1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstIterator.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/Cloning.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 45 46 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 47 48 using namespace llvm; 49 50 // Print the liveset found at the insert location 51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 52 cl::init(false)); 53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 54 cl::init(false)); 55 // Print out the base pointers for debugging 56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 57 cl::init(false)); 58 59 // Cost threshold measuring when it is profitable to rematerialize value instead 60 // of relocating it 61 static cl::opt<unsigned> 62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 63 cl::init(6)); 64 65 #ifdef EXPENSIVE_CHECKS 66 static bool ClobberNonLive = true; 67 #else 68 static bool ClobberNonLive = false; 69 #endif 70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 71 cl::location(ClobberNonLive), 72 cl::Hidden); 73 74 static cl::opt<bool> 75 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 76 cl::Hidden, cl::init(true)); 77 78 namespace { 79 struct RewriteStatepointsForGC : public ModulePass { 80 static char ID; // Pass identification, replacement for typeid 81 82 RewriteStatepointsForGC() : ModulePass(ID) { 83 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 84 } 85 bool runOnFunction(Function &F); 86 bool runOnModule(Module &M) override { 87 bool Changed = false; 88 for (Function &F : M) 89 Changed |= runOnFunction(F); 90 91 if (Changed) { 92 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 93 // returns true for at least one function in the module. Since at least 94 // one function changed, we know that the precondition is satisfied. 95 stripNonValidAttributes(M); 96 } 97 98 return Changed; 99 } 100 101 void getAnalysisUsage(AnalysisUsage &AU) const override { 102 // We add and rewrite a bunch of instructions, but don't really do much 103 // else. We could in theory preserve a lot more analyses here. 104 AU.addRequired<DominatorTreeWrapperPass>(); 105 AU.addRequired<TargetTransformInfoWrapperPass>(); 106 } 107 108 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 109 /// dereferenceability that are no longer valid/correct after 110 /// RewriteStatepointsForGC has run. This is because semantically, after 111 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 112 /// heap. stripNonValidAttributes (conservatively) restores correctness 113 /// by erasing all attributes in the module that externally imply 114 /// dereferenceability. 115 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 116 /// can touch the entire heap including noalias objects. 117 void stripNonValidAttributes(Module &M); 118 119 // Helpers for stripNonValidAttributes 120 void stripNonValidAttributesFromBody(Function &F); 121 void stripNonValidAttributesFromPrototype(Function &F); 122 }; 123 } // namespace 124 125 char RewriteStatepointsForGC::ID = 0; 126 127 ModulePass *llvm::createRewriteStatepointsForGCPass() { 128 return new RewriteStatepointsForGC(); 129 } 130 131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 132 "Make relocations explicit at statepoints", false, false) 133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 136 "Make relocations explicit at statepoints", false, false) 137 138 namespace { 139 struct GCPtrLivenessData { 140 /// Values defined in this block. 141 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 142 /// Values used in this block (and thus live); does not included values 143 /// killed within this block. 144 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 145 146 /// Values live into this basic block (i.e. used by any 147 /// instruction in this basic block or ones reachable from here) 148 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 149 150 /// Values live out of this basic block (i.e. live into 151 /// any successor block) 152 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 153 }; 154 155 // The type of the internal cache used inside the findBasePointers family 156 // of functions. From the callers perspective, this is an opaque type and 157 // should not be inspected. 158 // 159 // In the actual implementation this caches two relations: 160 // - The base relation itself (i.e. this pointer is based on that one) 161 // - The base defining value relation (i.e. before base_phi insertion) 162 // Generally, after the execution of a full findBasePointer call, only the 163 // base relation will remain. Internally, we add a mixture of the two 164 // types, then update all the second type to the first type 165 typedef MapVector<Value *, Value *> DefiningValueMapTy; 166 typedef SetVector<Value *> StatepointLiveSetTy; 167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>> 168 RematerializedValueMapTy; 169 170 struct PartiallyConstructedSafepointRecord { 171 /// The set of values known to be live across this safepoint 172 StatepointLiveSetTy LiveSet; 173 174 /// Mapping from live pointers to a base-defining-value 175 MapVector<Value *, Value *> PointerToBase; 176 177 /// The *new* gc.statepoint instruction itself. This produces the token 178 /// that normal path gc.relocates and the gc.result are tied to. 179 Instruction *StatepointToken; 180 181 /// Instruction to which exceptional gc relocates are attached 182 /// Makes it easier to iterate through them during relocationViaAlloca. 183 Instruction *UnwindToken; 184 185 /// Record live values we are rematerialized instead of relocating. 186 /// They are not included into 'LiveSet' field. 187 /// Maps rematerialized copy to it's original value. 188 RematerializedValueMapTy RematerializedValues; 189 }; 190 } 191 192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 193 Optional<OperandBundleUse> DeoptBundle = 194 CS.getOperandBundle(LLVMContext::OB_deopt); 195 196 if (!DeoptBundle.hasValue()) { 197 assert(AllowStatepointWithNoDeoptInfo && 198 "Found non-leaf call without deopt info!"); 199 return None; 200 } 201 202 return DeoptBundle.getValue().Inputs; 203 } 204 205 /// Compute the live-in set for every basic block in the function 206 static void computeLiveInValues(DominatorTree &DT, Function &F, 207 GCPtrLivenessData &Data); 208 209 /// Given results from the dataflow liveness computation, find the set of live 210 /// Values at a particular instruction. 211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 212 StatepointLiveSetTy &out); 213 214 // TODO: Once we can get to the GCStrategy, this becomes 215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 216 217 static bool isGCPointerType(Type *T) { 218 if (auto *PT = dyn_cast<PointerType>(T)) 219 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 220 // GC managed heap. We know that a pointer into this heap needs to be 221 // updated and that no other pointer does. 222 return (1 == PT->getAddressSpace()); 223 return false; 224 } 225 226 // Return true if this type is one which a) is a gc pointer or contains a GC 227 // pointer and b) is of a type this code expects to encounter as a live value. 228 // (The insertion code will assert that a type which matches (a) and not (b) 229 // is not encountered.) 230 static bool isHandledGCPointerType(Type *T) { 231 // We fully support gc pointers 232 if (isGCPointerType(T)) 233 return true; 234 // We partially support vectors of gc pointers. The code will assert if it 235 // can't handle something. 236 if (auto VT = dyn_cast<VectorType>(T)) 237 if (isGCPointerType(VT->getElementType())) 238 return true; 239 return false; 240 } 241 242 #ifndef NDEBUG 243 /// Returns true if this type contains a gc pointer whether we know how to 244 /// handle that type or not. 245 static bool containsGCPtrType(Type *Ty) { 246 if (isGCPointerType(Ty)) 247 return true; 248 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 249 return isGCPointerType(VT->getScalarType()); 250 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 251 return containsGCPtrType(AT->getElementType()); 252 if (StructType *ST = dyn_cast<StructType>(Ty)) 253 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 254 containsGCPtrType); 255 return false; 256 } 257 258 // Returns true if this is a type which a) is a gc pointer or contains a GC 259 // pointer and b) is of a type which the code doesn't expect (i.e. first class 260 // aggregates). Used to trip assertions. 261 static bool isUnhandledGCPointerType(Type *Ty) { 262 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 263 } 264 #endif 265 266 // Return the name of the value suffixed with the provided value, or if the 267 // value didn't have a name, the default value specified. 268 static std::string suffixed_name_or(Value *V, StringRef Suffix, 269 StringRef DefaultName) { 270 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 271 } 272 273 // Conservatively identifies any definitions which might be live at the 274 // given instruction. The analysis is performed immediately before the 275 // given instruction. Values defined by that instruction are not considered 276 // live. Values used by that instruction are considered live. 277 static void 278 analyzeParsePointLiveness(DominatorTree &DT, 279 GCPtrLivenessData &OriginalLivenessData, CallSite CS, 280 PartiallyConstructedSafepointRecord &result) { 281 Instruction *inst = CS.getInstruction(); 282 283 StatepointLiveSetTy LiveSet; 284 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet); 285 286 if (PrintLiveSet) { 287 errs() << "Live Variables:\n"; 288 for (Value *V : LiveSet) 289 dbgs() << " " << V->getName() << " " << *V << "\n"; 290 } 291 if (PrintLiveSetSize) { 292 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 293 errs() << "Number live values: " << LiveSet.size() << "\n"; 294 } 295 result.LiveSet = LiveSet; 296 } 297 298 static bool isKnownBaseResult(Value *V); 299 namespace { 300 /// A single base defining value - An immediate base defining value for an 301 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 302 /// For instructions which have multiple pointer [vector] inputs or that 303 /// transition between vector and scalar types, there is no immediate base 304 /// defining value. The 'base defining value' for 'Def' is the transitive 305 /// closure of this relation stopping at the first instruction which has no 306 /// immediate base defining value. The b.d.v. might itself be a base pointer, 307 /// but it can also be an arbitrary derived pointer. 308 struct BaseDefiningValueResult { 309 /// Contains the value which is the base defining value. 310 Value * const BDV; 311 /// True if the base defining value is also known to be an actual base 312 /// pointer. 313 const bool IsKnownBase; 314 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 315 : BDV(BDV), IsKnownBase(IsKnownBase) { 316 #ifndef NDEBUG 317 // Check consistency between new and old means of checking whether a BDV is 318 // a base. 319 bool MustBeBase = isKnownBaseResult(BDV); 320 assert(!MustBeBase || MustBeBase == IsKnownBase); 321 #endif 322 } 323 }; 324 } 325 326 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 327 328 /// Return a base defining value for the 'Index' element of the given vector 329 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 330 /// 'I'. As an optimization, this method will try to determine when the 331 /// element is known to already be a base pointer. If this can be established, 332 /// the second value in the returned pair will be true. Note that either a 333 /// vector or a pointer typed value can be returned. For the former, the 334 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 335 /// If the later, the return pointer is a BDV (or possibly a base) for the 336 /// particular element in 'I'. 337 static BaseDefiningValueResult 338 findBaseDefiningValueOfVector(Value *I) { 339 // Each case parallels findBaseDefiningValue below, see that code for 340 // detailed motivation. 341 342 if (isa<Argument>(I)) 343 // An incoming argument to the function is a base pointer 344 return BaseDefiningValueResult(I, true); 345 346 if (isa<Constant>(I)) 347 // Base of constant vector consists only of constant null pointers. 348 // For reasoning see similar case inside 'findBaseDefiningValue' function. 349 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 350 true); 351 352 if (isa<LoadInst>(I)) 353 return BaseDefiningValueResult(I, true); 354 355 if (isa<InsertElementInst>(I)) 356 // We don't know whether this vector contains entirely base pointers or 357 // not. To be conservatively correct, we treat it as a BDV and will 358 // duplicate code as needed to construct a parallel vector of bases. 