1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstIterator.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/IR/Statepoint.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Transforms/Scalar.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/Cloning.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 44 45 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 46 47 using namespace llvm; 48 49 // Print tracing output 50 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 51 cl::init(false)); 52 53 // Print the liveset found at the insert location 54 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 55 cl::init(false)); 56 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 57 cl::init(false)); 58 // Print out the base pointers for debugging 59 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 60 cl::init(false)); 61 62 // Cost threshold measuring when it is profitable to rematerialize value instead 63 // of relocating it 64 static cl::opt<unsigned> 65 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 66 cl::init(6)); 67 68 #ifdef XDEBUG 69 static bool ClobberNonLive = true; 70 #else 71 static bool ClobberNonLive = false; 72 #endif 73 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 74 cl::location(ClobberNonLive), 75 cl::Hidden); 76 77 namespace { 78 struct RewriteStatepointsForGC : public ModulePass { 79 static char ID; // Pass identification, replacement for typeid 80 81 RewriteStatepointsForGC() : ModulePass(ID) { 82 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 83 } 84 bool runOnFunction(Function &F); 85 bool runOnModule(Module &M) override { 86 bool Changed = false; 87 for (Function &F : M) 88 Changed |= runOnFunction(F); 89 90 if (Changed) { 91 // stripDereferenceabilityInfo asserts that shouldRewriteStatepointsIn 92 // returns true for at least one function in the module. Since at least 93 // one function changed, we know that the precondition is satisfied. 94 stripDereferenceabilityInfo(M); 95 } 96 97 return Changed; 98 } 99 100 void getAnalysisUsage(AnalysisUsage &AU) const override { 101 // We add and rewrite a bunch of instructions, but don't really do much 102 // else. We could in theory preserve a lot more analyses here. 103 AU.addRequired<DominatorTreeWrapperPass>(); 104 AU.addRequired<TargetTransformInfoWrapperPass>(); 105 } 106 107 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 108 /// dereferenceability that are no longer valid/correct after 109 /// RewriteStatepointsForGC has run. This is because semantically, after 110 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 111 /// heap. stripDereferenceabilityInfo (conservatively) restores correctness 112 /// by erasing all attributes in the module that externally imply 113 /// dereferenceability. 114 /// 115 void stripDereferenceabilityInfo(Module &M); 116 117 // Helpers for stripDereferenceabilityInfo 118 void stripDereferenceabilityInfoFromBody(Function &F); 119 void stripDereferenceabilityInfoFromPrototype(Function &F); 120 }; 121 } // namespace 122 123 char RewriteStatepointsForGC::ID = 0; 124 125 ModulePass *llvm::createRewriteStatepointsForGCPass() { 126 return new RewriteStatepointsForGC(); 127 } 128 129 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 130 "Make relocations explicit at statepoints", false, false) 131 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 132 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 133 "Make relocations explicit at statepoints", false, false) 134 135 namespace { 136 struct GCPtrLivenessData { 137 /// Values defined in this block. 138 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 139 /// Values used in this block (and thus live); does not included values 140 /// killed within this block. 141 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 142 143 /// Values live into this basic block (i.e. used by any 144 /// instruction in this basic block or ones reachable from here) 145 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 146 147 /// Values live out of this basic block (i.e. live into 148 /// any successor block) 149 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 150 }; 151 152 // The type of the internal cache used inside the findBasePointers family 153 // of functions. From the callers perspective, this is an opaque type and 154 // should not be inspected. 155 // 156 // In the actual implementation this caches two relations: 157 // - The base relation itself (i.e. this pointer is based on that one) 158 // - The base defining value relation (i.e. before base_phi insertion) 159 // Generally, after the execution of a full findBasePointer call, only the 160 // base relation will remain. Internally, we add a mixture of the two 161 // types, then update all the second type to the first type 162 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 163 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 164 typedef DenseMap<Instruction *, Value *> RematerializedValueMapTy; 165 166 struct PartiallyConstructedSafepointRecord { 167 /// The set of values known to be live accross this safepoint 168 StatepointLiveSetTy liveset; 169 170 /// Mapping from live pointers to a base-defining-value 171 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 172 173 /// The *new* gc.statepoint instruction itself. This produces the token 174 /// that normal path gc.relocates and the gc.result are tied to. 175 Instruction *StatepointToken; 176 177 /// Instruction to which exceptional gc relocates are attached 178 /// Makes it easier to iterate through them during relocationViaAlloca. 179 Instruction *UnwindToken; 180 181 /// Record live values we are rematerialized instead of relocating. 182 /// They are not included into 'liveset' field. 183 /// Maps rematerialized copy to it's original value. 184 RematerializedValueMapTy RematerializedValues; 185 }; 186 } 187 188 /// Compute the live-in set for every basic block in the function 189 static void computeLiveInValues(DominatorTree &DT, Function &F, 190 GCPtrLivenessData &Data); 191 192 /// Given results from the dataflow liveness computation, find the set of live 193 /// Values at a particular instruction. 194 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 195 StatepointLiveSetTy &out); 196 197 // TODO: Once we can get to the GCStrategy, this becomes 198 // Optional<bool> isGCManagedPointer(const Value *V) const override { 199 200 static bool isGCPointerType(const Type *T) { 201 if (const PointerType *PT = dyn_cast<PointerType>(T)) 202 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 203 // GC managed heap. We know that a pointer into this heap needs to be 204 // updated and that no other pointer does. 205 return (1 == PT->getAddressSpace()); 206 return false; 207 } 208 209 // Return true if this type is one which a) is a gc pointer or contains a GC 210 // pointer and b) is of a type this code expects to encounter as a live value. 211 // (The insertion code will assert that a type which matches (a) and not (b) 212 // is not encountered.) 213 static bool isHandledGCPointerType(Type *T) { 214 // We fully support gc pointers 215 if (isGCPointerType(T)) 216 return true; 217 // We partially support vectors of gc pointers. The code will assert if it 218 // can't handle something. 219 if (auto VT = dyn_cast<VectorType>(T)) 220 if (isGCPointerType(VT->getElementType())) 221 return true; 222 return false; 223 } 224 225 #ifndef NDEBUG 226 /// Returns true if this type contains a gc pointer whether we know how to 227 /// handle that type or not. 228 static bool containsGCPtrType(Type *Ty) { 229 if (isGCPointerType(Ty)) 230 return true; 231 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 232 return isGCPointerType(VT->getScalarType()); 233 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 234 return containsGCPtrType(AT->getElementType()); 235 if (StructType *ST = dyn_cast<StructType>(Ty)) 236 return std::any_of( 237 ST->subtypes().begin(), ST->subtypes().end(), 238 [](Type *SubType) { return containsGCPtrType(SubType); }); 239 return false; 240 } 241 242 // Returns true if this is a type which a) is a gc pointer or contains a GC 243 // pointer and b) is of a type which the code doesn't expect (i.e. first class 244 // aggregates). Used to trip assertions. 245 static bool isUnhandledGCPointerType(Type *Ty) { 246 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 247 } 248 #endif 249 250 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 251 if (a->hasName() && b->hasName()) { 252 return -1 == a->getName().compare(b->getName()); 253 } else if (a->hasName() && !b->hasName()) { 254 return true; 255 } else if (!a->hasName() && b->hasName()) { 256 return false; 257 } else { 258 // Better than nothing, but not stable 259 return a < b; 260 } 261 } 262 263 // Conservatively identifies any definitions which might be live at the 264 // given instruction. The analysis is performed immediately before the 265 // given instruction. Values defined by that instruction are not considered 266 // live. Values used by that instruction are considered live. 267 static void analyzeParsePointLiveness( 268 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 269 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 270 Instruction *inst = CS.getInstruction(); 271 272 StatepointLiveSetTy liveset; 273 findLiveSetAtInst(inst, OriginalLivenessData, liveset); 274 275 if (PrintLiveSet) { 276 // Note: This output is used by several of the test cases 277 // The order of elemtns in a set is not stable, put them in a vec and sort 278 // by name 279 SmallVector<Value *, 64> temp; 280 temp.insert(temp.end(), liveset.begin(), liveset.end()); 281 std::sort(temp.begin(), temp.end(), order_by_name); 282 errs() << "Live Variables:\n"; 283 for (Value *V : temp) { 284 errs() << " " << V->getName(); // no newline 285 V->dump(); 286 } 287 } 288 if (PrintLiveSetSize) { 289 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 290 errs() << "Number live values: " << liveset.size() << "\n"; 291 } 292 result.liveset = liveset; 293 } 294 295 static Value *findBaseDefiningValue(Value *I); 296 297 /// Return a base defining value for the 'Index' element of the given vector 298 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 299 /// 'I'. As an optimization, this method will try to determine when the 300 /// element is known to already be a base pointer. If this can be established, 301 /// the second value in the returned pair will be true. Note that either a 302 /// vector or a pointer typed value can be returned. For the former, the 303 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 304 /// If the later, the return pointer is a BDV (or possibly a base) for the 305 /// particular element in 'I'. 306 static std::pair<Value *, bool> 307 findBaseDefiningValueOfVector(Value *I, Value *Index = nullptr) { 308 assert(I->getType()->isVectorTy() && 309 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 310 "Illegal to ask for the base pointer of a non-pointer type"); 311 312 // Each case parallels findBaseDefiningValue below, see that code for 313 // detailed motivation. 314 315 if (isa<Argument>(I)) 316 // An incoming argument to the function is a base pointer 317 return std::make_pair(I, true); 318 319 // We shouldn't see the address of a global as a vector value? 320 assert(!isa<GlobalVariable>(I) && 321 "unexpected global variable found in base of vector"); 322 323 // inlining could possibly introduce phi node that contains 324 // undef if callee has multiple returns 325 if (isa<UndefValue>(I)) 326 // utterly meaningless, but useful for dealing with partially optimized 327 // code. 328 return std::make_pair(I, true); 329 330 // Due to inheritance, this must be _after_ the global variable and undef 331 // checks 332 if (Constant *Con = dyn_cast<Constant>(I)) { 333 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 334 "order of checks wrong!"); 335 assert(Con->isNullValue() && "null is the only case which makes sense"); 336 return std::make_pair(Con, true); 337 } 338 339 if (isa<LoadInst>(I)) 340 return std::make_pair(I, true); 341 342 // For an insert element, we might be able to look through it if we know 343 // something about the indexes. 344 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(I)) { 345 if (Index) { 346 Value *InsertIndex = IEI->getOperand(2); 347 // This index is inserting the value, look for its BDV 348 if (InsertIndex == Index) 349 return std::make_pair(findBaseDefiningValue(IEI->getOperand(1)), false); 350 // Both constant, and can't be equal per above. This insert is definitely 351 // not relevant, look back at the rest of the vector and keep trying. 