1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Rewrite call/invoke instructions so as to make potential relocations 10 // performed by the garbage collector explicit in the IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/DomTreeUpdater.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/IR/Argument.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/InstIterator.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/LLVMContext.h" 47 #include "llvm/IR/MDBuilder.h" 48 #include "llvm/IR/Metadata.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/Statepoint.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/InitializePasses.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Compiler.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Scalar.h" 64 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstddef> 70 #include <cstdint> 71 #include <iterator> 72 #include <optional> 73 #include <set> 74 #include <string> 75 #include <utility> 76 #include <vector> 77 78 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 79 80 using namespace llvm; 81 82 // Print the liveset found at the insert location 83 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 84 cl::init(false)); 85 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 86 cl::init(false)); 87 88 // Print out the base pointers for debugging 89 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 90 cl::init(false)); 91 92 // Cost threshold measuring when it is profitable to rematerialize value instead 93 // of relocating it 94 static cl::opt<unsigned> 95 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 96 cl::init(6)); 97 98 #ifdef EXPENSIVE_CHECKS 99 static bool ClobberNonLive = true; 100 #else 101 static bool ClobberNonLive = false; 102 #endif 103 104 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 105 cl::location(ClobberNonLive), 106 cl::Hidden); 107 108 static cl::opt<bool> 109 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 110 cl::Hidden, cl::init(true)); 111 112 /// The IR fed into RewriteStatepointsForGC may have had attributes and 113 /// metadata implying dereferenceability that are no longer valid/correct after 114 /// RewriteStatepointsForGC has run. This is because semantically, after 115 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 116 /// heap. stripNonValidData (conservatively) restores 117 /// correctness by erasing all attributes in the module that externally imply 118 /// dereferenceability. Similar reasoning also applies to the noalias 119 /// attributes and metadata. gc.statepoint can touch the entire heap including 120 /// noalias objects. 121 /// Apart from attributes and metadata, we also remove instructions that imply 122 /// constant physical memory: llvm.invariant.start. 123 static void stripNonValidData(Module &M); 124 125 static bool shouldRewriteStatepointsIn(Function &F); 126 127 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 128 ModuleAnalysisManager &AM) { 129 bool Changed = false; 130 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 131 for (Function &F : M) { 132 // Nothing to do for declarations. 133 if (F.isDeclaration() || F.empty()) 134 continue; 135 136 // Policy choice says not to rewrite - the most common reason is that we're 137 // compiling code without a GCStrategy. 138 if (!shouldRewriteStatepointsIn(F)) 139 continue; 140 141 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 142 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 143 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 144 Changed |= runOnFunction(F, DT, TTI, TLI); 145 } 146 if (!Changed) 147 return PreservedAnalyses::all(); 148 149 // stripNonValidData asserts that shouldRewriteStatepointsIn 150 // returns true for at least one function in the module. Since at least 151 // one function changed, we know that the precondition is satisfied. 152 stripNonValidData(M); 153 154 PreservedAnalyses PA; 155 PA.preserve<TargetIRAnalysis>(); 156 PA.preserve<TargetLibraryAnalysis>(); 157 return PA; 158 } 159 160 namespace { 161 162 class RewriteStatepointsForGCLegacyPass : public ModulePass { 163 RewriteStatepointsForGC Impl; 164 165 public: 166 static char ID; // Pass identification, replacement for typeid 167 168 RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() { 169 initializeRewriteStatepointsForGCLegacyPassPass( 170 *PassRegistry::getPassRegistry()); 171 } 172 173 bool runOnModule(Module &M) override { 174 bool Changed = false; 175 for (Function &F : M) { 176 // Nothing to do for declarations. 177 if (F.isDeclaration() || F.empty()) 178 continue; 179 180 // Policy choice says not to rewrite - the most common reason is that 181 // we're compiling code without a GCStrategy. 182 if (!shouldRewriteStatepointsIn(F)) 183 continue; 184 185 TargetTransformInfo &TTI = 186 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 187 const TargetLibraryInfo &TLI = 188 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 189 auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 190 191 Changed |= Impl.runOnFunction(F, DT, TTI, TLI); 192 } 193 194 if (!Changed) 195 return false; 196 197 // stripNonValidData asserts that shouldRewriteStatepointsIn 198 // returns true for at least one function in the module. Since at least 199 // one function changed, we know that the precondition is satisfied. 200 stripNonValidData(M); 201 return true; 202 } 203 204 void getAnalysisUsage(AnalysisUsage &AU) const override { 205 // We add and rewrite a bunch of instructions, but don't really do much 206 // else. We could in theory preserve a lot more analyses here. 207 AU.addRequired<DominatorTreeWrapperPass>(); 208 AU.addRequired<TargetTransformInfoWrapperPass>(); 209 AU.addRequired<TargetLibraryInfoWrapperPass>(); 210 } 211 }; 212 213 } // end anonymous namespace 214 215 char RewriteStatepointsForGCLegacyPass::ID = 0; 216 217 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() { 218 return new RewriteStatepointsForGCLegacyPass(); 219 } 220 221 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass, 222 "rewrite-statepoints-for-gc", 223 "Make relocations explicit at statepoints", false, false) 224 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 225 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 226 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass, 227 "rewrite-statepoints-for-gc", 228 "Make relocations explicit at statepoints", false, false) 229 230 namespace { 231 232 struct GCPtrLivenessData { 233 /// Values defined in this block. 234 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 235 236 /// Values used in this block (and thus live); does not included values 237 /// killed within this block. 238 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 239 240 /// Values live into this basic block (i.e. used by any 241 /// instruction in this basic block or ones reachable from here) 242 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 243 244 /// Values live out of this basic block (i.e. live into 245 /// any successor block) 246 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 247 }; 248 249 // The type of the internal cache used inside the findBasePointers family 250 // of functions. From the callers perspective, this is an opaque type and 251 // should not be inspected. 252 // 253 // In the actual implementation this caches two relations: 254 // - The base relation itself (i.e. this pointer is based on that one) 255 // - The base defining value relation (i.e. before base_phi insertion) 256 // Generally, after the execution of a full findBasePointer call, only the 257 // base relation will remain. Internally, we add a mixture of the two 258 // types, then update all the second type to the first type 259 using DefiningValueMapTy = MapVector<Value *, Value *>; 260 using IsKnownBaseMapTy = MapVector<Value *, bool>; 261 using PointerToBaseTy = MapVector<Value *, Value *>; 262 using StatepointLiveSetTy = SetVector<Value *>; 263 using RematerializedValueMapTy = 264 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 265 266 struct PartiallyConstructedSafepointRecord { 267 /// The set of values known to be live across this safepoint 268 StatepointLiveSetTy LiveSet; 269 270 /// The *new* gc.statepoint instruction itself. This produces the token 271 /// that normal path gc.relocates and the gc.result are tied to. 272 GCStatepointInst *StatepointToken; 273 274 /// Instruction to which exceptional gc relocates are attached 275 /// Makes it easier to iterate through them during relocationViaAlloca. 276 Instruction *UnwindToken; 277 278 /// Record live values we are rematerialized instead of relocating. 279 /// They are not included into 'LiveSet' field. 280 /// Maps rematerialized copy to it's original value. 281 RematerializedValueMapTy RematerializedValues; 282 }; 283 284 struct RematerizlizationCandidateRecord { 285 // Chain from derived pointer to base. 286 SmallVector<Instruction *, 3> ChainToBase; 287 // Original base. 288 Value *RootOfChain; 289 // Cost of chain. 290 InstructionCost Cost; 291 }; 292 using RematCandTy = MapVector<Value *, RematerizlizationCandidateRecord>; 293 294 } // end anonymous namespace 295 296 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) { 297 std::optional<OperandBundleUse> DeoptBundle = 298 Call->getOperandBundle(LLVMContext::OB_deopt); 299 300 if (!DeoptBundle) { 301 assert(AllowStatepointWithNoDeoptInfo && 302 "Found non-leaf call without deopt info!"); 303 return std::nullopt; 304 } 305 306 return DeoptBundle->Inputs; 307 } 308 309 /// Compute the live-in set for every basic block in the function 310 static void computeLiveInValues(DominatorTree &DT, Function &F, 311 GCPtrLivenessData &Data); 312 313 /// Given results from the dataflow liveness computation, find the set of live 314 /// Values at a particular instruction. 315 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 316 StatepointLiveSetTy &out); 317 318 // TODO: Once we can get to the GCStrategy, this becomes 319 // std::optional<bool> isGCManagedPointer(const Type *Ty) const override { 320 321 static bool isGCPointerType(Type *T) { 322 if (auto *PT = dyn_cast<PointerType>(T)) 323 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 324 // GC managed heap. We know that a pointer into this heap needs to be 325 // updated and that no other pointer does. 326 return PT->getAddressSpace() == 1; 327 return false; 328 } 329 330 // Return true if this type is one which a) is a gc pointer or contains a GC 331 // pointer and b) is of a type this code expects to encounter as a live value. 332 // (The insertion code will assert that a type which matches (a) and not (b) 333 // is not encountered.) 334 static bool isHandledGCPointerType(Type *T) { 335 // We fully support gc pointers 336 if (isGCPointerType(T)) 337 return true; 338 // We partially support vectors of gc pointers. The code will assert if it 339 // can't handle something. 340 if (auto VT = dyn_cast<VectorType>(T)) 341 if (isGCPointerType(VT->getElementType())) 342 return true; 343 return false; 344 } 345 346 #ifndef NDEBUG 347 /// Returns true if this type contains a gc pointer whether we know how to 348 /// handle that type or not. 349 static bool containsGCPtrType(Type *Ty) { 350 if (isGCPointerType(Ty)) 351 return true; 352 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 353 return isGCPointerType(VT->getScalarType()); 354 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 355 return containsGCPtrType(AT->getElementType()); 356 if (StructType *ST = dyn_cast<StructType>(Ty)) 357 return llvm::any_of(ST->elements(), containsGCPtrType); 358 return false; 359 } 360 361 // Returns true if this is a type which a) is a gc pointer or contains a GC 362 // pointer and b) is of a type which the code doesn't expect (i.e. first class 363 // aggregates). Used to trip assertions. 364 static bool isUnhandledGCPointerType(Type *Ty) { 365 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 366 } 367 #endif 368 369 // Return the name of the value suffixed with the provided value, or if the 370 // value didn't have a name, the default value specified. 371 static std::string suffixed_name_or(Value *V, StringRef Suffix, 372 StringRef DefaultName) { 373 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 374 } 375 376 // Conservatively identifies any definitions which might be live at the 377 // given instruction. The analysis is performed immediately before the 378 // given instruction. Values defined by that instruction are not considered 379 // live. Values used by that instruction are considered live. 380 static void analyzeParsePointLiveness( 381 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, 382 PartiallyConstructedSafepointRecord &Result) { 383 StatepointLiveSetTy LiveSet; 384 findLiveSetAtInst(Call, OriginalLivenessData, LiveSet); 385 386 if (PrintLiveSet) { 387 dbgs() << "Live Variables:\n"; 388 for (Value *V : LiveSet) 389 dbgs() << " " << V->getName() << " " << *V << "\n"; 390 } 391 if (PrintLiveSetSize) { 392 dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n"; 393 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 394 } 395 Result.LiveSet = LiveSet; 396 } 397 398 /// Returns true if V is a known base. 399 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases); 400 401 /// Caches the IsKnownBase flag for a value and asserts that it wasn't present 402 /// in the cache before. 403 static void setKnownBase(Value *V, bool IsKnownBase, 404 IsKnownBaseMapTy &KnownBases); 405 406 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, 407 IsKnownBaseMapTy &KnownBases); 408 409 /// Return a base defining value for the 'Index' element of the given vector 410 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 411 /// 'I'. As an optimization, this method will try to determine when the 412 /// element is known to already be a base pointer. If this can be established, 413 /// the second value in the returned pair will be true. Note that either a 414 /// vector or a pointer typed value can be returned. For the former, the 415 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 416 /// If the later, the return pointer is a BDV (or possibly a base) for the 417 /// particular element in 'I'. 418 static Value *findBaseDefiningValueOfVector(Value *I, DefiningValueMapTy &Cache, 419 IsKnownBaseMapTy &KnownBases) { 420 // Each case parallels findBaseDefiningValue below, see that code for 421 // detailed motivation. 422 423 auto Cached = Cache.find(I); 424 if (Cached != Cache.end()) 425 return Cached->second; 426 427 if (isa<Argument>(I)) { 428 // An incoming argument to the function is a base pointer 429 Cache[I] = I; 430 setKnownBase(I, /* IsKnownBase */true, KnownBases); 431 return I; 432 } 433 434 if (isa<Constant>(I)) { 435 // Base of constant vector consists only of constant null pointers. 436 // For reasoning see similar case inside 'findBaseDefiningValue' function. 437 auto *CAZ = ConstantAggregateZero::get(I->getType()); 438 Cache[I] = CAZ; 439 setKnownBase(CAZ, /* IsKnownBase */true, KnownBases); 440 return CAZ; 441 } 442 443 if (isa<LoadInst>(I)) { 444 Cache[I] = I; 445 setKnownBase(I, /* IsKnownBase */true, KnownBases); 446 return I; 447 } 448 449 if (isa<InsertElementInst>(I)) { 450 // We don't know whether this vector contains entirely base pointers or 451 // not. To be conservatively correct, we treat it as a BDV and will 452 // duplicate code as needed to construct a parallel vector of bases. 453 Cache[I] = I; 454 setKnownBase(I, /* IsKnownBase */false, KnownBases); 455 return I; 456 } 457 458 if (isa<ShuffleVectorInst>(I)) { 459 // We don't know whether this vector contains entirely base pointers or 460 // not. To be conservatively correct, we treat it as a BDV and will 461 // duplicate code as needed to construct a parallel vector of bases. 462 // TODO: There a number of local optimizations which could be applied here 463 // for particular sufflevector patterns. 