1400 1401 if (UseDeoptBundles) { 1402 CallArgs = {CS.arg_begin(), CS.arg_end()}; 1403 DeoptArgs = GetDeoptBundleOperands(CS); 1404 // TODO: we don't fill in TransitionArgs or Flags in this branch, but we 1405 // could have an operand bundle for that too. 1406 AttributeSet OriginalAttrs = CS.getAttributes(); 1407 1408 Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex, 1409 "statepoint-id"); 1410 if (AttrID.isStringAttribute()) 1411 AttrID.getValueAsString().getAsInteger(10, StatepointID); 1412 1413 Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute( 1414 AttributeSet::FunctionIndex, "statepoint-num-patch-bytes"); 1415 if (AttrNumPatchBytes.isStringAttribute()) 1416 AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes); 1417 1418 CallTarget = CS.getCalledValue(); 1419 } else { 1420 // This branch will be gone soon, and we will soon only support the 1421 // UseDeoptBundles == true configuration. 1422 Statepoint OldSP(CS); 1423 StatepointID = OldSP.getID(); 1424 NumPatchBytes = OldSP.getNumPatchBytes(); 1425 Flags = OldSP.getFlags(); 1426 1427 CallArgs = {OldSP.arg_begin(), OldSP.arg_end()}; 1428 DeoptArgs = {OldSP.vm_state_begin(), OldSP.vm_state_end()}; 1429 TransitionArgs = {OldSP.gc_transition_args_begin(), 1430 OldSP.gc_transition_args_end()}; 1431 CallTarget = OldSP.getCalledValue(); 1432 } 1433 1434 // Create the statepoint given all the arguments 1435 Instruction *Token = nullptr; 1436 AttributeSet ReturnAttrs; 1437 if (CS.isCall()) { 1438 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1439 CallInst *Call = Builder.CreateGCStatepointCall( 1440 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1441 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1442 1443 Call->setTailCall(ToReplace->isTailCall()); 1444 Call->setCallingConv(ToReplace->getCallingConv()); 1445 1446 // Currently we will fail on parameter attributes and on certain 1447 // function attributes. 1448 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1449 // In case if we can handle this set of attributes - set up function attrs 1450 // directly on statepoint and return attrs later for gc_result intrinsic. 1451 Call->setAttributes(NewAttrs.getFnAttributes()); 1452 ReturnAttrs = NewAttrs.getRetAttributes(); 1453 1454 Token = Call; 1455 1456 // Put the following gc_result and gc_relocate calls immediately after the 1457 // the old call (which we're about to delete) 1458 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1459 Builder.SetInsertPoint(ToReplace->getNextNode()); 1460 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1461 } else { 1462 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1463 1464 // Insert the new invoke into the old block. We'll remove the old one in a 1465 // moment at which point this will become the new terminator for the 1466 // original block. 1467 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1468 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1469 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1470 GCArgs, "statepoint_token"); 1471 1472 Invoke->setCallingConv(ToReplace->getCallingConv()); 1473 1474 // Currently we will fail on parameter attributes and on certain 1475 // function attributes. 1476 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1477 // In case if we can handle this set of attributes - set up function attrs 1478 // directly on statepoint and return attrs later for gc_result intrinsic. 1479 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1480 ReturnAttrs = NewAttrs.getRetAttributes(); 1481 1482 Token = Invoke; 1483 1484 // Generate gc relocates in exceptional path 1485 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1486 assert(!isa<PHINode>(UnwindBlock->begin()) && 1487 UnwindBlock->getUniquePredecessor() && 1488 "can't safely insert in this block!"); 1489 1490 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1491 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1492 1493 // Attach exceptional gc relocates to the landingpad. 1494 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1495 Result.UnwindToken = ExceptionalToken; 1496 1497 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1498 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1499 Builder); 1500 1501 // Generate gc relocates and returns for normal block 1502 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1503 assert(!isa<PHINode>(NormalDest->begin()) && 1504 NormalDest->getUniquePredecessor() && 1505 "can't safely insert in this block!"); 1506 1507 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1508 1509 // gc relocates will be generated later as if it were regular call 1510 // statepoint 1511 } 1512 assert(Token && "Should be set in one of the above branches!"); 1513 1514 if (UseDeoptBundles) { 1515 Token->setName("statepoint_token"); 1516 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1517 StringRef Name = 1518 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1519 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1520 GCResult->setAttributes(CS.getAttributes().getRetAttributes()); 1521 1522 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1523 // live set of some other safepoint, in which case that safepoint's 1524 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1525 // llvm::Instruction. Instead, we defer the replacement and deletion to 1526 // after the live sets have been made explicit in the IR, and we no longer 1527 // have raw pointers to worry about. 1528 Replacements.emplace_back(CS.getInstruction(), GCResult); 1529 } else { 1530 Replacements.emplace_back(CS.getInstruction(), nullptr); 1531 } 1532 } else { 1533 assert(!CS.getInstruction()->hasNUsesOrMore(2) && 1534 "only valid use before rewrite is gc.result"); 1535 assert(!CS.getInstruction()->hasOneUse() || 1536 isGCResult(cast<Instruction>(*CS.getInstruction()->user_begin()))); 1537 1538 // Take the name of the original statepoint token if there was one. 1539 Token->takeName(CS.getInstruction()); 1540 1541 // Update the gc.result of the original statepoint (if any) to use the newly 1542 // inserted statepoint. This is safe to do here since the token can't be 1543 // considered a live reference. 1544 CS.getInstruction()->replaceAllUsesWith(Token); 1545 CS.getInstruction()->eraseFromParent(); 1546 } 1547 1548 Result.StatepointToken = Token; 1549 1550 // Second, create a gc.relocate for every live variable 1551 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1552 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1553 } 1554 1555 namespace { 1556 struct NameOrdering { 1557 Value *Base; 1558 Value *Derived; 1559 1560 bool operator()(NameOrdering const &a, NameOrdering const &b) { 1561 return -1 == a.Derived->getName().compare(b.Derived->getName()); 1562 } 1563 }; 1564 } 1565 1566 static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec, 1567 SmallVectorImpl<Value *> &LiveVec) { 1568 assert(BaseVec.size() == LiveVec.size()); 1569 1570 SmallVector<NameOrdering, 64> Temp; 1571 for (size_t i = 0; i < BaseVec.size(); i++) { 1572 NameOrdering v; 1573 v.Base = BaseVec[i]; 1574 v.Derived = LiveVec[i]; 1575 Temp.push_back(v); 1576 } 1577 1578 std::sort(Temp.begin(), Temp.end(), NameOrdering()); 1579 for (size_t i = 0; i < BaseVec.size(); i++) { 1580 BaseVec[i] = Temp[i].Base; 1581 LiveVec[i] = Temp[i].Derived; 1582 } 1583 } 1584 1585 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1586 // which make the relocations happening at this safepoint explicit. 