352 if (isa<ConstantInt>(Index) && isa<ConstantInt>(InsertIndex)) 353 return findBaseDefiningValueOfVector(IEI->getOperand(0), Index); 354 } 355 356 // We don't know whether this vector contains entirely base pointers or 357 // not. To be conservatively correct, we treat it as a BDV and will 358 // duplicate code as needed to construct a parallel vector of bases. 359 return std::make_pair(IEI, false); 360 } 361 362 if (isa<ShuffleVectorInst>(I)) 363 // We don't know whether this vector contains entirely base pointers or 364 // not. To be conservatively correct, we treat it as a BDV and will 365 // duplicate code as needed to construct a parallel vector of bases. 366 // TODO: There a number of local optimizations which could be applied here 367 // for particular sufflevector patterns. 368 return std::make_pair(I, false); 369 370 // A PHI or Select is a base defining value. The outer findBasePointer 371 // algorithm is responsible for constructing a base value for this BDV. 372 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 373 "unknown vector instruction - no base found for vector element"); 374 return std::make_pair(I, false); 375 } 376 377 static bool isKnownBaseResult(Value *V); 378 379 /// Helper function for findBasePointer - Will return a value which either a) 380 /// defines the base pointer for the input or b) blocks the simple search 381 /// (i.e. a PHI or Select of two derived pointers) 382 static Value *findBaseDefiningValue(Value *I) { 383 if (I->getType()->isVectorTy()) 384 return findBaseDefiningValueOfVector(I).first; 385 386 assert(I->getType()->isPointerTy() && 387 "Illegal to ask for the base pointer of a non-pointer type"); 388 389 // This case is a bit of a hack - it only handles extracts from vectors which 390 // trivially contain only base pointers or cases where we can directly match 391 // the index of the original extract element to an insertion into the vector. 392 // See note inside the function for how to improve this. 393 if (auto *EEI = dyn_cast<ExtractElementInst>(I)) { 394 Value *VectorOperand = EEI->getVectorOperand(); 395 Value *Index = EEI->getIndexOperand(); 396 std::pair<Value *, bool> pair = 397 findBaseDefiningValueOfVector(VectorOperand, Index); 398 Value *VectorBase = pair.first; 399 if (VectorBase->getType()->isPointerTy()) 400 // We found a BDV for this specific element with the vector. This is an 401 // optimization, but in practice it covers most of the useful cases 402 // created via scalarization. 403 return VectorBase; 404 else { 405 assert(VectorBase->getType()->isVectorTy()); 406 if (pair.second) 407 // If the entire vector returned is known to be entirely base pointers, 408 // then the extractelement is valid base for this value. 409 return EEI; 410 else { 411 // Otherwise, we have an instruction which potentially produces a 412 // derived pointer and we need findBasePointers to clone code for us 413 // such that we can create an instruction which produces the 414 // accompanying base pointer. 415 // Note: This code is currently rather incomplete. We don't currently 416 // support the general form of shufflevector of insertelement. 417 // Conceptually, these are just 'base defining values' of the same 418 // variety as phi or select instructions. We need to update the 419 // findBasePointers algorithm to insert new 'base-only' versions of the 420 // original instructions. This is relative straight forward to do, but 421 // the case which would motivate the work hasn't shown up in real 422 // workloads yet. 423 assert((isa<PHINode>(VectorBase) || isa<SelectInst>(VectorBase)) && 424 "need to extend findBasePointers for generic vector" 425 "instruction cases"); 426 return VectorBase; 427 } 428 } 429 } 430 431 if (isa<Argument>(I)) 432 // An incoming argument to the function is a base pointer 433 // We should have never reached here if this argument isn't an gc value 434 return I; 435 436 if (isa<GlobalVariable>(I)) 437 // base case 438 return I; 439 440 // inlining could possibly introduce phi node that contains 441 // undef if callee has multiple returns 442 if (isa<UndefValue>(I)) 443 // utterly meaningless, but useful for dealing with 444 // partially optimized code. 445 return I; 446 447 // Due to inheritance, this must be _after_ the global variable and undef 448 // checks 449 if (Constant *Con = dyn_cast<Constant>(I)) { 450 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 451 "order of checks wrong!"); 452 // Note: Finding a constant base for something marked for relocation 453 // doesn't really make sense. The most likely case is either a) some 454 // screwed up the address space usage or b) your validating against 455 // compiled C++ code w/o the proper separation. The only real exception 456 // is a null pointer. You could have generic code written to index of 457 // off a potentially null value and have proven it null. We also use 458 // null pointers in dead paths of relocation phis (which we might later 459 // want to find a base pointer for). 460 assert(isa<ConstantPointerNull>(Con) && 461 "null is the only case which makes sense"); 462 return Con; 463 } 464 465 if (CastInst *CI = dyn_cast<CastInst>(I)) { 466 Value *Def = CI->stripPointerCasts(); 467 // If we find a cast instruction here, it means we've found a cast which is 468 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 469 // handle int->ptr conversion. 470 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 471 return findBaseDefiningValue(Def); 472 } 473 474 if (isa<LoadInst>(I)) 475 return I; // The value loaded is an gc base itself 476 477 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 478 // The base of this GEP is the base 479 return findBaseDefiningValue(GEP->getPointerOperand()); 480 481 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 482 switch (II->getIntrinsicID()) { 483 case Intrinsic::experimental_gc_result_ptr: 484 default: 485 // fall through to general call handling 486 break; 487 case Intrinsic::experimental_gc_statepoint: 488 case Intrinsic::experimental_gc_result_float: 489 case Intrinsic::experimental_gc_result_int: 490 llvm_unreachable("these don't produce pointers"); 491 case Intrinsic::experimental_gc_relocate: { 492 // Rerunning safepoint insertion after safepoints are already 493 // inserted is not supported. It could probably be made to work, 494 // but why are you doing this? There's no good reason. 495 llvm_unreachable("repeat safepoint insertion is not supported"); 496 } 497 case Intrinsic::gcroot: 498 // Currently, this mechanism hasn't been extended to work with gcroot. 499 // There's no reason it couldn't be, but I haven't thought about the 500 // implications much. 501 llvm_unreachable( 502 "interaction with the gcroot mechanism is not supported"); 503 } 504 } 505 // We assume that functions in the source language only return base 506 // pointers. This should probably be generalized via attributes to support 507 // both source language and internal functions. 508 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 509 return I; 510 511 // I have absolutely no idea how to implement this part yet. It's not 512 // neccessarily hard, I just haven't really looked at it yet. 513 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 514 515 if (isa<AtomicCmpXchgInst>(I)) 516 // A CAS is effectively a atomic store and load combined under a 517 // predicate. From the perspective of base pointers, we just treat it 518 // like a load. 519 return I; 520 521 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 522 "binary ops which don't apply to pointers"); 523 524 // The aggregate ops. Aggregates can either be in the heap or on the 525 // stack, but in either case, this is simply a field load. As a result, 526 // this is a defining definition of the base just like a load is. 527 if (isa<ExtractValueInst>(I)) 528 return I; 529 530 // We should never see an insert vector since that would require we be 531 // tracing back a struct value not a pointer value. 532 assert(!isa<InsertValueInst>(I) && 533 "Base pointer for a struct is meaningless"); 534 535 // The last two cases here don't return a base pointer. Instead, they 536 // return a value which dynamically selects from amoung several base 537 // derived pointers (each with it's own base potentially). It's the job of 538 // the caller to resolve these. 539 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 540 "missing instruction case in findBaseDefiningValing"); 541 return I; 542 } 543 544 /// Returns the base defining value for this value. 545 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 546 Value *&Cached = Cache[I]; 547 if (!Cached) { 548 Cached = findBaseDefiningValue(I); 549 } 550 assert(Cache[I] != nullptr); 551 552 if (TraceLSP) { 553 dbgs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() 554 << "\n"; 555 } 556 return Cached; 557 } 558 559 /// Return a base pointer for this value if known. Otherwise, return it's 560 /// base defining value. 561 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 562 Value *Def = findBaseDefiningValueCached(I, Cache); 563 auto Found = Cache.find(Def); 564 if (Found != Cache.end()) { 565 // Either a base-of relation, or a self reference. Caller must check. 566 return Found->second; 567 } 568 // Only a BDV available 569 return Def; 570 } 571 572 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 573 /// is it known to be a base pointer? Or do we need to continue searching. 574 static bool isKnownBaseResult(Value *V) { 575 if (!isa<PHINode>(V) && !isa<SelectInst>(V)) { 576 // no recursion possible 577 return true; 578 } 579 if (isa<Instruction>(V) && 580 cast<Instruction>(V)->getMetadata("is_base_value")) { 581 // This is a previously inserted base phi or select. We know 582 // that this is a base value. 583 return true; 584 } 585 586 // We need to keep searching 587 return false; 588 } 589 590 // TODO: find a better name for this 591 namespace { 592 class PhiState { 593 public: 594 enum Status { Unknown, Base, Conflict }; 595 596 PhiState(Status s, Value *b = nullptr) : status(s), base(b) { 597 assert(status != Base || b); 598 } 599 PhiState(Value *b) : status(Base), base(b) {} 600 PhiState() : status(Unknown), base(nullptr) {} 601 602 Status getStatus() const { return status; } 603 Value *getBase() const { return base; } 604 605 bool isBase() const { return getStatus() == Base; } 606 bool isUnknown() const { return getStatus() == Unknown; } 607 bool isConflict() const { return getStatus() == Conflict; } 608 609 bool operator==(const PhiState &other) const { 610 return base == other.base && status == other.status; 611 } 612 613 bool operator!=(const PhiState &other) const { return !(*this == other); } 614 615 void dump() { 616 errs() << status << " (" << base << " - " 617 << (base ? base->getName() : "nullptr") << "): "; 618 } 619 620 private: 621 Status status; 622 Value *base; // non null only if status == base 623 }; 624 625 typedef DenseMap<Value *, PhiState> ConflictStateMapTy; 626 // Values of type PhiState form a lattice, and this is a helper 627 // class that implementes the meet operation. The meat of the meet 628 // operation is implemented in MeetPhiStates::pureMeet 629 class MeetPhiStates { 630 public: 631 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. 632 explicit MeetPhiStates(const ConflictStateMapTy &phiStates) 633 : phiStates(phiStates) {} 634 635 // Destructively meet the current result with the base V. V can 636 // either be a merge instruction (SelectInst / PHINode), in which 637 // case its status is looked up in the phiStates map; or a regular 638 // SSA value, in which case it is assumed to be a base. 639 void meetWith(Value *V) { 640 PhiState otherState = getStateForBDV(V); 641 assert((MeetPhiStates::pureMeet(otherState, currentResult) == 642 MeetPhiStates::pureMeet(currentResult, otherState)) && 643 "math is wrong: meet does not commute!"); 644 currentResult = MeetPhiStates::pureMeet(otherState, currentResult); 645 } 646 647 PhiState getResult() const { return currentResult; } 648 649 private: 650 const ConflictStateMapTy &phiStates; 651 PhiState currentResult; 652 653 /// Return a phi state for a base defining value. We'll generate a new 654 /// base state for known bases and expect to find a cached state otherwise 655 PhiState getStateForBDV(Value *baseValue) { 656 if (isKnownBaseResult(baseValue)) { 657 return PhiState(baseValue); 658 } else { 659 return lookupFromMap(baseValue); 660 } 661 } 662 663 PhiState lookupFromMap(Value *V) { 664 auto I = phiStates.find(V); 665 assert(I != phiStates.end() && "lookup failed!"); 666 return I->second; 667 } 668 669 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { 670 switch (stateA.getStatus()) { 671 case PhiState::Unknown: 672 return stateB; 673 674 case PhiState::Base: 675 assert(stateA.getBase() && "can't be null"); 676 if (stateB.isUnknown()) 677 return stateA; 678 679 if (stateB.isBase()) { 680 if (stateA.getBase() == stateB.getBase()) { 681 assert(stateA == stateB && "equality broken!"); 682 return stateA; 683 } 684 return PhiState(PhiState::Conflict); 685 } 686 assert(stateB.isConflict() && "only three states!"); 687 return PhiState(PhiState::Conflict); 688 689 case PhiState::Conflict: 690 return stateA; 691 } 692 llvm_unreachable("only three states!"); 693 } 694 }; 695 } 696 /// For a given value or instruction, figure out what base ptr it's derived 697 /// from. For gc objects, this is simply itself. On success, returns a value 698 /// which is the base pointer. (This is reliable and can be used for 699 /// relocation.) On failure, returns nullptr. 