464 Cache[I] = I; 465 setKnownBase(I, /* IsKnownBase */false, KnownBases); 466 return I; 467 } 468 469 // The behavior of getelementptr instructions is the same for vector and 470 // non-vector data types. 471 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 472 auto *BDV = 473 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); 474 Cache[GEP] = BDV; 475 return BDV; 476 } 477 478 // The behavior of freeze instructions is the same for vector and 479 // non-vector data types. 480 if (auto *Freeze = dyn_cast<FreezeInst>(I)) { 481 auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases); 482 Cache[Freeze] = BDV; 483 return BDV; 484 } 485 486 // If the pointer comes through a bitcast of a vector of pointers to 487 // a vector of another type of pointer, then look through the bitcast 488 if (auto *BC = dyn_cast<BitCastInst>(I)) { 489 auto *BDV = findBaseDefiningValue(BC->getOperand(0), Cache, KnownBases); 490 Cache[BC] = BDV; 491 return BDV; 492 } 493 494 // We assume that functions in the source language only return base 495 // pointers. This should probably be generalized via attributes to support 496 // both source language and internal functions. 497 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 498 Cache[I] = I; 499 setKnownBase(I, /* IsKnownBase */true, KnownBases); 500 return I; 501 } 502 503 // A PHI or Select is a base defining value. The outer findBasePointer 504 // algorithm is responsible for constructing a base value for this BDV. 505 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 506 "unknown vector instruction - no base found for vector element"); 507 Cache[I] = I; 508 setKnownBase(I, /* IsKnownBase */false, KnownBases); 509 return I; 510 } 511 512 /// Helper function for findBasePointer - Will return a value which either a) 513 /// defines the base pointer for the input, b) blocks the simple search 514 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 515 /// from pointer to vector type or back. 516 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, 517 IsKnownBaseMapTy &KnownBases) { 518 assert(I->getType()->isPtrOrPtrVectorTy() && 519 "Illegal to ask for the base pointer of a non-pointer type"); 520 auto Cached = Cache.find(I); 521 if (Cached != Cache.end()) 522 return Cached->second; 523 524 if (I->getType()->isVectorTy()) 525 return findBaseDefiningValueOfVector(I, Cache, KnownBases); 526 527 if (isa<Argument>(I)) { 528 // An incoming argument to the function is a base pointer 529 // We should have never reached here if this argument isn't an gc value 530 Cache[I] = I; 531 setKnownBase(I, /* IsKnownBase */true, KnownBases); 532 return I; 533 } 534 535 if (isa<Constant>(I)) { 536 // We assume that objects with a constant base (e.g. a global) can't move 537 // and don't need to be reported to the collector because they are always 538 // live. Besides global references, all kinds of constants (e.g. undef, 539 // constant expressions, null pointers) can be introduced by the inliner or 540 // the optimizer, especially on dynamically dead paths. 541 // Here we treat all of them as having single null base. By doing this we 542 // trying to avoid problems reporting various conflicts in a form of 543 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 544 // See constant.ll file for relevant test cases. 545 546 auto *CPN = ConstantPointerNull::get(cast<PointerType>(I->getType())); 547 Cache[I] = CPN; 548 setKnownBase(CPN, /* IsKnownBase */true, KnownBases); 549 return CPN; 550 } 551 552 // inttoptrs in an integral address space are currently ill-defined. We 553 // treat them as defining base pointers here for consistency with the 554 // constant rule above and because we don't really have a better semantic 555 // to give them. Note that the optimizer is always free to insert undefined 556 // behavior on dynamically dead paths as well. 557 if (isa<IntToPtrInst>(I)) { 558 Cache[I] = I; 559 setKnownBase(I, /* IsKnownBase */true, KnownBases); 560 return I; 561 } 562 563 if (CastInst *CI = dyn_cast<CastInst>(I)) { 564 Value *Def = CI->stripPointerCasts(); 565 // If stripping pointer casts changes the address space there is an 566 // addrspacecast in between. 567 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 568 cast<PointerType>(CI->getType())->getAddressSpace() && 569 "unsupported addrspacecast"); 570 // If we find a cast instruction here, it means we've found a cast which is 571 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 572 // handle int->ptr conversion. 573 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 574 auto *BDV = findBaseDefiningValue(Def, Cache, KnownBases); 575 Cache[CI] = BDV; 576 return BDV; 577 } 578 579 if (isa<LoadInst>(I)) { 580 // The value loaded is an gc base itself 581 Cache[I] = I; 582 setKnownBase(I, /* IsKnownBase */true, KnownBases); 583 return I; 584 } 585 586 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 587 // The base of this GEP is the base 588 auto *BDV = 589 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); 590 Cache[GEP] = BDV; 591 return BDV; 592 } 593 594 if (auto *Freeze = dyn_cast<FreezeInst>(I)) { 595 auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases); 596 Cache[Freeze] = BDV; 597 return BDV; 598 } 599 600 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 601 switch (II->getIntrinsicID()) { 602 default: 603 // fall through to general call handling 604 break; 605 case Intrinsic::experimental_gc_statepoint: 606 llvm_unreachable("statepoints don't produce pointers"); 607 case Intrinsic::experimental_gc_relocate: 608 // Rerunning safepoint insertion after safepoints are already 609 // inserted is not supported. It could probably be made to work, 610 // but why are you doing this? There's no good reason. 611 llvm_unreachable("repeat safepoint insertion is not supported"); 612 case Intrinsic::gcroot: 613 // Currently, this mechanism hasn't been extended to work with gcroot. 614 // There's no reason it couldn't be, but I haven't thought about the 615 // implications much. 616 llvm_unreachable( 617 "interaction with the gcroot mechanism is not supported"); 618 case Intrinsic::experimental_gc_get_pointer_base: 619 auto *BDV = findBaseDefiningValue(II->getOperand(0), Cache, KnownBases); 620 Cache[II] = BDV; 621 return BDV; 622 } 623 } 624 // We assume that functions in the source language only return base 625 // pointers. This should probably be generalized via attributes to support 626 // both source language and internal functions. 627 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 628 Cache[I] = I; 629 setKnownBase(I, /* IsKnownBase */true, KnownBases); 630 return I; 631 } 632 633 // TODO: I have absolutely no idea how to implement this part yet. It's not 634 // necessarily hard, I just haven't really looked at it yet. 635 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 636 637 if (isa<AtomicCmpXchgInst>(I)) { 638 // A CAS is effectively a atomic store and load combined under a 639 // predicate. From the perspective of base pointers, we just treat it 640 // like a load. 641 Cache[I] = I; 642 setKnownBase(I, /* IsKnownBase */true, KnownBases); 643 return I; 644 } 645 646 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 647 "binary ops which don't apply to pointers"); 648 649 // The aggregate ops. Aggregates can either be in the heap or on the 650 // stack, but in either case, this is simply a field load. As a result, 651 // this is a defining definition of the base just like a load is. 652 if (isa<ExtractValueInst>(I)) { 653 Cache[I] = I; 654 setKnownBase(I, /* IsKnownBase */true, KnownBases); 655 return I; 656 } 657 658 // We should never see an insert vector since that would require we be 659 // tracing back a struct value not a pointer value. 660 assert(!isa<InsertValueInst>(I) && 661 "Base pointer for a struct is meaningless"); 662 663 // This value might have been generated by findBasePointer() called when 664 // substituting gc.get.pointer.base() intrinsic. 665 bool IsKnownBase = 666 isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value"); 667 setKnownBase(I, /* IsKnownBase */IsKnownBase, KnownBases); 668 Cache[I] = I; 669 670 // An extractelement produces a base result exactly when it's input does. 671 // We may need to insert a parallel instruction to extract the appropriate 672 // element out of the base vector corresponding to the input. Given this, 673 // it's analogous to the phi and select case even though it's not a merge. 674 if (isa<ExtractElementInst>(I)) 675 // Note: There a lot of obvious peephole cases here. This are deliberately 676 // handled after the main base pointer inference algorithm to make writing 677 // test cases to exercise that code easier. 678 return I; 679 680 // The last two cases here don't return a base pointer. Instead, they 681 // return a value which dynamically selects from among several base 682 // derived pointers (each with it's own base potentially). It's the job of 683 // the caller to resolve these. 684 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 685 "missing instruction case in findBaseDefiningValue"); 686 return I; 687 } 688 689 /// Returns the base defining value for this value. 690 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache, 691 IsKnownBaseMapTy &KnownBases) { 692 if (Cache.find(I) == Cache.end()) { 693 auto *BDV = findBaseDefiningValue(I, Cache, KnownBases); 694 Cache[I] = BDV; 695 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 696 << Cache[I]->getName() << ", is known base = " 697 << KnownBases[I] << "\n"); 698 } 699 assert(Cache[I] != nullptr); 700 assert(KnownBases.find(Cache[I]) != KnownBases.end() && 701 "Cached value must be present in known bases map"); 702 return Cache[I]; 703 } 704 705 /// Return a base pointer for this value if known. Otherwise, return it's 706 /// base defining value. 707 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache, 708 IsKnownBaseMapTy &KnownBases) { 709 Value *Def = findBaseDefiningValueCached(I, Cache, KnownBases); 710 auto Found = Cache.find(Def); 711 if (Found != Cache.end()) { 712 // Either a base-of relation, or a self reference. Caller must check. 713 return Found->second; 714 } 715 // Only a BDV available 716 return Def; 717 } 718 719 #ifndef NDEBUG 720 /// This value is a base pointer that is not generated by RS4GC, i.e. it already 721 /// exists in the code. 722 static bool isOriginalBaseResult(Value *V) { 723 // no recursion possible 724 return !isa<PHINode>(V) && !isa<SelectInst>(V) && 725 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 726 !isa<ShuffleVectorInst>(V); 727 } 728 #endif 729 730 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases) { 731 auto It = KnownBases.find(V); 732 assert(It != KnownBases.end() && "Value not present in the map"); 733 return It->second; 734 } 735 736 static void setKnownBase(Value *V, bool IsKnownBase, 737 IsKnownBaseMapTy &KnownBases) { 738 #ifndef NDEBUG 739 auto It = KnownBases.find(V); 740 if (It != KnownBases.end()) 741 assert(It->second == IsKnownBase && "Changing already present value"); 742 #endif 743 KnownBases[V] = IsKnownBase; 744 } 745 746 // Returns true if First and Second values are both scalar or both vector. 747 static bool areBothVectorOrScalar(Value *First, Value *Second) { 748 return isa<VectorType>(First->getType()) == 749 isa<VectorType>(Second->getType()); 750 } 751 752 namespace { 753 754 /// Models the state of a single base defining value in the findBasePointer 755 /// algorithm for determining where a new instruction is needed to propagate 756 /// the base of this BDV. 757 class BDVState { 758 public: 759 enum StatusTy { 760 // Starting state of lattice 761 Unknown, 762 // Some specific base value -- does *not* mean that instruction 763 // propagates the base of the object 764 // ex: gep %arg, 16 -> %arg is the base value 765 Base, 766 // Need to insert a node to represent a merge. 767 Conflict 768 }; 769 770 BDVState() { 771 llvm_unreachable("missing state in map"); 772 } 773 774 explicit BDVState(Value *OriginalValue) 775 : OriginalValue(OriginalValue) {} 776 explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr) 777 : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) { 778 assert(Status != Base || BaseValue); 779 } 780 781 StatusTy getStatus() const { return Status; } 782 Value *getOriginalValue() const { return OriginalValue; } 783 Value *getBaseValue() const { return BaseValue; } 784 785 bool isBase() const { return getStatus() == Base; } 786 bool isUnknown() const { return getStatus() == Unknown; } 787 bool isConflict() const { return getStatus() == Conflict; } 788 789 // Values of type BDVState form a lattice, and this function implements the 790 // meet 791 // operation. 792 void meet(const BDVState &Other) { 793 auto markConflict = [&]() { 794 Status = BDVState::Conflict; 795 BaseValue = nullptr; 796 }; 797 // Conflict is a final state. 798 if (isConflict()) 799 return; 800 // if we are not known - just take other state. 801 if (isUnknown()) { 802 Status = Other.getStatus(); 803 BaseValue = Other.getBaseValue(); 804 return; 805 } 806 // We are base. 807 assert(isBase() && "Unknown state"); 808 // If other is unknown - just keep our state. 809 if (Other.isUnknown()) 810 return; 811 // If other is conflict - it is a final state. 812 if (Other.isConflict()) 813 return markConflict(); 814 // Other is base as well. 815 assert(Other.isBase() && "Unknown state"); 816 // If bases are different - Conflict. 817 if (getBaseValue() != Other.getBaseValue()) 818 return markConflict(); 819 // We are identical, do nothing. 820 } 821 822 bool operator==(const BDVState &Other) const { 823 return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue && 824 Status == Other.Status; 825 } 826 827 bool operator!=(const BDVState &other) const { return !(*this == other); } 828 829 LLVM_DUMP_METHOD 830 void dump() const { 831 print(dbgs()); 832 dbgs() << '\n'; 833 } 834 835 void print(raw_ostream &OS) const { 836 switch (getStatus()) { 837 case Unknown: 838 OS << "U"; 839 break; 840 case Base: 841 OS << "B"; 842 break; 843 case Conflict: 844 OS << "C"; 845 break; 846 } 847 OS << " (base " << getBaseValue() << " - " 848 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")" 849 << " for " << OriginalValue->getName() << ":"; 850 } 851 852 private: 853 AssertingVH<Value> OriginalValue; // instruction this state corresponds to 854 StatusTy Status = Unknown; 855 AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base. 856 }; 857 858 } // end anonymous namespace 859 860 #ifndef NDEBUG 861 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 862 State.print(OS); 863 return OS; 864 } 865 #endif 866 867 /// For a given value or instruction, figure out what base ptr its derived from. 868 /// For gc objects, this is simply itself. On success, returns a value which is 869 /// the base pointer. (This is reliable and can be used for relocation.) On 870 /// failure, returns nullptr. 871 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache, 872 IsKnownBaseMapTy &KnownBases) { 873 Value *Def = findBaseOrBDV(I, Cache, KnownBases); 874 875 if (isKnownBase(Def, KnownBases) && areBothVectorOrScalar(Def, I)) 876 return Def; 877 878 // Here's the rough algorithm: 879 // - For every SSA value, construct a mapping to either an actual base 880 // pointer or a PHI which obscures the base pointer. 881 // - Construct a mapping from PHI to unknown TOP state. Use an 882 // optimistic algorithm to propagate base pointer information. Lattice 883 // looks like: 884 // UNKNOWN 885 // b1 b2 b3 b4 886 // CONFLICT 887 // When algorithm terminates, all PHIs will either have a single concrete 888 // base or be in a conflict state. 889 // - For every conflict, insert a dummy PHI node without arguments. Add 890 // these to the base[Instruction] = BasePtr mapping. For every 891 // non-conflict, add the actual base. 892 // - For every conflict, add arguments for the base[a] of each input 893 // arguments. 894 // 895 // Note: A simpler form of this would be to add the conflict form of all 896 // PHIs without running the optimistic algorithm. This would be 897 // analogous to pessimistic data flow and would likely lead to an 898 // overall worse solution. 