1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstIterator.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/Cloning.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 45 46 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 47 48 using namespace llvm; 49 50 // Print the liveset found at the insert location 51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 52 cl::init(false)); 53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 54 cl::init(false)); 55 // Print out the base pointers for debugging 56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 57 cl::init(false)); 58 59 // Cost threshold measuring when it is profitable to rematerialize value instead 60 // of relocating it 61 static cl::opt<unsigned> 62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 63 cl::init(6)); 64 65 #ifdef EXPENSIVE_CHECKS 66 static bool ClobberNonLive = true; 67 #else 68 static bool ClobberNonLive = false; 69 #endif 70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 71 cl::location(ClobberNonLive), 72 cl::Hidden); 73 74 static cl::opt<bool> 75 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 76 cl::Hidden, cl::init(true)); 77 78 namespace { 79 struct RewriteStatepointsForGC : public ModulePass { 80 static char ID; // Pass identification, replacement for typeid 81 82 RewriteStatepointsForGC() : ModulePass(ID) { 83 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 84 } 85 bool runOnFunction(Function &F); 86 bool runOnModule(Module &M) override { 87 bool Changed = false; 88 for (Function &F : M) 89 Changed |= runOnFunction(F); 90 91 if (Changed) { 92 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 93 // returns true for at least one function in the module. Since at least 94 // one function changed, we know that the precondition is satisfied. 95 stripNonValidAttributes(M); 96 } 97 98 return Changed; 99 } 100 101 void getAnalysisUsage(AnalysisUsage &AU) const override { 102 // We add and rewrite a bunch of instructions, but don't really do much 103 // else. We could in theory preserve a lot more analyses here. 104 AU.addRequired<DominatorTreeWrapperPass>(); 105 AU.addRequired<TargetTransformInfoWrapperPass>(); 106 } 107 108 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 109 /// dereferenceability that are no longer valid/correct after 110 /// RewriteStatepointsForGC has run. This is because semantically, after 111 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 112 /// heap. stripNonValidAttributes (conservatively) restores correctness 113 /// by erasing all attributes in the module that externally imply 114 /// dereferenceability. 115 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 116 /// can touch the entire heap including noalias objects. 117 void stripNonValidAttributes(Module &M); 118 119 // Helpers for stripNonValidAttributes 120 void stripNonValidAttributesFromBody(Function &F); 121 void stripNonValidAttributesFromPrototype(Function &F); 122 }; 123 } // namespace 124 125 char RewriteStatepointsForGC::ID = 0; 126 127 ModulePass *llvm::createRewriteStatepointsForGCPass() { 128 return new RewriteStatepointsForGC(); 129 } 130 131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 132 "Make relocations explicit at statepoints", false, false) 133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 136 "Make relocations explicit at statepoints", false, false) 137 138 namespace { 139 struct GCPtrLivenessData { 140 /// Values defined in this block. 141 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 142 /// Values used in this block (and thus live); does not included values 143 /// killed within this block. 144 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 145 146 /// Values live into this basic block (i.e. used by any 147 /// instruction in this basic block or ones reachable from here) 148 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 149 150 /// Values live out of this basic block (i.e. live into 151 /// any successor block) 152 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 153 }; 154 155 // The type of the internal cache used inside the findBasePointers family 156 // of functions. From the callers perspective, this is an opaque type and 157 // should not be inspected. 158 // 159 // In the actual implementation this caches two relations: 160 // - The base relation itself (i.e. this pointer is based on that one) 161 // - The base defining value relation (i.e. before base_phi insertion) 162 // Generally, after the execution of a full findBasePointer call, only the 163 // base relation will remain. Internally, we add a mixture of the two 164 // types, then update all the second type to the first type 165 typedef MapVector<Value *, Value *> DefiningValueMapTy; 166 typedef SetVector<Value *> StatepointLiveSetTy; 167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>> 168 RematerializedValueMapTy; 169 170 struct PartiallyConstructedSafepointRecord { 171 /// The set of values known to be live across this safepoint 172 StatepointLiveSetTy LiveSet; 173 174 /// Mapping from live pointers to a base-defining-value 175 MapVector<Value *, Value *> PointerToBase; 176 177 /// The *new* gc.statepoint instruction itself. This produces the token 178 /// that normal path gc.relocates and the gc.result are tied to. 179 Instruction *StatepointToken; 180 181 /// Instruction to which exceptional gc relocates are attached 182 /// Makes it easier to iterate through them during relocationViaAlloca. 183 Instruction *UnwindToken; 184 185 /// Record live values we are rematerialized instead of relocating. 186 /// They are not included into 'LiveSet' field. 187 /// Maps rematerialized copy to it's original value. 188 RematerializedValueMapTy RematerializedValues; 189 }; 190 } 191 192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 193 Optional<OperandBundleUse> DeoptBundle = 194 CS.getOperandBundle(LLVMContext::OB_deopt); 195 196 if (!DeoptBundle.hasValue()) { 197 assert(AllowStatepointWithNoDeoptInfo && 198 "Found non-leaf call without deopt info!"); 199 return None; 200 } 201 202 return DeoptBundle.getValue().Inputs; 203 } 204 205 /// Compute the live-in set for every basic block in the function 206 static void computeLiveInValues(DominatorTree &DT, Function &F, 207 GCPtrLivenessData &Data); 208 209 /// Given results from the dataflow liveness computation, find the set of live 210 /// Values at a particular instruction. 211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 212 StatepointLiveSetTy &out); 213 214 // TODO: Once we can get to the GCStrategy, this becomes 215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 216 217 static bool isGCPointerType(Type *T) { 218 if (auto *PT = dyn_cast<PointerType>(T)) 219 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 220 // GC managed heap. We know that a pointer into this heap needs to be 221 // updated and that no other pointer does. 222 return PT->getAddressSpace() == 1; 223 return false; 224 } 225 226 // Return true if this type is one which a) is a gc pointer or contains a GC 227 // pointer and b) is of a type this code expects to encounter as a live value. 228 // (The insertion code will assert that a type which matches (a) and not (b) 229 // is not encountered.) 230 static bool isHandledGCPointerType(Type *T) { 231 // We fully support gc pointers 232 if (isGCPointerType(T)) 233 return true; 234 // We partially support vectors of gc pointers. The code will assert if it 235 // can't handle something. 236 if (auto VT = dyn_cast<VectorType>(T)) 237 if (isGCPointerType(VT->getElementType())) 238 return true; 239 return false; 240 } 241 242 #ifndef NDEBUG 243 /// Returns true if this type contains a gc pointer whether we know how to 244 /// handle that type or not. 245 static bool containsGCPtrType(Type *Ty) { 246 if (isGCPointerType(Ty)) 247 return true; 248 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 249 return isGCPointerType(VT->getScalarType()); 250 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 251 return containsGCPtrType(AT->getElementType()); 252 if (StructType *ST = dyn_cast<StructType>(Ty)) 253 return any_of(ST->subtypes(), containsGCPtrType); 254 return false; 255 } 256 257 // Returns true if this is a type which a) is a gc pointer or contains a GC 258 // pointer and b) is of a type which the code doesn't expect (i.e. first class 259 // aggregates). Used to trip assertions. 260 static bool isUnhandledGCPointerType(Type *Ty) { 261 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 262 } 263 #endif 264 265 // Return the name of the value suffixed with the provided value, or if the 266 // value didn't have a name, the default value specified. 267 static std::string suffixed_name_or(Value *V, StringRef Suffix, 268 StringRef DefaultName) { 269 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 270 } 271 272 // Conservatively identifies any definitions which might be live at the 273 // given instruction. The analysis is performed immediately before the 274 // given instruction. Values defined by that instruction are not considered 275 // live. Values used by that instruction are considered live. 276 static void 277 analyzeParsePointLiveness(DominatorTree &DT, 278 GCPtrLivenessData &OriginalLivenessData, CallSite CS, 279 PartiallyConstructedSafepointRecord &Result) { 280 Instruction *Inst = CS.getInstruction(); 281 282 StatepointLiveSetTy LiveSet; 283 findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet); 284 285 if (PrintLiveSet) { 286 dbgs() << "Live Variables:\n"; 287 for (Value *V : LiveSet) 288 dbgs() << " " << V->getName() << " " << *V << "\n"; 289 } 290 if (PrintLiveSetSize) { 291 dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 292 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 293 } 294 Result.LiveSet = LiveSet; 295 } 296 297 static bool isKnownBaseResult(Value *V); 298 namespace { 299 /// A single base defining value - An immediate base defining value for an 300 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 301 /// For instructions which have multiple pointer [vector] inputs or that 302 /// transition between vector and scalar types, there is no immediate base 303 /// defining value. The 'base defining value' for 'Def' is the transitive 304 /// closure of this relation stopping at the first instruction which has no 305 /// immediate base defining value. The b.d.v. might itself be a base pointer, 306 /// but it can also be an arbitrary derived pointer. 307 struct BaseDefiningValueResult { 308 /// Contains the value which is the base defining value. 309 Value * const BDV; 310 /// True if the base defining value is also known to be an actual base 311 /// pointer. 312 const bool IsKnownBase; 313 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 314 : BDV(BDV), IsKnownBase(IsKnownBase) { 315 #ifndef NDEBUG 316 // Check consistency between new and old means of checking whether a BDV is 317 // a base. 318 bool MustBeBase = isKnownBaseResult(BDV); 319 assert(!MustBeBase || MustBeBase == IsKnownBase); 320 #endif 321 } 322 }; 323 } 324 325 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 326 327 /// Return a base defining value for the 'Index' element of the given vector 328 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 329 /// 'I'. As an optimization, this method will try to determine when the 330 /// element is known to already be a base pointer. If this can be established, 331 /// the second value in the returned pair will be true. Note that either a 332 /// vector or a pointer typed value can be returned. For the former, the 333 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 334 /// If the later, the return pointer is a BDV (or possibly a base) for the 335 /// particular element in 'I'. 336 static BaseDefiningValueResult 337 findBaseDefiningValueOfVector(Value *I) { 338 // Each case parallels findBaseDefiningValue below, see that code for 339 // detailed motivation. 340 341 if (isa<Argument>(I)) 342 // An incoming argument to the function is a base pointer 343 return BaseDefiningValueResult(I, true); 344 345 if (isa<Constant>(I)) 346 // Base of constant vector consists only of constant null pointers. 347 // For reasoning see similar case inside 'findBaseDefiningValue' function. 348 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 349 true); 350 351 if (isa<LoadInst>(I)) 352 return BaseDefiningValueResult(I, true); 353 354 if (isa<InsertElementInst>(I)) 355 // We don't know whether this vector contains entirely base pointers or 356 // not. To be conservatively correct, we treat it as a BDV and will 357 // duplicate code as needed to construct a parallel vector of bases. 