1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Statepoint.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 41 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 42 43 using namespace llvm; 44 45 // Print tracing output 46 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 47 cl::init(false)); 48 49 // Print the liveset found at the insert location 50 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 51 cl::init(false)); 52 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", 53 cl::Hidden, cl::init(false)); 54 // Print out the base pointers for debugging 55 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", 56 cl::Hidden, cl::init(false)); 57 58 struct RewriteStatepointsForGC : public FunctionPass { 59 static char ID; // Pass identification, replacement for typeid 60 61 RewriteStatepointsForGC() : FunctionPass(ID) { 62 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 63 } 64 bool runOnFunction(Function &F) override; 65 66 void getAnalysisUsage(AnalysisUsage &AU) const override { 67 // We add and rewrite a bunch of instructions, but don't really do much 68 // else. We could in theory preserve a lot more analyses here. 69 AU.addRequired<DominatorTreeWrapperPass>(); 70 } 71 }; 72 73 char RewriteStatepointsForGC::ID = 0; 74 75 FunctionPass *llvm::createRewriteStatepointsForGCPass() { 76 return new RewriteStatepointsForGC(); 77 } 78 79 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 80 "Make relocations explicit at statepoints", false, false) 81 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 82 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 83 "Make relocations explicit at statepoints", false, false) 84 85 namespace { 86 // The type of the internal cache used inside the findBasePointers family 87 // of functions. From the callers perspective, this is an opaque type and 88 // should not be inspected. 89 // 90 // In the actual implementation this caches two relations: 91 // - The base relation itself (i.e. this pointer is based on that one) 92 // - The base defining value relation (i.e. before base_phi insertion) 93 // Generally, after the execution of a full findBasePointer call, only the 94 // base relation will remain. Internally, we add a mixture of the two 95 // types, then update all the second type to the first type 96 typedef std::map<Value *, Value *> DefiningValueMapTy; 97 } 98 99 namespace { 100 struct PartiallyConstructedSafepointRecord { 101 /// The set of values known to be live accross this safepoint 102 std::set<llvm::Value *> liveset; 103 104 /// Mapping from live pointers to a base-defining-value 105 std::map<llvm::Value *, llvm::Value *> base_pairs; 106 107 /// Any new values which were added to the IR during base pointer analysis 108 /// for this safepoint 109 std::set<llvm::Value *> newInsertedDefs; 110 111 /// The bounds of the inserted code for the safepoint 112 std::pair<Instruction *, Instruction *> safepoint; 113 114 // Instruction to which exceptional gc relocates are attached 115 // Makes it easier to iterate through them during relocationViaAlloca. 116 Instruction *exceptional_relocates_token; 117 118 /// The result of the safepointing call (or nullptr) 119 Value *result; 120 }; 121 } 122 123 // TODO: Once we can get to the GCStrategy, this becomes 124 // Optional<bool> isGCManagedPointer(const Value *V) const override { 125 126 static bool isGCPointerType(const Type *T) { 127 if (const PointerType *PT = dyn_cast<PointerType>(T)) 128 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 129 // GC managed heap. We know that a pointer into this heap needs to be 130 // updated and that no other pointer does. 131 return (1 == PT->getAddressSpace()); 132 return false; 133 } 134 135 /// Return true if the Value is a gc reference type which is potentially used 136 /// after the instruction 'loc'. This is only used with the edge reachability 137 /// liveness code. Note: It is assumed the V dominates loc. 138 static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT, 139 LoopInfo *LI) { 140 if (!isGCPointerType(V.getType())) 141 return false; 142 143 if (V.use_empty()) 144 return false; 145 146 // Given assumption that V dominates loc, this may be live 147 return true; 148 } 149 static bool isAggWhichContainsGCPtrType(Type *Ty) { 150 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 151 return isGCPointerType(VT->getScalarType()); 152 else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 153 return isGCPointerType(AT->getElementType()) || 154 isAggWhichContainsGCPtrType(AT->getElementType()); 155 } else if (StructType *ST = dyn_cast<StructType>(Ty)) { 156 bool UnsupportedType = false; 157 for (Type *SubType : ST->subtypes()) 158 UnsupportedType |= isGCPointerType(SubType) || isAggWhichContainsGCPtrType(SubType); 159 return UnsupportedType; 160 } else 161 return false; 162 } 163 164 // Conservatively identifies any definitions which might be live at the 165 // given instruction. The analysis is performed immediately before the 166 // given instruction. Values defined by that instruction are not considered 167 // live. Values used by that instruction are considered live. 168 // 169 // preconditions: valid IR graph, term is either a terminator instruction or 170 // a call instruction, pred is the basic block of term, DT, LI are valid 171 // 172 // side effects: none, does not mutate IR 173 // 174 // postconditions: populates liveValues as discussed above 175 static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred, 176 DominatorTree &DT, LoopInfo *LI, 177 std::set<llvm::Value *> &liveValues) { 178 liveValues.clear(); 179 180 assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator()); 181 182 Function *F = pred->getParent(); 183 184 auto is_live_gc_reference = 185 [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); }; 186 187 // Are there any gc pointer arguments live over this point? This needs to be 188 // special cased since arguments aren't defined in basic blocks. 189 for (Argument &arg : F->args()) { 190 assert(!isAggWhichContainsGCPtrType(arg.getType()) && 191 "support for FCA unimplemented"); 192 193 if (is_live_gc_reference(arg)) { 194 liveValues.insert(&arg); 195 } 196 } 197 198 // Walk through all dominating blocks - the ones which can contain 199 // definitions used in this block - and check to see if any of the values 200 // they define are used in locations potentially reachable from the 201 // interesting instruction. 202 BasicBlock *BBI = pred; 203 while (true) { 204 if (TraceLSP) { 205 errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n"; 206 } 207 assert(DT.dominates(BBI, pred)); 208 assert(isPotentiallyReachable(BBI, pred, &DT) && 209 "dominated block must be reachable"); 210 211 // Walk through the instructions in dominating blocks and keep any 212 // that have a use potentially reachable from the block we're 213 // considering putting the safepoint in 214 for (Instruction &inst : *BBI) { 215 if (TraceLSP) { 216 errs() << "[LSP] Looking at instruction "; 217 inst.dump(); 218 } 219 220 if (pred == BBI && (&inst) == term) { 221 if (TraceLSP) { 222 errs() << "[LSP] stopped because we encountered the safepoint " 223 "instruction.\n"; 224 } 225 226 // If we're in the block which defines the interesting instruction, 227 // we don't want to include any values as live which are defined 228 // _after_ the interesting line or as part of the line itself 229 // i.e. "term" is the call instruction for a call safepoint, the 230 // results of the call should not be considered live in that stackmap 231 break; 232 } 233 234 assert(!isAggWhichContainsGCPtrType(inst.getType()) && 235 "support for FCA unimplemented"); 236 237 if (is_live_gc_reference(inst)) { 238 if (TraceLSP) { 239 errs() << "[LSP] found live value for this safepoint "; 240 inst.dump(); 241 term->dump(); 242 } 243 liveValues.insert(&inst); 244 } 245 } 246 if (!DT.getNode(BBI)->getIDom()) { 247 assert(BBI == &F->getEntryBlock() && 248 "failed to find a dominator for something other than " 249 "the entry block"); 250 break; 251 } 252 BBI = DT.getNode(BBI)->getIDom()->getBlock(); 253 } 254 } 255 256 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 257 if (a->hasName() && b->hasName()) { 258 return -1 == a->getName().compare(b->getName()); 259 } else if (a->hasName() && !b->hasName()) { 260 return true; 261 } else if (!a->hasName() && b->hasName()) { 262 return false; 263 } else { 264 // Better than nothing, but not stable 265 return a < b; 266 } 267 } 268 269 /// Find the initial live set. Note that due to base pointer 270 /// insertion, the live set may be incomplete. 