899 900 #ifndef NDEBUG 901 auto isExpectedBDVType = [](Value *BDV) { 902 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 903 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 904 isa<ShuffleVectorInst>(BDV); 905 }; 906 #endif 907 908 // Once populated, will contain a mapping from each potentially non-base BDV 909 // to a lattice value (described above) which corresponds to that BDV. 910 // We use the order of insertion (DFS over the def/use graph) to provide a 911 // stable deterministic ordering for visiting DenseMaps (which are unordered) 912 // below. This is important for deterministic compilation. 913 MapVector<Value *, BDVState> States; 914 915 #ifndef NDEBUG 916 auto VerifyStates = [&]() { 917 for (auto &Entry : States) { 918 assert(Entry.first == Entry.second.getOriginalValue()); 919 } 920 }; 921 #endif 922 923 auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) { 924 if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 925 for (Value *InVal : PN->incoming_values()) 926 F(InVal); 927 } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 928 F(SI->getTrueValue()); 929 F(SI->getFalseValue()); 930 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 931 F(EE->getVectorOperand()); 932 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) { 933 F(IE->getOperand(0)); 934 F(IE->getOperand(1)); 935 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) { 936 // For a canonical broadcast, ignore the undef argument 937 // (without this, we insert a parallel base shuffle for every broadcast) 938 F(SV->getOperand(0)); 939 if (!SV->isZeroEltSplat()) 940 F(SV->getOperand(1)); 941 } else { 942 llvm_unreachable("unexpected BDV type"); 943 } 944 }; 945 946 947 // Recursively fill in all base defining values reachable from the initial 948 // one for which we don't already know a definite base value for 949 /* scope */ { 950 SmallVector<Value*, 16> Worklist; 951 Worklist.push_back(Def); 952 States.insert({Def, BDVState(Def)}); 953 while (!Worklist.empty()) { 954 Value *Current = Worklist.pop_back_val(); 955 assert(!isOriginalBaseResult(Current) && "why did it get added?"); 956 957 auto visitIncomingValue = [&](Value *InVal) { 958 Value *Base = findBaseOrBDV(InVal, Cache, KnownBases); 959 if (isKnownBase(Base, KnownBases) && areBothVectorOrScalar(Base, InVal)) 960 // Known bases won't need new instructions introduced and can be 961 // ignored safely. However, this can only be done when InVal and Base 962 // are both scalar or both vector. Otherwise, we need to find a 963 // correct BDV for InVal, by creating an entry in the lattice 964 // (States). 965 return; 966 assert(isExpectedBDVType(Base) && "the only non-base values " 967 "we see should be base defining values"); 968 if (States.insert(std::make_pair(Base, BDVState(Base))).second) 969 Worklist.push_back(Base); 970 }; 971 972 visitBDVOperands(Current, visitIncomingValue); 973 } 974 } 975 976 #ifndef NDEBUG 977 VerifyStates(); 978 LLVM_DEBUG(dbgs() << "States after initialization:\n"); 979 for (const auto &Pair : States) { 980 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 981 } 982 #endif 983 984 // Iterate forward through the value graph pruning any node from the state 985 // list where all of the inputs are base pointers. The purpose of this is to 986 // reuse existing values when the derived pointer we were asked to materialize 987 // a base pointer for happens to be a base pointer itself. (Or a sub-graph 988 // feeding it does.) 989 SmallVector<Value *> ToRemove; 990 do { 991 ToRemove.clear(); 992 for (auto Pair : States) { 993 Value *BDV = Pair.first; 994 auto canPruneInput = [&](Value *V) { 995 // If the input of the BDV is the BDV itself we can prune it. This is 996 // only possible if the BDV is a PHI node. 997 if (V->stripPointerCasts() == BDV) 998 return true; 999 Value *VBDV = findBaseOrBDV(V, Cache, KnownBases); 1000 if (V->stripPointerCasts() != VBDV) 1001 return false; 1002 // The assumption is that anything not in the state list is 1003 // propagates a base pointer. 1004 return States.count(VBDV) == 0; 1005 }; 1006 1007 bool CanPrune = true; 1008 visitBDVOperands(BDV, [&](Value *Op) { 1009 CanPrune = CanPrune && canPruneInput(Op); 1010 }); 1011 if (CanPrune) 1012 ToRemove.push_back(BDV); 1013 } 1014 for (Value *V : ToRemove) { 1015 States.erase(V); 1016 // Cache the fact V is it's own base for later usage. 1017 Cache[V] = V; 1018 } 1019 } while (!ToRemove.empty()); 1020 1021 // Did we manage to prove that Def itself must be a base pointer? 1022 if (!States.count(Def)) 1023 return Def; 1024 1025 // Return a phi state for a base defining value. We'll generate a new 1026 // base state for known bases and expect to find a cached state otherwise. 1027 auto GetStateForBDV = [&](Value *BaseValue, Value *Input) { 1028 auto I = States.find(BaseValue); 1029 if (I != States.end()) 1030 return I->second; 1031 assert(areBothVectorOrScalar(BaseValue, Input)); 1032 return BDVState(BaseValue, BDVState::Base, BaseValue); 1033 }; 1034 1035 bool Progress = true; 1036 while (Progress) { 1037 #ifndef NDEBUG 1038 const size_t OldSize = States.size(); 1039 #endif 1040 Progress = false; 1041 // We're only changing values in this loop, thus safe to keep iterators. 1042 // Since this is computing a fixed point, the order of visit does not 1043 // effect the result. TODO: We could use a worklist here and make this run 1044 // much faster. 1045 for (auto Pair : States) { 1046 Value *BDV = Pair.first; 1047 // Only values that do not have known bases or those that have differing 1048 // type (scalar versus vector) from a possible known base should be in the 1049 // lattice. 1050 assert((!isKnownBase(BDV, KnownBases) || 1051 !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) && 1052 "why did it get added?"); 1053 1054 BDVState NewState(BDV); 1055 visitBDVOperands(BDV, [&](Value *Op) { 1056 Value *BDV = findBaseOrBDV(Op, Cache, KnownBases); 1057 auto OpState = GetStateForBDV(BDV, Op); 1058 NewState.meet(OpState); 1059 }); 1060 1061 BDVState OldState = States[BDV]; 1062 if (OldState != NewState) { 1063 Progress = true; 1064 States[BDV] = NewState; 1065 } 1066 } 1067 1068 assert(OldSize == States.size() && 1069 "fixed point shouldn't be adding any new nodes to state"); 1070 } 1071 1072 #ifndef NDEBUG 1073 VerifyStates(); 1074 LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); 1075 for (const auto &Pair : States) { 1076 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 1077 } 1078 #endif 1079 1080 // Handle all instructions that have a vector BDV, but the instruction itself 1081 // is of scalar type. 1082 for (auto Pair : States) { 1083 Instruction *I = cast<Instruction>(Pair.first); 1084 BDVState State = Pair.second; 1085 auto *BaseValue = State.getBaseValue(); 1086 // Only values that do not have known bases or those that have differing 1087 // type (scalar versus vector) from a possible known base should be in the 1088 // lattice. 1089 assert( 1090 (!isKnownBase(I, KnownBases) || !areBothVectorOrScalar(I, BaseValue)) && 1091 "why did it get added?"); 1092 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1093 1094 if (!State.isBase() || !isa<VectorType>(BaseValue->getType())) 1095 continue; 1096 // extractelement instructions are a bit special in that we may need to 1097 // insert an extract even when we know an exact base for the instruction. 1098 // The problem is that we need to convert from a vector base to a scalar 1099 // base for the particular indice we're interested in. 1100 if (isa<ExtractElementInst>(I)) { 1101 auto *EE = cast<ExtractElementInst>(I); 1102 // TODO: In many cases, the new instruction is just EE itself. We should 1103 // exploit this, but can't do it here since it would break the invariant 1104 // about the BDV not being known to be a base. 1105 auto *BaseInst = ExtractElementInst::Create( 1106 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 1107 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1108 States[I] = BDVState(I, BDVState::Base, BaseInst); 1109 setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases); 1110 } else if (!isa<VectorType>(I->getType())) { 1111 // We need to handle cases that have a vector base but the instruction is 1112 // a scalar type (these could be phis or selects or any instruction that 1113 // are of scalar type, but the base can be a vector type). We 1114 // conservatively set this as conflict. Setting the base value for these 1115 // conflicts is handled in the next loop which traverses States. 1116 States[I] = BDVState(I, BDVState::Conflict); 1117 } 1118 } 1119 1120 #ifndef NDEBUG 1121 VerifyStates(); 1122 #endif 1123 1124 // Insert Phis for all conflicts 1125 // TODO: adjust naming patterns to avoid this order of iteration dependency 1126 for (auto Pair : States) { 1127 Instruction *I = cast<Instruction>(Pair.first); 1128 BDVState State = Pair.second; 1129 // Only values that do not have known bases or those that have differing 1130 // type (scalar versus vector) from a possible known base should be in the 1131 // lattice. 1132 assert((!isKnownBase(I, KnownBases) || 1133 !areBothVectorOrScalar(I, State.getBaseValue())) && 1134 "why did it get added?"); 1135 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1136 1137 // Since we're joining a vector and scalar base, they can never be the 1138 // same. As a result, we should always see insert element having reached 1139 // the conflict state. 1140 assert(!isa<InsertElementInst>(I) || State.isConflict()); 1141 1142 if (!State.isConflict()) 1143 continue; 1144 1145 auto getMangledName = [](Instruction *I) -> std::string { 1146 if (isa<PHINode>(I)) { 1147 return suffixed_name_or(I, ".base", "base_phi"); 1148 } else if (isa<SelectInst>(I)) { 1149 return suffixed_name_or(I, ".base", "base_select"); 1150 } else if (isa<ExtractElementInst>(I)) { 1151 return suffixed_name_or(I, ".base", "base_ee"); 1152 } else if (isa<InsertElementInst>(I)) { 1153 return suffixed_name_or(I, ".base", "base_ie"); 1154 } else { 1155 return suffixed_name_or(I, ".base", "base_sv"); 1156 } 1157 }; 1158 1159 Instruction *BaseInst = I->clone(); 1160 BaseInst->insertBefore(I); 1161 BaseInst->setName(getMangledName(I)); 1162 // Add metadata marking this as a base value 1163 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1164 States[I] = BDVState(I, BDVState::Conflict, BaseInst); 1165 setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases); 1166 } 1167 1168 #ifndef NDEBUG 1169 VerifyStates(); 1170 #endif 1171 1172 // Returns a instruction which produces the base pointer for a given 1173 // instruction. The instruction is assumed to be an input to one of the BDVs 1174 // seen in the inference algorithm above. As such, we must either already 1175 // know it's base defining value is a base, or have inserted a new 1176 // instruction to propagate the base of it's BDV and have entered that newly 1177 // introduced instruction into the state table. In either case, we are 1178 // assured to be able to determine an instruction which produces it's base 1179 // pointer. 1180 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1181 Value *BDV = findBaseOrBDV(Input, Cache, KnownBases); 1182 Value *Base = nullptr; 1183 if (!States.count(BDV)) { 1184 assert(areBothVectorOrScalar(BDV, Input)); 1185 Base = BDV; 1186 } else { 1187 // Either conflict or base. 1188 assert(States.count(BDV)); 1189 Base = States[BDV].getBaseValue(); 1190 } 1191 assert(Base && "Can't be null"); 1192 // The cast is needed since base traversal may strip away bitcasts 1193 if (Base->getType() != Input->getType() && InsertPt) 1194 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 1195 return Base; 1196 }; 1197 1198 // Fixup all the inputs of the new PHIs. Visit order needs to be 1199 // deterministic and predictable because we're naming newly created 1200 // instructions. 1201 for (auto Pair : States) { 1202 Instruction *BDV = cast<Instruction>(Pair.first); 1203 BDVState State = Pair.second; 1204 1205 // Only values that do not have known bases or those that have differing 1206 // type (scalar versus vector) from a possible known base should be in the 1207 // lattice. 1208 assert((!isKnownBase(BDV, KnownBases) || 1209 !areBothVectorOrScalar(BDV, State.getBaseValue())) && 1210 "why did it get added?"); 1211 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1212 if (!State.isConflict()) 1213 continue; 1214 1215 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1216 PHINode *PN = cast<PHINode>(BDV); 1217 const unsigned NumPHIValues = PN->getNumIncomingValues(); 1218 1219 // The IR verifier requires phi nodes with multiple entries from the 1220 // same basic block to have the same incoming value for each of those 1221 // entries. Since we're inserting bitcasts in the loop, make sure we 1222 // do so at least once per incoming block. 1223 DenseMap<BasicBlock *, Value*> BlockToValue; 1224 for (unsigned i = 0; i < NumPHIValues; i++) { 1225 Value *InVal = PN->getIncomingValue(i); 1226 BasicBlock *InBB = PN->getIncomingBlock(i); 1227 if (!BlockToValue.count(InBB)) 1228 BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator()); 1229 else { 1230 #ifndef NDEBUG 1231 Value *OldBase = BlockToValue[InBB]; 1232 Value *Base = getBaseForInput(InVal, nullptr); 1233 1234 // We can't use `stripPointerCasts` instead of this function because 1235 // `stripPointerCasts` doesn't handle vectors of pointers. 1236 auto StripBitCasts = [](Value *V) -> Value * { 1237 while (auto *BC = dyn_cast<BitCastInst>(V)) 1238 V = BC->getOperand(0); 1239 return V; 1240 }; 1241 // In essence this assert states: the only way two values 1242 // incoming from the same basic block may be different is by 1243 // being different bitcasts of the same value. A cleanup 1244 // that remains TODO is changing findBaseOrBDV to return an 1245 // llvm::Value of the correct type (and still remain pure). 1246 // This will remove the need to add bitcasts. 1247 assert(StripBitCasts(Base) == StripBitCasts(OldBase) && 1248 "findBaseOrBDV should be pure!"); 1249 #endif 1250 } 1251 Value *Base = BlockToValue[InBB]; 1252 BasePHI->setIncomingValue(i, Base); 1253 } 1254 } else if (SelectInst *BaseSI = 1255 dyn_cast<SelectInst>(State.getBaseValue())) { 1256 SelectInst *SI = cast<SelectInst>(BDV); 1257 1258 // Find the instruction which produces the base for each input. 1259 // We may need to insert a bitcast. 1260 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1261 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1262 } else if (auto *BaseEE = 1263 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1264 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1265 // Find the instruction which produces the base for each input. We may 1266 // need to insert a bitcast. 1267 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1268 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1269 auto *BdvIE = cast<InsertElementInst>(BDV); 1270 auto UpdateOperand = [&](int OperandIdx) { 1271 Value *InVal = BdvIE->getOperand(OperandIdx); 1272 Value *Base = getBaseForInput(InVal, BaseIE); 1273 BaseIE->setOperand(OperandIdx, Base); 1274 }; 1275 UpdateOperand(0); // vector operand 1276 UpdateOperand(1); // scalar operand 1277 } else { 1278 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1279 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1280 auto UpdateOperand = [&](int OperandIdx) { 1281 Value *InVal = BdvSV->getOperand(OperandIdx); 1282 Value *Base = getBaseForInput(InVal, BaseSV); 1283 BaseSV->setOperand(OperandIdx, Base); 1284 }; 1285 UpdateOperand(0); // vector operand 1286 if (!BdvSV->isZeroEltSplat()) 1287 UpdateOperand(1); // vector operand 1288 else { 1289 // Never read, so just use undef 1290 Value *InVal = BdvSV->getOperand(1); 1291 BaseSV->setOperand(1, UndefValue::get(InVal->getType())); 1292 } 1293 } 1294 } 1295 1296 #ifndef NDEBUG 1297 VerifyStates(); 1298 #endif 1299 1300 // Cache all of our results so we can cheaply reuse them 1301 // NOTE: This is actually two caches: one of the base defining value 1302 // relation and one of the base pointer relation! FIXME 1303 for (auto Pair : States) { 1304 auto *BDV = Pair.first; 1305 Value *Base = Pair.second.getBaseValue(); 1306 assert(BDV && Base); 1307 // Only values that do not have known bases or those that have differing 1308 // type (scalar versus vector) from a possible known base should be in the 1309 // lattice. 