xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 73c7f26035455b27e4bedb9eda519ef2f3e715ba)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Rewrite an existing set of gc.statepoints such that they make potential
11 // relocations performed by the garbage collector explicit in the IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Pass.h"
16 #include "llvm/Analysis/CFG.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstIterator.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/IR/Statepoint.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/IR/Verifier.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Transforms/Utils/Cloning.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
45 
46 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
47 
48 using namespace llvm;
49 
50 // Print the liveset found at the insert location
51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
52                                   cl::init(false));
53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
54                                       cl::init(false));
55 // Print out the base pointers for debugging
56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
57                                        cl::init(false));
58 
59 // Cost threshold measuring when it is profitable to rematerialize value instead
60 // of relocating it
61 static cl::opt<unsigned>
62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
63                            cl::init(6));
64 
65 #ifdef EXPENSIVE_CHECKS
66 static bool ClobberNonLive = true;
67 #else
68 static bool ClobberNonLive = false;
69 #endif
70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
71                                                   cl::location(ClobberNonLive),
72                                                   cl::Hidden);
73 
74 static cl::opt<bool>
75     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
76                                    cl::Hidden, cl::init(true));
77 
78 namespace {
79 struct RewriteStatepointsForGC : public ModulePass {
80   static char ID; // Pass identification, replacement for typeid
81 
82   RewriteStatepointsForGC() : ModulePass(ID) {
83     initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
84   }
85   bool runOnFunction(Function &F);
86   bool runOnModule(Module &M) override {
87     bool Changed = false;
88     for (Function &F : M)
89       Changed |= runOnFunction(F);
90 
91     if (Changed) {
92       // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
93       // returns true for at least one function in the module.  Since at least
94       // one function changed, we know that the precondition is satisfied.
95       stripNonValidAttributes(M);
96     }
97 
98     return Changed;
99   }
100 
101   void getAnalysisUsage(AnalysisUsage &AU) const override {
102     // We add and rewrite a bunch of instructions, but don't really do much
103     // else.  We could in theory preserve a lot more analyses here.
104     AU.addRequired<DominatorTreeWrapperPass>();
105     AU.addRequired<TargetTransformInfoWrapperPass>();
106   }
107 
108   /// The IR fed into RewriteStatepointsForGC may have had attributes implying
109   /// dereferenceability that are no longer valid/correct after
110   /// RewriteStatepointsForGC has run.  This is because semantically, after
111   /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
112   /// heap.  stripNonValidAttributes (conservatively) restores correctness
113   /// by erasing all attributes in the module that externally imply
114   /// dereferenceability.
115   /// Similar reasoning also applies to the noalias attributes. gc.statepoint
116   /// can touch the entire heap including noalias objects.
117   void stripNonValidAttributes(Module &M);
118 
119   // Helpers for stripNonValidAttributes
120   void stripNonValidAttributesFromBody(Function &F);
121   void stripNonValidAttributesFromPrototype(Function &F);
122 };
123 } // namespace
124 
125 char RewriteStatepointsForGC::ID = 0;
126 
127 ModulePass *llvm::createRewriteStatepointsForGCPass() {
128   return new RewriteStatepointsForGC();
129 }
130 
131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
132                       "Make relocations explicit at statepoints", false, false)
133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
136                     "Make relocations explicit at statepoints", false, false)
137 
138 namespace {
139 struct GCPtrLivenessData {
140   /// Values defined in this block.
141   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
142   /// Values used in this block (and thus live); does not included values
143   /// killed within this block.
144   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
145 
146   /// Values live into this basic block (i.e. used by any
147   /// instruction in this basic block or ones reachable from here)
148   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
149 
150   /// Values live out of this basic block (i.e. live into
151   /// any successor block)
152   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
153 };
154 
155 // The type of the internal cache used inside the findBasePointers family
156 // of functions.  From the callers perspective, this is an opaque type and
157 // should not be inspected.
158 //
159 // In the actual implementation this caches two relations:
160 // - The base relation itself (i.e. this pointer is based on that one)
161 // - The base defining value relation (i.e. before base_phi insertion)
162 // Generally, after the execution of a full findBasePointer call, only the
163 // base relation will remain.  Internally, we add a mixture of the two
164 // types, then update all the second type to the first type
165 typedef MapVector<Value *, Value *> DefiningValueMapTy;
166 typedef SetVector<Value *> StatepointLiveSetTy;
167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>>
168   RematerializedValueMapTy;
169 
170 struct PartiallyConstructedSafepointRecord {
171   /// The set of values known to be live across this safepoint
172   StatepointLiveSetTy LiveSet;
173 
174   /// Mapping from live pointers to a base-defining-value
175   MapVector<Value *, Value *> PointerToBase;
176 
177   /// The *new* gc.statepoint instruction itself.  This produces the token
178   /// that normal path gc.relocates and the gc.result are tied to.
179   Instruction *StatepointToken;
180 
181   /// Instruction to which exceptional gc relocates are attached
182   /// Makes it easier to iterate through them during relocationViaAlloca.
183   Instruction *UnwindToken;
184 
185   /// Record live values we are rematerialized instead of relocating.
186   /// They are not included into 'LiveSet' field.
187   /// Maps rematerialized copy to it's original value.
188   RematerializedValueMapTy RematerializedValues;
189 };
190 }
191 
192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
193   Optional<OperandBundleUse> DeoptBundle =
194       CS.getOperandBundle(LLVMContext::OB_deopt);
195 
196   if (!DeoptBundle.hasValue()) {
197     assert(AllowStatepointWithNoDeoptInfo &&
198            "Found non-leaf call without deopt info!");
199     return None;
200   }
201 
202   return DeoptBundle.getValue().Inputs;
203 }
204 
205 /// Compute the live-in set for every basic block in the function
206 static void computeLiveInValues(DominatorTree &DT, Function &F,
207                                 GCPtrLivenessData &Data);
208 
209 /// Given results from the dataflow liveness computation, find the set of live
210 /// Values at a particular instruction.
211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
212                               StatepointLiveSetTy &out);
213 
214 // TODO: Once we can get to the GCStrategy, this becomes
215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
216 
217 static bool isGCPointerType(Type *T) {
218   if (auto *PT = dyn_cast<PointerType>(T))
219     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
220     // GC managed heap.  We know that a pointer into this heap needs to be
221     // updated and that no other pointer does.
222     return PT->getAddressSpace() == 1;
223   return false;
224 }
225 
226 // Return true if this type is one which a) is a gc pointer or contains a GC
227 // pointer and b) is of a type this code expects to encounter as a live value.
228 // (The insertion code will assert that a type which matches (a) and not (b)
229 // is not encountered.)
230 static bool isHandledGCPointerType(Type *T) {
231   // We fully support gc pointers
232   if (isGCPointerType(T))
233     return true;
234   // We partially support vectors of gc pointers. The code will assert if it
235   // can't handle something.
236   if (auto VT = dyn_cast<VectorType>(T))
237     if (isGCPointerType(VT->getElementType()))
238       return true;
239   return false;
240 }
241 
242 #ifndef NDEBUG
243 /// Returns true if this type contains a gc pointer whether we know how to
244 /// handle that type or not.
245 static bool containsGCPtrType(Type *Ty) {
246   if (isGCPointerType(Ty))
247     return true;
248   if (VectorType *VT = dyn_cast<VectorType>(Ty))
249     return isGCPointerType(VT->getScalarType());
250   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
251     return containsGCPtrType(AT->getElementType());
252   if (StructType *ST = dyn_cast<StructType>(Ty))
253     return any_of(ST->subtypes(), containsGCPtrType);
254   return false;
255 }
256 
257 // Returns true if this is a type which a) is a gc pointer or contains a GC
258 // pointer and b) is of a type which the code doesn't expect (i.e. first class
259 // aggregates).  Used to trip assertions.
260 static bool isUnhandledGCPointerType(Type *Ty) {
261   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
262 }
263 #endif
264 
265 // Return the name of the value suffixed with the provided value, or if the
266 // value didn't have a name, the default value specified.
267 static std::string suffixed_name_or(Value *V, StringRef Suffix,
268                                     StringRef DefaultName) {
269   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
270 }
271 
272 // Conservatively identifies any definitions which might be live at the
273 // given instruction. The  analysis is performed immediately before the
274 // given instruction. Values defined by that instruction are not considered
275 // live.  Values used by that instruction are considered live.
276 static void
277 analyzeParsePointLiveness(DominatorTree &DT,
278                           GCPtrLivenessData &OriginalLivenessData, CallSite CS,
279                           PartiallyConstructedSafepointRecord &Result) {
280   Instruction *Inst = CS.getInstruction();
281 
282   StatepointLiveSetTy LiveSet;
283   findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet);
284 
285   if (PrintLiveSet) {
286     dbgs() << "Live Variables:\n";
287     for (Value *V : LiveSet)
288       dbgs() << " " << V->getName() << " " << *V << "\n";
289   }
290   if (PrintLiveSetSize) {
291     dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
292     dbgs() << "Number live values: " << LiveSet.size() << "\n";
293   }
294   Result.LiveSet = LiveSet;
295 }
296 
297 static bool isKnownBaseResult(Value *V);
298 namespace {
299 /// A single base defining value - An immediate base defining value for an
300 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
301 /// For instructions which have multiple pointer [vector] inputs or that
302 /// transition between vector and scalar types, there is no immediate base
303 /// defining value.  The 'base defining value' for 'Def' is the transitive
304 /// closure of this relation stopping at the first instruction which has no
305 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
306 /// but it can also be an arbitrary derived pointer.
307 struct BaseDefiningValueResult {
308   /// Contains the value which is the base defining value.
309   Value * const BDV;
310   /// True if the base defining value is also known to be an actual base
311   /// pointer.
312   const bool IsKnownBase;
313   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
314     : BDV(BDV), IsKnownBase(IsKnownBase) {
315 #ifndef NDEBUG
316     // Check consistency between new and old means of checking whether a BDV is
317     // a base.
318     bool MustBeBase = isKnownBaseResult(BDV);
319     assert(!MustBeBase || MustBeBase == IsKnownBase);
320 #endif
321   }
322 };
323 }
324 
325 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
326 
327 /// Return a base defining value for the 'Index' element of the given vector
328 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
329 /// 'I'.  As an optimization, this method will try to determine when the
330 /// element is known to already be a base pointer.  If this can be established,
331 /// the second value in the returned pair will be true.  Note that either a
332 /// vector or a pointer typed value can be returned.  For the former, the
333 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
334 /// If the later, the return pointer is a BDV (or possibly a base) for the
335 /// particular element in 'I'.
336 static BaseDefiningValueResult
337 findBaseDefiningValueOfVector(Value *I) {
338   // Each case parallels findBaseDefiningValue below, see that code for
339   // detailed motivation.
340 
341   if (isa<Argument>(I))
342     // An incoming argument to the function is a base pointer
343     return BaseDefiningValueResult(I, true);
344 
345   if (isa<Constant>(I))
346     // Base of constant vector consists only of constant null pointers.
347     // For reasoning see similar case inside 'findBaseDefiningValue' function.
348     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
349                                    true);
350 
351   if (isa<LoadInst>(I))
352     return BaseDefiningValueResult(I, true);
353 
354   if (isa<InsertElementInst>(I))
355     // We don't know whether this vector contains entirely base pointers or
356     // not.  To be conservatively correct, we treat it as a BDV and will
357     // duplicate code as needed to construct a parallel vector of bases.
358     return BaseDefiningValueResult(I, false);
359 
360   if (isa<ShuffleVectorInst>(I))
361     // We don't know whether this vector contains entirely base pointers or
362     // not.  To be conservatively correct, we treat it as a BDV and will
363     // duplicate code as needed to construct a parallel vector of bases.