358 return BaseDefiningValueResult(I, false); 359 360 if (isa<ShuffleVectorInst>(I)) 361 // We don't know whether this vector contains entirely base pointers or 362 // not. To be conservatively correct, we treat it as a BDV and will 363 // duplicate code as needed to construct a parallel vector of bases. 364 // TODO: There a number of local optimizations which could be applied here 365 // for particular sufflevector patterns. 366 return BaseDefiningValueResult(I, false); 367 368 // A PHI or Select is a base defining value. The outer findBasePointer 369 // algorithm is responsible for constructing a base value for this BDV. 370 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 371 "unknown vector instruction - no base found for vector element"); 372 return BaseDefiningValueResult(I, false); 373 } 374 375 /// Helper function for findBasePointer - Will return a value which either a) 376 /// defines the base pointer for the input, b) blocks the simple search 377 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 378 /// from pointer to vector type or back. 379 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 380 assert(I->getType()->isPtrOrPtrVectorTy() && 381 "Illegal to ask for the base pointer of a non-pointer type"); 382 383 if (I->getType()->isVectorTy()) 384 return findBaseDefiningValueOfVector(I); 385 386 if (isa<Argument>(I)) 387 // An incoming argument to the function is a base pointer 388 // We should have never reached here if this argument isn't an gc value 389 return BaseDefiningValueResult(I, true); 390 391 if (isa<Constant>(I)) { 392 // We assume that objects with a constant base (e.g. a global) can't move 393 // and don't need to be reported to the collector because they are always 394 // live. Besides global references, all kinds of constants (e.g. undef, 395 // constant expressions, null pointers) can be introduced by the inliner or 396 // the optimizer, especially on dynamically dead paths. 397 // Here we treat all of them as having single null base. By doing this we 398 // trying to avoid problems reporting various conflicts in a form of 399 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 400 // See constant.ll file for relevant test cases. 401 402 return BaseDefiningValueResult( 403 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 404 } 405 406 if (CastInst *CI = dyn_cast<CastInst>(I)) { 407 Value *Def = CI->stripPointerCasts(); 408 // If stripping pointer casts changes the address space there is an 409 // addrspacecast in between. 410 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 411 cast<PointerType>(CI->getType())->getAddressSpace() && 412 "unsupported addrspacecast"); 413 // If we find a cast instruction here, it means we've found a cast which is 414 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 415 // handle int->ptr conversion. 416 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 417 return findBaseDefiningValue(Def); 418 } 419 420 if (isa<LoadInst>(I)) 421 // The value loaded is an gc base itself 422 return BaseDefiningValueResult(I, true); 423 424 425 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 426 // The base of this GEP is the base 427 return findBaseDefiningValue(GEP->getPointerOperand()); 428 429 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 430 switch (II->getIntrinsicID()) { 431 default: 432 // fall through to general call handling 433 break; 434 case Intrinsic::experimental_gc_statepoint: 435 llvm_unreachable("statepoints don't produce pointers"); 436 case Intrinsic::experimental_gc_relocate: { 437 // Rerunning safepoint insertion after safepoints are already 438 // inserted is not supported. It could probably be made to work, 439 // but why are you doing this? There's no good reason. 440 llvm_unreachable("repeat safepoint insertion is not supported"); 441 } 442 case Intrinsic::gcroot: 443 // Currently, this mechanism hasn't been extended to work with gcroot. 444 // There's no reason it couldn't be, but I haven't thought about the 445 // implications much. 446 llvm_unreachable( 447 "interaction with the gcroot mechanism is not supported"); 448 } 449 } 450 // We assume that functions in the source language only return base 451 // pointers. This should probably be generalized via attributes to support 452 // both source language and internal functions. 453 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 454 return BaseDefiningValueResult(I, true); 455 456 // I have absolutely no idea how to implement this part yet. It's not 457 // necessarily hard, I just haven't really looked at it yet. 458 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 459 460 if (isa<AtomicCmpXchgInst>(I)) 461 // A CAS is effectively a atomic store and load combined under a 462 // predicate. From the perspective of base pointers, we just treat it 463 // like a load. 464 return BaseDefiningValueResult(I, true); 465 466 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 467 "binary ops which don't apply to pointers"); 468 469 // The aggregate ops. Aggregates can either be in the heap or on the 470 // stack, but in either case, this is simply a field load. As a result, 471 // this is a defining definition of the base just like a load is. 472 if (isa<ExtractValueInst>(I)) 473 return BaseDefiningValueResult(I, true); 474 475 // We should never see an insert vector since that would require we be 476 // tracing back a struct value not a pointer value. 477 assert(!isa<InsertValueInst>(I) && 478 "Base pointer for a struct is meaningless"); 479 480 // An extractelement produces a base result exactly when it's input does. 481 // We may need to insert a parallel instruction to extract the appropriate 482 // element out of the base vector corresponding to the input. Given this, 483 // it's analogous to the phi and select case even though it's not a merge. 484 if (isa<ExtractElementInst>(I)) 485 // Note: There a lot of obvious peephole cases here. This are deliberately 486 // handled after the main base pointer inference algorithm to make writing 487 // test cases to exercise that code easier. 488 return BaseDefiningValueResult(I, false); 489 490 // The last two cases here don't return a base pointer. Instead, they 491 // return a value which dynamically selects from among several base 492 // derived pointers (each with it's own base potentially). It's the job of 493 // the caller to resolve these. 494 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 495 "missing instruction case in findBaseDefiningValing"); 496 return BaseDefiningValueResult(I, false); 497 } 498 499 /// Returns the base defining value for this value. 500 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 501 Value *&Cached = Cache[I]; 502 if (!Cached) { 503 Cached = findBaseDefiningValue(I).BDV; 504 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 505 << Cached->getName() << "\n"); 506 } 507 assert(Cache[I] != nullptr); 508 return Cached; 509 } 510 511 /// Return a base pointer for this value if known. Otherwise, return it's 512 /// base defining value. 513 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 514 Value *Def = findBaseDefiningValueCached(I, Cache); 515 auto Found = Cache.find(Def); 516 if (Found != Cache.end()) { 517 // Either a base-of relation, or a self reference. Caller must check. 518 return Found->second; 519 } 520 // Only a BDV available 521 return Def; 522 } 523 524 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 525 /// is it known to be a base pointer? Or do we need to continue searching. 526 static bool isKnownBaseResult(Value *V) { 527 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 528 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 529 !isa<ShuffleVectorInst>(V)) { 530 // no recursion possible 531 return true; 532 } 533 if (isa<Instruction>(V) && 534 cast<Instruction>(V)->getMetadata("is_base_value")) { 535 // This is a previously inserted base phi or select. We know 536 // that this is a base value. 537 return true; 538 } 539 540 // We need to keep searching 541 return false; 542 } 543 544 namespace { 545 /// Models the state of a single base defining value in the findBasePointer 546 /// algorithm for determining where a new instruction is needed to propagate 547 /// the base of this BDV. 548 class BDVState { 549 public: 550 enum Status { Unknown, Base, Conflict }; 551 552 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 553 assert(status != Base || b); 554 } 555 explicit BDVState(Value *b) : status(Base), base(b) {} 556 BDVState() : status(Unknown), base(nullptr) {} 557 558 Status getStatus() const { return status; } 559 Value *getBase() const { return base; } 560 561 bool isBase() const { return getStatus() == Base; } 562 bool isUnknown() const { return getStatus() == Unknown; } 563 bool isConflict() const { return getStatus() == Conflict; } 564 565 bool operator==(const BDVState &other) const { 566 return base == other.base && status == other.status; 567 } 568 569 bool operator!=(const BDVState &other) const { return !(*this == other); } 570 571 LLVM_DUMP_METHOD 572 void dump() const { print(dbgs()); dbgs() << '\n'; } 573 574 void print(raw_ostream &OS) const { 575 switch (status) { 576 case Unknown: 577 OS << "U"; 578 break; 579 case Base: 580 OS << "B"; 581 break; 582 case Conflict: 583 OS << "C"; 584 break; 585 }; 586 OS << " (" << base << " - " 587 << (base ? base->getName() : "nullptr") << "): "; 588 } 589 590 private: 591 Status status; 592 AssertingVH<Value> base; // non null only if status == base 593 }; 594 } 595 596 #ifndef NDEBUG 597 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 598 State.print(OS); 599 return OS; 600 } 601 #endif 602 603 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) { 604 switch (LHS.getStatus()) { 605 case BDVState::Unknown: 606 return RHS; 607 608 case BDVState::Base: 609 assert(LHS.getBase() && "can't be null"); 610 if (RHS.isUnknown()) 611 return LHS; 612 613 if (RHS.isBase()) { 614 if (LHS.getBase() == RHS.getBase()) { 615 assert(LHS == RHS && "equality broken!"); 616 return LHS; 617 } 618 return BDVState(BDVState::Conflict); 619 } 620 assert(RHS.isConflict() && "only three states!"); 621 return BDVState(BDVState::Conflict); 622 623 case BDVState::Conflict: 624 return LHS; 625 } 626 llvm_unreachable("only three states!"); 627 } 628 629 // Values of type BDVState form a lattice, and this function implements the meet 630 // operation. 631 static BDVState meetBDVState(BDVState LHS, BDVState RHS) { 632 BDVState Result = meetBDVStateImpl(LHS, RHS); 633 assert(Result == meetBDVStateImpl(RHS, LHS) && 634 "Math is wrong: meet does not commute!"); 635 return Result; 636 } 637 638 /// For a given value or instruction, figure out what base ptr its derived from. 639 /// For gc objects, this is simply itself. On success, returns a value which is 640 /// the base pointer. (This is reliable and can be used for relocation.) On 641 /// failure, returns nullptr. 642 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 643 Value *Def = findBaseOrBDV(I, Cache); 644 645 if (isKnownBaseResult(Def)) 646 return Def; 647 648 // Here's the rough algorithm: 649 // - For every SSA value, construct a mapping to either an actual base 650 // pointer or a PHI which obscures the base pointer. 651 // - Construct a mapping from PHI to unknown TOP state. Use an 652 // optimistic algorithm to propagate base pointer information. Lattice 653 // looks like: 654 // UNKNOWN 655 // b1 b2 b3 b4 656 // CONFLICT 657 // When algorithm terminates, all PHIs will either have a single concrete 658 // base or be in a conflict state. 659 // - For every conflict, insert a dummy PHI node without arguments. Add 660 // these to the base[Instruction] = BasePtr mapping. For every 661 // non-conflict, add the actual base. 662 // - For every conflict, add arguments for the base[a] of each input 663 // arguments. 664 // 665 // Note: A simpler form of this would be to add the conflict form of all 666 // PHIs without running the optimistic algorithm. This would be 667 // analogous to pessimistic data flow and would likely lead to an 668 // overall worse solution. 669 670 #ifndef NDEBUG 671 auto isExpectedBDVType = [](Value *BDV) { 672 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 673 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 674 }; 675 #endif 676 677 // Once populated, will contain a mapping from each potentially non-base BDV 678 // to a lattice value (described above) which corresponds to that BDV. 679 // We use the order of insertion (DFS over the def/use graph) to provide a 680 // stable deterministic ordering for visiting DenseMaps (which are unordered) 681 // below. This is important for deterministic compilation. 