xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 6cf88091b31334cf5334fa6badb0dae63a44b3ba)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Rewrite an existing set of gc.statepoints such that they make potential
11 // relocations performed by the garbage collector explicit in the IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Pass.h"
16 #include "llvm/Analysis/CFG.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstIterator.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/IR/Statepoint.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/IR/Verifier.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Transforms/Utils/Cloning.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
45 
46 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
47 
48 using namespace llvm;
49 
50 // Print the liveset found at the insert location
51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
52                                   cl::init(false));
53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
54                                       cl::init(false));
55 // Print out the base pointers for debugging
56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
57                                        cl::init(false));
58 
59 // Cost threshold measuring when it is profitable to rematerialize value instead
60 // of relocating it
61 static cl::opt<unsigned>
62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
63                            cl::init(6));
64 
65 #ifdef EXPENSIVE_CHECKS
66 static bool ClobberNonLive = true;
67 #else
68 static bool ClobberNonLive = false;
69 #endif
70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
71                                                   cl::location(ClobberNonLive),
72                                                   cl::Hidden);
73 
74 static cl::opt<bool>
75     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
76                                    cl::Hidden, cl::init(true));
77 
78 namespace {
79 struct RewriteStatepointsForGC : public ModulePass {
80   static char ID; // Pass identification, replacement for typeid
81 
82   RewriteStatepointsForGC() : ModulePass(ID) {
83     initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
84   }
85   bool runOnFunction(Function &F);
86   bool runOnModule(Module &M) override {
87     bool Changed = false;
88     for (Function &F : M)
89       Changed |= runOnFunction(F);
90 
91     if (Changed) {
92       // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
93       // returns true for at least one function in the module.  Since at least
94       // one function changed, we know that the precondition is satisfied.
95       stripNonValidAttributes(M);
96     }
97 
98     return Changed;
99   }
100 
101   void getAnalysisUsage(AnalysisUsage &AU) const override {
102     // We add and rewrite a bunch of instructions, but don't really do much
103     // else.  We could in theory preserve a lot more analyses here.
104     AU.addRequired<DominatorTreeWrapperPass>();
105     AU.addRequired<TargetTransformInfoWrapperPass>();
106   }
107 
108   /// The IR fed into RewriteStatepointsForGC may have had attributes implying
109   /// dereferenceability that are no longer valid/correct after
110   /// RewriteStatepointsForGC has run.  This is because semantically, after
111   /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
112   /// heap.  stripNonValidAttributes (conservatively) restores correctness
113   /// by erasing all attributes in the module that externally imply
114   /// dereferenceability.
115   /// Similar reasoning also applies to the noalias attributes. gc.statepoint
116   /// can touch the entire heap including noalias objects.
117   void stripNonValidAttributes(Module &M);
118 
119   // Helpers for stripNonValidAttributes
120   void stripNonValidAttributesFromBody(Function &F);
121   void stripNonValidAttributesFromPrototype(Function &F);
122 };
123 } // namespace
124 
125 char RewriteStatepointsForGC::ID = 0;
126 
127 ModulePass *llvm::createRewriteStatepointsForGCPass() {
128   return new RewriteStatepointsForGC();
129 }
130 
131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
132                       "Make relocations explicit at statepoints", false, false)
133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
136                     "Make relocations explicit at statepoints", false, false)
137 
138 namespace {
139 struct GCPtrLivenessData {
140   /// Values defined in this block.
141   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
142   /// Values used in this block (and thus live); does not included values
143   /// killed within this block.
144   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
145 
146   /// Values live into this basic block (i.e. used by any
147   /// instruction in this basic block or ones reachable from here)
148   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
149 
150   /// Values live out of this basic block (i.e. live into
151   /// any successor block)
152   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
153 };
154 
155 // The type of the internal cache used inside the findBasePointers family
156 // of functions.  From the callers perspective, this is an opaque type and
157 // should not be inspected.
158 //
159 // In the actual implementation this caches two relations:
160 // - The base relation itself (i.e. this pointer is based on that one)
161 // - The base defining value relation (i.e. before base_phi insertion)
162 // Generally, after the execution of a full findBasePointer call, only the
163 // base relation will remain.  Internally, we add a mixture of the two
164 // types, then update all the second type to the first type
165 typedef MapVector<Value *, Value *> DefiningValueMapTy;
166 typedef SetVector<Value *> StatepointLiveSetTy;
167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>>
168   RematerializedValueMapTy;
169 
170 struct PartiallyConstructedSafepointRecord {
171   /// The set of values known to be live across this safepoint
172   StatepointLiveSetTy LiveSet;
173 
174   /// Mapping from live pointers to a base-defining-value
175   MapVector<Value *, Value *> PointerToBase;
176 
177   /// The *new* gc.statepoint instruction itself.  This produces the token
178   /// that normal path gc.relocates and the gc.result are tied to.
179   Instruction *StatepointToken;
180 
181   /// Instruction to which exceptional gc relocates are attached
182   /// Makes it easier to iterate through them during relocationViaAlloca.
183   Instruction *UnwindToken;
184 
185   /// Record live values we are rematerialized instead of relocating.
186   /// They are not included into 'LiveSet' field.
187   /// Maps rematerialized copy to it's original value.