364     // TODO: There a number of local optimizations which could be applied here
365     // for particular sufflevector patterns.
366     return BaseDefiningValueResult(I, false);
367 
368   // A PHI or Select is a base defining value.  The outer findBasePointer
369   // algorithm is responsible for constructing a base value for this BDV.
370   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
371          "unknown vector instruction - no base found for vector element");
372   return BaseDefiningValueResult(I, false);
373 }
374 
375 /// Helper function for findBasePointer - Will return a value which either a)
376 /// defines the base pointer for the input, b) blocks the simple search
377 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
378 /// from pointer to vector type or back.
379 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
380   assert(I->getType()->isPtrOrPtrVectorTy() &&
381          "Illegal to ask for the base pointer of a non-pointer type");
382 
383   if (I->getType()->isVectorTy())
384     return findBaseDefiningValueOfVector(I);
385 
386   if (isa<Argument>(I))
387     // An incoming argument to the function is a base pointer
388     // We should have never reached here if this argument isn't an gc value
389     return BaseDefiningValueResult(I, true);
390 
391   if (isa<Constant>(I)) {
392     // We assume that objects with a constant base (e.g. a global) can't move
393     // and don't need to be reported to the collector because they are always
394     // live. Besides global references, all kinds of constants (e.g. undef,
395     // constant expressions, null pointers) can be introduced by the inliner or
396     // the optimizer, especially on dynamically dead paths.
397     // Here we treat all of them as having single null base. By doing this we
398     // trying to avoid problems reporting various conflicts in a form of
399     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
400     // See constant.ll file for relevant test cases.
401 
402     return BaseDefiningValueResult(
403         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
404   }
405 
406   if (CastInst *CI = dyn_cast<CastInst>(I)) {
407     Value *Def = CI->stripPointerCasts();
408     // If stripping pointer casts changes the address space there is an
409     // addrspacecast in between.
410     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
411                cast<PointerType>(CI->getType())->getAddressSpace() &&
412            "unsupported addrspacecast");
413     // If we find a cast instruction here, it means we've found a cast which is
414     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
415     // handle int->ptr conversion.
416     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
417     return findBaseDefiningValue(Def);
418   }
419 
420   if (isa<LoadInst>(I))
421     // The value loaded is an gc base itself
422     return BaseDefiningValueResult(I, true);
423 
424 
425   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
426     // The base of this GEP is the base
427     return findBaseDefiningValue(GEP->getPointerOperand());
428 
429   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
430     switch (II->getIntrinsicID()) {
431     default:
432       // fall through to general call handling
433       break;
434     case Intrinsic::experimental_gc_statepoint:
435       llvm_unreachable("statepoints don't produce pointers");
436     case Intrinsic::experimental_gc_relocate: {
437       // Rerunning safepoint insertion after safepoints are already
438       // inserted is not supported.  It could probably be made to work,
439       // but why are you doing this?  There's no good reason.
440       llvm_unreachable("repeat safepoint insertion is not supported");
441     }
442     case Intrinsic::gcroot:
443       // Currently, this mechanism hasn't been extended to work with gcroot.
444       // There's no reason it couldn't be, but I haven't thought about the
445       // implications much.
446       llvm_unreachable(
447           "interaction with the gcroot mechanism is not supported");
448     }
449   }
450   // We assume that functions in the source language only return base
451   // pointers.  This should probably be generalized via attributes to support
452   // both source language and internal functions.
453   if (isa<CallInst>(I) || isa<InvokeInst>(I))
454     return BaseDefiningValueResult(I, true);
455 
456   // I have absolutely no idea how to implement this part yet.  It's not
457   // necessarily hard, I just haven't really looked at it yet.
458   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
459 
460   if (isa<AtomicCmpXchgInst>(I))
461     // A CAS is effectively a atomic store and load combined under a
462     // predicate.  From the perspective of base pointers, we just treat it
463     // like a load.
464     return BaseDefiningValueResult(I, true);
465 
466   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
467                                    "binary ops which don't apply to pointers");
468 
469   // The aggregate ops.  Aggregates can either be in the heap or on the
470   // stack, but in either case, this is simply a field load.  As a result,
471   // this is a defining definition of the base just like a load is.
472   if (isa<ExtractValueInst>(I))
473     return BaseDefiningValueResult(I, true);
474 
475   // We should never see an insert vector since that would require we be
476   // tracing back a struct value not a pointer value.
477   assert(!isa<InsertValueInst>(I) &&
478          "Base pointer for a struct is meaningless");
479 
480   // An extractelement produces a base result exactly when it's input does.
481   // We may need to insert a parallel instruction to extract the appropriate
482   // element out of the base vector corresponding to the input. Given this,
483   // it's analogous to the phi and select case even though it's not a merge.
484   if (isa<ExtractElementInst>(I))
485     // Note: There a lot of obvious peephole cases here.  This are deliberately
486     // handled after the main base pointer inference algorithm to make writing
487     // test cases to exercise that code easier.
488     return BaseDefiningValueResult(I, false);
489 
490   // The last two cases here don't return a base pointer.  Instead, they
491   // return a value which dynamically selects from among several base
492   // derived pointers (each with it's own base potentially).  It's the job of
493   // the caller to resolve these.
494   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
495          "missing instruction case in findBaseDefiningValing");
496   return BaseDefiningValueResult(I, false);
497 }
498 
499 /// Returns the base defining value for this value.
500 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
501   Value *&Cached = Cache[I];
502   if (!Cached) {
503     Cached = findBaseDefiningValue(I).BDV;
504     DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
505                  << Cached->getName() << "\n");
506   }
507   assert(Cache[I] != nullptr);
508   return Cached;
509 }
510 
511 /// Return a base pointer for this value if known.  Otherwise, return it's
512 /// base defining value.
513 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
514   Value *Def = findBaseDefiningValueCached(I, Cache);
515   auto Found = Cache.find(Def);
516   if (Found != Cache.end()) {
517     // Either a base-of relation, or a self reference.  Caller must check.
518     return Found->second;
519   }
520   // Only a BDV available
521   return Def;
522 }
523 
524 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
525 /// is it known to be a base pointer?  Or do we need to continue searching.
526 static bool isKnownBaseResult(Value *V) {
527   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
528       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
529       !isa<ShuffleVectorInst>(V)) {
530     // no recursion possible
531     return true;
532   }
533   if (isa<Instruction>(V) &&
534       cast<Instruction>(V)->getMetadata("is_base_value")) {
535     // This is a previously inserted base phi or select.  We know
536     // that this is a base value.
537     return true;
538   }
539 
540   // We need to keep searching
541   return false;
542 }
543 
544 namespace {
545 /// Models the state of a single base defining value in the findBasePointer
546 /// algorithm for determining where a new instruction is needed to propagate
547 /// the base of this BDV.
548 class BDVState {
549 public:
550   enum Status { Unknown, Base, Conflict };
551 
552   BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
553     assert(status != Base || b);
554   }
555   explicit BDVState(Value *b) : status(Base), base(b) {}
556   BDVState() : status(Unknown), base(nullptr) {}
557 
558   Status getStatus() const { return status; }
559   Value *getBase() const { return base; }
560 
561   bool isBase() const { return getStatus() == Base; }
562   bool isUnknown() const { return getStatus() == Unknown; }
563   bool isConflict() const { return getStatus() == Conflict; }
564 
565   bool operator==(const BDVState &other) const {
566     return base == other.base && status == other.status;
567   }
568 
569   bool operator!=(const BDVState &other) const { return !(*this == other); }
570 
571   LLVM_DUMP_METHOD
572   void dump() const { print(dbgs()); dbgs() << '\n'; }
573 
574   void print(raw_ostream &OS) const {
575     switch (status) {
576     case Unknown:
577       OS << "U";
578       break;
579     case Base:
580       OS << "B";
581       break;
582     case Conflict:
583       OS << "C";
584       break;
585     };
586     OS << " (" << base << " - "
587        << (base ? base->getName() : "nullptr") << "): ";
588   }
589 
590 private:
591   Status status;
592   AssertingVH<Value> base; // non null only if status == base
593 };
594 }
595 
596 #ifndef NDEBUG
597 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
598   State.print(OS);
599   return OS;
600 }
601 #endif
602 
603 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
604   switch (LHS.getStatus()) {
605   case BDVState::Unknown:
606     return RHS;
607 
608   case BDVState::Base:
609     assert(LHS.getBase() && "can't be null");
610     if (RHS.isUnknown())
611       return LHS;
612 
613     if (RHS.isBase()) {
614       if (LHS.getBase() == RHS.getBase()) {
615         assert(LHS == RHS && "equality broken!");
616         return LHS;
617       }
618       return BDVState(BDVState::Conflict);
619     }
620     assert(RHS.isConflict() && "only three states!");
621     return BDVState(BDVState::Conflict);
622 
623   case BDVState::Conflict:
624     return LHS;
625   }
626   llvm_unreachable("only three states!");
627 }
628 
629 // Values of type BDVState form a lattice, and this function implements the meet
630 // operation.
631 static BDVState meetBDVState(BDVState LHS, BDVState RHS) {
632   BDVState Result = meetBDVStateImpl(LHS, RHS);
633   assert(Result == meetBDVStateImpl(RHS, LHS) &&
634          "Math is wrong: meet does not commute!");
635   return Result;
636 }
637 
638 /// For a given value or instruction, figure out what base ptr its derived from.
639 /// For gc objects, this is simply itself.  On success, returns a value which is
640 /// the base pointer.  (This is reliable and can be used for relocation.)  On
641 /// failure, returns nullptr.
642 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
643   Value *Def = findBaseOrBDV(I, Cache);
644 
645   if (isKnownBaseResult(Def))
646     return Def;
647 
648   // Here's the rough algorithm:
649   // - For every SSA value, construct a mapping to either an actual base
650   //   pointer or a PHI which obscures the base pointer.
651   // - Construct a mapping from PHI to unknown TOP state.  Use an
652   //   optimistic algorithm to propagate base pointer information.  Lattice
653   //   looks like:
654   //   UNKNOWN
655   //   b1 b2 b3 b4
656   //   CONFLICT
657   //   When algorithm terminates, all PHIs will either have a single concrete
658   //   base or be in a conflict state.
659   // - For every conflict, insert a dummy PHI node without arguments.  Add
660   //   these to the base[Instruction] = BasePtr mapping.  For every
661   //   non-conflict, add the actual base.
662   //  - For every conflict, add arguments for the base[a] of each input
663   //   arguments.
664   //
665   // Note: A simpler form of this would be to add the conflict form of all
666   // PHIs without running the optimistic algorithm.  This would be
667   // analogous to pessimistic data flow and would likely lead to an
668   // overall worse solution.
669 
670 #ifndef NDEBUG
671   auto isExpectedBDVType = [](Value *BDV) {
672     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
673            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
674   };
675 #endif
676 
677   // Once populated, will contain a mapping from each potentially non-base BDV
678   // to a lattice value (described above) which corresponds to that BDV.
679   // We use the order of insertion (DFS over the def/use graph) to provide a
680   // stable deterministic ordering for visiting DenseMaps (which are unordered)
681   // below.  This is important for deterministic compilation.