700 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 701 Value *def = findBaseOrBDV(I, cache); 702 703 if (isKnownBaseResult(def)) { 704 return def; 705 } 706 707 // Here's the rough algorithm: 708 // - For every SSA value, construct a mapping to either an actual base 709 // pointer or a PHI which obscures the base pointer. 710 // - Construct a mapping from PHI to unknown TOP state. Use an 711 // optimistic algorithm to propagate base pointer information. Lattice 712 // looks like: 713 // UNKNOWN 714 // b1 b2 b3 b4 715 // CONFLICT 716 // When algorithm terminates, all PHIs will either have a single concrete 717 // base or be in a conflict state. 718 // - For every conflict, insert a dummy PHI node without arguments. Add 719 // these to the base[Instruction] = BasePtr mapping. For every 720 // non-conflict, add the actual base. 721 // - For every conflict, add arguments for the base[a] of each input 722 // arguments. 723 // 724 // Note: A simpler form of this would be to add the conflict form of all 725 // PHIs without running the optimistic algorithm. This would be 726 // analougous to pessimistic data flow and would likely lead to an 727 // overall worse solution. 728 729 ConflictStateMapTy states; 730 states[def] = PhiState(); 731 // Recursively fill in all phis & selects reachable from the initial one 732 // for which we don't already know a definite base value for 733 // TODO: This should be rewritten with a worklist 734 bool done = false; 735 while (!done) { 736 done = true; 737 // Since we're adding elements to 'states' as we run, we can't keep 738 // iterators into the set. 739 SmallVector<Value *, 16> Keys; 740 Keys.reserve(states.size()); 741 for (auto Pair : states) { 742 Value *V = Pair.first; 743 Keys.push_back(V); 744 } 745 for (Value *v : Keys) { 746 assert(!isKnownBaseResult(v) && "why did it get added?"); 747 if (PHINode *phi = dyn_cast<PHINode>(v)) { 748 assert(phi->getNumIncomingValues() > 0 && 749 "zero input phis are illegal"); 750 for (Value *InVal : phi->incoming_values()) { 751 Value *local = findBaseOrBDV(InVal, cache); 752 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 753 states[local] = PhiState(); 754 done = false; 755 } 756 } 757 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 758 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 759 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 760 states[local] = PhiState(); 761 done = false; 762 } 763 local = findBaseOrBDV(sel->getFalseValue(), cache); 764 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 765 states[local] = PhiState(); 766 done = false; 767 } 768 } 769 } 770 } 771 772 if (TraceLSP) { 773 errs() << "States after initialization:\n"; 774 for (auto Pair : states) { 775 Instruction *v = cast<Instruction>(Pair.first); 776 PhiState state = Pair.second; 777 state.dump(); 778 v->dump(); 779 } 780 } 781 782 // TODO: come back and revisit the state transitions around inputs which 783 // have reached conflict state. The current version seems too conservative. 784 785 bool progress = true; 786 while (progress) { 787 #ifndef NDEBUG 788 size_t oldSize = states.size(); 789 #endif 790 progress = false; 791 // We're only changing keys in this loop, thus safe to keep iterators 792 for (auto Pair : states) { 793 MeetPhiStates calculateMeet(states); 794 Value *v = Pair.first; 795 assert(!isKnownBaseResult(v) && "why did it get added?"); 796 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 797 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); 798 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); 799 } else 800 for (Value *Val : cast<PHINode>(v)->incoming_values()) 801 calculateMeet.meetWith(findBaseOrBDV(Val, cache)); 802 803 PhiState oldState = states[v]; 804 PhiState newState = calculateMeet.getResult(); 805 if (oldState != newState) { 806 progress = true; 807 states[v] = newState; 808 } 809 } 810 811 assert(oldSize <= states.size()); 812 assert(oldSize == states.size() || progress); 813 } 814 815 if (TraceLSP) { 816 errs() << "States after meet iteration:\n"; 817 for (auto Pair : states) { 818 Instruction *v = cast<Instruction>(Pair.first); 819 PhiState state = Pair.second; 820 state.dump(); 821 v->dump(); 822 } 823 } 824 825 // Insert Phis for all conflicts 826 // We want to keep naming deterministic in the loop that follows, so 827 // sort the keys before iteration. This is useful in allowing us to 828 // write stable tests. Note that there is no invalidation issue here. 829 SmallVector<Value *, 16> Keys; 830 Keys.reserve(states.size()); 831 for (auto Pair : states) { 832 Value *V = Pair.first; 833 Keys.push_back(V); 834 } 835 std::sort(Keys.begin(), Keys.end(), order_by_name); 836 // TODO: adjust naming patterns to avoid this order of iteration dependency 837 for (Value *V : Keys) { 838 Instruction *I = cast<Instruction>(V); 839 PhiState State = states[I]; 840 assert(!isKnownBaseResult(I) && "why did it get added?"); 841 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 842 if (!State.isConflict()) 843 continue; 844 845 /// Create and insert a new instruction which will represent the base of 846 /// the given instruction 'I'. 847 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 848 if (isa<PHINode>(I)) { 849 BasicBlock *BB = I->getParent(); 850 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 851 assert(NumPreds > 0 && "how did we reach here"); 852 return PHINode::Create(I->getType(), NumPreds, "base_phi", I); 853 } 854 SelectInst *Sel = cast<SelectInst>(I); 855 // The undef will be replaced later 856 UndefValue *Undef = UndefValue::get(Sel->getType()); 857 return SelectInst::Create(Sel->getCondition(), Undef, 858 Undef, "base_select", Sel); 859 }; 860 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 861 // Add metadata marking this as a base value 862 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 863 states[I] = PhiState(PhiState::Conflict, BaseInst); 864 } 865 866 // Fixup all the inputs of the new PHIs 867 for (auto Pair : states) { 868 Instruction *v = cast<Instruction>(Pair.first); 869 PhiState state = Pair.second; 870 871 assert(!isKnownBaseResult(v) && "why did it get added?"); 872 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 873 if (!state.isConflict()) 874 continue; 875 876 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 877 PHINode *phi = cast<PHINode>(v); 878 unsigned NumPHIValues = phi->getNumIncomingValues(); 879 for (unsigned i = 0; i < NumPHIValues; i++) { 880 Value *InVal = phi->getIncomingValue(i); 881 BasicBlock *InBB = phi->getIncomingBlock(i); 882 883 // If we've already seen InBB, add the same incoming value 884 // we added for it earlier. The IR verifier requires phi 885 // nodes with multiple entries from the same basic block 886 // to have the same incoming value for each of those 887 // entries. If we don't do this check here and basephi 888 // has a different type than base, we'll end up adding two 889 // bitcasts (and hence two distinct values) as incoming 890 // values for the same basic block. 891 892 int blockIndex = basephi->getBasicBlockIndex(InBB); 893 if (blockIndex != -1) { 894 Value *oldBase = basephi->getIncomingValue(blockIndex); 895 basephi->addIncoming(oldBase, InBB); 896 #ifndef NDEBUG 897 Value *base = findBaseOrBDV(InVal, cache); 898 if (!isKnownBaseResult(base)) { 899 // Either conflict or base. 900 assert(states.count(base)); 901 base = states[base].getBase(); 902 assert(base != nullptr && "unknown PhiState!"); 903 } 904 905 // In essense this assert states: the only way two 906 // values incoming from the same basic block may be 907 // different is by being different bitcasts of the same 908 // value. A cleanup that remains TODO is changing 909 // findBaseOrBDV to return an llvm::Value of the correct 910 // type (and still remain pure). This will remove the 911 // need to add bitcasts. 912 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 913 "sanity -- findBaseOrBDV should be pure!"); 914 #endif 915 continue; 916 } 917 918 // Find either the defining value for the PHI or the normal base for 919 // a non-phi node 920 Value *base = findBaseOrBDV(InVal, cache); 921 if (!isKnownBaseResult(base)) { 922 // Either conflict or base. 923 assert(states.count(base)); 924 base = states[base].getBase(); 925 assert(base != nullptr && "unknown PhiState!"); 926 } 927 assert(base && "can't be null"); 928 // Must use original input BB since base may not be Instruction 929 // The cast is needed since base traversal may strip away bitcasts 930 if (base->getType() != basephi->getType()) { 931 base = new BitCastInst(base, basephi->getType(), "cast", 932 InBB->getTerminator()); 933 } 934 basephi->addIncoming(base, InBB); 935 } 936 assert(basephi->getNumIncomingValues() == NumPHIValues); 937 } else { 938 SelectInst *basesel = cast<SelectInst>(state.getBase()); 939 SelectInst *sel = cast<SelectInst>(v); 940 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 941 // something more safe and less hacky. 942 for (int i = 1; i <= 2; i++) { 943 Value *InVal = sel->getOperand(i); 944 // Find either the defining value for the PHI or the normal base for 945 // a non-phi node 946 Value *base = findBaseOrBDV(InVal, cache); 947 if (!isKnownBaseResult(base)) { 948 // Either conflict or base. 949 assert(states.count(base)); 950 base = states[base].getBase(); 951 assert(base != nullptr && "unknown PhiState!"); 952 } 953 assert(base && "can't be null"); 954 // Must use original input BB since base may not be Instruction 955 // The cast is needed since base traversal may strip away bitcasts 956 if (base->getType() != basesel->getType()) { 957 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 958 } 959 basesel->setOperand(i, base); 960 } 961 } 962 } 963 964 // Cache all of our results so we can cheaply reuse them 965 // NOTE: This is actually two caches: one of the base defining value 966 // relation and one of the base pointer relation! FIXME 967 for (auto item : states) { 968 Value *v = item.first; 969 Value *base = item.second.getBase(); 970 assert(v && base); 971 assert(!isKnownBaseResult(v) && "why did it get added?"); 972 973 if (TraceLSP) { 974 std::string fromstr = 975 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 976 : "none"; 977 errs() << "Updating base value cache" 978 << " for: " << (v->hasName() ? v->getName() : "") 979 << " from: " << fromstr 980 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 981 } 982 983 assert(isKnownBaseResult(base) && 984 "must be something we 'know' is a base pointer"); 985 if (cache.count(v)) { 986 // Once we transition from the BDV relation being store in the cache to 987 // the base relation being stored, it must be stable 988 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 989 "base relation should be stable"); 990 } 991 cache[v] = base; 992 } 993 assert(cache.find(def) != cache.end()); 994 return cache[def]; 995 } 996 997 // For a set of live pointers (base and/or derived), identify the base 998 // pointer of the object which they are derived from. This routine will 999 // mutate the IR graph as needed to make the 'base' pointer live at the 1000 // definition site of 'derived'. This ensures that any use of 'derived' can 1001 // also use 'base'. This may involve the insertion of a number of 1002 // additional PHI nodes. 1003 // 1004 // preconditions: live is a set of pointer type Values 1005 // 1006 // side effects: may insert PHI nodes into the existing CFG, will preserve 1007 // CFG, will not remove or mutate any existing nodes 1008 // 1009 // post condition: PointerToBase contains one (derived, base) pair for every 1010 // pointer in live. Note that derived can be equal to base if the original 1011 // pointer was a base pointer. 