188   RematerializedValueMapTy RematerializedValues;
189 };
190 }
191 
192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
193   Optional<OperandBundleUse> DeoptBundle =
194       CS.getOperandBundle(LLVMContext::OB_deopt);
195 
196   if (!DeoptBundle.hasValue()) {
197     assert(AllowStatepointWithNoDeoptInfo &&
198            "Found non-leaf call without deopt info!");
199     return None;
200   }
201 
202   return DeoptBundle.getValue().Inputs;
203 }
204 
205 /// Compute the live-in set for every basic block in the function
206 static void computeLiveInValues(DominatorTree &DT, Function &F,
207                                 GCPtrLivenessData &Data);
208 
209 /// Given results from the dataflow liveness computation, find the set of live
210 /// Values at a particular instruction.
211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
212                               StatepointLiveSetTy &out);
213 
214 // TODO: Once we can get to the GCStrategy, this becomes
215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
216 
217 static bool isGCPointerType(Type *T) {
218   if (auto *PT = dyn_cast<PointerType>(T))
219     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
220     // GC managed heap.  We know that a pointer into this heap needs to be
221     // updated and that no other pointer does.
222     return (1 == PT->getAddressSpace());
223   return false;
224 }
225 
226 // Return true if this type is one which a) is a gc pointer or contains a GC
227 // pointer and b) is of a type this code expects to encounter as a live value.
228 // (The insertion code will assert that a type which matches (a) and not (b)
229 // is not encountered.)
230 static bool isHandledGCPointerType(Type *T) {
231   // We fully support gc pointers
232   if (isGCPointerType(T))
233     return true;
234   // We partially support vectors of gc pointers. The code will assert if it
235   // can't handle something.
236   if (auto VT = dyn_cast<VectorType>(T))
237     if (isGCPointerType(VT->getElementType()))
238       return true;
239   return false;
240 }
241 
242 #ifndef NDEBUG
243 /// Returns true if this type contains a gc pointer whether we know how to
244 /// handle that type or not.
245 static bool containsGCPtrType(Type *Ty) {
246   if (isGCPointerType(Ty))
247     return true;
248   if (VectorType *VT = dyn_cast<VectorType>(Ty))
249     return isGCPointerType(VT->getScalarType());
250   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
251     return containsGCPtrType(AT->getElementType());
252   if (StructType *ST = dyn_cast<StructType>(Ty))
253     return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
254                        containsGCPtrType);
255   return false;
256 }
257 
258 // Returns true if this is a type which a) is a gc pointer or contains a GC
259 // pointer and b) is of a type which the code doesn't expect (i.e. first class
260 // aggregates).  Used to trip assertions.
261 static bool isUnhandledGCPointerType(Type *Ty) {
262   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
263 }
264 #endif
265 
266 // Return the name of the value suffixed with the provided value, or if the
267 // value didn't have a name, the default value specified.
268 static std::string suffixed_name_or(Value *V, StringRef Suffix,
269                                     StringRef DefaultName) {
270   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
271 }
272 
273 // Conservatively identifies any definitions which might be live at the
274 // given instruction. The  analysis is performed immediately before the
275 // given instruction. Values defined by that instruction are not considered
276 // live.  Values used by that instruction are considered live.
277 static void
278 analyzeParsePointLiveness(DominatorTree &DT,
279                           GCPtrLivenessData &OriginalLivenessData, CallSite CS,
280                           PartiallyConstructedSafepointRecord &result) {
281   Instruction *inst = CS.getInstruction();
282 
283   StatepointLiveSetTy LiveSet;
284   findLiveSetAtInst(inst, OriginalLivenessData, LiveSet);
285 
286   if (PrintLiveSet) {
287     errs() << "Live Variables:\n";
288     for (Value *V : LiveSet)
289       dbgs() << " " << V->getName() << " " << *V << "\n";
290   }
291   if (PrintLiveSetSize) {
292     errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
293     errs() << "Number live values: " << LiveSet.size() << "\n";
294   }
295   result.LiveSet = LiveSet;
296 }
297 
298 static bool isKnownBaseResult(Value *V);
299 namespace {
300 /// A single base defining value - An immediate base defining value for an
301 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
302 /// For instructions which have multiple pointer [vector] inputs or that
303 /// transition between vector and scalar types, there is no immediate base
304 /// defining value.  The 'base defining value' for 'Def' is the transitive
305 /// closure of this relation stopping at the first instruction which has no
306 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
307 /// but it can also be an arbitrary derived pointer.
308 struct BaseDefiningValueResult {
309   /// Contains the value which is the base defining value.
310   Value * const BDV;
311   /// True if the base defining value is also known to be an actual base
312   /// pointer.
313   const bool IsKnownBase;
314   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
315     : BDV(BDV), IsKnownBase(IsKnownBase) {
316 #ifndef NDEBUG
317     // Check consistency between new and old means of checking whether a BDV is
318     // a base.
319     bool MustBeBase = isKnownBaseResult(BDV);
320     assert(!MustBeBase || MustBeBase == IsKnownBase);
321 #endif
322   }
323 };
324 }
325 
326 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
327 
328 /// Return a base defining value for the 'Index' element of the given vector
329 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
330 /// 'I'.  As an optimization, this method will try to determine when the
331 /// element is known to already be a base pointer.  If this can be established,
332 /// the second value in the returned pair will be true.  Note that either a
333 /// vector or a pointer typed value can be returned.  For the former, the
334 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
335 /// If the later, the return pointer is a BDV (or possibly a base) for the
336 /// particular element in 'I'.