682   MapVector<Value *, BDVState> States;
683 
684   // Recursively fill in all base defining values reachable from the initial
685   // one for which we don't already know a definite base value for
686   /* scope */ {
687     SmallVector<Value*, 16> Worklist;
688     Worklist.push_back(Def);
689     States.insert({Def, BDVState()});
690     while (!Worklist.empty()) {
691       Value *Current = Worklist.pop_back_val();
692       assert(!isKnownBaseResult(Current) && "why did it get added?");
693 
694       auto visitIncomingValue = [&](Value *InVal) {
695         Value *Base = findBaseOrBDV(InVal, Cache);
696         if (isKnownBaseResult(Base))
697           // Known bases won't need new instructions introduced and can be
698           // ignored safely
699           return;
700         assert(isExpectedBDVType(Base) && "the only non-base values "
701                "we see should be base defining values");
702         if (States.insert(std::make_pair(Base, BDVState())).second)
703           Worklist.push_back(Base);
704       };
705       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
706         for (Value *InVal : PN->incoming_values())
707           visitIncomingValue(InVal);
708       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
709         visitIncomingValue(SI->getTrueValue());
710         visitIncomingValue(SI->getFalseValue());
711       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
712         visitIncomingValue(EE->getVectorOperand());
713       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
714         visitIncomingValue(IE->getOperand(0)); // vector operand
715         visitIncomingValue(IE->getOperand(1)); // scalar operand
716       } else {
717         // There is one known class of instructions we know we don't handle.
718         assert(isa<ShuffleVectorInst>(Current));
719         llvm_unreachable("Unimplemented instruction case");
720       }
721     }
722   }
723 
724 #ifndef NDEBUG
725   DEBUG(dbgs() << "States after initialization:\n");
726   for (auto Pair : States)
727     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
728 #endif
729 
730   // Return a phi state for a base defining value.  We'll generate a new
731   // base state for known bases and expect to find a cached state otherwise.
732   auto getStateForBDV = [&](Value *baseValue) {
733     if (isKnownBaseResult(baseValue))
734       return BDVState(baseValue);
735     auto I = States.find(baseValue);
736     assert(I != States.end() && "lookup failed!");
737     return I->second;
738   };
739 
740   bool Progress = true;
741   while (Progress) {
742 #ifndef NDEBUG
743     const size_t OldSize = States.size();
744 #endif
745     Progress = false;
746     // We're only changing values in this loop, thus safe to keep iterators.
747     // Since this is computing a fixed point, the order of visit does not
748     // effect the result.  TODO: We could use a worklist here and make this run
749     // much faster.
750     for (auto Pair : States) {
751       Value *BDV = Pair.first;
752       assert(!isKnownBaseResult(BDV) && "why did it get added?");
753 
754       // Given an input value for the current instruction, return a BDVState
755       // instance which represents the BDV of that value.
756       auto getStateForInput = [&](Value *V) mutable {
757         Value *BDV = findBaseOrBDV(V, Cache);
758         return getStateForBDV(BDV);
759       };
760 
761       BDVState NewState;
762       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
763         NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
764         NewState =
765             meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
766       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
767         for (Value *Val : PN->incoming_values())
768           NewState = meetBDVState(NewState, getStateForInput(Val));
769       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
770         // The 'meet' for an extractelement is slightly trivial, but it's still
771         // useful in that it drives us to conflict if our input is.
772         NewState =
773             meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
774       } else {
775         // Given there's a inherent type mismatch between the operands, will
776         // *always* produce Conflict.
777         auto *IE = cast<InsertElementInst>(BDV);
778         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
779         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
780       }
781 
782       BDVState OldState = States[BDV];
783       if (OldState != NewState) {
784         Progress = true;
785         States[BDV] = NewState;
786       }
787     }
788 
789     assert(OldSize == States.size() &&
790            "fixed point shouldn't be adding any new nodes to state");
791   }
792 
793 #ifndef NDEBUG
794   DEBUG(dbgs() << "States after meet iteration:\n");
795   for (auto Pair : States)
796     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
797 #endif
798 
799   // Insert Phis for all conflicts
800   // TODO: adjust naming patterns to avoid this order of iteration dependency
801   for (auto Pair : States) {
802     Instruction *I = cast<Instruction>(Pair.first);
803     BDVState State = Pair.second;
804     assert(!isKnownBaseResult(I) && "why did it get added?");
805     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
806 
807     // extractelement instructions are a bit special in that we may need to
808     // insert an extract even when we know an exact base for the instruction.
809     // The problem is that we need to convert from a vector base to a scalar
810     // base for the particular indice we're interested in.
811     if (State.isBase() && isa<ExtractElementInst>(I) &&
812         isa<VectorType>(State.getBase()->getType())) {
813       auto *EE = cast<ExtractElementInst>(I);
814       // TODO: In many cases, the new instruction is just EE itself.  We should
815       // exploit this, but can't do it here since it would break the invariant
816       // about the BDV not being known to be a base.
817       auto *BaseInst = ExtractElementInst::Create(
818           State.getBase(), EE->getIndexOperand(), "base_ee", EE);
819       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
820       States[I] = BDVState(BDVState::Base, BaseInst);
821     }
822 
823     // Since we're joining a vector and scalar base, they can never be the
824     // same.  As a result, we should always see insert element having reached
825     // the conflict state.
826     assert(!isa<InsertElementInst>(I) || State.isConflict());
827 
828     if (!State.isConflict())
829       continue;
830 
831     /// Create and insert a new instruction which will represent the base of
832     /// the given instruction 'I'.
833     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
834       if (isa<PHINode>(I)) {
835         BasicBlock *BB = I->getParent();
836         int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
837         assert(NumPreds > 0 && "how did we reach here");
838         std::string Name = suffixed_name_or(I, ".base", "base_phi");
839         return PHINode::Create(I->getType(), NumPreds, Name, I);
840       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
841         // The undef will be replaced later
842         UndefValue *Undef = UndefValue::get(SI->getType());
843         std::string Name = suffixed_name_or(I, ".base", "base_select");
844         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
845       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
846         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
847         std::string Name = suffixed_name_or(I, ".base", "base_ee");
848         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
849                                           EE);
850       } else {
851         auto *IE = cast<InsertElementInst>(I);
852         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
853         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
854         std::string Name = suffixed_name_or(I, ".base", "base_ie");
855         return InsertElementInst::Create(VecUndef, ScalarUndef,
856                                          IE->getOperand(2), Name, IE);
857       }
858     };
859     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
860     // Add metadata marking this as a base value
861     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
862     States[I] = BDVState(BDVState::Conflict, BaseInst);
863   }
864 
865   // Returns a instruction which produces the base pointer for a given
866   // instruction.  The instruction is assumed to be an input to one of the BDVs
867   // seen in the inference algorithm above.  As such, we must either already
868   // know it's base defining value is a base, or have inserted a new
869   // instruction to propagate the base of it's BDV and have entered that newly
870   // introduced instruction into the state table.  In either case, we are
871   // assured to be able to determine an instruction which produces it's base
872   // pointer.
873   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
874     Value *BDV = findBaseOrBDV(Input, Cache);
875     Value *Base = nullptr;
876     if (isKnownBaseResult(BDV)) {
877       Base = BDV;
878     } else {
879       // Either conflict or base.
880       assert(States.count(BDV));
881       Base = States[BDV].getBase();
882     }
883     assert(Base && "Can't be null");
884     // The cast is needed since base traversal may strip away bitcasts
885     if (Base->getType() != Input->getType() && InsertPt)
886       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
887     return Base;
888   };
889 
890   // Fixup all the inputs of the new PHIs.  Visit order needs to be
891   // deterministic and predictable because we're naming newly created
892   // instructions.
893   for (auto Pair : States) {
894     Instruction *BDV = cast<Instruction>(Pair.first);
895     BDVState State = Pair.second;
896 
897     assert(!isKnownBaseResult(BDV) && "why did it get added?");
898     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
899     if (!State.isConflict())
900       continue;
901 
902     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBase())) {
903       PHINode *PN = cast<PHINode>(BDV);
904       unsigned NumPHIValues = PN->getNumIncomingValues();
905       for (unsigned i = 0; i < NumPHIValues; i++) {
906         Value *InVal = PN->getIncomingValue(i);
907         BasicBlock *InBB = PN->getIncomingBlock(i);
908 
909         // If we've already seen InBB, add the same incoming value
910         // we added for it earlier.  The IR verifier requires phi
911         // nodes with multiple entries from the same basic block
912         // to have the same incoming value for each of those
913         // entries.  If we don't do this check here and basephi
914         // has a different type than base, we'll end up adding two
915         // bitcasts (and hence two distinct values) as incoming
916         // values for the same basic block.
917 
918         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
919         if (BlockIndex != -1) {
920           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
921           BasePHI->addIncoming(OldBase, InBB);
922 
923 #ifndef NDEBUG
924           Value *Base = getBaseForInput(InVal, nullptr);
925           // In essence this assert states: the only way two values
926           // incoming from the same basic block may be different is by
927           // being different bitcasts of the same value.  A cleanup
928           // that remains TODO is changing findBaseOrBDV to return an
929           // llvm::Value of the correct type (and still remain pure).
930           // This will remove the need to add bitcasts.
931           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
932                  "Sanity -- findBaseOrBDV should be pure!");
933 #endif
934           continue;
935         }
936 
937         // Find the instruction which produces the base for each input.  We may
938         // need to insert a bitcast in the incoming block.
939         // TODO: Need to split critical edges if insertion is needed
940         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
941         BasePHI->addIncoming(Base, InBB);
942       }
943       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
944     } else if (SelectInst *BaseSI = dyn_cast<SelectInst>(State.getBase())) {
945       SelectInst *SI = cast<SelectInst>(BDV);
946 
947       // Find the instruction which produces the base for each input.
948       // We may need to insert a bitcast.
949       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
950       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
951     } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) {
952       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
953       // Find the instruction which produces the base for each input.  We may
954       // need to insert a bitcast.
955       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
956     } else {
957       auto *BaseIE = cast<InsertElementInst>(State.getBase());
958       auto *BdvIE = cast<InsertElementInst>(BDV);
959       auto UpdateOperand = [&](int OperandIdx) {
960         Value *InVal = BdvIE->getOperand(OperandIdx);
961         Value *Base = getBaseForInput(InVal, BaseIE);
962         BaseIE->setOperand(OperandIdx, Base);
963       };
964       UpdateOperand(0); // vector operand
965       UpdateOperand(1); // scalar operand
966     }
967   }
968 
969   // Cache all of our results so we can cheaply reuse them
970   // NOTE: This is actually two caches: one of the base defining value
971   // relation and one of the base pointer relation!  FIXME
972   for (auto Pair : States) {
973     auto *BDV = Pair.first;
974     Value *Base = Pair.second.getBase();
975     assert(BDV && Base);
976     assert(!isKnownBaseResult(BDV) && "why did it get added?");
977 
978     DEBUG(dbgs() << "Updating base value cache"
979                  << " for: " << BDV->getName() << " from: "
980                  << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
981                  << " to: " << Base->getName() << "\n");
982 
983     if (Cache.count(BDV)) {
984       assert(isKnownBaseResult(Base) &&
985              "must be something we 'know' is a base pointer");
986       // Once we transition from the BDV relation being store in the Cache to
987       // the base relation being stored, it must be stable
988       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
989              "base relation should be stable");
990     }
991     Cache[BDV] = Base;
992   }
993   assert(Cache.count(Def));
994   return Cache[Def];
995 }
996 
997 // For a set of live pointers (base and/or derived), identify the base
998 // pointer of the object which they are derived from.  This routine will
999 // mutate the IR graph as needed to make the 'base' pointer live at the
1000 // definition site of 'derived'.  This ensures that any use of 'derived' can
1001 // also use 'base'.  This may involve the insertion of a number of
1002 // additional PHI nodes.
1003 //
1004 // preconditions: live is a set of pointer type Values
1005 //
1006 // side effects: may insert PHI nodes into the existing CFG, will preserve
1007 // CFG, will not remove or mutate any existing nodes
1008 //
1009 // post condition: PointerToBase contains one (derived, base) pair for every
1010 // pointer in live.  Note that derived can be equal to base if the original
1011 // pointer was a base pointer.