1310 assert( 1311 (!isKnownBase(BDV, KnownBases) || !areBothVectorOrScalar(BDV, Base)) && 1312 "why did it get added?"); 1313 1314 LLVM_DEBUG( 1315 dbgs() << "Updating base value cache" 1316 << " for: " << BDV->getName() << " from: " 1317 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1318 << " to: " << Base->getName() << "\n"); 1319 1320 Cache[BDV] = Base; 1321 } 1322 assert(Cache.count(Def)); 1323 return Cache[Def]; 1324 } 1325 1326 // For a set of live pointers (base and/or derived), identify the base 1327 // pointer of the object which they are derived from. This routine will 1328 // mutate the IR graph as needed to make the 'base' pointer live at the 1329 // definition site of 'derived'. This ensures that any use of 'derived' can 1330 // also use 'base'. This may involve the insertion of a number of 1331 // additional PHI nodes. 1332 // 1333 // preconditions: live is a set of pointer type Values 1334 // 1335 // side effects: may insert PHI nodes into the existing CFG, will preserve 1336 // CFG, will not remove or mutate any existing nodes 1337 // 1338 // post condition: PointerToBase contains one (derived, base) pair for every 1339 // pointer in live. Note that derived can be equal to base if the original 1340 // pointer was a base pointer. 1341 static void findBasePointers(const StatepointLiveSetTy &live, 1342 PointerToBaseTy &PointerToBase, DominatorTree *DT, 1343 DefiningValueMapTy &DVCache, 1344 IsKnownBaseMapTy &KnownBases) { 1345 for (Value *ptr : live) { 1346 Value *base = findBasePointer(ptr, DVCache, KnownBases); 1347 assert(base && "failed to find base pointer"); 1348 PointerToBase[ptr] = base; 1349 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1350 DT->dominates(cast<Instruction>(base)->getParent(), 1351 cast<Instruction>(ptr)->getParent())) && 1352 "The base we found better dominate the derived pointer"); 1353 } 1354 } 1355 1356 /// Find the required based pointers (and adjust the live set) for the given 1357 /// parse point. 1358 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1359 CallBase *Call, 1360 PartiallyConstructedSafepointRecord &result, 1361 PointerToBaseTy &PointerToBase, 1362 IsKnownBaseMapTy &KnownBases) { 1363 StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet; 1364 // We assume that all pointers passed to deopt are base pointers; as an 1365 // optimization, we can use this to avoid seperately materializing the base 1366 // pointer graph. This is only relevant since we're very conservative about 1367 // generating new conflict nodes during base pointer insertion. If we were 1368 // smarter there, this would be irrelevant. 1369 if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt)) 1370 for (Value *V : Opt->Inputs) { 1371 if (!PotentiallyDerivedPointers.count(V)) 1372 continue; 1373 PotentiallyDerivedPointers.remove(V); 1374 PointerToBase[V] = V; 1375 } 1376 findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache, 1377 KnownBases); 1378 } 1379 1380 /// Given an updated version of the dataflow liveness results, update the 1381 /// liveset and base pointer maps for the call site CS. 1382 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1383 CallBase *Call, 1384 PartiallyConstructedSafepointRecord &result, 1385 PointerToBaseTy &PointerToBase); 1386 1387 static void recomputeLiveInValues( 1388 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 1389 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records, 1390 PointerToBaseTy &PointerToBase) { 1391 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1392 // again. The old values are still live and will help it stabilize quickly. 1393 GCPtrLivenessData RevisedLivenessData; 1394 computeLiveInValues(DT, F, RevisedLivenessData); 1395 for (size_t i = 0; i < records.size(); i++) { 1396 struct PartiallyConstructedSafepointRecord &info = records[i]; 1397 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info, 1398 PointerToBase); 1399 } 1400 } 1401 1402 // Utility function which clones all instructions from "ChainToBase" 1403 // and inserts them before "InsertBefore". Returns rematerialized value 1404 // which should be used after statepoint. 1405 static Instruction *rematerializeChain(ArrayRef<Instruction *> ChainToBase, 1406 Instruction *InsertBefore, 1407 Value *RootOfChain, 1408 Value *AlternateLiveBase) { 1409 Instruction *LastClonedValue = nullptr; 1410 Instruction *LastValue = nullptr; 1411 // Walk backwards to visit top-most instructions first. 1412 for (Instruction *Instr : 1413 make_range(ChainToBase.rbegin(), ChainToBase.rend())) { 1414 // Only GEP's and casts are supported as we need to be careful to not 1415 // introduce any new uses of pointers not in the liveset. 1416 // Note that it's fine to introduce new uses of pointers which were 1417 // otherwise not used after this statepoint. 1418 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 1419 1420 Instruction *ClonedValue = Instr->clone(); 1421 ClonedValue->insertBefore(InsertBefore); 1422 ClonedValue->setName(Instr->getName() + ".remat"); 1423 1424 // If it is not first instruction in the chain then it uses previously 1425 // cloned value. We should update it to use cloned value. 1426 if (LastClonedValue) { 1427 assert(LastValue); 1428 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 1429 #ifndef NDEBUG 1430 for (auto *OpValue : ClonedValue->operand_values()) { 1431 // Assert that cloned instruction does not use any instructions from 1432 // this chain other than LastClonedValue 1433 assert(!is_contained(ChainToBase, OpValue) && 1434 "incorrect use in rematerialization chain"); 1435 // Assert that the cloned instruction does not use the RootOfChain 1436 // or the AlternateLiveBase. 1437 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 1438 } 1439 #endif 1440 } else { 1441 // For the first instruction, replace the use of unrelocated base i.e. 1442 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 1443 // live set. They have been proved to be the same PHI nodes. Note 1444 // that the *only* use of the RootOfChain in the ChainToBase list is 1445 // the first Value in the list. 1446 if (RootOfChain != AlternateLiveBase) 1447 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 1448 } 1449 1450 LastClonedValue = ClonedValue; 1451 LastValue = Instr; 1452 } 1453 assert(LastClonedValue); 1454 return LastClonedValue; 1455 } 1456 1457 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1458 // no uses of the original value / return value between the gc.statepoint and 1459 // the gc.relocate / gc.result call. One case which can arise is a phi node 1460 // starting one of the successor blocks. We also need to be able to insert the 1461 // gc.relocates only on the path which goes through the statepoint. We might 1462 // need to split an edge to make this possible. 1463 static BasicBlock * 1464 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1465 DominatorTree &DT) { 1466 BasicBlock *Ret = BB; 1467 if (!BB->getUniquePredecessor()) 1468 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1469 1470 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1471 // from it 1472 FoldSingleEntryPHINodes(Ret); 1473 assert(!isa<PHINode>(Ret->begin()) && 1474 "All PHI nodes should have been removed!"); 1475 1476 // At this point, we can safely insert a gc.relocate or gc.result as the first 1477 // instruction in Ret if needed. 1478 return Ret; 1479 } 1480 1481 // List of all function attributes which must be stripped when lowering from 1482 // abstract machine model to physical machine model. Essentially, these are 1483 // all the effects a safepoint might have which we ignored in the abstract 1484 // machine model for purposes of optimization. We have to strip these on 1485 // both function declarations and call sites. 1486 static constexpr Attribute::AttrKind FnAttrsToStrip[] = 1487 {Attribute::Memory, Attribute::NoSync, Attribute::NoFree}; 1488 1489 // Create new attribute set containing only attributes which can be transferred 1490 // from original call to the safepoint. 1491 static AttributeList legalizeCallAttributes(LLVMContext &Ctx, 1492 AttributeList OrigAL, 1493 AttributeList StatepointAL) { 1494 if (OrigAL.isEmpty()) 1495 return StatepointAL; 1496 1497 // Remove the readonly, readnone, and statepoint function attributes. 1498 AttrBuilder FnAttrs(Ctx, OrigAL.getFnAttrs()); 1499 for (auto Attr : FnAttrsToStrip) 1500 FnAttrs.removeAttribute(Attr); 1501 1502 for (Attribute A : OrigAL.getFnAttrs()) { 1503 if (isStatepointDirectiveAttr(A)) 1504 FnAttrs.removeAttribute(A); 1505 } 1506 1507 // Just skip parameter and return attributes for now 1508 return StatepointAL.addFnAttributes(Ctx, FnAttrs); 1509 } 1510 1511 /// Helper function to place all gc relocates necessary for the given 1512 /// statepoint. 1513 /// Inputs: 1514 /// liveVariables - list of variables to be relocated. 1515 /// basePtrs - base pointers. 1516 /// statepointToken - statepoint instruction to which relocates should be 1517 /// bound. 1518 /// Builder - Llvm IR builder to be used to construct new calls. 1519 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1520 ArrayRef<Value *> BasePtrs, 1521 Instruction *StatepointToken, 1522 IRBuilder<> &Builder) { 1523 if (LiveVariables.empty()) 1524 return; 1525 1526 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1527 auto ValIt = llvm::find(LiveVec, Val); 1528 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1529 size_t Index = std::distance(LiveVec.begin(), ValIt); 1530 assert(Index < LiveVec.size() && "Bug in std::find?"); 1531 return Index; 1532 }; 1533 Module *M = StatepointToken->getModule(); 1534 1535 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1536 // element type is i8 addrspace(1)*). We originally generated unique 1537 // declarations for each pointer type, but this proved problematic because 1538 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1539 // towards a single unified pointer type anyways, we can just cast everything 1540 // to an i8* of the right address space. A bitcast is added later to convert 1541 // gc_relocate to the actual value's type. 1542 auto getGCRelocateDecl = [&] (Type *Ty) { 1543 assert(isHandledGCPointerType(Ty)); 1544 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1545 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1546 if (auto *VT = dyn_cast<VectorType>(Ty)) 1547 NewTy = FixedVectorType::get(NewTy, 1548 cast<FixedVectorType>(VT)->getNumElements()); 1549 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1550 {NewTy}); 1551 }; 1552 1553 // Lazily populated map from input types to the canonicalized form mentioned 1554 // in the comment above. This should probably be cached somewhere more 1555 // broadly. 1556 DenseMap<Type *, Function *> TypeToDeclMap; 1557 1558 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1559 // Generate the gc.relocate call and save the result 1560 Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i])); 1561 Value *LiveIdx = Builder.getInt32(i); 1562 1563 Type *Ty = LiveVariables[i]->getType(); 1564 if (!TypeToDeclMap.count(Ty)) 1565 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1566 Function *GCRelocateDecl = TypeToDeclMap[Ty]; 1567 1568 // only specify a debug name if we can give a useful one 1569 CallInst *Reloc = Builder.CreateCall( 1570 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1571 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1572 // Trick CodeGen into thinking there are lots of free registers at this 1573 // fake call. 1574 Reloc->setCallingConv(CallingConv::Cold); 1575 } 1576 } 1577 1578 namespace { 1579 1580 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1581 /// avoids having to worry about keeping around dangling pointers to Values. 1582 class DeferredReplacement { 1583 AssertingVH<Instruction> Old; 1584 AssertingVH<Instruction> New; 1585 bool IsDeoptimize = false; 1586 1587 DeferredReplacement() = default; 1588 1589 public: 1590 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1591 assert(Old != New && Old && New && 1592 "Cannot RAUW equal values or to / from null!"); 1593 1594 DeferredReplacement D; 1595 D.Old = Old; 1596 D.New = New; 1597 return D; 1598 } 1599 1600 static DeferredReplacement createDelete(Instruction *ToErase) { 1601 DeferredReplacement D; 1602 D.Old = ToErase; 1603 return D; 1604 } 1605 1606 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1607 #ifndef NDEBUG 1608 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1609 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1610 "Only way to construct a deoptimize deferred replacement"); 1611 #endif 1612 DeferredReplacement D; 1613 D.Old = Old; 1614 D.IsDeoptimize = true; 1615 return D; 1616 } 1617 1618 /// Does the task represented by this instance. 1619 void doReplacement() { 1620 Instruction *OldI = Old; 1621 Instruction *NewI = New; 1622 1623 assert(OldI != NewI && "Disallowed at construction?!"); 1624 assert((!IsDeoptimize || !New) && 1625 "Deoptimize intrinsics are not replaced!"); 1626 1627 Old = nullptr; 1628 New = nullptr; 1629 1630 if (NewI) 1631 OldI->replaceAllUsesWith(NewI); 1632 1633 if (IsDeoptimize) { 1634 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1635 // not necessarily be followed by the matching return. 1636 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1637 new UnreachableInst(RI->getContext(), RI); 1638 RI->eraseFromParent(); 1639 } 1640 1641 OldI->eraseFromParent(); 1642 } 1643 }; 1644 1645 } // end anonymous namespace 1646 1647 static StringRef getDeoptLowering(CallBase *Call) { 1648 const char *DeoptLowering = "deopt-lowering"; 1649 if (Call->hasFnAttr(DeoptLowering)) { 1650 // FIXME: Calls have a *really* confusing interface around attributes 1651 // with values. 1652 const AttributeList &CSAS = Call->getAttributes(); 1653 if (CSAS.hasFnAttr(DeoptLowering)) 1654 return CSAS.getFnAttr(DeoptLowering).getValueAsString(); 1655 Function *F = Call->getCalledFunction(); 1656 assert(F && F->hasFnAttribute(DeoptLowering)); 1657 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1658 } 1659 return "live-through"; 1660 } 1661 1662 static void 1663 makeStatepointExplicitImpl(CallBase *Call, /* to replace */ 1664 const SmallVectorImpl<Value *> &BasePtrs, 1665 const SmallVectorImpl<Value *> &LiveVariables, 1666 PartiallyConstructedSafepointRecord &Result, 1667 std::vector<DeferredReplacement> &Replacements, 1668 const PointerToBaseTy &PointerToBase) { 1669 assert(BasePtrs.size() == LiveVariables.size()); 1670 1671 // Then go ahead and use the builder do actually do the inserts. We insert 1672 // immediately before the previous instruction under the assumption that all 1673 // arguments will be available here. We can't insert afterwards since we may 1674 // be replacing a terminator. 1675 IRBuilder<> Builder(Call); 1676 1677 ArrayRef<Value *> GCArgs(LiveVariables); 1678 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1679 uint32_t NumPatchBytes = 0; 1680 uint32_t Flags = uint32_t(StatepointFlags::None); 1681 1682 SmallVector<Value *, 8> CallArgs(Call->args()); 1683 std::optional<ArrayRef<Use>> DeoptArgs; 1684 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt)) 1685 DeoptArgs = Bundle->Inputs; 1686 std::optional<ArrayRef<Use>> TransitionArgs; 1687 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) { 1688 TransitionArgs = Bundle->Inputs; 1689 // TODO: This flag no longer serves a purpose and can be removed later 1690 Flags |= uint32_t(StatepointFlags::GCTransition); 1691 } 1692 1693 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1694 // with a return value, we lower then as never returning calls to 1695 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1696 bool IsDeoptimize = false; 1697 1698 StatepointDirectives SD = 1699 parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1700 if (SD.NumPatchBytes) 1701 NumPatchBytes = *SD.NumPatchBytes; 1702 if (SD.StatepointID) 1703 StatepointID = *SD.StatepointID; 1704 1705 // Pass through the requested lowering if any. The default is live-through. 