337 static BaseDefiningValueResult
338 findBaseDefiningValueOfVector(Value *I) {
339   // Each case parallels findBaseDefiningValue below, see that code for
340   // detailed motivation.
341 
342   if (isa<Argument>(I))
343     // An incoming argument to the function is a base pointer
344     return BaseDefiningValueResult(I, true);
345 
346   if (isa<Constant>(I))
347     // Base of constant vector consists only of constant null pointers.
348     // For reasoning see similar case inside 'findBaseDefiningValue' function.
349     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
350                                    true);
351 
352   if (isa<LoadInst>(I))
353     return BaseDefiningValueResult(I, true);
354 
355   if (isa<InsertElementInst>(I))
356     // We don't know whether this vector contains entirely base pointers or
357     // not.  To be conservatively correct, we treat it as a BDV and will
358     // duplicate code as needed to construct a parallel vector of bases.
359     return BaseDefiningValueResult(I, false);
360 
361   if (isa<ShuffleVectorInst>(I))
362     // We don't know whether this vector contains entirely base pointers or
363     // not.  To be conservatively correct, we treat it as a BDV and will
364     // duplicate code as needed to construct a parallel vector of bases.
365     // TODO: There a number of local optimizations which could be applied here
366     // for particular sufflevector patterns.
367     return BaseDefiningValueResult(I, false);
368 
369   // A PHI or Select is a base defining value.  The outer findBasePointer
370   // algorithm is responsible for constructing a base value for this BDV.
371   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
372          "unknown vector instruction - no base found for vector element");
373   return BaseDefiningValueResult(I, false);
374 }
375 
376 /// Helper function for findBasePointer - Will return a value which either a)
377 /// defines the base pointer for the input, b) blocks the simple search
378 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
379 /// from pointer to vector type or back.
380 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
381   assert(I->getType()->isPtrOrPtrVectorTy() &&
382          "Illegal to ask for the base pointer of a non-pointer type");
383 
384   if (I->getType()->isVectorTy())
385     return findBaseDefiningValueOfVector(I);
386 
387   if (isa<Argument>(I))
388     // An incoming argument to the function is a base pointer
389     // We should have never reached here if this argument isn't an gc value
390     return BaseDefiningValueResult(I, true);
391 
392   if (isa<Constant>(I)) {
393     // We assume that objects with a constant base (e.g. a global) can't move
394     // and don't need to be reported to the collector because they are always
395     // live. Besides global references, all kinds of constants (e.g. undef,
396     // constant expressions, null pointers) can be introduced by the inliner or
397     // the optimizer, especially on dynamically dead paths.
398     // Here we treat all of them as having single null base. By doing this we
399     // trying to avoid problems reporting various conflicts in a form of
400     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
401     // See constant.ll file for relevant test cases.
402 
403     return BaseDefiningValueResult(
404         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
405   }
406 
407   if (CastInst *CI = dyn_cast<CastInst>(I)) {
408     Value *Def = CI->stripPointerCasts();
409     // If stripping pointer casts changes the address space there is an
410     // addrspacecast in between.
411     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
412                cast<PointerType>(CI->getType())->getAddressSpace() &&
413            "unsupported addrspacecast");
414     // If we find a cast instruction here, it means we've found a cast which is
415     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
416     // handle int->ptr conversion.
417     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
418     return findBaseDefiningValue(Def);
419   }
420 
421   if (isa<LoadInst>(I))
422     // The value loaded is an gc base itself
423     return BaseDefiningValueResult(I, true);
424 
425 
426   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
427     // The base of this GEP is the base
428     return findBaseDefiningValue(GEP->getPointerOperand());
429 
430   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
431     switch (II->getIntrinsicID()) {
432     default:
433       // fall through to general call handling
434       break;
435     case Intrinsic::experimental_gc_statepoint:
436       llvm_unreachable("statepoints don't produce pointers");
437     case Intrinsic::experimental_gc_relocate: {
438       // Rerunning safepoint insertion after safepoints are already
439       // inserted is not supported.  It could probably be made to work,
440       // but why are you doing this?  There's no good reason.
441       llvm_unreachable("repeat safepoint insertion is not supported");
442     }
443     case Intrinsic::gcroot:
444       // Currently, this mechanism hasn't been extended to work with gcroot.
445       // There's no reason it couldn't be, but I haven't thought about the
446       // implications much.
447       llvm_unreachable(
448           "interaction with the gcroot mechanism is not supported");
449     }
450   }
451   // We assume that functions in the source language only return base
452   // pointers.  This should probably be generalized via attributes to support
453   // both source language and internal functions.
454   if (isa<CallInst>(I) || isa<InvokeInst>(I))
455     return BaseDefiningValueResult(I, true);
456 
457   // I have absolutely no idea how to implement this part yet.  It's not
458   // necessarily hard, I just haven't really looked at it yet.
459   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
460 
461   if (isa<AtomicCmpXchgInst>(I))
462     // A CAS is effectively a atomic store and load combined under a
463     // predicate.  From the perspective of base pointers, we just treat it
464     // like a load.
465     return BaseDefiningValueResult(I, true);
466 
467   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
468                                    "binary ops which don't apply to pointers");
469 
470   // The aggregate ops.  Aggregates can either be in the heap or on the
471   // stack, but in either case, this is simply a field load.  As a result,
472   // this is a defining definition of the base just like a load is.