1012 static void
1013 findBasePointers(const StatepointLiveSetTy &live,
1014                  MapVector<Value *, Value *> &PointerToBase,
1015                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1016   for (Value *ptr : live) {
1017     Value *base = findBasePointer(ptr, DVCache);
1018     assert(base && "failed to find base pointer");
1019     PointerToBase[ptr] = base;
1020     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1021             DT->dominates(cast<Instruction>(base)->getParent(),
1022                           cast<Instruction>(ptr)->getParent())) &&
1023            "The base we found better dominate the derived pointer");
1024   }
1025 }
1026 
1027 /// Find the required based pointers (and adjust the live set) for the given
1028 /// parse point.
1029 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1030                              CallSite CS,
1031                              PartiallyConstructedSafepointRecord &result) {
1032   MapVector<Value *, Value *> PointerToBase;
1033   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1034 
1035   if (PrintBasePointers) {
1036     errs() << "Base Pairs (w/o Relocation):\n";
1037     for (auto &Pair : PointerToBase) {
1038       errs() << " derived ";
1039       Pair.first->printAsOperand(errs(), false);
1040       errs() << " base ";
1041       Pair.second->printAsOperand(errs(), false);
1042       errs() << "\n";;
1043     }
1044   }
1045 
1046   result.PointerToBase = PointerToBase;
1047 }
1048 
1049 /// Given an updated version of the dataflow liveness results, update the
1050 /// liveset and base pointer maps for the call site CS.
1051 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1052                                   CallSite CS,
1053                                   PartiallyConstructedSafepointRecord &result);
1054 
1055 static void recomputeLiveInValues(
1056     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1057     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1058   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1059   // again.  The old values are still live and will help it stabilize quickly.
1060   GCPtrLivenessData RevisedLivenessData;
1061   computeLiveInValues(DT, F, RevisedLivenessData);
1062   for (size_t i = 0; i < records.size(); i++) {
1063     struct PartiallyConstructedSafepointRecord &info = records[i];
1064     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1065   }
1066 }
1067 
1068 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1069 // no uses of the original value / return value between the gc.statepoint and
1070 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1071 // starting one of the successor blocks.  We also need to be able to insert the
1072 // gc.relocates only on the path which goes through the statepoint.  We might
1073 // need to split an edge to make this possible.
1074 static BasicBlock *
1075 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1076                             DominatorTree &DT) {
1077   BasicBlock *Ret = BB;
1078   if (!BB->getUniquePredecessor())
1079     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1080 
1081   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1082   // from it
1083   FoldSingleEntryPHINodes(Ret);
1084   assert(!isa<PHINode>(Ret->begin()) &&
1085          "All PHI nodes should have been removed!");
1086 
1087   // At this point, we can safely insert a gc.relocate or gc.result as the first
1088   // instruction in Ret if needed.
1089   return Ret;
1090 }
1091 
1092 // Create new attribute set containing only attributes which can be transferred
1093 // from original call to the safepoint.
1094 static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1095   AttributeSet Ret;
1096 
1097   for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1098     unsigned Index = AS.getSlotIndex(Slot);
1099 
1100     if (Index == AttributeSet::ReturnIndex ||
1101         Index == AttributeSet::FunctionIndex) {
1102 
1103       for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
1104 
1105         // Do not allow certain attributes - just skip them
1106         // Safepoint can not be read only or read none.
1107         if (Attr.hasAttribute(Attribute::ReadNone) ||
1108             Attr.hasAttribute(Attribute::ReadOnly))
1109           continue;
1110 
1111         // These attributes control the generation of the gc.statepoint call /
1112         // invoke itself; and once the gc.statepoint is in place, they're of no
1113         // use.
1114         if (isStatepointDirectiveAttr(Attr))
1115           continue;
1116 
1117         Ret = Ret.addAttributes(
1118             AS.getContext(), Index,
1119             AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
1120       }
1121     }
1122 
1123     // Just skip parameter attributes for now
1124   }
1125 
1126   return Ret;
1127 }
1128 
1129 /// Helper function to place all gc relocates necessary for the given
1130 /// statepoint.
1131 /// Inputs:
1132 ///   liveVariables - list of variables to be relocated.
1133 ///   liveStart - index of the first live variable.
1134 ///   basePtrs - base pointers.
1135 ///   statepointToken - statepoint instruction to which relocates should be
1136 ///   bound.
1137 ///   Builder - Llvm IR builder to be used to construct new calls.
1138 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1139                               const int LiveStart,
1140                               ArrayRef<Value *> BasePtrs,
1141                               Instruction *StatepointToken,
1142                               IRBuilder<> Builder) {
1143   if (LiveVariables.empty())
1144     return;
1145 
1146   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1147     auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
1148     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1149     size_t Index = std::distance(LiveVec.begin(), ValIt);
1150     assert(Index < LiveVec.size() && "Bug in std::find?");
1151     return Index;
1152   };
1153   Module *M = StatepointToken->getModule();
1154 
1155   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1156   // element type is i8 addrspace(1)*). We originally generated unique
1157   // declarations for each pointer type, but this proved problematic because
1158   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1159   // towards a single unified pointer type anyways, we can just cast everything
1160   // to an i8* of the right address space.  A bitcast is added later to convert
1161   // gc_relocate to the actual value's type.
1162   auto getGCRelocateDecl = [&] (Type *Ty) {
1163     assert(isHandledGCPointerType(Ty));
1164     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1165     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1166     if (auto *VT = dyn_cast<VectorType>(Ty))
1167       NewTy = VectorType::get(NewTy, VT->getNumElements());
1168     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1169                                      {NewTy});
1170   };
1171 
1172   // Lazily populated map from input types to the canonicalized form mentioned
1173   // in the comment above.  This should probably be cached somewhere more
1174   // broadly.
1175   DenseMap<Type*, Value*> TypeToDeclMap;
1176 
1177   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1178     // Generate the gc.relocate call and save the result
1179     Value *BaseIdx =
1180       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1181     Value *LiveIdx = Builder.getInt32(LiveStart + i);
1182 
1183     Type *Ty = LiveVariables[i]->getType();
1184     if (!TypeToDeclMap.count(Ty))
1185       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1186     Value *GCRelocateDecl = TypeToDeclMap[Ty];
1187 
1188     // only specify a debug name if we can give a useful one
1189     CallInst *Reloc = Builder.CreateCall(
1190         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1191         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1192     // Trick CodeGen into thinking there are lots of free registers at this
1193     // fake call.
1194     Reloc->setCallingConv(CallingConv::Cold);
1195   }
1196 }
1197 
1198 namespace {
1199 
1200 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1201 /// avoids having to worry about keeping around dangling pointers to Values.
1202 class DeferredReplacement {
1203   AssertingVH<Instruction> Old;
1204   AssertingVH<Instruction> New;
1205   bool IsDeoptimize = false;
1206 
1207   DeferredReplacement() {}
1208 
1209 public:
1210   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1211     assert(Old != New && Old && New &&
1212            "Cannot RAUW equal values or to / from null!");
1213 
1214     DeferredReplacement D;
1215     D.Old = Old;
1216     D.New = New;
1217     return D;
1218   }
1219 
1220   static DeferredReplacement createDelete(Instruction *ToErase) {
1221     DeferredReplacement D;
1222     D.Old = ToErase;
1223     return D;
1224   }
1225 
1226   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1227 #ifndef NDEBUG
1228     auto *F = cast<CallInst>(Old)->getCalledFunction();
1229     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1230            "Only way to construct a deoptimize deferred replacement");
1231 #endif
1232     DeferredReplacement D;
1233     D.Old = Old;
1234     D.IsDeoptimize = true;
1235     return D;
1236   }
1237 
1238   /// Does the task represented by this instance.
1239   void doReplacement() {
1240     Instruction *OldI = Old;
1241     Instruction *NewI = New;
1242 
1243     assert(OldI != NewI && "Disallowed at construction?!");
1244     assert((!IsDeoptimize || !New) &&
1245            "Deoptimize instrinsics are not replaced!");
1246 
1247     Old = nullptr;
1248     New = nullptr;
1249 
1250     if (NewI)
1251       OldI->replaceAllUsesWith(NewI);
1252 
1253     if (IsDeoptimize) {
1254       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1255       // not necessarilly be followed by the matching return.
1256       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1257       new UnreachableInst(RI->getContext(), RI);
1258       RI->eraseFromParent();
1259     }
1260 
1261     OldI->eraseFromParent();
1262   }
1263 };
1264 }
1265 
1266 static void
1267 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1268                            const SmallVectorImpl<Value *> &BasePtrs,
1269                            const SmallVectorImpl<Value *> &LiveVariables,
1270                            PartiallyConstructedSafepointRecord &Result,
1271                            std::vector<DeferredReplacement> &Replacements) {
1272   assert(BasePtrs.size() == LiveVariables.size());
1273 
1274   // Then go ahead and use the builder do actually do the inserts.  We insert
1275   // immediately before the previous instruction under the assumption that all
1276   // arguments will be available here.  We can't insert afterwards since we may
1277   // be replacing a terminator.
1278   Instruction *InsertBefore = CS.getInstruction();
1279   IRBuilder<> Builder(InsertBefore);
1280 
1281   ArrayRef<Value *> GCArgs(LiveVariables);
1282   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1283   uint32_t NumPatchBytes = 0;
1284   uint32_t Flags = uint32_t(StatepointFlags::None);
1285 
1286   ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
1287   ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
1288   ArrayRef<Use> TransitionArgs;
1289   if (auto TransitionBundle =
1290       CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
1291     Flags |= uint32_t(StatepointFlags::GCTransition);
1292     TransitionArgs = TransitionBundle->Inputs;
1293   }
1294 
1295   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1296   // with a return value, we lower then as never returning calls to
1297   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1298   bool IsDeoptimize = false;
1299 
1300   StatepointDirectives SD =
1301       parseStatepointDirectivesFromAttrs(CS.getAttributes());
1302   if (SD.NumPatchBytes)
1303     NumPatchBytes = *SD.NumPatchBytes;
1304   if (SD.StatepointID)
1305     StatepointID = *SD.StatepointID;
1306 
1307   Value *CallTarget = CS.getCalledValue();
1308   if (Function *F = dyn_cast<Function>(CallTarget)) {
1309     if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1310       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1311       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1312       // verifier does not allow taking the address of an intrinsic function.
1313 
1314       SmallVector<Type *, 8> DomainTy;
1315       for (Value *Arg : CallArgs)
1316         DomainTy.push_back(Arg->getType());
1317       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1318                                     /* isVarArg = */ false);
1319 
1320       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1321       // calls to @llvm.experimental.deoptimize with different argument types in
1322       // the same module.  This is fine -- we assume the frontend knew what it
1323       // was doing when generating this kind of IR.
1324       CallTarget =
1325           F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
1326 
1327       IsDeoptimize = true;
1328     }
1329   }
1330 
1331   // Create the statepoint given all the arguments
1332   Instruction *Token = nullptr;
1333   AttributeSet ReturnAttrs;
1334   if (CS.isCall()) {
1335     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1336     CallInst *Call = Builder.CreateGCStatepointCall(
1337         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1338         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1339 
1340     Call->setTailCall(ToReplace->isTailCall());
1341     Call->setCallingConv(ToReplace->getCallingConv());
1342 
1343     // Currently we will fail on parameter attributes and on certain
1344     // function attributes.
1345     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1346     // In case if we can handle this set of attributes - set up function attrs
1347     // directly on statepoint and return attrs later for gc_result intrinsic.