682 MapVector<Value *, BDVState> States; 683 684 // Recursively fill in all base defining values reachable from the initial 685 // one for which we don't already know a definite base value for 686 /* scope */ { 687 SmallVector<Value*, 16> Worklist; 688 Worklist.push_back(Def); 689 States.insert({Def, BDVState()}); 690 while (!Worklist.empty()) { 691 Value *Current = Worklist.pop_back_val(); 692 assert(!isKnownBaseResult(Current) && "why did it get added?"); 693 694 auto visitIncomingValue = [&](Value *InVal) { 695 Value *Base = findBaseOrBDV(InVal, Cache); 696 if (isKnownBaseResult(Base)) 697 // Known bases won't need new instructions introduced and can be 698 // ignored safely 699 return; 700 assert(isExpectedBDVType(Base) && "the only non-base values " 701 "we see should be base defining values"); 702 if (States.insert(std::make_pair(Base, BDVState())).second) 703 Worklist.push_back(Base); 704 }; 705 if (PHINode *PN = dyn_cast<PHINode>(Current)) { 706 for (Value *InVal : PN->incoming_values()) 707 visitIncomingValue(InVal); 708 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { 709 visitIncomingValue(SI->getTrueValue()); 710 visitIncomingValue(SI->getFalseValue()); 711 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 712 visitIncomingValue(EE->getVectorOperand()); 713 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 714 visitIncomingValue(IE->getOperand(0)); // vector operand 715 visitIncomingValue(IE->getOperand(1)); // scalar operand 716 } else { 717 // There is one known class of instructions we know we don't handle. 718 assert(isa<ShuffleVectorInst>(Current)); 719 llvm_unreachable("Unimplemented instruction case"); 720 } 721 } 722 } 723 724 #ifndef NDEBUG 725 DEBUG(dbgs() << "States after initialization:\n"); 726 for (auto Pair : States) 727 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 728 #endif 729 730 // Return a phi state for a base defining value. We'll generate a new 731 // base state for known bases and expect to find a cached state otherwise. 732 auto getStateForBDV = [&](Value *baseValue) { 733 if (isKnownBaseResult(baseValue)) 734 return BDVState(baseValue); 735 auto I = States.find(baseValue); 736 assert(I != States.end() && "lookup failed!"); 737 return I->second; 738 }; 739 740 bool Progress = true; 741 while (Progress) { 742 #ifndef NDEBUG 743 const size_t OldSize = States.size(); 744 #endif 745 Progress = false; 746 // We're only changing values in this loop, thus safe to keep iterators. 747 // Since this is computing a fixed point, the order of visit does not 748 // effect the result. TODO: We could use a worklist here and make this run 749 // much faster. 750 for (auto Pair : States) { 751 Value *BDV = Pair.first; 752 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 753 754 // Given an input value for the current instruction, return a BDVState 755 // instance which represents the BDV of that value. 756 auto getStateForInput = [&](Value *V) mutable { 757 Value *BDV = findBaseOrBDV(V, Cache); 758 return getStateForBDV(BDV); 759 }; 760 761 BDVState NewState; 762 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 763 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); 764 NewState = 765 meetBDVState(NewState, getStateForInput(SI->getFalseValue())); 766 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 767 for (Value *Val : PN->incoming_values()) 768 NewState = meetBDVState(NewState, getStateForInput(Val)); 769 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 770 // The 'meet' for an extractelement is slightly trivial, but it's still 771 // useful in that it drives us to conflict if our input is. 772 NewState = 773 meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); 774 } else { 775 // Given there's a inherent type mismatch between the operands, will 776 // *always* produce Conflict. 777 auto *IE = cast<InsertElementInst>(BDV); 778 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); 779 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); 780 } 781 782 BDVState OldState = States[BDV]; 783 if (OldState != NewState) { 784 Progress = true; 785 States[BDV] = NewState; 786 } 787 } 788 789 assert(OldSize == States.size() && 790 "fixed point shouldn't be adding any new nodes to state"); 791 } 792 793 #ifndef NDEBUG 794 DEBUG(dbgs() << "States after meet iteration:\n"); 795 for (auto Pair : States) 796 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 797 #endif 798 799 // Insert Phis for all conflicts 800 // TODO: adjust naming patterns to avoid this order of iteration dependency 801 for (auto Pair : States) { 802 Instruction *I = cast<Instruction>(Pair.first); 803 BDVState State = Pair.second; 804 assert(!isKnownBaseResult(I) && "why did it get added?"); 805 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 806 807 // extractelement instructions are a bit special in that we may need to 808 // insert an extract even when we know an exact base for the instruction. 809 // The problem is that we need to convert from a vector base to a scalar 810 // base for the particular indice we're interested in. 811 if (State.isBase() && isa<ExtractElementInst>(I) && 812 isa<VectorType>(State.getBase()->getType())) { 813 auto *EE = cast<ExtractElementInst>(I); 814 // TODO: In many cases, the new instruction is just EE itself. We should 815 // exploit this, but can't do it here since it would break the invariant 816 // about the BDV not being known to be a base. 817 auto *BaseInst = ExtractElementInst::Create( 818 State.getBase(), EE->getIndexOperand(), "base_ee", EE); 819 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 820 States[I] = BDVState(BDVState::Base, BaseInst); 821 } 822 823 // Since we're joining a vector and scalar base, they can never be the 824 // same. As a result, we should always see insert element having reached 825 // the conflict state. 826 assert(!isa<InsertElementInst>(I) || State.isConflict()); 827 828 if (!State.isConflict()) 829 continue; 830 831 /// Create and insert a new instruction which will represent the base of 832 /// the given instruction 'I'. 833 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 834 if (isa<PHINode>(I)) { 835 BasicBlock *BB = I->getParent(); 836 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 837 assert(NumPreds > 0 && "how did we reach here"); 838 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 839 return PHINode::Create(I->getType(), NumPreds, Name, I); 840 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 841 // The undef will be replaced later 842 UndefValue *Undef = UndefValue::get(SI->getType()); 843 std::string Name = suffixed_name_or(I, ".base", "base_select"); 844 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); 845 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 846 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 847 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 848 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 849 EE); 850 } else { 851 auto *IE = cast<InsertElementInst>(I); 852 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 853 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 854 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 855 return InsertElementInst::Create(VecUndef, ScalarUndef, 856 IE->getOperand(2), Name, IE); 857 } 858 }; 859 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 860 // Add metadata marking this as a base value 861 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 862 States[I] = BDVState(BDVState::Conflict, BaseInst); 863 } 864 865 // Returns a instruction which produces the base pointer for a given 866 // instruction. The instruction is assumed to be an input to one of the BDVs 867 // seen in the inference algorithm above. As such, we must either already 868 // know it's base defining value is a base, or have inserted a new 869 // instruction to propagate the base of it's BDV and have entered that newly 870 // introduced instruction into the state table. In either case, we are 871 // assured to be able to determine an instruction which produces it's base 872 // pointer. 873 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 874 Value *BDV = findBaseOrBDV(Input, Cache); 875 Value *Base = nullptr; 876 if (isKnownBaseResult(BDV)) { 877 Base = BDV; 878 } else { 879 // Either conflict or base. 880 assert(States.count(BDV)); 881 Base = States[BDV].getBase(); 882 } 883 assert(Base && "Can't be null"); 884 // The cast is needed since base traversal may strip away bitcasts 885 if (Base->getType() != Input->getType() && InsertPt) 886 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 887 return Base; 888 }; 889 890 // Fixup all the inputs of the new PHIs. Visit order needs to be 891 // deterministic and predictable because we're naming newly created 892 // instructions. 893 for (auto Pair : States) { 894 Instruction *BDV = cast<Instruction>(Pair.first); 895 BDVState State = Pair.second; 896 897 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 898 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 899 if (!State.isConflict()) 900 continue; 901 902 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBase())) { 903 PHINode *PN = cast<PHINode>(BDV); 904 unsigned NumPHIValues = PN->getNumIncomingValues(); 905 for (unsigned i = 0; i < NumPHIValues; i++) { 906 Value *InVal = PN->getIncomingValue(i); 907 BasicBlock *InBB = PN->getIncomingBlock(i); 908 909 // If we've already seen InBB, add the same incoming value 910 // we added for it earlier. The IR verifier requires phi 911 // nodes with multiple entries from the same basic block 912 // to have the same incoming value for each of those 913 // entries. If we don't do this check here and basephi 914 // has a different type than base, we'll end up adding two 915 // bitcasts (and hence two distinct values) as incoming 916 // values for the same basic block. 917 918 int BlockIndex = BasePHI->getBasicBlockIndex(InBB); 919 if (BlockIndex != -1) { 920 Value *OldBase = BasePHI->getIncomingValue(BlockIndex); 921 BasePHI->addIncoming(OldBase, InBB); 922 923 #ifndef NDEBUG 924 Value *Base = getBaseForInput(InVal, nullptr); 925 // In essence this assert states: the only way two values 926 // incoming from the same basic block may be different is by 927 // being different bitcasts of the same value. A cleanup 928 // that remains TODO is changing findBaseOrBDV to return an 929 // llvm::Value of the correct type (and still remain pure). 930 // This will remove the need to add bitcasts. 931 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 932 "Sanity -- findBaseOrBDV should be pure!"); 933 #endif 934 continue; 935 } 936 937 // Find the instruction which produces the base for each input. We may 938 // need to insert a bitcast in the incoming block. 939 // TODO: Need to split critical edges if insertion is needed 940 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 941 BasePHI->addIncoming(Base, InBB); 942 } 943 assert(BasePHI->getNumIncomingValues() == NumPHIValues); 944 } else if (SelectInst *BaseSI = dyn_cast<SelectInst>(State.getBase())) { 945 SelectInst *SI = cast<SelectInst>(BDV); 946 947 // Find the instruction which produces the base for each input. 948 // We may need to insert a bitcast. 949 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 950 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 951 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 952 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 953 // Find the instruction which produces the base for each input. We may 954 // need to insert a bitcast. 