359 return BaseDefiningValueResult(I, false); 360 361 if (isa<ShuffleVectorInst>(I)) 362 // We don't know whether this vector contains entirely base pointers or 363 // not. To be conservatively correct, we treat it as a BDV and will 364 // duplicate code as needed to construct a parallel vector of bases. 365 // TODO: There a number of local optimizations which could be applied here 366 // for particular sufflevector patterns. 367 return BaseDefiningValueResult(I, false); 368 369 // A PHI or Select is a base defining value. The outer findBasePointer 370 // algorithm is responsible for constructing a base value for this BDV. 371 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 372 "unknown vector instruction - no base found for vector element"); 373 return BaseDefiningValueResult(I, false); 374 } 375 376 /// Helper function for findBasePointer - Will return a value which either a) 377 /// defines the base pointer for the input, b) blocks the simple search 378 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 379 /// from pointer to vector type or back. 380 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 381 assert(I->getType()->isPtrOrPtrVectorTy() && 382 "Illegal to ask for the base pointer of a non-pointer type"); 383 384 if (I->getType()->isVectorTy()) 385 return findBaseDefiningValueOfVector(I); 386 387 if (isa<Argument>(I)) 388 // An incoming argument to the function is a base pointer 389 // We should have never reached here if this argument isn't an gc value 390 return BaseDefiningValueResult(I, true); 391 392 if (isa<Constant>(I)) { 393 // We assume that objects with a constant base (e.g. a global) can't move 394 // and don't need to be reported to the collector because they are always 395 // live. Besides global references, all kinds of constants (e.g. undef, 396 // constant expressions, null pointers) can be introduced by the inliner or 397 // the optimizer, especially on dynamically dead paths. 398 // Here we treat all of them as having single null base. By doing this we 399 // trying to avoid problems reporting various conflicts in a form of 400 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 401 // See constant.ll file for relevant test cases. 402 403 return BaseDefiningValueResult( 404 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 405 } 406 407 if (CastInst *CI = dyn_cast<CastInst>(I)) { 408 Value *Def = CI->stripPointerCasts(); 409 // If stripping pointer casts changes the address space there is an 410 // addrspacecast in between. 411 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 412 cast<PointerType>(CI->getType())->getAddressSpace() && 413 "unsupported addrspacecast"); 414 // If we find a cast instruction here, it means we've found a cast which is 415 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 416 // handle int->ptr conversion. 417 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 418 return findBaseDefiningValue(Def); 419 } 420 421 if (isa<LoadInst>(I)) 422 // The value loaded is an gc base itself 423 return BaseDefiningValueResult(I, true); 424 425 426 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 427 // The base of this GEP is the base 428 return findBaseDefiningValue(GEP->getPointerOperand()); 429 430 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 431 switch (II->getIntrinsicID()) { 432 default: 433 // fall through to general call handling 434 break; 435 case Intrinsic::experimental_gc_statepoint: 436 llvm_unreachable("statepoints don't produce pointers"); 437 case Intrinsic::experimental_gc_relocate: { 438 // Rerunning safepoint insertion after safepoints are already 439 // inserted is not supported. It could probably be made to work, 440 // but why are you doing this? There's no good reason. 441 llvm_unreachable("repeat safepoint insertion is not supported"); 442 } 443 case Intrinsic::gcroot: 444 // Currently, this mechanism hasn't been extended to work with gcroot. 445 // There's no reason it couldn't be, but I haven't thought about the 446 // implications much. 447 llvm_unreachable( 448 "interaction with the gcroot mechanism is not supported"); 449 } 450 } 451 // We assume that functions in the source language only return base 452 // pointers. This should probably be generalized via attributes to support 453 // both source language and internal functions. 454 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 455 return BaseDefiningValueResult(I, true); 456 457 // I have absolutely no idea how to implement this part yet. It's not 458 // necessarily hard, I just haven't really looked at it yet. 459 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 460 461 if (isa<AtomicCmpXchgInst>(I)) 462 // A CAS is effectively a atomic store and load combined under a 463 // predicate. From the perspective of base pointers, we just treat it 464 // like a load. 465 return BaseDefiningValueResult(I, true); 466 467 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 468 "binary ops which don't apply to pointers"); 469 470 // The aggregate ops. Aggregates can either be in the heap or on the 471 // stack, but in either case, this is simply a field load. As a result, 472 // this is a defining definition of the base just like a load is. 473 if (isa<ExtractValueInst>(I)) 474 return BaseDefiningValueResult(I, true); 475 476 // We should never see an insert vector since that would require we be 477 // tracing back a struct value not a pointer value. 478 assert(!isa<InsertValueInst>(I) && 479 "Base pointer for a struct is meaningless"); 480 481 // An extractelement produces a base result exactly when it's input does. 482 // We may need to insert a parallel instruction to extract the appropriate 483 // element out of the base vector corresponding to the input. Given this, 484 // it's analogous to the phi and select case even though it's not a merge. 485 if (isa<ExtractElementInst>(I)) 486 // Note: There a lot of obvious peephole cases here. This are deliberately 487 // handled after the main base pointer inference algorithm to make writing 488 // test cases to exercise that code easier. 489 return BaseDefiningValueResult(I, false); 490 491 // The last two cases here don't return a base pointer. Instead, they 492 // return a value which dynamically selects from among several base 493 // derived pointers (each with it's own base potentially). It's the job of 494 // the caller to resolve these. 495 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 496 "missing instruction case in findBaseDefiningValing"); 497 return BaseDefiningValueResult(I, false); 498 } 499 500 /// Returns the base defining value for this value. 501 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 502 Value *&Cached = Cache[I]; 503 if (!Cached) { 504 Cached = findBaseDefiningValue(I).BDV; 505 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 506 << Cached->getName() << "\n"); 507 } 508 assert(Cache[I] != nullptr); 509 return Cached; 510 } 511 512 /// Return a base pointer for this value if known. Otherwise, return it's 513 /// base defining value. 514 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 515 Value *Def = findBaseDefiningValueCached(I, Cache); 516 auto Found = Cache.find(Def); 517 if (Found != Cache.end()) { 518 // Either a base-of relation, or a self reference. Caller must check. 519 return Found->second; 520 } 521 // Only a BDV available 522 return Def; 523 } 524 525 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 526 /// is it known to be a base pointer? Or do we need to continue searching. 527 static bool isKnownBaseResult(Value *V) { 528 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 529 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 530 !isa<ShuffleVectorInst>(V)) { 531 // no recursion possible 532 return true; 533 } 534 if (isa<Instruction>(V) && 535 cast<Instruction>(V)->getMetadata("is_base_value")) { 536 // This is a previously inserted base phi or select. We know 537 // that this is a base value. 538 return true; 539 } 540 541 // We need to keep searching 542 return false; 543 } 544 545 namespace { 546 /// Models the state of a single base defining value in the findBasePointer 547 /// algorithm for determining where a new instruction is needed to propagate 548 /// the base of this BDV. 549 class BDVState { 550 public: 551 enum Status { Unknown, Base, Conflict }; 552 553 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 554 assert(status != Base || b); 555 } 556 explicit BDVState(Value *b) : status(Base), base(b) {} 557 BDVState() : status(Unknown), base(nullptr) {} 558 559 Status getStatus() const { return status; } 560 Value *getBase() const { return base; } 561 562 bool isBase() const { return getStatus() == Base; } 563 bool isUnknown() const { return getStatus() == Unknown; } 564 bool isConflict() const { return getStatus() == Conflict; } 565 566 bool operator==(const BDVState &other) const { 567 return base == other.base && status == other.status; 568 } 569 570 bool operator!=(const BDVState &other) const { return !(*this == other); } 571 572 LLVM_DUMP_METHOD 573 void dump() const { print(dbgs()); dbgs() << '\n'; } 574 575 void print(raw_ostream &OS) const { 576 switch (status) { 577 case Unknown: 578 OS << "U"; 579 break; 580 case Base: 581 OS << "B"; 582 break; 583 case Conflict: 584 OS << "C"; 585 break; 586 }; 587 OS << " (" << base << " - " 588 << (base ? base->getName() : "nullptr") << "): "; 589 } 590 591 private: 592 Status status; 593 AssertingVH<Value> base; // non null only if status == base 594 }; 595 } 596 597 #ifndef NDEBUG 598 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 599 State.print(OS); 600 return OS; 601 } 602 #endif 603 604 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) { 605 switch (LHS.getStatus()) { 606 case BDVState::Unknown: 607 return RHS; 608 609 case BDVState::Base: 610 assert(LHS.getBase() && "can't be null"); 611 if (RHS.isUnknown()) 612 return LHS; 613 614 if (RHS.isBase()) { 615 if (LHS.getBase() == RHS.getBase()) { 616 assert(LHS == RHS && "equality broken!"); 617 return LHS; 618 } 619 return BDVState(BDVState::Conflict); 620 } 621 assert(RHS.isConflict() && "only three states!"); 622 return BDVState(BDVState::Conflict); 623 624 case BDVState::Conflict: 625 return LHS; 626 } 627 llvm_unreachable("only three states!"); 628 } 629 630 // Values of type BDVState form a lattice, and this function implements the meet 631 // operation. 632 static BDVState meetBDVState(BDVState LHS, BDVState RHS) { 633 BDVState Result = meetBDVStateImpl(LHS, RHS); 634 assert(Result == meetBDVStateImpl(RHS, LHS) && 635 "Math is wrong: meet does not commute!"); 636 return Result; 637 } 638 639 /// For a given value or instruction, figure out what base ptr its derived from. 640 /// For gc objects, this is simply itself. On success, returns a value which is 641 /// the base pointer. (This is reliable and can be used for relocation.) On 642 /// failure, returns nullptr. 643 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 644 Value *Def = findBaseOrBDV(I, Cache); 645 646 if (isKnownBaseResult(Def)) 647 return Def; 648 649 // Here's the rough algorithm: 650 // - For every SSA value, construct a mapping to either an actual base 651 // pointer or a PHI which obscures the base pointer. 652 // - Construct a mapping from PHI to unknown TOP state. Use an 653 // optimistic algorithm to propagate base pointer information. Lattice 654 // looks like: 655 // UNKNOWN 656 // b1 b2 b3 b4 657 // CONFLICT 658 // When algorithm terminates, all PHIs will either have a single concrete 659 // base or be in a conflict state. 660 // - For every conflict, insert a dummy PHI node without arguments. Add 661 // these to the base[Instruction] = BasePtr mapping. For every 662 // non-conflict, add the actual base. 663 // - For every conflict, add arguments for the base[a] of each input 664 // arguments. 665 // 666 // Note: A simpler form of this would be to add the conflict form of all 667 // PHIs without running the optimistic algorithm. This would be 668 // analogous to pessimistic data flow and would likely lead to an 669 // overall worse solution. 670 671 #ifndef NDEBUG 672 auto isExpectedBDVType = [](Value *BDV) { 673 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 674 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 675 }; 676 #endif 677 678 // Once populated, will contain a mapping from each potentially non-base BDV 679 // to a lattice value (described above) which corresponds to that BDV. 680 // We use the order of insertion (DFS over the def/use graph) to provide a 681 // stable deterministic ordering for visiting DenseMaps (which are unordered) 682 // below. This is important for deterministic compilation. 