1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite call/invoke instructions so as to make potential relocations 11 // performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/IR/Argument.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InstIterator.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueHandle.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Compiler.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Scalar.h" 64 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstddef> 70 #include <cstdint> 71 #include <iterator> 72 #include <set> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 78 79 using namespace llvm; 80 81 // Print the liveset found at the insert location 82 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 83 cl::init(false)); 84 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 85 cl::init(false)); 86 87 // Print out the base pointers for debugging 88 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 89 cl::init(false)); 90 91 // Cost threshold measuring when it is profitable to rematerialize value instead 92 // of relocating it 93 static cl::opt<unsigned> 94 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 95 cl::init(6)); 96 97 #ifdef EXPENSIVE_CHECKS 98 static bool ClobberNonLive = true; 99 #else 100 static bool ClobberNonLive = false; 101 #endif 102 103 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 104 cl::location(ClobberNonLive), 105 cl::Hidden); 106 107 static cl::opt<bool> 108 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 109 cl::Hidden, cl::init(true)); 110 111 namespace { 112 113 struct RewriteStatepointsForGC : public ModulePass { 114 static char ID; // Pass identification, replacement for typeid 115 116 RewriteStatepointsForGC() : ModulePass(ID) { 117 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 118 } 119 120 bool runOnFunction(Function &F); 121 122 bool runOnModule(Module &M) override { 123 bool Changed = false; 124 for (Function &F : M) 125 Changed |= runOnFunction(F); 126 127 if (Changed) { 128 // stripNonValidData asserts that shouldRewriteStatepointsIn 129 // returns true for at least one function in the module. Since at least 130 // one function changed, we know that the precondition is satisfied. 131 stripNonValidData(M); 132 } 133 134 return Changed; 135 } 136 137 void getAnalysisUsage(AnalysisUsage &AU) const override { 138 // We add and rewrite a bunch of instructions, but don't really do much 139 // else. We could in theory preserve a lot more analyses here. 140 AU.addRequired<DominatorTreeWrapperPass>(); 141 AU.addRequired<TargetTransformInfoWrapperPass>(); 142 AU.addRequired<TargetLibraryInfoWrapperPass>(); 143 } 144 145 /// The IR fed into RewriteStatepointsForGC may have had attributes and 146 /// metadata implying dereferenceability that are no longer valid/correct after 147 /// RewriteStatepointsForGC has run. This is because semantically, after 148 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 149 /// heap. stripNonValidData (conservatively) restores 150 /// correctness by erasing all attributes in the module that externally imply 151 /// dereferenceability. Similar reasoning also applies to the noalias 152 /// attributes and metadata. gc.statepoint can touch the entire heap including 153 /// noalias objects. 154 /// Apart from attributes and metadata, we also remove instructions that imply 155 /// constant physical memory: llvm.invariant.start. 156 void stripNonValidData(Module &M); 157 158 // Helpers for stripNonValidData 159 void stripNonValidDataFromBody(Function &F); 160 void stripNonValidAttributesFromPrototype(Function &F); 161 162 // Certain metadata on instructions are invalid after running RS4GC. 163 // Optimizations that run after RS4GC can incorrectly use this metadata to 164 // optimize functions. We drop such metadata on the instruction. 165 void stripInvalidMetadataFromInstruction(Instruction &I); 166 }; 167 168 } // end anonymous namespace 169 170 char RewriteStatepointsForGC::ID = 0; 171 172 ModulePass *llvm::createRewriteStatepointsForGCPass() { 173 return new RewriteStatepointsForGC(); 174 } 175 176 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 177 "Make relocations explicit at statepoints", false, false) 178 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 179 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 180 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 181 "Make relocations explicit at statepoints", false, false) 182 183 namespace { 184 185 struct GCPtrLivenessData { 186 /// Values defined in this block. 187 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 188 189 /// Values used in this block (and thus live); does not included values 190 /// killed within this block. 191 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 192 193 /// Values live into this basic block (i.e. used by any 194 /// instruction in this basic block or ones reachable from here) 195 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 196 197 /// Values live out of this basic block (i.e. live into 198 /// any successor block) 199 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 200 }; 201 202 // The type of the internal cache used inside the findBasePointers family 203 // of functions. From the callers perspective, this is an opaque type and 204 // should not be inspected. 205 // 206 // In the actual implementation this caches two relations: 207 // - The base relation itself (i.e. this pointer is based on that one) 208 // - The base defining value relation (i.e. before base_phi insertion) 209 // Generally, after the execution of a full findBasePointer call, only the 210 // base relation will remain. Internally, we add a mixture of the two 211 // types, then update all the second type to the first type 212 using DefiningValueMapTy = MapVector<Value *, Value *>; 213 using StatepointLiveSetTy = SetVector<Value *>; 214 using RematerializedValueMapTy = 215 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 216 217 struct PartiallyConstructedSafepointRecord { 218 /// The set of values known to be live across this safepoint 219 StatepointLiveSetTy LiveSet; 220 221 /// Mapping from live pointers to a base-defining-value 222 MapVector<Value *, Value *> PointerToBase; 223 224 /// The *new* gc.statepoint instruction itself. This produces the token 225 /// that normal path gc.relocates and the gc.result are tied to. 226 Instruction *StatepointToken; 227 228 /// Instruction to which exceptional gc relocates are attached 229 /// Makes it easier to iterate through them during relocationViaAlloca. 230 Instruction *UnwindToken; 231 232 /// Record live values we are rematerialized instead of relocating. 233 /// They are not included into 'LiveSet' field. 234 /// Maps rematerialized copy to it's original value. 235 RematerializedValueMapTy RematerializedValues; 236 }; 237 238 } // end anonymous namespace 239 240 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 241 Optional<OperandBundleUse> DeoptBundle = 242 CS.getOperandBundle(LLVMContext::OB_deopt); 243 244 if (!DeoptBundle.hasValue()) { 245 assert(AllowStatepointWithNoDeoptInfo && 246 "Found non-leaf call without deopt info!"); 247 return None; 248 } 249 250 return DeoptBundle.getValue().Inputs; 251 } 252 253 /// Compute the live-in set for every basic block in the function 254 static void computeLiveInValues(DominatorTree &DT, Function &F, 255 GCPtrLivenessData &Data); 256 257 /// Given results from the dataflow liveness computation, find the set of live 258 /// Values at a particular instruction. 259 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 260 StatepointLiveSetTy &out); 261 262 // TODO: Once we can get to the GCStrategy, this becomes 263 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 264 265 static bool isGCPointerType(Type *T) { 266 if (auto *PT = dyn_cast<PointerType>(T)) 267 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 268 // GC managed heap. We know that a pointer into this heap needs to be 269 // updated and that no other pointer does. 270 return PT->getAddressSpace() == 1; 271 return false; 272 } 273 274 // Return true if this type is one which a) is a gc pointer or contains a GC 275 // pointer and b) is of a type this code expects to encounter as a live value. 276 // (The insertion code will assert that a type which matches (a) and not (b) 277 // is not encountered.) 278 static bool isHandledGCPointerType(Type *T) { 279 // We fully support gc pointers 280 if (isGCPointerType(T)) 281 return true; 282 // We partially support vectors of gc pointers. The code will assert if it 283 // can't handle something. 284 if (auto VT = dyn_cast<VectorType>(T)) 285 if (isGCPointerType(VT->getElementType())) 286 return true; 287 return false; 288 } 289 290 #ifndef NDEBUG 291 /// Returns true if this type contains a gc pointer whether we know how to 292 /// handle that type or not. 293 static bool containsGCPtrType(Type *Ty) { 294 if (isGCPointerType(Ty)) 295 return true; 296 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 297 return isGCPointerType(VT->getScalarType()); 298 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 299 return containsGCPtrType(AT->getElementType()); 300 if (StructType *ST = dyn_cast<StructType>(Ty)) 301 return llvm::any_of(ST->subtypes(), containsGCPtrType); 302 return false; 303 } 304 305 // Returns true if this is a type which a) is a gc pointer or contains a GC 306 // pointer and b) is of a type which the code doesn't expect (i.e. first class 307 // aggregates). Used to trip assertions. 308 static bool isUnhandledGCPointerType(Type *Ty) { 309 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 310 } 311 #endif 312 313 // Return the name of the value suffixed with the provided value, or if the 314 // value didn't have a name, the default value specified. 315 static std::string suffixed_name_or(Value *V, StringRef Suffix, 316 StringRef DefaultName) { 317 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 318 } 319 320 // Conservatively identifies any definitions which might be live at the 321 // given instruction. The analysis is performed immediately before the 322 // given instruction. Values defined by that instruction are not considered 323 // live. Values used by that instruction are considered live. 324 static void 325 analyzeParsePointLiveness(DominatorTree &DT, 326 GCPtrLivenessData &OriginalLivenessData, CallSite CS, 327 PartiallyConstructedSafepointRecord &Result) { 328 Instruction *Inst = CS.getInstruction(); 329 330 StatepointLiveSetTy LiveSet; 331 findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet); 332 333 if (PrintLiveSet) { 334 dbgs() << "Live Variables:\n"; 335 for (Value *V : LiveSet) 336 dbgs() << " " << V->getName() << " " << *V << "\n"; 337 } 338 if (PrintLiveSetSize) { 339 dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 340 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 341 } 342 Result.LiveSet = LiveSet; 343 } 344 345 static bool isKnownBaseResult(Value *V); 346 347 namespace { 348 349 /// A single base defining value - An immediate base defining value for an 350 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 351 /// For instructions which have multiple pointer [vector] inputs or that 352 /// transition between vector and scalar types, there is no immediate base 353 /// defining value. The 'base defining value' for 'Def' is the transitive 354 /// closure of this relation stopping at the first instruction which has no 355 /// immediate base defining value. The b.d.v. might itself be a base pointer, 356 /// but it can also be an arbitrary derived pointer. 357 struct BaseDefiningValueResult { 358 /// Contains the value which is the base defining value. 359 Value * const BDV; 360 361 /// True if the base defining value is also known to be an actual base 362 /// pointer. 363 const bool IsKnownBase; 364 365 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 366 : BDV(BDV), IsKnownBase(IsKnownBase) { 367 #ifndef NDEBUG 368 // Check consistency between new and old means of checking whether a BDV is 369 // a base. 370 bool MustBeBase = isKnownBaseResult(BDV); 371 assert(!MustBeBase || MustBeBase == IsKnownBase); 372 #endif 373 } 374 }; 375 376 } // end anonymous namespace 377 378 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 379 380 /// Return a base defining value for the 'Index' element of the given vector 381 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 382 /// 'I'. As an optimization, this method will try to determine when the 383 /// element is known to already be a base pointer. If this can be established, 384 /// the second value in the returned pair will be true. Note that either a 385 /// vector or a pointer typed value can be returned. For the former, the 386 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 387 /// If the later, the return pointer is a BDV (or possibly a base) for the 388 /// particular element in 'I'. 389 static BaseDefiningValueResult 390 findBaseDefiningValueOfVector(Value *I) { 391 // Each case parallels findBaseDefiningValue below, see that code for 392 // detailed motivation. 393 394 if (isa<Argument>(I)) 395 // An incoming argument to the function is a base pointer 396 return BaseDefiningValueResult(I, true); 397 398 if (isa<Constant>(I)) 399 // Base of constant vector consists only of constant null pointers. 400 // For reasoning see similar case inside 'findBaseDefiningValue' function. 401 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 402 true); 403 404 if (isa<LoadInst>(I)) 405 return BaseDefiningValueResult(I, true); 406 407 if (isa<InsertElementInst>(I)) 408 // We don't know whether this vector contains entirely base pointers or 409 // not. To be conservatively correct, we treat it as a BDV and will 410 // duplicate code as needed to construct a parallel vector of bases. 