955 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 956 } else { 957 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 958 auto *BdvIE = cast<InsertElementInst>(BDV); 959 auto UpdateOperand = [&](int OperandIdx) { 960 Value *InVal = BdvIE->getOperand(OperandIdx); 961 Value *Base = getBaseForInput(InVal, BaseIE); 962 BaseIE->setOperand(OperandIdx, Base); 963 }; 964 UpdateOperand(0); // vector operand 965 UpdateOperand(1); // scalar operand 966 } 967 } 968 969 // Cache all of our results so we can cheaply reuse them 970 // NOTE: This is actually two caches: one of the base defining value 971 // relation and one of the base pointer relation! FIXME 972 for (auto Pair : States) { 973 auto *BDV = Pair.first; 974 Value *Base = Pair.second.getBase(); 975 assert(BDV && Base); 976 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 977 978 DEBUG(dbgs() << "Updating base value cache" 979 << " for: " << BDV->getName() << " from: " 980 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 981 << " to: " << Base->getName() << "\n"); 982 983 if (Cache.count(BDV)) { 984 assert(isKnownBaseResult(Base) && 985 "must be something we 'know' is a base pointer"); 986 // Once we transition from the BDV relation being store in the Cache to 987 // the base relation being stored, it must be stable 988 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && 989 "base relation should be stable"); 990 } 991 Cache[BDV] = Base; 992 } 993 assert(Cache.count(Def)); 994 return Cache[Def]; 995 } 996 997 // For a set of live pointers (base and/or derived), identify the base 998 // pointer of the object which they are derived from. This routine will 999 // mutate the IR graph as needed to make the 'base' pointer live at the 1000 // definition site of 'derived'. This ensures that any use of 'derived' can 1001 // also use 'base'. This may involve the insertion of a number of 1002 // additional PHI nodes. 1003 // 1004 // preconditions: live is a set of pointer type Values 1005 // 1006 // side effects: may insert PHI nodes into the existing CFG, will preserve 1007 // CFG, will not remove or mutate any existing nodes 1008 // 1009 // post condition: PointerToBase contains one (derived, base) pair for every 1010 // pointer in live. Note that derived can be equal to base if the original 1011 // pointer was a base pointer. 1012 static void 1013 findBasePointers(const StatepointLiveSetTy &live, 1014 MapVector<Value *, Value *> &PointerToBase, 1015 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1016 for (Value *ptr : live) { 1017 Value *base = findBasePointer(ptr, DVCache); 1018 assert(base && "failed to find base pointer"); 1019 PointerToBase[ptr] = base; 1020 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1021 DT->dominates(cast<Instruction>(base)->getParent(), 1022 cast<Instruction>(ptr)->getParent())) && 1023 "The base we found better dominate the derived pointer"); 1024 } 1025 } 1026 1027 /// Find the required based pointers (and adjust the live set) for the given 1028 /// parse point. 1029 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1030 CallSite CS, 1031 PartiallyConstructedSafepointRecord &result) { 1032 MapVector<Value *, Value *> PointerToBase; 1033 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1034 1035 if (PrintBasePointers) { 1036 errs() << "Base Pairs (w/o Relocation):\n"; 1037 for (auto &Pair : PointerToBase) { 1038 errs() << " derived "; 1039 Pair.first->printAsOperand(errs(), false); 1040 errs() << " base "; 1041 Pair.second->printAsOperand(errs(), false); 1042 errs() << "\n";; 1043 } 1044 } 1045 1046 result.PointerToBase = PointerToBase; 1047 } 1048 1049 /// Given an updated version of the dataflow liveness results, update the 1050 /// liveset and base pointer maps for the call site CS. 1051 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1052 CallSite CS, 1053 PartiallyConstructedSafepointRecord &result); 1054 1055 static void recomputeLiveInValues( 1056 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1057 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1058 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1059 // again. The old values are still live and will help it stabilize quickly. 1060 GCPtrLivenessData RevisedLivenessData; 1061 computeLiveInValues(DT, F, RevisedLivenessData); 1062 for (size_t i = 0; i < records.size(); i++) { 1063 struct PartiallyConstructedSafepointRecord &info = records[i]; 1064 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1065 } 1066 } 1067 1068 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1069 // no uses of the original value / return value between the gc.statepoint and 1070 // the gc.relocate / gc.result call. One case which can arise is a phi node 1071 // starting one of the successor blocks. We also need to be able to insert the 1072 // gc.relocates only on the path which goes through the statepoint. We might 1073 // need to split an edge to make this possible. 1074 static BasicBlock * 1075 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1076 DominatorTree &DT) { 1077 BasicBlock *Ret = BB; 1078 if (!BB->getUniquePredecessor()) 1079 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1080 1081 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1082 // from it 1083 FoldSingleEntryPHINodes(Ret); 1084 assert(!isa<PHINode>(Ret->begin()) && 1085 "All PHI nodes should have been removed!"); 1086 1087 // At this point, we can safely insert a gc.relocate or gc.result as the first 1088 // instruction in Ret if needed. 1089 return Ret; 1090 } 1091 1092 // Create new attribute set containing only attributes which can be transferred 1093 // from original call to the safepoint. 1094 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1095 AttributeSet Ret; 1096 1097 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1098 unsigned Index = AS.getSlotIndex(Slot); 1099 1100 if (Index == AttributeSet::ReturnIndex || 1101 Index == AttributeSet::FunctionIndex) { 1102 1103 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { 1104 1105 // Do not allow certain attributes - just skip them 1106 // Safepoint can not be read only or read none. 1107 if (Attr.hasAttribute(Attribute::ReadNone) || 1108 Attr.hasAttribute(Attribute::ReadOnly)) 1109 continue; 1110 1111 // These attributes control the generation of the gc.statepoint call / 1112 // invoke itself; and once the gc.statepoint is in place, they're of no 1113 // use. 1114 if (isStatepointDirectiveAttr(Attr)) 1115 continue; 1116 1117 Ret = Ret.addAttributes( 1118 AS.getContext(), Index, 1119 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); 1120 } 1121 } 1122 1123 // Just skip parameter attributes for now 1124 } 1125 1126 return Ret; 1127 } 1128 1129 /// Helper function to place all gc relocates necessary for the given 1130 /// statepoint. 1131 /// Inputs: 1132 /// liveVariables - list of variables to be relocated. 1133 /// liveStart - index of the first live variable. 1134 /// basePtrs - base pointers. 1135 /// statepointToken - statepoint instruction to which relocates should be 1136 /// bound. 1137 /// Builder - Llvm IR builder to be used to construct new calls. 1138 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1139 const int LiveStart, 1140 ArrayRef<Value *> BasePtrs, 1141 Instruction *StatepointToken, 1142 IRBuilder<> Builder) { 1143 if (LiveVariables.empty()) 1144 return; 1145 1146 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1147 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val); 1148 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1149 size_t Index = std::distance(LiveVec.begin(), ValIt); 1150 assert(Index < LiveVec.size() && "Bug in std::find?"); 1151 return Index; 1152 }; 1153 Module *M = StatepointToken->getModule(); 1154 1155 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1156 // element type is i8 addrspace(1)*). We originally generated unique 1157 // declarations for each pointer type, but this proved problematic because 1158 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1159 // towards a single unified pointer type anyways, we can just cast everything 1160 // to an i8* of the right address space. A bitcast is added later to convert 1161 // gc_relocate to the actual value's type. 1162 auto getGCRelocateDecl = [&] (Type *Ty) { 1163 assert(isHandledGCPointerType(Ty)); 1164 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1165 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1166 if (auto *VT = dyn_cast<VectorType>(Ty)) 1167 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1168 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1169 {NewTy}); 1170 }; 1171 1172 // Lazily populated map from input types to the canonicalized form mentioned 1173 // in the comment above. This should probably be cached somewhere more 1174 // broadly. 1175 DenseMap<Type*, Value*> TypeToDeclMap; 1176 1177 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1178 // Generate the gc.relocate call and save the result 1179 Value *BaseIdx = 1180 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1181 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1182 1183 Type *Ty = LiveVariables[i]->getType(); 1184 if (!TypeToDeclMap.count(Ty)) 1185 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1186 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1187 1188 // only specify a debug name if we can give a useful one 1189 CallInst *Reloc = Builder.CreateCall( 1190 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1191 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1192 // Trick CodeGen into thinking there are lots of free registers at this 1193 // fake call. 1194 Reloc->setCallingConv(CallingConv::Cold); 1195 } 1196 } 1197 1198 namespace { 1199 1200 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1201 /// avoids having to worry about keeping around dangling pointers to Values. 1202 class DeferredReplacement { 1203 AssertingVH<Instruction> Old; 1204 AssertingVH<Instruction> New; 1205 bool IsDeoptimize = false; 1206 1207 DeferredReplacement() {} 1208 1209 public: 1210 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1211 assert(Old != New && Old && New && 1212 "Cannot RAUW equal values or to / from null!"); 1213 1214 DeferredReplacement D; 1215 D.Old = Old; 1216 D.New = New; 1217 return D; 1218 } 1219 1220 static DeferredReplacement createDelete(Instruction *ToErase) { 1221 DeferredReplacement D; 1222 D.Old = ToErase; 1223 return D; 1224 } 1225 1226 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1227 #ifndef NDEBUG 1228 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1229 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1230 "Only way to construct a deoptimize deferred replacement"); 1231 #endif 1232 DeferredReplacement D; 1233 D.Old = Old; 1234 D.IsDeoptimize = true; 1235 return D; 1236 } 1237 1238 /// Does the task represented by this instance. 1239 void doReplacement() { 1240 Instruction *OldI = Old; 1241 Instruction *NewI = New; 1242 1243 assert(OldI != NewI && "Disallowed at construction?!"); 1244 assert((!IsDeoptimize || !New) && 1245 "Deoptimize instrinsics are not replaced!"); 1246 1247 Old = nullptr; 1248 New = nullptr; 1249 1250 if (NewI) 1251 OldI->replaceAllUsesWith(NewI); 1252 1253 if (IsDeoptimize) { 1254 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1255 // not necessarilly be followed by the matching return. 1256 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1257 new UnreachableInst(RI->getContext(), RI); 1258 RI->eraseFromParent(); 1259 } 1260 1261 OldI->eraseFromParent(); 1262 } 1263 }; 1264 } 1265 1266 static void 1267 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1268 const SmallVectorImpl<Value *> &BasePtrs, 1269 const SmallVectorImpl<Value *> &LiveVariables, 1270 PartiallyConstructedSafepointRecord &Result, 1271 std::vector<DeferredReplacement> &Replacements) { 1272 assert(BasePtrs.size() == LiveVariables.size()); 1273 1274 // Then go ahead and use the builder do actually do the inserts. We insert 1275 // immediately before the previous instruction under the assumption that all 1276 // arguments will be available here. We can't insert afterwards since we may 1277 // be replacing a terminator. 1278 Instruction *InsertBefore = CS.getInstruction(); 1279 IRBuilder<> Builder(InsertBefore); 1280 1281 ArrayRef<Value *> GCArgs(LiveVariables); 1282 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1283 uint32_t NumPatchBytes = 0; 1284 uint32_t Flags = uint32_t(StatepointFlags::None); 1285 1286 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1287 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1288 ArrayRef<Use> TransitionArgs; 1289 if (auto TransitionBundle = 1290 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1291 Flags |= uint32_t(StatepointFlags::GCTransition); 1292 TransitionArgs = TransitionBundle->Inputs; 1293 } 1294 1295 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1296 // with a return value, we lower then as never returning calls to 1297 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1298 bool IsDeoptimize = false; 1299 1300 StatepointDirectives SD = 1301 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1302 if (SD.NumPatchBytes) 1303 NumPatchBytes = *SD.NumPatchBytes; 1304 if (SD.StatepointID) 1305 StatepointID = *SD.StatepointID; 1306 1307 Value *CallTarget = CS.getCalledValue(); 1308 if (Function *F = dyn_cast<Function>(CallTarget)) { 1309 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1310 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1311 // __llvm_deoptimize symbol. We want to resolve this now, since the 1312 // verifier does not allow taking the address of an intrinsic function. 