1587 // 1588 // WARNING: Does not do any fixup to adjust users of the original live 1589 // values. That's the callers responsibility. 1590 static void 1591 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, 1592 PartiallyConstructedSafepointRecord &Result, 1593 std::vector<DeferredReplacement> &Replacements) { 1594 const auto &LiveSet = Result.LiveSet; 1595 const auto &PointerToBase = Result.PointerToBase; 1596 1597 // Convert to vector for efficient cross referencing. 1598 SmallVector<Value *, 64> BaseVec, LiveVec; 1599 LiveVec.reserve(LiveSet.size()); 1600 BaseVec.reserve(LiveSet.size()); 1601 for (Value *L : LiveSet) { 1602 LiveVec.push_back(L); 1603 assert(PointerToBase.count(L)); 1604 Value *Base = PointerToBase.find(L)->second; 1605 BaseVec.push_back(Base); 1606 } 1607 assert(LiveVec.size() == BaseVec.size()); 1608 1609 // To make the output IR slightly more stable (for use in diffs), ensure a 1610 // fixed order of the values in the safepoint (by sorting the value name). 1611 // The order is otherwise meaningless. 1612 StabilizeOrder(BaseVec, LiveVec); 1613 1614 // Do the actual rewriting and delete the old statepoint 1615 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1616 } 1617 1618 // Helper function for the relocationViaAlloca. 1619 // 1620 // It receives iterator to the statepoint gc relocates and emits a store to the 1621 // assigned location (via allocaMap) for the each one of them. It adds the 1622 // visited values into the visitedLiveValues set, which we will later use them 1623 // for sanity checking. 1624 static void 1625 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1626 DenseMap<Value *, Value *> &AllocaMap, 1627 DenseSet<Value *> &VisitedLiveValues) { 1628 1629 for (User *U : GCRelocs) { 1630 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1631 if (!Relocate) 1632 continue; 1633 1634 Value *OriginalValue = const_cast<Value *>(Relocate->getDerivedPtr()); 1635 assert(AllocaMap.count(OriginalValue)); 1636 Value *Alloca = AllocaMap[OriginalValue]; 1637 1638 // Emit store into the related alloca 1639 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1640 // the correct type according to alloca. 1641 assert(Relocate->getNextNode() && 1642 "Should always have one since it's not a terminator"); 1643 IRBuilder<> Builder(Relocate->getNextNode()); 1644 Value *CastedRelocatedValue = 1645 Builder.CreateBitCast(Relocate, 1646 cast<AllocaInst>(Alloca)->getAllocatedType(), 1647 suffixed_name_or(Relocate, ".casted", "")); 1648 1649 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1650 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1651 1652 #ifndef NDEBUG 1653 VisitedLiveValues.insert(OriginalValue); 1654 #endif 1655 } 1656 } 1657 1658 // Helper function for the "relocationViaAlloca". Similar to the 1659 // "insertRelocationStores" but works for rematerialized values. 1660 static void 1661 insertRematerializationStores( 1662 RematerializedValueMapTy RematerializedValues, 1663 DenseMap<Value *, Value *> &AllocaMap, 1664 DenseSet<Value *> &VisitedLiveValues) { 1665 1666 for (auto RematerializedValuePair: RematerializedValues) { 1667 Instruction *RematerializedValue = RematerializedValuePair.first; 1668 Value *OriginalValue = RematerializedValuePair.second; 1669 1670 assert(AllocaMap.count(OriginalValue) && 1671 "Can not find alloca for rematerialized value"); 1672 Value *Alloca = AllocaMap[OriginalValue]; 1673 1674 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1675 Store->insertAfter(RematerializedValue); 1676 1677 #ifndef NDEBUG 1678 VisitedLiveValues.insert(OriginalValue); 1679 #endif 1680 } 1681 } 1682 1683 /// Do all the relocation update via allocas and mem2reg 1684 static void relocationViaAlloca( 1685 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1686 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1687 #ifndef NDEBUG 1688 // record initial number of (static) allocas; we'll check we have the same 1689 // number when we get done. 1690 int InitialAllocaNum = 0; 1691 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1692 I++) 1693 if (isa<AllocaInst>(*I)) 1694 InitialAllocaNum++; 1695 #endif 1696 1697 // TODO-PERF: change data structures, reserve 1698 DenseMap<Value *, Value *> AllocaMap; 1699 SmallVector<AllocaInst *, 200> PromotableAllocas; 1700 // Used later to chack that we have enough allocas to store all values 1701 std::size_t NumRematerializedValues = 0; 1702 PromotableAllocas.reserve(Live.size()); 1703 1704 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1705 // "PromotableAllocas" 1706 auto emitAllocaFor = [&](Value *LiveValue) { 1707 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1708 F.getEntryBlock().getFirstNonPHI()); 1709 AllocaMap[LiveValue] = Alloca; 1710 PromotableAllocas.push_back(Alloca); 1711 }; 1712 1713 // Emit alloca for each live gc pointer 1714 for (Value *V : Live) 1715 emitAllocaFor(V); 1716 1717 // Emit allocas for rematerialized values 1718 for (const auto &Info : Records) 1719 for (auto RematerializedValuePair : Info.RematerializedValues) { 1720 Value *OriginalValue = RematerializedValuePair.second; 1721 if (AllocaMap.count(OriginalValue) != 0) 1722 continue; 1723 1724 emitAllocaFor(OriginalValue); 1725 ++NumRematerializedValues; 1726 } 1727 1728 // The next two loops are part of the same conceptual operation. We need to 1729 // insert a store to the alloca after the original def and at each 1730 // redefinition. We need to insert a load before each use. These are split 1731 // into distinct loops for performance reasons. 1732 1733 // Update gc pointer after each statepoint: either store a relocated value or 1734 // null (if no relocated value was found for this gc pointer and it is not a 1735 // gc_result). This must happen before we update the statepoint with load of 1736 // alloca otherwise we lose the link between statepoint and old def. 1737 for (const auto &Info : Records) { 1738 Value *Statepoint = Info.StatepointToken; 1739 1740 // This will be used for consistency check 1741 DenseSet<Value *> VisitedLiveValues; 1742 1743 // Insert stores for normal statepoint gc relocates 1744 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1745 1746 // In case if it was invoke statepoint 1747 // we will insert stores for exceptional path gc relocates. 1748 if (isa<InvokeInst>(Statepoint)) { 1749 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1750 VisitedLiveValues); 1751 } 1752 1753 // Do similar thing with rematerialized values 1754 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1755 VisitedLiveValues); 1756 1757 if (ClobberNonLive) { 1758 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1759 // the gc.statepoint. This will turn some subtle GC problems into 1760 // slightly easier to debug SEGVs. Note that on large IR files with 1761 // lots of gc.statepoints this is extremely costly both memory and time 1762 // wise. 1763 SmallVector<AllocaInst *, 64> ToClobber; 1764 for (auto Pair : AllocaMap) { 1765 Value *Def = Pair.first; 1766 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1767 1768 // This value was relocated 1769 if (VisitedLiveValues.count(Def)) { 1770 continue; 1771 } 1772 ToClobber.push_back(Alloca); 1773 } 1774 1775 auto InsertClobbersAt = [&](Instruction *IP) { 1776 for (auto *AI : ToClobber) { 1777 auto AIType = cast<PointerType>(AI->getType()); 1778 auto PT = cast<PointerType>(AIType->getElementType()); 1779 Constant *CPN = ConstantPointerNull::get(PT); 1780 StoreInst *Store = new StoreInst(CPN, AI); 1781 Store->insertBefore(IP); 1782 } 1783 }; 1784 1785 // Insert the clobbering stores. These may get intermixed with the 1786 // gc.results and gc.relocates, but that's fine. 1787 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1788 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1789 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1790 } else { 1791 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1792 } 1793 } 1794 } 1795 1796 // Update use with load allocas and add store for gc_relocated. 