683 MapVector<Value *, BDVState> States; 684 685 // Recursively fill in all base defining values reachable from the initial 686 // one for which we don't already know a definite base value for 687 /* scope */ { 688 SmallVector<Value*, 16> Worklist; 689 Worklist.push_back(Def); 690 States.insert({Def, BDVState()}); 691 while (!Worklist.empty()) { 692 Value *Current = Worklist.pop_back_val(); 693 assert(!isKnownBaseResult(Current) && "why did it get added?"); 694 695 auto visitIncomingValue = [&](Value *InVal) { 696 Value *Base = findBaseOrBDV(InVal, Cache); 697 if (isKnownBaseResult(Base)) 698 // Known bases won't need new instructions introduced and can be 699 // ignored safely 700 return; 701 assert(isExpectedBDVType(Base) && "the only non-base values " 702 "we see should be base defining values"); 703 if (States.insert(std::make_pair(Base, BDVState())).second) 704 Worklist.push_back(Base); 705 }; 706 if (PHINode *PN = dyn_cast<PHINode>(Current)) { 707 for (Value *InVal : PN->incoming_values()) 708 visitIncomingValue(InVal); 709 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { 710 visitIncomingValue(SI->getTrueValue()); 711 visitIncomingValue(SI->getFalseValue()); 712 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 713 visitIncomingValue(EE->getVectorOperand()); 714 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 715 visitIncomingValue(IE->getOperand(0)); // vector operand 716 visitIncomingValue(IE->getOperand(1)); // scalar operand 717 } else { 718 // There is one known class of instructions we know we don't handle. 719 assert(isa<ShuffleVectorInst>(Current)); 720 llvm_unreachable("Unimplemented instruction case"); 721 } 722 } 723 } 724 725 #ifndef NDEBUG 726 DEBUG(dbgs() << "States after initialization:\n"); 727 for (auto Pair : States) 728 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 729 #endif 730 731 // Return a phi state for a base defining value. We'll generate a new 732 // base state for known bases and expect to find a cached state otherwise. 733 auto getStateForBDV = [&](Value *baseValue) { 734 if (isKnownBaseResult(baseValue)) 735 return BDVState(baseValue); 736 auto I = States.find(baseValue); 737 assert(I != States.end() && "lookup failed!"); 738 return I->second; 739 }; 740 741 bool Progress = true; 742 while (Progress) { 743 #ifndef NDEBUG 744 const size_t OldSize = States.size(); 745 #endif 746 Progress = false; 747 // We're only changing values in this loop, thus safe to keep iterators. 748 // Since this is computing a fixed point, the order of visit does not 749 // effect the result. TODO: We could use a worklist here and make this run 750 // much faster. 751 for (auto Pair : States) { 752 Value *BDV = Pair.first; 753 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 754 755 // Given an input value for the current instruction, return a BDVState 756 // instance which represents the BDV of that value. 757 auto getStateForInput = [&](Value *V) mutable { 758 Value *BDV = findBaseOrBDV(V, Cache); 759 return getStateForBDV(BDV); 760 }; 761 762 BDVState NewState; 763 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 764 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); 765 NewState = 766 meetBDVState(NewState, getStateForInput(SI->getFalseValue())); 767 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 768 for (Value *Val : PN->incoming_values()) 769 NewState = meetBDVState(NewState, getStateForInput(Val)); 770 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 771 // The 'meet' for an extractelement is slightly trivial, but it's still 772 // useful in that it drives us to conflict if our input is. 773 NewState = 774 meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); 775 } else { 776 // Given there's a inherent type mismatch between the operands, will 777 // *always* produce Conflict. 778 auto *IE = cast<InsertElementInst>(BDV); 779 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); 780 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); 781 } 782 783 BDVState OldState = States[BDV]; 784 if (OldState != NewState) { 785 Progress = true; 786 States[BDV] = NewState; 787 } 788 } 789 790 assert(OldSize == States.size() && 791 "fixed point shouldn't be adding any new nodes to state"); 792 } 793 794 #ifndef NDEBUG 795 DEBUG(dbgs() << "States after meet iteration:\n"); 796 for (auto Pair : States) 797 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 798 #endif 799 800 // Insert Phis for all conflicts 801 // TODO: adjust naming patterns to avoid this order of iteration dependency 802 for (auto Pair : States) { 803 Instruction *I = cast<Instruction>(Pair.first); 804 BDVState State = Pair.second; 805 assert(!isKnownBaseResult(I) && "why did it get added?"); 806 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 807 808 // extractelement instructions are a bit special in that we may need to 809 // insert an extract even when we know an exact base for the instruction. 810 // The problem is that we need to convert from a vector base to a scalar 811 // base for the particular indice we're interested in. 812 if (State.isBase() && isa<ExtractElementInst>(I) && 813 isa<VectorType>(State.getBase()->getType())) { 814 auto *EE = cast<ExtractElementInst>(I); 815 // TODO: In many cases, the new instruction is just EE itself. We should 816 // exploit this, but can't do it here since it would break the invariant 817 // about the BDV not being known to be a base. 818 auto *BaseInst = ExtractElementInst::Create( 819 State.getBase(), EE->getIndexOperand(), "base_ee", EE); 820 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 821 States[I] = BDVState(BDVState::Base, BaseInst); 822 } 823 824 // Since we're joining a vector and scalar base, they can never be the 825 // same. As a result, we should always see insert element having reached 826 // the conflict state. 827 assert(!isa<InsertElementInst>(I) || State.isConflict()); 828 829 if (!State.isConflict()) 830 continue; 831 832 /// Create and insert a new instruction which will represent the base of 833 /// the given instruction 'I'. 834 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 835 if (isa<PHINode>(I)) { 836 BasicBlock *BB = I->getParent(); 837 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 838 assert(NumPreds > 0 && "how did we reach here"); 839 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 840 return PHINode::Create(I->getType(), NumPreds, Name, I); 841 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 842 // The undef will be replaced later 843 UndefValue *Undef = UndefValue::get(SI->getType()); 844 std::string Name = suffixed_name_or(I, ".base", "base_select"); 845 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); 846 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 847 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 848 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 849 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 850 EE); 851 } else { 852 auto *IE = cast<InsertElementInst>(I); 853 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 854 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 855 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 856 return InsertElementInst::Create(VecUndef, ScalarUndef, 857 IE->getOperand(2), Name, IE); 858 } 859 }; 860 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 861 // Add metadata marking this as a base value 862 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 863 States[I] = BDVState(BDVState::Conflict, BaseInst); 864 } 865 866 // Returns a instruction which produces the base pointer for a given 867 // instruction. The instruction is assumed to be an input to one of the BDVs 868 // seen in the inference algorithm above. As such, we must either already 869 // know it's base defining value is a base, or have inserted a new 870 // instruction to propagate the base of it's BDV and have entered that newly 871 // introduced instruction into the state table. In either case, we are 872 // assured to be able to determine an instruction which produces it's base 873 // pointer. 874 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 875 Value *BDV = findBaseOrBDV(Input, Cache); 876 Value *Base = nullptr; 877 if (isKnownBaseResult(BDV)) { 878 Base = BDV; 879 } else { 880 // Either conflict or base. 881 assert(States.count(BDV)); 882 Base = States[BDV].getBase(); 883 } 884 assert(Base && "Can't be null"); 885 // The cast is needed since base traversal may strip away bitcasts 886 if (Base->getType() != Input->getType() && InsertPt) 887 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 888 return Base; 889 }; 890 891 // Fixup all the inputs of the new PHIs. Visit order needs to be 892 // deterministic and predictable because we're naming newly created 893 // instructions. 894 for (auto Pair : States) { 895 Instruction *BDV = cast<Instruction>(Pair.first); 896 BDVState State = Pair.second; 897 898 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 899 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 900 if (!State.isConflict()) 901 continue; 902 903 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBase())) { 904 PHINode *PN = cast<PHINode>(BDV); 905 unsigned NumPHIValues = PN->getNumIncomingValues(); 906 for (unsigned i = 0; i < NumPHIValues; i++) { 907 Value *InVal = PN->getIncomingValue(i); 908 BasicBlock *InBB = PN->getIncomingBlock(i); 909 910 // If we've already seen InBB, add the same incoming value 911 // we added for it earlier. The IR verifier requires phi 912 // nodes with multiple entries from the same basic block 913 // to have the same incoming value for each of those 914 // entries. If we don't do this check here and basephi 915 // has a different type than base, we'll end up adding two 916 // bitcasts (and hence two distinct values) as incoming 917 // values for the same basic block. 918 919 int BlockIndex = BasePHI->getBasicBlockIndex(InBB); 920 if (BlockIndex != -1) { 921 Value *OldBase = BasePHI->getIncomingValue(BlockIndex); 922 BasePHI->addIncoming(OldBase, InBB); 923 924 #ifndef NDEBUG 925 Value *Base = getBaseForInput(InVal, nullptr); 926 // In essence this assert states: the only way two values 927 // incoming from the same basic block may be different is by 928 // being different bitcasts of the same value. A cleanup 929 // that remains TODO is changing findBaseOrBDV to return an 930 // llvm::Value of the correct type (and still remain pure). 931 // This will remove the need to add bitcasts. 932 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 933 "Sanity -- findBaseOrBDV should be pure!"); 934 #endif 935 continue; 936 } 937 938 // Find the instruction which produces the base for each input. We may 939 // need to insert a bitcast in the incoming block. 940 // TODO: Need to split critical edges if insertion is needed 941 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 942 BasePHI->addIncoming(Base, InBB); 943 } 944 assert(BasePHI->getNumIncomingValues() == NumPHIValues); 945 } else if (SelectInst *BaseSI = dyn_cast<SelectInst>(State.getBase())) { 946 SelectInst *SI = cast<SelectInst>(BDV); 947 948 // Find the instruction which produces the base for each input. 949 // We may need to insert a bitcast. 950 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 951 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 952 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 953 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 954 // Find the instruction which produces the base for each input. We may 955 // need to insert a bitcast. 