411 return BaseDefiningValueResult(I, false); 412 413 if (isa<ShuffleVectorInst>(I)) 414 // We don't know whether this vector contains entirely base pointers or 415 // not. To be conservatively correct, we treat it as a BDV and will 416 // duplicate code as needed to construct a parallel vector of bases. 417 // TODO: There a number of local optimizations which could be applied here 418 // for particular sufflevector patterns. 419 return BaseDefiningValueResult(I, false); 420 421 // The behavior of getelementptr instructions is the same for vector and 422 // non-vector data types. 423 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 424 return findBaseDefiningValue(GEP->getPointerOperand()); 425 426 // If the pointer comes through a bitcast of a vector of pointers to 427 // a vector of another type of pointer, then look through the bitcast 428 if (auto *BC = dyn_cast<BitCastInst>(I)) 429 return findBaseDefiningValue(BC->getOperand(0)); 430 431 // A PHI or Select is a base defining value. The outer findBasePointer 432 // algorithm is responsible for constructing a base value for this BDV. 433 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 434 "unknown vector instruction - no base found for vector element"); 435 return BaseDefiningValueResult(I, false); 436 } 437 438 /// Helper function for findBasePointer - Will return a value which either a) 439 /// defines the base pointer for the input, b) blocks the simple search 440 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 441 /// from pointer to vector type or back. 442 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 443 assert(I->getType()->isPtrOrPtrVectorTy() && 444 "Illegal to ask for the base pointer of a non-pointer type"); 445 446 if (I->getType()->isVectorTy()) 447 return findBaseDefiningValueOfVector(I); 448 449 if (isa<Argument>(I)) 450 // An incoming argument to the function is a base pointer 451 // We should have never reached here if this argument isn't an gc value 452 return BaseDefiningValueResult(I, true); 453 454 if (isa<Constant>(I)) { 455 // We assume that objects with a constant base (e.g. a global) can't move 456 // and don't need to be reported to the collector because they are always 457 // live. Besides global references, all kinds of constants (e.g. undef, 458 // constant expressions, null pointers) can be introduced by the inliner or 459 // the optimizer, especially on dynamically dead paths. 460 // Here we treat all of them as having single null base. By doing this we 461 // trying to avoid problems reporting various conflicts in a form of 462 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 463 // See constant.ll file for relevant test cases. 464 465 return BaseDefiningValueResult( 466 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 467 } 468 469 if (CastInst *CI = dyn_cast<CastInst>(I)) { 470 Value *Def = CI->stripPointerCasts(); 471 // If stripping pointer casts changes the address space there is an 472 // addrspacecast in between. 473 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 474 cast<PointerType>(CI->getType())->getAddressSpace() && 475 "unsupported addrspacecast"); 476 // If we find a cast instruction here, it means we've found a cast which is 477 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 478 // handle int->ptr conversion. 479 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 480 return findBaseDefiningValue(Def); 481 } 482 483 if (isa<LoadInst>(I)) 484 // The value loaded is an gc base itself 485 return BaseDefiningValueResult(I, true); 486 487 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 488 // The base of this GEP is the base 489 return findBaseDefiningValue(GEP->getPointerOperand()); 490 491 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 492 switch (II->getIntrinsicID()) { 493 default: 494 // fall through to general call handling 495 break; 496 case Intrinsic::experimental_gc_statepoint: 497 llvm_unreachable("statepoints don't produce pointers"); 498 case Intrinsic::experimental_gc_relocate: 499 // Rerunning safepoint insertion after safepoints are already 500 // inserted is not supported. It could probably be made to work, 501 // but why are you doing this? There's no good reason. 502 llvm_unreachable("repeat safepoint insertion is not supported"); 503 case Intrinsic::gcroot: 504 // Currently, this mechanism hasn't been extended to work with gcroot. 505 // There's no reason it couldn't be, but I haven't thought about the 506 // implications much. 507 llvm_unreachable( 508 "interaction with the gcroot mechanism is not supported"); 509 } 510 } 511 // We assume that functions in the source language only return base 512 // pointers. This should probably be generalized via attributes to support 513 // both source language and internal functions. 514 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 515 return BaseDefiningValueResult(I, true); 516 517 // TODO: I have absolutely no idea how to implement this part yet. It's not 518 // necessarily hard, I just haven't really looked at it yet. 519 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 520 521 if (isa<AtomicCmpXchgInst>(I)) 522 // A CAS is effectively a atomic store and load combined under a 523 // predicate. From the perspective of base pointers, we just treat it 524 // like a load. 525 return BaseDefiningValueResult(I, true); 526 527 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 528 "binary ops which don't apply to pointers"); 529 530 // The aggregate ops. Aggregates can either be in the heap or on the 531 // stack, but in either case, this is simply a field load. As a result, 532 // this is a defining definition of the base just like a load is. 533 if (isa<ExtractValueInst>(I)) 534 return BaseDefiningValueResult(I, true); 535 536 // We should never see an insert vector since that would require we be 537 // tracing back a struct value not a pointer value. 538 assert(!isa<InsertValueInst>(I) && 539 "Base pointer for a struct is meaningless"); 540 541 // An extractelement produces a base result exactly when it's input does. 542 // We may need to insert a parallel instruction to extract the appropriate 543 // element out of the base vector corresponding to the input. Given this, 544 // it's analogous to the phi and select case even though it's not a merge. 545 if (isa<ExtractElementInst>(I)) 546 // Note: There a lot of obvious peephole cases here. This are deliberately 547 // handled after the main base pointer inference algorithm to make writing 548 // test cases to exercise that code easier. 549 return BaseDefiningValueResult(I, false); 550 551 // The last two cases here don't return a base pointer. Instead, they 552 // return a value which dynamically selects from among several base 553 // derived pointers (each with it's own base potentially). It's the job of 554 // the caller to resolve these. 555 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 556 "missing instruction case in findBaseDefiningValing"); 557 return BaseDefiningValueResult(I, false); 558 } 559 560 /// Returns the base defining value for this value. 561 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 562 Value *&Cached = Cache[I]; 563 if (!Cached) { 564 Cached = findBaseDefiningValue(I).BDV; 565 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 566 << Cached->getName() << "\n"); 567 } 568 assert(Cache[I] != nullptr); 569 return Cached; 570 } 571 572 /// Return a base pointer for this value if known. Otherwise, return it's 573 /// base defining value. 574 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 575 Value *Def = findBaseDefiningValueCached(I, Cache); 576 auto Found = Cache.find(Def); 577 if (Found != Cache.end()) { 578 // Either a base-of relation, or a self reference. Caller must check. 579 return Found->second; 580 } 581 // Only a BDV available 582 return Def; 583 } 584 585 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 586 /// is it known to be a base pointer? Or do we need to continue searching. 587 static bool isKnownBaseResult(Value *V) { 588 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 589 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 590 !isa<ShuffleVectorInst>(V)) { 591 // no recursion possible 592 return true; 593 } 594 if (isa<Instruction>(V) && 595 cast<Instruction>(V)->getMetadata("is_base_value")) { 596 // This is a previously inserted base phi or select. We know 597 // that this is a base value. 598 return true; 599 } 600 601 // We need to keep searching 602 return false; 603 } 604 605 namespace { 606 607 /// Models the state of a single base defining value in the findBasePointer 608 /// algorithm for determining where a new instruction is needed to propagate 609 /// the base of this BDV. 610 class BDVState { 611 public: 612 enum Status { Unknown, Base, Conflict }; 613 614 BDVState() : BaseValue(nullptr) {} 615 616 explicit BDVState(Status Status, Value *BaseValue = nullptr) 617 : Status(Status), BaseValue(BaseValue) { 618 assert(Status != Base || BaseValue); 619 } 620 621 explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {} 622 623 Status getStatus() const { return Status; } 624 Value *getBaseValue() const { return BaseValue; } 625 626 bool isBase() const { return getStatus() == Base; } 627 bool isUnknown() const { return getStatus() == Unknown; } 628 bool isConflict() const { return getStatus() == Conflict; } 629 630 bool operator==(const BDVState &Other) const { 631 return BaseValue == Other.BaseValue && Status == Other.Status; 632 } 633 634 bool operator!=(const BDVState &other) const { return !(*this == other); } 635 636 LLVM_DUMP_METHOD 637 void dump() const { 638 print(dbgs()); 639 dbgs() << '\n'; 640 } 641 642 void print(raw_ostream &OS) const { 643 switch (getStatus()) { 644 case Unknown: 645 OS << "U"; 646 break; 647 case Base: 648 OS << "B"; 649 break; 650 case Conflict: 651 OS << "C"; 652 break; 653 } 654 OS << " (" << getBaseValue() << " - " 655 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): "; 656 } 657 658 private: 659 Status Status = Unknown; 660 AssertingVH<Value> BaseValue; // Non-null only if Status == Base. 661 }; 662 663 } // end anonymous namespace 664 665 #ifndef NDEBUG 666 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 667 State.print(OS); 668 return OS; 669 } 670 #endif 671 672 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) { 673 switch (LHS.getStatus()) { 674 case BDVState::Unknown: 675 return RHS; 676 677 case BDVState::Base: 678 assert(LHS.getBaseValue() && "can't be null"); 679 if (RHS.isUnknown()) 680 return LHS; 681 682 if (RHS.isBase()) { 683 if (LHS.getBaseValue() == RHS.getBaseValue()) { 684 assert(LHS == RHS && "equality broken!"); 685 return LHS; 686 } 687 return BDVState(BDVState::Conflict); 688 } 689 assert(RHS.isConflict() && "only three states!"); 690 return BDVState(BDVState::Conflict); 691 692 case BDVState::Conflict: 693 return LHS; 694 } 695 llvm_unreachable("only three states!"); 696 } 697 698 // Values of type BDVState form a lattice, and this function implements the meet 699 // operation. 700 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) { 701 BDVState Result = meetBDVStateImpl(LHS, RHS); 702 assert(Result == meetBDVStateImpl(RHS, LHS) && 703 "Math is wrong: meet does not commute!"); 704 return Result; 705 } 706 707 /// For a given value or instruction, figure out what base ptr its derived from. 708 /// For gc objects, this is simply itself. On success, returns a value which is 709 /// the base pointer. (This is reliable and can be used for relocation.) On 710 /// failure, returns nullptr. 711 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 712 Value *Def = findBaseOrBDV(I, Cache); 713 714 if (isKnownBaseResult(Def)) 715 return Def; 716 717 // Here's the rough algorithm: 718 // - For every SSA value, construct a mapping to either an actual base 719 // pointer or a PHI which obscures the base pointer. 720 // - Construct a mapping from PHI to unknown TOP state. Use an 721 // optimistic algorithm to propagate base pointer information. Lattice 722 // looks like: 723 // UNKNOWN 724 // b1 b2 b3 b4 725 // CONFLICT 726 // When algorithm terminates, all PHIs will either have a single concrete 727 // base or be in a conflict state. 728 // - For every conflict, insert a dummy PHI node without arguments. Add 729 // these to the base[Instruction] = BasePtr mapping. For every 730 // non-conflict, add the actual base. 731 // - For every conflict, add arguments for the base[a] of each input 732 // arguments. 733 // 734 // Note: A simpler form of this would be to add the conflict form of all 735 // PHIs without running the optimistic algorithm. This would be 736 // analogous to pessimistic data flow and would likely lead to an 737 // overall worse solution. 738 739 #ifndef NDEBUG 740 auto isExpectedBDVType = [](Value *BDV) { 741 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 742 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 743 isa<ShuffleVectorInst>(BDV); 744 }; 745 #endif 746 747 // Once populated, will contain a mapping from each potentially non-base BDV 748 // to a lattice value (described above) which corresponds to that BDV. 749 // We use the order of insertion (DFS over the def/use graph) to provide a 750 // stable deterministic ordering for visiting DenseMaps (which are unordered) 751 // below. This is important for deterministic compilation. 