1797 for (auto Pair : AllocaMap) { 1798 Value *Def = Pair.first; 1799 Value *Alloca = Pair.second; 1800 1801 // We pre-record the uses of allocas so that we dont have to worry about 1802 // later update that changes the user information.. 1803 1804 SmallVector<Instruction *, 20> Uses; 1805 // PERF: trade a linear scan for repeated reallocation 1806 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1807 for (User *U : Def->users()) { 1808 if (!isa<ConstantExpr>(U)) { 1809 // If the def has a ConstantExpr use, then the def is either a 1810 // ConstantExpr use itself or null. In either case 1811 // (recursively in the first, directly in the second), the oop 1812 // it is ultimately dependent on is null and this particular 1813 // use does not need to be fixed up. 1814 Uses.push_back(cast<Instruction>(U)); 1815 } 1816 } 1817 1818 std::sort(Uses.begin(), Uses.end()); 1819 auto Last = std::unique(Uses.begin(), Uses.end()); 1820 Uses.erase(Last, Uses.end()); 1821 1822 for (Instruction *Use : Uses) { 1823 if (isa<PHINode>(Use)) { 1824 PHINode *Phi = cast<PHINode>(Use); 1825 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1826 if (Def == Phi->getIncomingValue(i)) { 1827 LoadInst *Load = new LoadInst( 1828 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1829 Phi->setIncomingValue(i, Load); 1830 } 1831 } 1832 } else { 1833 LoadInst *Load = new LoadInst(Alloca, "", Use); 1834 Use->replaceUsesOfWith(Def, Load); 1835 } 1836 } 1837 1838 // Emit store for the initial gc value. Store must be inserted after load, 1839 // otherwise store will be in alloca's use list and an extra load will be 1840 // inserted before it. 1841 StoreInst *Store = new StoreInst(Def, Alloca); 1842 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1843 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1844 // InvokeInst is a TerminatorInst so the store need to be inserted 1845 // into its normal destination block. 1846 BasicBlock *NormalDest = Invoke->getNormalDest(); 1847 Store->insertBefore(NormalDest->getFirstNonPHI()); 1848 } else { 1849 assert(!Inst->isTerminator() && 1850 "The only TerminatorInst that can produce a value is " 1851 "InvokeInst which is handled above."); 1852 Store->insertAfter(Inst); 1853 } 1854 } else { 1855 assert(isa<Argument>(Def)); 1856 Store->insertAfter(cast<Instruction>(Alloca)); 1857 } 1858 } 1859 1860 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1861 "we must have the same allocas with lives"); 1862 if (!PromotableAllocas.empty()) { 1863 // Apply mem2reg to promote alloca to SSA 1864 PromoteMemToReg(PromotableAllocas, DT); 1865 } 1866 1867 #ifndef NDEBUG 1868 for (auto &I : F.getEntryBlock()) 1869 if (isa<AllocaInst>(I)) 1870 InitialAllocaNum--; 1871 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1872 #endif 1873 } 1874 1875 /// Implement a unique function which doesn't require we sort the input 1876 /// vector. Doing so has the effect of changing the output of a couple of 1877 /// tests in ways which make them less useful in testing fused safepoints. 1878 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1879 SmallSet<T, 8> Seen; 1880 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1881 return !Seen.insert(V).second; 1882 }), Vec.end()); 1883 } 1884 1885 /// Insert holders so that each Value is obviously live through the entire 1886 /// lifetime of the call. 1887 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1888 SmallVectorImpl<CallInst *> &Holders) { 1889 if (Values.empty()) 1890 // No values to hold live, might as well not insert the empty holder 1891 return; 1892 1893 Module *M = CS.getInstruction()->getModule(); 1894 // Use a dummy vararg function to actually hold the values live 1895 Function *Func = cast<Function>(M->getOrInsertFunction( 1896 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1897 if (CS.isCall()) { 1898 // For call safepoints insert dummy calls right after safepoint 1899 Holders.push_back(CallInst::Create(Func, Values, "", 1900 &*++CS.getInstruction()->getIterator())); 1901 return; 1902 } 1903 // For invoke safepooints insert dummy calls both in normal and 1904 // exceptional destination blocks 1905 auto *II = cast<InvokeInst>(CS.getInstruction()); 1906 Holders.push_back(CallInst::Create( 1907 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1908 Holders.push_back(CallInst::Create( 1909 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1910 } 1911 1912 static void findLiveReferences( 1913 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1914 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1915 GCPtrLivenessData OriginalLivenessData; 1916 computeLiveInValues(DT, F, OriginalLivenessData); 1917 for (size_t i = 0; i < records.size(); i++) { 1918 struct PartiallyConstructedSafepointRecord &info = records[i]; 1919 const CallSite &CS = toUpdate[i]; 1920 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1921 } 1922 } 1923 1924 /// Remove any vector of pointers from the live set by scalarizing them over the 1925 /// statepoint instruction. Adds the scalarized pieces to the live set. It 1926 /// would be preferable to include the vector in the statepoint itself, but 1927 /// the lowering code currently does not handle that. Extending it would be 1928 /// slightly non-trivial since it requires a format change. Given how rare 1929 /// such cases are (for the moment?) scalarizing is an acceptable compromise. 