1706 StringRef DeoptLowering = getDeoptLowering(Call); 1707 if (DeoptLowering.equals("live-in")) 1708 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1709 else { 1710 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1711 } 1712 1713 FunctionCallee CallTarget(Call->getFunctionType(), Call->getCalledOperand()); 1714 if (Function *F = dyn_cast<Function>(CallTarget.getCallee())) { 1715 auto IID = F->getIntrinsicID(); 1716 if (IID == Intrinsic::experimental_deoptimize) { 1717 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1718 // __llvm_deoptimize symbol. We want to resolve this now, since the 1719 // verifier does not allow taking the address of an intrinsic function. 1720 1721 SmallVector<Type *, 8> DomainTy; 1722 for (Value *Arg : CallArgs) 1723 DomainTy.push_back(Arg->getType()); 1724 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1725 /* isVarArg = */ false); 1726 1727 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1728 // calls to @llvm.experimental.deoptimize with different argument types in 1729 // the same module. This is fine -- we assume the frontend knew what it 1730 // was doing when generating this kind of IR. 1731 CallTarget = F->getParent() 1732 ->getOrInsertFunction("__llvm_deoptimize", FTy); 1733 1734 IsDeoptimize = true; 1735 } else if (IID == Intrinsic::memcpy_element_unordered_atomic || 1736 IID == Intrinsic::memmove_element_unordered_atomic) { 1737 // Unordered atomic memcpy and memmove intrinsics which are not explicitly 1738 // marked as "gc-leaf-function" should be lowered in a GC parseable way. 1739 // Specifically, these calls should be lowered to the 1740 // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols. 1741 // Similarly to __llvm_deoptimize we want to resolve this now, since the 1742 // verifier does not allow taking the address of an intrinsic function. 1743 // 1744 // Moreover we need to shuffle the arguments for the call in order to 1745 // accommodate GC. The underlying source and destination objects might be 1746 // relocated during copy operation should the GC occur. To relocate the 1747 // derived source and destination pointers the implementation of the 1748 // intrinsic should know the corresponding base pointers. 1749 // 1750 // To make the base pointers available pass them explicitly as arguments: 1751 // memcpy(dest_derived, source_derived, ...) => 1752 // memcpy(dest_base, dest_offset, source_base, source_offset, ...) 1753 auto &Context = Call->getContext(); 1754 auto &DL = Call->getModule()->getDataLayout(); 1755 auto GetBaseAndOffset = [&](Value *Derived) { 1756 Value *Base = nullptr; 1757 // Optimizations in unreachable code might substitute the real pointer 1758 // with undef, poison or null-derived constant. Return null base for 1759 // them to be consistent with the handling in the main algorithm in 1760 // findBaseDefiningValue. 1761 if (isa<Constant>(Derived)) 1762 Base = 1763 ConstantPointerNull::get(cast<PointerType>(Derived->getType())); 1764 else { 1765 assert(PointerToBase.count(Derived)); 1766 Base = PointerToBase.find(Derived)->second; 1767 } 1768 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 1769 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 1770 Value *Base_int = Builder.CreatePtrToInt( 1771 Base, Type::getIntNTy(Context, IntPtrSize)); 1772 Value *Derived_int = Builder.CreatePtrToInt( 1773 Derived, Type::getIntNTy(Context, IntPtrSize)); 1774 return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int)); 1775 }; 1776 1777 auto *Dest = CallArgs[0]; 1778 Value *DestBase, *DestOffset; 1779 std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest); 1780 1781 auto *Source = CallArgs[1]; 1782 Value *SourceBase, *SourceOffset; 1783 std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source); 1784 1785 auto *LengthInBytes = CallArgs[2]; 1786 auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]); 1787 1788 CallArgs.clear(); 1789 CallArgs.push_back(DestBase); 1790 CallArgs.push_back(DestOffset); 1791 CallArgs.push_back(SourceBase); 1792 CallArgs.push_back(SourceOffset); 1793 CallArgs.push_back(LengthInBytes); 1794 1795 SmallVector<Type *, 8> DomainTy; 1796 for (Value *Arg : CallArgs) 1797 DomainTy.push_back(Arg->getType()); 1798 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1799 /* isVarArg = */ false); 1800 1801 auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) { 1802 uint64_t ElementSize = ElementSizeCI->getZExtValue(); 1803 if (IID == Intrinsic::memcpy_element_unordered_atomic) { 1804 switch (ElementSize) { 1805 case 1: 1806 return "__llvm_memcpy_element_unordered_atomic_safepoint_1"; 1807 case 2: 1808 return "__llvm_memcpy_element_unordered_atomic_safepoint_2"; 1809 case 4: 1810 return "__llvm_memcpy_element_unordered_atomic_safepoint_4"; 1811 case 8: 1812 return "__llvm_memcpy_element_unordered_atomic_safepoint_8"; 1813 case 16: 1814 return "__llvm_memcpy_element_unordered_atomic_safepoint_16"; 1815 default: 1816 llvm_unreachable("unexpected element size!"); 1817 } 1818 } 1819 assert(IID == Intrinsic::memmove_element_unordered_atomic); 1820 switch (ElementSize) { 1821 case 1: 1822 return "__llvm_memmove_element_unordered_atomic_safepoint_1"; 1823 case 2: 1824 return "__llvm_memmove_element_unordered_atomic_safepoint_2"; 1825 case 4: 1826 return "__llvm_memmove_element_unordered_atomic_safepoint_4"; 1827 case 8: 1828 return "__llvm_memmove_element_unordered_atomic_safepoint_8"; 1829 case 16: 1830 return "__llvm_memmove_element_unordered_atomic_safepoint_16"; 1831 default: 1832 llvm_unreachable("unexpected element size!"); 1833 } 1834 }; 1835 1836 CallTarget = 1837 F->getParent() 1838 ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy); 1839 } 1840 } 1841 1842 // Create the statepoint given all the arguments 1843 GCStatepointInst *Token = nullptr; 1844 if (auto *CI = dyn_cast<CallInst>(Call)) { 1845 CallInst *SPCall = Builder.CreateGCStatepointCall( 1846 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1847 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1848 1849 SPCall->setTailCallKind(CI->getTailCallKind()); 1850 SPCall->setCallingConv(CI->getCallingConv()); 1851 1852 // Currently we will fail on parameter attributes and on certain 1853 // function attributes. In case if we can handle this set of attributes - 1854 // set up function attrs directly on statepoint and return attrs later for 1855 // gc_result intrinsic. 1856 SPCall->setAttributes(legalizeCallAttributes( 1857 CI->getContext(), CI->getAttributes(), SPCall->getAttributes())); 1858 1859 Token = cast<GCStatepointInst>(SPCall); 1860 1861 // Put the following gc_result and gc_relocate calls immediately after the 1862 // the old call (which we're about to delete) 1863 assert(CI->getNextNode() && "Not a terminator, must have next!"); 1864 Builder.SetInsertPoint(CI->getNextNode()); 1865 Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); 1866 } else { 1867 auto *II = cast<InvokeInst>(Call); 1868 1869 // Insert the new invoke into the old block. We'll remove the old one in a 1870 // moment at which point this will become the new terminator for the 1871 // original block. 1872 InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( 1873 StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(), 1874 II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, 1875 "statepoint_token"); 1876 1877 SPInvoke->setCallingConv(II->getCallingConv()); 1878 1879 // Currently we will fail on parameter attributes and on certain 1880 // function attributes. In case if we can handle this set of attributes - 1881 // set up function attrs directly on statepoint and return attrs later for 1882 // gc_result intrinsic. 1883 SPInvoke->setAttributes(legalizeCallAttributes( 1884 II->getContext(), II->getAttributes(), SPInvoke->getAttributes())); 1885 1886 Token = cast<GCStatepointInst>(SPInvoke); 1887 1888 // Generate gc relocates in exceptional path 1889 BasicBlock *UnwindBlock = II->getUnwindDest(); 1890 assert(!isa<PHINode>(UnwindBlock->begin()) && 1891 UnwindBlock->getUniquePredecessor() && 1892 "can't safely insert in this block!"); 1893 1894 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1895 Builder.SetCurrentDebugLocation(II->getDebugLoc()); 1896 1897 // Attach exceptional gc relocates to the landingpad. 1898 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1899 Result.UnwindToken = ExceptionalToken; 1900 1901 CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder); 1902 1903 // Generate gc relocates and returns for normal block 1904 BasicBlock *NormalDest = II->getNormalDest(); 1905 assert(!isa<PHINode>(NormalDest->begin()) && 1906 NormalDest->getUniquePredecessor() && 1907 "can't safely insert in this block!"); 1908 1909 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1910 1911 // gc relocates will be generated later as if it were regular call 1912 // statepoint 1913 } 1914 assert(Token && "Should be set in one of the above branches!"); 1915 1916 if (IsDeoptimize) { 1917 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1918 // transform the tail-call like structure to a call to a void function 1919 // followed by unreachable to get better codegen. 1920 Replacements.push_back( 1921 DeferredReplacement::createDeoptimizeReplacement(Call)); 1922 } else { 1923 Token->setName("statepoint_token"); 1924 if (!Call->getType()->isVoidTy() && !Call->use_empty()) { 1925 StringRef Name = Call->hasName() ? Call->getName() : ""; 1926 CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name); 1927 GCResult->setAttributes( 1928 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1929 Call->getAttributes().getRetAttrs())); 1930 1931 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1932 // live set of some other safepoint, in which case that safepoint's 1933 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1934 // llvm::Instruction. Instead, we defer the replacement and deletion to 1935 // after the live sets have been made explicit in the IR, and we no longer 1936 // have raw pointers to worry about. 1937 Replacements.emplace_back( 1938 DeferredReplacement::createRAUW(Call, GCResult)); 1939 } else { 1940 Replacements.emplace_back(DeferredReplacement::createDelete(Call)); 1941 } 1942 } 1943 1944 Result.StatepointToken = Token; 1945 1946 // Second, create a gc.relocate for every live variable 1947 CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder); 1948 } 1949 1950 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1951 // which make the relocations happening at this safepoint explicit. 1952 // 1953 // WARNING: Does not do any fixup to adjust users of the original live 1954 // values. That's the callers responsibility. 1955 static void 1956 makeStatepointExplicit(DominatorTree &DT, CallBase *Call, 1957 PartiallyConstructedSafepointRecord &Result, 1958 std::vector<DeferredReplacement> &Replacements, 1959 const PointerToBaseTy &PointerToBase) { 1960 const auto &LiveSet = Result.LiveSet; 1961 1962 // Convert to vector for efficient cross referencing. 1963 SmallVector<Value *, 64> BaseVec, LiveVec; 1964 LiveVec.reserve(LiveSet.size()); 1965 BaseVec.reserve(LiveSet.size()); 1966 for (Value *L : LiveSet) { 1967 LiveVec.push_back(L); 1968 assert(PointerToBase.count(L)); 1969 Value *Base = PointerToBase.find(L)->second; 1970 BaseVec.push_back(Base); 1971 } 1972 assert(LiveVec.size() == BaseVec.size()); 1973 1974 // Do the actual rewriting and delete the old statepoint 1975 makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements, 1976 PointerToBase); 1977 } 1978 1979 // Helper function for the relocationViaAlloca. 1980 // 1981 // It receives iterator to the statepoint gc relocates and emits a store to the 1982 // assigned location (via allocaMap) for the each one of them. It adds the 1983 // visited values into the visitedLiveValues set, which we will later use them 1984 // for validation checking. 1985 static void 1986 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1987 DenseMap<Value *, AllocaInst *> &AllocaMap, 1988 DenseSet<Value *> &VisitedLiveValues) { 1989 for (User *U : GCRelocs) { 1990 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1991 if (!Relocate) 1992 continue; 1993 1994 Value *OriginalValue = Relocate->getDerivedPtr(); 1995 assert(AllocaMap.count(OriginalValue)); 1996 Value *Alloca = AllocaMap[OriginalValue]; 1997 1998 // Emit store into the related alloca 1999 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 2000 // the correct type according to alloca. 2001 assert(Relocate->getNextNode() && 2002 "Should always have one since it's not a terminator"); 2003 IRBuilder<> Builder(Relocate->getNextNode()); 2004 Value *CastedRelocatedValue = 2005 Builder.CreateBitCast(Relocate, 2006 cast<AllocaInst>(Alloca)->getAllocatedType(), 2007 suffixed_name_or(Relocate, ".casted", "")); 2008 2009 new StoreInst(CastedRelocatedValue, Alloca, 2010 cast<Instruction>(CastedRelocatedValue)->getNextNode()); 2011 2012 #ifndef NDEBUG 2013 VisitedLiveValues.insert(OriginalValue); 2014 #endif 2015 } 2016 } 2017 2018 // Helper function for the "relocationViaAlloca". Similar to the 2019 // "insertRelocationStores" but works for rematerialized values. 2020 static void insertRematerializationStores( 2021 const RematerializedValueMapTy &RematerializedValues, 2022 DenseMap<Value *, AllocaInst *> &AllocaMap, 2023 DenseSet<Value *> &VisitedLiveValues) { 2024 for (auto RematerializedValuePair: RematerializedValues) { 2025 Instruction *RematerializedValue = RematerializedValuePair.first; 2026 Value *OriginalValue = RematerializedValuePair.second; 2027 2028 assert(AllocaMap.count(OriginalValue) && 2029 "Can not find alloca for rematerialized value"); 2030 Value *Alloca = AllocaMap[OriginalValue]; 2031 2032 new StoreInst(RematerializedValue, Alloca, 2033 RematerializedValue->getNextNode()); 2034 2035 #ifndef NDEBUG 2036 VisitedLiveValues.insert(OriginalValue); 2037 #endif 2038 } 2039 } 2040 2041 /// Do all the relocation update via allocas and mem2reg 2042 static void relocationViaAlloca( 2043 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 2044 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 2045 #ifndef NDEBUG 2046 // record initial number of (static) allocas; we'll check we have the same 2047 // number when we get done. 2048 int InitialAllocaNum = 0; 2049 for (Instruction &I : F.getEntryBlock()) 2050 if (isa<AllocaInst>(I)) 2051 InitialAllocaNum++; 2052 #endif 2053 2054 // TODO-PERF: change data structures, reserve 2055 DenseMap<Value *, AllocaInst *> AllocaMap; 2056 SmallVector<AllocaInst *, 200> PromotableAllocas; 2057 // Used later to chack that we have enough allocas to store all values 2058 std::size_t NumRematerializedValues = 0; 2059 PromotableAllocas.reserve(Live.size()); 2060 2061 // Emit alloca for "LiveValue" and record it in "allocaMap" and 2062 // "PromotableAllocas" 2063 const DataLayout &DL = F.getParent()->getDataLayout(); 2064 auto emitAllocaFor = [&](Value *LiveValue) { 2065 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 2066 DL.getAllocaAddrSpace(), "", 2067 F.getEntryBlock().getFirstNonPHI()); 2068 AllocaMap[LiveValue] = Alloca; 2069 PromotableAllocas.push_back(Alloca); 2070 }; 2071 2072 // Emit alloca for each live gc pointer 2073 for (Value *V : Live) 2074 emitAllocaFor(V); 2075 2076 // Emit allocas for rematerialized values 2077 for (const auto &Info : Records) 2078 for (auto RematerializedValuePair : Info.RematerializedValues) { 2079 Value *OriginalValue = RematerializedValuePair.second; 2080 if (AllocaMap.count(OriginalValue) != 0) 2081 continue; 2082 2083 emitAllocaFor(OriginalValue); 2084 ++NumRematerializedValues; 2085 } 2086 2087 // The next two loops are part of the same conceptual operation. We need to 2088 // insert a store to the alloca after the original def and at each 2089 // redefinition. We need to insert a load before each use. These are split 2090 // into distinct loops for performance reasons. 