1313 1314 SmallVector<Type *, 8> DomainTy; 1315 for (Value *Arg : CallArgs) 1316 DomainTy.push_back(Arg->getType()); 1317 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1318 /* isVarArg = */ false); 1319 1320 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1321 // calls to @llvm.experimental.deoptimize with different argument types in 1322 // the same module. This is fine -- we assume the frontend knew what it 1323 // was doing when generating this kind of IR. 1324 CallTarget = 1325 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1326 1327 IsDeoptimize = true; 1328 } 1329 } 1330 1331 // Create the statepoint given all the arguments 1332 Instruction *Token = nullptr; 1333 AttributeSet ReturnAttrs; 1334 if (CS.isCall()) { 1335 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1336 CallInst *Call = Builder.CreateGCStatepointCall( 1337 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1338 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1339 1340 Call->setTailCall(ToReplace->isTailCall()); 1341 Call->setCallingConv(ToReplace->getCallingConv()); 1342 1343 // Currently we will fail on parameter attributes and on certain 1344 // function attributes. 1345 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1346 // In case if we can handle this set of attributes - set up function attrs 1347 // directly on statepoint and return attrs later for gc_result intrinsic. 1348 Call->setAttributes(NewAttrs.getFnAttributes()); 1349 ReturnAttrs = NewAttrs.getRetAttributes(); 1350 1351 Token = Call; 1352 1353 // Put the following gc_result and gc_relocate calls immediately after the 1354 // the old call (which we're about to delete) 1355 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1356 Builder.SetInsertPoint(ToReplace->getNextNode()); 1357 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1358 } else { 1359 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1360 1361 // Insert the new invoke into the old block. We'll remove the old one in a 1362 // moment at which point this will become the new terminator for the 1363 // original block. 1364 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1365 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1366 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1367 GCArgs, "statepoint_token"); 1368 1369 Invoke->setCallingConv(ToReplace->getCallingConv()); 1370 1371 // Currently we will fail on parameter attributes and on certain 1372 // function attributes. 1373 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1374 // In case if we can handle this set of attributes - set up function attrs 1375 // directly on statepoint and return attrs later for gc_result intrinsic. 1376 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1377 ReturnAttrs = NewAttrs.getRetAttributes(); 1378 1379 Token = Invoke; 1380 1381 // Generate gc relocates in exceptional path 1382 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1383 assert(!isa<PHINode>(UnwindBlock->begin()) && 1384 UnwindBlock->getUniquePredecessor() && 1385 "can't safely insert in this block!"); 1386 1387 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1388 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1389 1390 // Attach exceptional gc relocates to the landingpad. 1391 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1392 Result.UnwindToken = ExceptionalToken; 1393 1394 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1395 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1396 Builder); 1397 1398 // Generate gc relocates and returns for normal block 1399 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1400 assert(!isa<PHINode>(NormalDest->begin()) && 1401 NormalDest->getUniquePredecessor() && 1402 "can't safely insert in this block!"); 1403 1404 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1405 1406 // gc relocates will be generated later as if it were regular call 1407 // statepoint 1408 } 1409 assert(Token && "Should be set in one of the above branches!"); 1410 1411 if (IsDeoptimize) { 1412 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1413 // transform the tail-call like structure to a call to a void function 1414 // followed by unreachable to get better codegen. 1415 Replacements.push_back( 1416 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1417 } else { 1418 Token->setName("statepoint_token"); 1419 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1420 StringRef Name = 1421 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1422 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1423 GCResult->setAttributes(CS.getAttributes().getRetAttributes()); 1424 1425 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1426 // live set of some other safepoint, in which case that safepoint's 1427 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1428 // llvm::Instruction. Instead, we defer the replacement and deletion to 1429 // after the live sets have been made explicit in the IR, and we no longer 1430 // have raw pointers to worry about. 1431 Replacements.emplace_back( 1432 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1433 } else { 1434 Replacements.emplace_back( 1435 DeferredReplacement::createDelete(CS.getInstruction())); 1436 } 1437 } 1438 1439 Result.StatepointToken = Token; 1440 1441 // Second, create a gc.relocate for every live variable 1442 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1443 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1444 } 1445 1446 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1447 // which make the relocations happening at this safepoint explicit. 1448 // 1449 // WARNING: Does not do any fixup to adjust users of the original live 1450 // values. That's the callers responsibility. 1451 static void 1452 makeStatepointExplicit(DominatorTree &DT, CallSite CS, 1453 PartiallyConstructedSafepointRecord &Result, 1454 std::vector<DeferredReplacement> &Replacements) { 1455 const auto &LiveSet = Result.LiveSet; 1456 const auto &PointerToBase = Result.PointerToBase; 1457 1458 // Convert to vector for efficient cross referencing. 1459 SmallVector<Value *, 64> BaseVec, LiveVec; 1460 LiveVec.reserve(LiveSet.size()); 1461 BaseVec.reserve(LiveSet.size()); 1462 for (Value *L : LiveSet) { 1463 LiveVec.push_back(L); 1464 assert(PointerToBase.count(L)); 1465 Value *Base = PointerToBase.find(L)->second; 1466 BaseVec.push_back(Base); 1467 } 1468 assert(LiveVec.size() == BaseVec.size()); 1469 1470 // Do the actual rewriting and delete the old statepoint 1471 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1472 } 1473 1474 // Helper function for the relocationViaAlloca. 1475 // 1476 // It receives iterator to the statepoint gc relocates and emits a store to the 1477 // assigned location (via allocaMap) for the each one of them. It adds the 1478 // visited values into the visitedLiveValues set, which we will later use them 1479 // for sanity checking. 1480 static void 1481 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1482 DenseMap<Value *, Value *> &AllocaMap, 1483 DenseSet<Value *> &VisitedLiveValues) { 1484 1485 for (User *U : GCRelocs) { 1486 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1487 if (!Relocate) 1488 continue; 1489 1490 Value *OriginalValue = Relocate->getDerivedPtr(); 1491 assert(AllocaMap.count(OriginalValue)); 1492 Value *Alloca = AllocaMap[OriginalValue]; 1493 1494 // Emit store into the related alloca 1495 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1496 // the correct type according to alloca. 1497 assert(Relocate->getNextNode() && 1498 "Should always have one since it's not a terminator"); 1499 IRBuilder<> Builder(Relocate->getNextNode()); 1500 Value *CastedRelocatedValue = 1501 Builder.CreateBitCast(Relocate, 1502 cast<AllocaInst>(Alloca)->getAllocatedType(), 1503 suffixed_name_or(Relocate, ".casted", "")); 1504 1505 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1506 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1507 1508 #ifndef NDEBUG 1509 VisitedLiveValues.insert(OriginalValue); 1510 #endif 1511 } 1512 } 1513 1514 // Helper function for the "relocationViaAlloca". Similar to the 1515 // "insertRelocationStores" but works for rematerialized values. 1516 static void insertRematerializationStores( 1517 const RematerializedValueMapTy &RematerializedValues, 1518 DenseMap<Value *, Value *> &AllocaMap, 1519 DenseSet<Value *> &VisitedLiveValues) { 1520 1521 for (auto RematerializedValuePair: RematerializedValues) { 1522 Instruction *RematerializedValue = RematerializedValuePair.first; 1523 Value *OriginalValue = RematerializedValuePair.second; 1524 1525 assert(AllocaMap.count(OriginalValue) && 1526 "Can not find alloca for rematerialized value"); 1527 Value *Alloca = AllocaMap[OriginalValue]; 1528 1529 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1530 Store->insertAfter(RematerializedValue); 1531 1532 #ifndef NDEBUG 1533 VisitedLiveValues.insert(OriginalValue); 1534 #endif 1535 } 1536 } 1537 1538 /// Do all the relocation update via allocas and mem2reg 1539 static void relocationViaAlloca( 1540 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1541 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1542 #ifndef NDEBUG 1543 // record initial number of (static) allocas; we'll check we have the same 1544 // number when we get done. 1545 int InitialAllocaNum = 0; 1546 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1547 I++) 1548 if (isa<AllocaInst>(*I)) 1549 InitialAllocaNum++; 1550 #endif 1551 1552 // TODO-PERF: change data structures, reserve 1553 DenseMap<Value *, Value *> AllocaMap; 1554 SmallVector<AllocaInst *, 200> PromotableAllocas; 1555 // Used later to chack that we have enough allocas to store all values 1556 std::size_t NumRematerializedValues = 0; 1557 PromotableAllocas.reserve(Live.size()); 1558 1559 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1560 // "PromotableAllocas" 1561 auto emitAllocaFor = [&](Value *LiveValue) { 1562 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1563 F.getEntryBlock().getFirstNonPHI()); 1564 AllocaMap[LiveValue] = Alloca; 1565 PromotableAllocas.push_back(Alloca); 1566 }; 1567 1568 // Emit alloca for each live gc pointer 1569 for (Value *V : Live) 1570 emitAllocaFor(V); 1571 1572 // Emit allocas for rematerialized values 1573 for (const auto &Info : Records) 1574 for (auto RematerializedValuePair : Info.RematerializedValues) { 1575 Value *OriginalValue = RematerializedValuePair.second; 1576 if (AllocaMap.count(OriginalValue) != 0) 1577 continue; 1578 1579 emitAllocaFor(OriginalValue); 1580 ++NumRematerializedValues; 1581 } 1582 1583 // The next two loops are part of the same conceptual operation. We need to 1584 // insert a store to the alloca after the original def and at each 1585 // redefinition. We need to insert a load before each use. These are split 1586 // into distinct loops for performance reasons. 1587 1588 // Update gc pointer after each statepoint: either store a relocated value or 1589 // null (if no relocated value was found for this gc pointer and it is not a 1590 // gc_result). This must happen before we update the statepoint with load of 1591 // alloca otherwise we lose the link between statepoint and old def. 1592 for (const auto &Info : Records) { 1593 Value *Statepoint = Info.StatepointToken; 1594 1595 // This will be used for consistency check 1596 DenseSet<Value *> VisitedLiveValues; 1597 1598 // Insert stores for normal statepoint gc relocates 1599 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1600 1601 // In case if it was invoke statepoint 1602 // we will insert stores for exceptional path gc relocates. 