1930 static void splitVectorValues(Instruction *StatepointInst, 1931 StatepointLiveSetTy &LiveSet, 1932 DenseMap<Value *, Value *>& PointerToBase, 1933 DominatorTree &DT) { 1934 SmallVector<Value *, 16> ToSplit; 1935 for (Value *V : LiveSet) 1936 if (isa<VectorType>(V->getType())) 1937 ToSplit.push_back(V); 1938 1939 if (ToSplit.empty()) 1940 return; 1941 1942 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1943 1944 Function &F = *(StatepointInst->getParent()->getParent()); 1945 1946 DenseMap<Value *, AllocaInst *> AllocaMap; 1947 // First is normal return, second is exceptional return (invoke only) 1948 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1949 for (Value *V : ToSplit) { 1950 AllocaInst *Alloca = 1951 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1952 AllocaMap[V] = Alloca; 1953 1954 VectorType *VT = cast<VectorType>(V->getType()); 1955 IRBuilder<> Builder(StatepointInst); 1956 SmallVector<Value *, 16> Elements; 1957 for (unsigned i = 0; i < VT->getNumElements(); i++) 1958 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1959 ElementMapping[V] = Elements; 1960 1961 auto InsertVectorReform = [&](Instruction *IP) { 1962 Builder.SetInsertPoint(IP); 1963 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1964 Value *ResultVec = UndefValue::get(VT); 1965 for (unsigned i = 0; i < VT->getNumElements(); i++) 1966 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1967 Builder.getInt32(i)); 1968 return ResultVec; 1969 }; 1970 1971 if (isa<CallInst>(StatepointInst)) { 1972 BasicBlock::iterator Next(StatepointInst); 1973 Next++; 1974 Instruction *IP = &*(Next); 1975 Replacements[V].first = InsertVectorReform(IP); 1976 Replacements[V].second = nullptr; 1977 } else { 1978 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 1979 // We've already normalized - check that we don't have shared destination 1980 // blocks 1981 BasicBlock *NormalDest = Invoke->getNormalDest(); 1982 assert(!isa<PHINode>(NormalDest->begin())); 1983 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 1984 assert(!isa<PHINode>(UnwindDest->begin())); 1985 // Insert insert element sequences in both successors 1986 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 1987 Replacements[V].first = InsertVectorReform(IP); 1988 IP = &*(UnwindDest->getFirstInsertionPt()); 1989 Replacements[V].second = InsertVectorReform(IP); 1990 } 1991 } 1992 1993 for (Value *V : ToSplit) { 1994 AllocaInst *Alloca = AllocaMap[V]; 1995 1996 // Capture all users before we start mutating use lists 1997 SmallVector<Instruction *, 16> Users; 1998 for (User *U : V->users()) 1999 Users.push_back(cast<Instruction>(U)); 2000 2001 for (Instruction *I : Users) { 2002 if (auto Phi = dyn_cast<PHINode>(I)) { 2003 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 2004 if (V == Phi->getIncomingValue(i)) { 2005 LoadInst *Load = new LoadInst( 2006 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 2007 Phi->setIncomingValue(i, Load); 2008 } 2009 } else { 2010 LoadInst *Load = new LoadInst(Alloca, "", I); 2011 I->replaceUsesOfWith(V, Load); 2012 } 2013 } 2014 2015 // Store the original value and the replacement value into the alloca 2016 StoreInst *Store = new StoreInst(V, Alloca); 2017 if (auto I = dyn_cast<Instruction>(V)) 2018 Store->insertAfter(I); 2019 else 2020 Store->insertAfter(Alloca); 2021 2022 // Normal return for invoke, or call return 2023 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 2024 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 2025 // Unwind return for invoke only 2026 Replacement = cast_or_null<Instruction>(Replacements[V].second); 2027 if (Replacement) 2028 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 2029 } 2030 2031 // apply mem2reg to promote alloca to SSA 2032 SmallVector<AllocaInst *, 16> Allocas; 2033 for (Value *V : ToSplit) 2034 Allocas.push_back(AllocaMap[V]); 2035 PromoteMemToReg(Allocas, DT); 2036 2037 // Update our tracking of live pointers and base mappings to account for the 2038 // changes we just made. 2039 for (Value *V : ToSplit) { 2040 auto &Elements = ElementMapping[V]; 2041 2042 LiveSet.erase(V); 2043 LiveSet.insert(Elements.begin(), Elements.end()); 2044 // We need to update the base mapping as well. 2045 assert(PointerToBase.count(V)); 2046 Value *OldBase = PointerToBase[V]; 2047 auto &BaseElements = ElementMapping[OldBase]; 2048 PointerToBase.erase(V); 2049 assert(Elements.size() == BaseElements.size()); 2050 for (unsigned i = 0; i < Elements.size(); i++) { 2051 Value *Elem = Elements[i]; 2052 PointerToBase[Elem] = BaseElements[i]; 2053 } 2054 } 2055 } 2056 2057 // Helper function for the "rematerializeLiveValues". It walks use chain 2058 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 2059 // values are visited (currently it is GEP's and casts). Returns true if it 2060 // successfully reached "BaseValue" and false otherwise. 2061 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 2062 // recorded. 2063 static bool findRematerializableChainToBasePointer( 2064 SmallVectorImpl<Instruction*> &ChainToBase, 2065 Value *CurrentValue, Value *BaseValue) { 2066 2067 // We have found a base value 2068 if (CurrentValue == BaseValue) { 2069 return true; 2070 } 2071 2072 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2073 ChainToBase.push_back(GEP); 2074 return findRematerializableChainToBasePointer(ChainToBase, 2075 GEP->getPointerOperand(), 2076 BaseValue); 2077 } 2078 2079 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2080 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2081 return false; 2082 2083 ChainToBase.push_back(CI); 2084 return findRematerializableChainToBasePointer(ChainToBase, 2085 CI->getOperand(0), BaseValue); 2086 } 2087 2088 // Not supported instruction in the chain 2089 return false; 2090 } 2091 2092 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2093 // chain we are going to rematerialize. 2094 static unsigned 2095 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 2096 TargetTransformInfo &TTI) { 2097 unsigned Cost = 0; 2098 2099 for (Instruction *Instr : Chain) { 2100 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2101 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2102 "non noop cast is found during rematerialization"); 2103 2104 Type *SrcTy = CI->getOperand(0)->getType(); 2105 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 2106 2107 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2108 // Cost of the address calculation 2109 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); 2110 Cost += TTI.getAddressComputationCost(ValTy); 2111 2112 // And cost of the GEP itself 2113 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2114 // allowed for the external usage) 2115 if (!GEP->hasAllConstantIndices()) 2116 Cost += 2; 2117 2118 } else { 2119 llvm_unreachable("unsupported instruciton type during rematerialization"); 2120 } 2121 } 2122 2123 return Cost; 2124 } 2125 2126 // From the statepoint live set pick values that are cheaper to recompute then 2127 // to relocate. Remove this values from the live set, rematerialize them after 2128 // statepoint and record them in "Info" structure. Note that similar to 2129 // relocated values we don't do any user adjustments here. 2130 static void rematerializeLiveValues(CallSite CS, 2131 PartiallyConstructedSafepointRecord &Info, 2132 TargetTransformInfo &TTI) { 2133 const unsigned int ChainLengthThreshold = 10; 2134 2135 // Record values we are going to delete from this statepoint live set. 2136 // We can not di this in following loop due to iterator invalidation. 2137 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2138 2139 for (Value *LiveValue: Info.LiveSet) { 2140 // For each live pointer find it's defining chain 2141 SmallVector<Instruction *, 3> ChainToBase; 2142 assert(Info.PointerToBase.count(LiveValue)); 2143 bool FoundChain = 2144 findRematerializableChainToBasePointer(ChainToBase, 2145 LiveValue, 2146 Info.PointerToBase[LiveValue]); 2147 // Nothing to do, or chain is too long 2148 if (!FoundChain || 2149 ChainToBase.size() == 0 || 2150 ChainToBase.size() > ChainLengthThreshold) 2151 continue; 2152 2153 // Compute cost of this chain 2154 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2155 // TODO: We can also account for cases when we will be able to remove some 2156 // of the rematerialized values by later optimization passes. I.e if 2157 // we rematerialized several intersecting chains. Or if original values 2158 // don't have any uses besides this statepoint. 