752 MapVector<Value *, BDVState> States; 753 754 // Recursively fill in all base defining values reachable from the initial 755 // one for which we don't already know a definite base value for 756 /* scope */ { 757 SmallVector<Value*, 16> Worklist; 758 Worklist.push_back(Def); 759 States.insert({Def, BDVState()}); 760 while (!Worklist.empty()) { 761 Value *Current = Worklist.pop_back_val(); 762 assert(!isKnownBaseResult(Current) && "why did it get added?"); 763 764 auto visitIncomingValue = [&](Value *InVal) { 765 Value *Base = findBaseOrBDV(InVal, Cache); 766 if (isKnownBaseResult(Base)) 767 // Known bases won't need new instructions introduced and can be 768 // ignored safely 769 return; 770 assert(isExpectedBDVType(Base) && "the only non-base values " 771 "we see should be base defining values"); 772 if (States.insert(std::make_pair(Base, BDVState())).second) 773 Worklist.push_back(Base); 774 }; 775 if (PHINode *PN = dyn_cast<PHINode>(Current)) { 776 for (Value *InVal : PN->incoming_values()) 777 visitIncomingValue(InVal); 778 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { 779 visitIncomingValue(SI->getTrueValue()); 780 visitIncomingValue(SI->getFalseValue()); 781 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 782 visitIncomingValue(EE->getVectorOperand()); 783 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 784 visitIncomingValue(IE->getOperand(0)); // vector operand 785 visitIncomingValue(IE->getOperand(1)); // scalar operand 786 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) { 787 visitIncomingValue(SV->getOperand(0)); 788 visitIncomingValue(SV->getOperand(1)); 789 } 790 else { 791 llvm_unreachable("Unimplemented instruction case"); 792 } 793 } 794 } 795 796 #ifndef NDEBUG 797 DEBUG(dbgs() << "States after initialization:\n"); 798 for (auto Pair : States) { 799 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 800 } 801 #endif 802 803 // Return a phi state for a base defining value. We'll generate a new 804 // base state for known bases and expect to find a cached state otherwise. 805 auto getStateForBDV = [&](Value *baseValue) { 806 if (isKnownBaseResult(baseValue)) 807 return BDVState(baseValue); 808 auto I = States.find(baseValue); 809 assert(I != States.end() && "lookup failed!"); 810 return I->second; 811 }; 812 813 bool Progress = true; 814 while (Progress) { 815 #ifndef NDEBUG 816 const size_t OldSize = States.size(); 817 #endif 818 Progress = false; 819 // We're only changing values in this loop, thus safe to keep iterators. 820 // Since this is computing a fixed point, the order of visit does not 821 // effect the result. TODO: We could use a worklist here and make this run 822 // much faster. 823 for (auto Pair : States) { 824 Value *BDV = Pair.first; 825 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 826 827 // Given an input value for the current instruction, return a BDVState 828 // instance which represents the BDV of that value. 829 auto getStateForInput = [&](Value *V) mutable { 830 Value *BDV = findBaseOrBDV(V, Cache); 831 return getStateForBDV(BDV); 832 }; 833 834 BDVState NewState; 835 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 836 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); 837 NewState = 838 meetBDVState(NewState, getStateForInput(SI->getFalseValue())); 839 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 840 for (Value *Val : PN->incoming_values()) 841 NewState = meetBDVState(NewState, getStateForInput(Val)); 842 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 843 // The 'meet' for an extractelement is slightly trivial, but it's still 844 // useful in that it drives us to conflict if our input is. 845 NewState = 846 meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); 847 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){ 848 // Given there's a inherent type mismatch between the operands, will 849 // *always* produce Conflict. 850 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); 851 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); 852 } else { 853 // The only instance this does not return a Conflict is when both the 854 // vector operands are the same vector. 855 auto *SV = cast<ShuffleVectorInst>(BDV); 856 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0))); 857 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1))); 858 } 859 860 BDVState OldState = States[BDV]; 861 if (OldState != NewState) { 862 Progress = true; 863 States[BDV] = NewState; 864 } 865 } 866 867 assert(OldSize == States.size() && 868 "fixed point shouldn't be adding any new nodes to state"); 869 } 870 871 #ifndef NDEBUG 872 DEBUG(dbgs() << "States after meet iteration:\n"); 873 for (auto Pair : States) { 874 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 875 } 876 #endif 877 878 // Insert Phis for all conflicts 879 // TODO: adjust naming patterns to avoid this order of iteration dependency 880 for (auto Pair : States) { 881 Instruction *I = cast<Instruction>(Pair.first); 882 BDVState State = Pair.second; 883 assert(!isKnownBaseResult(I) && "why did it get added?"); 884 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 885 886 // extractelement instructions are a bit special in that we may need to 887 // insert an extract even when we know an exact base for the instruction. 888 // The problem is that we need to convert from a vector base to a scalar 889 // base for the particular indice we're interested in. 890 if (State.isBase() && isa<ExtractElementInst>(I) && 891 isa<VectorType>(State.getBaseValue()->getType())) { 892 auto *EE = cast<ExtractElementInst>(I); 893 // TODO: In many cases, the new instruction is just EE itself. We should 894 // exploit this, but can't do it here since it would break the invariant 895 // about the BDV not being known to be a base. 896 auto *BaseInst = ExtractElementInst::Create( 897 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 898 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 899 States[I] = BDVState(BDVState::Base, BaseInst); 900 } 901 902 // Since we're joining a vector and scalar base, they can never be the 903 // same. As a result, we should always see insert element having reached 904 // the conflict state. 905 assert(!isa<InsertElementInst>(I) || State.isConflict()); 906 907 if (!State.isConflict()) 908 continue; 909 910 /// Create and insert a new instruction which will represent the base of 911 /// the given instruction 'I'. 912 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 913 if (isa<PHINode>(I)) { 914 BasicBlock *BB = I->getParent(); 915 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 916 assert(NumPreds > 0 && "how did we reach here"); 917 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 918 return PHINode::Create(I->getType(), NumPreds, Name, I); 919 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 920 // The undef will be replaced later 921 UndefValue *Undef = UndefValue::get(SI->getType()); 922 std::string Name = suffixed_name_or(I, ".base", "base_select"); 923 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); 924 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 925 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 926 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 927 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 928 EE); 929 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 930 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 931 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 932 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 933 return InsertElementInst::Create(VecUndef, ScalarUndef, 934 IE->getOperand(2), Name, IE); 935 } else { 936 auto *SV = cast<ShuffleVectorInst>(I); 937 UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType()); 938 std::string Name = suffixed_name_or(I, ".base", "base_sv"); 939 return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2), 940 Name, SV); 941 } 942 }; 943 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 944 // Add metadata marking this as a base value 945 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 946 States[I] = BDVState(BDVState::Conflict, BaseInst); 947 } 948 949 // Returns a instruction which produces the base pointer for a given 950 // instruction. The instruction is assumed to be an input to one of the BDVs 951 // seen in the inference algorithm above. As such, we must either already 952 // know it's base defining value is a base, or have inserted a new 953 // instruction to propagate the base of it's BDV and have entered that newly 954 // introduced instruction into the state table. In either case, we are 955 // assured to be able to determine an instruction which produces it's base 956 // pointer. 957 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 958 Value *BDV = findBaseOrBDV(Input, Cache); 959 Value *Base = nullptr; 960 if (isKnownBaseResult(BDV)) { 961 Base = BDV; 962 } else { 963 // Either conflict or base. 964 assert(States.count(BDV)); 965 Base = States[BDV].getBaseValue(); 966 } 967 assert(Base && "Can't be null"); 968 // The cast is needed since base traversal may strip away bitcasts 969 if (Base->getType() != Input->getType() && InsertPt) 970 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 971 return Base; 972 }; 973 974 // Fixup all the inputs of the new PHIs. Visit order needs to be 975 // deterministic and predictable because we're naming newly created 976 // instructions. 977 for (auto Pair : States) { 978 Instruction *BDV = cast<Instruction>(Pair.first); 979 BDVState State = Pair.second; 980 981 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 982 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 983 if (!State.isConflict()) 984 continue; 985 986 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 987 PHINode *PN = cast<PHINode>(BDV); 988 unsigned NumPHIValues = PN->getNumIncomingValues(); 989 for (unsigned i = 0; i < NumPHIValues; i++) { 990 Value *InVal = PN->getIncomingValue(i); 991 BasicBlock *InBB = PN->getIncomingBlock(i); 992 993 // If we've already seen InBB, add the same incoming value 994 // we added for it earlier. The IR verifier requires phi 995 // nodes with multiple entries from the same basic block 996 // to have the same incoming value for each of those 997 // entries. If we don't do this check here and basephi 998 // has a different type than base, we'll end up adding two 999 // bitcasts (and hence two distinct values) as incoming 1000 // values for the same basic block. 1001 1002 int BlockIndex = BasePHI->getBasicBlockIndex(InBB); 1003 if (BlockIndex != -1) { 1004 Value *OldBase = BasePHI->getIncomingValue(BlockIndex); 1005 BasePHI->addIncoming(OldBase, InBB); 1006 1007 #ifndef NDEBUG 1008 Value *Base = getBaseForInput(InVal, nullptr); 1009 // In essence this assert states: the only way two values 1010 // incoming from the same basic block may be different is by 1011 // being different bitcasts of the same value. A cleanup 1012 // that remains TODO is changing findBaseOrBDV to return an 1013 // llvm::Value of the correct type (and still remain pure). 1014 // This will remove the need to add bitcasts. 1015 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 1016 "Sanity -- findBaseOrBDV should be pure!"); 1017 #endif 1018 continue; 1019 } 1020 1021 // Find the instruction which produces the base for each input. We may 1022 // need to insert a bitcast in the incoming block. 1023 // TODO: Need to split critical edges if insertion is needed 1024 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1025 BasePHI->addIncoming(Base, InBB); 1026 } 1027 assert(BasePHI->getNumIncomingValues() == NumPHIValues); 1028 } else if (SelectInst *BaseSI = 1029 dyn_cast<SelectInst>(State.getBaseValue())) { 1030 SelectInst *SI = cast<SelectInst>(BDV); 1031 1032 // Find the instruction which produces the base for each input. 1033 // We may need to insert a bitcast. 1034 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1035 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1036 } else if (auto *BaseEE = 1037 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1038 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1039 // Find the instruction which produces the base for each input. We may 1040 // need to insert a bitcast. 1041 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1042 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1043 auto *BdvIE = cast<InsertElementInst>(BDV); 1044 auto UpdateOperand = [&](int OperandIdx) { 1045 Value *InVal = BdvIE->getOperand(OperandIdx); 1046 Value *Base = getBaseForInput(InVal, BaseIE); 1047 BaseIE->setOperand(OperandIdx, Base); 1048 }; 1049 UpdateOperand(0); // vector operand 1050 UpdateOperand(1); // scalar operand 1051 } else { 1052 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1053 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1054 auto UpdateOperand = [&](int OperandIdx) { 1055 Value *InVal = BdvSV->getOperand(OperandIdx); 1056 Value *Base = getBaseForInput(InVal, BaseSV); 1057 BaseSV->setOperand(OperandIdx, Base); 1058 }; 1059 UpdateOperand(0); // vector operand 1060 UpdateOperand(1); // vector operand 1061 } 1062 } 1063 1064 // Cache all of our results so we can cheaply reuse them 1065 // NOTE: This is actually two caches: one of the base defining value 1066 // relation and one of the base pointer relation! FIXME 1067 for (auto Pair : States) { 1068 auto *BDV = Pair.first; 1069 Value *Base = Pair.second.getBaseValue(); 1070 assert(BDV && Base); 1071 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1072 1073 DEBUG(dbgs() << "Updating base value cache" 1074 << " for: " << BDV->getName() << " from: " 1075 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1076 << " to: " << Base->getName() << "\n"); 1077 1078 if (Cache.count(BDV)) { 1079 assert(isKnownBaseResult(Base) && 1080 "must be something we 'know' is a base pointer"); 1081 // Once we transition from the BDV relation being store in the Cache to 1082 // the base relation being stored, it must be stable 1083 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && 1084 "base relation should be stable"); 1085 } 1086 Cache[BDV] = Base; 1087 } 1088 assert(Cache.count(Def)); 1089 return Cache[Def]; 1090 } 1091 1092 // For a set of live pointers (base and/or derived), identify the base 1093 // pointer of the object which they are derived from. This routine will 1094 // mutate the IR graph as needed to make the 'base' pointer live at the 1095 // definition site of 'derived'. This ensures that any use of 'derived' can 1096 // also use 'base'. This may involve the insertion of a number of 1097 // additional PHI nodes. 