271 static void 272 analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS, 273 PartiallyConstructedSafepointRecord &result) { 274 Instruction *inst = CS.getInstruction(); 275 276 BasicBlock *BB = inst->getParent(); 277 std::set<Value *> liveset; 278 findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset); 279 280 if (PrintLiveSet) { 281 // Note: This output is used by several of the test cases 282 // The order of elemtns in a set is not stable, put them in a vec and sort 283 // by name 284 std::vector<Value *> temp; 285 temp.insert(temp.end(), liveset.begin(), liveset.end()); 286 std::sort(temp.begin(), temp.end(), order_by_name); 287 errs() << "Live Variables:\n"; 288 for (Value *V : temp) { 289 errs() << " " << V->getName(); // no newline 290 V->dump(); 291 } 292 } 293 if (PrintLiveSetSize) { 294 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 295 errs() << "Number live values: " << liveset.size() << "\n"; 296 } 297 result.liveset = liveset; 298 } 299 300 /// True iff this value is the null pointer constant (of any pointer type) 301 static bool isNullConstant(Value *V) { 302 return isa<Constant>(V) && isa<PointerType>(V->getType()) && 303 cast<Constant>(V)->isNullValue(); 304 } 305 306 /// Helper function for findBasePointer - Will return a value which either a) 307 /// defines the base pointer for the input or b) blocks the simple search 308 /// (i.e. a PHI or Select of two derived pointers) 309 static Value *findBaseDefiningValue(Value *I) { 310 assert(I->getType()->isPointerTy() && 311 "Illegal to ask for the base pointer of a non-pointer type"); 312 313 // There are instructions which can never return gc pointer values. Sanity 314 // check 315 // that this is actually true. 316 assert(!isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) && 317 !isa<ShuffleVectorInst>(I) && "Vector types are not gc pointers"); 318 assert((!isa<Instruction>(I) || isa<InvokeInst>(I) || 319 !cast<Instruction>(I)->isTerminator()) && 320 "With the exception of invoke terminators don't define values"); 321 assert(!isa<StoreInst>(I) && !isa<FenceInst>(I) && 322 "Can't be definitions to start with"); 323 assert(!isa<ICmpInst>(I) && !isa<FCmpInst>(I) && 324 "Comparisons don't give ops"); 325 // There's a bunch of instructions which just don't make sense to apply to 326 // a pointer. The only valid reason for this would be pointer bit 327 // twiddling which we're just not going to support. 328 assert((!isa<Instruction>(I) || !cast<Instruction>(I)->isBinaryOp()) && 329 "Binary ops on pointer values are meaningless. Unless your " 330 "bit-twiddling which we don't support"); 331 332 if (Argument *Arg = dyn_cast<Argument>(I)) { 333 // An incoming argument to the function is a base pointer 334 // We should have never reached here if this argument isn't an gc value 335 assert(Arg->getType()->isPointerTy() && 336 "Base for pointer must be another pointer"); 337 return Arg; 338 } 339 340 if (GlobalVariable *global = dyn_cast<GlobalVariable>(I)) { 341 // base case 342 assert(global->getType()->isPointerTy() && 343 "Base for pointer must be another pointer"); 344 return global; 345 } 346 347 // inlining could possibly introduce phi node that contains 348 // undef if callee has multiple returns 349 if (UndefValue *undef = dyn_cast<UndefValue>(I)) { 350 assert(undef->getType()->isPointerTy() && 351 "Base for pointer must be another pointer"); 352 return undef; // utterly meaningless, but useful for dealing with 353 // partially optimized code. 354 } 355 356 // Due to inheritance, this must be _after_ the global variable and undef 357 // checks 358 if (Constant *con = dyn_cast<Constant>(I)) { 359 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 360 "order of checks wrong!"); 361 // Note: Finding a constant base for something marked for relocation 362 // doesn't really make sense. The most likely case is either a) some 363 // screwed up the address space usage or b) your validating against 364 // compiled C++ code w/o the proper separation. The only real exception 365 // is a null pointer. You could have generic code written to index of 366 // off a potentially null value and have proven it null. We also use 367 // null pointers in dead paths of relocation phis (which we might later 368 // want to find a base pointer for). 369 assert(con->getType()->isPointerTy() && 370 "Base for pointer must be another pointer"); 371 assert(con->isNullValue() && "null is the only case which makes sense"); 372 return con; 373 } 374 375 if (CastInst *CI = dyn_cast<CastInst>(I)) { 376 Value *def = CI->stripPointerCasts(); 377 assert(def->getType()->isPointerTy() && 378 "Base for pointer must be another pointer"); 379 if (isa<CastInst>(def)) { 380 // If we find a cast instruction here, it means we've found a cast 381 // which is not simply a pointer cast (i.e. an inttoptr). We don't 382 // know how to handle int->ptr conversion. 383 llvm_unreachable("Can not find the base pointers for an inttoptr cast"); 384 } 385 assert(!isa<CastInst>(def) && "shouldn't find another cast here"); 386 return findBaseDefiningValue(def); 387 } 388 389 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 390 if (LI->getType()->isPointerTy()) { 391 Value *Op = LI->getOperand(0); 392 // Has to be a pointer to an gc object, or possibly an array of such? 393 assert(Op->getType()->isPointerTy()); 394 return LI; // The value loaded is an gc base itself 395 } 396 } 397 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 398 Value *Op = GEP->getOperand(0); 399 if (Op->getType()->isPointerTy()) { 400 return findBaseDefiningValue(Op); // The base of this GEP is the base 401 } 402 } 403 404 if (AllocaInst *alloc = dyn_cast<AllocaInst>(I)) { 405 // An alloca represents a conceptual stack slot. It's the slot itself 406 // that the GC needs to know about, not the value in the slot. 407 assert(alloc->getType()->isPointerTy() && 408 "Base for pointer must be another pointer"); 409 return alloc; 410 } 411 412 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 413 switch (II->getIntrinsicID()) { 414 default: 415 // fall through to general call handling 416 break; 417 case Intrinsic::experimental_gc_statepoint: 418 case Intrinsic::experimental_gc_result_float: 419 case Intrinsic::experimental_gc_result_int: 420 llvm_unreachable("these don't produce pointers"); 421 case Intrinsic::experimental_gc_result_ptr: 422 // This is just a special case of the CallInst check below to handle a 423 // statepoint with deopt args which hasn't been rewritten for GC yet. 424 // TODO: Assert that the statepoint isn't rewritten yet. 425 return II; 426 case Intrinsic::experimental_gc_relocate: { 427 // Rerunning safepoint insertion after safepoints are already 428 // inserted is not supported. It could probably be made to work, 429 // but why are you doing this? There's no good reason. 430 llvm_unreachable("repeat safepoint insertion is not supported"); 431 } 432 case Intrinsic::gcroot: 433 // Currently, this mechanism hasn't been extended to work with gcroot. 434 // There's no reason it couldn't be, but I haven't thought about the 435 // implications much. 436 llvm_unreachable( 437 "interaction with the gcroot mechanism is not supported"); 438 } 439 } 440 // We assume that functions in the source language only return base 441 // pointers. This should probably be generalized via attributes to support 442 // both source language and internal functions. 443 if (CallInst *call = dyn_cast<CallInst>(I)) { 444 assert(call->getType()->isPointerTy() && 445 "Base for pointer must be another pointer"); 446 return call; 447 } 448 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 449 assert(invoke->getType()->isPointerTy() && 450 "Base for pointer must be another pointer"); 451 return invoke; 452 } 453 454 // I have absolutely no idea how to implement this part yet. It's not 455 // neccessarily hard, I just haven't really looked at it yet. 456 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 457 458 if (AtomicCmpXchgInst *cas = dyn_cast<AtomicCmpXchgInst>(I)) { 459 // A CAS is effectively a atomic store and load combined under a 460 // predicate. From the perspective of base pointers, we just treat it 461 // like a load. We loaded a pointer from a address in memory, that value 462 // had better be a valid base pointer. 463 return cas->getPointerOperand(); 464 } 465 if (AtomicRMWInst *atomic = dyn_cast<AtomicRMWInst>(I)) { 466 assert(AtomicRMWInst::Xchg == atomic->getOperation() && 467 "All others are binary ops which don't apply to base pointers"); 468 // semantically, a load, store pair. Treat it the same as a standard load 469 return atomic->getPointerOperand(); 470 } 471 472 // The aggregate ops. Aggregates can either be in the heap or on the 473 // stack, but in either case, this is simply a field load. As a result, 474 // this is a defining definition of the base just like a load is. 475 if (ExtractValueInst *ev = dyn_cast<ExtractValueInst>(I)) { 476 return ev; 477 } 478 479 // We should never see an insert vector since that would require we be 480 // tracing back a struct value not a pointer value. 481 assert(!isa<InsertValueInst>(I) && 482 "Base pointer for a struct is meaningless"); 483 484 // The last two cases here don't return a base pointer. Instead, they 485 // return a value which dynamically selects from amoung several base 486 // derived pointers (each with it's own base potentially). It's the job of 487 // the caller to resolve these. 488 if (SelectInst *select = dyn_cast<SelectInst>(I)) { 489 return select; 490 } 491 if (PHINode *phi = dyn_cast<PHINode>(I)) { 492 return phi; 493 } 494 495 errs() << "unknown type: " << *I << "\n"; 496 llvm_unreachable("unknown type"); 497 return nullptr; 498 } 499 500 /// Returns the base defining value for this value. 