1603 if (isa<InvokeInst>(Statepoint)) { 1604 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1605 VisitedLiveValues); 1606 } 1607 1608 // Do similar thing with rematerialized values 1609 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1610 VisitedLiveValues); 1611 1612 if (ClobberNonLive) { 1613 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1614 // the gc.statepoint. This will turn some subtle GC problems into 1615 // slightly easier to debug SEGVs. Note that on large IR files with 1616 // lots of gc.statepoints this is extremely costly both memory and time 1617 // wise. 1618 SmallVector<AllocaInst *, 64> ToClobber; 1619 for (auto Pair : AllocaMap) { 1620 Value *Def = Pair.first; 1621 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1622 1623 // This value was relocated 1624 if (VisitedLiveValues.count(Def)) { 1625 continue; 1626 } 1627 ToClobber.push_back(Alloca); 1628 } 1629 1630 auto InsertClobbersAt = [&](Instruction *IP) { 1631 for (auto *AI : ToClobber) { 1632 auto PT = cast<PointerType>(AI->getAllocatedType()); 1633 Constant *CPN = ConstantPointerNull::get(PT); 1634 StoreInst *Store = new StoreInst(CPN, AI); 1635 Store->insertBefore(IP); 1636 } 1637 }; 1638 1639 // Insert the clobbering stores. These may get intermixed with the 1640 // gc.results and gc.relocates, but that's fine. 1641 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1642 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1643 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1644 } else { 1645 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1646 } 1647 } 1648 } 1649 1650 // Update use with load allocas and add store for gc_relocated. 1651 for (auto Pair : AllocaMap) { 1652 Value *Def = Pair.first; 1653 Value *Alloca = Pair.second; 1654 1655 // We pre-record the uses of allocas so that we dont have to worry about 1656 // later update that changes the user information.. 1657 1658 SmallVector<Instruction *, 20> Uses; 1659 // PERF: trade a linear scan for repeated reallocation 1660 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1661 for (User *U : Def->users()) { 1662 if (!isa<ConstantExpr>(U)) { 1663 // If the def has a ConstantExpr use, then the def is either a 1664 // ConstantExpr use itself or null. In either case 1665 // (recursively in the first, directly in the second), the oop 1666 // it is ultimately dependent on is null and this particular 1667 // use does not need to be fixed up. 1668 Uses.push_back(cast<Instruction>(U)); 1669 } 1670 } 1671 1672 std::sort(Uses.begin(), Uses.end()); 1673 auto Last = std::unique(Uses.begin(), Uses.end()); 1674 Uses.erase(Last, Uses.end()); 1675 1676 for (Instruction *Use : Uses) { 1677 if (isa<PHINode>(Use)) { 1678 PHINode *Phi = cast<PHINode>(Use); 1679 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1680 if (Def == Phi->getIncomingValue(i)) { 1681 LoadInst *Load = new LoadInst( 1682 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1683 Phi->setIncomingValue(i, Load); 1684 } 1685 } 1686 } else { 1687 LoadInst *Load = new LoadInst(Alloca, "", Use); 1688 Use->replaceUsesOfWith(Def, Load); 1689 } 1690 } 1691 1692 // Emit store for the initial gc value. Store must be inserted after load, 1693 // otherwise store will be in alloca's use list and an extra load will be 1694 // inserted before it. 1695 StoreInst *Store = new StoreInst(Def, Alloca); 1696 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1697 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1698 // InvokeInst is a TerminatorInst so the store need to be inserted 1699 // into its normal destination block. 1700 BasicBlock *NormalDest = Invoke->getNormalDest(); 1701 Store->insertBefore(NormalDest->getFirstNonPHI()); 1702 } else { 1703 assert(!Inst->isTerminator() && 1704 "The only TerminatorInst that can produce a value is " 1705 "InvokeInst which is handled above."); 1706 Store->insertAfter(Inst); 1707 } 1708 } else { 1709 assert(isa<Argument>(Def)); 1710 Store->insertAfter(cast<Instruction>(Alloca)); 1711 } 1712 } 1713 1714 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1715 "we must have the same allocas with lives"); 1716 if (!PromotableAllocas.empty()) { 1717 // Apply mem2reg to promote alloca to SSA 1718 PromoteMemToReg(PromotableAllocas, DT); 1719 } 1720 1721 #ifndef NDEBUG 1722 for (auto &I : F.getEntryBlock()) 1723 if (isa<AllocaInst>(I)) 1724 InitialAllocaNum--; 1725 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1726 #endif 1727 } 1728 1729 /// Implement a unique function which doesn't require we sort the input 1730 /// vector. Doing so has the effect of changing the output of a couple of 1731 /// tests in ways which make them less useful in testing fused safepoints. 1732 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1733 SmallSet<T, 8> Seen; 1734 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1735 return !Seen.insert(V).second; 1736 }), Vec.end()); 1737 } 1738 1739 /// Insert holders so that each Value is obviously live through the entire 1740 /// lifetime of the call. 1741 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1742 SmallVectorImpl<CallInst *> &Holders) { 1743 if (Values.empty()) 1744 // No values to hold live, might as well not insert the empty holder 1745 return; 1746 1747 Module *M = CS.getInstruction()->getModule(); 1748 // Use a dummy vararg function to actually hold the values live 1749 Function *Func = cast<Function>(M->getOrInsertFunction( 1750 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1751 if (CS.isCall()) { 1752 // For call safepoints insert dummy calls right after safepoint 1753 Holders.push_back(CallInst::Create(Func, Values, "", 1754 &*++CS.getInstruction()->getIterator())); 1755 return; 1756 } 1757 // For invoke safepooints insert dummy calls both in normal and 1758 // exceptional destination blocks 1759 auto *II = cast<InvokeInst>(CS.getInstruction()); 1760 Holders.push_back(CallInst::Create( 1761 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1762 Holders.push_back(CallInst::Create( 1763 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1764 } 1765 1766 static void findLiveReferences( 1767 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1768 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1769 GCPtrLivenessData OriginalLivenessData; 1770 computeLiveInValues(DT, F, OriginalLivenessData); 1771 for (size_t i = 0; i < records.size(); i++) { 1772 struct PartiallyConstructedSafepointRecord &info = records[i]; 1773 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1774 } 1775 } 1776 1777 // Helper function for the "rematerializeLiveValues". It walks use chain 1778 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1779 // values are visited (currently it is GEP's and casts). Returns true if it 1780 // successfully reached "BaseValue" and false otherwise. 1781 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1782 // recorded. 1783 static bool findRematerializableChainToBasePointer( 1784 SmallVectorImpl<Instruction*> &ChainToBase, 1785 Value *CurrentValue, Value *BaseValue) { 1786 1787 // We have found a base value 1788 if (CurrentValue == BaseValue) { 1789 return true; 1790 } 1791 1792 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1793 ChainToBase.push_back(GEP); 1794 return findRematerializableChainToBasePointer(ChainToBase, 1795 GEP->getPointerOperand(), 1796 BaseValue); 1797 } 1798 1799 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1800 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1801 return false; 1802 1803 ChainToBase.push_back(CI); 1804 return findRematerializableChainToBasePointer(ChainToBase, 1805 CI->getOperand(0), BaseValue); 1806 } 1807 1808 // Not supported instruction in the chain 1809 return false; 1810 } 1811 1812 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1813 // chain we are going to rematerialize. 1814 static unsigned 1815 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1816 TargetTransformInfo &TTI) { 1817 unsigned Cost = 0; 1818 1819 for (Instruction *Instr : Chain) { 1820 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1821 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1822 "non noop cast is found during rematerialization"); 1823 1824 Type *SrcTy = CI->getOperand(0)->getType(); 1825 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 1826 1827 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1828 // Cost of the address calculation 1829 Type *ValTy = GEP->getSourceElementType(); 1830 Cost += TTI.getAddressComputationCost(ValTy); 1831 1832 // And cost of the GEP itself 1833 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1834 // allowed for the external usage) 1835 if (!GEP->hasAllConstantIndices()) 1836 Cost += 2; 1837 1838 } else { 1839 llvm_unreachable("unsupported instruciton type during rematerialization"); 1840 } 1841 } 1842 1843 return Cost; 1844 } 1845 1846 // From the statepoint live set pick values that are cheaper to recompute then 1847 // to relocate. Remove this values from the live set, rematerialize them after 1848 // statepoint and record them in "Info" structure. Note that similar to 1849 // relocated values we don't do any user adjustments here. 1850 static void rematerializeLiveValues(CallSite CS, 1851 PartiallyConstructedSafepointRecord &Info, 1852 TargetTransformInfo &TTI) { 1853 const unsigned int ChainLengthThreshold = 10; 1854 1855 // Record values we are going to delete from this statepoint live set. 1856 // We can not di this in following loop due to iterator invalidation. 1857 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1858 1859 for (Value *LiveValue: Info.LiveSet) { 1860 // For each live pointer find it's defining chain 1861 SmallVector<Instruction *, 3> ChainToBase; 1862 assert(Info.PointerToBase.count(LiveValue)); 1863 bool FoundChain = 1864 findRematerializableChainToBasePointer(ChainToBase, 1865 LiveValue, 1866 Info.PointerToBase[LiveValue]); 1867 // Nothing to do, or chain is too long 1868 if (!FoundChain || 1869 ChainToBase.size() == 0 || 1870 ChainToBase.size() > ChainLengthThreshold) 1871 continue; 1872 1873 // Compute cost of this chain 1874 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1875 // TODO: We can also account for cases when we will be able to remove some 1876 // of the rematerialized values by later optimization passes. I.e if 1877 // we rematerialized several intersecting chains. Or if original values 1878 // don't have any uses besides this statepoint. 1879 1880 // For invokes we need to rematerialize each chain twice - for normal and 1881 // for unwind basic blocks. Model this by multiplying cost by two. 1882 if (CS.isInvoke()) { 1883 Cost *= 2; 1884 } 1885 // If it's too expensive - skip it 1886 if (Cost >= RematerializationThreshold) 1887 continue; 1888 1889 // Remove value from the live set 1890 LiveValuesToBeDeleted.push_back(LiveValue); 1891 1892 // Clone instructions and record them inside "Info" structure 1893 1894 // Walk backwards to visit top-most instructions first 1895 std::reverse(ChainToBase.begin(), ChainToBase.end()); 1896 1897 // Utility function which clones all instructions from "ChainToBase" 1898 // and inserts them before "InsertBefore". Returns rematerialized value 1899 // which should be used after statepoint. 1900 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 1901 Instruction *LastClonedValue = nullptr; 1902 Instruction *LastValue = nullptr; 1903 for (Instruction *Instr: ChainToBase) { 1904 // Only GEP's and casts are suported as we need to be careful to not 1905 // introduce any new uses of pointers not in the liveset. 1906 // Note that it's fine to introduce new uses of pointers which were 1907 // otherwise not used after this statepoint. 1908 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 1909 1910 Instruction *ClonedValue = Instr->clone(); 1911 ClonedValue->insertBefore(InsertBefore); 1912 ClonedValue->setName(Instr->getName() + ".remat"); 1913 1914 // If it is not first instruction in the chain then it uses previously 1915 // cloned value. We should update it to use cloned value. 