1012 static void 1013 findBasePointers(const StatepointLiveSetTy &live, 1014 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 1015 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1016 // For the naming of values inserted to be deterministic - which makes for 1017 // much cleaner and more stable tests - we need to assign an order to the 1018 // live values. DenseSets do not provide a deterministic order across runs. 1019 SmallVector<Value *, 64> Temp; 1020 Temp.insert(Temp.end(), live.begin(), live.end()); 1021 std::sort(Temp.begin(), Temp.end(), order_by_name); 1022 for (Value *ptr : Temp) { 1023 Value *base = findBasePointer(ptr, DVCache); 1024 assert(base && "failed to find base pointer"); 1025 PointerToBase[ptr] = base; 1026 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1027 DT->dominates(cast<Instruction>(base)->getParent(), 1028 cast<Instruction>(ptr)->getParent())) && 1029 "The base we found better dominate the derived pointer"); 1030 1031 // If you see this trip and like to live really dangerously, the code should 1032 // be correct, just with idioms the verifier can't handle. You can try 1033 // disabling the verifier at your own substaintial risk. 1034 assert(!isa<ConstantPointerNull>(base) && 1035 "the relocation code needs adjustment to handle the relocation of " 1036 "a null pointer constant without causing false positives in the " 1037 "safepoint ir verifier."); 1038 } 1039 } 1040 1041 /// Find the required based pointers (and adjust the live set) for the given 1042 /// parse point. 1043 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1044 const CallSite &CS, 1045 PartiallyConstructedSafepointRecord &result) { 1046 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 1047 findBasePointers(result.liveset, PointerToBase, &DT, DVCache); 1048 1049 if (PrintBasePointers) { 1050 // Note: Need to print these in a stable order since this is checked in 1051 // some tests. 1052 errs() << "Base Pairs (w/o Relocation):\n"; 1053 SmallVector<Value *, 64> Temp; 1054 Temp.reserve(PointerToBase.size()); 1055 for (auto Pair : PointerToBase) { 1056 Temp.push_back(Pair.first); 1057 } 1058 std::sort(Temp.begin(), Temp.end(), order_by_name); 1059 for (Value *Ptr : Temp) { 1060 Value *Base = PointerToBase[Ptr]; 1061 errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() 1062 << "\n"; 1063 } 1064 } 1065 1066 result.PointerToBase = PointerToBase; 1067 } 1068 1069 /// Given an updated version of the dataflow liveness results, update the 1070 /// liveset and base pointer maps for the call site CS. 1071 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1072 const CallSite &CS, 1073 PartiallyConstructedSafepointRecord &result); 1074 1075 static void recomputeLiveInValues( 1076 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1077 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1078 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1079 // again. The old values are still live and will help it stablize quickly. 1080 GCPtrLivenessData RevisedLivenessData; 1081 computeLiveInValues(DT, F, RevisedLivenessData); 1082 for (size_t i = 0; i < records.size(); i++) { 1083 struct PartiallyConstructedSafepointRecord &info = records[i]; 1084 const CallSite &CS = toUpdate[i]; 1085 recomputeLiveInValues(RevisedLivenessData, CS, info); 1086 } 1087 } 1088 1089 // When inserting gc.relocate calls, we need to ensure there are no uses 1090 // of the original value between the gc.statepoint and the gc.relocate call. 1091 // One case which can arise is a phi node starting one of the successor blocks. 1092 // We also need to be able to insert the gc.relocates only on the path which 1093 // goes through the statepoint. We might need to split an edge to make this 1094 // possible. 1095 static BasicBlock * 1096 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1097 DominatorTree &DT) { 1098 BasicBlock *Ret = BB; 1099 if (!BB->getUniquePredecessor()) { 1100 Ret = SplitBlockPredecessors(BB, InvokeParent, "", nullptr, &DT); 1101 } 1102 1103 // Now that 'ret' has unique predecessor we can safely remove all phi nodes 1104 // from it 1105 FoldSingleEntryPHINodes(Ret); 1106 assert(!isa<PHINode>(Ret->begin())); 1107 1108 // At this point, we can safely insert a gc.relocate as the first instruction 1109 // in Ret if needed. 1110 return Ret; 1111 } 1112 1113 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1114 auto itr = std::find(livevec.begin(), livevec.end(), val); 1115 assert(livevec.end() != itr); 1116 size_t index = std::distance(livevec.begin(), itr); 1117 assert(index < livevec.size()); 1118 return index; 1119 } 1120 1121 // Create new attribute set containing only attributes which can be transfered 1122 // from original call to the safepoint. 1123 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1124 AttributeSet ret; 1125 1126 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1127 unsigned index = AS.getSlotIndex(Slot); 1128 1129 if (index == AttributeSet::ReturnIndex || 1130 index == AttributeSet::FunctionIndex) { 1131 1132 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1133 ++it) { 1134 Attribute attr = *it; 1135 1136 // Do not allow certain attributes - just skip them 1137 // Safepoint can not be read only or read none. 1138 if (attr.hasAttribute(Attribute::ReadNone) || 1139 attr.hasAttribute(Attribute::ReadOnly)) 1140 continue; 1141 1142 ret = ret.addAttributes( 1143 AS.getContext(), index, 1144 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1145 } 1146 } 1147 1148 // Just skip parameter attributes for now 1149 } 1150 1151 return ret; 1152 } 1153 1154 /// Helper function to place all gc relocates necessary for the given 1155 /// statepoint. 1156 /// Inputs: 1157 /// liveVariables - list of variables to be relocated. 1158 /// liveStart - index of the first live variable. 1159 /// basePtrs - base pointers. 1160 /// statepointToken - statepoint instruction to which relocates should be 1161 /// bound. 1162 /// Builder - Llvm IR builder to be used to construct new calls. 1163 static void CreateGCRelocates(ArrayRef<llvm::Value *> LiveVariables, 1164 const int LiveStart, 1165 ArrayRef<llvm::Value *> BasePtrs, 1166 Instruction *StatepointToken, 1167 IRBuilder<> Builder) { 1168 if (LiveVariables.empty()) 1169 return; 1170 1171 // All gc_relocate are set to i8 addrspace(1)* type. We originally generated 1172 // unique declarations for each pointer type, but this proved problematic 1173 // because the intrinsic mangling code is incomplete and fragile. Since 1174 // we're moving towards a single unified pointer type anyways, we can just 1175 // cast everything to an i8* of the right address space. A bitcast is added 1176 // later to convert gc_relocate to the actual value's type. 1177 Module *M = StatepointToken->getModule(); 1178 auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace(); 1179 Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)}; 1180 Value *GCRelocateDecl = 1181 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); 1182 1183 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1184 // Generate the gc.relocate call and save the result 1185 Value *BaseIdx = 1186 Builder.getInt32(LiveStart + find_index(LiveVariables, BasePtrs[i])); 1187 Value *LiveIdx = 1188 Builder.getInt32(LiveStart + find_index(LiveVariables, LiveVariables[i])); 1189 1190 // only specify a debug name if we can give a useful one 1191 CallInst *Reloc = Builder.CreateCall( 1192 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1193 LiveVariables[i]->hasName() ? LiveVariables[i]->getName() + ".relocated" 1194 : ""); 1195 // Trick CodeGen into thinking there are lots of free registers at this 1196 // fake call. 1197 Reloc->setCallingConv(CallingConv::Cold); 1198 } 1199 } 1200 1201 static void 1202 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1203 const SmallVectorImpl<llvm::Value *> &basePtrs, 1204 const SmallVectorImpl<llvm::Value *> &liveVariables, 1205 Pass *P, 1206 PartiallyConstructedSafepointRecord &result) { 1207 assert(basePtrs.size() == liveVariables.size()); 1208 assert(isStatepoint(CS) && 1209 "This method expects to be rewriting a statepoint"); 1210 1211 BasicBlock *BB = CS.getInstruction()->getParent(); 1212 assert(BB); 1213 Function *F = BB->getParent(); 1214 assert(F && "must be set"); 1215 Module *M = F->getParent(); 1216 (void)M; 1217 assert(M && "must be set"); 1218 1219 // We're not changing the function signature of the statepoint since the gc 1220 // arguments go into the var args section. 1221 Function *gc_statepoint_decl = CS.getCalledFunction(); 1222 1223 // Then go ahead and use the builder do actually do the inserts. We insert 1224 // immediately before the previous instruction under the assumption that all 1225 // arguments will be available here. We can't insert afterwards since we may 1226 // be replacing a terminator. 1227 Instruction *insertBefore = CS.getInstruction(); 1228 IRBuilder<> Builder(insertBefore); 1229 // Copy all of the arguments from the original statepoint - this includes the 1230 // target, call args, and deopt args 1231 SmallVector<llvm::Value *, 64> args; 1232 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1233 // TODO: Clear the 'needs rewrite' flag 1234 1235 // add all the pointers to be relocated (gc arguments) 1236 // Capture the start of the live variable list for use in the gc_relocates 1237 const int live_start = args.size(); 1238 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1239 1240 // Create the statepoint given all the arguments 1241 Instruction *token = nullptr; 1242 AttributeSet return_attributes; 1243 if (CS.isCall()) { 1244 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1245 CallInst *call = 1246 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1247 call->setTailCall(toReplace->isTailCall()); 1248 call->setCallingConv(toReplace->getCallingConv()); 1249 1250 // Currently we will fail on parameter attributes and on certain 1251 // function attributes. 1252 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1253 // In case if we can handle this set of sttributes - set up function attrs 1254 // directly on statepoint and return attrs later for gc_result intrinsic. 1255 call->setAttributes(new_attrs.getFnAttributes()); 1256 return_attributes = new_attrs.getRetAttributes(); 1257 1258 token = call; 1259 1260 // Put the following gc_result and gc_relocate calls immediately after the 1261 // the old call (which we're about to delete) 1262 BasicBlock::iterator next(toReplace); 1263 assert(BB->end() != next && "not a terminator, must have next"); 1264 next++; 1265 Instruction *IP = &*(next); 1266 Builder.SetInsertPoint(IP); 1267 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1268 1269 } else { 1270 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1271 1272 // Insert the new invoke into the old block. We'll remove the old one in a 1273 // moment at which point this will become the new terminator for the 1274 // original block. 1275 InvokeInst *invoke = InvokeInst::Create( 1276 gc_statepoint_decl, toReplace->getNormalDest(), 1277 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1278 invoke->setCallingConv(toReplace->getCallingConv()); 1279 1280 // Currently we will fail on parameter attributes and on certain 1281 // function attributes. 1282 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1283 // In case if we can handle this set of sttributes - set up function attrs 1284 // directly on statepoint and return attrs later for gc_result intrinsic. 1285 invoke->setAttributes(new_attrs.getFnAttributes()); 1286 return_attributes = new_attrs.getRetAttributes(); 1287 1288 token = invoke; 1289 1290 // Generate gc relocates in exceptional path 1291 BasicBlock *unwindBlock = toReplace->getUnwindDest(); 1292 assert(!isa<PHINode>(unwindBlock->begin()) && 1293 unwindBlock->getUniquePredecessor() && 1294 "can't safely insert in this block!"); 1295 1296 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1297 Builder.SetInsertPoint(IP); 1298 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1299 1300 // Extract second element from landingpad return value. We will attach 1301 // exceptional gc relocates to it. 1302 const unsigned idx = 1; 1303 Instruction *exceptional_token = 1304 cast<Instruction>(Builder.CreateExtractValue( 1305 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1306 result.UnwindToken = exceptional_token; 1307 1308 CreateGCRelocates(liveVariables, live_start, basePtrs, 1309 exceptional_token, Builder); 1310 1311 // Generate gc relocates and returns for normal block 1312 BasicBlock *normalDest = toReplace->getNormalDest(); 1313 assert(!isa<PHINode>(normalDest->begin()) && 1314 normalDest->getUniquePredecessor() && 1315 "can't safely insert in this block!"); 1316 1317 IP = &*(normalDest->getFirstInsertionPt()); 1318 Builder.SetInsertPoint(IP); 1319 1320 // gc relocates will be generated later as if it were regular call 1321 // statepoint 1322 } 1323 assert(token); 1324 1325 // Take the name of the original value call if it had one. 1326 token->takeName(CS.getInstruction()); 1327 1328 // The GCResult is already inserted, we just need to find it 1329 #ifndef NDEBUG 1330 Instruction *toReplace = CS.getInstruction(); 1331 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1332 "only valid use before rewrite is gc.result"); 1333 assert(!toReplace->hasOneUse() || 1334 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1335 #endif 1336 1337 // Update the gc.result of the original statepoint (if any) to use the newly 1338 // inserted statepoint. This is safe to do here since the token can't be 1339 // considered a live reference. 