473   if (isa<ExtractValueInst>(I))
474     return BaseDefiningValueResult(I, true);
475 
476   // We should never see an insert vector since that would require we be
477   // tracing back a struct value not a pointer value.
478   assert(!isa<InsertValueInst>(I) &&
479          "Base pointer for a struct is meaningless");
480 
481   // An extractelement produces a base result exactly when it's input does.
482   // We may need to insert a parallel instruction to extract the appropriate
483   // element out of the base vector corresponding to the input. Given this,
484   // it's analogous to the phi and select case even though it's not a merge.
485   if (isa<ExtractElementInst>(I))
486     // Note: There a lot of obvious peephole cases here.  This are deliberately
487     // handled after the main base pointer inference algorithm to make writing
488     // test cases to exercise that code easier.
489     return BaseDefiningValueResult(I, false);
490 
491   // The last two cases here don't return a base pointer.  Instead, they
492   // return a value which dynamically selects from among several base
493   // derived pointers (each with it's own base potentially).  It's the job of
494   // the caller to resolve these.
495   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
496          "missing instruction case in findBaseDefiningValing");
497   return BaseDefiningValueResult(I, false);
498 }
499 
500 /// Returns the base defining value for this value.
501 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
502   Value *&Cached = Cache[I];
503   if (!Cached) {
504     Cached = findBaseDefiningValue(I).BDV;
505     DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
506                  << Cached->getName() << "\n");
507   }
508   assert(Cache[I] != nullptr);
509   return Cached;
510 }
511 
512 /// Return a base pointer for this value if known.  Otherwise, return it's
513 /// base defining value.
514 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
515   Value *Def = findBaseDefiningValueCached(I, Cache);
516   auto Found = Cache.find(Def);
517   if (Found != Cache.end()) {
518     // Either a base-of relation, or a self reference.  Caller must check.
519     return Found->second;
520   }
521   // Only a BDV available
522   return Def;
523 }
524 
525 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
526 /// is it known to be a base pointer?  Or do we need to continue searching.
527 static bool isKnownBaseResult(Value *V) {
528   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
529       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
530       !isa<ShuffleVectorInst>(V)) {
531     // no recursion possible
532     return true;
533   }
534   if (isa<Instruction>(V) &&
535       cast<Instruction>(V)->getMetadata("is_base_value")) {
536     // This is a previously inserted base phi or select.  We know
537     // that this is a base value.
538     return true;
539   }
540 
541   // We need to keep searching
542   return false;
543 }
544 
545 namespace {
546 /// Models the state of a single base defining value in the findBasePointer
547 /// algorithm for determining where a new instruction is needed to propagate
548 /// the base of this BDV.
549 class BDVState {
550 public:
551   enum Status { Unknown, Base, Conflict };
552 
553   BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
554     assert(status != Base || b);
555   }
556   explicit BDVState(Value *b) : status(Base), base(b) {}
557   BDVState() : status(Unknown), base(nullptr) {}
558 
559   Status getStatus() const { return status; }
560   Value *getBase() const { return base; }
561 
562   bool isBase() const { return getStatus() == Base; }
563   bool isUnknown() const { return getStatus() == Unknown; }
564   bool isConflict() const { return getStatus() == Conflict; }
565 
566   bool operator==(const BDVState &other) const {
567     return base == other.base && status == other.status;
568   }
569 
570   bool operator!=(const BDVState &other) const { return !(*this == other); }
571 
572   LLVM_DUMP_METHOD
573   void dump() const { print(dbgs()); dbgs() << '\n'; }
574 
575   void print(raw_ostream &OS) const {
576     switch (status) {
577     case Unknown:
578       OS << "U";
579       break;
580     case Base:
581       OS << "B";
582       break;
583     case Conflict:
584       OS << "C";
585       break;
586     };
587     OS << " (" << base << " - "
588        << (base ? base->getName() : "nullptr") << "): ";
589   }
590 
591 private:
592   Status status;
593   AssertingVH<Value> base; // non null only if status == base
594 };
595 }
596 
597 #ifndef NDEBUG
598 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
599   State.print(OS);
600   return OS;
601 }
602 #endif
603 
604 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
605   switch (LHS.getStatus()) {
606   case BDVState::Unknown:
607     return RHS;
608 
609   case BDVState::Base:
610     assert(LHS.getBase() && "can't be null");
611     if (RHS.isUnknown())
612       return LHS;
613 
614     if (RHS.isBase()) {
615       if (LHS.getBase() == RHS.getBase()) {
616         assert(LHS == RHS && "equality broken!");
617         return LHS;
618       }
619       return BDVState(BDVState::Conflict);
620     }
621     assert(RHS.isConflict() && "only three states!");
622     return BDVState(BDVState::Conflict);
623 
624   case BDVState::Conflict:
625     return LHS;
626   }
627   llvm_unreachable("only three states!");
628 }
629 
630 // Values of type BDVState form a lattice, and this function implements the meet
631 // operation.
632 static BDVState meetBDVState(BDVState LHS, BDVState RHS) {
633   BDVState Result = meetBDVStateImpl(LHS, RHS);
634   assert(Result == meetBDVStateImpl(RHS, LHS) &&
635          "Math is wrong: meet does not commute!");
636   return Result;
637 }
638 
639 /// For a given value or instruction, figure out what base ptr its derived from.
640 /// For gc objects, this is simply itself.  On success, returns a value which is
641 /// the base pointer.  (This is reliable and can be used for relocation.)  On
642 /// failure, returns nullptr.