1098 // 1099 // preconditions: live is a set of pointer type Values 1100 // 1101 // side effects: may insert PHI nodes into the existing CFG, will preserve 1102 // CFG, will not remove or mutate any existing nodes 1103 // 1104 // post condition: PointerToBase contains one (derived, base) pair for every 1105 // pointer in live. Note that derived can be equal to base if the original 1106 // pointer was a base pointer. 1107 static void 1108 findBasePointers(const StatepointLiveSetTy &live, 1109 MapVector<Value *, Value *> &PointerToBase, 1110 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1111 for (Value *ptr : live) { 1112 Value *base = findBasePointer(ptr, DVCache); 1113 assert(base && "failed to find base pointer"); 1114 PointerToBase[ptr] = base; 1115 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1116 DT->dominates(cast<Instruction>(base)->getParent(), 1117 cast<Instruction>(ptr)->getParent())) && 1118 "The base we found better dominate the derived pointer"); 1119 } 1120 } 1121 1122 /// Find the required based pointers (and adjust the live set) for the given 1123 /// parse point. 1124 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1125 CallSite CS, 1126 PartiallyConstructedSafepointRecord &result) { 1127 MapVector<Value *, Value *> PointerToBase; 1128 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1129 1130 if (PrintBasePointers) { 1131 errs() << "Base Pairs (w/o Relocation):\n"; 1132 for (auto &Pair : PointerToBase) { 1133 errs() << " derived "; 1134 Pair.first->printAsOperand(errs(), false); 1135 errs() << " base "; 1136 Pair.second->printAsOperand(errs(), false); 1137 errs() << "\n";; 1138 } 1139 } 1140 1141 result.PointerToBase = PointerToBase; 1142 } 1143 1144 /// Given an updated version of the dataflow liveness results, update the 1145 /// liveset and base pointer maps for the call site CS. 1146 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1147 CallSite CS, 1148 PartiallyConstructedSafepointRecord &result); 1149 1150 static void recomputeLiveInValues( 1151 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1152 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1153 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1154 // again. The old values are still live and will help it stabilize quickly. 1155 GCPtrLivenessData RevisedLivenessData; 1156 computeLiveInValues(DT, F, RevisedLivenessData); 1157 for (size_t i = 0; i < records.size(); i++) { 1158 struct PartiallyConstructedSafepointRecord &info = records[i]; 1159 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1160 } 1161 } 1162 1163 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1164 // no uses of the original value / return value between the gc.statepoint and 1165 // the gc.relocate / gc.result call. One case which can arise is a phi node 1166 // starting one of the successor blocks. We also need to be able to insert the 1167 // gc.relocates only on the path which goes through the statepoint. We might 1168 // need to split an edge to make this possible. 1169 static BasicBlock * 1170 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1171 DominatorTree &DT) { 1172 BasicBlock *Ret = BB; 1173 if (!BB->getUniquePredecessor()) 1174 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1175 1176 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1177 // from it 1178 FoldSingleEntryPHINodes(Ret); 1179 assert(!isa<PHINode>(Ret->begin()) && 1180 "All PHI nodes should have been removed!"); 1181 1182 // At this point, we can safely insert a gc.relocate or gc.result as the first 1183 // instruction in Ret if needed. 1184 return Ret; 1185 } 1186 1187 // Create new attribute set containing only attributes which can be transferred 1188 // from original call to the safepoint. 1189 static AttributeList legalizeCallAttributes(AttributeList AL) { 1190 if (AL.isEmpty()) 1191 return AL; 1192 1193 // Remove the readonly, readnone, and statepoint function attributes. 1194 AttrBuilder FnAttrs = AL.getFnAttributes(); 1195 FnAttrs.removeAttribute(Attribute::ReadNone); 1196 FnAttrs.removeAttribute(Attribute::ReadOnly); 1197 for (Attribute A : AL.getFnAttributes()) { 1198 if (isStatepointDirectiveAttr(A)) 1199 FnAttrs.remove(A); 1200 } 1201 1202 // Just skip parameter and return attributes for now 1203 LLVMContext &Ctx = AL.getContext(); 1204 return AttributeList::get(Ctx, AttributeList::FunctionIndex, 1205 AttributeSet::get(Ctx, FnAttrs)); 1206 } 1207 1208 /// Helper function to place all gc relocates necessary for the given 1209 /// statepoint. 1210 /// Inputs: 1211 /// liveVariables - list of variables to be relocated. 1212 /// liveStart - index of the first live variable. 1213 /// basePtrs - base pointers. 1214 /// statepointToken - statepoint instruction to which relocates should be 1215 /// bound. 1216 /// Builder - Llvm IR builder to be used to construct new calls. 1217 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1218 const int LiveStart, 1219 ArrayRef<Value *> BasePtrs, 1220 Instruction *StatepointToken, 1221 IRBuilder<> Builder) { 1222 if (LiveVariables.empty()) 1223 return; 1224 1225 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1226 auto ValIt = llvm::find(LiveVec, Val); 1227 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1228 size_t Index = std::distance(LiveVec.begin(), ValIt); 1229 assert(Index < LiveVec.size() && "Bug in std::find?"); 1230 return Index; 1231 }; 1232 Module *M = StatepointToken->getModule(); 1233 1234 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1235 // element type is i8 addrspace(1)*). We originally generated unique 1236 // declarations for each pointer type, but this proved problematic because 1237 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1238 // towards a single unified pointer type anyways, we can just cast everything 1239 // to an i8* of the right address space. A bitcast is added later to convert 1240 // gc_relocate to the actual value's type. 1241 auto getGCRelocateDecl = [&] (Type *Ty) { 1242 assert(isHandledGCPointerType(Ty)); 1243 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1244 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1245 if (auto *VT = dyn_cast<VectorType>(Ty)) 1246 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1247 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1248 {NewTy}); 1249 }; 1250 1251 // Lazily populated map from input types to the canonicalized form mentioned 1252 // in the comment above. This should probably be cached somewhere more 1253 // broadly. 1254 DenseMap<Type*, Value*> TypeToDeclMap; 1255 1256 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1257 // Generate the gc.relocate call and save the result 1258 Value *BaseIdx = 1259 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1260 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1261 1262 Type *Ty = LiveVariables[i]->getType(); 1263 if (!TypeToDeclMap.count(Ty)) 1264 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1265 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1266 1267 // only specify a debug name if we can give a useful one 1268 CallInst *Reloc = Builder.CreateCall( 1269 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1270 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1271 // Trick CodeGen into thinking there are lots of free registers at this 1272 // fake call. 1273 Reloc->setCallingConv(CallingConv::Cold); 1274 } 1275 } 1276 1277 namespace { 1278 1279 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1280 /// avoids having to worry about keeping around dangling pointers to Values. 1281 class DeferredReplacement { 1282 AssertingVH<Instruction> Old; 1283 AssertingVH<Instruction> New; 1284 bool IsDeoptimize = false; 1285 1286 DeferredReplacement() = default; 1287 1288 public: 1289 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1290 assert(Old != New && Old && New && 1291 "Cannot RAUW equal values or to / from null!"); 1292 1293 DeferredReplacement D; 1294 D.Old = Old; 1295 D.New = New; 1296 return D; 1297 } 1298 1299 static DeferredReplacement createDelete(Instruction *ToErase) { 1300 DeferredReplacement D; 1301 D.Old = ToErase; 1302 return D; 1303 } 1304 1305 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1306 #ifndef NDEBUG 1307 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1308 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1309 "Only way to construct a deoptimize deferred replacement"); 1310 #endif 1311 DeferredReplacement D; 1312 D.Old = Old; 1313 D.IsDeoptimize = true; 1314 return D; 1315 } 1316 1317 /// Does the task represented by this instance. 1318 void doReplacement() { 1319 Instruction *OldI = Old; 1320 Instruction *NewI = New; 1321 1322 assert(OldI != NewI && "Disallowed at construction?!"); 1323 assert((!IsDeoptimize || !New) && 1324 "Deoptimize instrinsics are not replaced!"); 1325 1326 Old = nullptr; 1327 New = nullptr; 1328 1329 if (NewI) 1330 OldI->replaceAllUsesWith(NewI); 1331 1332 if (IsDeoptimize) { 1333 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1334 // not necessarilly be followed by the matching return. 1335 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1336 new UnreachableInst(RI->getContext(), RI); 1337 RI->eraseFromParent(); 1338 } 1339 1340 OldI->eraseFromParent(); 1341 } 1342 }; 1343 1344 } // end anonymous namespace 1345 1346 static StringRef getDeoptLowering(CallSite CS) { 1347 const char *DeoptLowering = "deopt-lowering"; 1348 if (CS.hasFnAttr(DeoptLowering)) { 1349 // FIXME: CallSite has a *really* confusing interface around attributes 1350 // with values. 1351 const AttributeList &CSAS = CS.getAttributes(); 1352 if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering)) 1353 return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering) 1354 .getValueAsString(); 1355 Function *F = CS.getCalledFunction(); 1356 assert(F && F->hasFnAttribute(DeoptLowering)); 1357 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1358 } 1359 return "live-through"; 1360 } 1361 1362 static void 1363 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1364 const SmallVectorImpl<Value *> &BasePtrs, 1365 const SmallVectorImpl<Value *> &LiveVariables, 1366 PartiallyConstructedSafepointRecord &Result, 1367 std::vector<DeferredReplacement> &Replacements) { 1368 assert(BasePtrs.size() == LiveVariables.size()); 1369 1370 // Then go ahead and use the builder do actually do the inserts. We insert 1371 // immediately before the previous instruction under the assumption that all 1372 // arguments will be available here. We can't insert afterwards since we may 1373 // be replacing a terminator. 1374 Instruction *InsertBefore = CS.getInstruction(); 1375 IRBuilder<> Builder(InsertBefore); 1376 1377 ArrayRef<Value *> GCArgs(LiveVariables); 1378 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1379 uint32_t NumPatchBytes = 0; 1380 uint32_t Flags = uint32_t(StatepointFlags::None); 1381 1382 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1383 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1384 ArrayRef<Use> TransitionArgs; 1385 if (auto TransitionBundle = 1386 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1387 Flags |= uint32_t(StatepointFlags::GCTransition); 1388 TransitionArgs = TransitionBundle->Inputs; 1389 } 1390 1391 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1392 // with a return value, we lower then as never returning calls to 1393 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1394 bool IsDeoptimize = false; 1395 1396 StatepointDirectives SD = 1397 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1398 if (SD.NumPatchBytes) 1399 NumPatchBytes = *SD.NumPatchBytes; 1400 if (SD.StatepointID) 1401 StatepointID = *SD.StatepointID; 1402 1403 // Pass through the requested lowering if any. The default is live-through. 1404 StringRef DeoptLowering = getDeoptLowering(CS); 1405 if (DeoptLowering.equals("live-in")) 1406 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1407 else { 1408 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1409 } 1410 1411 Value *CallTarget = CS.getCalledValue(); 1412 if (Function *F = dyn_cast<Function>(CallTarget)) { 1413 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1414 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1415 // __llvm_deoptimize symbol. We want to resolve this now, since the 1416 // verifier does not allow taking the address of an intrinsic function. 