1916 if (LastClonedValue) { 1917 assert(LastValue); 1918 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 1919 #ifndef NDEBUG 1920 // Assert that cloned instruction does not use any instructions from 1921 // this chain other than LastClonedValue 1922 for (auto OpValue : ClonedValue->operand_values()) { 1923 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 1924 ChainToBase.end() && 1925 "incorrect use in rematerialization chain"); 1926 } 1927 #endif 1928 } 1929 1930 LastClonedValue = ClonedValue; 1931 LastValue = Instr; 1932 } 1933 assert(LastClonedValue); 1934 return LastClonedValue; 1935 }; 1936 1937 // Different cases for calls and invokes. For invokes we need to clone 1938 // instructions both on normal and unwind path. 1939 if (CS.isCall()) { 1940 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 1941 assert(InsertBefore); 1942 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 1943 Info.RematerializedValues[RematerializedValue] = LiveValue; 1944 } else { 1945 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 1946 1947 Instruction *NormalInsertBefore = 1948 &*Invoke->getNormalDest()->getFirstInsertionPt(); 1949 Instruction *UnwindInsertBefore = 1950 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 1951 1952 Instruction *NormalRematerializedValue = 1953 rematerializeChain(NormalInsertBefore); 1954 Instruction *UnwindRematerializedValue = 1955 rematerializeChain(UnwindInsertBefore); 1956 1957 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 1958 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 1959 } 1960 } 1961 1962 // Remove rematerializaed values from the live set 1963 for (auto LiveValue: LiveValuesToBeDeleted) { 1964 Info.LiveSet.remove(LiveValue); 1965 } 1966 } 1967 1968 static bool insertParsePoints(Function &F, DominatorTree &DT, 1969 TargetTransformInfo &TTI, 1970 SmallVectorImpl<CallSite> &ToUpdate) { 1971 #ifndef NDEBUG 1972 // sanity check the input 1973 std::set<CallSite> Uniqued; 1974 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 1975 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 1976 1977 for (CallSite CS : ToUpdate) 1978 assert(CS.getInstruction()->getFunction() == &F); 1979 #endif 1980 1981 // When inserting gc.relocates for invokes, we need to be able to insert at 1982 // the top of the successor blocks. See the comment on 1983 // normalForInvokeSafepoint on exactly what is needed. Note that this step 1984 // may restructure the CFG. 1985 for (CallSite CS : ToUpdate) { 1986 if (!CS.isInvoke()) 1987 continue; 1988 auto *II = cast<InvokeInst>(CS.getInstruction()); 1989 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 1990 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 1991 } 1992 1993 // A list of dummy calls added to the IR to keep various values obviously 1994 // live in the IR. We'll remove all of these when done. 1995 SmallVector<CallInst *, 64> Holders; 1996 1997 // Insert a dummy call with all of the arguments to the vm_state we'll need 1998 // for the actual safepoint insertion. This ensures reference arguments in 1999 // the deopt argument list are considered live through the safepoint (and 2000 // thus makes sure they get relocated.) 2001 for (CallSite CS : ToUpdate) { 2002 SmallVector<Value *, 64> DeoptValues; 2003 2004 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2005 assert(!isUnhandledGCPointerType(Arg->getType()) && 2006 "support for FCA unimplemented"); 2007 if (isHandledGCPointerType(Arg->getType())) 2008 DeoptValues.push_back(Arg); 2009 } 2010 2011 insertUseHolderAfter(CS, DeoptValues, Holders); 2012 } 2013 2014 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2015 2016 // A) Identify all gc pointers which are statically live at the given call 2017 // site. 2018 findLiveReferences(F, DT, ToUpdate, Records); 2019 2020 // B) Find the base pointers for each live pointer 2021 /* scope for caching */ { 2022 // Cache the 'defining value' relation used in the computation and 2023 // insertion of base phis and selects. This ensures that we don't insert 2024 // large numbers of duplicate base_phis. 2025 DefiningValueMapTy DVCache; 2026 2027 for (size_t i = 0; i < Records.size(); i++) { 2028 PartiallyConstructedSafepointRecord &info = Records[i]; 2029 findBasePointers(DT, DVCache, ToUpdate[i], info); 2030 } 2031 } // end of cache scope 2032 2033 // The base phi insertion logic (for any safepoint) may have inserted new 2034 // instructions which are now live at some safepoint. The simplest such 2035 // example is: 2036 // loop: 2037 // phi a <-- will be a new base_phi here 2038 // safepoint 1 <-- that needs to be live here 2039 // gep a + 1 2040 // safepoint 2 2041 // br loop 2042 // We insert some dummy calls after each safepoint to definitely hold live 2043 // the base pointers which were identified for that safepoint. We'll then 2044 // ask liveness for _every_ base inserted to see what is now live. Then we 2045 // remove the dummy calls. 2046 Holders.reserve(Holders.size() + Records.size()); 2047 for (size_t i = 0; i < Records.size(); i++) { 2048 PartiallyConstructedSafepointRecord &Info = Records[i]; 2049 2050 SmallVector<Value *, 128> Bases; 2051 for (auto Pair : Info.PointerToBase) 2052 Bases.push_back(Pair.second); 2053 2054 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2055 } 2056 2057 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2058 // need to rerun liveness. We may *also* have inserted new defs, but that's 2059 // not the key issue. 2060 recomputeLiveInValues(F, DT, ToUpdate, Records); 2061 2062 if (PrintBasePointers) { 2063 for (auto &Info : Records) { 2064 errs() << "Base Pairs: (w/Relocation)\n"; 2065 for (auto Pair : Info.PointerToBase) { 2066 errs() << " derived "; 2067 Pair.first->printAsOperand(errs(), false); 2068 errs() << " base "; 2069 Pair.second->printAsOperand(errs(), false); 2070 errs() << "\n"; 2071 } 2072 } 2073 } 2074 2075 // It is possible that non-constant live variables have a constant base. For 2076 // example, a GEP with a variable offset from a global. In this case we can 2077 // remove it from the liveset. We already don't add constants to the liveset 2078 // because we assume they won't move at runtime and the GC doesn't need to be 2079 // informed about them. The same reasoning applies if the base is constant. 2080 // Note that the relocation placement code relies on this filtering for 2081 // correctness as it expects the base to be in the liveset, which isn't true 2082 // if the base is constant. 2083 for (auto &Info : Records) 2084 for (auto &BasePair : Info.PointerToBase) 2085 if (isa<Constant>(BasePair.second)) 2086 Info.LiveSet.remove(BasePair.first); 2087 2088 for (CallInst *CI : Holders) 2089 CI->eraseFromParent(); 2090 2091 Holders.clear(); 2092 2093 // In order to reduce live set of statepoint we might choose to rematerialize 2094 // some values instead of relocating them. This is purely an optimization and 2095 // does not influence correctness. 2096 for (size_t i = 0; i < Records.size(); i++) 2097 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2098 2099 // We need this to safely RAUW and delete call or invoke return values that 2100 // may themselves be live over a statepoint. For details, please see usage in 2101 // makeStatepointExplicitImpl. 2102 std::vector<DeferredReplacement> Replacements; 2103 2104 // Now run through and replace the existing statepoints with new ones with 2105 // the live variables listed. We do not yet update uses of the values being 2106 // relocated. We have references to live variables that need to 2107 // survive to the last iteration of this loop. (By construction, the 2108 // previous statepoint can not be a live variable, thus we can and remove 2109 // the old statepoint calls as we go.) 2110 for (size_t i = 0; i < Records.size(); i++) 2111 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2112 2113 ToUpdate.clear(); // prevent accident use of invalid CallSites 2114 2115 for (auto &PR : Replacements) 2116 PR.doReplacement(); 2117 2118 Replacements.clear(); 2119 2120 for (auto &Info : Records) { 2121 // These live sets may contain state Value pointers, since we replaced calls 2122 // with operand bundles with calls wrapped in gc.statepoint, and some of 2123 // those calls may have been def'ing live gc pointers. Clear these out to 2124 // avoid accidentally using them. 2125 // 2126 // TODO: We should create a separate data structure that does not contain 2127 // these live sets, and migrate to using that data structure from this point 2128 // onward. 2129 Info.LiveSet.clear(); 2130 Info.PointerToBase.clear(); 2131 } 2132 2133 // Do all the fixups of the original live variables to their relocated selves 2134 SmallVector<Value *, 128> Live; 2135 for (size_t i = 0; i < Records.size(); i++) { 2136 PartiallyConstructedSafepointRecord &Info = Records[i]; 2137 2138 // We can't simply save the live set from the original insertion. One of 2139 // the live values might be the result of a call which needs a safepoint. 2140 // That Value* no longer exists and we need to use the new gc_result. 2141 // Thankfully, the live set is embedded in the statepoint (and updated), so 2142 // we just grab that. 2143 Statepoint Statepoint(Info.StatepointToken); 2144 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2145 Statepoint.gc_args_end()); 2146 #ifndef NDEBUG 2147 // Do some basic sanity checks on our liveness results before performing 2148 // relocation. Relocation can and will turn mistakes in liveness results 2149 // into non-sensical code which is must harder to debug. 2150 // TODO: It would be nice to test consistency as well 2151 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2152 "statepoint must be reachable or liveness is meaningless"); 2153 for (Value *V : Statepoint.gc_args()) { 2154 if (!isa<Instruction>(V)) 2155 // Non-instruction values trivial dominate all possible uses 2156 continue; 2157 auto *LiveInst = cast<Instruction>(V); 2158 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2159 "unreachable values should never be live"); 2160 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2161 "basic SSA liveness expectation violated by liveness analysis"); 2162 } 2163 #endif 2164 } 2165 unique_unsorted(Live); 2166 2167 #ifndef NDEBUG 2168 // sanity check 2169 for (auto *Ptr : Live) 2170 assert(isHandledGCPointerType(Ptr->getType()) && 2171 "must be a gc pointer type"); 2172 #endif 2173 2174 relocationViaAlloca(F, DT, Live, Records); 2175 return !Records.empty(); 2176 } 2177 2178 // Handles both return values and arguments for Functions and CallSites. 2179 template <typename AttrHolder> 2180 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2181 unsigned Index) { 2182 AttrBuilder R; 2183 if (AH.getDereferenceableBytes(Index)) 2184 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2185 AH.getDereferenceableBytes(Index))); 2186 if (AH.getDereferenceableOrNullBytes(Index)) 2187 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2188 AH.getDereferenceableOrNullBytes(Index))); 2189 if (AH.doesNotAlias(Index)) 2190 R.addAttribute(Attribute::NoAlias); 2191 2192 if (!R.empty()) 2193 AH.setAttributes(AH.getAttributes().removeAttributes( 2194 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2195 } 2196 2197 void 2198 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2199 LLVMContext &Ctx = F.getContext(); 2200 2201 for (Argument &A : F.args()) 2202 if (isa<PointerType>(A.getType())) 2203 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2204 2205 if (isa<PointerType>(F.getReturnType())) 2206 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2207 } 2208 2209 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2210 if (F.empty()) 2211 return; 2212 2213 LLVMContext &Ctx = F.getContext(); 2214 MDBuilder Builder(Ctx); 2215 2216 for (Instruction &I : instructions(F)) { 2217 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2218 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2219 bool IsImmutableTBAA = 2220 MD->getNumOperands() == 4 && 2221 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2222 2223 if (!IsImmutableTBAA) 2224 continue; // no work to do, MD_tbaa is already marked mutable 2225 2226 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2227 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2228 uint64_t Offset = 2229 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2230 2231 MDNode *MutableTBAA = 2232 Builder.createTBAAStructTagNode(Base, Access, Offset); 2233 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2234 } 2235 2236 if (CallSite CS = CallSite(&I)) { 2237 for (int i = 0, e = CS.arg_size(); i != e; i++) 2238 if (isa<PointerType>(CS.getArgument(i)->getType())) 2239 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); 2240 if (isa<PointerType>(CS.getType())) 2241 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2242 } 2243 } 2244 } 2245 2246 /// Returns true if this function should be rewritten by this pass. The main 2247 /// point of this function is as an extension point for custom logic. 2248 static bool shouldRewriteStatepointsIn(Function &F) { 2249 // TODO: This should check the GCStrategy 2250 if (F.hasGC()) { 2251 const auto &FunctionGCName = F.getGC(); 2252 const StringRef StatepointExampleName("statepoint-example"); 2253 const StringRef CoreCLRName("coreclr"); 2254 return (StatepointExampleName == FunctionGCName) || 2255 (CoreCLRName == FunctionGCName); 2256 } else 2257 return false; 2258 } 2259 2260 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2261 #ifndef NDEBUG 2262 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2263 "precondition!"); 2264 #endif 2265 2266 for (Function &F : M) 2267 stripNonValidAttributesFromPrototype(F); 2268 2269 for (Function &F : M) 2270 stripNonValidAttributesFromBody(F); 2271 } 2272 2273 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2274 // Nothing to do for declarations. 