2091 2092 // Update gc pointer after each statepoint: either store a relocated value or 2093 // null (if no relocated value was found for this gc pointer and it is not a 2094 // gc_result). This must happen before we update the statepoint with load of 2095 // alloca otherwise we lose the link between statepoint and old def. 2096 for (const auto &Info : Records) { 2097 Value *Statepoint = Info.StatepointToken; 2098 2099 // This will be used for consistency check 2100 DenseSet<Value *> VisitedLiveValues; 2101 2102 // Insert stores for normal statepoint gc relocates 2103 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 2104 2105 // In case if it was invoke statepoint 2106 // we will insert stores for exceptional path gc relocates. 2107 if (isa<InvokeInst>(Statepoint)) { 2108 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 2109 VisitedLiveValues); 2110 } 2111 2112 // Do similar thing with rematerialized values 2113 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 2114 VisitedLiveValues); 2115 2116 if (ClobberNonLive) { 2117 // As a debugging aid, pretend that an unrelocated pointer becomes null at 2118 // the gc.statepoint. This will turn some subtle GC problems into 2119 // slightly easier to debug SEGVs. Note that on large IR files with 2120 // lots of gc.statepoints this is extremely costly both memory and time 2121 // wise. 2122 SmallVector<AllocaInst *, 64> ToClobber; 2123 for (auto Pair : AllocaMap) { 2124 Value *Def = Pair.first; 2125 AllocaInst *Alloca = Pair.second; 2126 2127 // This value was relocated 2128 if (VisitedLiveValues.count(Def)) { 2129 continue; 2130 } 2131 ToClobber.push_back(Alloca); 2132 } 2133 2134 auto InsertClobbersAt = [&](Instruction *IP) { 2135 for (auto *AI : ToClobber) { 2136 auto AT = AI->getAllocatedType(); 2137 Constant *CPN; 2138 if (AT->isVectorTy()) 2139 CPN = ConstantAggregateZero::get(AT); 2140 else 2141 CPN = ConstantPointerNull::get(cast<PointerType>(AT)); 2142 new StoreInst(CPN, AI, IP); 2143 } 2144 }; 2145 2146 // Insert the clobbering stores. These may get intermixed with the 2147 // gc.results and gc.relocates, but that's fine. 2148 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 2149 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 2150 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 2151 } else { 2152 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 2153 } 2154 } 2155 } 2156 2157 // Update use with load allocas and add store for gc_relocated. 2158 for (auto Pair : AllocaMap) { 2159 Value *Def = Pair.first; 2160 AllocaInst *Alloca = Pair.second; 2161 2162 // We pre-record the uses of allocas so that we dont have to worry about 2163 // later update that changes the user information.. 2164 2165 SmallVector<Instruction *, 20> Uses; 2166 // PERF: trade a linear scan for repeated reallocation 2167 Uses.reserve(Def->getNumUses()); 2168 for (User *U : Def->users()) { 2169 if (!isa<ConstantExpr>(U)) { 2170 // If the def has a ConstantExpr use, then the def is either a 2171 // ConstantExpr use itself or null. In either case 2172 // (recursively in the first, directly in the second), the oop 2173 // it is ultimately dependent on is null and this particular 2174 // use does not need to be fixed up. 2175 Uses.push_back(cast<Instruction>(U)); 2176 } 2177 } 2178 2179 llvm::sort(Uses); 2180 auto Last = std::unique(Uses.begin(), Uses.end()); 2181 Uses.erase(Last, Uses.end()); 2182 2183 for (Instruction *Use : Uses) { 2184 if (isa<PHINode>(Use)) { 2185 PHINode *Phi = cast<PHINode>(Use); 2186 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 2187 if (Def == Phi->getIncomingValue(i)) { 2188 LoadInst *Load = 2189 new LoadInst(Alloca->getAllocatedType(), Alloca, "", 2190 Phi->getIncomingBlock(i)->getTerminator()); 2191 Phi->setIncomingValue(i, Load); 2192 } 2193 } 2194 } else { 2195 LoadInst *Load = 2196 new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use); 2197 Use->replaceUsesOfWith(Def, Load); 2198 } 2199 } 2200 2201 // Emit store for the initial gc value. Store must be inserted after load, 2202 // otherwise store will be in alloca's use list and an extra load will be 2203 // inserted before it. 2204 StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false, 2205 DL.getABITypeAlign(Def->getType())); 2206 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 2207 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 2208 // InvokeInst is a terminator so the store need to be inserted into its 2209 // normal destination block. 2210 BasicBlock *NormalDest = Invoke->getNormalDest(); 2211 Store->insertBefore(NormalDest->getFirstNonPHI()); 2212 } else { 2213 assert(!Inst->isTerminator() && 2214 "The only terminator that can produce a value is " 2215 "InvokeInst which is handled above."); 2216 Store->insertAfter(Inst); 2217 } 2218 } else { 2219 assert(isa<Argument>(Def)); 2220 Store->insertAfter(cast<Instruction>(Alloca)); 2221 } 2222 } 2223 2224 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 2225 "we must have the same allocas with lives"); 2226 (void) NumRematerializedValues; 2227 if (!PromotableAllocas.empty()) { 2228 // Apply mem2reg to promote alloca to SSA 2229 PromoteMemToReg(PromotableAllocas, DT); 2230 } 2231 2232 #ifndef NDEBUG 2233 for (auto &I : F.getEntryBlock()) 2234 if (isa<AllocaInst>(I)) 2235 InitialAllocaNum--; 2236 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 2237 #endif 2238 } 2239 2240 /// Implement a unique function which doesn't require we sort the input 2241 /// vector. Doing so has the effect of changing the output of a couple of 2242 /// tests in ways which make them less useful in testing fused safepoints. 2243 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 2244 SmallSet<T, 8> Seen; 2245 erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }); 2246 } 2247 2248 /// Insert holders so that each Value is obviously live through the entire 2249 /// lifetime of the call. 2250 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values, 2251 SmallVectorImpl<CallInst *> &Holders) { 2252 if (Values.empty()) 2253 // No values to hold live, might as well not insert the empty holder 2254 return; 2255 2256 Module *M = Call->getModule(); 2257 // Use a dummy vararg function to actually hold the values live 2258 FunctionCallee Func = M->getOrInsertFunction( 2259 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); 2260 if (isa<CallInst>(Call)) { 2261 // For call safepoints insert dummy calls right after safepoint 2262 Holders.push_back( 2263 CallInst::Create(Func, Values, "", &*++Call->getIterator())); 2264 return; 2265 } 2266 // For invoke safepooints insert dummy calls both in normal and 2267 // exceptional destination blocks 2268 auto *II = cast<InvokeInst>(Call); 2269 Holders.push_back(CallInst::Create( 2270 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 2271 Holders.push_back(CallInst::Create( 2272 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 2273 } 2274 2275 static void findLiveReferences( 2276 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 2277 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 2278 GCPtrLivenessData OriginalLivenessData; 2279 computeLiveInValues(DT, F, OriginalLivenessData); 2280 for (size_t i = 0; i < records.size(); i++) { 2281 struct PartiallyConstructedSafepointRecord &info = records[i]; 2282 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 2283 } 2284 } 2285 2286 // Helper function for the "rematerializeLiveValues". It walks use chain 2287 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 2288 // the base or a value it cannot process. Only "simple" values are processed 2289 // (currently it is GEP's and casts). The returned root is examined by the 2290 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 2291 // with all visited values. 2292 static Value* findRematerializableChainToBasePointer( 2293 SmallVectorImpl<Instruction*> &ChainToBase, 2294 Value *CurrentValue) { 2295 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2296 ChainToBase.push_back(GEP); 2297 return findRematerializableChainToBasePointer(ChainToBase, 2298 GEP->getPointerOperand()); 2299 } 2300 2301 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2302 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2303 return CI; 2304 2305 ChainToBase.push_back(CI); 2306 return findRematerializableChainToBasePointer(ChainToBase, 2307 CI->getOperand(0)); 2308 } 2309 2310 // We have reached the root of the chain, which is either equal to the base or 2311 // is the first unsupported value along the use chain. 2312 return CurrentValue; 2313 } 2314 2315 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2316 // chain we are going to rematerialize. 2317 static InstructionCost 2318 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain, 2319 TargetTransformInfo &TTI) { 2320 InstructionCost Cost = 0; 2321 2322 for (Instruction *Instr : Chain) { 2323 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2324 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2325 "non noop cast is found during rematerialization"); 2326 2327 Type *SrcTy = CI->getOperand(0)->getType(); 2328 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, 2329 TTI::getCastContextHint(CI), 2330 TargetTransformInfo::TCK_SizeAndLatency, CI); 2331 2332 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2333 // Cost of the address calculation 2334 Type *ValTy = GEP->getSourceElementType(); 2335 Cost += TTI.getAddressComputationCost(ValTy); 2336 2337 // And cost of the GEP itself 2338 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2339 // allowed for the external usage) 2340 if (!GEP->hasAllConstantIndices()) 2341 Cost += 2; 2342 2343 } else { 2344 llvm_unreachable("unsupported instruction type during rematerialization"); 2345 } 2346 } 2347 2348 return Cost; 2349 } 2350 2351 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 2352 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 2353 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 2354 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 2355 return false; 2356 // Map of incoming values and their corresponding basic blocks of 2357 // OrigRootPhi. 2358 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 2359 for (unsigned i = 0; i < PhiNum; i++) 2360 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 2361 OrigRootPhi.getIncomingBlock(i); 2362 2363 // Both current and base PHIs should have same incoming values and 2364 // the same basic blocks corresponding to the incoming values. 2365 for (unsigned i = 0; i < PhiNum; i++) { 2366 auto CIVI = 2367 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2368 if (CIVI == CurrentIncomingValues.end()) 2369 return false; 2370 BasicBlock *CurrentIncomingBB = CIVI->second; 2371 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2372 return false; 2373 } 2374 return true; 2375 } 2376 2377 // Find derived pointers that can be recomputed cheap enough and fill 2378 // RematerizationCandidates with such candidates. 2379 static void 2380 findRematerializationCandidates(PointerToBaseTy PointerToBase, 2381 RematCandTy &RematerizationCandidates, 2382 TargetTransformInfo &TTI) { 2383 const unsigned int ChainLengthThreshold = 10; 2384 2385 for (auto P2B : PointerToBase) { 2386 auto *Derived = P2B.first; 2387 auto *Base = P2B.second; 2388 // Consider only derived pointers. 2389 if (Derived == Base) 2390 continue; 2391 2392 // For each live pointer find its defining chain. 2393 SmallVector<Instruction *, 3> ChainToBase; 2394 Value *RootOfChain = 2395 findRematerializableChainToBasePointer(ChainToBase, Derived); 2396 2397 // Nothing to do, or chain is too long 2398 if ( ChainToBase.size() == 0 || 2399 ChainToBase.size() > ChainLengthThreshold) 2400 continue; 2401 2402 // Handle the scenario where the RootOfChain is not equal to the 2403 // Base Value, but they are essentially the same phi values. 2404 if (RootOfChain != PointerToBase[Derived]) { 2405 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2406 PHINode *AlternateRootPhi = dyn_cast<PHINode>(PointerToBase[Derived]); 2407 if (!OrigRootPhi || !AlternateRootPhi) 2408 continue; 2409 // PHI nodes that have the same incoming values, and belonging to the same 2410 // basic blocks are essentially the same SSA value. When the original phi 2411 // has incoming values with different base pointers, the original phi is 2412 // marked as conflict, and an additional `AlternateRootPhi` with the same 2413 // incoming values get generated by the findBasePointer function. We need 2414 // to identify the newly generated AlternateRootPhi (.base version of phi) 2415 // and RootOfChain (the original phi node itself) are the same, so that we 2416 // can rematerialize the gep and casts. This is a workaround for the 2417 // deficiency in the findBasePointer algorithm. 2418 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2419 continue; 2420 } 2421 // Compute cost of this chain. 2422 InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI); 2423 // TODO: We can also account for cases when we will be able to remove some 2424 // of the rematerialized values by later optimization passes. I.e if 2425 // we rematerialized several intersecting chains. Or if original values 2426 // don't have any uses besides this statepoint. 2427 2428 // Ok, there is a candidate. 2429 RematerizlizationCandidateRecord Record; 2430 Record.ChainToBase = ChainToBase; 2431 Record.RootOfChain = RootOfChain; 2432 Record.Cost = Cost; 2433 RematerizationCandidates.insert({ Derived, Record }); 2434 } 2435 } 2436 2437 // From the statepoint live set pick values that are cheaper to recompute then 2438 // to relocate. Remove this values from the live set, rematerialize them after 2439 // statepoint and record them in "Info" structure. Note that similar to 2440 // relocated values we don't do any user adjustments here. 2441 static void rematerializeLiveValues(CallBase *Call, 2442 PartiallyConstructedSafepointRecord &Info, 2443 PointerToBaseTy &PointerToBase, 2444 RematCandTy &RematerizationCandidates, 2445 TargetTransformInfo &TTI) { 2446 // Record values we are going to delete from this statepoint live set. 2447 // We can not di this in following loop due to iterator invalidation. 2448 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2449 2450 for (Value *LiveValue : Info.LiveSet) { 2451 auto It = RematerizationCandidates.find(LiveValue); 2452 if (It == RematerizationCandidates.end()) 2453 continue; 2454 2455 RematerizlizationCandidateRecord &Record = It->second; 2456 2457 InstructionCost Cost = Record.Cost; 2458 // For invokes we need to rematerialize each chain twice - for normal and 2459 // for unwind basic blocks. Model this by multiplying cost by two. 2460 if (isa<InvokeInst>(Call)) 2461 Cost *= 2; 2462 2463 // If it's too expensive - skip it. 2464 if (Cost >= RematerializationThreshold) 2465 continue; 2466 2467 // Remove value from the live set 2468 LiveValuesToBeDeleted.push_back(LiveValue); 2469 2470 // Clone instructions and record them inside "Info" structure. 