1417 1418 SmallVector<Type *, 8> DomainTy; 1419 for (Value *Arg : CallArgs) 1420 DomainTy.push_back(Arg->getType()); 1421 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1422 /* isVarArg = */ false); 1423 1424 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1425 // calls to @llvm.experimental.deoptimize with different argument types in 1426 // the same module. This is fine -- we assume the frontend knew what it 1427 // was doing when generating this kind of IR. 1428 CallTarget = 1429 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1430 1431 IsDeoptimize = true; 1432 } 1433 } 1434 1435 // Create the statepoint given all the arguments 1436 Instruction *Token = nullptr; 1437 if (CS.isCall()) { 1438 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1439 CallInst *Call = Builder.CreateGCStatepointCall( 1440 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1441 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1442 1443 Call->setTailCallKind(ToReplace->getTailCallKind()); 1444 Call->setCallingConv(ToReplace->getCallingConv()); 1445 1446 // Currently we will fail on parameter attributes and on certain 1447 // function attributes. In case if we can handle this set of attributes - 1448 // set up function attrs directly on statepoint and return attrs later for 1449 // gc_result intrinsic. 1450 Call->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1451 1452 Token = Call; 1453 1454 // Put the following gc_result and gc_relocate calls immediately after the 1455 // the old call (which we're about to delete) 1456 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1457 Builder.SetInsertPoint(ToReplace->getNextNode()); 1458 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1459 } else { 1460 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1461 1462 // Insert the new invoke into the old block. We'll remove the old one in a 1463 // moment at which point this will become the new terminator for the 1464 // original block. 1465 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1466 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1467 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1468 GCArgs, "statepoint_token"); 1469 1470 Invoke->setCallingConv(ToReplace->getCallingConv()); 1471 1472 // Currently we will fail on parameter attributes and on certain 1473 // function attributes. In case if we can handle this set of attributes - 1474 // set up function attrs directly on statepoint and return attrs later for 1475 // gc_result intrinsic. 1476 Invoke->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1477 1478 Token = Invoke; 1479 1480 // Generate gc relocates in exceptional path 1481 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1482 assert(!isa<PHINode>(UnwindBlock->begin()) && 1483 UnwindBlock->getUniquePredecessor() && 1484 "can't safely insert in this block!"); 1485 1486 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1487 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1488 1489 // Attach exceptional gc relocates to the landingpad. 1490 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1491 Result.UnwindToken = ExceptionalToken; 1492 1493 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1494 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1495 Builder); 1496 1497 // Generate gc relocates and returns for normal block 1498 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1499 assert(!isa<PHINode>(NormalDest->begin()) && 1500 NormalDest->getUniquePredecessor() && 1501 "can't safely insert in this block!"); 1502 1503 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1504 1505 // gc relocates will be generated later as if it were regular call 1506 // statepoint 1507 } 1508 assert(Token && "Should be set in one of the above branches!"); 1509 1510 if (IsDeoptimize) { 1511 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1512 // transform the tail-call like structure to a call to a void function 1513 // followed by unreachable to get better codegen. 1514 Replacements.push_back( 1515 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1516 } else { 1517 Token->setName("statepoint_token"); 1518 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1519 StringRef Name = 1520 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1521 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1522 GCResult->setAttributes( 1523 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1524 CS.getAttributes().getRetAttributes())); 1525 1526 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1527 // live set of some other safepoint, in which case that safepoint's 1528 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1529 // llvm::Instruction. Instead, we defer the replacement and deletion to 1530 // after the live sets have been made explicit in the IR, and we no longer 1531 // have raw pointers to worry about. 1532 Replacements.emplace_back( 1533 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1534 } else { 1535 Replacements.emplace_back( 1536 DeferredReplacement::createDelete(CS.getInstruction())); 1537 } 1538 } 1539 1540 Result.StatepointToken = Token; 1541 1542 // Second, create a gc.relocate for every live variable 1543 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1544 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1545 } 1546 1547 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1548 // which make the relocations happening at this safepoint explicit. 1549 // 1550 // WARNING: Does not do any fixup to adjust users of the original live 1551 // values. That's the callers responsibility. 1552 static void 1553 makeStatepointExplicit(DominatorTree &DT, CallSite CS, 1554 PartiallyConstructedSafepointRecord &Result, 1555 std::vector<DeferredReplacement> &Replacements) { 1556 const auto &LiveSet = Result.LiveSet; 1557 const auto &PointerToBase = Result.PointerToBase; 1558 1559 // Convert to vector for efficient cross referencing. 1560 SmallVector<Value *, 64> BaseVec, LiveVec; 1561 LiveVec.reserve(LiveSet.size()); 1562 BaseVec.reserve(LiveSet.size()); 1563 for (Value *L : LiveSet) { 1564 LiveVec.push_back(L); 1565 assert(PointerToBase.count(L)); 1566 Value *Base = PointerToBase.find(L)->second; 1567 BaseVec.push_back(Base); 1568 } 1569 assert(LiveVec.size() == BaseVec.size()); 1570 1571 // Do the actual rewriting and delete the old statepoint 1572 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1573 } 1574 1575 // Helper function for the relocationViaAlloca. 1576 // 1577 // It receives iterator to the statepoint gc relocates and emits a store to the 1578 // assigned location (via allocaMap) for the each one of them. It adds the 1579 // visited values into the visitedLiveValues set, which we will later use them 1580 // for sanity checking. 1581 static void 1582 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1583 DenseMap<Value *, Value *> &AllocaMap, 1584 DenseSet<Value *> &VisitedLiveValues) { 1585 for (User *U : GCRelocs) { 1586 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1587 if (!Relocate) 1588 continue; 1589 1590 Value *OriginalValue = Relocate->getDerivedPtr(); 1591 assert(AllocaMap.count(OriginalValue)); 1592 Value *Alloca = AllocaMap[OriginalValue]; 1593 1594 // Emit store into the related alloca 1595 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1596 // the correct type according to alloca. 1597 assert(Relocate->getNextNode() && 1598 "Should always have one since it's not a terminator"); 1599 IRBuilder<> Builder(Relocate->getNextNode()); 1600 Value *CastedRelocatedValue = 1601 Builder.CreateBitCast(Relocate, 1602 cast<AllocaInst>(Alloca)->getAllocatedType(), 1603 suffixed_name_or(Relocate, ".casted", "")); 1604 1605 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1606 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1607 1608 #ifndef NDEBUG 1609 VisitedLiveValues.insert(OriginalValue); 1610 #endif 1611 } 1612 } 1613 1614 // Helper function for the "relocationViaAlloca". Similar to the 1615 // "insertRelocationStores" but works for rematerialized values. 1616 static void insertRematerializationStores( 1617 const RematerializedValueMapTy &RematerializedValues, 1618 DenseMap<Value *, Value *> &AllocaMap, 1619 DenseSet<Value *> &VisitedLiveValues) { 1620 for (auto RematerializedValuePair: RematerializedValues) { 1621 Instruction *RematerializedValue = RematerializedValuePair.first; 1622 Value *OriginalValue = RematerializedValuePair.second; 1623 1624 assert(AllocaMap.count(OriginalValue) && 1625 "Can not find alloca for rematerialized value"); 1626 Value *Alloca = AllocaMap[OriginalValue]; 1627 1628 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1629 Store->insertAfter(RematerializedValue); 1630 1631 #ifndef NDEBUG 1632 VisitedLiveValues.insert(OriginalValue); 1633 #endif 1634 } 1635 } 1636 1637 /// Do all the relocation update via allocas and mem2reg 1638 static void relocationViaAlloca( 1639 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1640 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1641 #ifndef NDEBUG 1642 // record initial number of (static) allocas; we'll check we have the same 1643 // number when we get done. 1644 int InitialAllocaNum = 0; 1645 for (Instruction &I : F.getEntryBlock()) 1646 if (isa<AllocaInst>(I)) 1647 InitialAllocaNum++; 1648 #endif 1649 1650 // TODO-PERF: change data structures, reserve 1651 DenseMap<Value *, Value *> AllocaMap; 1652 SmallVector<AllocaInst *, 200> PromotableAllocas; 1653 // Used later to chack that we have enough allocas to store all values 1654 std::size_t NumRematerializedValues = 0; 1655 PromotableAllocas.reserve(Live.size()); 1656 1657 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1658 // "PromotableAllocas" 1659 const DataLayout &DL = F.getParent()->getDataLayout(); 1660 auto emitAllocaFor = [&](Value *LiveValue) { 1661 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 1662 DL.getAllocaAddrSpace(), "", 1663 F.getEntryBlock().getFirstNonPHI()); 1664 AllocaMap[LiveValue] = Alloca; 1665 PromotableAllocas.push_back(Alloca); 1666 }; 1667 1668 // Emit alloca for each live gc pointer 1669 for (Value *V : Live) 1670 emitAllocaFor(V); 1671 1672 // Emit allocas for rematerialized values 1673 for (const auto &Info : Records) 1674 for (auto RematerializedValuePair : Info.RematerializedValues) { 1675 Value *OriginalValue = RematerializedValuePair.second; 1676 if (AllocaMap.count(OriginalValue) != 0) 1677 continue; 1678 1679 emitAllocaFor(OriginalValue); 1680 ++NumRematerializedValues; 1681 } 1682 1683 // The next two loops are part of the same conceptual operation. We need to 1684 // insert a store to the alloca after the original def and at each 1685 // redefinition. We need to insert a load before each use. These are split 1686 // into distinct loops for performance reasons. 1687 1688 // Update gc pointer after each statepoint: either store a relocated value or 1689 // null (if no relocated value was found for this gc pointer and it is not a 1690 // gc_result). This must happen before we update the statepoint with load of 1691 // alloca otherwise we lose the link between statepoint and old def. 1692 for (const auto &Info : Records) { 1693 Value *Statepoint = Info.StatepointToken; 1694 1695 // This will be used for consistency check 1696 DenseSet<Value *> VisitedLiveValues; 1697 1698 // Insert stores for normal statepoint gc relocates 1699 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1700 1701 // In case if it was invoke statepoint 1702 // we will insert stores for exceptional path gc relocates. 1703 if (isa<InvokeInst>(Statepoint)) { 1704 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1705 VisitedLiveValues); 1706 } 1707 1708 // Do similar thing with rematerialized values 1709 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1710 VisitedLiveValues); 1711 1712 if (ClobberNonLive) { 1713 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1714 // the gc.statepoint. This will turn some subtle GC problems into 1715 // slightly easier to debug SEGVs. Note that on large IR files with 1716 // lots of gc.statepoints this is extremely costly both memory and time 1717 // wise. 1718 SmallVector<AllocaInst *, 64> ToClobber; 1719 for (auto Pair : AllocaMap) { 1720 Value *Def = Pair.first; 1721 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1722 1723 // This value was relocated 1724 if (VisitedLiveValues.count(Def)) { 1725 continue; 1726 } 1727 ToClobber.push_back(Alloca); 1728 } 1729 1730 auto InsertClobbersAt = [&](Instruction *IP) { 1731 for (auto *AI : ToClobber) { 1732 auto PT = cast<PointerType>(AI->getAllocatedType()); 1733 Constant *CPN = ConstantPointerNull::get(PT); 1734 StoreInst *Store = new StoreInst(CPN, AI); 1735 Store->insertBefore(IP); 1736 } 1737 }; 1738 1739 // Insert the clobbering stores. These may get intermixed with the 1740 // gc.results and gc.relocates, but that's fine. 1741 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1742 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1743 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1744 } else { 1745 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1746 } 1747 } 1748 } 1749 1750 // Update use with load allocas and add store for gc_relocated. 1751 for (auto Pair : AllocaMap) { 1752 Value *Def = Pair.first; 1753 Value *Alloca = Pair.second; 1754 1755 // We pre-record the uses of allocas so that we dont have to worry about 1756 // later update that changes the user information.. 