956 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 957 } else { 958 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 959 auto *BdvIE = cast<InsertElementInst>(BDV); 960 auto UpdateOperand = [&](int OperandIdx) { 961 Value *InVal = BdvIE->getOperand(OperandIdx); 962 Value *Base = getBaseForInput(InVal, BaseIE); 963 BaseIE->setOperand(OperandIdx, Base); 964 }; 965 UpdateOperand(0); // vector operand 966 UpdateOperand(1); // scalar operand 967 } 968 } 969 970 // Cache all of our results so we can cheaply reuse them 971 // NOTE: This is actually two caches: one of the base defining value 972 // relation and one of the base pointer relation! FIXME 973 for (auto Pair : States) { 974 auto *BDV = Pair.first; 975 Value *Base = Pair.second.getBase(); 976 assert(BDV && Base); 977 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 978 979 DEBUG(dbgs() << "Updating base value cache" 980 << " for: " << BDV->getName() << " from: " 981 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 982 << " to: " << Base->getName() << "\n"); 983 984 if (Cache.count(BDV)) { 985 assert(isKnownBaseResult(Base) && 986 "must be something we 'know' is a base pointer"); 987 // Once we transition from the BDV relation being store in the Cache to 988 // the base relation being stored, it must be stable 989 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && 990 "base relation should be stable"); 991 } 992 Cache[BDV] = Base; 993 } 994 assert(Cache.count(Def)); 995 return Cache[Def]; 996 } 997 998 // For a set of live pointers (base and/or derived), identify the base 999 // pointer of the object which they are derived from. This routine will 1000 // mutate the IR graph as needed to make the 'base' pointer live at the 1001 // definition site of 'derived'. This ensures that any use of 'derived' can 1002 // also use 'base'. This may involve the insertion of a number of 1003 // additional PHI nodes. 1004 // 1005 // preconditions: live is a set of pointer type Values 1006 // 1007 // side effects: may insert PHI nodes into the existing CFG, will preserve 1008 // CFG, will not remove or mutate any existing nodes 1009 // 1010 // post condition: PointerToBase contains one (derived, base) pair for every 1011 // pointer in live. Note that derived can be equal to base if the original 1012 // pointer was a base pointer. 1013 static void 1014 findBasePointers(const StatepointLiveSetTy &live, 1015 MapVector<Value *, Value *> &PointerToBase, 1016 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1017 for (Value *ptr : live) { 1018 Value *base = findBasePointer(ptr, DVCache); 1019 assert(base && "failed to find base pointer"); 1020 PointerToBase[ptr] = base; 1021 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1022 DT->dominates(cast<Instruction>(base)->getParent(), 1023 cast<Instruction>(ptr)->getParent())) && 1024 "The base we found better dominate the derived pointer"); 1025 } 1026 } 1027 1028 /// Find the required based pointers (and adjust the live set) for the given 1029 /// parse point. 1030 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1031 CallSite CS, 1032 PartiallyConstructedSafepointRecord &result) { 1033 MapVector<Value *, Value *> PointerToBase; 1034 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1035 1036 if (PrintBasePointers) { 1037 errs() << "Base Pairs (w/o Relocation):\n"; 1038 for (auto &Pair : PointerToBase) { 1039 errs() << " derived "; 1040 Pair.first->printAsOperand(errs(), false); 1041 errs() << " base "; 1042 Pair.second->printAsOperand(errs(), false); 1043 errs() << "\n";; 1044 } 1045 } 1046 1047 result.PointerToBase = PointerToBase; 1048 } 1049 1050 /// Given an updated version of the dataflow liveness results, update the 1051 /// liveset and base pointer maps for the call site CS. 1052 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1053 CallSite CS, 1054 PartiallyConstructedSafepointRecord &result); 1055 1056 static void recomputeLiveInValues( 1057 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1058 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1059 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1060 // again. The old values are still live and will help it stabilize quickly. 1061 GCPtrLivenessData RevisedLivenessData; 1062 computeLiveInValues(DT, F, RevisedLivenessData); 1063 for (size_t i = 0; i < records.size(); i++) { 1064 struct PartiallyConstructedSafepointRecord &info = records[i]; 1065 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1066 } 1067 } 1068 1069 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1070 // no uses of the original value / return value between the gc.statepoint and 1071 // the gc.relocate / gc.result call. One case which can arise is a phi node 1072 // starting one of the successor blocks. We also need to be able to insert the 1073 // gc.relocates only on the path which goes through the statepoint. We might 1074 // need to split an edge to make this possible. 1075 static BasicBlock * 1076 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1077 DominatorTree &DT) { 1078 BasicBlock *Ret = BB; 1079 if (!BB->getUniquePredecessor()) 1080 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1081 1082 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1083 // from it 1084 FoldSingleEntryPHINodes(Ret); 1085 assert(!isa<PHINode>(Ret->begin()) && 1086 "All PHI nodes should have been removed!"); 1087 1088 // At this point, we can safely insert a gc.relocate or gc.result as the first 1089 // instruction in Ret if needed. 1090 return Ret; 1091 } 1092 1093 // Create new attribute set containing only attributes which can be transferred 1094 // from original call to the safepoint. 1095 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1096 AttributeSet Ret; 1097 1098 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1099 unsigned Index = AS.getSlotIndex(Slot); 1100 1101 if (Index == AttributeSet::ReturnIndex || 1102 Index == AttributeSet::FunctionIndex) { 1103 1104 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { 1105 1106 // Do not allow certain attributes - just skip them 1107 // Safepoint can not be read only or read none. 1108 if (Attr.hasAttribute(Attribute::ReadNone) || 1109 Attr.hasAttribute(Attribute::ReadOnly)) 1110 continue; 1111 1112 // These attributes control the generation of the gc.statepoint call / 1113 // invoke itself; and once the gc.statepoint is in place, they're of no 1114 // use. 1115 if (isStatepointDirectiveAttr(Attr)) 1116 continue; 1117 1118 Ret = Ret.addAttributes( 1119 AS.getContext(), Index, 1120 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); 1121 } 1122 } 1123 1124 // Just skip parameter attributes for now 1125 } 1126 1127 return Ret; 1128 } 1129 1130 /// Helper function to place all gc relocates necessary for the given 1131 /// statepoint. 1132 /// Inputs: 1133 /// liveVariables - list of variables to be relocated. 1134 /// liveStart - index of the first live variable. 1135 /// basePtrs - base pointers. 1136 /// statepointToken - statepoint instruction to which relocates should be 1137 /// bound. 1138 /// Builder - Llvm IR builder to be used to construct new calls. 1139 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1140 const int LiveStart, 1141 ArrayRef<Value *> BasePtrs, 1142 Instruction *StatepointToken, 1143 IRBuilder<> Builder) { 1144 if (LiveVariables.empty()) 1145 return; 1146 1147 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1148 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val); 1149 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1150 size_t Index = std::distance(LiveVec.begin(), ValIt); 1151 assert(Index < LiveVec.size() && "Bug in std::find?"); 1152 return Index; 1153 }; 1154 Module *M = StatepointToken->getModule(); 1155 1156 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1157 // element type is i8 addrspace(1)*). We originally generated unique 1158 // declarations for each pointer type, but this proved problematic because 1159 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1160 // towards a single unified pointer type anyways, we can just cast everything 1161 // to an i8* of the right address space. A bitcast is added later to convert 1162 // gc_relocate to the actual value's type. 1163 auto getGCRelocateDecl = [&] (Type *Ty) { 1164 assert(isHandledGCPointerType(Ty)); 1165 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1166 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1167 if (auto *VT = dyn_cast<VectorType>(Ty)) 1168 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1169 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1170 {NewTy}); 1171 }; 1172 1173 // Lazily populated map from input types to the canonicalized form mentioned 1174 // in the comment above. This should probably be cached somewhere more 1175 // broadly. 1176 DenseMap<Type*, Value*> TypeToDeclMap; 1177 1178 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1179 // Generate the gc.relocate call and save the result 1180 Value *BaseIdx = 1181 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1182 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1183 1184 Type *Ty = LiveVariables[i]->getType(); 1185 if (!TypeToDeclMap.count(Ty)) 1186 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1187 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1188 1189 // only specify a debug name if we can give a useful one 1190 CallInst *Reloc = Builder.CreateCall( 1191 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1192 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1193 // Trick CodeGen into thinking there are lots of free registers at this 1194 // fake call. 1195 Reloc->setCallingConv(CallingConv::Cold); 1196 } 1197 } 1198 1199 namespace { 1200 1201 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1202 /// avoids having to worry about keeping around dangling pointers to Values. 1203 class DeferredReplacement { 1204 AssertingVH<Instruction> Old; 1205 AssertingVH<Instruction> New; 1206 bool IsDeoptimize = false; 1207 1208 DeferredReplacement() {} 1209 1210 public: 1211 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1212 assert(Old != New && Old && New && 1213 "Cannot RAUW equal values or to / from null!"); 1214 1215 DeferredReplacement D; 1216 D.Old = Old; 1217 D.New = New; 1218 return D; 1219 } 1220 1221 static DeferredReplacement createDelete(Instruction *ToErase) { 1222 DeferredReplacement D; 1223 D.Old = ToErase; 1224 return D; 1225 } 1226 1227 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1228 #ifndef NDEBUG 1229 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1230 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1231 "Only way to construct a deoptimize deferred replacement"); 1232 #endif 1233 DeferredReplacement D; 1234 D.Old = Old; 1235 D.IsDeoptimize = true; 1236 return D; 1237 } 1238 1239 /// Does the task represented by this instance. 1240 void doReplacement() { 1241 Instruction *OldI = Old; 1242 Instruction *NewI = New; 1243 1244 assert(OldI != NewI && "Disallowed at construction?!"); 1245 assert((!IsDeoptimize || !New) && 1246 "Deoptimize instrinsics are not replaced!"); 1247 1248 Old = nullptr; 1249 New = nullptr; 1250 1251 if (NewI) 1252 OldI->replaceAllUsesWith(NewI); 1253 1254 if (IsDeoptimize) { 1255 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1256 // not necessarilly be followed by the matching return. 1257 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1258 new UnreachableInst(RI->getContext(), RI); 1259 RI->eraseFromParent(); 1260 } 1261 1262 OldI->eraseFromParent(); 1263 } 1264 }; 1265 } 1266 1267 static void 1268 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1269 const SmallVectorImpl<Value *> &BasePtrs, 1270 const SmallVectorImpl<Value *> &LiveVariables, 1271 PartiallyConstructedSafepointRecord &Result, 1272 std::vector<DeferredReplacement> &Replacements) { 1273 assert(BasePtrs.size() == LiveVariables.size()); 1274 1275 // Then go ahead and use the builder do actually do the inserts. We insert 1276 // immediately before the previous instruction under the assumption that all 1277 // arguments will be available here. We can't insert afterwards since we may 1278 // be replacing a terminator. 1279 Instruction *InsertBefore = CS.getInstruction(); 1280 IRBuilder<> Builder(InsertBefore); 1281 1282 ArrayRef<Value *> GCArgs(LiveVariables); 1283 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1284 uint32_t NumPatchBytes = 0; 1285 uint32_t Flags = uint32_t(StatepointFlags::None); 1286 1287 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1288 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1289 ArrayRef<Use> TransitionArgs; 1290 if (auto TransitionBundle = 1291 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1292 Flags |= uint32_t(StatepointFlags::GCTransition); 1293 TransitionArgs = TransitionBundle->Inputs; 1294 } 1295 1296 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1297 // with a return value, we lower then as never returning calls to 1298 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1299 bool IsDeoptimize = false; 1300 1301 StatepointDirectives SD = 1302 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1303 if (SD.NumPatchBytes) 1304 NumPatchBytes = *SD.NumPatchBytes; 1305 if (SD.StatepointID) 1306 StatepointID = *SD.StatepointID; 1307 1308 Value *CallTarget = CS.getCalledValue(); 1309 if (Function *F = dyn_cast<Function>(CallTarget)) { 1310 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1311 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1312 // __llvm_deoptimize symbol. We want to resolve this now, since the 1313 // verifier does not allow taking the address of an intrinsic function. 