2471 2472 // Different cases for calls and invokes. For invokes we need to clone 2473 // instructions both on normal and unwind path. 2474 if (isa<CallInst>(Call)) { 2475 Instruction *InsertBefore = Call->getNextNode(); 2476 assert(InsertBefore); 2477 Instruction *RematerializedValue = 2478 rematerializeChain(Record.ChainToBase, InsertBefore, 2479 Record.RootOfChain, PointerToBase[LiveValue]); 2480 Info.RematerializedValues[RematerializedValue] = LiveValue; 2481 } else { 2482 auto *Invoke = cast<InvokeInst>(Call); 2483 2484 Instruction *NormalInsertBefore = 2485 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2486 Instruction *UnwindInsertBefore = 2487 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2488 2489 Instruction *NormalRematerializedValue = 2490 rematerializeChain(Record.ChainToBase, NormalInsertBefore, 2491 Record.RootOfChain, PointerToBase[LiveValue]); 2492 Instruction *UnwindRematerializedValue = 2493 rematerializeChain(Record.ChainToBase, UnwindInsertBefore, 2494 Record.RootOfChain, PointerToBase[LiveValue]); 2495 2496 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2497 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2498 } 2499 } 2500 2501 // Remove rematerialized values from the live set. 2502 for (auto *LiveValue: LiveValuesToBeDeleted) { 2503 Info.LiveSet.remove(LiveValue); 2504 } 2505 } 2506 2507 static bool inlineGetBaseAndOffset(Function &F, 2508 SmallVectorImpl<CallInst *> &Intrinsics, 2509 DefiningValueMapTy &DVCache, 2510 IsKnownBaseMapTy &KnownBases) { 2511 auto &Context = F.getContext(); 2512 auto &DL = F.getParent()->getDataLayout(); 2513 bool Changed = false; 2514 2515 for (auto *Callsite : Intrinsics) 2516 switch (Callsite->getIntrinsicID()) { 2517 case Intrinsic::experimental_gc_get_pointer_base: { 2518 Changed = true; 2519 Value *Base = 2520 findBasePointer(Callsite->getOperand(0), DVCache, KnownBases); 2521 assert(!DVCache.count(Callsite)); 2522 auto *BaseBC = IRBuilder<>(Callsite).CreateBitCast( 2523 Base, Callsite->getType(), suffixed_name_or(Base, ".cast", "")); 2524 if (BaseBC != Base) 2525 DVCache[BaseBC] = Base; 2526 Callsite->replaceAllUsesWith(BaseBC); 2527 if (!BaseBC->hasName()) 2528 BaseBC->takeName(Callsite); 2529 Callsite->eraseFromParent(); 2530 break; 2531 } 2532 case Intrinsic::experimental_gc_get_pointer_offset: { 2533 Changed = true; 2534 Value *Derived = Callsite->getOperand(0); 2535 Value *Base = findBasePointer(Derived, DVCache, KnownBases); 2536 assert(!DVCache.count(Callsite)); 2537 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 2538 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 2539 IRBuilder<> Builder(Callsite); 2540 Value *BaseInt = 2541 Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize), 2542 suffixed_name_or(Base, ".int", "")); 2543 Value *DerivedInt = 2544 Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize), 2545 suffixed_name_or(Derived, ".int", "")); 2546 Value *Offset = Builder.CreateSub(DerivedInt, BaseInt); 2547 Callsite->replaceAllUsesWith(Offset); 2548 Offset->takeName(Callsite); 2549 Callsite->eraseFromParent(); 2550 break; 2551 } 2552 default: 2553 llvm_unreachable("Unknown intrinsic"); 2554 } 2555 2556 return Changed; 2557 } 2558 2559 static bool insertParsePoints(Function &F, DominatorTree &DT, 2560 TargetTransformInfo &TTI, 2561 SmallVectorImpl<CallBase *> &ToUpdate, 2562 DefiningValueMapTy &DVCache, 2563 IsKnownBaseMapTy &KnownBases) { 2564 #ifndef NDEBUG 2565 // Validate the input 2566 std::set<CallBase *> Uniqued; 2567 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2568 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2569 2570 for (CallBase *Call : ToUpdate) 2571 assert(Call->getFunction() == &F); 2572 #endif 2573 2574 // When inserting gc.relocates for invokes, we need to be able to insert at 2575 // the top of the successor blocks. See the comment on 2576 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2577 // may restructure the CFG. 2578 for (CallBase *Call : ToUpdate) { 2579 auto *II = dyn_cast<InvokeInst>(Call); 2580 if (!II) 2581 continue; 2582 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2583 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2584 } 2585 2586 // A list of dummy calls added to the IR to keep various values obviously 2587 // live in the IR. We'll remove all of these when done. 2588 SmallVector<CallInst *, 64> Holders; 2589 2590 // Insert a dummy call with all of the deopt operands we'll need for the 2591 // actual safepoint insertion as arguments. This ensures reference operands 2592 // in the deopt argument list are considered live through the safepoint (and 2593 // thus makes sure they get relocated.) 2594 for (CallBase *Call : ToUpdate) { 2595 SmallVector<Value *, 64> DeoptValues; 2596 2597 for (Value *Arg : GetDeoptBundleOperands(Call)) { 2598 assert(!isUnhandledGCPointerType(Arg->getType()) && 2599 "support for FCA unimplemented"); 2600 if (isHandledGCPointerType(Arg->getType())) 2601 DeoptValues.push_back(Arg); 2602 } 2603 2604 insertUseHolderAfter(Call, DeoptValues, Holders); 2605 } 2606 2607 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2608 2609 // A) Identify all gc pointers which are statically live at the given call 2610 // site. 2611 findLiveReferences(F, DT, ToUpdate, Records); 2612 2613 /// Global mapping from live pointers to a base-defining-value. 2614 PointerToBaseTy PointerToBase; 2615 2616 // B) Find the base pointers for each live pointer 2617 for (size_t i = 0; i < Records.size(); i++) { 2618 PartiallyConstructedSafepointRecord &info = Records[i]; 2619 findBasePointers(DT, DVCache, ToUpdate[i], info, PointerToBase, KnownBases); 2620 } 2621 if (PrintBasePointers) { 2622 errs() << "Base Pairs (w/o Relocation):\n"; 2623 for (auto &Pair : PointerToBase) { 2624 errs() << " derived "; 2625 Pair.first->printAsOperand(errs(), false); 2626 errs() << " base "; 2627 Pair.second->printAsOperand(errs(), false); 2628 errs() << "\n"; 2629 ; 2630 } 2631 } 2632 2633 // The base phi insertion logic (for any safepoint) may have inserted new 2634 // instructions which are now live at some safepoint. The simplest such 2635 // example is: 2636 // loop: 2637 // phi a <-- will be a new base_phi here 2638 // safepoint 1 <-- that needs to be live here 2639 // gep a + 1 2640 // safepoint 2 2641 // br loop 2642 // We insert some dummy calls after each safepoint to definitely hold live 2643 // the base pointers which were identified for that safepoint. We'll then 2644 // ask liveness for _every_ base inserted to see what is now live. Then we 2645 // remove the dummy calls. 2646 Holders.reserve(Holders.size() + Records.size()); 2647 for (size_t i = 0; i < Records.size(); i++) { 2648 PartiallyConstructedSafepointRecord &Info = Records[i]; 2649 2650 SmallVector<Value *, 128> Bases; 2651 for (auto *Derived : Info.LiveSet) { 2652 assert(PointerToBase.count(Derived) && "Missed base for derived pointer"); 2653 Bases.push_back(PointerToBase[Derived]); 2654 } 2655 2656 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2657 } 2658 2659 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2660 // need to rerun liveness. We may *also* have inserted new defs, but that's 2661 // not the key issue. 2662 recomputeLiveInValues(F, DT, ToUpdate, Records, PointerToBase); 2663 2664 if (PrintBasePointers) { 2665 errs() << "Base Pairs: (w/Relocation)\n"; 2666 for (auto Pair : PointerToBase) { 2667 errs() << " derived "; 2668 Pair.first->printAsOperand(errs(), false); 2669 errs() << " base "; 2670 Pair.second->printAsOperand(errs(), false); 2671 errs() << "\n"; 2672 } 2673 } 2674 2675 // It is possible that non-constant live variables have a constant base. For 2676 // example, a GEP with a variable offset from a global. In this case we can 2677 // remove it from the liveset. We already don't add constants to the liveset 2678 // because we assume they won't move at runtime and the GC doesn't need to be 2679 // informed about them. The same reasoning applies if the base is constant. 2680 // Note that the relocation placement code relies on this filtering for 2681 // correctness as it expects the base to be in the liveset, which isn't true 2682 // if the base is constant. 2683 for (auto &Info : Records) { 2684 Info.LiveSet.remove_if([&](Value *LiveV) { 2685 assert(PointerToBase.count(LiveV) && "Missed base for derived pointer"); 2686 return isa<Constant>(PointerToBase[LiveV]); 2687 }); 2688 } 2689 2690 for (CallInst *CI : Holders) 2691 CI->eraseFromParent(); 2692 2693 Holders.clear(); 2694 2695 // Compute the cost of possible re-materialization of derived pointers. 2696 RematCandTy RematerizationCandidates; 2697 findRematerializationCandidates(PointerToBase, RematerizationCandidates, TTI); 2698 2699 // In order to reduce live set of statepoint we might choose to rematerialize 2700 // some values instead of relocating them. This is purely an optimization and 2701 // does not influence correctness. 2702 for (size_t i = 0; i < Records.size(); i++) 2703 rematerializeLiveValues(ToUpdate[i], Records[i], PointerToBase, 2704 RematerizationCandidates, TTI); 2705 2706 // We need this to safely RAUW and delete call or invoke return values that 2707 // may themselves be live over a statepoint. For details, please see usage in 2708 // makeStatepointExplicitImpl. 2709 std::vector<DeferredReplacement> Replacements; 2710 2711 // Now run through and replace the existing statepoints with new ones with 2712 // the live variables listed. We do not yet update uses of the values being 2713 // relocated. We have references to live variables that need to 2714 // survive to the last iteration of this loop. (By construction, the 2715 // previous statepoint can not be a live variable, thus we can and remove 2716 // the old statepoint calls as we go.) 2717 for (size_t i = 0; i < Records.size(); i++) 2718 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements, 2719 PointerToBase); 2720 2721 ToUpdate.clear(); // prevent accident use of invalid calls. 2722 2723 for (auto &PR : Replacements) 2724 PR.doReplacement(); 2725 2726 Replacements.clear(); 2727 2728 for (auto &Info : Records) { 2729 // These live sets may contain state Value pointers, since we replaced calls 2730 // with operand bundles with calls wrapped in gc.statepoint, and some of 2731 // those calls may have been def'ing live gc pointers. Clear these out to 2732 // avoid accidentally using them. 2733 // 2734 // TODO: We should create a separate data structure that does not contain 2735 // these live sets, and migrate to using that data structure from this point 2736 // onward. 2737 Info.LiveSet.clear(); 2738 } 2739 PointerToBase.clear(); 2740 2741 // Do all the fixups of the original live variables to their relocated selves 2742 SmallVector<Value *, 128> Live; 2743 for (size_t i = 0; i < Records.size(); i++) { 2744 PartiallyConstructedSafepointRecord &Info = Records[i]; 2745 2746 // We can't simply save the live set from the original insertion. One of 2747 // the live values might be the result of a call which needs a safepoint. 2748 // That Value* no longer exists and we need to use the new gc_result. 2749 // Thankfully, the live set is embedded in the statepoint (and updated), so 2750 // we just grab that. 2751 llvm::append_range(Live, Info.StatepointToken->gc_args()); 2752 #ifndef NDEBUG 2753 // Do some basic validation checking on our liveness results before 2754 // performing relocation. Relocation can and will turn mistakes in liveness 2755 // results into non-sensical code which is must harder to debug. 2756 // TODO: It would be nice to test consistency as well 2757 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2758 "statepoint must be reachable or liveness is meaningless"); 2759 for (Value *V : Info.StatepointToken->gc_args()) { 2760 if (!isa<Instruction>(V)) 2761 // Non-instruction values trivial dominate all possible uses 2762 continue; 2763 auto *LiveInst = cast<Instruction>(V); 2764 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2765 "unreachable values should never be live"); 2766 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2767 "basic SSA liveness expectation violated by liveness analysis"); 2768 } 2769 #endif 2770 } 2771 unique_unsorted(Live); 2772 2773 #ifndef NDEBUG 2774 // Validation check 2775 for (auto *Ptr : Live) 2776 assert(isHandledGCPointerType(Ptr->getType()) && 2777 "must be a gc pointer type"); 2778 #endif 2779 2780 relocationViaAlloca(F, DT, Live, Records); 2781 return !Records.empty(); 2782 } 2783 2784 // List of all parameter and return attributes which must be stripped when 2785 // lowering from the abstract machine model. Note that we list attributes 2786 // here which aren't valid as return attributes, that is okay. 2787 static AttributeMask getParamAndReturnAttributesToRemove() { 2788 AttributeMask R; 2789 R.addAttribute(Attribute::Dereferenceable); 2790 R.addAttribute(Attribute::DereferenceableOrNull); 2791 R.addAttribute(Attribute::ReadNone); 2792 R.addAttribute(Attribute::ReadOnly); 2793 R.addAttribute(Attribute::WriteOnly); 2794 R.addAttribute(Attribute::NoAlias); 2795 R.addAttribute(Attribute::NoFree); 2796 return R; 2797 } 2798 2799 static void stripNonValidAttributesFromPrototype(Function &F) { 2800 LLVMContext &Ctx = F.getContext(); 2801 2802 // Intrinsics are very delicate. Lowering sometimes depends the presence 2803 // of certain attributes for correctness, but we may have also inferred 2804 // additional ones in the abstract machine model which need stripped. This 2805 // assumes that the attributes defined in Intrinsic.td are conservatively 2806 // correct for both physical and abstract model. 2807 if (Intrinsic::ID id = F.getIntrinsicID()) { 2808 F.setAttributes(Intrinsic::getAttributes(Ctx, id)); 2809 return; 2810 } 2811 2812 AttributeMask R = getParamAndReturnAttributesToRemove(); 2813 for (Argument &A : F.args()) 2814 if (isa<PointerType>(A.getType())) 2815 F.removeParamAttrs(A.getArgNo(), R); 2816 2817 if (isa<PointerType>(F.getReturnType())) 2818 F.removeRetAttrs(R); 2819 2820 for (auto Attr : FnAttrsToStrip) 2821 F.removeFnAttr(Attr); 2822 } 2823 2824 /// Certain metadata on instructions are invalid after running RS4GC. 2825 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2826 /// optimize functions. We drop such metadata on the instruction. 2827 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2828 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2829 return; 2830 // These are the attributes that are still valid on loads and stores after 2831 // RS4GC. 2832 // The metadata implying dereferenceability and noalias are (conservatively) 2833 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2834 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2835 // touch the entire heap including noalias objects. Note: The reasoning is 2836 // same as stripping the dereferenceability and noalias attributes that are 2837 // analogous to the metadata counterparts. 2838 // We also drop the invariant.load metadata on the load because that metadata 2839 // implies the address operand to the load points to memory that is never 2840 // changed once it became dereferenceable. This is no longer true after RS4GC. 2841 // Similar reasoning applies to invariant.group metadata, which applies to 2842 // loads within a group. 2843 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2844 LLVMContext::MD_range, 2845 LLVMContext::MD_alias_scope, 2846 LLVMContext::MD_nontemporal, 2847 LLVMContext::MD_nonnull, 2848 LLVMContext::MD_align, 2849 LLVMContext::MD_type}; 2850 2851 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2852 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2853 } 2854 2855 static void stripNonValidDataFromBody(Function &F) { 2856 if (F.empty()) 2857 return; 2858 2859 LLVMContext &Ctx = F.getContext(); 2860 MDBuilder Builder(Ctx); 2861 2862 // Set of invariantstart instructions that we need to remove. 2863 // Use this to avoid invalidating the instruction iterator. 2864 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2865 2866 for (Instruction &I : instructions(F)) { 2867 // invariant.start on memory location implies that the referenced memory 2868 // location is constant and unchanging. This is no longer true after 2869 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2870 // which frees the entire heap and the presence of invariant.start allows 2871 // the optimizer to sink the load of a memory location past a statepoint, 2872 // which is incorrect. 