1757 1758 SmallVector<Instruction *, 20> Uses; 1759 // PERF: trade a linear scan for repeated reallocation 1760 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1761 for (User *U : Def->users()) { 1762 if (!isa<ConstantExpr>(U)) { 1763 // If the def has a ConstantExpr use, then the def is either a 1764 // ConstantExpr use itself or null. In either case 1765 // (recursively in the first, directly in the second), the oop 1766 // it is ultimately dependent on is null and this particular 1767 // use does not need to be fixed up. 1768 Uses.push_back(cast<Instruction>(U)); 1769 } 1770 } 1771 1772 std::sort(Uses.begin(), Uses.end()); 1773 auto Last = std::unique(Uses.begin(), Uses.end()); 1774 Uses.erase(Last, Uses.end()); 1775 1776 for (Instruction *Use : Uses) { 1777 if (isa<PHINode>(Use)) { 1778 PHINode *Phi = cast<PHINode>(Use); 1779 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1780 if (Def == Phi->getIncomingValue(i)) { 1781 LoadInst *Load = new LoadInst( 1782 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1783 Phi->setIncomingValue(i, Load); 1784 } 1785 } 1786 } else { 1787 LoadInst *Load = new LoadInst(Alloca, "", Use); 1788 Use->replaceUsesOfWith(Def, Load); 1789 } 1790 } 1791 1792 // Emit store for the initial gc value. Store must be inserted after load, 1793 // otherwise store will be in alloca's use list and an extra load will be 1794 // inserted before it. 1795 StoreInst *Store = new StoreInst(Def, Alloca); 1796 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1797 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1798 // InvokeInst is a TerminatorInst so the store need to be inserted 1799 // into its normal destination block. 1800 BasicBlock *NormalDest = Invoke->getNormalDest(); 1801 Store->insertBefore(NormalDest->getFirstNonPHI()); 1802 } else { 1803 assert(!Inst->isTerminator() && 1804 "The only TerminatorInst that can produce a value is " 1805 "InvokeInst which is handled above."); 1806 Store->insertAfter(Inst); 1807 } 1808 } else { 1809 assert(isa<Argument>(Def)); 1810 Store->insertAfter(cast<Instruction>(Alloca)); 1811 } 1812 } 1813 1814 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1815 "we must have the same allocas with lives"); 1816 if (!PromotableAllocas.empty()) { 1817 // Apply mem2reg to promote alloca to SSA 1818 PromoteMemToReg(PromotableAllocas, DT); 1819 } 1820 1821 #ifndef NDEBUG 1822 for (auto &I : F.getEntryBlock()) 1823 if (isa<AllocaInst>(I)) 1824 InitialAllocaNum--; 1825 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1826 #endif 1827 } 1828 1829 /// Implement a unique function which doesn't require we sort the input 1830 /// vector. Doing so has the effect of changing the output of a couple of 1831 /// tests in ways which make them less useful in testing fused safepoints. 1832 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1833 SmallSet<T, 8> Seen; 1834 Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }), 1835 Vec.end()); 1836 } 1837 1838 /// Insert holders so that each Value is obviously live through the entire 1839 /// lifetime of the call. 1840 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1841 SmallVectorImpl<CallInst *> &Holders) { 1842 if (Values.empty()) 1843 // No values to hold live, might as well not insert the empty holder 1844 return; 1845 1846 Module *M = CS.getInstruction()->getModule(); 1847 // Use a dummy vararg function to actually hold the values live 1848 Function *Func = cast<Function>(M->getOrInsertFunction( 1849 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1850 if (CS.isCall()) { 1851 // For call safepoints insert dummy calls right after safepoint 1852 Holders.push_back(CallInst::Create(Func, Values, "", 1853 &*++CS.getInstruction()->getIterator())); 1854 return; 1855 } 1856 // For invoke safepooints insert dummy calls both in normal and 1857 // exceptional destination blocks 1858 auto *II = cast<InvokeInst>(CS.getInstruction()); 1859 Holders.push_back(CallInst::Create( 1860 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1861 Holders.push_back(CallInst::Create( 1862 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1863 } 1864 1865 static void findLiveReferences( 1866 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1867 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1868 GCPtrLivenessData OriginalLivenessData; 1869 computeLiveInValues(DT, F, OriginalLivenessData); 1870 for (size_t i = 0; i < records.size(); i++) { 1871 struct PartiallyConstructedSafepointRecord &info = records[i]; 1872 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1873 } 1874 } 1875 1876 // Helper function for the "rematerializeLiveValues". It walks use chain 1877 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 1878 // the base or a value it cannot process. Only "simple" values are processed 1879 // (currently it is GEP's and casts). The returned root is examined by the 1880 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 1881 // with all visited values. 1882 static Value* findRematerializableChainToBasePointer( 1883 SmallVectorImpl<Instruction*> &ChainToBase, 1884 Value *CurrentValue) { 1885 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1886 ChainToBase.push_back(GEP); 1887 return findRematerializableChainToBasePointer(ChainToBase, 1888 GEP->getPointerOperand()); 1889 } 1890 1891 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1892 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1893 return CI; 1894 1895 ChainToBase.push_back(CI); 1896 return findRematerializableChainToBasePointer(ChainToBase, 1897 CI->getOperand(0)); 1898 } 1899 1900 // We have reached the root of the chain, which is either equal to the base or 1901 // is the first unsupported value along the use chain. 1902 return CurrentValue; 1903 } 1904 1905 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1906 // chain we are going to rematerialize. 1907 static unsigned 1908 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1909 TargetTransformInfo &TTI) { 1910 unsigned Cost = 0; 1911 1912 for (Instruction *Instr : Chain) { 1913 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1914 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1915 "non noop cast is found during rematerialization"); 1916 1917 Type *SrcTy = CI->getOperand(0)->getType(); 1918 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI); 1919 1920 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1921 // Cost of the address calculation 1922 Type *ValTy = GEP->getSourceElementType(); 1923 Cost += TTI.getAddressComputationCost(ValTy); 1924 1925 // And cost of the GEP itself 1926 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1927 // allowed for the external usage) 1928 if (!GEP->hasAllConstantIndices()) 1929 Cost += 2; 1930 1931 } else { 1932 llvm_unreachable("unsupported instruciton type during rematerialization"); 1933 } 1934 } 1935 1936 return Cost; 1937 } 1938 1939 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 1940 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 1941 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 1942 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 1943 return false; 1944 // Map of incoming values and their corresponding basic blocks of 1945 // OrigRootPhi. 1946 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 1947 for (unsigned i = 0; i < PhiNum; i++) 1948 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 1949 OrigRootPhi.getIncomingBlock(i); 1950 1951 // Both current and base PHIs should have same incoming values and 1952 // the same basic blocks corresponding to the incoming values. 1953 for (unsigned i = 0; i < PhiNum; i++) { 1954 auto CIVI = 1955 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 1956 if (CIVI == CurrentIncomingValues.end()) 1957 return false; 1958 BasicBlock *CurrentIncomingBB = CIVI->second; 1959 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 1960 return false; 1961 } 1962 return true; 1963 } 1964 1965 // From the statepoint live set pick values that are cheaper to recompute then 1966 // to relocate. Remove this values from the live set, rematerialize them after 1967 // statepoint and record them in "Info" structure. Note that similar to 1968 // relocated values we don't do any user adjustments here. 1969 static void rematerializeLiveValues(CallSite CS, 1970 PartiallyConstructedSafepointRecord &Info, 1971 TargetTransformInfo &TTI) { 1972 const unsigned int ChainLengthThreshold = 10; 1973 1974 // Record values we are going to delete from this statepoint live set. 1975 // We can not di this in following loop due to iterator invalidation. 1976 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1977 1978 for (Value *LiveValue: Info.LiveSet) { 1979 // For each live pointer find it's defining chain 1980 SmallVector<Instruction *, 3> ChainToBase; 1981 assert(Info.PointerToBase.count(LiveValue)); 1982 Value *RootOfChain = 1983 findRematerializableChainToBasePointer(ChainToBase, 1984 LiveValue); 1985 1986 // Nothing to do, or chain is too long 1987 if ( ChainToBase.size() == 0 || 1988 ChainToBase.size() > ChainLengthThreshold) 1989 continue; 1990 1991 // Handle the scenario where the RootOfChain is not equal to the 1992 // Base Value, but they are essentially the same phi values. 1993 if (RootOfChain != Info.PointerToBase[LiveValue]) { 1994 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 1995 PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]); 1996 if (!OrigRootPhi || !AlternateRootPhi) 1997 continue; 1998 // PHI nodes that have the same incoming values, and belonging to the same 1999 // basic blocks are essentially the same SSA value. When the original phi 2000 // has incoming values with different base pointers, the original phi is 2001 // marked as conflict, and an additional `AlternateRootPhi` with the same 2002 // incoming values get generated by the findBasePointer function. We need 2003 // to identify the newly generated AlternateRootPhi (.base version of phi) 2004 // and RootOfChain (the original phi node itself) are the same, so that we 2005 // can rematerialize the gep and casts. This is a workaround for the 2006 // deficiency in the findBasePointer algorithm. 2007 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2008 continue; 2009 // Now that the phi nodes are proved to be the same, assert that 2010 // findBasePointer's newly generated AlternateRootPhi is present in the 2011 // liveset of the call. 2012 assert(Info.LiveSet.count(AlternateRootPhi)); 2013 } 2014 // Compute cost of this chain 2015 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2016 // TODO: We can also account for cases when we will be able to remove some 2017 // of the rematerialized values by later optimization passes. I.e if 2018 // we rematerialized several intersecting chains. Or if original values 2019 // don't have any uses besides this statepoint. 2020 2021 // For invokes we need to rematerialize each chain twice - for normal and 2022 // for unwind basic blocks. Model this by multiplying cost by two. 2023 if (CS.isInvoke()) { 2024 Cost *= 2; 2025 } 2026 // If it's too expensive - skip it 2027 if (Cost >= RematerializationThreshold) 2028 continue; 2029 2030 // Remove value from the live set 2031 LiveValuesToBeDeleted.push_back(LiveValue); 2032 2033 // Clone instructions and record them inside "Info" structure 2034 2035 // Walk backwards to visit top-most instructions first 2036 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2037 2038 // Utility function which clones all instructions from "ChainToBase" 2039 // and inserts them before "InsertBefore". Returns rematerialized value 2040 // which should be used after statepoint. 2041 auto rematerializeChain = [&ChainToBase]( 2042 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 2043 Instruction *LastClonedValue = nullptr; 2044 Instruction *LastValue = nullptr; 2045 for (Instruction *Instr: ChainToBase) { 2046 // Only GEP's and casts are supported as we need to be careful to not 2047 // introduce any new uses of pointers not in the liveset. 2048 // Note that it's fine to introduce new uses of pointers which were 2049 // otherwise not used after this statepoint. 2050 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2051 2052 Instruction *ClonedValue = Instr->clone(); 2053 ClonedValue->insertBefore(InsertBefore); 2054 ClonedValue->setName(Instr->getName() + ".remat"); 2055 2056 // If it is not first instruction in the chain then it uses previously 2057 // cloned value. We should update it to use cloned value. 2058 if (LastClonedValue) { 2059 assert(LastValue); 2060 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2061 #ifndef NDEBUG 2062 for (auto OpValue : ClonedValue->operand_values()) { 2063 // Assert that cloned instruction does not use any instructions from 2064 // this chain other than LastClonedValue 2065 assert(!is_contained(ChainToBase, OpValue) && 2066 "incorrect use in rematerialization chain"); 2067 // Assert that the cloned instruction does not use the RootOfChain 2068 // or the AlternateLiveBase. 