2159 2160 // For invokes we need to rematerialize each chain twice - for normal and 2161 // for unwind basic blocks. Model this by multiplying cost by two. 2162 if (CS.isInvoke()) { 2163 Cost *= 2; 2164 } 2165 // If it's too expensive - skip it 2166 if (Cost >= RematerializationThreshold) 2167 continue; 2168 2169 // Remove value from the live set 2170 LiveValuesToBeDeleted.push_back(LiveValue); 2171 2172 // Clone instructions and record them inside "Info" structure 2173 2174 // Walk backwards to visit top-most instructions first 2175 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2176 2177 // Utility function which clones all instructions from "ChainToBase" 2178 // and inserts them before "InsertBefore". Returns rematerialized value 2179 // which should be used after statepoint. 2180 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 2181 Instruction *LastClonedValue = nullptr; 2182 Instruction *LastValue = nullptr; 2183 for (Instruction *Instr: ChainToBase) { 2184 // Only GEP's and casts are suported as we need to be careful to not 2185 // introduce any new uses of pointers not in the liveset. 2186 // Note that it's fine to introduce new uses of pointers which were 2187 // otherwise not used after this statepoint. 2188 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2189 2190 Instruction *ClonedValue = Instr->clone(); 2191 ClonedValue->insertBefore(InsertBefore); 2192 ClonedValue->setName(Instr->getName() + ".remat"); 2193 2194 // If it is not first instruction in the chain then it uses previously 2195 // cloned value. We should update it to use cloned value. 2196 if (LastClonedValue) { 2197 assert(LastValue); 2198 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2199 #ifndef NDEBUG 2200 // Assert that cloned instruction does not use any instructions from 2201 // this chain other than LastClonedValue 2202 for (auto OpValue : ClonedValue->operand_values()) { 2203 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2204 ChainToBase.end() && 2205 "incorrect use in rematerialization chain"); 2206 } 2207 #endif 2208 } 2209 2210 LastClonedValue = ClonedValue; 2211 LastValue = Instr; 2212 } 2213 assert(LastClonedValue); 2214 return LastClonedValue; 2215 }; 2216 2217 // Different cases for calls and invokes. For invokes we need to clone 2218 // instructions both on normal and unwind path. 2219 if (CS.isCall()) { 2220 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2221 assert(InsertBefore); 2222 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2223 Info.RematerializedValues[RematerializedValue] = LiveValue; 2224 } else { 2225 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2226 2227 Instruction *NormalInsertBefore = 2228 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2229 Instruction *UnwindInsertBefore = 2230 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2231 2232 Instruction *NormalRematerializedValue = 2233 rematerializeChain(NormalInsertBefore); 2234 Instruction *UnwindRematerializedValue = 2235 rematerializeChain(UnwindInsertBefore); 2236 2237 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2238 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2239 } 2240 } 2241 2242 // Remove rematerializaed values from the live set 2243 for (auto LiveValue: LiveValuesToBeDeleted) { 2244 Info.LiveSet.erase(LiveValue); 2245 } 2246 } 2247 2248 static bool insertParsePoints(Function &F, DominatorTree &DT, 2249 TargetTransformInfo &TTI, 2250 SmallVectorImpl<CallSite> &ToUpdate) { 2251 #ifndef NDEBUG 2252 // sanity check the input 2253 std::set<CallSite> Uniqued; 2254 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2255 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2256 2257 for (CallSite CS : ToUpdate) { 2258 assert(CS.getInstruction()->getParent()->getParent() == &F); 2259 assert((UseDeoptBundles || isStatepoint(CS)) && 2260 "expected to already be a deopt statepoint"); 2261 } 2262 #endif 2263 2264 // When inserting gc.relocates for invokes, we need to be able to insert at 2265 // the top of the successor blocks. See the comment on 2266 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2267 // may restructure the CFG. 2268 for (CallSite CS : ToUpdate) { 2269 if (!CS.isInvoke()) 2270 continue; 2271 auto *II = cast<InvokeInst>(CS.getInstruction()); 2272 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2273 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2274 } 2275 2276 // A list of dummy calls added to the IR to keep various values obviously 2277 // live in the IR. We'll remove all of these when done. 2278 SmallVector<CallInst *, 64> Holders; 2279 2280 // Insert a dummy call with all of the arguments to the vm_state we'll need 2281 // for the actual safepoint insertion. This ensures reference arguments in 2282 // the deopt argument list are considered live through the safepoint (and 2283 // thus makes sure they get relocated.) 2284 for (CallSite CS : ToUpdate) { 2285 SmallVector<Value *, 64> DeoptValues; 2286 2287 iterator_range<const Use *> DeoptStateRange = 2288 UseDeoptBundles 2289 ? iterator_range<const Use *>(GetDeoptBundleOperands(CS)) 2290 : iterator_range<const Use *>(Statepoint(CS).vm_state_args()); 2291 2292 for (Value *Arg : DeoptStateRange) { 2293 assert(!isUnhandledGCPointerType(Arg->getType()) && 2294 "support for FCA unimplemented"); 2295 if (isHandledGCPointerType(Arg->getType())) 2296 DeoptValues.push_back(Arg); 2297 } 2298 2299 insertUseHolderAfter(CS, DeoptValues, Holders); 2300 } 2301 2302 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2303 2304 // A) Identify all gc pointers which are statically live at the given call 2305 // site. 2306 findLiveReferences(F, DT, ToUpdate, Records); 2307 2308 // B) Find the base pointers for each live pointer 2309 /* scope for caching */ { 2310 // Cache the 'defining value' relation used in the computation and 2311 // insertion of base phis and selects. This ensures that we don't insert 2312 // large numbers of duplicate base_phis. 2313 DefiningValueMapTy DVCache; 2314 2315 for (size_t i = 0; i < Records.size(); i++) { 2316 PartiallyConstructedSafepointRecord &info = Records[i]; 2317 findBasePointers(DT, DVCache, ToUpdate[i], info); 2318 } 2319 } // end of cache scope 2320 2321 // The base phi insertion logic (for any safepoint) may have inserted new 2322 // instructions which are now live at some safepoint. The simplest such 2323 // example is: 2324 // loop: 2325 // phi a <-- will be a new base_phi here 2326 // safepoint 1 <-- that needs to be live here 2327 // gep a + 1 2328 // safepoint 2 2329 // br loop 2330 // We insert some dummy calls after each safepoint to definitely hold live 2331 // the base pointers which were identified for that safepoint. We'll then 2332 // ask liveness for _every_ base inserted to see what is now live. Then we 2333 // remove the dummy calls. 2334 Holders.reserve(Holders.size() + Records.size()); 2335 for (size_t i = 0; i < Records.size(); i++) { 2336 PartiallyConstructedSafepointRecord &Info = Records[i]; 2337 2338 SmallVector<Value *, 128> Bases; 2339 for (auto Pair : Info.PointerToBase) 2340 Bases.push_back(Pair.second); 2341 2342 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2343 } 2344 2345 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2346 // need to rerun liveness. We may *also* have inserted new defs, but that's 2347 // not the key issue. 