1314 1315 SmallVector<Type *, 8> DomainTy; 1316 for (Value *Arg : CallArgs) 1317 DomainTy.push_back(Arg->getType()); 1318 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1319 /* isVarArg = */ false); 1320 1321 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1322 // calls to @llvm.experimental.deoptimize with different argument types in 1323 // the same module. This is fine -- we assume the frontend knew what it 1324 // was doing when generating this kind of IR. 1325 CallTarget = 1326 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1327 1328 IsDeoptimize = true; 1329 } 1330 } 1331 1332 // Create the statepoint given all the arguments 1333 Instruction *Token = nullptr; 1334 AttributeSet ReturnAttrs; 1335 if (CS.isCall()) { 1336 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1337 CallInst *Call = Builder.CreateGCStatepointCall( 1338 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1339 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1340 1341 Call->setTailCall(ToReplace->isTailCall()); 1342 Call->setCallingConv(ToReplace->getCallingConv()); 1343 1344 // Currently we will fail on parameter attributes and on certain 1345 // function attributes. 1346 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1347 // In case if we can handle this set of attributes - set up function attrs 1348 // directly on statepoint and return attrs later for gc_result intrinsic. 1349 Call->setAttributes(NewAttrs.getFnAttributes()); 1350 ReturnAttrs = NewAttrs.getRetAttributes(); 1351 1352 Token = Call; 1353 1354 // Put the following gc_result and gc_relocate calls immediately after the 1355 // the old call (which we're about to delete) 1356 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1357 Builder.SetInsertPoint(ToReplace->getNextNode()); 1358 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1359 } else { 1360 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1361 1362 // Insert the new invoke into the old block. We'll remove the old one in a 1363 // moment at which point this will become the new terminator for the 1364 // original block. 1365 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1366 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1367 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1368 GCArgs, "statepoint_token"); 1369 1370 Invoke->setCallingConv(ToReplace->getCallingConv()); 1371 1372 // Currently we will fail on parameter attributes and on certain 1373 // function attributes. 1374 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1375 // In case if we can handle this set of attributes - set up function attrs 1376 // directly on statepoint and return attrs later for gc_result intrinsic. 1377 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1378 ReturnAttrs = NewAttrs.getRetAttributes(); 1379 1380 Token = Invoke; 1381 1382 // Generate gc relocates in exceptional path 1383 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1384 assert(!isa<PHINode>(UnwindBlock->begin()) && 1385 UnwindBlock->getUniquePredecessor() && 1386 "can't safely insert in this block!"); 1387 1388 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1389 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1390 1391 // Attach exceptional gc relocates to the landingpad. 1392 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1393 Result.UnwindToken = ExceptionalToken; 1394 1395 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1396 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1397 Builder); 1398 1399 // Generate gc relocates and returns for normal block 1400 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1401 assert(!isa<PHINode>(NormalDest->begin()) && 1402 NormalDest->getUniquePredecessor() && 1403 "can't safely insert in this block!"); 1404 1405 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1406 1407 // gc relocates will be generated later as if it were regular call 1408 // statepoint 1409 } 1410 assert(Token && "Should be set in one of the above branches!"); 1411 1412 if (IsDeoptimize) { 1413 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1414 // transform the tail-call like structure to a call to a void function 1415 // followed by unreachable to get better codegen. 1416 Replacements.push_back( 1417 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1418 } else { 1419 Token->setName("statepoint_token"); 1420 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1421 StringRef Name = 1422 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1423 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1424 GCResult->setAttributes(CS.getAttributes().getRetAttributes()); 1425 1426 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1427 // live set of some other safepoint, in which case that safepoint's 1428 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1429 // llvm::Instruction. Instead, we defer the replacement and deletion to 1430 // after the live sets have been made explicit in the IR, and we no longer 1431 // have raw pointers to worry about. 1432 Replacements.emplace_back( 1433 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1434 } else { 1435 Replacements.emplace_back( 1436 DeferredReplacement::createDelete(CS.getInstruction())); 1437 } 1438 } 1439 1440 Result.StatepointToken = Token; 1441 1442 // Second, create a gc.relocate for every live variable 1443 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1444 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1445 } 1446 1447 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1448 // which make the relocations happening at this safepoint explicit. 1449 // 1450 // WARNING: Does not do any fixup to adjust users of the original live 1451 // values. That's the callers responsibility. 1452 static void 1453 makeStatepointExplicit(DominatorTree &DT, CallSite CS, 1454 PartiallyConstructedSafepointRecord &Result, 1455 std::vector<DeferredReplacement> &Replacements) { 1456 const auto &LiveSet = Result.LiveSet; 1457 const auto &PointerToBase = Result.PointerToBase; 1458 1459 // Convert to vector for efficient cross referencing. 1460 SmallVector<Value *, 64> BaseVec, LiveVec; 1461 LiveVec.reserve(LiveSet.size()); 1462 BaseVec.reserve(LiveSet.size()); 1463 for (Value *L : LiveSet) { 1464 LiveVec.push_back(L); 1465 assert(PointerToBase.count(L)); 1466 Value *Base = PointerToBase.find(L)->second; 1467 BaseVec.push_back(Base); 1468 } 1469 assert(LiveVec.size() == BaseVec.size()); 1470 1471 // Do the actual rewriting and delete the old statepoint 1472 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1473 } 1474 1475 // Helper function for the relocationViaAlloca. 1476 // 1477 // It receives iterator to the statepoint gc relocates and emits a store to the 1478 // assigned location (via allocaMap) for the each one of them. It adds the 1479 // visited values into the visitedLiveValues set, which we will later use them 1480 // for sanity checking. 1481 static void 1482 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1483 DenseMap<Value *, Value *> &AllocaMap, 1484 DenseSet<Value *> &VisitedLiveValues) { 1485 1486 for (User *U : GCRelocs) { 1487 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1488 if (!Relocate) 1489 continue; 1490 1491 Value *OriginalValue = Relocate->getDerivedPtr(); 1492 assert(AllocaMap.count(OriginalValue)); 1493 Value *Alloca = AllocaMap[OriginalValue]; 1494 1495 // Emit store into the related alloca 1496 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1497 // the correct type according to alloca. 1498 assert(Relocate->getNextNode() && 1499 "Should always have one since it's not a terminator"); 1500 IRBuilder<> Builder(Relocate->getNextNode()); 1501 Value *CastedRelocatedValue = 1502 Builder.CreateBitCast(Relocate, 1503 cast<AllocaInst>(Alloca)->getAllocatedType(), 1504 suffixed_name_or(Relocate, ".casted", "")); 1505 1506 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1507 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1508 1509 #ifndef NDEBUG 1510 VisitedLiveValues.insert(OriginalValue); 1511 #endif 1512 } 1513 } 1514 1515 // Helper function for the "relocationViaAlloca". Similar to the 1516 // "insertRelocationStores" but works for rematerialized values. 1517 static void insertRematerializationStores( 1518 const RematerializedValueMapTy &RematerializedValues, 1519 DenseMap<Value *, Value *> &AllocaMap, 1520 DenseSet<Value *> &VisitedLiveValues) { 1521 1522 for (auto RematerializedValuePair: RematerializedValues) { 1523 Instruction *RematerializedValue = RematerializedValuePair.first; 1524 Value *OriginalValue = RematerializedValuePair.second; 1525 1526 assert(AllocaMap.count(OriginalValue) && 1527 "Can not find alloca for rematerialized value"); 1528 Value *Alloca = AllocaMap[OriginalValue]; 1529 1530 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1531 Store->insertAfter(RematerializedValue); 1532 1533 #ifndef NDEBUG 1534 VisitedLiveValues.insert(OriginalValue); 1535 #endif 1536 } 1537 } 1538 1539 /// Do all the relocation update via allocas and mem2reg 1540 static void relocationViaAlloca( 1541 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1542 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1543 #ifndef NDEBUG 1544 // record initial number of (static) allocas; we'll check we have the same 1545 // number when we get done. 1546 int InitialAllocaNum = 0; 1547 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1548 I++) 1549 if (isa<AllocaInst>(*I)) 1550 InitialAllocaNum++; 1551 #endif 1552 1553 // TODO-PERF: change data structures, reserve 1554 DenseMap<Value *, Value *> AllocaMap; 1555 SmallVector<AllocaInst *, 200> PromotableAllocas; 1556 // Used later to chack that we have enough allocas to store all values 1557 std::size_t NumRematerializedValues = 0; 1558 PromotableAllocas.reserve(Live.size()); 1559 1560 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1561 // "PromotableAllocas" 1562 auto emitAllocaFor = [&](Value *LiveValue) { 1563 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1564 F.getEntryBlock().getFirstNonPHI()); 1565 AllocaMap[LiveValue] = Alloca; 1566 PromotableAllocas.push_back(Alloca); 1567 }; 1568 1569 // Emit alloca for each live gc pointer 1570 for (Value *V : Live) 1571 emitAllocaFor(V); 1572 1573 // Emit allocas for rematerialized values 1574 for (const auto &Info : Records) 1575 for (auto RematerializedValuePair : Info.RematerializedValues) { 1576 Value *OriginalValue = RematerializedValuePair.second; 1577 if (AllocaMap.count(OriginalValue) != 0) 1578 continue; 1579 1580 emitAllocaFor(OriginalValue); 1581 ++NumRematerializedValues; 1582 } 1583 1584 // The next two loops are part of the same conceptual operation. We need to 1585 // insert a store to the alloca after the original def and at each 1586 // redefinition. We need to insert a load before each use. These are split 1587 // into distinct loops for performance reasons. 1588 1589 // Update gc pointer after each statepoint: either store a relocated value or 1590 // null (if no relocated value was found for this gc pointer and it is not a 1591 // gc_result). This must happen before we update the statepoint with load of 1592 // alloca otherwise we lose the link between statepoint and old def. 1593 for (const auto &Info : Records) { 1594 Value *Statepoint = Info.StatepointToken; 1595 1596 // This will be used for consistency check 1597 DenseSet<Value *> VisitedLiveValues; 1598 1599 // Insert stores for normal statepoint gc relocates 1600 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1601 1602 // In case if it was invoke statepoint 1603 // we will insert stores for exceptional path gc relocates. 