1348     Call->setAttributes(NewAttrs.getFnAttributes());
1349     ReturnAttrs = NewAttrs.getRetAttributes();
1350 
1351     Token = Call;
1352 
1353     // Put the following gc_result and gc_relocate calls immediately after the
1354     // the old call (which we're about to delete)
1355     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1356     Builder.SetInsertPoint(ToReplace->getNextNode());
1357     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1358   } else {
1359     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1360 
1361     // Insert the new invoke into the old block.  We'll remove the old one in a
1362     // moment at which point this will become the new terminator for the
1363     // original block.
1364     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1365         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1366         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1367         GCArgs, "statepoint_token");
1368 
1369     Invoke->setCallingConv(ToReplace->getCallingConv());
1370 
1371     // Currently we will fail on parameter attributes and on certain
1372     // function attributes.
1373     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1374     // In case if we can handle this set of attributes - set up function attrs
1375     // directly on statepoint and return attrs later for gc_result intrinsic.
1376     Invoke->setAttributes(NewAttrs.getFnAttributes());
1377     ReturnAttrs = NewAttrs.getRetAttributes();
1378 
1379     Token = Invoke;
1380 
1381     // Generate gc relocates in exceptional path
1382     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1383     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1384            UnwindBlock->getUniquePredecessor() &&
1385            "can't safely insert in this block!");
1386 
1387     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1388     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1389 
1390     // Attach exceptional gc relocates to the landingpad.
1391     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1392     Result.UnwindToken = ExceptionalToken;
1393 
1394     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1395     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1396                       Builder);
1397 
1398     // Generate gc relocates and returns for normal block
1399     BasicBlock *NormalDest = ToReplace->getNormalDest();
1400     assert(!isa<PHINode>(NormalDest->begin()) &&
1401            NormalDest->getUniquePredecessor() &&
1402            "can't safely insert in this block!");
1403 
1404     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1405 
1406     // gc relocates will be generated later as if it were regular call
1407     // statepoint
1408   }
1409   assert(Token && "Should be set in one of the above branches!");
1410 
1411   if (IsDeoptimize) {
1412     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1413     // transform the tail-call like structure to a call to a void function
1414     // followed by unreachable to get better codegen.
1415     Replacements.push_back(
1416         DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
1417   } else {
1418     Token->setName("statepoint_token");
1419     if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1420       StringRef Name =
1421           CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1422       CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1423       GCResult->setAttributes(CS.getAttributes().getRetAttributes());
1424 
1425       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1426       // live set of some other safepoint, in which case that safepoint's
1427       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1428       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1429       // after the live sets have been made explicit in the IR, and we no longer
1430       // have raw pointers to worry about.
1431       Replacements.emplace_back(
1432           DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
1433     } else {
1434       Replacements.emplace_back(
1435           DeferredReplacement::createDelete(CS.getInstruction()));
1436     }
1437   }
1438 
1439   Result.StatepointToken = Token;
1440 
1441   // Second, create a gc.relocate for every live variable
1442   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1443   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1444 }
1445 
1446 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1447 // which make the relocations happening at this safepoint explicit.
1448 //
1449 // WARNING: Does not do any fixup to adjust users of the original live
1450 // values.  That's the callers responsibility.
1451 static void
1452 makeStatepointExplicit(DominatorTree &DT, CallSite CS,
1453                        PartiallyConstructedSafepointRecord &Result,
1454                        std::vector<DeferredReplacement> &Replacements) {
1455   const auto &LiveSet = Result.LiveSet;
1456   const auto &PointerToBase = Result.PointerToBase;
1457 
1458   // Convert to vector for efficient cross referencing.
1459   SmallVector<Value *, 64> BaseVec, LiveVec;
1460   LiveVec.reserve(LiveSet.size());
1461   BaseVec.reserve(LiveSet.size());
1462   for (Value *L : LiveSet) {
1463     LiveVec.push_back(L);
1464     assert(PointerToBase.count(L));
1465     Value *Base = PointerToBase.find(L)->second;
1466     BaseVec.push_back(Base);
1467   }
1468   assert(LiveVec.size() == BaseVec.size());
1469 
1470   // Do the actual rewriting and delete the old statepoint
1471   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1472 }
1473 
1474 // Helper function for the relocationViaAlloca.
1475 //
1476 // It receives iterator to the statepoint gc relocates and emits a store to the
1477 // assigned location (via allocaMap) for the each one of them.  It adds the
1478 // visited values into the visitedLiveValues set, which we will later use them
1479 // for sanity checking.
1480 static void
1481 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1482                        DenseMap<Value *, Value *> &AllocaMap,
1483                        DenseSet<Value *> &VisitedLiveValues) {
1484 
1485   for (User *U : GCRelocs) {
1486     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1487     if (!Relocate)
1488       continue;
1489 
1490     Value *OriginalValue = Relocate->getDerivedPtr();
1491     assert(AllocaMap.count(OriginalValue));
1492     Value *Alloca = AllocaMap[OriginalValue];
1493 
1494     // Emit store into the related alloca
1495     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1496     // the correct type according to alloca.
1497     assert(Relocate->getNextNode() &&
1498            "Should always have one since it's not a terminator");
1499     IRBuilder<> Builder(Relocate->getNextNode());
1500     Value *CastedRelocatedValue =
1501       Builder.CreateBitCast(Relocate,
1502                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1503                             suffixed_name_or(Relocate, ".casted", ""));
1504 
1505     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1506     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1507 
1508 #ifndef NDEBUG
1509     VisitedLiveValues.insert(OriginalValue);
1510 #endif
1511   }
1512 }
1513 
1514 // Helper function for the "relocationViaAlloca". Similar to the
1515 // "insertRelocationStores" but works for rematerialized values.
1516 static void insertRematerializationStores(
1517     const RematerializedValueMapTy &RematerializedValues,
1518     DenseMap<Value *, Value *> &AllocaMap,
1519     DenseSet<Value *> &VisitedLiveValues) {
1520 
1521   for (auto RematerializedValuePair: RematerializedValues) {
1522     Instruction *RematerializedValue = RematerializedValuePair.first;
1523     Value *OriginalValue = RematerializedValuePair.second;
1524 
1525     assert(AllocaMap.count(OriginalValue) &&
1526            "Can not find alloca for rematerialized value");
1527     Value *Alloca = AllocaMap[OriginalValue];
1528 
1529     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1530     Store->insertAfter(RematerializedValue);
1531 
1532 #ifndef NDEBUG
1533     VisitedLiveValues.insert(OriginalValue);
1534 #endif
1535   }
1536 }
1537 
1538 /// Do all the relocation update via allocas and mem2reg
1539 static void relocationViaAlloca(
1540     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1541     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1542 #ifndef NDEBUG
1543   // record initial number of (static) allocas; we'll check we have the same
1544   // number when we get done.
1545   int InitialAllocaNum = 0;
1546   for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1547        I++)
1548     if (isa<AllocaInst>(*I))
1549       InitialAllocaNum++;
1550 #endif
1551 
1552   // TODO-PERF: change data structures, reserve
1553   DenseMap<Value *, Value *> AllocaMap;
1554   SmallVector<AllocaInst *, 200> PromotableAllocas;
1555   // Used later to chack that we have enough allocas to store all values
1556   std::size_t NumRematerializedValues = 0;
1557   PromotableAllocas.reserve(Live.size());
1558 
1559   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1560   // "PromotableAllocas"
1561   auto emitAllocaFor = [&](Value *LiveValue) {
1562     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1563                                         F.getEntryBlock().getFirstNonPHI());
1564     AllocaMap[LiveValue] = Alloca;
1565     PromotableAllocas.push_back(Alloca);
1566   };
1567 
1568   // Emit alloca for each live gc pointer
1569   for (Value *V : Live)
1570     emitAllocaFor(V);
1571 
1572   // Emit allocas for rematerialized values
1573   for (const auto &Info : Records)
1574     for (auto RematerializedValuePair : Info.RematerializedValues) {
1575       Value *OriginalValue = RematerializedValuePair.second;
1576       if (AllocaMap.count(OriginalValue) != 0)
1577         continue;
1578 
1579       emitAllocaFor(OriginalValue);
1580       ++NumRematerializedValues;
1581     }
1582 
1583   // The next two loops are part of the same conceptual operation.  We need to
1584   // insert a store to the alloca after the original def and at each
1585   // redefinition.  We need to insert a load before each use.  These are split
1586   // into distinct loops for performance reasons.
1587 
1588   // Update gc pointer after each statepoint: either store a relocated value or
1589   // null (if no relocated value was found for this gc pointer and it is not a
1590   // gc_result).  This must happen before we update the statepoint with load of
1591   // alloca otherwise we lose the link between statepoint and old def.
1592   for (const auto &Info : Records) {
1593     Value *Statepoint = Info.StatepointToken;
1594 
1595     // This will be used for consistency check
1596     DenseSet<Value *> VisitedLiveValues;
1597 
1598     // Insert stores for normal statepoint gc relocates
1599     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1600 
1601     // In case if it was invoke statepoint
1602     // we will insert stores for exceptional path gc relocates.
1603     if (isa<InvokeInst>(Statepoint)) {
1604       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1605                              VisitedLiveValues);
1606     }
1607 
1608     // Do similar thing with rematerialized values
1609     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1610                                   VisitedLiveValues);
1611 
1612     if (ClobberNonLive) {
1613       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1614       // the gc.statepoint.  This will turn some subtle GC problems into
1615       // slightly easier to debug SEGVs.  Note that on large IR files with
1616       // lots of gc.statepoints this is extremely costly both memory and time
1617       // wise.
1618       SmallVector<AllocaInst *, 64> ToClobber;
1619       for (auto Pair : AllocaMap) {
1620         Value *Def = Pair.first;
1621         AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1622 
1623         // This value was relocated
1624         if (VisitedLiveValues.count(Def)) {
1625           continue;
1626         }
1627         ToClobber.push_back(Alloca);
1628       }
1629 
1630       auto InsertClobbersAt = [&](Instruction *IP) {
1631         for (auto *AI : ToClobber) {
1632           auto PT = cast<PointerType>(AI->getAllocatedType());
1633           Constant *CPN = ConstantPointerNull::get(PT);
1634           StoreInst *Store = new StoreInst(CPN, AI);
1635           Store->insertBefore(IP);
1636         }
1637       };
1638 
1639       // Insert the clobbering stores.  These may get intermixed with the
1640       // gc.results and gc.relocates, but that's fine.
1641       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1642         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1643         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1644       } else {
1645         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1646       }
1647     }
1648   }
1649 
1650   // Update use with load allocas and add store for gc_relocated.
1651   for (auto Pair : AllocaMap) {
1652     Value *Def = Pair.first;
1653     Value *Alloca = Pair.second;
1654 
1655     // We pre-record the uses of allocas so that we dont have to worry about
1656     // later update that changes the user information..
1657 
1658     SmallVector<Instruction *, 20> Uses;
1659     // PERF: trade a linear scan for repeated reallocation
1660     Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1661     for (User *U : Def->users()) {
1662       if (!isa<ConstantExpr>(U)) {
1663         // If the def has a ConstantExpr use, then the def is either a
1664         // ConstantExpr use itself or null.  In either case
1665         // (recursively in the first, directly in the second), the oop
1666         // it is ultimately dependent on is null and this particular
1667         // use does not need to be fixed up.