2275 if (F.isDeclaration() || F.empty()) 2276 return false; 2277 2278 // Policy choice says not to rewrite - the most common reason is that we're 2279 // compiling code without a GCStrategy. 2280 if (!shouldRewriteStatepointsIn(F)) 2281 return false; 2282 2283 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2284 TargetTransformInfo &TTI = 2285 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2286 2287 auto NeedsRewrite = [](Instruction &I) { 2288 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2289 return !callsGCLeafFunction(CS) && !isStatepoint(CS); 2290 return false; 2291 }; 2292 2293 // Gather all the statepoints which need rewritten. Be careful to only 2294 // consider those in reachable code since we need to ask dominance queries 2295 // when rewriting. We'll delete the unreachable ones in a moment. 2296 SmallVector<CallSite, 64> ParsePointNeeded; 2297 bool HasUnreachableStatepoint = false; 2298 for (Instruction &I : instructions(F)) { 2299 // TODO: only the ones with the flag set! 2300 if (NeedsRewrite(I)) { 2301 if (DT.isReachableFromEntry(I.getParent())) 2302 ParsePointNeeded.push_back(CallSite(&I)); 2303 else 2304 HasUnreachableStatepoint = true; 2305 } 2306 } 2307 2308 bool MadeChange = false; 2309 2310 // Delete any unreachable statepoints so that we don't have unrewritten 2311 // statepoints surviving this pass. This makes testing easier and the 2312 // resulting IR less confusing to human readers. Rather than be fancy, we 2313 // just reuse a utility function which removes the unreachable blocks. 2314 if (HasUnreachableStatepoint) 2315 MadeChange |= removeUnreachableBlocks(F); 2316 2317 // Return early if no work to do. 2318 if (ParsePointNeeded.empty()) 2319 return MadeChange; 2320 2321 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2322 // These are created by LCSSA. They have the effect of increasing the size 2323 // of liveness sets for no good reason. It may be harder to do this post 2324 // insertion since relocations and base phis can confuse things. 2325 for (BasicBlock &BB : F) 2326 if (BB.getUniquePredecessor()) { 2327 MadeChange = true; 2328 FoldSingleEntryPHINodes(&BB); 2329 } 2330 2331 // Before we start introducing relocations, we want to tweak the IR a bit to 2332 // avoid unfortunate code generation effects. The main example is that we 2333 // want to try to make sure the comparison feeding a branch is after any 2334 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2335 // values feeding a branch after relocation. This is semantically correct, 2336 // but results in extra register pressure since both the pre-relocation and 2337 // post-relocation copies must be available in registers. For code without 2338 // relocations this is handled elsewhere, but teaching the scheduler to 2339 // reverse the transform we're about to do would be slightly complex. 2340 // Note: This may extend the live range of the inputs to the icmp and thus 2341 // increase the liveset of any statepoint we move over. This is profitable 2342 // as long as all statepoints are in rare blocks. If we had in-register 2343 // lowering for live values this would be a much safer transform. 2344 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2345 if (auto *BI = dyn_cast<BranchInst>(TI)) 2346 if (BI->isConditional()) 2347 return dyn_cast<Instruction>(BI->getCondition()); 2348 // TODO: Extend this to handle switches 2349 return nullptr; 2350 }; 2351 for (BasicBlock &BB : F) { 2352 TerminatorInst *TI = BB.getTerminator(); 2353 if (auto *Cond = getConditionInst(TI)) 2354 // TODO: Handle more than just ICmps here. We should be able to move 2355 // most instructions without side effects or memory access. 2356 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2357 MadeChange = true; 2358 Cond->moveBefore(TI); 2359 } 2360 } 2361 2362 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2363 return MadeChange; 2364 } 2365 2366 // liveness computation via standard dataflow 2367 // ------------------------------------------------------------------- 2368 2369 // TODO: Consider using bitvectors for liveness, the set of potentially 2370 // interesting values should be small and easy to pre-compute. 2371 2372 /// Compute the live-in set for the location rbegin starting from 2373 /// the live-out set of the basic block 2374 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2375 BasicBlock::reverse_iterator rend, 2376 SetVector<Value *> &LiveTmp) { 2377 2378 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2379 Instruction *I = &*ritr; 2380 2381 // KILL/Def - Remove this definition from LiveIn 2382 LiveTmp.remove(I); 2383 2384 // Don't consider *uses* in PHI nodes, we handle their contribution to 2385 // predecessor blocks when we seed the LiveOut sets 2386 if (isa<PHINode>(I)) 2387 continue; 2388 2389 // USE - Add to the LiveIn set for this instruction 2390 for (Value *V : I->operands()) { 2391 assert(!isUnhandledGCPointerType(V->getType()) && 2392 "support for FCA unimplemented"); 2393 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2394 // The choice to exclude all things constant here is slightly subtle. 2395 // There are two independent reasons: 2396 // - We assume that things which are constant (from LLVM's definition) 2397 // do not move at runtime. For example, the address of a global 2398 // variable is fixed, even though it's contents may not be. 2399 // - Second, we can't disallow arbitrary inttoptr constants even 2400 // if the language frontend does. Optimization passes are free to 2401 // locally exploit facts without respect to global reachability. This 2402 // can create sections of code which are dynamically unreachable and 2403 // contain just about anything. (see constants.ll in tests) 2404 LiveTmp.insert(V); 2405 } 2406 } 2407 } 2408 } 2409 2410 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2411 2412 for (BasicBlock *Succ : successors(BB)) { 2413 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2414 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2415 PHINode *Phi = cast<PHINode>(&*I); 2416 Value *V = Phi->getIncomingValueForBlock(BB); 2417 assert(!isUnhandledGCPointerType(V->getType()) && 2418 "support for FCA unimplemented"); 2419 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2420 LiveTmp.insert(V); 2421 } 2422 } 2423 } 2424 } 2425 2426 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2427 SetVector<Value *> KillSet; 2428 for (Instruction &I : *BB) 2429 if (isHandledGCPointerType(I.getType())) 2430 KillSet.insert(&I); 2431 return KillSet; 2432 } 2433 2434 #ifndef NDEBUG 2435 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2436 /// sanity check for the liveness computation. 2437 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2438 TerminatorInst *TI, bool TermOkay = false) { 2439 for (Value *V : Live) { 2440 if (auto *I = dyn_cast<Instruction>(V)) { 2441 // The terminator can be a member of the LiveOut set. LLVM's definition 2442 // of instruction dominance states that V does not dominate itself. As 2443 // such, we need to special case this to allow it. 2444 if (TermOkay && TI == I) 2445 continue; 2446 assert(DT.dominates(I, TI) && 2447 "basic SSA liveness expectation violated by liveness analysis"); 2448 } 2449 } 2450 } 2451 2452 /// Check that all the liveness sets used during the computation of liveness 2453 /// obey basic SSA properties. This is useful for finding cases where we miss 2454 /// a def. 2455 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2456 BasicBlock &BB) { 2457 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2458 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2459 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2460 } 2461 #endif 2462 2463 static void computeLiveInValues(DominatorTree &DT, Function &F, 2464 GCPtrLivenessData &Data) { 2465 2466 SmallSetVector<BasicBlock *, 32> Worklist; 2467 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2468 // We use a SetVector so that we don't have duplicates in the worklist. 2469 Worklist.insert(pred_begin(BB), pred_end(BB)); 2470 }; 2471 auto NextItem = [&]() { 2472 BasicBlock *BB = Worklist.back(); 2473 Worklist.pop_back(); 2474 return BB; 2475 }; 2476 2477 // Seed the liveness for each individual block 2478 for (BasicBlock &BB : F) { 2479 Data.KillSet[&BB] = computeKillSet(&BB); 2480 Data.LiveSet[&BB].clear(); 2481 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2482 2483 #ifndef NDEBUG 2484 for (Value *Kill : Data.KillSet[&BB]) 2485 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2486 #endif 2487 2488 Data.LiveOut[&BB] = SetVector<Value *>(); 2489 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2490 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2491 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2492 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2493 if (!Data.LiveIn[&BB].empty()) 2494 AddPredsToWorklist(&BB); 2495 } 2496 2497 // Propagate that liveness until stable 2498 while (!Worklist.empty()) { 2499 BasicBlock *BB = NextItem(); 2500 2501 // Compute our new liveout set, then exit early if it hasn't changed 2502 // despite the contribution of our successor. 2503 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2504 const auto OldLiveOutSize = LiveOut.size(); 2505 for (BasicBlock *Succ : successors(BB)) { 2506 assert(Data.LiveIn.count(Succ)); 2507 LiveOut.set_union(Data.LiveIn[Succ]); 2508 } 2509 // assert OutLiveOut is a subset of LiveOut 2510 if (OldLiveOutSize == LiveOut.size()) { 2511 // If the sets are the same size, then we didn't actually add anything 2512 // when unioning our successors LiveIn Thus, the LiveIn of this block 2513 // hasn't changed. 2514 continue; 2515 } 2516 Data.LiveOut[BB] = LiveOut; 2517 2518 // Apply the effects of this basic block 2519 SetVector<Value *> LiveTmp = LiveOut; 2520 LiveTmp.set_union(Data.LiveSet[BB]); 2521 LiveTmp.set_subtract(Data.KillSet[BB]); 2522 2523 assert(Data.LiveIn.count(BB)); 2524 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2525 // assert: OldLiveIn is a subset of LiveTmp 2526 if (OldLiveIn.size() != LiveTmp.size()) { 2527 Data.LiveIn[BB] = LiveTmp; 2528 AddPredsToWorklist(BB); 2529 } 2530 } // while( !worklist.empty() ) 2531 2532 #ifndef NDEBUG 2533 // Sanity check our output against SSA properties. This helps catch any 2534 // missing kills during the above iteration. 2535 for (BasicBlock &BB : F) { 2536 checkBasicSSA(DT, Data, BB); 2537 } 2538 #endif 2539 } 2540 2541 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2542 StatepointLiveSetTy &Out) { 2543 2544 BasicBlock *BB = Inst->getParent(); 2545 2546 // Note: The copy is intentional and required 2547 assert(Data.LiveOut.count(BB)); 2548 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2549 2550 // We want to handle the statepoint itself oddly. It's 2551 // call result is not live (normal), nor are it's arguments 2552 // (unless they're used again later). This adjustment is 2553 // specifically what we need to relocate 2554 BasicBlock::reverse_iterator rend(Inst->getIterator()); 2555 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2556 LiveOut.remove(Inst); 2557 Out.insert(LiveOut.begin(), LiveOut.end()); 2558 } 2559 2560 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2561 CallSite CS, 2562 PartiallyConstructedSafepointRecord &Info) { 2563 Instruction *Inst = CS.getInstruction(); 2564 StatepointLiveSetTy Updated; 2565 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2566 2567 #ifndef NDEBUG 2568 DenseSet<Value *> Bases; 2569 for (auto KVPair : Info.PointerToBase) { 2570 Bases.insert(KVPair.second); 2571 } 2572 #endif 2573 // We may have base pointers which are now live that weren't before. We need 2574 // to update the PointerToBase structure to reflect this. 2575 for (auto V : Updated) 2576 if (Info.PointerToBase.insert(std::make_pair(V, V)).second) { 2577 assert(Bases.count(V) && "can't find base for unexpected live value"); 2578 continue; 2579 } 2580 2581 #ifndef NDEBUG 2582 for (auto V : Updated) { 2583 assert(Info.PointerToBase.count(V) && 2584 "must be able to find base for live value"); 2585 } 2586 #endif 2587 2588 // Remove any stale base mappings - this can happen since our liveness is 2589 // more precise then the one inherent in the base pointer analysis 2590 DenseSet<Value *> ToErase; 2591 for (auto KVPair : Info.PointerToBase) 2592 if (!Updated.count(KVPair.first)) 2593 ToErase.insert(KVPair.first); 2594 for (auto V : ToErase) 2595 Info.PointerToBase.erase(V); 2596 2597 #ifndef NDEBUG 2598 for (auto KVPair : Info.PointerToBase) 2599 assert(Updated.count(KVPair.first) && "record for non-live value"); 2600 #endif 2601 2602 Info.LiveSet = Updated; 2603 } 2604