1604 if (isa<InvokeInst>(Statepoint)) { 1605 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1606 VisitedLiveValues); 1607 } 1608 1609 // Do similar thing with rematerialized values 1610 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1611 VisitedLiveValues); 1612 1613 if (ClobberNonLive) { 1614 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1615 // the gc.statepoint. This will turn some subtle GC problems into 1616 // slightly easier to debug SEGVs. Note that on large IR files with 1617 // lots of gc.statepoints this is extremely costly both memory and time 1618 // wise. 1619 SmallVector<AllocaInst *, 64> ToClobber; 1620 for (auto Pair : AllocaMap) { 1621 Value *Def = Pair.first; 1622 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1623 1624 // This value was relocated 1625 if (VisitedLiveValues.count(Def)) { 1626 continue; 1627 } 1628 ToClobber.push_back(Alloca); 1629 } 1630 1631 auto InsertClobbersAt = [&](Instruction *IP) { 1632 for (auto *AI : ToClobber) { 1633 auto PT = cast<PointerType>(AI->getAllocatedType()); 1634 Constant *CPN = ConstantPointerNull::get(PT); 1635 StoreInst *Store = new StoreInst(CPN, AI); 1636 Store->insertBefore(IP); 1637 } 1638 }; 1639 1640 // Insert the clobbering stores. These may get intermixed with the 1641 // gc.results and gc.relocates, but that's fine. 1642 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1643 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1644 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1645 } else { 1646 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1647 } 1648 } 1649 } 1650 1651 // Update use with load allocas and add store for gc_relocated. 1652 for (auto Pair : AllocaMap) { 1653 Value *Def = Pair.first; 1654 Value *Alloca = Pair.second; 1655 1656 // We pre-record the uses of allocas so that we dont have to worry about 1657 // later update that changes the user information.. 1658 1659 SmallVector<Instruction *, 20> Uses; 1660 // PERF: trade a linear scan for repeated reallocation 1661 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1662 for (User *U : Def->users()) { 1663 if (!isa<ConstantExpr>(U)) { 1664 // If the def has a ConstantExpr use, then the def is either a 1665 // ConstantExpr use itself or null. In either case 1666 // (recursively in the first, directly in the second), the oop 1667 // it is ultimately dependent on is null and this particular 1668 // use does not need to be fixed up. 1669 Uses.push_back(cast<Instruction>(U)); 1670 } 1671 } 1672 1673 std::sort(Uses.begin(), Uses.end()); 1674 auto Last = std::unique(Uses.begin(), Uses.end()); 1675 Uses.erase(Last, Uses.end()); 1676 1677 for (Instruction *Use : Uses) { 1678 if (isa<PHINode>(Use)) { 1679 PHINode *Phi = cast<PHINode>(Use); 1680 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1681 if (Def == Phi->getIncomingValue(i)) { 1682 LoadInst *Load = new LoadInst( 1683 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1684 Phi->setIncomingValue(i, Load); 1685 } 1686 } 1687 } else { 1688 LoadInst *Load = new LoadInst(Alloca, "", Use); 1689 Use->replaceUsesOfWith(Def, Load); 1690 } 1691 } 1692 1693 // Emit store for the initial gc value. Store must be inserted after load, 1694 // otherwise store will be in alloca's use list and an extra load will be 1695 // inserted before it. 1696 StoreInst *Store = new StoreInst(Def, Alloca); 1697 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1698 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1699 // InvokeInst is a TerminatorInst so the store need to be inserted 1700 // into its normal destination block. 1701 BasicBlock *NormalDest = Invoke->getNormalDest(); 1702 Store->insertBefore(NormalDest->getFirstNonPHI()); 1703 } else { 1704 assert(!Inst->isTerminator() && 1705 "The only TerminatorInst that can produce a value is " 1706 "InvokeInst which is handled above."); 1707 Store->insertAfter(Inst); 1708 } 1709 } else { 1710 assert(isa<Argument>(Def)); 1711 Store->insertAfter(cast<Instruction>(Alloca)); 1712 } 1713 } 1714 1715 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1716 "we must have the same allocas with lives"); 1717 if (!PromotableAllocas.empty()) { 1718 // Apply mem2reg to promote alloca to SSA 1719 PromoteMemToReg(PromotableAllocas, DT); 1720 } 1721 1722 #ifndef NDEBUG 1723 for (auto &I : F.getEntryBlock()) 1724 if (isa<AllocaInst>(I)) 1725 InitialAllocaNum--; 1726 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1727 #endif 1728 } 1729 1730 /// Implement a unique function which doesn't require we sort the input 1731 /// vector. Doing so has the effect of changing the output of a couple of 1732 /// tests in ways which make them less useful in testing fused safepoints. 1733 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1734 SmallSet<T, 8> Seen; 1735 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1736 return !Seen.insert(V).second; 1737 }), Vec.end()); 1738 } 1739 1740 /// Insert holders so that each Value is obviously live through the entire 1741 /// lifetime of the call. 1742 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1743 SmallVectorImpl<CallInst *> &Holders) { 1744 if (Values.empty()) 1745 // No values to hold live, might as well not insert the empty holder 1746 return; 1747 1748 Module *M = CS.getInstruction()->getModule(); 1749 // Use a dummy vararg function to actually hold the values live 1750 Function *Func = cast<Function>(M->getOrInsertFunction( 1751 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1752 if (CS.isCall()) { 1753 // For call safepoints insert dummy calls right after safepoint 1754 Holders.push_back(CallInst::Create(Func, Values, "", 1755 &*++CS.getInstruction()->getIterator())); 1756 return; 1757 } 1758 // For invoke safepooints insert dummy calls both in normal and 1759 // exceptional destination blocks 1760 auto *II = cast<InvokeInst>(CS.getInstruction()); 1761 Holders.push_back(CallInst::Create( 1762 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1763 Holders.push_back(CallInst::Create( 1764 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1765 } 1766 1767 static void findLiveReferences( 1768 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1769 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1770 GCPtrLivenessData OriginalLivenessData; 1771 computeLiveInValues(DT, F, OriginalLivenessData); 1772 for (size_t i = 0; i < records.size(); i++) { 1773 struct PartiallyConstructedSafepointRecord &info = records[i]; 1774 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1775 } 1776 } 1777 1778 // Helper function for the "rematerializeLiveValues". It walks use chain 1779 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1780 // values are visited (currently it is GEP's and casts). Returns true if it 1781 // successfully reached "BaseValue" and false otherwise. 1782 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1783 // recorded. 1784 static bool findRematerializableChainToBasePointer( 1785 SmallVectorImpl<Instruction*> &ChainToBase, 1786 Value *CurrentValue, Value *BaseValue) { 1787 1788 // We have found a base value 1789 if (CurrentValue == BaseValue) { 1790 return true; 1791 } 1792 1793 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1794 ChainToBase.push_back(GEP); 1795 return findRematerializableChainToBasePointer(ChainToBase, 1796 GEP->getPointerOperand(), 1797 BaseValue); 1798 } 1799 1800 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1801 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1802 return false; 1803 1804 ChainToBase.push_back(CI); 1805 return findRematerializableChainToBasePointer(ChainToBase, 1806 CI->getOperand(0), BaseValue); 1807 } 1808 1809 // Not supported instruction in the chain 1810 return false; 1811 } 1812 1813 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1814 // chain we are going to rematerialize. 1815 static unsigned 1816 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1817 TargetTransformInfo &TTI) { 1818 unsigned Cost = 0; 1819 1820 for (Instruction *Instr : Chain) { 1821 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1822 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1823 "non noop cast is found during rematerialization"); 1824 1825 Type *SrcTy = CI->getOperand(0)->getType(); 1826 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 1827 1828 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1829 // Cost of the address calculation 1830 Type *ValTy = GEP->getSourceElementType(); 1831 Cost += TTI.getAddressComputationCost(ValTy); 1832 1833 // And cost of the GEP itself 1834 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1835 // allowed for the external usage) 1836 if (!GEP->hasAllConstantIndices()) 1837 Cost += 2; 1838 1839 } else { 1840 llvm_unreachable("unsupported instruciton type during rematerialization"); 1841 } 1842 } 1843 1844 return Cost; 1845 } 1846 1847 // From the statepoint live set pick values that are cheaper to recompute then 1848 // to relocate. Remove this values from the live set, rematerialize them after 1849 // statepoint and record them in "Info" structure. Note that similar to 1850 // relocated values we don't do any user adjustments here. 1851 static void rematerializeLiveValues(CallSite CS, 1852 PartiallyConstructedSafepointRecord &Info, 1853 TargetTransformInfo &TTI) { 1854 const unsigned int ChainLengthThreshold = 10; 1855 1856 // Record values we are going to delete from this statepoint live set. 1857 // We can not di this in following loop due to iterator invalidation. 1858 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1859 1860 for (Value *LiveValue: Info.LiveSet) { 1861 // For each live pointer find it's defining chain 1862 SmallVector<Instruction *, 3> ChainToBase; 1863 assert(Info.PointerToBase.count(LiveValue)); 1864 bool FoundChain = 1865 findRematerializableChainToBasePointer(ChainToBase, 1866 LiveValue, 1867 Info.PointerToBase[LiveValue]); 1868 // Nothing to do, or chain is too long 1869 if (!FoundChain || 1870 ChainToBase.size() == 0 || 1871 ChainToBase.size() > ChainLengthThreshold) 1872 continue; 1873 1874 // Compute cost of this chain 1875 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1876 // TODO: We can also account for cases when we will be able to remove some 1877 // of the rematerialized values by later optimization passes. I.e if 1878 // we rematerialized several intersecting chains. Or if original values 1879 // don't have any uses besides this statepoint. 1880 1881 // For invokes we need to rematerialize each chain twice - for normal and 1882 // for unwind basic blocks. Model this by multiplying cost by two. 1883 if (CS.isInvoke()) { 1884 Cost *= 2; 1885 } 1886 // If it's too expensive - skip it 1887 if (Cost >= RematerializationThreshold) 1888 continue; 1889 1890 // Remove value from the live set 1891 LiveValuesToBeDeleted.push_back(LiveValue); 1892 1893 // Clone instructions and record them inside "Info" structure 1894 1895 // Walk backwards to visit top-most instructions first 1896 std::reverse(ChainToBase.begin(), ChainToBase.end()); 1897 1898 // Utility function which clones all instructions from "ChainToBase" 1899 // and inserts them before "InsertBefore". Returns rematerialized value 1900 // which should be used after statepoint. 1901 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 1902 Instruction *LastClonedValue = nullptr; 1903 Instruction *LastValue = nullptr; 1904 for (Instruction *Instr: ChainToBase) { 1905 // Only GEP's and casts are suported as we need to be careful to not 1906 // introduce any new uses of pointers not in the liveset. 1907 // Note that it's fine to introduce new uses of pointers which were 1908 // otherwise not used after this statepoint. 1909 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 1910 1911 Instruction *ClonedValue = Instr->clone(); 1912 ClonedValue->insertBefore(InsertBefore); 1913 ClonedValue->setName(Instr->getName() + ".remat"); 1914 1915 // If it is not first instruction in the chain then it uses previously 1916 // cloned value. We should update it to use cloned value. 