1668         Uses.push_back(cast<Instruction>(U));
1669       }
1670     }
1671 
1672     std::sort(Uses.begin(), Uses.end());
1673     auto Last = std::unique(Uses.begin(), Uses.end());
1674     Uses.erase(Last, Uses.end());
1675 
1676     for (Instruction *Use : Uses) {
1677       if (isa<PHINode>(Use)) {
1678         PHINode *Phi = cast<PHINode>(Use);
1679         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1680           if (Def == Phi->getIncomingValue(i)) {
1681             LoadInst *Load = new LoadInst(
1682                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1683             Phi->setIncomingValue(i, Load);
1684           }
1685         }
1686       } else {
1687         LoadInst *Load = new LoadInst(Alloca, "", Use);
1688         Use->replaceUsesOfWith(Def, Load);
1689       }
1690     }
1691 
1692     // Emit store for the initial gc value.  Store must be inserted after load,
1693     // otherwise store will be in alloca's use list and an extra load will be
1694     // inserted before it.
1695     StoreInst *Store = new StoreInst(Def, Alloca);
1696     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1697       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1698         // InvokeInst is a TerminatorInst so the store need to be inserted
1699         // into its normal destination block.
1700         BasicBlock *NormalDest = Invoke->getNormalDest();
1701         Store->insertBefore(NormalDest->getFirstNonPHI());
1702       } else {
1703         assert(!Inst->isTerminator() &&
1704                "The only TerminatorInst that can produce a value is "
1705                "InvokeInst which is handled above.");
1706         Store->insertAfter(Inst);
1707       }
1708     } else {
1709       assert(isa<Argument>(Def));
1710       Store->insertAfter(cast<Instruction>(Alloca));
1711     }
1712   }
1713 
1714   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1715          "we must have the same allocas with lives");
1716   if (!PromotableAllocas.empty()) {
1717     // Apply mem2reg to promote alloca to SSA
1718     PromoteMemToReg(PromotableAllocas, DT);
1719   }
1720 
1721 #ifndef NDEBUG
1722   for (auto &I : F.getEntryBlock())
1723     if (isa<AllocaInst>(I))
1724       InitialAllocaNum--;
1725   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1726 #endif
1727 }
1728 
1729 /// Implement a unique function which doesn't require we sort the input
1730 /// vector.  Doing so has the effect of changing the output of a couple of
1731 /// tests in ways which make them less useful in testing fused safepoints.
1732 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1733   SmallSet<T, 8> Seen;
1734   Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1735               return !Seen.insert(V).second;
1736             }), Vec.end());
1737 }
1738 
1739 /// Insert holders so that each Value is obviously live through the entire
1740 /// lifetime of the call.
1741 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1742                                  SmallVectorImpl<CallInst *> &Holders) {
1743   if (Values.empty())
1744     // No values to hold live, might as well not insert the empty holder
1745     return;
1746 
1747   Module *M = CS.getInstruction()->getModule();
1748   // Use a dummy vararg function to actually hold the values live
1749   Function *Func = cast<Function>(M->getOrInsertFunction(
1750       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1751   if (CS.isCall()) {
1752     // For call safepoints insert dummy calls right after safepoint
1753     Holders.push_back(CallInst::Create(Func, Values, "",
1754                                        &*++CS.getInstruction()->getIterator()));
1755     return;
1756   }
1757   // For invoke safepooints insert dummy calls both in normal and
1758   // exceptional destination blocks
1759   auto *II = cast<InvokeInst>(CS.getInstruction());
1760   Holders.push_back(CallInst::Create(
1761       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1762   Holders.push_back(CallInst::Create(
1763       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1764 }
1765 
1766 static void findLiveReferences(
1767     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1768     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1769   GCPtrLivenessData OriginalLivenessData;
1770   computeLiveInValues(DT, F, OriginalLivenessData);
1771   for (size_t i = 0; i < records.size(); i++) {
1772     struct PartiallyConstructedSafepointRecord &info = records[i];
1773     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
1774   }
1775 }
1776 
1777 // Helper function for the "rematerializeLiveValues". It walks use chain
1778 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
1779 // values are visited (currently it is GEP's and casts). Returns true if it
1780 // successfully reached "BaseValue" and false otherwise.
1781 // Fills "ChainToBase" array with all visited values. "BaseValue" is not
1782 // recorded.
1783 static bool findRematerializableChainToBasePointer(
1784   SmallVectorImpl<Instruction*> &ChainToBase,
1785   Value *CurrentValue, Value *BaseValue) {
1786 
1787   // We have found a base value
1788   if (CurrentValue == BaseValue) {
1789     return true;
1790   }
1791 
1792   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1793     ChainToBase.push_back(GEP);
1794     return findRematerializableChainToBasePointer(ChainToBase,
1795                                                   GEP->getPointerOperand(),
1796                                                   BaseValue);
1797   }
1798 
1799   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1800     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1801       return false;
1802 
1803     ChainToBase.push_back(CI);
1804     return findRematerializableChainToBasePointer(ChainToBase,
1805                                                   CI->getOperand(0), BaseValue);
1806   }
1807 
1808   // Not supported instruction in the chain
1809   return false;
1810 }
1811 
1812 // Helper function for the "rematerializeLiveValues". Compute cost of the use
1813 // chain we are going to rematerialize.
1814 static unsigned
1815 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1816                        TargetTransformInfo &TTI) {
1817   unsigned Cost = 0;
1818 
1819   for (Instruction *Instr : Chain) {
1820     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1821       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1822              "non noop cast is found during rematerialization");
1823 
1824       Type *SrcTy = CI->getOperand(0)->getType();
1825       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
1826 
1827     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1828       // Cost of the address calculation
1829       Type *ValTy = GEP->getSourceElementType();
1830       Cost += TTI.getAddressComputationCost(ValTy);
1831 
1832       // And cost of the GEP itself
1833       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1834       //       allowed for the external usage)
1835       if (!GEP->hasAllConstantIndices())
1836         Cost += 2;
1837 
1838     } else {
1839       llvm_unreachable("unsupported instruciton type during rematerialization");
1840     }
1841   }
1842 
1843   return Cost;
1844 }
1845 
1846 // From the statepoint live set pick values that are cheaper to recompute then
1847 // to relocate. Remove this values from the live set, rematerialize them after
1848 // statepoint and record them in "Info" structure. Note that similar to
1849 // relocated values we don't do any user adjustments here.
1850 static void rematerializeLiveValues(CallSite CS,
1851                                     PartiallyConstructedSafepointRecord &Info,
1852                                     TargetTransformInfo &TTI) {
1853   const unsigned int ChainLengthThreshold = 10;
1854 
1855   // Record values we are going to delete from this statepoint live set.
1856   // We can not di this in following loop due to iterator invalidation.
1857   SmallVector<Value *, 32> LiveValuesToBeDeleted;
1858 
1859   for (Value *LiveValue: Info.LiveSet) {
1860     // For each live pointer find it's defining chain
1861     SmallVector<Instruction *, 3> ChainToBase;
1862     assert(Info.PointerToBase.count(LiveValue));
1863     bool FoundChain =
1864       findRematerializableChainToBasePointer(ChainToBase,
1865                                              LiveValue,
1866                                              Info.PointerToBase[LiveValue]);
1867     // Nothing to do, or chain is too long
1868     if (!FoundChain ||
1869         ChainToBase.size() == 0 ||
1870         ChainToBase.size() > ChainLengthThreshold)
1871       continue;
1872 
1873     // Compute cost of this chain
1874     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
1875     // TODO: We can also account for cases when we will be able to remove some
1876     //       of the rematerialized values by later optimization passes. I.e if
1877     //       we rematerialized several intersecting chains. Or if original values
1878     //       don't have any uses besides this statepoint.
1879 
1880     // For invokes we need to rematerialize each chain twice - for normal and
1881     // for unwind basic blocks. Model this by multiplying cost by two.
1882     if (CS.isInvoke()) {
1883       Cost *= 2;
1884     }
1885     // If it's too expensive - skip it
1886     if (Cost >= RematerializationThreshold)
1887       continue;
1888 
1889     // Remove value from the live set
1890     LiveValuesToBeDeleted.push_back(LiveValue);
1891 
1892     // Clone instructions and record them inside "Info" structure
1893 
1894     // Walk backwards to visit top-most instructions first
1895     std::reverse(ChainToBase.begin(), ChainToBase.end());
1896 
1897     // Utility function which clones all instructions from "ChainToBase"
1898     // and inserts them before "InsertBefore". Returns rematerialized value
1899     // which should be used after statepoint.
1900     auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
1901       Instruction *LastClonedValue = nullptr;
1902       Instruction *LastValue = nullptr;
1903       for (Instruction *Instr: ChainToBase) {
1904         // Only GEP's and casts are suported as we need to be careful to not
1905         // introduce any new uses of pointers not in the liveset.
1906         // Note that it's fine to introduce new uses of pointers which were
1907         // otherwise not used after this statepoint.
1908         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
1909 
1910         Instruction *ClonedValue = Instr->clone();
1911         ClonedValue->insertBefore(InsertBefore);
1912         ClonedValue->setName(Instr->getName() + ".remat");
1913 
1914         // If it is not first instruction in the chain then it uses previously
1915         // cloned value. We should update it to use cloned value.
1916         if (LastClonedValue) {
1917           assert(LastValue);
1918           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
1919 #ifndef NDEBUG
1920           // Assert that cloned instruction does not use any instructions from
1921           // this chain other than LastClonedValue
1922           for (auto OpValue : ClonedValue->operand_values()) {
1923             assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
1924                        ChainToBase.end() &&
1925                    "incorrect use in rematerialization chain");
1926           }
1927 #endif
1928         }
1929 
1930         LastClonedValue = ClonedValue;
1931         LastValue = Instr;
1932       }
1933       assert(LastClonedValue);
1934       return LastClonedValue;
1935     };
1936 
1937     // Different cases for calls and invokes. For invokes we need to clone
1938     // instructions both on normal and unwind path.
1939     if (CS.isCall()) {
1940       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
1941       assert(InsertBefore);
1942       Instruction *RematerializedValue = rematerializeChain(InsertBefore);
1943       Info.RematerializedValues[RematerializedValue] = LiveValue;
1944     } else {
1945       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
1946 
1947       Instruction *NormalInsertBefore =
1948           &*Invoke->getNormalDest()->getFirstInsertionPt();
1949       Instruction *UnwindInsertBefore =
1950           &*Invoke->getUnwindDest()->getFirstInsertionPt();
1951 
1952       Instruction *NormalRematerializedValue =
1953           rematerializeChain(NormalInsertBefore);
1954       Instruction *UnwindRematerializedValue =
1955           rematerializeChain(UnwindInsertBefore);
1956 
1957       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
1958       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
1959     }
1960   }
1961 
1962   // Remove rematerializaed values from the live set
1963   for (auto LiveValue: LiveValuesToBeDeleted) {
1964     Info.LiveSet.remove(LiveValue);
1965   }
1966 }
1967 
1968 static bool insertParsePoints(Function &F, DominatorTree &DT,
1969                               TargetTransformInfo &TTI,
1970                               SmallVectorImpl<CallSite> &ToUpdate) {
1971 #ifndef NDEBUG
1972   // sanity check the input
1973   std::set<CallSite> Uniqued;
1974   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
1975   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
1976 
1977   for (CallSite CS : ToUpdate)
1978     assert(CS.getInstruction()->getFunction() == &F);
1979 #endif
1980 
1981   // When inserting gc.relocates for invokes, we need to be able to insert at
1982   // the top of the successor blocks.  See the comment on
1983   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
1984   // may restructure the CFG.
1985   for (CallSite CS : ToUpdate) {
1986     if (!CS.isInvoke())
1987       continue;
1988     auto *II = cast<InvokeInst>(CS.getInstruction());
1989     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
1990     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
1991   }
1992 
1993   // A list of dummy calls added to the IR to keep various values obviously
1994   // live in the IR.  We'll remove all of these when done.