2873 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2874 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2875 InvariantStartInstructions.push_back(II); 2876 continue; 2877 } 2878 2879 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2880 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2881 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2882 } 2883 2884 stripInvalidMetadataFromInstruction(I); 2885 2886 AttributeMask R = getParamAndReturnAttributesToRemove(); 2887 if (auto *Call = dyn_cast<CallBase>(&I)) { 2888 for (int i = 0, e = Call->arg_size(); i != e; i++) 2889 if (isa<PointerType>(Call->getArgOperand(i)->getType())) 2890 Call->removeParamAttrs(i, R); 2891 if (isa<PointerType>(Call->getType())) 2892 Call->removeRetAttrs(R); 2893 } 2894 } 2895 2896 // Delete the invariant.start instructions and RAUW undef. 2897 for (auto *II : InvariantStartInstructions) { 2898 II->replaceAllUsesWith(UndefValue::get(II->getType())); 2899 II->eraseFromParent(); 2900 } 2901 } 2902 2903 /// Returns true if this function should be rewritten by this pass. The main 2904 /// point of this function is as an extension point for custom logic. 2905 static bool shouldRewriteStatepointsIn(Function &F) { 2906 // TODO: This should check the GCStrategy 2907 if (F.hasGC()) { 2908 const auto &FunctionGCName = F.getGC(); 2909 const StringRef StatepointExampleName("statepoint-example"); 2910 const StringRef CoreCLRName("coreclr"); 2911 return (StatepointExampleName == FunctionGCName) || 2912 (CoreCLRName == FunctionGCName); 2913 } else 2914 return false; 2915 } 2916 2917 static void stripNonValidData(Module &M) { 2918 #ifndef NDEBUG 2919 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2920 #endif 2921 2922 for (Function &F : M) 2923 stripNonValidAttributesFromPrototype(F); 2924 2925 for (Function &F : M) 2926 stripNonValidDataFromBody(F); 2927 } 2928 2929 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 2930 TargetTransformInfo &TTI, 2931 const TargetLibraryInfo &TLI) { 2932 assert(!F.isDeclaration() && !F.empty() && 2933 "need function body to rewrite statepoints in"); 2934 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 2935 2936 auto NeedsRewrite = [&TLI](Instruction &I) { 2937 if (const auto *Call = dyn_cast<CallBase>(&I)) { 2938 if (isa<GCStatepointInst>(Call)) 2939 return false; 2940 if (callsGCLeafFunction(Call, TLI)) 2941 return false; 2942 2943 // Normally it's up to the frontend to make sure that non-leaf calls also 2944 // have proper deopt state if it is required. We make an exception for 2945 // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics 2946 // these are non-leaf by default. They might be generated by the optimizer 2947 // which doesn't know how to produce a proper deopt state. So if we see a 2948 // non-leaf memcpy/memmove without deopt state just treat it as a leaf 2949 // copy and don't produce a statepoint. 2950 if (!AllowStatepointWithNoDeoptInfo && 2951 !Call->getOperandBundle(LLVMContext::OB_deopt)) { 2952 assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) && 2953 "Don't expect any other calls here!"); 2954 return false; 2955 } 2956 return true; 2957 } 2958 return false; 2959 }; 2960 2961 // Delete any unreachable statepoints so that we don't have unrewritten 2962 // statepoints surviving this pass. This makes testing easier and the 2963 // resulting IR less confusing to human readers. 2964 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 2965 bool MadeChange = removeUnreachableBlocks(F, &DTU); 2966 // Flush the Dominator Tree. 2967 DTU.getDomTree(); 2968 2969 // Gather all the statepoints which need rewritten. Be careful to only 2970 // consider those in reachable code since we need to ask dominance queries 2971 // when rewriting. We'll delete the unreachable ones in a moment. 2972 SmallVector<CallBase *, 64> ParsePointNeeded; 2973 SmallVector<CallInst *, 64> Intrinsics; 2974 for (Instruction &I : instructions(F)) { 2975 // TODO: only the ones with the flag set! 2976 if (NeedsRewrite(I)) { 2977 // NOTE removeUnreachableBlocks() is stronger than 2978 // DominatorTree::isReachableFromEntry(). In other words 2979 // removeUnreachableBlocks can remove some blocks for which 2980 // isReachableFromEntry() returns true. 2981 assert(DT.isReachableFromEntry(I.getParent()) && 2982 "no unreachable blocks expected"); 2983 ParsePointNeeded.push_back(cast<CallBase>(&I)); 2984 } 2985 if (auto *CI = dyn_cast<CallInst>(&I)) 2986 if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base || 2987 CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset) 2988 Intrinsics.emplace_back(CI); 2989 } 2990 2991 // Return early if no work to do. 2992 if (ParsePointNeeded.empty() && Intrinsics.empty()) 2993 return MadeChange; 2994 2995 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2996 // These are created by LCSSA. They have the effect of increasing the size 2997 // of liveness sets for no good reason. It may be harder to do this post 2998 // insertion since relocations and base phis can confuse things. 2999 for (BasicBlock &BB : F) 3000 if (BB.getUniquePredecessor()) 3001 MadeChange |= FoldSingleEntryPHINodes(&BB); 3002 3003 // Before we start introducing relocations, we want to tweak the IR a bit to 3004 // avoid unfortunate code generation effects. The main example is that we 3005 // want to try to make sure the comparison feeding a branch is after any 3006 // safepoints. Otherwise, we end up with a comparison of pre-relocation 3007 // values feeding a branch after relocation. This is semantically correct, 3008 // but results in extra register pressure since both the pre-relocation and 3009 // post-relocation copies must be available in registers. For code without 3010 // relocations this is handled elsewhere, but teaching the scheduler to 3011 // reverse the transform we're about to do would be slightly complex. 3012 // Note: This may extend the live range of the inputs to the icmp and thus 3013 // increase the liveset of any statepoint we move over. This is profitable 3014 // as long as all statepoints are in rare blocks. If we had in-register 3015 // lowering for live values this would be a much safer transform. 3016 auto getConditionInst = [](Instruction *TI) -> Instruction * { 3017 if (auto *BI = dyn_cast<BranchInst>(TI)) 3018 if (BI->isConditional()) 3019 return dyn_cast<Instruction>(BI->getCondition()); 3020 // TODO: Extend this to handle switches 3021 return nullptr; 3022 }; 3023 for (BasicBlock &BB : F) { 3024 Instruction *TI = BB.getTerminator(); 3025 if (auto *Cond = getConditionInst(TI)) 3026 // TODO: Handle more than just ICmps here. We should be able to move 3027 // most instructions without side effects or memory access. 3028 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 3029 MadeChange = true; 3030 Cond->moveBefore(TI); 3031 } 3032 } 3033 3034 // Nasty workaround - The base computation code in the main algorithm doesn't 3035 // consider the fact that a GEP can be used to convert a scalar to a vector. 3036 // The right fix for this is to integrate GEPs into the base rewriting 3037 // algorithm properly, this is just a short term workaround to prevent 3038 // crashes by canonicalizing such GEPs into fully vector GEPs. 3039 for (Instruction &I : instructions(F)) { 3040 if (!isa<GetElementPtrInst>(I)) 3041 continue; 3042 3043 unsigned VF = 0; 3044 for (unsigned i = 0; i < I.getNumOperands(); i++) 3045 if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) { 3046 assert(VF == 0 || 3047 VF == cast<FixedVectorType>(OpndVTy)->getNumElements()); 3048 VF = cast<FixedVectorType>(OpndVTy)->getNumElements(); 3049 } 3050 3051 // It's the vector to scalar traversal through the pointer operand which 3052 // confuses base pointer rewriting, so limit ourselves to that case. 3053 if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { 3054 IRBuilder<> B(&I); 3055 auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); 3056 I.setOperand(0, Splat); 3057 MadeChange = true; 3058 } 3059 } 3060 3061 // Cache the 'defining value' relation used in the computation and 3062 // insertion of base phis and selects. This ensures that we don't insert 3063 // large numbers of duplicate base_phis. Use one cache for both 3064 // inlineGetBaseAndOffset() and insertParsePoints(). 3065 DefiningValueMapTy DVCache; 3066 3067 // Mapping between a base values and a flag indicating whether it's a known 3068 // base or not. 3069 IsKnownBaseMapTy KnownBases; 3070 3071 if (!Intrinsics.empty()) 3072 // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding 3073 // live references. 3074 MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache, KnownBases); 3075 3076 if (!ParsePointNeeded.empty()) 3077 MadeChange |= 3078 insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache, KnownBases); 3079 3080 return MadeChange; 3081 } 3082 3083 // liveness computation via standard dataflow 3084 // ------------------------------------------------------------------- 3085 3086 // TODO: Consider using bitvectors for liveness, the set of potentially 3087 // interesting values should be small and easy to pre-compute. 3088 3089 /// Compute the live-in set for the location rbegin starting from 3090 /// the live-out set of the basic block 3091 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 3092 BasicBlock::reverse_iterator End, 3093 SetVector<Value *> &LiveTmp) { 3094 for (auto &I : make_range(Begin, End)) { 3095 // KILL/Def - Remove this definition from LiveIn 3096 LiveTmp.remove(&I); 3097 3098 // Don't consider *uses* in PHI nodes, we handle their contribution to 3099 // predecessor blocks when we seed the LiveOut sets 3100 if (isa<PHINode>(I)) 3101 continue; 3102 3103 // USE - Add to the LiveIn set for this instruction 3104 for (Value *V : I.operands()) { 3105 assert(!isUnhandledGCPointerType(V->getType()) && 3106 "support for FCA unimplemented"); 3107 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 3108 // The choice to exclude all things constant here is slightly subtle. 3109 // There are two independent reasons: 3110 // - We assume that things which are constant (from LLVM's definition) 3111 // do not move at runtime. For example, the address of a global 3112 // variable is fixed, even though it's contents may not be. 3113 // - Second, we can't disallow arbitrary inttoptr constants even 3114 // if the language frontend does. Optimization passes are free to 3115 // locally exploit facts without respect to global reachability. This 3116 // can create sections of code which are dynamically unreachable and 3117 // contain just about anything. (see constants.ll in tests) 3118 LiveTmp.insert(V); 3119 } 3120 } 3121 } 3122 } 3123 3124 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 3125 for (BasicBlock *Succ : successors(BB)) { 3126 for (auto &I : *Succ) { 3127 PHINode *PN = dyn_cast<PHINode>(&I); 3128 if (!PN) 3129 break; 3130 3131 Value *V = PN->getIncomingValueForBlock(BB); 3132 assert(!isUnhandledGCPointerType(V->getType()) && 3133 "support for FCA unimplemented"); 3134 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 3135 LiveTmp.insert(V); 3136 } 3137 } 3138 } 3139 3140 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 3141 SetVector<Value *> KillSet; 3142 for (Instruction &I : *BB) 3143 if (isHandledGCPointerType(I.getType())) 3144 KillSet.insert(&I); 3145 return KillSet; 3146 } 3147 3148 #ifndef NDEBUG 3149 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 3150 /// validation check for the liveness computation. 3151 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 3152 Instruction *TI, bool TermOkay = false) { 3153 for (Value *V : Live) { 3154 if (auto *I = dyn_cast<Instruction>(V)) { 3155 // The terminator can be a member of the LiveOut set. LLVM's definition 3156 // of instruction dominance states that V does not dominate itself. As 3157 // such, we need to special case this to allow it. 3158 if (TermOkay && TI == I) 3159 continue; 3160 assert(DT.dominates(I, TI) && 3161 "basic SSA liveness expectation violated by liveness analysis"); 3162 } 3163 } 3164 } 3165 3166 /// Check that all the liveness sets used during the computation of liveness 3167 /// obey basic SSA properties. This is useful for finding cases where we miss 3168 /// a def. 3169 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 3170 BasicBlock &BB) { 3171 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 3172 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 3173 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 3174 } 3175 #endif 3176 3177 static void computeLiveInValues(DominatorTree &DT, Function &F, 3178 GCPtrLivenessData &Data) { 3179 SmallSetVector<BasicBlock *, 32> Worklist; 3180 3181 // Seed the liveness for each individual block 3182 for (BasicBlock &BB : F) { 3183 Data.KillSet[&BB] = computeKillSet(&BB); 3184 Data.LiveSet[&BB].clear(); 3185 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 3186 3187 #ifndef NDEBUG 3188 for (Value *Kill : Data.KillSet[&BB]) 3189 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 3190 #endif 3191 3192 Data.LiveOut[&BB] = SetVector<Value *>(); 3193 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 3194 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 3195 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 3196 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 3197 if (!Data.LiveIn[&BB].empty()) 3198 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 3199 } 3200 3201 // Propagate that liveness until stable 3202 while (!Worklist.empty()) { 3203 BasicBlock *BB = Worklist.pop_back_val(); 3204 3205 // Compute our new liveout set, then exit early if it hasn't changed despite 3206 // the contribution of our successor. 3207 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3208 const auto OldLiveOutSize = LiveOut.size(); 3209 for (BasicBlock *Succ : successors(BB)) { 3210 assert(Data.LiveIn.count(Succ)); 3211 LiveOut.set_union(Data.LiveIn[Succ]); 3212 } 3213 // assert OutLiveOut is a subset of LiveOut 3214 if (OldLiveOutSize == LiveOut.size()) { 3215 // If the sets are the same size, then we didn't actually add anything 3216 // when unioning our successors LiveIn. Thus, the LiveIn of this block 3217 // hasn't changed. 3218 continue; 3219 } 3220 Data.LiveOut[BB] = LiveOut; 3221 3222 // Apply the effects of this basic block 3223 SetVector<Value *> LiveTmp = LiveOut; 3224 LiveTmp.set_union(Data.LiveSet[BB]); 3225 LiveTmp.set_subtract(Data.KillSet[BB]); 3226 3227 assert(Data.LiveIn.count(BB)); 3228 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 3229 // assert: OldLiveIn is a subset of LiveTmp 3230 if (OldLiveIn.size() != LiveTmp.size()) { 3231 Data.LiveIn[BB] = LiveTmp; 3232 Worklist.insert(pred_begin(BB), pred_end(BB)); 3233 } 3234 } // while (!Worklist.empty()) 3235 3236 #ifndef NDEBUG 3237 // Verify our output against SSA properties. This helps catch any 3238 // missing kills during the above iteration. 3239 for (BasicBlock &BB : F) 3240 checkBasicSSA(DT, Data, BB); 3241 #endif 3242 } 3243 3244 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 3245 StatepointLiveSetTy &Out) { 3246 BasicBlock *BB = Inst->getParent(); 3247 3248 // Note: The copy is intentional and required 3249 assert(Data.LiveOut.count(BB)); 3250 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3251 3252 // We want to handle the statepoint itself oddly. It's 3253 // call result is not live (normal), nor are it's arguments 3254 // (unless they're used again later). This adjustment is 3255 // specifically what we need to relocate 3256 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 3257 LiveOut); 3258 LiveOut.remove(Inst); 3259 Out.insert(LiveOut.begin(), LiveOut.end()); 3260 } 3261 3262 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 3263 CallBase *Call, 3264 PartiallyConstructedSafepointRecord &Info, 3265 PointerToBaseTy &PointerToBase) { 3266 StatepointLiveSetTy Updated; 3267 findLiveSetAtInst(Call, RevisedLivenessData, Updated); 3268 3269 // We may have base pointers which are now live that weren't before. We need 3270 // to update the PointerToBase structure to reflect this. 3271 for (auto *V : Updated) 3272 PointerToBase.insert({ V, V }); 3273 3274 Info.LiveSet = Updated; 3275 } 3276