1340 CS.getInstruction()->replaceAllUsesWith(token); 1341 1342 result.StatepointToken = token; 1343 1344 // Second, create a gc.relocate for every live variable 1345 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1346 } 1347 1348 namespace { 1349 struct name_ordering { 1350 Value *base; 1351 Value *derived; 1352 bool operator()(name_ordering const &a, name_ordering const &b) { 1353 return -1 == a.derived->getName().compare(b.derived->getName()); 1354 } 1355 }; 1356 } 1357 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1358 SmallVectorImpl<Value *> &livevec) { 1359 assert(basevec.size() == livevec.size()); 1360 1361 SmallVector<name_ordering, 64> temp; 1362 for (size_t i = 0; i < basevec.size(); i++) { 1363 name_ordering v; 1364 v.base = basevec[i]; 1365 v.derived = livevec[i]; 1366 temp.push_back(v); 1367 } 1368 std::sort(temp.begin(), temp.end(), name_ordering()); 1369 for (size_t i = 0; i < basevec.size(); i++) { 1370 basevec[i] = temp[i].base; 1371 livevec[i] = temp[i].derived; 1372 } 1373 } 1374 1375 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1376 // which make the relocations happening at this safepoint explicit. 1377 // 1378 // WARNING: Does not do any fixup to adjust users of the original live 1379 // values. That's the callers responsibility. 1380 static void 1381 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1382 PartiallyConstructedSafepointRecord &result) { 1383 auto liveset = result.liveset; 1384 auto PointerToBase = result.PointerToBase; 1385 1386 // Convert to vector for efficient cross referencing. 1387 SmallVector<Value *, 64> basevec, livevec; 1388 livevec.reserve(liveset.size()); 1389 basevec.reserve(liveset.size()); 1390 for (Value *L : liveset) { 1391 livevec.push_back(L); 1392 assert(PointerToBase.count(L)); 1393 Value *base = PointerToBase[L]; 1394 basevec.push_back(base); 1395 } 1396 assert(livevec.size() == basevec.size()); 1397 1398 // To make the output IR slightly more stable (for use in diffs), ensure a 1399 // fixed order of the values in the safepoint (by sorting the value name). 1400 // The order is otherwise meaningless. 1401 stablize_order(basevec, livevec); 1402 1403 // Do the actual rewriting and delete the old statepoint 1404 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1405 CS.getInstruction()->eraseFromParent(); 1406 } 1407 1408 // Helper function for the relocationViaAlloca. 1409 // It receives iterator to the statepoint gc relocates and emits store to the 1410 // assigned 1411 // location (via allocaMap) for the each one of them. 1412 // Add visited values into the visitedLiveValues set we will later use them 1413 // for sanity check. 1414 static void 1415 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1416 DenseMap<Value *, Value *> &AllocaMap, 1417 DenseSet<Value *> &VisitedLiveValues) { 1418 1419 for (User *U : GCRelocs) { 1420 if (!isa<IntrinsicInst>(U)) 1421 continue; 1422 1423 IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U); 1424 1425 // We only care about relocates 1426 if (RelocatedValue->getIntrinsicID() != 1427 Intrinsic::experimental_gc_relocate) { 1428 continue; 1429 } 1430 1431 GCRelocateOperands RelocateOperands(RelocatedValue); 1432 Value *OriginalValue = 1433 const_cast<Value *>(RelocateOperands.getDerivedPtr()); 1434 assert(AllocaMap.count(OriginalValue)); 1435 Value *Alloca = AllocaMap[OriginalValue]; 1436 1437 // Emit store into the related alloca 1438 // All gc_relocate are i8 addrspace(1)* typed, and it must be bitcasted to 1439 // the correct type according to alloca. 1440 assert(RelocatedValue->getNextNode() && "Should always have one since it's not a terminator"); 1441 IRBuilder<> Builder(RelocatedValue->getNextNode()); 1442 Value *CastedRelocatedValue = 1443 Builder.CreateBitCast(RelocatedValue, cast<AllocaInst>(Alloca)->getAllocatedType(), 1444 RelocatedValue->hasName() ? RelocatedValue->getName() + ".casted" : ""); 1445 1446 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1447 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1448 1449 #ifndef NDEBUG 1450 VisitedLiveValues.insert(OriginalValue); 1451 #endif 1452 } 1453 } 1454 1455 // Helper function for the "relocationViaAlloca". Similar to the 1456 // "insertRelocationStores" but works for rematerialized values. 1457 static void 1458 insertRematerializationStores( 1459 RematerializedValueMapTy RematerializedValues, 1460 DenseMap<Value *, Value *> &AllocaMap, 1461 DenseSet<Value *> &VisitedLiveValues) { 1462 1463 for (auto RematerializedValuePair: RematerializedValues) { 1464 Instruction *RematerializedValue = RematerializedValuePair.first; 1465 Value *OriginalValue = RematerializedValuePair.second; 1466 1467 assert(AllocaMap.count(OriginalValue) && 1468 "Can not find alloca for rematerialized value"); 1469 Value *Alloca = AllocaMap[OriginalValue]; 1470 1471 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1472 Store->insertAfter(RematerializedValue); 1473 1474 #ifndef NDEBUG 1475 VisitedLiveValues.insert(OriginalValue); 1476 #endif 1477 } 1478 } 1479 1480 /// do all the relocation update via allocas and mem2reg 1481 static void relocationViaAlloca( 1482 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1483 ArrayRef<struct PartiallyConstructedSafepointRecord> Records) { 1484 #ifndef NDEBUG 1485 // record initial number of (static) allocas; we'll check we have the same 1486 // number when we get done. 1487 int InitialAllocaNum = 0; 1488 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1489 I++) 1490 if (isa<AllocaInst>(*I)) 1491 InitialAllocaNum++; 1492 #endif 1493 1494 // TODO-PERF: change data structures, reserve 1495 DenseMap<Value *, Value *> AllocaMap; 1496 SmallVector<AllocaInst *, 200> PromotableAllocas; 1497 // Used later to chack that we have enough allocas to store all values 1498 std::size_t NumRematerializedValues = 0; 1499 PromotableAllocas.reserve(Live.size()); 1500 1501 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1502 // "PromotableAllocas" 1503 auto emitAllocaFor = [&](Value *LiveValue) { 1504 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1505 F.getEntryBlock().getFirstNonPHI()); 1506 AllocaMap[LiveValue] = Alloca; 1507 PromotableAllocas.push_back(Alloca); 1508 }; 1509 1510 // emit alloca for each live gc pointer 1511 for (unsigned i = 0; i < Live.size(); i++) { 1512 emitAllocaFor(Live[i]); 1513 } 1514 1515 // emit allocas for rematerialized values 1516 for (size_t i = 0; i < Records.size(); i++) { 1517 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1518 1519 for (auto RematerializedValuePair : Info.RematerializedValues) { 1520 Value *OriginalValue = RematerializedValuePair.second; 1521 if (AllocaMap.count(OriginalValue) != 0) 1522 continue; 1523 1524 emitAllocaFor(OriginalValue); 1525 ++NumRematerializedValues; 1526 } 1527 } 1528 1529 // The next two loops are part of the same conceptual operation. We need to 1530 // insert a store to the alloca after the original def and at each 1531 // redefinition. We need to insert a load before each use. These are split 1532 // into distinct loops for performance reasons. 1533 1534 // update gc pointer after each statepoint 1535 // either store a relocated value or null (if no relocated value found for 1536 // this gc pointer and it is not a gc_result) 1537 // this must happen before we update the statepoint with load of alloca 1538 // otherwise we lose the link between statepoint and old def 1539 for (size_t i = 0; i < Records.size(); i++) { 1540 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1541 Value *Statepoint = Info.StatepointToken; 1542 1543 // This will be used for consistency check 1544 DenseSet<Value *> VisitedLiveValues; 1545 1546 // Insert stores for normal statepoint gc relocates 1547 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1548 1549 // In case if it was invoke statepoint 1550 // we will insert stores for exceptional path gc relocates. 1551 if (isa<InvokeInst>(Statepoint)) { 1552 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1553 VisitedLiveValues); 1554 } 1555 1556 // Do similar thing with rematerialized values 1557 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1558 VisitedLiveValues); 1559 1560 if (ClobberNonLive) { 1561 // As a debuging aid, pretend that an unrelocated pointer becomes null at 1562 // the gc.statepoint. This will turn some subtle GC problems into 1563 // slightly easier to debug SEGVs. Note that on large IR files with 1564 // lots of gc.statepoints this is extremely costly both memory and time 1565 // wise. 1566 SmallVector<AllocaInst *, 64> ToClobber; 1567 for (auto Pair : AllocaMap) { 1568 Value *Def = Pair.first; 1569 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1570 1571 // This value was relocated 1572 if (VisitedLiveValues.count(Def)) { 1573 continue; 1574 } 1575 ToClobber.push_back(Alloca); 1576 } 1577 1578 auto InsertClobbersAt = [&](Instruction *IP) { 1579 for (auto *AI : ToClobber) { 1580 auto AIType = cast<PointerType>(AI->getType()); 1581 auto PT = cast<PointerType>(AIType->getElementType()); 1582 Constant *CPN = ConstantPointerNull::get(PT); 1583 StoreInst *Store = new StoreInst(CPN, AI); 1584 Store->insertBefore(IP); 1585 } 1586 }; 1587 1588 // Insert the clobbering stores. These may get intermixed with the 1589 // gc.results and gc.relocates, but that's fine. 1590 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1591 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1592 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1593 } else { 1594 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1595 Next++; 1596 InsertClobbersAt(Next); 1597 } 1598 } 1599 } 1600 // update use with load allocas and add store for gc_relocated 1601 for (auto Pair : AllocaMap) { 1602 Value *Def = Pair.first; 1603 Value *Alloca = Pair.second; 1604 1605 // we pre-record the uses of allocas so that we dont have to worry about 1606 // later update 1607 // that change the user information. 1608 SmallVector<Instruction *, 20> Uses; 1609 // PERF: trade a linear scan for repeated reallocation 1610 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1611 for (User *U : Def->users()) { 1612 if (!isa<ConstantExpr>(U)) { 1613 // If the def has a ConstantExpr use, then the def is either a 1614 // ConstantExpr use itself or null. In either case 1615 // (recursively in the first, directly in the second), the oop 1616 // it is ultimately dependent on is null and this particular 1617 // use does not need to be fixed up. 1618 Uses.push_back(cast<Instruction>(U)); 1619 } 1620 } 1621 1622 std::sort(Uses.begin(), Uses.end()); 1623 auto Last = std::unique(Uses.begin(), Uses.end()); 1624 Uses.erase(Last, Uses.end()); 1625 1626 for (Instruction *Use : Uses) { 1627 if (isa<PHINode>(Use)) { 1628 PHINode *Phi = cast<PHINode>(Use); 1629 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1630 if (Def == Phi->getIncomingValue(i)) { 1631 LoadInst *Load = new LoadInst( 1632 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1633 Phi->setIncomingValue(i, Load); 1634 } 1635 } 1636 } else { 1637 LoadInst *Load = new LoadInst(Alloca, "", Use); 1638 Use->replaceUsesOfWith(Def, Load); 1639 } 1640 } 1641 1642 // emit store for the initial gc value 1643 // store must be inserted after load, otherwise store will be in alloca's 1644 // use list and an extra load will be inserted before it 1645 StoreInst *Store = new StoreInst(Def, Alloca); 1646 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1647 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1648 // InvokeInst is a TerminatorInst so the store need to be inserted 1649 // into its normal destination block. 