1995   SmallVector<CallInst *, 64> Holders;
1996 
1997   // Insert a dummy call with all of the arguments to the vm_state we'll need
1998   // for the actual safepoint insertion.  This ensures reference arguments in
1999   // the deopt argument list are considered live through the safepoint (and
2000   // thus makes sure they get relocated.)
2001   for (CallSite CS : ToUpdate) {
2002     SmallVector<Value *, 64> DeoptValues;
2003 
2004     for (Value *Arg : GetDeoptBundleOperands(CS)) {
2005       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2006              "support for FCA unimplemented");
2007       if (isHandledGCPointerType(Arg->getType()))
2008         DeoptValues.push_back(Arg);
2009     }
2010 
2011     insertUseHolderAfter(CS, DeoptValues, Holders);
2012   }
2013 
2014   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2015 
2016   // A) Identify all gc pointers which are statically live at the given call
2017   // site.
2018   findLiveReferences(F, DT, ToUpdate, Records);
2019 
2020   // B) Find the base pointers for each live pointer
2021   /* scope for caching */ {
2022     // Cache the 'defining value' relation used in the computation and
2023     // insertion of base phis and selects.  This ensures that we don't insert
2024     // large numbers of duplicate base_phis.
2025     DefiningValueMapTy DVCache;
2026 
2027     for (size_t i = 0; i < Records.size(); i++) {
2028       PartiallyConstructedSafepointRecord &info = Records[i];
2029       findBasePointers(DT, DVCache, ToUpdate[i], info);
2030     }
2031   } // end of cache scope
2032 
2033   // The base phi insertion logic (for any safepoint) may have inserted new
2034   // instructions which are now live at some safepoint.  The simplest such
2035   // example is:
2036   // loop:
2037   //   phi a  <-- will be a new base_phi here
2038   //   safepoint 1 <-- that needs to be live here
2039   //   gep a + 1
2040   //   safepoint 2
2041   //   br loop
2042   // We insert some dummy calls after each safepoint to definitely hold live
2043   // the base pointers which were identified for that safepoint.  We'll then
2044   // ask liveness for _every_ base inserted to see what is now live.  Then we
2045   // remove the dummy calls.
2046   Holders.reserve(Holders.size() + Records.size());
2047   for (size_t i = 0; i < Records.size(); i++) {
2048     PartiallyConstructedSafepointRecord &Info = Records[i];
2049 
2050     SmallVector<Value *, 128> Bases;
2051     for (auto Pair : Info.PointerToBase)
2052       Bases.push_back(Pair.second);
2053 
2054     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2055   }
2056 
2057   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2058   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2059   // not the key issue.
2060   recomputeLiveInValues(F, DT, ToUpdate, Records);
2061 
2062   if (PrintBasePointers) {
2063     for (auto &Info : Records) {
2064       errs() << "Base Pairs: (w/Relocation)\n";
2065       for (auto Pair : Info.PointerToBase) {
2066         errs() << " derived ";
2067         Pair.first->printAsOperand(errs(), false);
2068         errs() << " base ";
2069         Pair.second->printAsOperand(errs(), false);
2070         errs() << "\n";
2071       }
2072     }
2073   }
2074 
2075   // It is possible that non-constant live variables have a constant base.  For
2076   // example, a GEP with a variable offset from a global.  In this case we can
2077   // remove it from the liveset.  We already don't add constants to the liveset
2078   // because we assume they won't move at runtime and the GC doesn't need to be
2079   // informed about them.  The same reasoning applies if the base is constant.
2080   // Note that the relocation placement code relies on this filtering for
2081   // correctness as it expects the base to be in the liveset, which isn't true
2082   // if the base is constant.
2083   for (auto &Info : Records)
2084     for (auto &BasePair : Info.PointerToBase)
2085       if (isa<Constant>(BasePair.second))
2086         Info.LiveSet.remove(BasePair.first);
2087 
2088   for (CallInst *CI : Holders)
2089     CI->eraseFromParent();
2090 
2091   Holders.clear();
2092 
2093   // In order to reduce live set of statepoint we might choose to rematerialize
2094   // some values instead of relocating them. This is purely an optimization and
2095   // does not influence correctness.
2096   for (size_t i = 0; i < Records.size(); i++)
2097     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2098 
2099   // We need this to safely RAUW and delete call or invoke return values that
2100   // may themselves be live over a statepoint.  For details, please see usage in
2101   // makeStatepointExplicitImpl.
2102   std::vector<DeferredReplacement> Replacements;
2103 
2104   // Now run through and replace the existing statepoints with new ones with
2105   // the live variables listed.  We do not yet update uses of the values being
2106   // relocated. We have references to live variables that need to
2107   // survive to the last iteration of this loop.  (By construction, the
2108   // previous statepoint can not be a live variable, thus we can and remove
2109   // the old statepoint calls as we go.)
2110   for (size_t i = 0; i < Records.size(); i++)
2111     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2112 
2113   ToUpdate.clear(); // prevent accident use of invalid CallSites
2114 
2115   for (auto &PR : Replacements)
2116     PR.doReplacement();
2117 
2118   Replacements.clear();
2119 
2120   for (auto &Info : Records) {
2121     // These live sets may contain state Value pointers, since we replaced calls
2122     // with operand bundles with calls wrapped in gc.statepoint, and some of
2123     // those calls may have been def'ing live gc pointers.  Clear these out to
2124     // avoid accidentally using them.
2125     //
2126     // TODO: We should create a separate data structure that does not contain
2127     // these live sets, and migrate to using that data structure from this point
2128     // onward.
2129     Info.LiveSet.clear();
2130     Info.PointerToBase.clear();
2131   }
2132 
2133   // Do all the fixups of the original live variables to their relocated selves
2134   SmallVector<Value *, 128> Live;
2135   for (size_t i = 0; i < Records.size(); i++) {
2136     PartiallyConstructedSafepointRecord &Info = Records[i];
2137 
2138     // We can't simply save the live set from the original insertion.  One of
2139     // the live values might be the result of a call which needs a safepoint.
2140     // That Value* no longer exists and we need to use the new gc_result.
2141     // Thankfully, the live set is embedded in the statepoint (and updated), so
2142     // we just grab that.
2143     Statepoint Statepoint(Info.StatepointToken);
2144     Live.insert(Live.end(), Statepoint.gc_args_begin(),
2145                 Statepoint.gc_args_end());
2146 #ifndef NDEBUG
2147     // Do some basic sanity checks on our liveness results before performing
2148     // relocation.  Relocation can and will turn mistakes in liveness results
2149     // into non-sensical code which is must harder to debug.
2150     // TODO: It would be nice to test consistency as well
2151     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2152            "statepoint must be reachable or liveness is meaningless");
2153     for (Value *V : Statepoint.gc_args()) {
2154       if (!isa<Instruction>(V))
2155         // Non-instruction values trivial dominate all possible uses
2156         continue;
2157       auto *LiveInst = cast<Instruction>(V);
2158       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2159              "unreachable values should never be live");
2160       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2161              "basic SSA liveness expectation violated by liveness analysis");
2162     }
2163 #endif
2164   }
2165   unique_unsorted(Live);
2166 
2167 #ifndef NDEBUG
2168   // sanity check
2169   for (auto *Ptr : Live)
2170     assert(isHandledGCPointerType(Ptr->getType()) &&
2171            "must be a gc pointer type");
2172 #endif
2173 
2174   relocationViaAlloca(F, DT, Live, Records);
2175   return !Records.empty();
2176 }
2177 
2178 // Handles both return values and arguments for Functions and CallSites.
2179 template <typename AttrHolder>
2180 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2181                                       unsigned Index) {
2182   AttrBuilder R;
2183   if (AH.getDereferenceableBytes(Index))
2184     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2185                                   AH.getDereferenceableBytes(Index)));
2186   if (AH.getDereferenceableOrNullBytes(Index))
2187     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2188                                   AH.getDereferenceableOrNullBytes(Index)));
2189   if (AH.doesNotAlias(Index))
2190     R.addAttribute(Attribute::NoAlias);
2191 
2192   if (!R.empty())
2193     AH.setAttributes(AH.getAttributes().removeAttributes(
2194         Ctx, Index, AttributeSet::get(Ctx, Index, R)));
2195 }
2196 
2197 void
2198 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
2199   LLVMContext &Ctx = F.getContext();
2200 
2201   for (Argument &A : F.args())
2202     if (isa<PointerType>(A.getType()))
2203       RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
2204 
2205   if (isa<PointerType>(F.getReturnType()))
2206     RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
2207 }
2208 
2209 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
2210   if (F.empty())
2211     return;
2212 
2213   LLVMContext &Ctx = F.getContext();
2214   MDBuilder Builder(Ctx);
2215 
2216   for (Instruction &I : instructions(F)) {
2217     if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2218       assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2219       bool IsImmutableTBAA =
2220           MD->getNumOperands() == 4 &&
2221           mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2222 
2223       if (!IsImmutableTBAA)
2224         continue; // no work to do, MD_tbaa is already marked mutable
2225 
2226       MDNode *Base = cast<MDNode>(MD->getOperand(0));
2227       MDNode *Access = cast<MDNode>(MD->getOperand(1));
2228       uint64_t Offset =
2229           mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2230 
2231       MDNode *MutableTBAA =
2232           Builder.createTBAAStructTagNode(Base, Access, Offset);
2233       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2234     }
2235 
2236     if (CallSite CS = CallSite(&I)) {
2237       for (int i = 0, e = CS.arg_size(); i != e; i++)
2238         if (isa<PointerType>(CS.getArgument(i)->getType()))
2239           RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
2240       if (isa<PointerType>(CS.getType()))
2241         RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
2242     }
2243   }
2244 }
2245 
2246 /// Returns true if this function should be rewritten by this pass.  The main
2247 /// point of this function is as an extension point for custom logic.
2248 static bool shouldRewriteStatepointsIn(Function &F) {
2249   // TODO: This should check the GCStrategy
2250   if (F.hasGC()) {
2251     const auto &FunctionGCName = F.getGC();
2252     const StringRef StatepointExampleName("statepoint-example");
2253     const StringRef CoreCLRName("coreclr");
2254     return (StatepointExampleName == FunctionGCName) ||
2255            (CoreCLRName == FunctionGCName);
2256   } else
2257     return false;
2258 }
2259 
2260 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
2261 #ifndef NDEBUG
2262   assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2263          "precondition!");
2264 #endif
2265 
2266   for (Function &F : M)
2267     stripNonValidAttributesFromPrototype(F);
2268 
2269   for (Function &F : M)
2270     stripNonValidAttributesFromBody(F);
2271 }
2272 
2273 bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2274   // Nothing to do for declarations.
2275   if (F.isDeclaration() || F.empty())
2276     return false;
2277 
2278   // Policy choice says not to rewrite - the most common reason is that we're
2279   // compiling code without a GCStrategy.
2280   if (!shouldRewriteStatepointsIn(F))
2281     return false;
2282 
2283   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2284   TargetTransformInfo &TTI =
2285       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2286 
2287   auto NeedsRewrite = [](Instruction &I) {
2288     if (ImmutableCallSite CS = ImmutableCallSite(&I))
2289       return !callsGCLeafFunction(CS) && !isStatepoint(CS);
2290     return false;
2291   };
2292 
2293   // Gather all the statepoints which need rewritten.  Be careful to only
2294   // consider those in reachable code since we need to ask dominance queries
2295   // when rewriting.  We'll delete the unreachable ones in a moment.
2296   SmallVector<CallSite, 64> ParsePointNeeded;
2297   bool HasUnreachableStatepoint = false;
2298   for (Instruction &I : instructions(F)) {
2299     // TODO: only the ones with the flag set!