501 Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &cache) { 502 if (cache.find(I) == cache.end()) { 503 cache[I] = findBaseDefiningValue(I); 504 } 505 assert(cache.find(I) != cache.end()); 506 507 if (TraceLSP) { 508 errs() << "fBDV-cached: " << I->getName() << " -> " << cache[I]->getName() 509 << "\n"; 510 } 511 return cache[I]; 512 } 513 514 /// Return a base pointer for this value if known. Otherwise, return it's 515 /// base defining value. 516 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &cache) { 517 Value *def = findBaseDefiningValueCached(I, cache); 518 if (cache.count(def)) { 519 // Either a base-of relation, or a self reference. Caller must check. 520 return cache[def]; 521 } 522 // Only a BDV available 523 return def; 524 } 525 526 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 527 /// is it known to be a base pointer? Or do we need to continue searching. 528 static bool isKnownBaseResult(Value *v) { 529 if (!isa<PHINode>(v) && !isa<SelectInst>(v)) { 530 // no recursion possible 531 return true; 532 } 533 if (cast<Instruction>(v)->getMetadata("is_base_value")) { 534 // This is a previously inserted base phi or select. We know 535 // that this is a base value. 536 return true; 537 } 538 539 // We need to keep searching 540 return false; 541 } 542 543 // TODO: find a better name for this 544 namespace { 545 class PhiState { 546 public: 547 enum Status { Unknown, Base, Conflict }; 548 549 PhiState(Status s, Value *b = nullptr) : status(s), base(b) { 550 assert(status != Base || b); 551 } 552 PhiState(Value *b) : status(Base), base(b) {} 553 PhiState() : status(Unknown), base(nullptr) {} 554 PhiState(const PhiState &other) : status(other.status), base(other.base) { 555 assert(status != Base || base); 556 } 557 558 Status getStatus() const { return status; } 559 Value *getBase() const { return base; } 560 561 bool isBase() const { return getStatus() == Base; } 562 bool isUnknown() const { return getStatus() == Unknown; } 563 bool isConflict() const { return getStatus() == Conflict; } 564 565 bool operator==(const PhiState &other) const { 566 return base == other.base && status == other.status; 567 } 568 569 bool operator!=(const PhiState &other) const { return !(*this == other); } 570 571 void dump() { 572 errs() << status << " (" << base << " - " 573 << (base ? base->getName() : "nullptr") << "): "; 574 } 575 576 private: 577 Status status; 578 Value *base; // non null only if status == base 579 }; 580 581 // Values of type PhiState form a lattice, and this is a helper 582 // class that implementes the meet operation. The meat of the meet 583 // operation is implemented in MeetPhiStates::pureMeet 584 class MeetPhiStates { 585 public: 586 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. 587 explicit MeetPhiStates(const std::map<Value *, PhiState> &phiStates) 588 : phiStates(phiStates) {} 589 590 // Destructively meet the current result with the base V. V can 591 // either be a merge instruction (SelectInst / PHINode), in which 592 // case its status is looked up in the phiStates map; or a regular 593 // SSA value, in which case it is assumed to be a base. 594 void meetWith(Value *V) { 595 PhiState otherState = getStateForBDV(V); 596 assert((MeetPhiStates::pureMeet(otherState, currentResult) == 597 MeetPhiStates::pureMeet(currentResult, otherState)) && 598 "math is wrong: meet does not commute!"); 599 currentResult = MeetPhiStates::pureMeet(otherState, currentResult); 600 } 601 602 PhiState getResult() const { return currentResult; } 603 604 private: 605 const std::map<Value *, PhiState> &phiStates; 606 PhiState currentResult; 607 608 /// Return a phi state for a base defining value. We'll generate a new 609 /// base state for known bases and expect to find a cached state otherwise 610 PhiState getStateForBDV(Value *baseValue) { 611 if (isKnownBaseResult(baseValue)) { 612 return PhiState(baseValue); 613 } else { 614 return lookupFromMap(baseValue); 615 } 616 } 617 618 PhiState lookupFromMap(Value *V) { 619 auto I = phiStates.find(V); 620 assert(I != phiStates.end() && "lookup failed!"); 621 return I->second; 622 } 623 624 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { 625 switch (stateA.getStatus()) { 626 case PhiState::Unknown: 627 return stateB; 628 629 case PhiState::Base: 630 assert(stateA.getBase() && "can't be null"); 631 if (stateB.isUnknown()) { 632 return stateA; 633 } else if (stateB.isBase()) { 634 if (stateA.getBase() == stateB.getBase()) { 635 assert(stateA == stateB && "equality broken!"); 636 return stateA; 637 } 638 return PhiState(PhiState::Conflict); 639 } else { 640 assert(stateB.isConflict() && "only three states!"); 641 return PhiState(PhiState::Conflict); 642 } 643 644 case PhiState::Conflict: 645 return stateA; 646 } 647 assert(false && "only three states!"); 648 } 649 }; 650 } 651 /// For a given value or instruction, figure out what base ptr it's derived 652 /// from. For gc objects, this is simply itself. On success, returns a value 653 /// which is the base pointer. (This is reliable and can be used for 654 /// relocation.) On failure, returns nullptr. 655 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache, 656 std::set<llvm::Value *> &newInsertedDefs) { 657 Value *def = findBaseOrBDV(I, cache); 658 659 if (isKnownBaseResult(def)) { 660 return def; 661 } 662 663 // Here's the rough algorithm: 664 // - For every SSA value, construct a mapping to either an actual base 665 // pointer or a PHI which obscures the base pointer. 666 // - Construct a mapping from PHI to unknown TOP state. Use an 667 // optimistic algorithm to propagate base pointer information. Lattice 668 // looks like: 669 // UNKNOWN 670 // b1 b2 b3 b4 671 // CONFLICT 672 // When algorithm terminates, all PHIs will either have a single concrete 673 // base or be in a conflict state. 674 // - For every conflict, insert a dummy PHI node without arguments. Add 675 // these to the base[Instruction] = BasePtr mapping. For every 676 // non-conflict, add the actual base. 677 // - For every conflict, add arguments for the base[a] of each input 678 // arguments. 679 // 680 // Note: A simpler form of this would be to add the conflict form of all 681 // PHIs without running the optimistic algorithm. This would be 682 // analougous to pessimistic data flow and would likely lead to an 683 // overall worse solution. 684 685 std::map<Value *, PhiState> states; 686 states[def] = PhiState(); 687 // Recursively fill in all phis & selects reachable from the initial one 688 // for which we don't already know a definite base value for 689 // PERF: Yes, this is as horribly inefficient as it looks. 690 bool done = false; 691 while (!done) { 692 done = true; 693 for (auto Pair : states) { 694 Value *v = Pair.first; 695 assert(!isKnownBaseResult(v) && "why did it get added?"); 696 if (PHINode *phi = dyn_cast<PHINode>(v)) { 697 unsigned NumPHIValues = phi->getNumIncomingValues(); 698 assert(NumPHIValues > 0 && "zero input phis are illegal"); 699 for (unsigned i = 0; i != NumPHIValues; ++i) { 700 Value *InVal = phi->getIncomingValue(i); 701 Value *local = findBaseOrBDV(InVal, cache); 702 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 703 states[local] = PhiState(); 704 done = false; 705 } 706 } 707 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 708 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 709 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 710 states[local] = PhiState(); 711 done = false; 712 } 713 local = findBaseOrBDV(sel->getFalseValue(), cache); 714 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 715 states[local] = PhiState(); 716 done = false; 717 } 718 } 719 } 720 } 721 722 if (TraceLSP) { 723 errs() << "States after initialization:\n"; 724 for (auto Pair : states) { 725 Instruction *v = cast<Instruction>(Pair.first); 726 PhiState state = Pair.second; 727 state.dump(); 728 v->dump(); 729 } 730 } 731 732 // TODO: come back and revisit the state transitions around inputs which 733 // have reached conflict state. The current version seems too conservative. 