643 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
644   Value *Def = findBaseOrBDV(I, Cache);
645 
646   if (isKnownBaseResult(Def))
647     return Def;
648 
649   // Here's the rough algorithm:
650   // - For every SSA value, construct a mapping to either an actual base
651   //   pointer or a PHI which obscures the base pointer.
652   // - Construct a mapping from PHI to unknown TOP state.  Use an
653   //   optimistic algorithm to propagate base pointer information.  Lattice
654   //   looks like:
655   //   UNKNOWN
656   //   b1 b2 b3 b4
657   //   CONFLICT
658   //   When algorithm terminates, all PHIs will either have a single concrete
659   //   base or be in a conflict state.
660   // - For every conflict, insert a dummy PHI node without arguments.  Add
661   //   these to the base[Instruction] = BasePtr mapping.  For every
662   //   non-conflict, add the actual base.
663   //  - For every conflict, add arguments for the base[a] of each input
664   //   arguments.
665   //
666   // Note: A simpler form of this would be to add the conflict form of all
667   // PHIs without running the optimistic algorithm.  This would be
668   // analogous to pessimistic data flow and would likely lead to an
669   // overall worse solution.
670 
671 #ifndef NDEBUG
672   auto isExpectedBDVType = [](Value *BDV) {
673     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
674            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
675   };
676 #endif
677 
678   // Once populated, will contain a mapping from each potentially non-base BDV
679   // to a lattice value (described above) which corresponds to that BDV.
680   // We use the order of insertion (DFS over the def/use graph) to provide a
681   // stable deterministic ordering for visiting DenseMaps (which are unordered)
682   // below.  This is important for deterministic compilation.
683   MapVector<Value *, BDVState> States;
684 
685   // Recursively fill in all base defining values reachable from the initial
686   // one for which we don't already know a definite base value for
687   /* scope */ {
688     SmallVector<Value*, 16> Worklist;
689     Worklist.push_back(Def);
690     States.insert({Def, BDVState()});
691     while (!Worklist.empty()) {
692       Value *Current = Worklist.pop_back_val();
693       assert(!isKnownBaseResult(Current) && "why did it get added?");
694 
695       auto visitIncomingValue = [&](Value *InVal) {
696         Value *Base = findBaseOrBDV(InVal, Cache);
697         if (isKnownBaseResult(Base))
698           // Known bases won't need new instructions introduced and can be
699           // ignored safely
700           return;
701         assert(isExpectedBDVType(Base) && "the only non-base values "
702                "we see should be base defining values");
703         if (States.insert(std::make_pair(Base, BDVState())).second)
704           Worklist.push_back(Base);
705       };
706       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
707         for (Value *InVal : PN->incoming_values())
708           visitIncomingValue(InVal);
709       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
710         visitIncomingValue(SI->getTrueValue());
711         visitIncomingValue(SI->getFalseValue());
712       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
713         visitIncomingValue(EE->getVectorOperand());
714       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
715         visitIncomingValue(IE->getOperand(0)); // vector operand
716         visitIncomingValue(IE->getOperand(1)); // scalar operand
717       } else {
718         // There is one known class of instructions we know we don't handle.
719         assert(isa<ShuffleVectorInst>(Current));
720         llvm_unreachable("Unimplemented instruction case");
721       }
722     }
723   }
724 
725 #ifndef NDEBUG
726   DEBUG(dbgs() << "States after initialization:\n");
727   for (auto Pair : States)
728     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
729 #endif
730 
731   // Return a phi state for a base defining value.  We'll generate a new
732   // base state for known bases and expect to find a cached state otherwise.
733   auto getStateForBDV = [&](Value *baseValue) {
734     if (isKnownBaseResult(baseValue))
735       return BDVState(baseValue);
736     auto I = States.find(baseValue);
737     assert(I != States.end() && "lookup failed!");
738     return I->second;
739   };
740 
741   bool Progress = true;
742   while (Progress) {
743 #ifndef NDEBUG
744     const size_t OldSize = States.size();
745 #endif
746     Progress = false;
747     // We're only changing values in this loop, thus safe to keep iterators.
748     // Since this is computing a fixed point, the order of visit does not
749     // effect the result.  TODO: We could use a worklist here and make this run
750     // much faster.
751     for (auto Pair : States) {
752       Value *BDV = Pair.first;
753       assert(!isKnownBaseResult(BDV) && "why did it get added?");
754 
755       // Given an input value for the current instruction, return a BDVState
756       // instance which represents the BDV of that value.
757       auto getStateForInput = [&](Value *V) mutable {
758         Value *BDV = findBaseOrBDV(V, Cache);
759         return getStateForBDV(BDV);
760       };
761 
762       BDVState NewState;
763       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
764         NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
765         NewState =
766             meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
767       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
768         for (Value *Val : PN->incoming_values())
769           NewState = meetBDVState(NewState, getStateForInput(Val));
770       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
771         // The 'meet' for an extractelement is slightly trivial, but it's still
772         // useful in that it drives us to conflict if our input is.
773         NewState =
774             meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
775       } else {
776         // Given there's a inherent type mismatch between the operands, will
777         // *always* produce Conflict.