2300     if (NeedsRewrite(I)) {
2301       if (DT.isReachableFromEntry(I.getParent()))
2302         ParsePointNeeded.push_back(CallSite(&I));
2303       else
2304         HasUnreachableStatepoint = true;
2305     }
2306   }
2307 
2308   bool MadeChange = false;
2309 
2310   // Delete any unreachable statepoints so that we don't have unrewritten
2311   // statepoints surviving this pass.  This makes testing easier and the
2312   // resulting IR less confusing to human readers.  Rather than be fancy, we
2313   // just reuse a utility function which removes the unreachable blocks.
2314   if (HasUnreachableStatepoint)
2315     MadeChange |= removeUnreachableBlocks(F);
2316 
2317   // Return early if no work to do.
2318   if (ParsePointNeeded.empty())
2319     return MadeChange;
2320 
2321   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2322   // These are created by LCSSA.  They have the effect of increasing the size
2323   // of liveness sets for no good reason.  It may be harder to do this post
2324   // insertion since relocations and base phis can confuse things.
2325   for (BasicBlock &BB : F)
2326     if (BB.getUniquePredecessor()) {
2327       MadeChange = true;
2328       FoldSingleEntryPHINodes(&BB);
2329     }
2330 
2331   // Before we start introducing relocations, we want to tweak the IR a bit to
2332   // avoid unfortunate code generation effects.  The main example is that we
2333   // want to try to make sure the comparison feeding a branch is after any
2334   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2335   // values feeding a branch after relocation.  This is semantically correct,
2336   // but results in extra register pressure since both the pre-relocation and
2337   // post-relocation copies must be available in registers.  For code without
2338   // relocations this is handled elsewhere, but teaching the scheduler to
2339   // reverse the transform we're about to do would be slightly complex.
2340   // Note: This may extend the live range of the inputs to the icmp and thus
2341   // increase the liveset of any statepoint we move over.  This is profitable
2342   // as long as all statepoints are in rare blocks.  If we had in-register
2343   // lowering for live values this would be a much safer transform.
2344   auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2345     if (auto *BI = dyn_cast<BranchInst>(TI))
2346       if (BI->isConditional())
2347         return dyn_cast<Instruction>(BI->getCondition());
2348     // TODO: Extend this to handle switches
2349     return nullptr;
2350   };
2351   for (BasicBlock &BB : F) {
2352     TerminatorInst *TI = BB.getTerminator();
2353     if (auto *Cond = getConditionInst(TI))
2354       // TODO: Handle more than just ICmps here.  We should be able to move
2355       // most instructions without side effects or memory access.
2356       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2357         MadeChange = true;
2358         Cond->moveBefore(TI);
2359       }
2360   }
2361 
2362   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2363   return MadeChange;
2364 }
2365 
2366 // liveness computation via standard dataflow
2367 // -------------------------------------------------------------------
2368 
2369 // TODO: Consider using bitvectors for liveness, the set of potentially
2370 // interesting values should be small and easy to pre-compute.
2371 
2372 /// Compute the live-in set for the location rbegin starting from
2373 /// the live-out set of the basic block
2374 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
2375                                 BasicBlock::reverse_iterator rend,
2376                                 SetVector<Value *> &LiveTmp) {
2377 
2378   for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
2379     Instruction *I = &*ritr;
2380 
2381     // KILL/Def - Remove this definition from LiveIn
2382     LiveTmp.remove(I);
2383 
2384     // Don't consider *uses* in PHI nodes, we handle their contribution to
2385     // predecessor blocks when we seed the LiveOut sets
2386     if (isa<PHINode>(I))
2387       continue;
2388 
2389     // USE - Add to the LiveIn set for this instruction
2390     for (Value *V : I->operands()) {
2391       assert(!isUnhandledGCPointerType(V->getType()) &&
2392              "support for FCA unimplemented");
2393       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2394         // The choice to exclude all things constant here is slightly subtle.
2395         // There are two independent reasons:
2396         // - We assume that things which are constant (from LLVM's definition)
2397         // do not move at runtime.  For example, the address of a global
2398         // variable is fixed, even though it's contents may not be.
2399         // - Second, we can't disallow arbitrary inttoptr constants even
2400         // if the language frontend does.  Optimization passes are free to
2401         // locally exploit facts without respect to global reachability.  This
2402         // can create sections of code which are dynamically unreachable and
2403         // contain just about anything.  (see constants.ll in tests)
2404         LiveTmp.insert(V);
2405       }
2406     }
2407   }
2408 }
2409 
2410 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2411 
2412   for (BasicBlock *Succ : successors(BB)) {
2413     const BasicBlock::iterator E(Succ->getFirstNonPHI());
2414     for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
2415       PHINode *Phi = cast<PHINode>(&*I);
2416       Value *V = Phi->getIncomingValueForBlock(BB);
2417       assert(!isUnhandledGCPointerType(V->getType()) &&
2418              "support for FCA unimplemented");
2419       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2420         LiveTmp.insert(V);
2421       }
2422     }
2423   }
2424 }
2425 
2426 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2427   SetVector<Value *> KillSet;
2428   for (Instruction &I : *BB)
2429     if (isHandledGCPointerType(I.getType()))
2430       KillSet.insert(&I);
2431   return KillSet;
2432 }
2433 
2434 #ifndef NDEBUG
2435 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2436 /// sanity check for the liveness computation.
2437 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2438                           TerminatorInst *TI, bool TermOkay = false) {
2439   for (Value *V : Live) {
2440     if (auto *I = dyn_cast<Instruction>(V)) {
2441       // The terminator can be a member of the LiveOut set.  LLVM's definition
2442       // of instruction dominance states that V does not dominate itself.  As
2443       // such, we need to special case this to allow it.
2444       if (TermOkay && TI == I)
2445         continue;
2446       assert(DT.dominates(I, TI) &&
2447              "basic SSA liveness expectation violated by liveness analysis");
2448     }
2449   }
2450 }
2451 
2452 /// Check that all the liveness sets used during the computation of liveness
2453 /// obey basic SSA properties.  This is useful for finding cases where we miss
2454 /// a def.
2455 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2456                           BasicBlock &BB) {
2457   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2458   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2459   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2460 }
2461 #endif
2462 
2463 static void computeLiveInValues(DominatorTree &DT, Function &F,
2464                                 GCPtrLivenessData &Data) {
2465 
2466   SmallSetVector<BasicBlock *, 32> Worklist;
2467   auto AddPredsToWorklist = [&](BasicBlock *BB) {
2468     // We use a SetVector so that we don't have duplicates in the worklist.
2469     Worklist.insert(pred_begin(BB), pred_end(BB));
2470   };
2471   auto NextItem = [&]() {
2472     BasicBlock *BB = Worklist.back();
2473     Worklist.pop_back();
2474     return BB;
2475   };
2476 
2477   // Seed the liveness for each individual block
2478   for (BasicBlock &BB : F) {
2479     Data.KillSet[&BB] = computeKillSet(&BB);
2480     Data.LiveSet[&BB].clear();
2481     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2482 
2483 #ifndef NDEBUG
2484     for (Value *Kill : Data.KillSet[&BB])
2485       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2486 #endif
2487 
2488     Data.LiveOut[&BB] = SetVector<Value *>();
2489     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2490     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2491     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2492     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2493     if (!Data.LiveIn[&BB].empty())
2494       AddPredsToWorklist(&BB);
2495   }
2496 
2497   // Propagate that liveness until stable
2498   while (!Worklist.empty()) {
2499     BasicBlock *BB = NextItem();
2500 
2501     // Compute our new liveout set, then exit early if it hasn't changed
2502     // despite the contribution of our successor.
2503     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2504     const auto OldLiveOutSize = LiveOut.size();
2505     for (BasicBlock *Succ : successors(BB)) {
2506       assert(Data.LiveIn.count(Succ));
2507       LiveOut.set_union(Data.LiveIn[Succ]);
2508     }
2509     // assert OutLiveOut is a subset of LiveOut
2510     if (OldLiveOutSize == LiveOut.size()) {
2511       // If the sets are the same size, then we didn't actually add anything
2512       // when unioning our successors LiveIn  Thus, the LiveIn of this block
2513       // hasn't changed.
2514       continue;
2515     }
2516     Data.LiveOut[BB] = LiveOut;
2517 
2518     // Apply the effects of this basic block
2519     SetVector<Value *> LiveTmp = LiveOut;
2520     LiveTmp.set_union(Data.LiveSet[BB]);
2521     LiveTmp.set_subtract(Data.KillSet[BB]);
2522 
2523     assert(Data.LiveIn.count(BB));
2524     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2525     // assert: OldLiveIn is a subset of LiveTmp
2526     if (OldLiveIn.size() != LiveTmp.size()) {
2527       Data.LiveIn[BB] = LiveTmp;
2528       AddPredsToWorklist(BB);
2529     }
2530   } // while( !worklist.empty() )
2531 
2532 #ifndef NDEBUG
2533   // Sanity check our output against SSA properties.  This helps catch any
2534   // missing kills during the above iteration.
2535   for (BasicBlock &BB : F) {
2536     checkBasicSSA(DT, Data, BB);
2537   }
2538 #endif
2539 }
2540 
2541 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2542                               StatepointLiveSetTy &Out) {
2543 
2544   BasicBlock *BB = Inst->getParent();
2545 
2546   // Note: The copy is intentional and required
2547   assert(Data.LiveOut.count(BB));
2548   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2549 
2550   // We want to handle the statepoint itself oddly.  It's
2551   // call result is not live (normal), nor are it's arguments
2552   // (unless they're used again later).  This adjustment is
2553   // specifically what we need to relocate
2554   BasicBlock::reverse_iterator rend(Inst->getIterator());
2555   computeLiveInValues(BB->rbegin(), rend, LiveOut);
2556   LiveOut.remove(Inst);
2557   Out.insert(LiveOut.begin(), LiveOut.end());
2558 }
2559 
2560 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2561                                   CallSite CS,
2562                                   PartiallyConstructedSafepointRecord &Info) {
2563   Instruction *Inst = CS.getInstruction();
2564   StatepointLiveSetTy Updated;
2565   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2566 
2567 #ifndef NDEBUG
2568   DenseSet<Value *> Bases;
2569   for (auto KVPair : Info.PointerToBase) {
2570     Bases.insert(KVPair.second);
2571   }
2572 #endif
2573   // We may have base pointers which are now live that weren't before.  We need
2574   // to update the PointerToBase structure to reflect this.
2575   for (auto V : Updated)
2576     if (Info.PointerToBase.insert(std::make_pair(V, V)).second) {
2577       assert(Bases.count(V) && "can't find base for unexpected live value");
2578       continue;
2579     }
2580 
2581 #ifndef NDEBUG
2582   for (auto V : Updated) {
2583     assert(Info.PointerToBase.count(V) &&
2584            "must be able to find base for live value");
2585   }
2586 #endif
2587 
2588   // Remove any stale base mappings - this can happen since our liveness is
2589   // more precise then the one inherent in the base pointer analysis
2590   DenseSet<Value *> ToErase;
2591   for (auto KVPair : Info.PointerToBase)
2592     if (!Updated.count(KVPair.first))
2593       ToErase.insert(KVPair.first);
2594   for (auto V : ToErase)
2595     Info.PointerToBase.erase(V);
2596 
2597 #ifndef NDEBUG
2598   for (auto KVPair : Info.PointerToBase)
2599     assert(Updated.count(KVPair.first) && "record for non-live value");
2600 #endif
2601 
2602   Info.LiveSet = Updated;
2603 }
2604