734 735 bool progress = true; 736 size_t oldSize = 0; 737 while (progress) { 738 oldSize = states.size(); 739 progress = false; 740 for (auto Pair : states) { 741 MeetPhiStates calculateMeet(states); 742 Value *v = Pair.first; 743 assert(!isKnownBaseResult(v) && "why did it get added?"); 744 assert(isa<SelectInst>(v) || isa<PHINode>(v)); 745 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 746 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); 747 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); 748 } else if (PHINode *phi = dyn_cast<PHINode>(v)) { 749 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 750 calculateMeet.meetWith( 751 findBaseOrBDV(phi->getIncomingValue(i), cache)); 752 } 753 } else { 754 llvm_unreachable("no such state expected"); 755 } 756 757 PhiState oldState = states[v]; 758 PhiState newState = calculateMeet.getResult(); 759 if (oldState != newState) { 760 progress = true; 761 states[v] = newState; 762 } 763 } 764 765 assert(oldSize <= states.size()); 766 assert(oldSize == states.size() || progress); 767 } 768 769 if (TraceLSP) { 770 errs() << "States after meet iteration:\n"; 771 for (auto Pair : states) { 772 Instruction *v = cast<Instruction>(Pair.first); 773 PhiState state = Pair.second; 774 state.dump(); 775 v->dump(); 776 } 777 } 778 779 // Insert Phis for all conflicts 780 for (auto Pair : states) { 781 Instruction *v = cast<Instruction>(Pair.first); 782 PhiState state = Pair.second; 783 assert(!isKnownBaseResult(v) && "why did it get added?"); 784 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 785 if (state.isConflict()) { 786 if (isa<PHINode>(v)) { 787 int num_preds = 788 std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); 789 assert(num_preds > 0 && "how did we reach here"); 790 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); 791 newInsertedDefs.insert(phi); 792 // Add metadata marking this as a base value 793 auto *const_1 = ConstantInt::get( 794 Type::getInt32Ty( 795 v->getParent()->getParent()->getParent()->getContext()), 796 1); 797 auto MDConst = ConstantAsMetadata::get(const_1); 798 MDNode *md = MDNode::get( 799 v->getParent()->getParent()->getParent()->getContext(), MDConst); 800 phi->setMetadata("is_base_value", md); 801 states[v] = PhiState(PhiState::Conflict, phi); 802 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 803 // The undef will be replaced later 804 UndefValue *undef = UndefValue::get(sel->getType()); 805 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, 806 undef, "base_select", sel); 807 newInsertedDefs.insert(basesel); 808 // Add metadata marking this as a base value 809 auto *const_1 = ConstantInt::get( 810 Type::getInt32Ty( 811 v->getParent()->getParent()->getParent()->getContext()), 812 1); 813 auto MDConst = ConstantAsMetadata::get(const_1); 814 MDNode *md = MDNode::get( 815 v->getParent()->getParent()->getParent()->getContext(), MDConst); 816 basesel->setMetadata("is_base_value", md); 817 states[v] = PhiState(PhiState::Conflict, basesel); 818 } else { 819 assert(false); 820 } 821 } 822 } 823 824 // Fixup all the inputs of the new PHIs 825 for (auto Pair : states) { 826 Instruction *v = cast<Instruction>(Pair.first); 827 PhiState state = Pair.second; 828 829 assert(!isKnownBaseResult(v) && "why did it get added?"); 830 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 831 if (state.isConflict()) { 832 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 833 PHINode *phi = cast<PHINode>(v); 834 unsigned NumPHIValues = phi->getNumIncomingValues(); 835 for (unsigned i = 0; i < NumPHIValues; i++) { 836 Value *InVal = phi->getIncomingValue(i); 837 BasicBlock *InBB = phi->getIncomingBlock(i); 838 839 // If we've already seen InBB, add the same incoming value 840 // we added for it earlier. The IR verifier requires phi 841 // nodes with multiple entries from the same basic block 842 // to have the same incoming value for each of those 843 // entries. If we don't do this check here and basephi 844 // has a different type than base, we'll end up adding two 845 // bitcasts (and hence two distinct values) as incoming 846 // values for the same basic block. 847 848 int blockIndex = basephi->getBasicBlockIndex(InBB); 849 if (blockIndex != -1) { 850 Value *oldBase = basephi->getIncomingValue(blockIndex); 851 basephi->addIncoming(oldBase, InBB); 852 #ifndef NDEBUG 853 Value *base = findBaseOrBDV(InVal, cache); 854 if (!isKnownBaseResult(base)) { 855 // Either conflict or base. 856 assert(states.count(base)); 857 base = states[base].getBase(); 858 assert(base != nullptr && "unknown PhiState!"); 859 assert(newInsertedDefs.count(base) && 860 "should have already added this in a prev. iteration!"); 861 } 862 863 // In essense this assert states: the only way two 864 // values incoming from the same basic block may be 865 // different is by being different bitcasts of the same 866 // value. A cleanup that remains TODO is changing 867 // findBaseOrBDV to return an llvm::Value of the correct 868 // type (and still remain pure). This will remove the 869 // need to add bitcasts. 870 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 871 "sanity -- findBaseOrBDV should be pure!"); 872 #endif 873 continue; 874 } 875 876 // Find either the defining value for the PHI or the normal base for 877 // a non-phi node 878 Value *base = findBaseOrBDV(InVal, cache); 879 if (!isKnownBaseResult(base)) { 880 // Either conflict or base. 881 assert(states.count(base)); 882 base = states[base].getBase(); 883 assert(base != nullptr && "unknown PhiState!"); 884 } 885 assert(base && "can't be null"); 886 // Must use original input BB since base may not be Instruction 887 // The cast is needed since base traversal may strip away bitcasts 888 if (base->getType() != basephi->getType()) { 889 base = new BitCastInst(base, basephi->getType(), "cast", 890 InBB->getTerminator()); 891 newInsertedDefs.insert(base); 892 } 893 basephi->addIncoming(base, InBB); 894 } 895 assert(basephi->getNumIncomingValues() == NumPHIValues); 896 } else if (SelectInst *basesel = dyn_cast<SelectInst>(state.getBase())) { 897 SelectInst *sel = cast<SelectInst>(v); 898 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 899 // something more safe and less hacky. 900 for (int i = 1; i <= 2; i++) { 901 Value *InVal = sel->getOperand(i); 902 // Find either the defining value for the PHI or the normal base for 903 // a non-phi node 904 Value *base = findBaseOrBDV(InVal, cache); 905 if (!isKnownBaseResult(base)) { 906 // Either conflict or base. 907 assert(states.count(base)); 908 base = states[base].getBase(); 909 assert(base != nullptr && "unknown PhiState!"); 910 } 911 assert(base && "can't be null"); 912 // Must use original input BB since base may not be Instruction 913 // The cast is needed since base traversal may strip away bitcasts 914 if (base->getType() != basesel->getType()) { 915 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 916 newInsertedDefs.insert(base); 917 } 918 basesel->setOperand(i, base); 919 } 920 } else { 921 assert(false && "unexpected type"); 922 } 923 } 924 } 925 926 // Cache all of our results so we can cheaply reuse them 927 // NOTE: This is actually two caches: one of the base defining value 928 // relation and one of the base pointer relation! FIXME 929 for (auto item : states) { 930 Value *v = item.first; 931 Value *base = item.second.getBase(); 932 assert(v && base); 933 assert(!isKnownBaseResult(v) && "why did it get added?"); 934 935 if (TraceLSP) { 936 std::string fromstr = 937 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 938 : "none"; 939 errs() << "Updating base value cache" 940 << " for: " << (v->hasName() ? v->getName() : "") 941 << " from: " << fromstr 942 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 943 } 944 945 assert(isKnownBaseResult(base) && 946 "must be something we 'know' is a base pointer"); 947 if (cache.count(v)) { 948 // Once we transition from the BDV relation being store in the cache to 949 // the base relation being stored, it must be stable 950 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 951 "base relation should be stable"); 952 } 953 cache[v] = base; 954 } 955 assert(cache.find(def) != cache.end()); 956 return cache[def]; 957 } 958 959 // For a set of live pointers (base and/or derived), identify the base 960 // pointer of the object which they are derived from. This routine will 961 // mutate the IR graph as needed to make the 'base' pointer live at the 962 // definition site of 'derived'. This ensures that any use of 'derived' can 963 // also use 'base'. This may involve the insertion of a number of 964 // additional PHI nodes. 965 // 966 // preconditions: live is a set of pointer type Values 967 // 968 // side effects: may insert PHI nodes into the existing CFG, will preserve 969 // CFG, will not remove or mutate any existing nodes 970 // 971 // post condition: base_pairs contains one (derived, base) pair for every 972 // pointer in live. Note that derived can be equal to base if the original 973 // pointer was a base pointer. 974 static void findBasePointers(const std::set<llvm::Value *> &live, 975 std::map<llvm::Value *, llvm::Value *> &base_pairs, 976 DominatorTree *DT, DefiningValueMapTy &DVCache, 977 std::set<llvm::Value *> &newInsertedDefs) { 978 for (Value *ptr : live) { 979 Value *base = findBasePointer(ptr, DVCache, newInsertedDefs); 980 assert(base && "failed to find base pointer"); 981 base_pairs[ptr] = base; 982 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 983 DT->dominates(cast<Instruction>(base)->getParent(), 984 cast<Instruction>(ptr)->getParent())) && 985 "The base we found better dominate the derived pointer"); 986 987 if (isNullConstant(base)) 988 // If you see this trip and like to live really dangerously, the code 989 // should be correct, just with idioms the verifier can't handle. You 990 // can try disabling the verifier at your own substaintial risk. 991 llvm_unreachable("the relocation code needs adjustment to handle the" 992 "relocation of a null pointer constant without causing" 993 "false positives in the safepoint ir verifier."); 994 } 995 } 996 997 /// Find the required based pointers (and adjust the live set) for the given 998 /// parse point. 