1917 if (LastClonedValue) { 1918 assert(LastValue); 1919 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 1920 #ifndef NDEBUG 1921 // Assert that cloned instruction does not use any instructions from 1922 // this chain other than LastClonedValue 1923 for (auto OpValue : ClonedValue->operand_values()) { 1924 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 1925 ChainToBase.end() && 1926 "incorrect use in rematerialization chain"); 1927 } 1928 #endif 1929 } 1930 1931 LastClonedValue = ClonedValue; 1932 LastValue = Instr; 1933 } 1934 assert(LastClonedValue); 1935 return LastClonedValue; 1936 }; 1937 1938 // Different cases for calls and invokes. For invokes we need to clone 1939 // instructions both on normal and unwind path. 1940 if (CS.isCall()) { 1941 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 1942 assert(InsertBefore); 1943 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 1944 Info.RematerializedValues[RematerializedValue] = LiveValue; 1945 } else { 1946 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 1947 1948 Instruction *NormalInsertBefore = 1949 &*Invoke->getNormalDest()->getFirstInsertionPt(); 1950 Instruction *UnwindInsertBefore = 1951 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 1952 1953 Instruction *NormalRematerializedValue = 1954 rematerializeChain(NormalInsertBefore); 1955 Instruction *UnwindRematerializedValue = 1956 rematerializeChain(UnwindInsertBefore); 1957 1958 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 1959 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 1960 } 1961 } 1962 1963 // Remove rematerializaed values from the live set 1964 for (auto LiveValue: LiveValuesToBeDeleted) { 1965 Info.LiveSet.remove(LiveValue); 1966 } 1967 } 1968 1969 static bool insertParsePoints(Function &F, DominatorTree &DT, 1970 TargetTransformInfo &TTI, 1971 SmallVectorImpl<CallSite> &ToUpdate) { 1972 #ifndef NDEBUG 1973 // sanity check the input 1974 std::set<CallSite> Uniqued; 1975 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 1976 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 1977 1978 for (CallSite CS : ToUpdate) 1979 assert(CS.getInstruction()->getFunction() == &F); 1980 #endif 1981 1982 // When inserting gc.relocates for invokes, we need to be able to insert at 1983 // the top of the successor blocks. See the comment on 1984 // normalForInvokeSafepoint on exactly what is needed. Note that this step 1985 // may restructure the CFG. 1986 for (CallSite CS : ToUpdate) { 1987 if (!CS.isInvoke()) 1988 continue; 1989 auto *II = cast<InvokeInst>(CS.getInstruction()); 1990 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 1991 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 1992 } 1993 1994 // A list of dummy calls added to the IR to keep various values obviously 1995 // live in the IR. We'll remove all of these when done. 1996 SmallVector<CallInst *, 64> Holders; 1997 1998 // Insert a dummy call with all of the arguments to the vm_state we'll need 1999 // for the actual safepoint insertion. This ensures reference arguments in 2000 // the deopt argument list are considered live through the safepoint (and 2001 // thus makes sure they get relocated.) 2002 for (CallSite CS : ToUpdate) { 2003 SmallVector<Value *, 64> DeoptValues; 2004 2005 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2006 assert(!isUnhandledGCPointerType(Arg->getType()) && 2007 "support for FCA unimplemented"); 2008 if (isHandledGCPointerType(Arg->getType())) 2009 DeoptValues.push_back(Arg); 2010 } 2011 2012 insertUseHolderAfter(CS, DeoptValues, Holders); 2013 } 2014 2015 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2016 2017 // A) Identify all gc pointers which are statically live at the given call 2018 // site. 2019 findLiveReferences(F, DT, ToUpdate, Records); 2020 2021 // B) Find the base pointers for each live pointer 2022 /* scope for caching */ { 2023 // Cache the 'defining value' relation used in the computation and 2024 // insertion of base phis and selects. This ensures that we don't insert 2025 // large numbers of duplicate base_phis. 2026 DefiningValueMapTy DVCache; 2027 2028 for (size_t i = 0; i < Records.size(); i++) { 2029 PartiallyConstructedSafepointRecord &info = Records[i]; 2030 findBasePointers(DT, DVCache, ToUpdate[i], info); 2031 } 2032 } // end of cache scope 2033 2034 // The base phi insertion logic (for any safepoint) may have inserted new 2035 // instructions which are now live at some safepoint. The simplest such 2036 // example is: 2037 // loop: 2038 // phi a <-- will be a new base_phi here 2039 // safepoint 1 <-- that needs to be live here 2040 // gep a + 1 2041 // safepoint 2 2042 // br loop 2043 // We insert some dummy calls after each safepoint to definitely hold live 2044 // the base pointers which were identified for that safepoint. We'll then 2045 // ask liveness for _every_ base inserted to see what is now live. Then we 2046 // remove the dummy calls. 2047 Holders.reserve(Holders.size() + Records.size()); 2048 for (size_t i = 0; i < Records.size(); i++) { 2049 PartiallyConstructedSafepointRecord &Info = Records[i]; 2050 2051 SmallVector<Value *, 128> Bases; 2052 for (auto Pair : Info.PointerToBase) 2053 Bases.push_back(Pair.second); 2054 2055 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2056 } 2057 2058 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2059 // need to rerun liveness. We may *also* have inserted new defs, but that's 2060 // not the key issue. 2061 recomputeLiveInValues(F, DT, ToUpdate, Records); 2062 2063 if (PrintBasePointers) { 2064 for (auto &Info : Records) { 2065 errs() << "Base Pairs: (w/Relocation)\n"; 2066 for (auto Pair : Info.PointerToBase) { 2067 errs() << " derived "; 2068 Pair.first->printAsOperand(errs(), false); 2069 errs() << " base "; 2070 Pair.second->printAsOperand(errs(), false); 2071 errs() << "\n"; 2072 } 2073 } 2074 } 2075 2076 // It is possible that non-constant live variables have a constant base. For 2077 // example, a GEP with a variable offset from a global. In this case we can 2078 // remove it from the liveset. We already don't add constants to the liveset 2079 // because we assume they won't move at runtime and the GC doesn't need to be 2080 // informed about them. The same reasoning applies if the base is constant. 2081 // Note that the relocation placement code relies on this filtering for 2082 // correctness as it expects the base to be in the liveset, which isn't true 2083 // if the base is constant. 2084 for (auto &Info : Records) 2085 for (auto &BasePair : Info.PointerToBase) 2086 if (isa<Constant>(BasePair.second)) 2087 Info.LiveSet.remove(BasePair.first); 2088 2089 for (CallInst *CI : Holders) 2090 CI->eraseFromParent(); 2091 2092 Holders.clear(); 2093 2094 // In order to reduce live set of statepoint we might choose to rematerialize 2095 // some values instead of relocating them. This is purely an optimization and 2096 // does not influence correctness. 2097 for (size_t i = 0; i < Records.size(); i++) 2098 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2099 2100 // We need this to safely RAUW and delete call or invoke return values that 2101 // may themselves be live over a statepoint. For details, please see usage in 2102 // makeStatepointExplicitImpl. 2103 std::vector<DeferredReplacement> Replacements; 2104 2105 // Now run through and replace the existing statepoints with new ones with 2106 // the live variables listed. We do not yet update uses of the values being 2107 // relocated. We have references to live variables that need to 2108 // survive to the last iteration of this loop. (By construction, the 2109 // previous statepoint can not be a live variable, thus we can and remove 2110 // the old statepoint calls as we go.) 2111 for (size_t i = 0; i < Records.size(); i++) 2112 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2113 2114 ToUpdate.clear(); // prevent accident use of invalid CallSites 2115 2116 for (auto &PR : Replacements) 2117 PR.doReplacement(); 2118 2119 Replacements.clear(); 2120 2121 for (auto &Info : Records) { 2122 // These live sets may contain state Value pointers, since we replaced calls 2123 // with operand bundles with calls wrapped in gc.statepoint, and some of 2124 // those calls may have been def'ing live gc pointers. Clear these out to 2125 // avoid accidentally using them. 2126 // 2127 // TODO: We should create a separate data structure that does not contain 2128 // these live sets, and migrate to using that data structure from this point 2129 // onward. 2130 Info.LiveSet.clear(); 2131 Info.PointerToBase.clear(); 2132 } 2133 2134 // Do all the fixups of the original live variables to their relocated selves 2135 SmallVector<Value *, 128> Live; 2136 for (size_t i = 0; i < Records.size(); i++) { 2137 PartiallyConstructedSafepointRecord &Info = Records[i]; 2138 2139 // We can't simply save the live set from the original insertion. One of 2140 // the live values might be the result of a call which needs a safepoint. 2141 // That Value* no longer exists and we need to use the new gc_result. 2142 // Thankfully, the live set is embedded in the statepoint (and updated), so 2143 // we just grab that. 2144 Statepoint Statepoint(Info.StatepointToken); 2145 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2146 Statepoint.gc_args_end()); 2147 #ifndef NDEBUG 2148 // Do some basic sanity checks on our liveness results before performing 2149 // relocation. Relocation can and will turn mistakes in liveness results 2150 // into non-sensical code which is must harder to debug. 2151 // TODO: It would be nice to test consistency as well 2152 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2153 "statepoint must be reachable or liveness is meaningless"); 2154 for (Value *V : Statepoint.gc_args()) { 2155 if (!isa<Instruction>(V)) 2156 // Non-instruction values trivial dominate all possible uses 2157 continue; 2158 auto *LiveInst = cast<Instruction>(V); 2159 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2160 "unreachable values should never be live"); 2161 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2162 "basic SSA liveness expectation violated by liveness analysis"); 2163 } 2164 #endif 2165 } 2166 unique_unsorted(Live); 2167 2168 #ifndef NDEBUG 2169 // sanity check 2170 for (auto *Ptr : Live) 2171 assert(isHandledGCPointerType(Ptr->getType()) && 2172 "must be a gc pointer type"); 2173 #endif 2174 2175 relocationViaAlloca(F, DT, Live, Records); 2176 return !Records.empty(); 2177 } 2178 2179 // Handles both return values and arguments for Functions and CallSites. 2180 template <typename AttrHolder> 2181 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2182 unsigned Index) { 2183 AttrBuilder R; 2184 if (AH.getDereferenceableBytes(Index)) 2185 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2186 AH.getDereferenceableBytes(Index))); 2187 if (AH.getDereferenceableOrNullBytes(Index)) 2188 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2189 AH.getDereferenceableOrNullBytes(Index))); 2190 if (AH.doesNotAlias(Index)) 2191 R.addAttribute(Attribute::NoAlias); 2192 2193 if (!R.empty()) 2194 AH.setAttributes(AH.getAttributes().removeAttributes( 2195 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2196 } 2197 2198 void 2199 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2200 LLVMContext &Ctx = F.getContext(); 2201 2202 for (Argument &A : F.args()) 2203 if (isa<PointerType>(A.getType())) 2204 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2205 2206 if (isa<PointerType>(F.getReturnType())) 2207 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2208 } 2209 2210 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2211 if (F.empty()) 2212 return; 2213 2214 LLVMContext &Ctx = F.getContext(); 2215 MDBuilder Builder(Ctx); 2216 2217 for (Instruction &I : instructions(F)) { 2218 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2219 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2220 bool IsImmutableTBAA = 2221 MD->getNumOperands() == 4 && 2222 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2223 2224 if (!IsImmutableTBAA) 2225 continue; // no work to do, MD_tbaa is already marked mutable 2226 2227 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2228 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2229 uint64_t Offset = 2230 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2231 2232 MDNode *MutableTBAA = 2233 Builder.createTBAAStructTagNode(Base, Access, Offset); 2234 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2235 } 2236 2237 if (CallSite CS = CallSite(&I)) { 2238 for (int i = 0, e = CS.arg_size(); i != e; i++) 2239 if (isa<PointerType>(CS.getArgument(i)->getType())) 2240 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); 2241 if (isa<PointerType>(CS.getType())) 2242 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2243 } 2244 } 2245 } 2246 2247 /// Returns true if this function should be rewritten by this pass. The main 2248 /// point of this function is as an extension point for custom logic. 2249 static bool shouldRewriteStatepointsIn(Function &F) { 2250 // TODO: This should check the GCStrategy 2251 if (F.hasGC()) { 2252 const auto &FunctionGCName = F.getGC(); 2253 const StringRef StatepointExampleName("statepoint-example"); 2254 const StringRef CoreCLRName("coreclr"); 2255 return (StatepointExampleName == FunctionGCName) || 2256 (CoreCLRName == FunctionGCName); 2257 } else 2258 return false; 2259 } 2260 2261 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2262 #ifndef NDEBUG 2263 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2264 "precondition!"); 2265 #endif 2266 2267 for (Function &F : M) 2268 stripNonValidAttributesFromPrototype(F); 2269 2270 for (Function &F : M) 2271 stripNonValidAttributesFromBody(F); 2272 } 2273 2274 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2275 // Nothing to do for declarations. 