1650 BasicBlock *NormalDest = Invoke->getNormalDest(); 1651 Store->insertBefore(NormalDest->getFirstNonPHI()); 1652 } else { 1653 assert(!Inst->isTerminator() && 1654 "The only TerminatorInst that can produce a value is " 1655 "InvokeInst which is handled above."); 1656 Store->insertAfter(Inst); 1657 } 1658 } else { 1659 assert(isa<Argument>(Def)); 1660 Store->insertAfter(cast<Instruction>(Alloca)); 1661 } 1662 } 1663 1664 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1665 "we must have the same allocas with lives"); 1666 if (!PromotableAllocas.empty()) { 1667 // apply mem2reg to promote alloca to SSA 1668 PromoteMemToReg(PromotableAllocas, DT); 1669 } 1670 1671 #ifndef NDEBUG 1672 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1673 I++) 1674 if (isa<AllocaInst>(*I)) 1675 InitialAllocaNum--; 1676 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1677 #endif 1678 } 1679 1680 /// Implement a unique function which doesn't require we sort the input 1681 /// vector. Doing so has the effect of changing the output of a couple of 1682 /// tests in ways which make them less useful in testing fused safepoints. 1683 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1684 SmallSet<T, 8> Seen; 1685 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1686 return !Seen.insert(V).second; 1687 }), Vec.end()); 1688 } 1689 1690 /// Insert holders so that each Value is obviously live through the entire 1691 /// lifetime of the call. 1692 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1693 SmallVectorImpl<CallInst *> &Holders) { 1694 if (Values.empty()) 1695 // No values to hold live, might as well not insert the empty holder 1696 return; 1697 1698 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1699 // Use a dummy vararg function to actually hold the values live 1700 Function *Func = cast<Function>(M->getOrInsertFunction( 1701 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1702 if (CS.isCall()) { 1703 // For call safepoints insert dummy calls right after safepoint 1704 BasicBlock::iterator Next(CS.getInstruction()); 1705 Next++; 1706 Holders.push_back(CallInst::Create(Func, Values, "", Next)); 1707 return; 1708 } 1709 // For invoke safepooints insert dummy calls both in normal and 1710 // exceptional destination blocks 1711 auto *II = cast<InvokeInst>(CS.getInstruction()); 1712 Holders.push_back(CallInst::Create( 1713 Func, Values, "", II->getNormalDest()->getFirstInsertionPt())); 1714 Holders.push_back(CallInst::Create( 1715 Func, Values, "", II->getUnwindDest()->getFirstInsertionPt())); 1716 } 1717 1718 static void findLiveReferences( 1719 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1720 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1721 GCPtrLivenessData OriginalLivenessData; 1722 computeLiveInValues(DT, F, OriginalLivenessData); 1723 for (size_t i = 0; i < records.size(); i++) { 1724 struct PartiallyConstructedSafepointRecord &info = records[i]; 1725 const CallSite &CS = toUpdate[i]; 1726 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1727 } 1728 } 1729 1730 /// Remove any vector of pointers from the liveset by scalarizing them over the 1731 /// statepoint instruction. Adds the scalarized pieces to the liveset. It 1732 /// would be preferrable to include the vector in the statepoint itself, but 1733 /// the lowering code currently does not handle that. Extending it would be 1734 /// slightly non-trivial since it requires a format change. Given how rare 1735 /// such cases are (for the moment?) scalarizing is an acceptable comprimise. 1736 static void splitVectorValues(Instruction *StatepointInst, 1737 StatepointLiveSetTy &LiveSet, 1738 DenseMap<Value *, Value *>& PointerToBase, 1739 DominatorTree &DT) { 1740 SmallVector<Value *, 16> ToSplit; 1741 for (Value *V : LiveSet) 1742 if (isa<VectorType>(V->getType())) 1743 ToSplit.push_back(V); 1744 1745 if (ToSplit.empty()) 1746 return; 1747 1748 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1749 1750 Function &F = *(StatepointInst->getParent()->getParent()); 1751 1752 DenseMap<Value *, AllocaInst *> AllocaMap; 1753 // First is normal return, second is exceptional return (invoke only) 1754 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1755 for (Value *V : ToSplit) { 1756 AllocaInst *Alloca = 1757 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1758 AllocaMap[V] = Alloca; 1759 1760 VectorType *VT = cast<VectorType>(V->getType()); 1761 IRBuilder<> Builder(StatepointInst); 1762 SmallVector<Value *, 16> Elements; 1763 for (unsigned i = 0; i < VT->getNumElements(); i++) 1764 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1765 ElementMapping[V] = Elements; 1766 1767 auto InsertVectorReform = [&](Instruction *IP) { 1768 Builder.SetInsertPoint(IP); 1769 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1770 Value *ResultVec = UndefValue::get(VT); 1771 for (unsigned i = 0; i < VT->getNumElements(); i++) 1772 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1773 Builder.getInt32(i)); 1774 return ResultVec; 1775 }; 1776 1777 if (isa<CallInst>(StatepointInst)) { 1778 BasicBlock::iterator Next(StatepointInst); 1779 Next++; 1780 Instruction *IP = &*(Next); 1781 Replacements[V].first = InsertVectorReform(IP); 1782 Replacements[V].second = nullptr; 1783 } else { 1784 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 1785 // We've already normalized - check that we don't have shared destination 1786 // blocks 1787 BasicBlock *NormalDest = Invoke->getNormalDest(); 1788 assert(!isa<PHINode>(NormalDest->begin())); 1789 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 1790 assert(!isa<PHINode>(UnwindDest->begin())); 1791 // Insert insert element sequences in both successors 1792 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 1793 Replacements[V].first = InsertVectorReform(IP); 1794 IP = &*(UnwindDest->getFirstInsertionPt()); 1795 Replacements[V].second = InsertVectorReform(IP); 1796 } 1797 } 1798 1799 for (Value *V : ToSplit) { 1800 AllocaInst *Alloca = AllocaMap[V]; 1801 1802 // Capture all users before we start mutating use lists 1803 SmallVector<Instruction *, 16> Users; 1804 for (User *U : V->users()) 1805 Users.push_back(cast<Instruction>(U)); 1806 1807 for (Instruction *I : Users) { 1808 if (auto Phi = dyn_cast<PHINode>(I)) { 1809 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 1810 if (V == Phi->getIncomingValue(i)) { 1811 LoadInst *Load = new LoadInst( 1812 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1813 Phi->setIncomingValue(i, Load); 1814 } 1815 } else { 1816 LoadInst *Load = new LoadInst(Alloca, "", I); 1817 I->replaceUsesOfWith(V, Load); 1818 } 1819 } 1820 1821 // Store the original value and the replacement value into the alloca 1822 StoreInst *Store = new StoreInst(V, Alloca); 1823 if (auto I = dyn_cast<Instruction>(V)) 1824 Store->insertAfter(I); 1825 else 1826 Store->insertAfter(Alloca); 1827 1828 // Normal return for invoke, or call return 1829 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 1830 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1831 // Unwind return for invoke only 1832 Replacement = cast_or_null<Instruction>(Replacements[V].second); 1833 if (Replacement) 1834 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1835 } 1836 1837 // apply mem2reg to promote alloca to SSA 1838 SmallVector<AllocaInst *, 16> Allocas; 1839 for (Value *V : ToSplit) 1840 Allocas.push_back(AllocaMap[V]); 1841 PromoteMemToReg(Allocas, DT); 1842 1843 // Update our tracking of live pointers and base mappings to account for the 1844 // changes we just made. 1845 for (Value *V : ToSplit) { 1846 auto &Elements = ElementMapping[V]; 1847 1848 LiveSet.erase(V); 1849 LiveSet.insert(Elements.begin(), Elements.end()); 1850 // We need to update the base mapping as well. 1851 assert(PointerToBase.count(V)); 1852 Value *OldBase = PointerToBase[V]; 1853 auto &BaseElements = ElementMapping[OldBase]; 1854 PointerToBase.erase(V); 1855 assert(Elements.size() == BaseElements.size()); 1856 for (unsigned i = 0; i < Elements.size(); i++) { 1857 Value *Elem = Elements[i]; 1858 PointerToBase[Elem] = BaseElements[i]; 1859 } 1860 } 1861 } 1862 1863 // Helper function for the "rematerializeLiveValues". It walks use chain 1864 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1865 // values are visited (currently it is GEP's and casts). Returns true if it 1866 // sucessfully reached "BaseValue" and false otherwise. 1867 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1868 // recorded. 1869 static bool findRematerializableChainToBasePointer( 1870 SmallVectorImpl<Instruction*> &ChainToBase, 1871 Value *CurrentValue, Value *BaseValue) { 1872 1873 // We have found a base value 1874 if (CurrentValue == BaseValue) { 1875 return true; 1876 } 1877 1878 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1879 ChainToBase.push_back(GEP); 1880 return findRematerializableChainToBasePointer(ChainToBase, 1881 GEP->getPointerOperand(), 1882 BaseValue); 1883 } 1884 1885 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1886 Value *Def = CI->stripPointerCasts(); 1887 1888 // This two checks are basically similar. First one is here for the 1889 // consistency with findBasePointers logic. 1890 assert(!isa<CastInst>(Def) && "not a pointer cast found"); 1891 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1892 return false; 1893 1894 ChainToBase.push_back(CI); 1895 return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue); 1896 } 1897 1898 // Not supported instruction in the chain 1899 return false; 1900 } 1901 1902 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1903 // chain we are going to rematerialize. 1904 static unsigned 1905 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1906 TargetTransformInfo &TTI) { 1907 unsigned Cost = 0; 1908 1909 for (Instruction *Instr : Chain) { 1910 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1911 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1912 "non noop cast is found during rematerialization"); 1913 1914 Type *SrcTy = CI->getOperand(0)->getType(); 1915 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 1916 1917 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1918 // Cost of the address calculation 1919 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); 1920 Cost += TTI.getAddressComputationCost(ValTy); 1921 1922 // And cost of the GEP itself 1923 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1924 // allowed for the external usage) 1925 if (!GEP->hasAllConstantIndices()) 1926 Cost += 2; 1927 1928 } else { 1929 llvm_unreachable("unsupported instruciton type during rematerialization"); 1930 } 1931 } 1932 1933 return Cost; 1934 } 1935 1936 // From the statepoint liveset pick values that are cheaper to recompute then to 1937 // relocate. Remove this values from the liveset, rematerialize them after 1938 // statepoint and record them in "Info" structure. Note that similar to 1939 // relocated values we don't do any user adjustments here. 1940 static void rematerializeLiveValues(CallSite CS, 1941 PartiallyConstructedSafepointRecord &Info, 1942 TargetTransformInfo &TTI) { 1943 const unsigned int ChainLengthThreshold = 10; 1944 1945 // Record values we are going to delete from this statepoint live set. 1946 // We can not di this in following loop due to iterator invalidation. 1947 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1948 1949 for (Value *LiveValue: Info.liveset) { 1950 // For each live pointer find it's defining chain 1951 SmallVector<Instruction *, 3> ChainToBase; 1952 assert(Info.PointerToBase.count(LiveValue)); 1953 bool FoundChain = 1954 findRematerializableChainToBasePointer(ChainToBase, 1955 LiveValue, 1956 Info.PointerToBase[LiveValue]); 1957 // Nothing to do, or chain is too long 1958 if (!FoundChain || 1959 ChainToBase.size() == 0 || 1960 ChainToBase.size() > ChainLengthThreshold) 1961 continue; 1962 1963 // Compute cost of this chain 1964 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1965 // TODO: We can also account for cases when we will be able to remove some 1966 // of the rematerialized values by later optimization passes. I.e if 1967 // we rematerialized several intersecting chains. Or if original values 1968 // don't have any uses besides this statepoint. 1969 1970 // For invokes we need to rematerialize each chain twice - for normal and 1971 // for unwind basic blocks. Model this by multiplying cost by two. 1972 if (CS.isInvoke()) { 1973 Cost *= 2; 1974 } 1975 // If it's too expensive - skip it 1976 if (Cost >= RematerializationThreshold) 1977 continue; 1978 1979 // Remove value from the live set 1980 LiveValuesToBeDeleted.push_back(LiveValue); 1981 1982 // Clone instructions and record them inside "Info" structure 1983 1984 // Walk backwards to visit top-most instructions first 1985 std::reverse(ChainToBase.begin(), ChainToBase.end()); 1986 1987 // Utility function which clones all instructions from "ChainToBase" 1988 // and inserts them before "InsertBefore". Returns rematerialized value 1989 // which should be used after statepoint. 