999 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1000 const CallSite &CS, 1001 PartiallyConstructedSafepointRecord &result) { 1002 std::map<llvm::Value *, llvm::Value *> base_pairs; 1003 std::set<llvm::Value *> newInsertedDefs; 1004 findBasePointers(result.liveset, base_pairs, &DT, DVCache, newInsertedDefs); 1005 1006 if (PrintBasePointers) { 1007 errs() << "Base Pairs (w/o Relocation):\n"; 1008 for (auto Pair : base_pairs) { 1009 errs() << " derived %" << Pair.first->getName() << " base %" 1010 << Pair.second->getName() << "\n"; 1011 } 1012 } 1013 1014 result.base_pairs = base_pairs; 1015 result.newInsertedDefs = newInsertedDefs; 1016 } 1017 1018 /// Check for liveness of items in the insert defs and add them to the live 1019 /// and base pointer sets 1020 static void fixupLiveness(DominatorTree &DT, const CallSite &CS, 1021 const std::set<Value *> &allInsertedDefs, 1022 PartiallyConstructedSafepointRecord &result) { 1023 Instruction *inst = CS.getInstruction(); 1024 1025 std::set<llvm::Value *> liveset = result.liveset; 1026 std::map<llvm::Value *, llvm::Value *> base_pairs = result.base_pairs; 1027 1028 auto is_live_gc_reference = 1029 [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); }; 1030 1031 // For each new definition, check to see if a) the definition dominates the 1032 // instruction we're interested in, and b) one of the uses of that definition 1033 // is edge-reachable from the instruction we're interested in. This is the 1034 // same definition of liveness we used in the intial liveness analysis 1035 for (Value *newDef : allInsertedDefs) { 1036 if (liveset.count(newDef)) { 1037 // already live, no action needed 1038 continue; 1039 } 1040 1041 // PERF: Use DT to check instruction domination might not be good for 1042 // compilation time, and we could change to optimal solution if this 1043 // turn to be a issue 1044 if (!DT.dominates(cast<Instruction>(newDef), inst)) { 1045 // can't possibly be live at inst 1046 continue; 1047 } 1048 1049 if (is_live_gc_reference(*newDef)) { 1050 // Add the live new defs into liveset and base_pairs 1051 liveset.insert(newDef); 1052 base_pairs[newDef] = newDef; 1053 } 1054 } 1055 1056 result.liveset = liveset; 1057 result.base_pairs = base_pairs; 1058 } 1059 1060 static void fixupLiveReferences( 1061 Function &F, DominatorTree &DT, Pass *P, 1062 const std::set<llvm::Value *> &allInsertedDefs, 1063 std::vector<CallSite> &toUpdate, 1064 std::vector<struct PartiallyConstructedSafepointRecord> &records) { 1065 for (size_t i = 0; i < records.size(); i++) { 1066 struct PartiallyConstructedSafepointRecord &info = records[i]; 1067 CallSite &CS = toUpdate[i]; 1068 fixupLiveness(DT, CS, allInsertedDefs, info); 1069 } 1070 } 1071 1072 // Normalize basic block to make it ready to be target of invoke statepoint. 1073 // It means spliting it to have single predecessor. Return newly created BB 1074 // ready to be successor of invoke statepoint. 1075 static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB, 1076 BasicBlock *InvokeParent, 1077 Pass *P) { 1078 BasicBlock *ret = BB; 1079 1080 if (!BB->getUniquePredecessor()) { 1081 ret = SplitBlockPredecessors(BB, InvokeParent, ""); 1082 } 1083 1084 // Another requirement for such basic blocks is to not have any phi nodes. 1085 // Since we just ensured that new BB will have single predecessor, 1086 // all phi nodes in it will have one value. Here it would be naturall place 1087 // to 1088 // remove them all. But we can not do this because we are risking to remove 1089 // one of the values stored in liveset of another statepoint. We will do it 1090 // later after placing all safepoints. 1091 1092 return ret; 1093 } 1094 1095 static void 1096 VerifySafepointBounds(const std::pair<Instruction *, Instruction *> &bounds) { 1097 assert(bounds.first->getParent() && bounds.second->getParent() && 1098 "both must belong to basic blocks"); 1099 if (bounds.first->getParent() == bounds.second->getParent()) { 1100 // This is a call safepoint 1101 // TODO: scan the range to find the statepoint 1102 // TODO: check that the following instruction is not a gc_relocate or 1103 // gc_result 1104 } else { 1105 // This is an invoke safepoint 1106 InvokeInst *invoke = dyn_cast<InvokeInst>(bounds.first); 1107 assert(invoke && "only continues over invokes!"); 1108 assert(invoke->getNormalDest() == bounds.second->getParent() && 1109 "safepoint should continue into normal exit block"); 1110 } 1111 } 1112 1113 static int find_index(const SmallVectorImpl<Value *> &livevec, Value *val) { 1114 auto itr = std::find(livevec.begin(), livevec.end(), val); 1115 assert(livevec.end() != itr); 1116 size_t index = std::distance(livevec.begin(), itr); 1117 assert(index < livevec.size()); 1118 return index; 1119 } 1120 1121 // Create new attribute set containing only attributes which can be transfered 1122 // from original call to the safepoint. 1123 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1124 AttributeSet ret; 1125 1126 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1127 unsigned index = AS.getSlotIndex(Slot); 1128 1129 if (index == AttributeSet::ReturnIndex || 1130 index == AttributeSet::FunctionIndex) { 1131 1132 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1133 ++it) { 1134 Attribute attr = *it; 1135 1136 // Do not allow certain attributes - just skip them 1137 // Safepoint can not be read only or read none. 1138 if (attr.hasAttribute(Attribute::ReadNone) || 1139 attr.hasAttribute(Attribute::ReadOnly)) 1140 continue; 1141 1142 ret = ret.addAttributes( 1143 AS.getContext(), index, 1144 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1145 } 1146 } 1147 1148 // Just skip parameter attributes for now 1149 } 1150 1151 return ret; 1152 } 1153 1154 /// Helper function to place all gc relocates necessary for the given 1155 /// statepoint. 1156 /// Inputs: 1157 /// liveVariables - list of variables to be relocated. 1158 /// liveStart - index of the first live variable. 1159 /// basePtrs - base pointers. 1160 /// statepointToken - statepoint instruction to which relocates should be 1161 /// bound. 1162 /// Builder - Llvm IR builder to be used to construct new calls. 1163 /// Returns array with newly created relocates. 1164 static std::vector<llvm::Instruction *> 1165 CreateGCRelocates(const SmallVectorImpl<llvm::Value *> &liveVariables, 1166 const int liveStart, 1167 const SmallVectorImpl<llvm::Value *> &basePtrs, 1168 Instruction *statepointToken, IRBuilder<> Builder) { 1169 1170 std::vector<llvm::Instruction *> newDefs; 1171 1172 Module *M = statepointToken->getParent()->getParent()->getParent(); 1173 1174 for (unsigned i = 0; i < liveVariables.size(); i++) { 1175 // We generate a (potentially) unique declaration for every pointer type 1176 // combination. This results is some blow up the function declarations in 1177 // the IR, but removes the need for argument bitcasts which shrinks the IR 1178 // greatly and makes it much more readable. 1179 std::vector<Type *> types; // one per 'any' type 1180 types.push_back(liveVariables[i]->getType()); // result type 1181 Value *gc_relocate_decl = Intrinsic::getDeclaration( 1182 M, Intrinsic::experimental_gc_relocate, types); 1183 1184 // Generate the gc.relocate call and save the result 1185 Value *baseIdx = 1186 ConstantInt::get(Type::getInt32Ty(M->getContext()), 1187 liveStart + find_index(liveVariables, basePtrs[i])); 1188 Value *liveIdx = ConstantInt::get( 1189 Type::getInt32Ty(M->getContext()), 1190 liveStart + find_index(liveVariables, liveVariables[i])); 1191 1192 // only specify a debug name if we can give a useful one 1193 Value *reloc = Builder.CreateCall3( 1194 gc_relocate_decl, statepointToken, baseIdx, liveIdx, 1195 liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" 1196 : ""); 1197 // Trick CodeGen into thinking there are lots of free registers at this 1198 // fake call. 1199 cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold); 1200 1201 newDefs.push_back(cast<Instruction>(reloc)); 1202 } 1203 assert(newDefs.size() == liveVariables.size() && 1204 "missing or extra redefinition at safepoint"); 1205 1206 return newDefs; 1207 } 1208 1209 static void 1210 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1211 const SmallVectorImpl<llvm::Value *> &basePtrs, 1212 const SmallVectorImpl<llvm::Value *> &liveVariables, 1213 Pass *P, 1214 PartiallyConstructedSafepointRecord &result) { 1215 assert(basePtrs.size() == liveVariables.size()); 1216 assert(isStatepoint(CS) && 1217 "This method expects to be rewriting a statepoint"); 1218 1219 BasicBlock *BB = CS.getInstruction()->getParent(); 1220 assert(BB); 1221 Function *F = BB->getParent(); 1222 assert(F && "must be set"); 1223 Module *M = F->getParent(); 1224 assert(M && "must be set"); 1225 1226 // We're not changing the function signature of the statepoint since the gc 1227 // arguments go into the var args section. 