778         auto *IE = cast<InsertElementInst>(BDV);
779         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
780         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
781       }
782 
783       BDVState OldState = States[BDV];
784       if (OldState != NewState) {
785         Progress = true;
786         States[BDV] = NewState;
787       }
788     }
789 
790     assert(OldSize == States.size() &&
791            "fixed point shouldn't be adding any new nodes to state");
792   }
793 
794 #ifndef NDEBUG
795   DEBUG(dbgs() << "States after meet iteration:\n");
796   for (auto Pair : States)
797     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
798 #endif
799 
800   // Insert Phis for all conflicts
801   // TODO: adjust naming patterns to avoid this order of iteration dependency
802   for (auto Pair : States) {
803     Instruction *I = cast<Instruction>(Pair.first);
804     BDVState State = Pair.second;
805     assert(!isKnownBaseResult(I) && "why did it get added?");
806     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
807 
808     // extractelement instructions are a bit special in that we may need to
809     // insert an extract even when we know an exact base for the instruction.
810     // The problem is that we need to convert from a vector base to a scalar
811     // base for the particular indice we're interested in.
812     if (State.isBase() && isa<ExtractElementInst>(I) &&
813         isa<VectorType>(State.getBase()->getType())) {
814       auto *EE = cast<ExtractElementInst>(I);
815       // TODO: In many cases, the new instruction is just EE itself.  We should
816       // exploit this, but can't do it here since it would break the invariant
817       // about the BDV not being known to be a base.
818       auto *BaseInst = ExtractElementInst::Create(
819           State.getBase(), EE->getIndexOperand(), "base_ee", EE);
820       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
821       States[I] = BDVState(BDVState::Base, BaseInst);
822     }
823 
824     // Since we're joining a vector and scalar base, they can never be the
825     // same.  As a result, we should always see insert element having reached
826     // the conflict state.
827     assert(!isa<InsertElementInst>(I) || State.isConflict());
828 
829     if (!State.isConflict())
830       continue;
831 
832     /// Create and insert a new instruction which will represent the base of
833     /// the given instruction 'I'.
834     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
835       if (isa<PHINode>(I)) {
836         BasicBlock *BB = I->getParent();
837         int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
838         assert(NumPreds > 0 && "how did we reach here");
839         std::string Name = suffixed_name_or(I, ".base", "base_phi");
840         return PHINode::Create(I->getType(), NumPreds, Name, I);
841       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
842         // The undef will be replaced later
843         UndefValue *Undef = UndefValue::get(SI->getType());
844         std::string Name = suffixed_name_or(I, ".base", "base_select");
845         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
846       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
847         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
848         std::string Name = suffixed_name_or(I, ".base", "base_ee");
849         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
850                                           EE);
851       } else {
852         auto *IE = cast<InsertElementInst>(I);
853         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
854         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
855         std::string Name = suffixed_name_or(I, ".base", "base_ie");
856         return InsertElementInst::Create(VecUndef, ScalarUndef,
857                                          IE->getOperand(2), Name, IE);
858       }
859     };
860     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
861     // Add metadata marking this as a base value
862     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
863     States[I] = BDVState(BDVState::Conflict, BaseInst);
864   }
865 
866   // Returns a instruction which produces the base pointer for a given
867   // instruction.  The instruction is assumed to be an input to one of the BDVs
868   // seen in the inference algorithm above.  As such, we must either already
869   // know it's base defining value is a base, or have inserted a new
870   // instruction to propagate the base of it's BDV and have entered that newly
871   // introduced instruction into the state table.  In either case, we are
872   // assured to be able to determine an instruction which produces it's base
873   // pointer.
874   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
875     Value *BDV = findBaseOrBDV(Input, Cache);
876     Value *Base = nullptr;
877     if (isKnownBaseResult(BDV)) {
878       Base = BDV;
879     } else {
880       // Either conflict or base.
881       assert(States.count(BDV));
882       Base = States[BDV].getBase();
883     }
884     assert(Base && "Can't be null");
885     // The cast is needed since base traversal may strip away bitcasts
886     if (Base->getType() != Input->getType() && InsertPt)
887       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
888     return Base;
889   };
890 
891   // Fixup all the inputs of the new PHIs.  Visit order needs to be
892   // deterministic and predictable because we're naming newly created
893   // instructions.
894   for (auto Pair : States) {
895     Instruction *BDV = cast<Instruction>(Pair.first);
896     BDVState State = Pair.second;
897 
898     assert(!isKnownBaseResult(BDV) && "why did it get added?");
899     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
900     if (!State.isConflict())
901       continue;
902 
903     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBase())) {
904       PHINode *PN = cast<PHINode>(BDV);
905       unsigned NumPHIValues = PN->getNumIncomingValues();
906       for (unsigned i = 0; i < NumPHIValues; i++) {
907         Value *InVal = PN->getIncomingValue(i);
908         BasicBlock *InBB = PN->getIncomingBlock(i);
909 
910         // If we've already seen InBB, add the same incoming value
911         // we added for it earlier.  The IR verifier requires phi
912         // nodes with multiple entries from the same basic block
913         // to have the same incoming value for each of those
914         // entries.  If we don't do this check here and basephi
915         // has a different type than base, we'll end up adding two
916         // bitcasts (and hence two distinct values) as incoming
917         // values for the same basic block.
918 
919         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
920         if (BlockIndex != -1) {
921           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
922           BasePHI->addIncoming(OldBase, InBB);
923 
924 #ifndef NDEBUG
925           Value *Base = getBaseForInput(InVal, nullptr);
926           // In essence this assert states: the only way two values
927           // incoming from the same basic block may be different is by
928           // being different bitcasts of the same value.  A cleanup
929           // that remains TODO is changing findBaseOrBDV to return an
930           // llvm::Value of the correct type (and still remain pure).