1990 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 1991 Instruction *LastClonedValue = nullptr; 1992 Instruction *LastValue = nullptr; 1993 for (Instruction *Instr: ChainToBase) { 1994 // Only GEP's and casts are suported as we need to be careful to not 1995 // introduce any new uses of pointers not in the liveset. 1996 // Note that it's fine to introduce new uses of pointers which were 1997 // otherwise not used after this statepoint. 1998 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 1999 2000 Instruction *ClonedValue = Instr->clone(); 2001 ClonedValue->insertBefore(InsertBefore); 2002 ClonedValue->setName(Instr->getName() + ".remat"); 2003 2004 // If it is not first instruction in the chain then it uses previously 2005 // cloned value. We should update it to use cloned value. 2006 if (LastClonedValue) { 2007 assert(LastValue); 2008 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2009 #ifndef NDEBUG 2010 // Assert that cloned instruction does not use any instructions from 2011 // this chain other than LastClonedValue 2012 for (auto OpValue : ClonedValue->operand_values()) { 2013 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2014 ChainToBase.end() && 2015 "incorrect use in rematerialization chain"); 2016 } 2017 #endif 2018 } 2019 2020 LastClonedValue = ClonedValue; 2021 LastValue = Instr; 2022 } 2023 assert(LastClonedValue); 2024 return LastClonedValue; 2025 }; 2026 2027 // Different cases for calls and invokes. For invokes we need to clone 2028 // instructions both on normal and unwind path. 2029 if (CS.isCall()) { 2030 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2031 assert(InsertBefore); 2032 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2033 Info.RematerializedValues[RematerializedValue] = LiveValue; 2034 } else { 2035 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2036 2037 Instruction *NormalInsertBefore = 2038 Invoke->getNormalDest()->getFirstInsertionPt(); 2039 Instruction *UnwindInsertBefore = 2040 Invoke->getUnwindDest()->getFirstInsertionPt(); 2041 2042 Instruction *NormalRematerializedValue = 2043 rematerializeChain(NormalInsertBefore); 2044 Instruction *UnwindRematerializedValue = 2045 rematerializeChain(UnwindInsertBefore); 2046 2047 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2048 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2049 } 2050 } 2051 2052 // Remove rematerializaed values from the live set 2053 for (auto LiveValue: LiveValuesToBeDeleted) { 2054 Info.liveset.erase(LiveValue); 2055 } 2056 } 2057 2058 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 2059 SmallVectorImpl<CallSite> &toUpdate) { 2060 #ifndef NDEBUG 2061 // sanity check the input 2062 std::set<CallSite> uniqued; 2063 uniqued.insert(toUpdate.begin(), toUpdate.end()); 2064 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 2065 2066 for (size_t i = 0; i < toUpdate.size(); i++) { 2067 CallSite &CS = toUpdate[i]; 2068 assert(CS.getInstruction()->getParent()->getParent() == &F); 2069 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 2070 } 2071 #endif 2072 2073 // When inserting gc.relocates for invokes, we need to be able to insert at 2074 // the top of the successor blocks. See the comment on 2075 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2076 // may restructure the CFG. 2077 for (CallSite CS : toUpdate) { 2078 if (!CS.isInvoke()) 2079 continue; 2080 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 2081 normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(), 2082 DT); 2083 normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(), 2084 DT); 2085 } 2086 2087 // A list of dummy calls added to the IR to keep various values obviously 2088 // live in the IR. We'll remove all of these when done. 2089 SmallVector<CallInst *, 64> holders; 2090 2091 // Insert a dummy call with all of the arguments to the vm_state we'll need 2092 // for the actual safepoint insertion. This ensures reference arguments in 2093 // the deopt argument list are considered live through the safepoint (and 2094 // thus makes sure they get relocated.) 2095 for (size_t i = 0; i < toUpdate.size(); i++) { 2096 CallSite &CS = toUpdate[i]; 2097 Statepoint StatepointCS(CS); 2098 2099 SmallVector<Value *, 64> DeoptValues; 2100 for (Use &U : StatepointCS.vm_state_args()) { 2101 Value *Arg = cast<Value>(&U); 2102 assert(!isUnhandledGCPointerType(Arg->getType()) && 2103 "support for FCA unimplemented"); 2104 if (isHandledGCPointerType(Arg->getType())) 2105 DeoptValues.push_back(Arg); 2106 } 2107 insertUseHolderAfter(CS, DeoptValues, holders); 2108 } 2109 2110 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 2111 records.reserve(toUpdate.size()); 2112 for (size_t i = 0; i < toUpdate.size(); i++) { 2113 struct PartiallyConstructedSafepointRecord info; 2114 records.push_back(info); 2115 } 2116 assert(records.size() == toUpdate.size()); 2117 2118 // A) Identify all gc pointers which are staticly live at the given call 2119 // site. 2120 findLiveReferences(F, DT, P, toUpdate, records); 2121 2122 // B) Find the base pointers for each live pointer 2123 /* scope for caching */ { 2124 // Cache the 'defining value' relation used in the computation and 2125 // insertion of base phis and selects. This ensures that we don't insert 2126 // large numbers of duplicate base_phis. 2127 DefiningValueMapTy DVCache; 2128 2129 for (size_t i = 0; i < records.size(); i++) { 2130 struct PartiallyConstructedSafepointRecord &info = records[i]; 2131 CallSite &CS = toUpdate[i]; 2132 findBasePointers(DT, DVCache, CS, info); 2133 } 2134 } // end of cache scope 2135 2136 // The base phi insertion logic (for any safepoint) may have inserted new 2137 // instructions which are now live at some safepoint. The simplest such 2138 // example is: 2139 // loop: 2140 // phi a <-- will be a new base_phi here 2141 // safepoint 1 <-- that needs to be live here 2142 // gep a + 1 2143 // safepoint 2 2144 // br loop 2145 // We insert some dummy calls after each safepoint to definitely hold live 2146 // the base pointers which were identified for that safepoint. We'll then 2147 // ask liveness for _every_ base inserted to see what is now live. Then we 2148 // remove the dummy calls. 2149 holders.reserve(holders.size() + records.size()); 2150 for (size_t i = 0; i < records.size(); i++) { 2151 struct PartiallyConstructedSafepointRecord &info = records[i]; 2152 CallSite &CS = toUpdate[i]; 2153 2154 SmallVector<Value *, 128> Bases; 2155 for (auto Pair : info.PointerToBase) { 2156 Bases.push_back(Pair.second); 2157 } 2158 insertUseHolderAfter(CS, Bases, holders); 2159 } 2160 2161 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2162 // need to rerun liveness. We may *also* have inserted new defs, but that's 2163 // not the key issue. 2164 recomputeLiveInValues(F, DT, P, toUpdate, records); 2165 2166 if (PrintBasePointers) { 2167 for (size_t i = 0; i < records.size(); i++) { 2168 struct PartiallyConstructedSafepointRecord &info = records[i]; 2169 errs() << "Base Pairs: (w/Relocation)\n"; 2170 for (auto Pair : info.PointerToBase) { 2171 errs() << " derived %" << Pair.first->getName() << " base %" 2172 << Pair.second->getName() << "\n"; 2173 } 2174 } 2175 } 2176 for (size_t i = 0; i < holders.size(); i++) { 2177 holders[i]->eraseFromParent(); 2178 holders[i] = nullptr; 2179 } 2180 holders.clear(); 2181 2182 // Do a limited scalarization of any live at safepoint vector values which 2183 // contain pointers. This enables this pass to run after vectorization at 2184 // the cost of some possible performance loss. TODO: it would be nice to 2185 // natively support vectors all the way through the backend so we don't need 2186 // to scalarize here. 2187 for (size_t i = 0; i < records.size(); i++) { 2188 struct PartiallyConstructedSafepointRecord &info = records[i]; 2189 Instruction *statepoint = toUpdate[i].getInstruction(); 2190 splitVectorValues(cast<Instruction>(statepoint), info.liveset, 2191 info.PointerToBase, DT); 2192 } 2193 2194 // In order to reduce live set of statepoint we might choose to rematerialize 2195 // some values instead of relocating them. This is purelly an optimization and 2196 // does not influence correctness. 2197 TargetTransformInfo &TTI = 2198 P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2199 2200 for (size_t i = 0; i < records.size(); i++) { 2201 struct PartiallyConstructedSafepointRecord &info = records[i]; 2202 CallSite &CS = toUpdate[i]; 2203 2204 rematerializeLiveValues(CS, info, TTI); 2205 } 2206 2207 // Now run through and replace the existing statepoints with new ones with 2208 // the live variables listed. We do not yet update uses of the values being 2209 // relocated. We have references to live variables that need to 2210 // survive to the last iteration of this loop. (By construction, the 2211 // previous statepoint can not be a live variable, thus we can and remove 2212 // the old statepoint calls as we go.) 2213 for (size_t i = 0; i < records.size(); i++) { 2214 struct PartiallyConstructedSafepointRecord &info = records[i]; 2215 CallSite &CS = toUpdate[i]; 2216 makeStatepointExplicit(DT, CS, P, info); 2217 } 2218 toUpdate.clear(); // prevent accident use of invalid CallSites 2219 2220 // Do all the fixups of the original live variables to their relocated selves 2221 SmallVector<Value *, 128> live; 2222 for (size_t i = 0; i < records.size(); i++) { 2223 struct PartiallyConstructedSafepointRecord &info = records[i]; 2224 // We can't simply save the live set from the original insertion. One of 2225 // the live values might be the result of a call which needs a safepoint. 2226 // That Value* no longer exists and we need to use the new gc_result. 2227 // Thankfully, the liveset is embedded in the statepoint (and updated), so 2228 // we just grab that. 2229 Statepoint statepoint(info.StatepointToken); 2230 live.insert(live.end(), statepoint.gc_args_begin(), 2231 statepoint.gc_args_end()); 2232 #ifndef NDEBUG 2233 // Do some basic sanity checks on our liveness results before performing 2234 // relocation. Relocation can and will turn mistakes in liveness results 2235 // into non-sensical code which is must harder to debug. 2236 // TODO: It would be nice to test consistency as well 2237 assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) && 2238 "statepoint must be reachable or liveness is meaningless"); 2239 for (Value *V : statepoint.gc_args()) { 2240 if (!isa<Instruction>(V)) 2241 // Non-instruction values trivial dominate all possible uses 2242 continue; 2243 auto LiveInst = cast<Instruction>(V); 2244 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2245 "unreachable values should never be live"); 2246 assert(DT.dominates(LiveInst, info.StatepointToken) && 2247 "basic SSA liveness expectation violated by liveness analysis"); 2248 } 2249 #endif 2250 } 2251 unique_unsorted(live); 2252 2253 #ifndef NDEBUG 2254 // sanity check 2255 for (auto ptr : live) { 2256 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 2257 } 2258 #endif 2259 2260 relocationViaAlloca(F, DT, live, records); 2261 return !records.empty(); 2262 } 2263 2264 // Handles both return values and arguments for Functions and CallSites. 2265 template <typename AttrHolder> 2266 static void RemoveDerefAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2267 unsigned Index) { 2268 AttrBuilder R; 2269 if (AH.getDereferenceableBytes(Index)) 2270 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2271 AH.getDereferenceableBytes(Index))); 2272 if (AH.getDereferenceableOrNullBytes(Index)) 2273 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2274 AH.getDereferenceableOrNullBytes(Index))); 2275 2276 if (!R.empty()) 2277 AH.setAttributes(AH.getAttributes().removeAttributes( 2278 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2279 } 2280 2281 void 2282 RewriteStatepointsForGC::stripDereferenceabilityInfoFromPrototype(Function &F) { 2283 LLVMContext &Ctx = F.getContext(); 2284 2285 for (Argument &A : F.args()) 2286 if (isa<PointerType>(A.getType())) 2287 RemoveDerefAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2288 2289 if (isa<PointerType>(F.getReturnType())) 2290 RemoveDerefAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2291 } 2292 2293 void RewriteStatepointsForGC::stripDereferenceabilityInfoFromBody(Function &F) { 2294 if (F.empty()) 2295 return; 2296 2297 LLVMContext &Ctx = F.getContext(); 2298 MDBuilder Builder(Ctx); 2299 2300 for (Instruction &I : inst_range(F)) { 2301 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2302 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2303 bool IsImmutableTBAA = 2304 MD->getNumOperands() == 4 && 2305 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2306 2307 if (!IsImmutableTBAA) 2308 continue; // no work to do, MD_tbaa is already marked mutable 2309 2310 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2311 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2312 uint64_t Offset = 2313 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2314 2315 MDNode *MutableTBAA = 2316 Builder.createTBAAStructTagNode(Base, Access, Offset); 2317 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2318 } 2319 2320 if (CallSite CS = CallSite(&I)) { 2321 for (int i = 0, e = CS.arg_size(); i != e; i++) 2322 if (isa<PointerType>(CS.getArgument(i)->getType())) 2323 RemoveDerefAttrAtIndex(Ctx, CS, i + 1); 2324 if (isa<PointerType>(CS.getType())) 2325 RemoveDerefAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2326 } 2327 } 2328 } 2329 2330 /// Returns true if this function should be rewritten by this pass. The main 2331 /// point of this function is as an extension point for custom logic. 