2348 recomputeLiveInValues(F, DT, ToUpdate, Records); 2349 2350 if (PrintBasePointers) { 2351 for (auto &Info : Records) { 2352 errs() << "Base Pairs: (w/Relocation)\n"; 2353 for (auto Pair : Info.PointerToBase) { 2354 errs() << " derived "; 2355 Pair.first->printAsOperand(errs(), false); 2356 errs() << " base "; 2357 Pair.second->printAsOperand(errs(), false); 2358 errs() << "\n"; 2359 } 2360 } 2361 } 2362 2363 // It is possible that non-constant live variables have a constant base. For 2364 // example, a GEP with a variable offset from a global. In this case we can 2365 // remove it from the liveset. We already don't add constants to the liveset 2366 // because we assume they won't move at runtime and the GC doesn't need to be 2367 // informed about them. The same reasoning applies if the base is constant. 2368 // Note that the relocation placement code relies on this filtering for 2369 // correctness as it expects the base to be in the liveset, which isn't true 2370 // if the base is constant. 2371 for (auto &Info : Records) 2372 for (auto &BasePair : Info.PointerToBase) 2373 if (isa<Constant>(BasePair.second)) 2374 Info.LiveSet.erase(BasePair.first); 2375 2376 for (CallInst *CI : Holders) 2377 CI->eraseFromParent(); 2378 2379 Holders.clear(); 2380 2381 // Do a limited scalarization of any live at safepoint vector values which 2382 // contain pointers. This enables this pass to run after vectorization at 2383 // the cost of some possible performance loss. TODO: it would be nice to 2384 // natively support vectors all the way through the backend so we don't need 2385 // to scalarize here. 2386 for (size_t i = 0; i < Records.size(); i++) { 2387 PartiallyConstructedSafepointRecord &Info = Records[i]; 2388 Instruction *Statepoint = ToUpdate[i].getInstruction(); 2389 splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet, 2390 Info.PointerToBase, DT); 2391 } 2392 2393 // In order to reduce live set of statepoint we might choose to rematerialize 2394 // some values instead of relocating them. This is purely an optimization and 2395 // does not influence correctness. 2396 for (size_t i = 0; i < Records.size(); i++) 2397 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2398 2399 // We need this to safely RAUW and delete call or invoke return values that 2400 // may themselves be live over a statepoint. For details, please see usage in 2401 // makeStatepointExplicitImpl. 2402 std::vector<DeferredReplacement> Replacements; 2403 2404 // Now run through and replace the existing statepoints with new ones with 2405 // the live variables listed. We do not yet update uses of the values being 2406 // relocated. We have references to live variables that need to 2407 // survive to the last iteration of this loop. (By construction, the 2408 // previous statepoint can not be a live variable, thus we can and remove 2409 // the old statepoint calls as we go.) 2410 for (size_t i = 0; i < Records.size(); i++) 2411 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2412 2413 ToUpdate.clear(); // prevent accident use of invalid CallSites 2414 2415 for (auto &PR : Replacements) 2416 PR.doReplacement(); 2417 2418 Replacements.clear(); 2419 2420 for (auto &Info : Records) { 2421 // These live sets may contain state Value pointers, since we replaced calls 2422 // with operand bundles with calls wrapped in gc.statepoint, and some of 2423 // those calls may have been def'ing live gc pointers. Clear these out to 2424 // avoid accidentally using them. 2425 // 2426 // TODO: We should create a separate data structure that does not contain 2427 // these live sets, and migrate to using that data structure from this point 2428 // onward. 2429 Info.LiveSet.clear(); 2430 Info.PointerToBase.clear(); 2431 } 2432 2433 // Do all the fixups of the original live variables to their relocated selves 2434 SmallVector<Value *, 128> Live; 2435 for (size_t i = 0; i < Records.size(); i++) { 2436 PartiallyConstructedSafepointRecord &Info = Records[i]; 2437 2438 // We can't simply save the live set from the original insertion. One of 2439 // the live values might be the result of a call which needs a safepoint. 2440 // That Value* no longer exists and we need to use the new gc_result. 2441 // Thankfully, the live set is embedded in the statepoint (and updated), so 2442 // we just grab that. 2443 Statepoint Statepoint(Info.StatepointToken); 2444 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2445 Statepoint.gc_args_end()); 2446 #ifndef NDEBUG 2447 // Do some basic sanity checks on our liveness results before performing 2448 // relocation. Relocation can and will turn mistakes in liveness results 2449 // into non-sensical code which is must harder to debug. 2450 // TODO: It would be nice to test consistency as well 2451 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2452 "statepoint must be reachable or liveness is meaningless"); 2453 for (Value *V : Statepoint.gc_args()) { 2454 if (!isa<Instruction>(V)) 2455 // Non-instruction values trivial dominate all possible uses 2456 continue; 2457 auto *LiveInst = cast<Instruction>(V); 2458 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2459 "unreachable values should never be live"); 2460 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2461 "basic SSA liveness expectation violated by liveness analysis"); 2462 } 2463 #endif 2464 } 2465 unique_unsorted(Live); 2466 2467 #ifndef NDEBUG 2468 // sanity check 2469 for (auto *Ptr : Live) 2470 assert(isGCPointerType(Ptr->getType()) && "must be a gc pointer type"); 2471 #endif 2472 2473 relocationViaAlloca(F, DT, Live, Records); 2474 return !Records.empty(); 2475 } 2476 2477 // Handles both return values and arguments for Functions and CallSites. 2478 template <typename AttrHolder> 2479 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2480 unsigned Index) { 2481 AttrBuilder R; 2482 if (AH.getDereferenceableBytes(Index)) 2483 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2484 AH.getDereferenceableBytes(Index))); 2485 if (AH.getDereferenceableOrNullBytes(Index)) 2486 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2487 AH.getDereferenceableOrNullBytes(Index))); 2488 if (AH.doesNotAlias(Index)) 2489 R.addAttribute(Attribute::NoAlias); 2490 2491 if (!R.empty()) 2492 AH.setAttributes(AH.getAttributes().removeAttributes( 2493 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2494 } 2495 2496 void 2497 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2498 LLVMContext &Ctx = F.getContext(); 2499 2500 for (Argument &A : F.args()) 2501 if (isa<PointerType>(A.getType())) 2502 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2503 2504 if (isa<PointerType>(F.getReturnType())) 2505 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2506 } 2507 2508 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2509 if (F.empty()) 2510 return; 2511 2512 LLVMContext &Ctx = F.getContext(); 2513 MDBuilder Builder(Ctx); 2514 2515 for (Instruction &I : instructions(F)) { 2516 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2517 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2518 bool IsImmutableTBAA = 2519 MD->getNumOperands() == 4 && 2520 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2521 2522 if (!IsImmutableTBAA) 2523 continue; // no work to do, MD_tbaa is already marked mutable 2524 2525 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2526 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2527 uint64_t Offset = 2528 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2529 2530 MDNode *MutableTBAA = 2531 Builder.createTBAAStructTagNode(Base, Access, Offset); 2532 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2533 } 2534 2535 if (CallSite CS = CallSite(&I)) { 2536 for (int i = 0, e = CS.arg_size(); i != e; i++) 2537 if (isa<PointerType>(CS.getArgument(i)->getType())) 2538 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); 2539 if (isa<PointerType>(CS.getType())) 2540 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2541 } 2542 } 2543 } 2544 2545 /// Returns true if this function should be rewritten by this pass. The main 2546 /// point of this function is as an extension point for custom logic. 