931           // This will remove the need to add bitcasts.
932           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
933                  "Sanity -- findBaseOrBDV should be pure!");
934 #endif
935           continue;
936         }
937 
938         // Find the instruction which produces the base for each input.  We may
939         // need to insert a bitcast in the incoming block.
940         // TODO: Need to split critical edges if insertion is needed
941         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
942         BasePHI->addIncoming(Base, InBB);
943       }
944       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
945     } else if (SelectInst *BaseSI = dyn_cast<SelectInst>(State.getBase())) {
946       SelectInst *SI = cast<SelectInst>(BDV);
947 
948       // Find the instruction which produces the base for each input.
949       // We may need to insert a bitcast.
950       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
951       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
952     } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) {
953       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
954       // Find the instruction which produces the base for each input.  We may
955       // need to insert a bitcast.
956       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
957     } else {
958       auto *BaseIE = cast<InsertElementInst>(State.getBase());
959       auto *BdvIE = cast<InsertElementInst>(BDV);
960       auto UpdateOperand = [&](int OperandIdx) {
961         Value *InVal = BdvIE->getOperand(OperandIdx);
962         Value *Base = getBaseForInput(InVal, BaseIE);
963         BaseIE->setOperand(OperandIdx, Base);
964       };
965       UpdateOperand(0); // vector operand
966       UpdateOperand(1); // scalar operand
967     }
968   }
969 
970   // Cache all of our results so we can cheaply reuse them
971   // NOTE: This is actually two caches: one of the base defining value
972   // relation and one of the base pointer relation!  FIXME
973   for (auto Pair : States) {
974     auto *BDV = Pair.first;
975     Value *Base = Pair.second.getBase();
976     assert(BDV && Base);
977     assert(!isKnownBaseResult(BDV) && "why did it get added?");
978 
979     DEBUG(dbgs() << "Updating base value cache"
980                  << " for: " << BDV->getName() << " from: "
981                  << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
982                  << " to: " << Base->getName() << "\n");
983 
984     if (Cache.count(BDV)) {
985       assert(isKnownBaseResult(Base) &&
986              "must be something we 'know' is a base pointer");
987       // Once we transition from the BDV relation being store in the Cache to
988       // the base relation being stored, it must be stable
989       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
990              "base relation should be stable");
991     }
992     Cache[BDV] = Base;
993   }
994   assert(Cache.count(Def));
995   return Cache[Def];
996 }
997 
998 // For a set of live pointers (base and/or derived), identify the base
999 // pointer of the object which they are derived from.  This routine will
1000 // mutate the IR graph as needed to make the 'base' pointer live at the
1001 // definition site of 'derived'.  This ensures that any use of 'derived' can
1002 // also use 'base'.  This may involve the insertion of a number of
1003 // additional PHI nodes.
1004 //
1005 // preconditions: live is a set of pointer type Values
1006 //
1007 // side effects: may insert PHI nodes into the existing CFG, will preserve
1008 // CFG, will not remove or mutate any existing nodes
1009 //
1010 // post condition: PointerToBase contains one (derived, base) pair for every
1011 // pointer in live.  Note that derived can be equal to base if the original
1012 // pointer was a base pointer.
1013 static void
1014 findBasePointers(const StatepointLiveSetTy &live,
1015                  MapVector<Value *, Value *> &PointerToBase,
1016                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1017   for (Value *ptr : live) {
1018     Value *base = findBasePointer(ptr, DVCache);
1019     assert(base && "failed to find base pointer");
1020     PointerToBase[ptr] = base;
1021     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1022             DT->dominates(cast<Instruction>(base)->getParent(),
1023                           cast<Instruction>(ptr)->getParent())) &&
1024            "The base we found better dominate the derived pointer");
1025   }
1026 }
1027 
1028 /// Find the required based pointers (and adjust the live set) for the given
1029 /// parse point.
1030 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1031                              CallSite CS,
1032                              PartiallyConstructedSafepointRecord &result) {
1033   MapVector<Value *, Value *> PointerToBase;
1034   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1035 
1036   if (PrintBasePointers) {
1037     errs() << "Base Pairs (w/o Relocation):\n";
1038     for (auto &Pair : PointerToBase) {
1039       errs() << " derived ";
1040       Pair.first->printAsOperand(errs(), false);
1041       errs() << " base ";
1042       Pair.second->printAsOperand(errs(), false);
1043       errs() << "\n";;
1044     }
1045   }
1046 
1047   result.PointerToBase = PointerToBase;
1048 }
1049 
1050 /// Given an updated version of the dataflow liveness results, update the
1051 /// liveset and base pointer maps for the call site CS.
1052 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1053                                   CallSite CS,
1054                                   PartiallyConstructedSafepointRecord &result);
1055 
1056 static void recomputeLiveInValues(
1057     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1058     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1059   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1060   // again.  The old values are still live and will help it stabilize quickly.
1061   GCPtrLivenessData RevisedLivenessData;
1062   computeLiveInValues(DT, F, RevisedLivenessData);
1063   for (size_t i = 0; i < records.size(); i++) {
1064     struct PartiallyConstructedSafepointRecord &info = records[i];
1065     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1066   }
1067 }
1068 
1069 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1070 // no uses of the original value / return value between the gc.statepoint and
1071 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1072 // starting one of the successor blocks.  We also need to be able to insert the
1073 // gc.relocates only on the path which goes through the statepoint.  We might
1074 // need to split an edge to make this possible.