2069 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2070 } 2071 #endif 2072 } else { 2073 // For the first instruction, replace the use of unrelocated base i.e. 2074 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2075 // live set. They have been proved to be the same PHI nodes. Note 2076 // that the *only* use of the RootOfChain in the ChainToBase list is 2077 // the first Value in the list. 2078 if (RootOfChain != AlternateLiveBase) 2079 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2080 } 2081 2082 LastClonedValue = ClonedValue; 2083 LastValue = Instr; 2084 } 2085 assert(LastClonedValue); 2086 return LastClonedValue; 2087 }; 2088 2089 // Different cases for calls and invokes. For invokes we need to clone 2090 // instructions both on normal and unwind path. 2091 if (CS.isCall()) { 2092 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2093 assert(InsertBefore); 2094 Instruction *RematerializedValue = rematerializeChain( 2095 InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2096 Info.RematerializedValues[RematerializedValue] = LiveValue; 2097 } else { 2098 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2099 2100 Instruction *NormalInsertBefore = 2101 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2102 Instruction *UnwindInsertBefore = 2103 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2104 2105 Instruction *NormalRematerializedValue = rematerializeChain( 2106 NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2107 Instruction *UnwindRematerializedValue = rematerializeChain( 2108 UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2109 2110 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2111 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2112 } 2113 } 2114 2115 // Remove rematerializaed values from the live set 2116 for (auto LiveValue: LiveValuesToBeDeleted) { 2117 Info.LiveSet.remove(LiveValue); 2118 } 2119 } 2120 2121 static bool insertParsePoints(Function &F, DominatorTree &DT, 2122 TargetTransformInfo &TTI, 2123 SmallVectorImpl<CallSite> &ToUpdate) { 2124 #ifndef NDEBUG 2125 // sanity check the input 2126 std::set<CallSite> Uniqued; 2127 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2128 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2129 2130 for (CallSite CS : ToUpdate) 2131 assert(CS.getInstruction()->getFunction() == &F); 2132 #endif 2133 2134 // When inserting gc.relocates for invokes, we need to be able to insert at 2135 // the top of the successor blocks. See the comment on 2136 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2137 // may restructure the CFG. 2138 for (CallSite CS : ToUpdate) { 2139 if (!CS.isInvoke()) 2140 continue; 2141 auto *II = cast<InvokeInst>(CS.getInstruction()); 2142 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2143 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2144 } 2145 2146 // A list of dummy calls added to the IR to keep various values obviously 2147 // live in the IR. We'll remove all of these when done. 2148 SmallVector<CallInst *, 64> Holders; 2149 2150 // Insert a dummy call with all of the deopt operands we'll need for the 2151 // actual safepoint insertion as arguments. This ensures reference operands 2152 // in the deopt argument list are considered live through the safepoint (and 2153 // thus makes sure they get relocated.) 2154 for (CallSite CS : ToUpdate) { 2155 SmallVector<Value *, 64> DeoptValues; 2156 2157 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2158 assert(!isUnhandledGCPointerType(Arg->getType()) && 2159 "support for FCA unimplemented"); 2160 if (isHandledGCPointerType(Arg->getType())) 2161 DeoptValues.push_back(Arg); 2162 } 2163 2164 insertUseHolderAfter(CS, DeoptValues, Holders); 2165 } 2166 2167 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2168 2169 // A) Identify all gc pointers which are statically live at the given call 2170 // site. 2171 findLiveReferences(F, DT, ToUpdate, Records); 2172 2173 // B) Find the base pointers for each live pointer 2174 /* scope for caching */ { 2175 // Cache the 'defining value' relation used in the computation and 2176 // insertion of base phis and selects. This ensures that we don't insert 2177 // large numbers of duplicate base_phis. 2178 DefiningValueMapTy DVCache; 2179 2180 for (size_t i = 0; i < Records.size(); i++) { 2181 PartiallyConstructedSafepointRecord &info = Records[i]; 2182 findBasePointers(DT, DVCache, ToUpdate[i], info); 2183 } 2184 } // end of cache scope 2185 2186 // The base phi insertion logic (for any safepoint) may have inserted new 2187 // instructions which are now live at some safepoint. The simplest such 2188 // example is: 2189 // loop: 2190 // phi a <-- will be a new base_phi here 2191 // safepoint 1 <-- that needs to be live here 2192 // gep a + 1 2193 // safepoint 2 2194 // br loop 2195 // We insert some dummy calls after each safepoint to definitely hold live 2196 // the base pointers which were identified for that safepoint. We'll then 2197 // ask liveness for _every_ base inserted to see what is now live. Then we 2198 // remove the dummy calls. 2199 Holders.reserve(Holders.size() + Records.size()); 2200 for (size_t i = 0; i < Records.size(); i++) { 2201 PartiallyConstructedSafepointRecord &Info = Records[i]; 2202 2203 SmallVector<Value *, 128> Bases; 2204 for (auto Pair : Info.PointerToBase) 2205 Bases.push_back(Pair.second); 2206 2207 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2208 } 2209 2210 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2211 // need to rerun liveness. We may *also* have inserted new defs, but that's 2212 // not the key issue. 2213 recomputeLiveInValues(F, DT, ToUpdate, Records); 2214 2215 if (PrintBasePointers) { 2216 for (auto &Info : Records) { 2217 errs() << "Base Pairs: (w/Relocation)\n"; 2218 for (auto Pair : Info.PointerToBase) { 2219 errs() << " derived "; 2220 Pair.first->printAsOperand(errs(), false); 2221 errs() << " base "; 2222 Pair.second->printAsOperand(errs(), false); 2223 errs() << "\n"; 2224 } 2225 } 2226 } 2227 2228 // It is possible that non-constant live variables have a constant base. For 2229 // example, a GEP with a variable offset from a global. In this case we can 2230 // remove it from the liveset. We already don't add constants to the liveset 2231 // because we assume they won't move at runtime and the GC doesn't need to be 2232 // informed about them. The same reasoning applies if the base is constant. 2233 // Note that the relocation placement code relies on this filtering for 2234 // correctness as it expects the base to be in the liveset, which isn't true 2235 // if the base is constant. 2236 for (auto &Info : Records) 2237 for (auto &BasePair : Info.PointerToBase) 2238 if (isa<Constant>(BasePair.second)) 2239 Info.LiveSet.remove(BasePair.first); 2240 2241 for (CallInst *CI : Holders) 2242 CI->eraseFromParent(); 2243 2244 Holders.clear(); 2245 2246 // In order to reduce live set of statepoint we might choose to rematerialize 2247 // some values instead of relocating them. This is purely an optimization and 2248 // does not influence correctness. 2249 for (size_t i = 0; i < Records.size(); i++) 2250 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2251 2252 // We need this to safely RAUW and delete call or invoke return values that 2253 // may themselves be live over a statepoint. For details, please see usage in 2254 // makeStatepointExplicitImpl. 2255 std::vector<DeferredReplacement> Replacements; 2256 2257 // Now run through and replace the existing statepoints with new ones with 2258 // the live variables listed. We do not yet update uses of the values being 2259 // relocated. We have references to live variables that need to 2260 // survive to the last iteration of this loop. (By construction, the 2261 // previous statepoint can not be a live variable, thus we can and remove 2262 // the old statepoint calls as we go.) 2263 for (size_t i = 0; i < Records.size(); i++) 2264 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2265 2266 ToUpdate.clear(); // prevent accident use of invalid CallSites 2267 2268 for (auto &PR : Replacements) 2269 PR.doReplacement(); 2270 2271 Replacements.clear(); 2272 2273 for (auto &Info : Records) { 2274 // These live sets may contain state Value pointers, since we replaced calls 2275 // with operand bundles with calls wrapped in gc.statepoint, and some of 2276 // those calls may have been def'ing live gc pointers. Clear these out to 2277 // avoid accidentally using them. 2278 // 2279 // TODO: We should create a separate data structure that does not contain 2280 // these live sets, and migrate to using that data structure from this point 2281 // onward. 2282 Info.LiveSet.clear(); 2283 Info.PointerToBase.clear(); 2284 } 2285 2286 // Do all the fixups of the original live variables to their relocated selves 2287 SmallVector<Value *, 128> Live; 2288 for (size_t i = 0; i < Records.size(); i++) { 2289 PartiallyConstructedSafepointRecord &Info = Records[i]; 2290 2291 // We can't simply save the live set from the original insertion. One of 2292 // the live values might be the result of a call which needs a safepoint. 2293 // That Value* no longer exists and we need to use the new gc_result. 2294 // Thankfully, the live set is embedded in the statepoint (and updated), so 2295 // we just grab that. 2296 Statepoint Statepoint(Info.StatepointToken); 2297 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2298 Statepoint.gc_args_end()); 2299 #ifndef NDEBUG 2300 // Do some basic sanity checks on our liveness results before performing 2301 // relocation. Relocation can and will turn mistakes in liveness results 2302 // into non-sensical code which is must harder to debug. 2303 // TODO: It would be nice to test consistency as well 2304 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2305 "statepoint must be reachable or liveness is meaningless"); 2306 for (Value *V : Statepoint.gc_args()) { 2307 if (!isa<Instruction>(V)) 2308 // Non-instruction values trivial dominate all possible uses 2309 continue; 2310 auto *LiveInst = cast<Instruction>(V); 2311 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2312 "unreachable values should never be live"); 2313 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2314 "basic SSA liveness expectation violated by liveness analysis"); 2315 } 2316 #endif 2317 } 2318 unique_unsorted(Live); 2319 2320 #ifndef NDEBUG 2321 // sanity check 2322 for (auto *Ptr : Live) 2323 assert(isHandledGCPointerType(Ptr->getType()) && 2324 "must be a gc pointer type"); 2325 #endif 2326 2327 relocationViaAlloca(F, DT, Live, Records); 2328 return !Records.empty(); 2329 } 2330 2331 // Handles both return values and arguments for Functions and CallSites. 2332 template <typename AttrHolder> 2333 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2334 unsigned Index) { 2335 AttrBuilder R; 2336 if (AH.getDereferenceableBytes(Index)) 2337 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2338 AH.getDereferenceableBytes(Index))); 2339 if (AH.getDereferenceableOrNullBytes(Index)) 2340 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2341 AH.getDereferenceableOrNullBytes(Index))); 2342 if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias)) 2343 R.addAttribute(Attribute::NoAlias); 2344 2345 if (!R.empty()) 2346 AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R)); 2347 } 2348 2349 void 2350 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2351 LLVMContext &Ctx = F.getContext(); 2352 2353 for (Argument &A : F.args()) 2354 if (isa<PointerType>(A.getType())) 2355 RemoveNonValidAttrAtIndex(Ctx, F, 2356 A.getArgNo() + AttributeList::FirstArgIndex); 2357 2358 if (isa<PointerType>(F.getReturnType())) 2359 RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex); 2360 } 2361 2362 void RewriteStatepointsForGC::stripInvalidMetadataFromInstruction(Instruction &I) { 2363 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2364 return; 2365 // These are the attributes that are still valid on loads and stores after 2366 // RS4GC. 2367 // The metadata implying dereferenceability and noalias are (conservatively) 2368 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2369 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2370 // touch the entire heap including noalias objects. Note: The reasoning is 2371 // same as stripping the dereferenceability and noalias attributes that are 2372 // analogous to the metadata counterparts. 2373 // We also drop the invariant.load metadata on the load because that metadata 2374 // implies the address operand to the load points to memory that is never 2375 // changed once it became dereferenceable. This is no longer true after RS4GC. 2376 // Similar reasoning applies to invariant.group metadata, which applies to 2377 // loads within a group. 2378 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2379 LLVMContext::MD_range, 2380 LLVMContext::MD_alias_scope, 2381 LLVMContext::MD_nontemporal, 2382 LLVMContext::MD_nonnull, 2383 LLVMContext::MD_align, 2384 LLVMContext::MD_type}; 2385 2386 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2387 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2388 } 2389 2390 void RewriteStatepointsForGC::stripNonValidDataFromBody(Function &F) { 2391 if (F.empty()) 2392 return; 2393 2394 LLVMContext &Ctx = F.getContext(); 2395 MDBuilder Builder(Ctx); 2396 2397 // Set of invariantstart instructions that we need to remove. 2398 // Use this to avoid invalidating the instruction iterator. 2399 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2400 2401 for (Instruction &I : instructions(F)) { 2402 // invariant.start on memory location implies that the referenced memory 2403 // location is constant and unchanging. This is no longer true after 2404 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2405 // which frees the entire heap and the presence of invariant.start allows 2406 // the optimizer to sink the load of a memory location past a statepoint, 2407 // which is incorrect. 2408 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2409 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2410 InvariantStartInstructions.push_back(II); 2411 continue; 2412 } 2413 2414 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2415 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2416 bool IsImmutableTBAA = 2417 MD->getNumOperands() == 4 && 2418 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2419 2420 if (!IsImmutableTBAA) 2421 continue; // no work to do, MD_tbaa is already marked mutable 2422 2423 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2424 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2425 uint64_t Offset = 2426 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2427 2428 MDNode *MutableTBAA = 2429 Builder.createTBAAStructTagNode(Base, Access, Offset); 2430 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2431 } 2432 2433 stripInvalidMetadataFromInstruction(I); 2434 2435 if (CallSite CS = CallSite(&I)) { 2436 for (int i = 0, e = CS.arg_size(); i != e; i++) 2437 if (isa<PointerType>(CS.getArgument(i)->getType())) 2438 RemoveNonValidAttrAtIndex(Ctx, CS, i + AttributeList::FirstArgIndex); 2439 if (isa<PointerType>(CS.getType())) 2440 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeList::ReturnIndex); 2441 } 2442 } 2443 2444 // Delete the invariant.start instructions and RAUW undef. 