1228 Function *gc_statepoint_decl = CS.getCalledFunction(); 1229 1230 // Then go ahead and use the builder do actually do the inserts. We insert 1231 // immediately before the previous instruction under the assumption that all 1232 // arguments will be available here. We can't insert afterwards since we may 1233 // be replacing a terminator. 1234 Instruction *insertBefore = CS.getInstruction(); 1235 IRBuilder<> Builder(insertBefore); 1236 // Copy all of the arguments from the original statepoint - this includes the 1237 // target, call args, and deopt args 1238 std::vector<llvm::Value *> args; 1239 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1240 // TODO: Clear the 'needs rewrite' flag 1241 1242 // add all the pointers to be relocated (gc arguments) 1243 // Capture the start of the live variable list for use in the gc_relocates 1244 const int live_start = args.size(); 1245 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1246 1247 // Create the statepoint given all the arguments 1248 Instruction *token = nullptr; 1249 AttributeSet return_attributes; 1250 if (CS.isCall()) { 1251 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1252 CallInst *call = 1253 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1254 call->setTailCall(toReplace->isTailCall()); 1255 call->setCallingConv(toReplace->getCallingConv()); 1256 1257 // Currently we will fail on parameter attributes and on certain 1258 // function attributes. 1259 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1260 // In case if we can handle this set of sttributes - set up function attrs 1261 // directly on statepoint and return attrs later for gc_result intrinsic. 1262 call->setAttributes(new_attrs.getFnAttributes()); 1263 return_attributes = new_attrs.getRetAttributes(); 1264 1265 token = call; 1266 1267 // Put the following gc_result and gc_relocate calls immediately after the 1268 // the old call (which we're about to delete) 1269 BasicBlock::iterator next(toReplace); 1270 assert(BB->end() != next && "not a terminator, must have next"); 1271 next++; 1272 Instruction *IP = &*(next); 1273 Builder.SetInsertPoint(IP); 1274 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1275 1276 } else if (CS.isInvoke()) { 1277 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1278 1279 // Insert the new invoke into the old block. We'll remove the old one in a 1280 // moment at which point this will become the new terminator for the 1281 // original block. 1282 InvokeInst *invoke = InvokeInst::Create( 1283 gc_statepoint_decl, toReplace->getNormalDest(), 1284 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1285 invoke->setCallingConv(toReplace->getCallingConv()); 1286 1287 // Currently we will fail on parameter attributes and on certain 1288 // function attributes. 1289 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1290 // In case if we can handle this set of sttributes - set up function attrs 1291 // directly on statepoint and return attrs later for gc_result intrinsic. 1292 invoke->setAttributes(new_attrs.getFnAttributes()); 1293 return_attributes = new_attrs.getRetAttributes(); 1294 1295 token = invoke; 1296 1297 // Generate gc relocates in exceptional path 1298 BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint( 1299 toReplace->getUnwindDest(), invoke->getParent(), P); 1300 1301 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1302 Builder.SetInsertPoint(IP); 1303 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1304 1305 // Extract second element from landingpad return value. We will attach 1306 // exceptional gc relocates to it. 1307 const unsigned idx = 1; 1308 Instruction *exceptional_token = 1309 cast<Instruction>(Builder.CreateExtractValue( 1310 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1311 result.exceptional_relocates_token = exceptional_token; 1312 1313 // Just throw away return value. We will use the one we got for normal 1314 // block. 1315 (void)CreateGCRelocates(liveVariables, live_start, basePtrs, 1316 exceptional_token, Builder); 1317 1318 // Generate gc relocates and returns for normal block 1319 BasicBlock *normalDest = normalizeBBForInvokeSafepoint( 1320 toReplace->getNormalDest(), invoke->getParent(), P); 1321 1322 IP = &*(normalDest->getFirstInsertionPt()); 1323 Builder.SetInsertPoint(IP); 1324 1325 // gc relocates will be generated later as if it were regular call 1326 // statepoint 1327 } else { 1328 llvm_unreachable("unexpect type of CallSite"); 1329 } 1330 assert(token); 1331 1332 // Take the name of the original value call if it had one. 1333 token->takeName(CS.getInstruction()); 1334 1335 // The GCResult is already inserted, we just need to find it 1336 Instruction *gc_result = nullptr; 1337 /* scope */ { 1338 Instruction *toReplace = CS.getInstruction(); 1339 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1340 "only valid use before rewrite is gc.result"); 1341 if (toReplace->hasOneUse()) { 1342 Instruction *GCResult = cast<Instruction>(*toReplace->user_begin()); 1343 assert(isGCResult(GCResult)); 1344 gc_result = GCResult; 1345 } 1346 } 1347 1348 // Update the gc.result of the original statepoint (if any) to use the newly 1349 // inserted statepoint. This is safe to do here since the token can't be 1350 // considered a live reference. 1351 CS.getInstruction()->replaceAllUsesWith(token); 1352 1353 // Second, create a gc.relocate for every live variable 1354 std::vector<llvm::Instruction *> newDefs = 1355 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1356 1357 // Need to pass through the last part of the safepoint block so that we 1358 // don't accidentally update uses in a following gc.relocate which is 1359 // still conceptually part of the same safepoint. Gah. 1360 Instruction *last = nullptr; 1361 if (!newDefs.empty()) { 1362 last = newDefs.back(); 1363 } else if (gc_result) { 1364 last = gc_result; 1365 } else { 1366 last = token; 1367 } 1368 assert(last && "can't be null"); 1369 const auto bounds = std::make_pair(token, last); 1370 1371 // Sanity check our results - this is slightly non-trivial due to invokes 1372 VerifySafepointBounds(bounds); 1373 1374 result.safepoint = bounds; 1375 } 1376 1377 namespace { 1378 struct name_ordering { 1379 Value *base; 1380 Value *derived; 1381 bool operator()(name_ordering const &a, name_ordering const &b) { 1382 return -1 == a.derived->getName().compare(b.derived->getName()); 1383 } 1384 }; 1385 } 1386 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1387 SmallVectorImpl<Value *> &livevec) { 1388 assert(basevec.size() == livevec.size()); 1389 1390 std::vector<name_ordering> temp; 1391 for (size_t i = 0; i < basevec.size(); i++) { 1392 name_ordering v; 1393 v.base = basevec[i]; 1394 v.derived = livevec[i]; 1395 temp.push_back(v); 1396 } 1397 std::sort(temp.begin(), temp.end(), name_ordering()); 1398 for (size_t i = 0; i < basevec.size(); i++) { 1399 basevec[i] = temp[i].base; 1400 livevec[i] = temp[i].derived; 1401 } 1402 } 1403 1404 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1405 // which make the relocations happening at this safepoint explicit. 1406 // 1407 // WARNING: Does not do any fixup to adjust users of the original live 1408 // values. That's the callers responsibility. 1409 static void 1410 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1411 PartiallyConstructedSafepointRecord &result) { 1412 std::set<llvm::Value *> liveset = result.liveset; 1413 std::map<llvm::Value *, llvm::Value *> base_pairs = result.base_pairs; 1414 1415 // Convert to vector for efficient cross referencing. 1416 SmallVector<Value *, 64> basevec, livevec; 1417 livevec.reserve(liveset.size()); 1418 basevec.reserve(liveset.size()); 1419 for (Value *L : liveset) { 1420 livevec.push_back(L); 1421 1422 assert(base_pairs.find(L) != base_pairs.end()); 1423 Value *base = base_pairs[L]; 1424 basevec.push_back(base); 1425 } 1426 assert(livevec.size() == basevec.size()); 1427 1428 // To make the output IR slightly more stable (for use in diffs), ensure a 1429 // fixed order of the values in the safepoint (by sorting the value name). 1430 // The order is otherwise meaningless. 1431 stablize_order(basevec, livevec); 1432 1433 // Do the actual rewriting and delete the old statepoint 1434 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1435 CS.getInstruction()->eraseFromParent(); 1436 } 1437 1438 // Helper function for the relocationViaAlloca. 1439 // It receives iterator to the statepoint gc relocates and emits store to the 1440 // assigned 1441 // location (via allocaMap) for the each one of them. 1442 // Add visited values into the visitedLiveValues set we will later use them 1443 // for sanity check. 