2547 static bool shouldRewriteStatepointsIn(Function &F) { 2548 // TODO: This should check the GCStrategy 2549 if (F.hasGC()) { 2550 const char *FunctionGCName = F.getGC(); 2551 const StringRef StatepointExampleName("statepoint-example"); 2552 const StringRef CoreCLRName("coreclr"); 2553 return (StatepointExampleName == FunctionGCName) || 2554 (CoreCLRName == FunctionGCName); 2555 } else 2556 return false; 2557 } 2558 2559 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2560 #ifndef NDEBUG 2561 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2562 "precondition!"); 2563 #endif 2564 2565 for (Function &F : M) 2566 stripNonValidAttributesFromPrototype(F); 2567 2568 for (Function &F : M) 2569 stripNonValidAttributesFromBody(F); 2570 } 2571 2572 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2573 // Nothing to do for declarations. 2574 if (F.isDeclaration() || F.empty()) 2575 return false; 2576 2577 // Policy choice says not to rewrite - the most common reason is that we're 2578 // compiling code without a GCStrategy. 2579 if (!shouldRewriteStatepointsIn(F)) 2580 return false; 2581 2582 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2583 TargetTransformInfo &TTI = 2584 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2585 2586 auto NeedsRewrite = [](Instruction &I) { 2587 if (UseDeoptBundles) { 2588 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2589 return !callsGCLeafFunction(CS); 2590 return false; 2591 } 2592 2593 return isStatepoint(I); 2594 }; 2595 2596 // Gather all the statepoints which need rewritten. Be careful to only 2597 // consider those in reachable code since we need to ask dominance queries 2598 // when rewriting. We'll delete the unreachable ones in a moment. 2599 SmallVector<CallSite, 64> ParsePointNeeded; 2600 bool HasUnreachableStatepoint = false; 2601 for (Instruction &I : instructions(F)) { 2602 // TODO: only the ones with the flag set! 2603 if (NeedsRewrite(I)) { 2604 if (DT.isReachableFromEntry(I.getParent())) 2605 ParsePointNeeded.push_back(CallSite(&I)); 2606 else 2607 HasUnreachableStatepoint = true; 2608 } 2609 } 2610 2611 bool MadeChange = false; 2612 2613 // Delete any unreachable statepoints so that we don't have unrewritten 2614 // statepoints surviving this pass. This makes testing easier and the 2615 // resulting IR less confusing to human readers. Rather than be fancy, we 2616 // just reuse a utility function which removes the unreachable blocks. 2617 if (HasUnreachableStatepoint) 2618 MadeChange |= removeUnreachableBlocks(F); 2619 2620 // Return early if no work to do. 2621 if (ParsePointNeeded.empty()) 2622 return MadeChange; 2623 2624 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2625 // These are created by LCSSA. They have the effect of increasing the size 2626 // of liveness sets for no good reason. It may be harder to do this post 2627 // insertion since relocations and base phis can confuse things. 2628 for (BasicBlock &BB : F) 2629 if (BB.getUniquePredecessor()) { 2630 MadeChange = true; 2631 FoldSingleEntryPHINodes(&BB); 2632 } 2633 2634 // Before we start introducing relocations, we want to tweak the IR a bit to 2635 // avoid unfortunate code generation effects. The main example is that we 2636 // want to try to make sure the comparison feeding a branch is after any 2637 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2638 // values feeding a branch after relocation. This is semantically correct, 2639 // but results in extra register pressure since both the pre-relocation and 2640 // post-relocation copies must be available in registers. For code without 2641 // relocations this is handled elsewhere, but teaching the scheduler to 2642 // reverse the transform we're about to do would be slightly complex. 2643 // Note: This may extend the live range of the inputs to the icmp and thus 2644 // increase the liveset of any statepoint we move over. This is profitable 2645 // as long as all statepoints are in rare blocks. If we had in-register 2646 // lowering for live values this would be a much safer transform. 2647 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2648 if (auto *BI = dyn_cast<BranchInst>(TI)) 2649 if (BI->isConditional()) 2650 return dyn_cast<Instruction>(BI->getCondition()); 2651 // TODO: Extend this to handle switches 2652 return nullptr; 2653 }; 2654 for (BasicBlock &BB : F) { 2655 TerminatorInst *TI = BB.getTerminator(); 2656 if (auto *Cond = getConditionInst(TI)) 2657 // TODO: Handle more than just ICmps here. We should be able to move 2658 // most instructions without side effects or memory access. 2659 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2660 MadeChange = true; 2661 Cond->moveBefore(TI); 2662 } 2663 } 2664 2665 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2666 return MadeChange; 2667 } 2668 2669 // liveness computation via standard dataflow 2670 // ------------------------------------------------------------------- 2671 2672 // TODO: Consider using bitvectors for liveness, the set of potentially 2673 // interesting values should be small and easy to pre-compute. 2674 2675 /// Compute the live-in set for the location rbegin starting from 2676 /// the live-out set of the basic block 2677 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2678 BasicBlock::reverse_iterator rend, 2679 DenseSet<Value *> &LiveTmp) { 2680 2681 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2682 Instruction *I = &*ritr; 2683 2684 // KILL/Def - Remove this definition from LiveIn 2685 LiveTmp.erase(I); 2686 2687 // Don't consider *uses* in PHI nodes, we handle their contribution to 2688 // predecessor blocks when we seed the LiveOut sets 2689 if (isa<PHINode>(I)) 2690 continue; 2691 2692 // USE - Add to the LiveIn set for this instruction 2693 for (Value *V : I->operands()) { 2694 assert(!isUnhandledGCPointerType(V->getType()) && 2695 "support for FCA unimplemented"); 2696 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2697 // The choice to exclude all things constant here is slightly subtle. 