2445 for (auto *II : InvariantStartInstructions) { 2446 II->replaceAllUsesWith(UndefValue::get(II->getType())); 2447 II->eraseFromParent(); 2448 } 2449 } 2450 2451 /// Returns true if this function should be rewritten by this pass. The main 2452 /// point of this function is as an extension point for custom logic. 2453 static bool shouldRewriteStatepointsIn(Function &F) { 2454 // TODO: This should check the GCStrategy 2455 if (F.hasGC()) { 2456 const auto &FunctionGCName = F.getGC(); 2457 const StringRef StatepointExampleName("statepoint-example"); 2458 const StringRef CoreCLRName("coreclr"); 2459 return (StatepointExampleName == FunctionGCName) || 2460 (CoreCLRName == FunctionGCName); 2461 } else 2462 return false; 2463 } 2464 2465 void RewriteStatepointsForGC::stripNonValidData(Module &M) { 2466 #ifndef NDEBUG 2467 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2468 #endif 2469 2470 for (Function &F : M) 2471 stripNonValidAttributesFromPrototype(F); 2472 2473 for (Function &F : M) 2474 stripNonValidDataFromBody(F); 2475 } 2476 2477 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2478 // Nothing to do for declarations. 2479 if (F.isDeclaration() || F.empty()) 2480 return false; 2481 2482 // Policy choice says not to rewrite - the most common reason is that we're 2483 // compiling code without a GCStrategy. 2484 if (!shouldRewriteStatepointsIn(F)) 2485 return false; 2486 2487 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2488 TargetTransformInfo &TTI = 2489 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2490 const TargetLibraryInfo &TLI = 2491 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2492 2493 auto NeedsRewrite = [&TLI](Instruction &I) { 2494 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2495 return !callsGCLeafFunction(CS, TLI) && !isStatepoint(CS); 2496 return false; 2497 }; 2498 2499 // Gather all the statepoints which need rewritten. Be careful to only 2500 // consider those in reachable code since we need to ask dominance queries 2501 // when rewriting. We'll delete the unreachable ones in a moment. 2502 SmallVector<CallSite, 64> ParsePointNeeded; 2503 bool HasUnreachableStatepoint = false; 2504 for (Instruction &I : instructions(F)) { 2505 // TODO: only the ones with the flag set! 2506 if (NeedsRewrite(I)) { 2507 if (DT.isReachableFromEntry(I.getParent())) 2508 ParsePointNeeded.push_back(CallSite(&I)); 2509 else 2510 HasUnreachableStatepoint = true; 2511 } 2512 } 2513 2514 bool MadeChange = false; 2515 2516 // Delete any unreachable statepoints so that we don't have unrewritten 2517 // statepoints surviving this pass. This makes testing easier and the 2518 // resulting IR less confusing to human readers. Rather than be fancy, we 2519 // just reuse a utility function which removes the unreachable blocks. 2520 if (HasUnreachableStatepoint) 2521 MadeChange |= removeUnreachableBlocks(F); 2522 2523 // Return early if no work to do. 2524 if (ParsePointNeeded.empty()) 2525 return MadeChange; 2526 2527 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2528 // These are created by LCSSA. They have the effect of increasing the size 2529 // of liveness sets for no good reason. It may be harder to do this post 2530 // insertion since relocations and base phis can confuse things. 2531 for (BasicBlock &BB : F) 2532 if (BB.getUniquePredecessor()) { 2533 MadeChange = true; 2534 FoldSingleEntryPHINodes(&BB); 2535 } 2536 2537 // Before we start introducing relocations, we want to tweak the IR a bit to 2538 // avoid unfortunate code generation effects. The main example is that we 2539 // want to try to make sure the comparison feeding a branch is after any 2540 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2541 // values feeding a branch after relocation. This is semantically correct, 2542 // but results in extra register pressure since both the pre-relocation and 2543 // post-relocation copies must be available in registers. For code without 2544 // relocations this is handled elsewhere, but teaching the scheduler to 2545 // reverse the transform we're about to do would be slightly complex. 2546 // Note: This may extend the live range of the inputs to the icmp and thus 2547 // increase the liveset of any statepoint we move over. This is profitable 2548 // as long as all statepoints are in rare blocks. If we had in-register 2549 // lowering for live values this would be a much safer transform. 2550 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2551 if (auto *BI = dyn_cast<BranchInst>(TI)) 2552 if (BI->isConditional()) 2553 return dyn_cast<Instruction>(BI->getCondition()); 2554 // TODO: Extend this to handle switches 2555 return nullptr; 2556 }; 2557 for (BasicBlock &BB : F) { 2558 TerminatorInst *TI = BB.getTerminator(); 2559 if (auto *Cond = getConditionInst(TI)) 2560 // TODO: Handle more than just ICmps here. We should be able to move 2561 // most instructions without side effects or memory access. 2562 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2563 MadeChange = true; 2564 Cond->moveBefore(TI); 2565 } 2566 } 2567 2568 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2569 return MadeChange; 2570 } 2571 2572 // liveness computation via standard dataflow 2573 // ------------------------------------------------------------------- 2574 2575 // TODO: Consider using bitvectors for liveness, the set of potentially 2576 // interesting values should be small and easy to pre-compute. 2577 2578 /// Compute the live-in set for the location rbegin starting from 2579 /// the live-out set of the basic block 2580 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 2581 BasicBlock::reverse_iterator End, 2582 SetVector<Value *> &LiveTmp) { 2583 for (auto &I : make_range(Begin, End)) { 2584 // KILL/Def - Remove this definition from LiveIn 2585 LiveTmp.remove(&I); 2586 2587 // Don't consider *uses* in PHI nodes, we handle their contribution to 2588 // predecessor blocks when we seed the LiveOut sets 2589 if (isa<PHINode>(I)) 2590 continue; 2591 2592 // USE - Add to the LiveIn set for this instruction 2593 for (Value *V : I.operands()) { 2594 assert(!isUnhandledGCPointerType(V->getType()) && 2595 "support for FCA unimplemented"); 2596 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2597 // The choice to exclude all things constant here is slightly subtle. 2598 // There are two independent reasons: 2599 // - We assume that things which are constant (from LLVM's definition) 2600 // do not move at runtime. For example, the address of a global 2601 // variable is fixed, even though it's contents may not be. 2602 // - Second, we can't disallow arbitrary inttoptr constants even 2603 // if the language frontend does. Optimization passes are free to 2604 // locally exploit facts without respect to global reachability. This 2605 // can create sections of code which are dynamically unreachable and 2606 // contain just about anything. (see constants.ll in tests) 2607 LiveTmp.insert(V); 2608 } 2609 } 2610 } 2611 } 2612 2613 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2614 for (BasicBlock *Succ : successors(BB)) { 2615 for (auto &I : *Succ) { 2616 PHINode *PN = dyn_cast<PHINode>(&I); 2617 if (!PN) 2618 break; 2619 2620 Value *V = PN->getIncomingValueForBlock(BB); 2621 assert(!isUnhandledGCPointerType(V->getType()) && 2622 "support for FCA unimplemented"); 2623 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 2624 LiveTmp.insert(V); 2625 } 2626 } 2627 } 2628 2629 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2630 SetVector<Value *> KillSet; 2631 for (Instruction &I : *BB) 2632 if (isHandledGCPointerType(I.getType())) 2633 KillSet.insert(&I); 2634 return KillSet; 2635 } 2636 2637 #ifndef NDEBUG 2638 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2639 /// sanity check for the liveness computation. 2640 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2641 TerminatorInst *TI, bool TermOkay = false) { 2642 for (Value *V : Live) { 2643 if (auto *I = dyn_cast<Instruction>(V)) { 2644 // The terminator can be a member of the LiveOut set. LLVM's definition 2645 // of instruction dominance states that V does not dominate itself. As 2646 // such, we need to special case this to allow it. 2647 if (TermOkay && TI == I) 2648 continue; 2649 assert(DT.dominates(I, TI) && 2650 "basic SSA liveness expectation violated by liveness analysis"); 2651 } 2652 } 2653 } 2654 2655 /// Check that all the liveness sets used during the computation of liveness 2656 /// obey basic SSA properties. This is useful for finding cases where we miss 2657 /// a def. 2658 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2659 BasicBlock &BB) { 2660 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2661 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2662 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2663 } 2664 #endif 2665 2666 static void computeLiveInValues(DominatorTree &DT, Function &F, 2667 GCPtrLivenessData &Data) { 2668 SmallSetVector<BasicBlock *, 32> Worklist; 2669 2670 // Seed the liveness for each individual block 2671 for (BasicBlock &BB : F) { 2672 Data.KillSet[&BB] = computeKillSet(&BB); 2673 Data.LiveSet[&BB].clear(); 2674 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2675 2676 #ifndef NDEBUG 2677 for (Value *Kill : Data.KillSet[&BB]) 2678 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2679 #endif 2680 2681 Data.LiveOut[&BB] = SetVector<Value *>(); 2682 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2683 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2684 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2685 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2686 if (!Data.LiveIn[&BB].empty()) 2687 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 2688 } 2689 2690 // Propagate that liveness until stable 2691 while (!Worklist.empty()) { 2692 BasicBlock *BB = Worklist.pop_back_val(); 2693 2694 // Compute our new liveout set, then exit early if it hasn't changed despite 2695 // the contribution of our successor. 2696 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2697 const auto OldLiveOutSize = LiveOut.size(); 2698 for (BasicBlock *Succ : successors(BB)) { 2699 assert(Data.LiveIn.count(Succ)); 2700 LiveOut.set_union(Data.LiveIn[Succ]); 2701 } 2702 // assert OutLiveOut is a subset of LiveOut 2703 if (OldLiveOutSize == LiveOut.size()) { 2704 // If the sets are the same size, then we didn't actually add anything 2705 // when unioning our successors LiveIn. Thus, the LiveIn of this block 2706 // hasn't changed. 2707 continue; 2708 } 2709 Data.LiveOut[BB] = LiveOut; 2710 2711 // Apply the effects of this basic block 2712 SetVector<Value *> LiveTmp = LiveOut; 2713 LiveTmp.set_union(Data.LiveSet[BB]); 2714 LiveTmp.set_subtract(Data.KillSet[BB]); 2715 2716 assert(Data.LiveIn.count(BB)); 2717 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2718 // assert: OldLiveIn is a subset of LiveTmp 2719 if (OldLiveIn.size() != LiveTmp.size()) { 2720 Data.LiveIn[BB] = LiveTmp; 2721 Worklist.insert(pred_begin(BB), pred_end(BB)); 2722 } 2723 } // while (!Worklist.empty()) 2724 2725 #ifndef NDEBUG 2726 // Sanity check our output against SSA properties. This helps catch any 2727 // missing kills during the above iteration. 2728 for (BasicBlock &BB : F) 2729 checkBasicSSA(DT, Data, BB); 2730 #endif 2731 } 2732 2733 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2734 StatepointLiveSetTy &Out) { 2735 BasicBlock *BB = Inst->getParent(); 2736 2737 // Note: The copy is intentional and required 2738 assert(Data.LiveOut.count(BB)); 2739 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2740 2741 // We want to handle the statepoint itself oddly. It's 2742 // call result is not live (normal), nor are it's arguments 2743 // (unless they're used again later). This adjustment is 2744 // specifically what we need to relocate 2745 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 2746 LiveOut); 2747 LiveOut.remove(Inst); 2748 Out.insert(LiveOut.begin(), LiveOut.end()); 2749 } 2750 2751 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2752 CallSite CS, 2753 PartiallyConstructedSafepointRecord &Info) { 2754 Instruction *Inst = CS.getInstruction(); 2755 StatepointLiveSetTy Updated; 2756 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2757 2758 #ifndef NDEBUG 2759 DenseSet<Value *> Bases; 2760 for (auto KVPair : Info.PointerToBase) 2761 Bases.insert(KVPair.second); 2762 #endif 2763 2764 // We may have base pointers which are now live that weren't before. We need 2765 // to update the PointerToBase structure to reflect this. 2766 for (auto V : Updated) 2767 if (Info.PointerToBase.insert({V, V}).second) { 2768 assert(Bases.count(V) && "Can't find base for unexpected live value!"); 2769 continue; 2770 } 2771 2772 #ifndef NDEBUG 2773 for (auto V : Updated) 2774 assert(Info.PointerToBase.count(V) && 2775 "Must be able to find base for live value!"); 2776 #endif 2777 2778 // Remove any stale base mappings - this can happen since our liveness is 2779 // more precise then the one inherent in the base pointer analysis. 2780 DenseSet<Value *> ToErase; 2781 for (auto KVPair : Info.PointerToBase) 2782 if (!Updated.count(KVPair.first)) 2783 ToErase.insert(KVPair.first); 2784 2785 for (auto *V : ToErase) 2786 Info.PointerToBase.erase(V); 2787 2788 #ifndef NDEBUG 2789 for (auto KVPair : Info.PointerToBase) 2790 assert(Updated.count(KVPair.first) && "record for non-live value"); 2791 #endif 2792 2793 Info.LiveSet = Updated; 2794 } 2795