1444 static void 1445 insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs, 1446 DenseMap<Value *, Value *> &allocaMap, 1447 DenseSet<Value *> &visitedLiveValues) { 1448 1449 for (User *U : gcRelocs) { 1450 if (!isa<IntrinsicInst>(U)) 1451 continue; 1452 1453 IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U); 1454 1455 // We only care about relocates 1456 if (relocatedValue->getIntrinsicID() != 1457 Intrinsic::experimental_gc_relocate) { 1458 continue; 1459 } 1460 1461 GCRelocateOperands relocateOperands(relocatedValue); 1462 Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr()); 1463 assert(allocaMap.count(originalValue)); 1464 Value *alloca = allocaMap[originalValue]; 1465 1466 // Emit store into the related alloca 1467 StoreInst *store = new StoreInst(relocatedValue, alloca); 1468 store->insertAfter(relocatedValue); 1469 1470 #ifndef NDEBUG 1471 visitedLiveValues.insert(originalValue); 1472 #endif 1473 } 1474 } 1475 1476 /// do all the relocation update via allocas and mem2reg 1477 static void relocationViaAlloca( 1478 Function &F, DominatorTree &DT, const std::vector<Value *> &live, 1479 const std::vector<struct PartiallyConstructedSafepointRecord> &records) { 1480 #ifndef NDEBUG 1481 int initialAllocaNum = 0; 1482 1483 // record initial number of allocas 1484 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1485 itr++) { 1486 if (isa<AllocaInst>(*itr)) 1487 initialAllocaNum++; 1488 } 1489 #endif 1490 1491 // TODO-PERF: change data structures, reserve 1492 DenseMap<Value *, Value *> allocaMap; 1493 SmallVector<AllocaInst *, 200> PromotableAllocas; 1494 PromotableAllocas.reserve(live.size()); 1495 1496 // emit alloca for each live gc pointer 1497 for (unsigned i = 0; i < live.size(); i++) { 1498 Value *liveValue = live[i]; 1499 AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", 1500 F.getEntryBlock().getFirstNonPHI()); 1501 allocaMap[liveValue] = alloca; 1502 PromotableAllocas.push_back(alloca); 1503 } 1504 1505 // The next two loops are part of the same conceptual operation. We need to 1506 // insert a store to the alloca after the original def and at each 1507 // redefinition. We need to insert a load before each use. These are split 1508 // into distinct loops for performance reasons. 1509 1510 // update gc pointer after each statepoint 1511 // either store a relocated value or null (if no relocated value found for 1512 // this gc pointer and it is not a gc_result) 1513 // this must happen before we update the statepoint with load of alloca 1514 // otherwise we lose the link between statepoint and old def 1515 for (size_t i = 0; i < records.size(); i++) { 1516 const struct PartiallyConstructedSafepointRecord &info = records[i]; 1517 Value *statepoint = info.safepoint.first; 1518 1519 // This will be used for consistency check 1520 DenseSet<Value *> visitedLiveValues; 1521 1522 // Insert stores for normal statepoint gc relocates 1523 insertRelocationStores(statepoint->users(), allocaMap, visitedLiveValues); 1524 1525 // In case if it was invoke statepoint 1526 // we will insert stores for exceptional path gc relocates. 1527 if (isa<InvokeInst>(statepoint)) { 1528 insertRelocationStores(info.exceptional_relocates_token->users(), 1529 allocaMap, visitedLiveValues); 1530 } 1531 1532 #ifndef NDEBUG 1533 // For consistency check store null's into allocas for values that are not 1534 // relocated 1535 // by this statepoint. 1536 for (auto Pair : allocaMap) { 1537 Value *def = Pair.first; 1538 Value *alloca = Pair.second; 1539 1540 // This value was relocated 1541 if (visitedLiveValues.count(def)) { 1542 continue; 1543 } 1544 // Result should not be relocated 1545 if (def == info.result) { 1546 continue; 1547 } 1548 1549 Constant *CPN = 1550 ConstantPointerNull::get(cast<PointerType>(def->getType())); 1551 StoreInst *store = new StoreInst(CPN, alloca); 1552 store->insertBefore(info.safepoint.second); 1553 } 1554 #endif 1555 } 1556 // update use with load allocas and add store for gc_relocated 1557 for (auto Pair : allocaMap) { 1558 Value *def = Pair.first; 1559 Value *alloca = Pair.second; 1560 1561 // we pre-record the uses of allocas so that we dont have to worry about 1562 // later update 1563 // that change the user information. 1564 SmallVector<Instruction *, 20> uses; 1565 // PERF: trade a linear scan for repeated reallocation 1566 uses.reserve(std::distance(def->user_begin(), def->user_end())); 1567 for (User *U : def->users()) { 1568 if (!isa<ConstantExpr>(U)) { 1569 // If the def has a ConstantExpr use, then the def is either a 1570 // ConstantExpr use itself or null. In either case 1571 // (recursively in the first, directly in the second), the oop 1572 // it is ultimately dependent on is null and this particular 1573 // use does not need to be fixed up. 1574 uses.push_back(cast<Instruction>(U)); 1575 } 1576 } 1577 1578 std::sort(uses.begin(), uses.end()); 1579 auto last = std::unique(uses.begin(), uses.end()); 1580 uses.erase(last, uses.end()); 1581 1582 for (Instruction *use : uses) { 1583 if (isa<PHINode>(use)) { 1584 PHINode *phi = cast<PHINode>(use); 1585 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 1586 if (def == phi->getIncomingValue(i)) { 1587 LoadInst *load = new LoadInst( 1588 alloca, "", phi->getIncomingBlock(i)->getTerminator()); 1589 phi->setIncomingValue(i, load); 1590 } 1591 } 1592 } else { 1593 LoadInst *load = new LoadInst(alloca, "", use); 1594 use->replaceUsesOfWith(def, load); 1595 } 1596 } 1597 1598 // emit store for the initial gc value 1599 // store must be inserted after load, otherwise store will be in alloca's 1600 // use list and an extra load will be inserted before it 1601 StoreInst *store = new StoreInst(def, alloca); 1602 if (isa<Instruction>(def)) { 1603 store->insertAfter(cast<Instruction>(def)); 1604 } else { 1605 assert((isa<Argument>(def) || isa<GlobalVariable>(def) || 1606 (isa<Constant>(def) && cast<Constant>(def)->isNullValue())) && 1607 "Must be argument or global"); 1608 store->insertAfter(cast<Instruction>(alloca)); 1609 } 1610 } 1611 1612 assert(PromotableAllocas.size() == live.size() && 1613 "we must have the same allocas with lives"); 1614 if (!PromotableAllocas.empty()) { 1615 // apply mem2reg to promote alloca to SSA 1616 PromoteMemToReg(PromotableAllocas, DT); 1617 } 1618 1619 #ifndef NDEBUG 1620 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1621 itr++) { 1622 if (isa<AllocaInst>(*itr)) 1623 initialAllocaNum--; 1624 } 1625 assert(initialAllocaNum == 0 && "We must not introduce any extra allocas"); 1626 #endif 1627 } 1628 1629 /// Implement a unique function which doesn't require we sort the input 1630 /// vector. Doing so has the effect of changing the output of a couple of 1631 /// tests in ways which make them less useful in testing fused safepoints. 1632 template <typename T> static void unique_unsorted(std::vector<T> &vec) { 1633 DenseSet<T> seen; 1634 std::vector<T> tmp; 1635 vec.reserve(vec.size()); 1636 std::swap(tmp, vec); 1637 for (auto V : tmp) { 1638 if (seen.insert(V).second) { 1639 vec.push_back(V); 1640 } 1641 } 1642 } 1643 1644 static Function *getUseHolder(Module &M) { 1645 FunctionType *ftype = 1646 FunctionType::get(Type::getVoidTy(M.getContext()), true); 1647 Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype)); 1648 return Func; 1649 } 1650 1651 /// Insert holders so that each Value is obviously live through the entire 1652 /// liftetime of the call. 1653 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1654 std::vector<CallInst *> &holders) { 1655 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1656 Function *Func = getUseHolder(*M); 1657 if (CS.isCall()) { 1658 // For call safepoints insert dummy calls right after safepoint 1659 BasicBlock::iterator next(CS.getInstruction()); 1660 next++; 1661 CallInst *base_holder = CallInst::Create(Func, Values, "", next); 1662 holders.push_back(base_holder); 1663 } else if (CS.isInvoke()) { 1664 // For invoke safepooints insert dummy calls both in normal and 1665 // exceptional destination blocks 1666 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 1667 CallInst *normal_holder = CallInst::Create( 1668 Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt()); 1669 CallInst *unwind_holder = CallInst::Create( 1670 Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt()); 1671 holders.push_back(normal_holder); 1672 holders.push_back(unwind_holder); 1673 } else { 1674 assert(false && "Unsupported"); 1675 } 1676 } 1677 1678 static void findLiveReferences( 1679 Function &F, DominatorTree &DT, Pass *P, std::vector<CallSite> &toUpdate, 1680 std::vector<struct PartiallyConstructedSafepointRecord> &records) { 1681 for (size_t i = 0; i < records.size(); i++) { 1682 struct PartiallyConstructedSafepointRecord &info = records[i]; 1683 CallSite &CS = toUpdate[i]; 1684 analyzeParsePointLiveness(DT, CS, info); 1685 } 1686 } 1687 1688 static void addBasesAsLiveValues(std::set<Value *> &liveset, 1689 std::map<Value *, Value *> &base_pairs) { 1690 // Identify any base pointers which are used in this safepoint, but not 1691 // themselves relocated. We need to relocate them so that later inserted 1692 // safepoints can get the properly relocated base register. 