2698 // There are two independent reasons: 2699 // - We assume that things which are constant (from LLVM's definition) 2700 // do not move at runtime. For example, the address of a global 2701 // variable is fixed, even though it's contents may not be. 2702 // - Second, we can't disallow arbitrary inttoptr constants even 2703 // if the language frontend does. Optimization passes are free to 2704 // locally exploit facts without respect to global reachability. This 2705 // can create sections of code which are dynamically unreachable and 2706 // contain just about anything. (see constants.ll in tests) 2707 LiveTmp.insert(V); 2708 } 2709 } 2710 } 2711 } 2712 2713 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2714 2715 for (BasicBlock *Succ : successors(BB)) { 2716 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2717 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2718 PHINode *Phi = cast<PHINode>(&*I); 2719 Value *V = Phi->getIncomingValueForBlock(BB); 2720 assert(!isUnhandledGCPointerType(V->getType()) && 2721 "support for FCA unimplemented"); 2722 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2723 LiveTmp.insert(V); 2724 } 2725 } 2726 } 2727 } 2728 2729 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2730 DenseSet<Value *> KillSet; 2731 for (Instruction &I : *BB) 2732 if (isHandledGCPointerType(I.getType())) 2733 KillSet.insert(&I); 2734 return KillSet; 2735 } 2736 2737 #ifndef NDEBUG 2738 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2739 /// sanity check for the liveness computation. 2740 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2741 TerminatorInst *TI, bool TermOkay = false) { 2742 for (Value *V : Live) { 2743 if (auto *I = dyn_cast<Instruction>(V)) { 2744 // The terminator can be a member of the LiveOut set. LLVM's definition 2745 // of instruction dominance states that V does not dominate itself. As 2746 // such, we need to special case this to allow it. 2747 if (TermOkay && TI == I) 2748 continue; 2749 assert(DT.dominates(I, TI) && 2750 "basic SSA liveness expectation violated by liveness analysis"); 2751 } 2752 } 2753 } 2754 2755 /// Check that all the liveness sets used during the computation of liveness 2756 /// obey basic SSA properties. This is useful for finding cases where we miss 2757 /// a def. 2758 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2759 BasicBlock &BB) { 2760 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2761 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2762 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2763 } 2764 #endif 2765 2766 static void computeLiveInValues(DominatorTree &DT, Function &F, 2767 GCPtrLivenessData &Data) { 2768 2769 SmallSetVector<BasicBlock *, 200> Worklist; 2770 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2771 // We use a SetVector so that we don't have duplicates in the worklist. 2772 Worklist.insert(pred_begin(BB), pred_end(BB)); 2773 }; 2774 auto NextItem = [&]() { 2775 BasicBlock *BB = Worklist.back(); 2776 Worklist.pop_back(); 2777 return BB; 2778 }; 2779 2780 // Seed the liveness for each individual block 2781 for (BasicBlock &BB : F) { 2782 Data.KillSet[&BB] = computeKillSet(&BB); 2783 Data.LiveSet[&BB].clear(); 2784 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2785 2786 #ifndef NDEBUG 2787 for (Value *Kill : Data.KillSet[&BB]) 2788 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2789 #endif 2790 2791 Data.LiveOut[&BB] = DenseSet<Value *>(); 2792 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2793 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2794 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2795 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2796 if (!Data.LiveIn[&BB].empty()) 2797 AddPredsToWorklist(&BB); 2798 } 2799 2800 // Propagate that liveness until stable 2801 while (!Worklist.empty()) { 2802 BasicBlock *BB = NextItem(); 2803 2804 // Compute our new liveout set, then exit early if it hasn't changed 2805 // despite the contribution of our successor. 2806 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2807 const auto OldLiveOutSize = LiveOut.size(); 2808 for (BasicBlock *Succ : successors(BB)) { 2809 assert(Data.LiveIn.count(Succ)); 2810 set_union(LiveOut, Data.LiveIn[Succ]); 2811 } 2812 // assert OutLiveOut is a subset of LiveOut 2813 if (OldLiveOutSize == LiveOut.size()) { 2814 // If the sets are the same size, then we didn't actually add anything 2815 // when unioning our successors LiveIn Thus, the LiveIn of this block 2816 // hasn't changed. 2817 continue; 2818 } 2819 Data.LiveOut[BB] = LiveOut; 2820 2821 // Apply the effects of this basic block 2822 DenseSet<Value *> LiveTmp = LiveOut; 2823 set_union(LiveTmp, Data.LiveSet[BB]); 2824 set_subtract(LiveTmp, Data.KillSet[BB]); 2825 2826 assert(Data.LiveIn.count(BB)); 2827 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2828 // assert: OldLiveIn is a subset of LiveTmp 2829 if (OldLiveIn.size() != LiveTmp.size()) { 2830 Data.LiveIn[BB] = LiveTmp; 2831 AddPredsToWorklist(BB); 2832 } 2833 } // while( !worklist.empty() ) 2834 2835 #ifndef NDEBUG 2836 // Sanity check our output against SSA properties. This helps catch any 2837 // missing kills during the above iteration. 2838 for (BasicBlock &BB : F) { 2839 checkBasicSSA(DT, Data, BB); 2840 } 2841 #endif 2842 } 2843 2844 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2845 StatepointLiveSetTy &Out) { 2846 2847 BasicBlock *BB = Inst->getParent(); 2848 2849 // Note: The copy is intentional and required 2850 assert(Data.LiveOut.count(BB)); 2851 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2852 2853 // We want to handle the statepoint itself oddly. It's 2854 // call result is not live (normal), nor are it's arguments 2855 // (unless they're used again later). This adjustment is 2856 // specifically what we need to relocate 2857 BasicBlock::reverse_iterator rend(Inst->getIterator()); 2858 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2859 LiveOut.erase(Inst); 2860 Out.insert(LiveOut.begin(), LiveOut.end()); 2861 } 2862 2863 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2864 const CallSite &CS, 2865 PartiallyConstructedSafepointRecord &Info) { 2866 Instruction *Inst = CS.getInstruction(); 2867 StatepointLiveSetTy Updated; 2868 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2869 2870 #ifndef NDEBUG 2871 DenseSet<Value *> Bases; 2872 for (auto KVPair : Info.PointerToBase) { 2873 Bases.insert(KVPair.second); 2874 } 2875 #endif 2876 // We may have base pointers which are now live that weren't before. We need 2877 // to update the PointerToBase structure to reflect this. 2878 for (auto V : Updated) 2879 if (!Info.PointerToBase.count(V)) { 2880 assert(Bases.count(V) && "can't find base for unexpected live value"); 2881 Info.PointerToBase[V] = V; 2882 continue; 2883 } 2884 2885 #ifndef NDEBUG 2886 for (auto V : Updated) { 2887 assert(Info.PointerToBase.count(V) && 2888 "must be able to find base for live value"); 2889 } 2890 #endif 2891 2892 // Remove any stale base mappings - this can happen since our liveness is 2893 // more precise then the one inherent in the base pointer analysis 2894 DenseSet<Value *> ToErase; 2895 for (auto KVPair : Info.PointerToBase) 2896 if (!Updated.count(KVPair.first)) 2897 ToErase.insert(KVPair.first); 2898 for (auto V : ToErase) 2899 Info.PointerToBase.erase(V); 2900 2901 #ifndef NDEBUG 2902 for (auto KVPair : Info.PointerToBase) 2903 assert(Updated.count(KVPair.first) && "record for non-live value"); 2904 #endif 2905 2906 Info.LiveSet = Updated; 2907 } 2908