2276 if (F.isDeclaration() || F.empty()) 2277 return false; 2278 2279 // Policy choice says not to rewrite - the most common reason is that we're 2280 // compiling code without a GCStrategy. 2281 if (!shouldRewriteStatepointsIn(F)) 2282 return false; 2283 2284 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2285 TargetTransformInfo &TTI = 2286 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2287 2288 auto NeedsRewrite = [](Instruction &I) { 2289 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2290 return !callsGCLeafFunction(CS) && !isStatepoint(CS); 2291 return false; 2292 }; 2293 2294 // Gather all the statepoints which need rewritten. Be careful to only 2295 // consider those in reachable code since we need to ask dominance queries 2296 // when rewriting. We'll delete the unreachable ones in a moment. 2297 SmallVector<CallSite, 64> ParsePointNeeded; 2298 bool HasUnreachableStatepoint = false; 2299 for (Instruction &I : instructions(F)) { 2300 // TODO: only the ones with the flag set! 2301 if (NeedsRewrite(I)) { 2302 if (DT.isReachableFromEntry(I.getParent())) 2303 ParsePointNeeded.push_back(CallSite(&I)); 2304 else 2305 HasUnreachableStatepoint = true; 2306 } 2307 } 2308 2309 bool MadeChange = false; 2310 2311 // Delete any unreachable statepoints so that we don't have unrewritten 2312 // statepoints surviving this pass. This makes testing easier and the 2313 // resulting IR less confusing to human readers. Rather than be fancy, we 2314 // just reuse a utility function which removes the unreachable blocks. 2315 if (HasUnreachableStatepoint) 2316 MadeChange |= removeUnreachableBlocks(F); 2317 2318 // Return early if no work to do. 2319 if (ParsePointNeeded.empty()) 2320 return MadeChange; 2321 2322 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2323 // These are created by LCSSA. They have the effect of increasing the size 2324 // of liveness sets for no good reason. It may be harder to do this post 2325 // insertion since relocations and base phis can confuse things. 2326 for (BasicBlock &BB : F) 2327 if (BB.getUniquePredecessor()) { 2328 MadeChange = true; 2329 FoldSingleEntryPHINodes(&BB); 2330 } 2331 2332 // Before we start introducing relocations, we want to tweak the IR a bit to 2333 // avoid unfortunate code generation effects. The main example is that we 2334 // want to try to make sure the comparison feeding a branch is after any 2335 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2336 // values feeding a branch after relocation. This is semantically correct, 2337 // but results in extra register pressure since both the pre-relocation and 2338 // post-relocation copies must be available in registers. For code without 2339 // relocations this is handled elsewhere, but teaching the scheduler to 2340 // reverse the transform we're about to do would be slightly complex. 2341 // Note: This may extend the live range of the inputs to the icmp and thus 2342 // increase the liveset of any statepoint we move over. This is profitable 2343 // as long as all statepoints are in rare blocks. If we had in-register 2344 // lowering for live values this would be a much safer transform. 2345 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2346 if (auto *BI = dyn_cast<BranchInst>(TI)) 2347 if (BI->isConditional()) 2348 return dyn_cast<Instruction>(BI->getCondition()); 2349 // TODO: Extend this to handle switches 2350 return nullptr; 2351 }; 2352 for (BasicBlock &BB : F) { 2353 TerminatorInst *TI = BB.getTerminator(); 2354 if (auto *Cond = getConditionInst(TI)) 2355 // TODO: Handle more than just ICmps here. We should be able to move 2356 // most instructions without side effects or memory access. 2357 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2358 MadeChange = true; 2359 Cond->moveBefore(TI); 2360 } 2361 } 2362 2363 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2364 return MadeChange; 2365 } 2366 2367 // liveness computation via standard dataflow 2368 // ------------------------------------------------------------------- 2369 2370 // TODO: Consider using bitvectors for liveness, the set of potentially 2371 // interesting values should be small and easy to pre-compute. 2372 2373 /// Compute the live-in set for the location rbegin starting from 2374 /// the live-out set of the basic block 2375 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2376 BasicBlock::reverse_iterator rend, 2377 SetVector<Value *> &LiveTmp) { 2378 2379 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2380 Instruction *I = &*ritr; 2381 2382 // KILL/Def - Remove this definition from LiveIn 2383 LiveTmp.remove(I); 2384 2385 // Don't consider *uses* in PHI nodes, we handle their contribution to 2386 // predecessor blocks when we seed the LiveOut sets 2387 if (isa<PHINode>(I)) 2388 continue; 2389 2390 // USE - Add to the LiveIn set for this instruction 2391 for (Value *V : I->operands()) { 2392 assert(!isUnhandledGCPointerType(V->getType()) && 2393 "support for FCA unimplemented"); 2394 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2395 // The choice to exclude all things constant here is slightly subtle. 2396 // There are two independent reasons: 2397 // - We assume that things which are constant (from LLVM's definition) 2398 // do not move at runtime. For example, the address of a global 2399 // variable is fixed, even though it's contents may not be. 2400 // - Second, we can't disallow arbitrary inttoptr constants even 2401 // if the language frontend does. Optimization passes are free to 2402 // locally exploit facts without respect to global reachability. This 2403 // can create sections of code which are dynamically unreachable and 2404 // contain just about anything. (see constants.ll in tests) 2405 LiveTmp.insert(V); 2406 } 2407 } 2408 } 2409 } 2410 2411 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2412 2413 for (BasicBlock *Succ : successors(BB)) { 2414 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2415 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2416 PHINode *Phi = cast<PHINode>(&*I); 2417 Value *V = Phi->getIncomingValueForBlock(BB); 2418 assert(!isUnhandledGCPointerType(V->getType()) && 2419 "support for FCA unimplemented"); 2420 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2421 LiveTmp.insert(V); 2422 } 2423 } 2424 } 2425 } 2426 2427 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2428 SetVector<Value *> KillSet; 2429 for (Instruction &I : *BB) 2430 if (isHandledGCPointerType(I.getType())) 2431 KillSet.insert(&I); 2432 return KillSet; 2433 } 2434 2435 #ifndef NDEBUG 2436 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2437 /// sanity check for the liveness computation. 2438 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2439 TerminatorInst *TI, bool TermOkay = false) { 2440 for (Value *V : Live) { 2441 if (auto *I = dyn_cast<Instruction>(V)) { 2442 // The terminator can be a member of the LiveOut set. LLVM's definition 2443 // of instruction dominance states that V does not dominate itself. As 2444 // such, we need to special case this to allow it. 2445 if (TermOkay && TI == I) 2446 continue; 2447 assert(DT.dominates(I, TI) && 2448 "basic SSA liveness expectation violated by liveness analysis"); 2449 } 2450 } 2451 } 2452 2453 /// Check that all the liveness sets used during the computation of liveness 2454 /// obey basic SSA properties. This is useful for finding cases where we miss 2455 /// a def. 2456 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2457 BasicBlock &BB) { 2458 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2459 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2460 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2461 } 2462 #endif 2463 2464 static void computeLiveInValues(DominatorTree &DT, Function &F, 2465 GCPtrLivenessData &Data) { 2466 2467 SmallSetVector<BasicBlock *, 32> Worklist; 2468 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2469 // We use a SetVector so that we don't have duplicates in the worklist. 2470 Worklist.insert(pred_begin(BB), pred_end(BB)); 2471 }; 2472 auto NextItem = [&]() { 2473 BasicBlock *BB = Worklist.back(); 2474 Worklist.pop_back(); 2475 return BB; 2476 }; 2477 2478 // Seed the liveness for each individual block 2479 for (BasicBlock &BB : F) { 2480 Data.KillSet[&BB] = computeKillSet(&BB); 2481 Data.LiveSet[&BB].clear(); 2482 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2483 2484 #ifndef NDEBUG 2485 for (Value *Kill : Data.KillSet[&BB]) 2486 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2487 #endif 2488 2489 Data.LiveOut[&BB] = SetVector<Value *>(); 2490 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2491 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2492 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2493 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2494 if (!Data.LiveIn[&BB].empty()) 2495 AddPredsToWorklist(&BB); 2496 } 2497 2498 // Propagate that liveness until stable 2499 while (!Worklist.empty()) { 2500 BasicBlock *BB = NextItem(); 2501 2502 // Compute our new liveout set, then exit early if it hasn't changed 2503 // despite the contribution of our successor. 2504 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2505 const auto OldLiveOutSize = LiveOut.size(); 2506 for (BasicBlock *Succ : successors(BB)) { 2507 assert(Data.LiveIn.count(Succ)); 2508 LiveOut.set_union(Data.LiveIn[Succ]); 2509 } 2510 // assert OutLiveOut is a subset of LiveOut 2511 if (OldLiveOutSize == LiveOut.size()) { 2512 // If the sets are the same size, then we didn't actually add anything 2513 // when unioning our successors LiveIn Thus, the LiveIn of this block 2514 // hasn't changed. 2515 continue; 2516 } 2517 Data.LiveOut[BB] = LiveOut; 2518 2519 // Apply the effects of this basic block 2520 SetVector<Value *> LiveTmp = LiveOut; 2521 LiveTmp.set_union(Data.LiveSet[BB]); 2522 LiveTmp.set_subtract(Data.KillSet[BB]); 2523 2524 assert(Data.LiveIn.count(BB)); 2525 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2526 // assert: OldLiveIn is a subset of LiveTmp 2527 if (OldLiveIn.size() != LiveTmp.size()) { 2528 Data.LiveIn[BB] = LiveTmp; 2529 AddPredsToWorklist(BB); 2530 } 2531 } // while( !worklist.empty() ) 2532 2533 #ifndef NDEBUG 2534 // Sanity check our output against SSA properties. This helps catch any 2535 // missing kills during the above iteration. 2536 for (BasicBlock &BB : F) { 2537 checkBasicSSA(DT, Data, BB); 2538 } 2539 #endif 2540 } 2541 2542 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2543 StatepointLiveSetTy &Out) { 2544 2545 BasicBlock *BB = Inst->getParent(); 2546 2547 // Note: The copy is intentional and required 2548 assert(Data.LiveOut.count(BB)); 2549 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2550 2551 // We want to handle the statepoint itself oddly. It's 2552 // call result is not live (normal), nor are it's arguments 2553 // (unless they're used again later). This adjustment is 2554 // specifically what we need to relocate 2555 BasicBlock::reverse_iterator rend(Inst->getIterator()); 2556 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2557 LiveOut.remove(Inst); 2558 Out.insert(LiveOut.begin(), LiveOut.end()); 2559 } 2560 2561 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2562 CallSite CS, 2563 PartiallyConstructedSafepointRecord &Info) { 2564 Instruction *Inst = CS.getInstruction(); 2565 StatepointLiveSetTy Updated; 2566 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2567 2568 #ifndef NDEBUG 2569 DenseSet<Value *> Bases; 2570 for (auto KVPair : Info.PointerToBase) { 2571 Bases.insert(KVPair.second); 2572 } 2573 #endif 2574 // We may have base pointers which are now live that weren't before. We need 2575 // to update the PointerToBase structure to reflect this. 2576 for (auto V : Updated) 2577 if (Info.PointerToBase.insert(std::make_pair(V, V)).second) { 2578 assert(Bases.count(V) && "can't find base for unexpected live value"); 2579 continue; 2580 } 2581 2582 #ifndef NDEBUG 2583 for (auto V : Updated) { 2584 assert(Info.PointerToBase.count(V) && 2585 "must be able to find base for live value"); 2586 } 2587 #endif 2588 2589 // Remove any stale base mappings - this can happen since our liveness is 2590 // more precise then the one inherent in the base pointer analysis 2591 DenseSet<Value *> ToErase; 2592 for (auto KVPair : Info.PointerToBase) 2593 if (!Updated.count(KVPair.first)) 2594 ToErase.insert(KVPair.first); 2595 for (auto V : ToErase) 2596 Info.PointerToBase.erase(V); 2597 2598 #ifndef NDEBUG 2599 for (auto KVPair : Info.PointerToBase) 2600 assert(Updated.count(KVPair.first) && "record for non-live value"); 2601 #endif 2602 2603 Info.LiveSet = Updated; 2604 } 2605