1693 DenseSet<Value *> missing; 1694 for (Value *L : liveset) { 1695 assert(base_pairs.find(L) != base_pairs.end()); 1696 Value *base = base_pairs[L]; 1697 assert(base); 1698 if (liveset.find(base) == liveset.end()) { 1699 assert(base_pairs.find(base) == base_pairs.end()); 1700 // uniqued by set insert 1701 missing.insert(base); 1702 } 1703 } 1704 1705 // Note that we want these at the end of the list, otherwise 1706 // register placement gets screwed up once we lower to STATEPOINT 1707 // instructions. This is an utter hack, but there doesn't seem to be a 1708 // better one. 1709 for (Value *base : missing) { 1710 assert(base); 1711 liveset.insert(base); 1712 base_pairs[base] = base; 1713 } 1714 assert(liveset.size() == base_pairs.size()); 1715 } 1716 1717 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 1718 std::vector<CallSite> &toUpdate) { 1719 #ifndef NDEBUG 1720 // sanity check the input 1721 std::set<CallSite> uniqued; 1722 uniqued.insert(toUpdate.begin(), toUpdate.end()); 1723 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 1724 1725 for (size_t i = 0; i < toUpdate.size(); i++) { 1726 CallSite &CS = toUpdate[i]; 1727 assert(CS.getInstruction()->getParent()->getParent() == &F); 1728 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 1729 } 1730 #endif 1731 1732 // A list of dummy calls added to the IR to keep various values obviously 1733 // live in the IR. We'll remove all of these when done. 1734 std::vector<CallInst *> holders; 1735 1736 // Insert a dummy call with all of the arguments to the vm_state we'll need 1737 // for the actual safepoint insertion. This ensures reference arguments in 1738 // the deopt argument list are considered live through the safepoint (and 1739 // thus makes sure they get relocated.) 1740 for (size_t i = 0; i < toUpdate.size(); i++) { 1741 CallSite &CS = toUpdate[i]; 1742 Statepoint StatepointCS(CS); 1743 1744 SmallVector<Value *, 64> DeoptValues; 1745 for (Use &U : StatepointCS.vm_state_args()) { 1746 Value *Arg = cast<Value>(&U); 1747 if (isGCPointerType(Arg->getType())) 1748 DeoptValues.push_back(Arg); 1749 } 1750 insertUseHolderAfter(CS, DeoptValues, holders); 1751 } 1752 1753 std::vector<struct PartiallyConstructedSafepointRecord> records; 1754 records.reserve(toUpdate.size()); 1755 for (size_t i = 0; i < toUpdate.size(); i++) { 1756 struct PartiallyConstructedSafepointRecord info; 1757 records.push_back(info); 1758 } 1759 assert(records.size() == toUpdate.size()); 1760 1761 // A) Identify all gc pointers which are staticly live at the given call 1762 // site. 1763 findLiveReferences(F, DT, P, toUpdate, records); 1764 1765 // B) Find the base pointers for each live pointer 1766 /* scope for caching */ { 1767 // Cache the 'defining value' relation used in the computation and 1768 // insertion of base phis and selects. This ensures that we don't insert 1769 // large numbers of duplicate base_phis. 1770 DefiningValueMapTy DVCache; 1771 1772 for (size_t i = 0; i < records.size(); i++) { 1773 struct PartiallyConstructedSafepointRecord &info = records[i]; 1774 CallSite &CS = toUpdate[i]; 1775 findBasePointers(DT, DVCache, CS, info); 1776 } 1777 } // end of cache scope 1778 1779 // The base phi insertion logic (for any safepoint) may have inserted new 1780 // instructions which are now live at some safepoint. The simplest such 1781 // example is: 1782 // loop: 1783 // phi a <-- will be a new base_phi here 1784 // safepoint 1 <-- that needs to be live here 1785 // gep a + 1 1786 // safepoint 2 1787 // br loop 1788 std::set<llvm::Value *> allInsertedDefs; 1789 for (size_t i = 0; i < records.size(); i++) { 1790 struct PartiallyConstructedSafepointRecord &info = records[i]; 1791 allInsertedDefs.insert(info.newInsertedDefs.begin(), 1792 info.newInsertedDefs.end()); 1793 } 1794 1795 // We insert some dummy calls after each safepoint to definitely hold live 1796 // the base pointers which were identified for that safepoint. We'll then 1797 // ask liveness for _every_ base inserted to see what is now live. Then we 1798 // remove the dummy calls. 1799 holders.reserve(holders.size() + records.size()); 1800 for (size_t i = 0; i < records.size(); i++) { 1801 struct PartiallyConstructedSafepointRecord &info = records[i]; 1802 CallSite &CS = toUpdate[i]; 1803 1804 SmallVector<Value *, 128> Bases; 1805 for (auto Pair : info.base_pairs) { 1806 Bases.push_back(Pair.second); 1807 } 1808 insertUseHolderAfter(CS, Bases, holders); 1809 } 1810 1811 // Add the bases explicitly to the live vector set. This may result in a few 1812 // extra relocations, but the base has to be available whenever a pointer 1813 // derived from it is used. Thus, we need it to be part of the statepoint's 1814 // gc arguments list. TODO: Introduce an explicit notion (in the following 1815 // code) of the GC argument list as seperate from the live Values at a 1816 // given statepoint. 1817 for (size_t i = 0; i < records.size(); i++) { 1818 struct PartiallyConstructedSafepointRecord &info = records[i]; 1819 addBasesAsLiveValues(info.liveset, info.base_pairs); 1820 } 1821 1822 // If we inserted any new values, we need to adjust our notion of what is 1823 // live at a particular safepoint. 1824 if (!allInsertedDefs.empty()) { 1825 fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records); 1826 } 1827 if (PrintBasePointers) { 1828 for (size_t i = 0; i < records.size(); i++) { 1829 struct PartiallyConstructedSafepointRecord &info = records[i]; 1830 errs() << "Base Pairs: (w/Relocation)\n"; 1831 for (auto Pair : info.base_pairs) { 1832 errs() << " derived %" << Pair.first->getName() << " base %" 1833 << Pair.second->getName() << "\n"; 1834 } 1835 } 1836 } 1837 for (size_t i = 0; i < holders.size(); i++) { 1838 holders[i]->eraseFromParent(); 1839 holders[i] = nullptr; 1840 } 1841 holders.clear(); 1842 1843 // Now run through and replace the existing statepoints with new ones with 1844 // the live variables listed. We do not yet update uses of the values being 1845 // relocated. We have references to live variables that need to 1846 // survive to the last iteration of this loop. (By construction, the 1847 // previous statepoint can not be a live variable, thus we can and remove 1848 // the old statepoint calls as we go.) 1849 for (size_t i = 0; i < records.size(); i++) { 1850 struct PartiallyConstructedSafepointRecord &info = records[i]; 1851 CallSite &CS = toUpdate[i]; 1852 makeStatepointExplicit(DT, CS, P, info); 1853 } 1854 toUpdate.clear(); // prevent accident use of invalid CallSites 1855 1856 // In case if we inserted relocates in a different basic block than the 1857 // original safepoint (this can happen for invokes). We need to be sure that 1858 // original values were not used in any of the phi nodes at the 1859 // beginning of basic block containing them. Because we know that all such 1860 // blocks will have single predecessor we can safely assume that all phi 1861 // nodes have single entry (because of normalizeBBForInvokeSafepoint). 1862 // Just remove them all here. 1863 for (size_t i = 0; i < records.size(); i++) { 1864 Instruction *I = records[i].safepoint.first; 1865 1866 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 1867 FoldSingleEntryPHINodes(invoke->getNormalDest()); 1868 assert(!isa<PHINode>(invoke->getNormalDest()->begin())); 1869 1870 FoldSingleEntryPHINodes(invoke->getUnwindDest()); 1871 assert(!isa<PHINode>(invoke->getUnwindDest()->begin())); 1872 } 1873 } 1874 1875 // Do all the fixups of the original live variables to their relocated selves 1876 std::vector<Value *> live; 1877 for (size_t i = 0; i < records.size(); i++) { 1878 struct PartiallyConstructedSafepointRecord &info = records[i]; 1879 // We can't simply save the live set from the original insertion. One of 1880 // the live values might be the result of a call which needs a safepoint. 1881 // That Value* no longer exists and we need to use the new gc_result. 1882 // Thankfully, the liveset is embedded in the statepoint (and updated), so 1883 // we just grab that. 1884 Statepoint statepoint(info.safepoint.first); 1885 live.insert(live.end(), statepoint.gc_args_begin(), 1886 statepoint.gc_args_end()); 1887 } 1888 unique_unsorted(live); 1889 1890 // sanity check 1891 for (auto ptr : live) { 1892 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 1893 } 1894 1895 relocationViaAlloca(F, DT, live, records); 1896 return !records.empty(); 1897 } 1898 1899 /// Returns true if this function should be rewritten by this pass. The main 1900 /// point of this function is as an extension point for custom logic. 1901 static bool shouldRewriteStatepointsIn(Function &F) { 1902 // TODO: This should check the GCStrategy 1903 const std::string StatepointExampleName("statepoint-example"); 1904 return StatepointExampleName == F.getGC(); 1905 } 1906 1907 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 1908 // Nothing to do for declarations. 1909 if (F.isDeclaration() || F.empty()) 1910 return false; 1911 1912 // Policy choice says not to rewrite - the most common reason is that we're 1913 // compiling code without a GCStrategy. 1914 if (!shouldRewriteStatepointsIn(F)) 1915 return false; 1916 1917 // Gather all the statepoints which need rewritten. 1918 std::vector<CallSite> ParsePointNeeded; 1919 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1920 itr++) { 1921 // TODO: only the ones with the flag set! 1922 if (isStatepoint(*itr)) 1923 ParsePointNeeded.push_back(CallSite(&*itr)); 1924 } 1925 1926 // Return early if no work to do. 1927 if (ParsePointNeeded.empty()) 1928 return false; 1929 1930 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1931 return insertParsePoints(F, DT, this, ParsePointNeeded); 1932 } 1933