2332 static bool shouldRewriteStatepointsIn(Function &F) { 2333 // TODO: This should check the GCStrategy 2334 if (F.hasGC()) { 2335 const char *FunctionGCName = F.getGC(); 2336 const StringRef StatepointExampleName("statepoint-example"); 2337 const StringRef CoreCLRName("coreclr"); 2338 return (StatepointExampleName == FunctionGCName) || 2339 (CoreCLRName == FunctionGCName); 2340 } else 2341 return false; 2342 } 2343 2344 void RewriteStatepointsForGC::stripDereferenceabilityInfo(Module &M) { 2345 #ifndef NDEBUG 2346 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2347 "precondition!"); 2348 #endif 2349 2350 for (Function &F : M) 2351 stripDereferenceabilityInfoFromPrototype(F); 2352 2353 for (Function &F : M) 2354 stripDereferenceabilityInfoFromBody(F); 2355 } 2356 2357 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2358 // Nothing to do for declarations. 2359 if (F.isDeclaration() || F.empty()) 2360 return false; 2361 2362 // Policy choice says not to rewrite - the most common reason is that we're 2363 // compiling code without a GCStrategy. 2364 if (!shouldRewriteStatepointsIn(F)) 2365 return false; 2366 2367 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2368 2369 // Gather all the statepoints which need rewritten. Be careful to only 2370 // consider those in reachable code since we need to ask dominance queries 2371 // when rewriting. We'll delete the unreachable ones in a moment. 2372 SmallVector<CallSite, 64> ParsePointNeeded; 2373 bool HasUnreachableStatepoint = false; 2374 for (Instruction &I : inst_range(F)) { 2375 // TODO: only the ones with the flag set! 2376 if (isStatepoint(I)) { 2377 if (DT.isReachableFromEntry(I.getParent())) 2378 ParsePointNeeded.push_back(CallSite(&I)); 2379 else 2380 HasUnreachableStatepoint = true; 2381 } 2382 } 2383 2384 bool MadeChange = false; 2385 2386 // Delete any unreachable statepoints so that we don't have unrewritten 2387 // statepoints surviving this pass. This makes testing easier and the 2388 // resulting IR less confusing to human readers. Rather than be fancy, we 2389 // just reuse a utility function which removes the unreachable blocks. 2390 if (HasUnreachableStatepoint) 2391 MadeChange |= removeUnreachableBlocks(F); 2392 2393 // Return early if no work to do. 2394 if (ParsePointNeeded.empty()) 2395 return MadeChange; 2396 2397 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2398 // These are created by LCSSA. They have the effect of increasing the size 2399 // of liveness sets for no good reason. It may be harder to do this post 2400 // insertion since relocations and base phis can confuse things. 2401 for (BasicBlock &BB : F) 2402 if (BB.getUniquePredecessor()) { 2403 MadeChange = true; 2404 FoldSingleEntryPHINodes(&BB); 2405 } 2406 2407 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); 2408 return MadeChange; 2409 } 2410 2411 // liveness computation via standard dataflow 2412 // ------------------------------------------------------------------- 2413 2414 // TODO: Consider using bitvectors for liveness, the set of potentially 2415 // interesting values should be small and easy to pre-compute. 2416 2417 /// Compute the live-in set for the location rbegin starting from 2418 /// the live-out set of the basic block 2419 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2420 BasicBlock::reverse_iterator rend, 2421 DenseSet<Value *> &LiveTmp) { 2422 2423 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2424 Instruction *I = &*ritr; 2425 2426 // KILL/Def - Remove this definition from LiveIn 2427 LiveTmp.erase(I); 2428 2429 // Don't consider *uses* in PHI nodes, we handle their contribution to 2430 // predecessor blocks when we seed the LiveOut sets 2431 if (isa<PHINode>(I)) 2432 continue; 2433 2434 // USE - Add to the LiveIn set for this instruction 2435 for (Value *V : I->operands()) { 2436 assert(!isUnhandledGCPointerType(V->getType()) && 2437 "support for FCA unimplemented"); 2438 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2439 // The choice to exclude all things constant here is slightly subtle. 2440 // There are two idependent reasons: 2441 // - We assume that things which are constant (from LLVM's definition) 2442 // do not move at runtime. For example, the address of a global 2443 // variable is fixed, even though it's contents may not be. 2444 // - Second, we can't disallow arbitrary inttoptr constants even 2445 // if the language frontend does. Optimization passes are free to 2446 // locally exploit facts without respect to global reachability. This 2447 // can create sections of code which are dynamically unreachable and 2448 // contain just about anything. (see constants.ll in tests) 2449 LiveTmp.insert(V); 2450 } 2451 } 2452 } 2453 } 2454 2455 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2456 2457 for (BasicBlock *Succ : successors(BB)) { 2458 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2459 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2460 PHINode *Phi = cast<PHINode>(&*I); 2461 Value *V = Phi->getIncomingValueForBlock(BB); 2462 assert(!isUnhandledGCPointerType(V->getType()) && 2463 "support for FCA unimplemented"); 2464 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2465 LiveTmp.insert(V); 2466 } 2467 } 2468 } 2469 } 2470 2471 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2472 DenseSet<Value *> KillSet; 2473 for (Instruction &I : *BB) 2474 if (isHandledGCPointerType(I.getType())) 2475 KillSet.insert(&I); 2476 return KillSet; 2477 } 2478 2479 #ifndef NDEBUG 2480 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2481 /// sanity check for the liveness computation. 2482 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2483 TerminatorInst *TI, bool TermOkay = false) { 2484 for (Value *V : Live) { 2485 if (auto *I = dyn_cast<Instruction>(V)) { 2486 // The terminator can be a member of the LiveOut set. LLVM's definition 2487 // of instruction dominance states that V does not dominate itself. As 2488 // such, we need to special case this to allow it. 2489 if (TermOkay && TI == I) 2490 continue; 2491 assert(DT.dominates(I, TI) && 2492 "basic SSA liveness expectation violated by liveness analysis"); 2493 } 2494 } 2495 } 2496 2497 /// Check that all the liveness sets used during the computation of liveness 2498 /// obey basic SSA properties. This is useful for finding cases where we miss 2499 /// a def. 2500 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2501 BasicBlock &BB) { 2502 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2503 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2504 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2505 } 2506 #endif 2507 2508 static void computeLiveInValues(DominatorTree &DT, Function &F, 2509 GCPtrLivenessData &Data) { 2510 2511 SmallSetVector<BasicBlock *, 200> Worklist; 2512 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2513 // We use a SetVector so that we don't have duplicates in the worklist. 2514 Worklist.insert(pred_begin(BB), pred_end(BB)); 2515 }; 2516 auto NextItem = [&]() { 2517 BasicBlock *BB = Worklist.back(); 2518 Worklist.pop_back(); 2519 return BB; 2520 }; 2521 2522 // Seed the liveness for each individual block 2523 for (BasicBlock &BB : F) { 2524 Data.KillSet[&BB] = computeKillSet(&BB); 2525 Data.LiveSet[&BB].clear(); 2526 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2527 2528 #ifndef NDEBUG 2529 for (Value *Kill : Data.KillSet[&BB]) 2530 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2531 #endif 2532 2533 Data.LiveOut[&BB] = DenseSet<Value *>(); 2534 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2535 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2536 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2537 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2538 if (!Data.LiveIn[&BB].empty()) 2539 AddPredsToWorklist(&BB); 2540 } 2541 2542 // Propagate that liveness until stable 2543 while (!Worklist.empty()) { 2544 BasicBlock *BB = NextItem(); 2545 2546 // Compute our new liveout set, then exit early if it hasn't changed 2547 // despite the contribution of our successor. 2548 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2549 const auto OldLiveOutSize = LiveOut.size(); 2550 for (BasicBlock *Succ : successors(BB)) { 2551 assert(Data.LiveIn.count(Succ)); 2552 set_union(LiveOut, Data.LiveIn[Succ]); 2553 } 2554 // assert OutLiveOut is a subset of LiveOut 2555 if (OldLiveOutSize == LiveOut.size()) { 2556 // If the sets are the same size, then we didn't actually add anything 2557 // when unioning our successors LiveIn Thus, the LiveIn of this block 2558 // hasn't changed. 2559 continue; 2560 } 2561 Data.LiveOut[BB] = LiveOut; 2562 2563 // Apply the effects of this basic block 2564 DenseSet<Value *> LiveTmp = LiveOut; 2565 set_union(LiveTmp, Data.LiveSet[BB]); 2566 set_subtract(LiveTmp, Data.KillSet[BB]); 2567 2568 assert(Data.LiveIn.count(BB)); 2569 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2570 // assert: OldLiveIn is a subset of LiveTmp 2571 if (OldLiveIn.size() != LiveTmp.size()) { 2572 Data.LiveIn[BB] = LiveTmp; 2573 AddPredsToWorklist(BB); 2574 } 2575 } // while( !worklist.empty() ) 2576 2577 #ifndef NDEBUG 2578 // Sanity check our ouput against SSA properties. This helps catch any 2579 // missing kills during the above iteration. 2580 for (BasicBlock &BB : F) { 2581 checkBasicSSA(DT, Data, BB); 2582 } 2583 #endif 2584 } 2585 2586 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2587 StatepointLiveSetTy &Out) { 2588 2589 BasicBlock *BB = Inst->getParent(); 2590 2591 // Note: The copy is intentional and required 2592 assert(Data.LiveOut.count(BB)); 2593 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2594 2595 // We want to handle the statepoint itself oddly. It's 2596 // call result is not live (normal), nor are it's arguments 2597 // (unless they're used again later). This adjustment is 2598 // specifically what we need to relocate 2599 BasicBlock::reverse_iterator rend(Inst); 2600 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2601 LiveOut.erase(Inst); 2602 Out.insert(LiveOut.begin(), LiveOut.end()); 2603 } 2604 2605 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2606 const CallSite &CS, 2607 PartiallyConstructedSafepointRecord &Info) { 2608 Instruction *Inst = CS.getInstruction(); 2609 StatepointLiveSetTy Updated; 2610 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2611 2612 #ifndef NDEBUG 2613 DenseSet<Value *> Bases; 2614 for (auto KVPair : Info.PointerToBase) { 2615 Bases.insert(KVPair.second); 2616 } 2617 #endif 2618 // We may have base pointers which are now live that weren't before. We need 2619 // to update the PointerToBase structure to reflect this. 2620 for (auto V : Updated) 2621 if (!Info.PointerToBase.count(V)) { 2622 assert(Bases.count(V) && "can't find base for unexpected live value"); 2623 Info.PointerToBase[V] = V; 2624 continue; 2625 } 2626 2627 #ifndef NDEBUG 2628 for (auto V : Updated) { 2629 assert(Info.PointerToBase.count(V) && 2630 "must be able to find base for live value"); 2631 } 2632 #endif 2633 2634 // Remove any stale base mappings - this can happen since our liveness is 2635 // more precise then the one inherent in the base pointer analysis 2636 DenseSet<Value *> ToErase; 2637 for (auto KVPair : Info.PointerToBase) 2638 if (!Updated.count(KVPair.first)) 2639 ToErase.insert(KVPair.first); 2640 for (auto V : ToErase) 2641 Info.PointerToBase.erase(V); 2642 2643 #ifndef NDEBUG 2644 for (auto KVPair : Info.PointerToBase) 2645 assert(Updated.count(KVPair.first) && "record for non-live value"); 2646 #endif 2647 2648 Info.liveset = Updated; 2649 } 2650