1075 static BasicBlock *
1076 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1077                             DominatorTree &DT) {
1078   BasicBlock *Ret = BB;
1079   if (!BB->getUniquePredecessor())
1080     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1081 
1082   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1083   // from it
1084   FoldSingleEntryPHINodes(Ret);
1085   assert(!isa<PHINode>(Ret->begin()) &&
1086          "All PHI nodes should have been removed!");
1087 
1088   // At this point, we can safely insert a gc.relocate or gc.result as the first
1089   // instruction in Ret if needed.
1090   return Ret;
1091 }
1092 
1093 // Create new attribute set containing only attributes which can be transferred
1094 // from original call to the safepoint.
1095 static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1096   AttributeSet Ret;
1097 
1098   for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1099     unsigned Index = AS.getSlotIndex(Slot);
1100 
1101     if (Index == AttributeSet::ReturnIndex ||
1102         Index == AttributeSet::FunctionIndex) {
1103 
1104       for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
1105 
1106         // Do not allow certain attributes - just skip them
1107         // Safepoint can not be read only or read none.
1108         if (Attr.hasAttribute(Attribute::ReadNone) ||
1109             Attr.hasAttribute(Attribute::ReadOnly))
1110           continue;
1111 
1112         // These attributes control the generation of the gc.statepoint call /
1113         // invoke itself; and once the gc.statepoint is in place, they're of no
1114         // use.
1115         if (isStatepointDirectiveAttr(Attr))
1116           continue;
1117 
1118         Ret = Ret.addAttributes(
1119             AS.getContext(), Index,
1120             AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
1121       }
1122     }
1123 
1124     // Just skip parameter attributes for now
1125   }
1126 
1127   return Ret;
1128 }
1129 
1130 /// Helper function to place all gc relocates necessary for the given
1131 /// statepoint.
1132 /// Inputs:
1133 ///   liveVariables - list of variables to be relocated.
1134 ///   liveStart - index of the first live variable.
1135 ///   basePtrs - base pointers.
1136 ///   statepointToken - statepoint instruction to which relocates should be
1137 ///   bound.
1138 ///   Builder - Llvm IR builder to be used to construct new calls.
1139 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1140                               const int LiveStart,
1141                               ArrayRef<Value *> BasePtrs,
1142                               Instruction *StatepointToken,
1143                               IRBuilder<> Builder) {
1144   if (LiveVariables.empty())
1145     return;
1146 
1147   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1148     auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
1149     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1150     size_t Index = std::distance(LiveVec.begin(), ValIt);
1151     assert(Index < LiveVec.size() && "Bug in std::find?");
1152     return Index;
1153   };
1154   Module *M = StatepointToken->getModule();
1155 
1156   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1157   // element type is i8 addrspace(1)*). We originally generated unique
1158   // declarations for each pointer type, but this proved problematic because
1159   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1160   // towards a single unified pointer type anyways, we can just cast everything
1161   // to an i8* of the right address space.  A bitcast is added later to convert
1162   // gc_relocate to the actual value's type.
1163   auto getGCRelocateDecl = [&] (Type *Ty) {
1164     assert(isHandledGCPointerType(Ty));
1165     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1166     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1167     if (auto *VT = dyn_cast<VectorType>(Ty))
1168       NewTy = VectorType::get(NewTy, VT->getNumElements());
1169     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1170                                      {NewTy});
1171   };
1172 
1173   // Lazily populated map from input types to the canonicalized form mentioned
1174   // in the comment above.  This should probably be cached somewhere more
1175   // broadly.
1176   DenseMap<Type*, Value*> TypeToDeclMap;
1177 
1178   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1179     // Generate the gc.relocate call and save the result
1180     Value *BaseIdx =
1181       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1182     Value *LiveIdx = Builder.getInt32(LiveStart + i);
1183 
1184     Type *Ty = LiveVariables[i]->getType();
1185     if (!TypeToDeclMap.count(Ty))
1186       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1187     Value *GCRelocateDecl = TypeToDeclMap[Ty];
1188 
1189     // only specify a debug name if we can give a useful one
1190     CallInst *Reloc = Builder.CreateCall(
1191         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1192         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1193     // Trick CodeGen into thinking there are lots of free registers at this
1194     // fake call.
1195     Reloc->setCallingConv(CallingConv::Cold);
1196   }
1197 }
1198 
1199 namespace {
1200 
1201 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1202 /// avoids having to worry about keeping around dangling pointers to Values.
1203 class DeferredReplacement {
1204   AssertingVH<Instruction> Old;
1205   AssertingVH<Instruction> New;
1206   bool IsDeoptimize = false;
1207 
1208   DeferredReplacement() {}
1209 
1210 public:
1211   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1212     assert(Old != New && Old && New &&
1213            "Cannot RAUW equal values or to / from null!");
1214 
1215     DeferredReplacement D;
1216     D.Old = Old;
1217     D.New = New;
1218     return D;
1219   }
1220 
1221   static DeferredReplacement createDelete(Instruction *ToErase) {
1222     DeferredReplacement D;
1223     D.Old = ToErase;
1224     return D;
1225   }
1226 
1227   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1228 #ifndef NDEBUG
1229     auto *F = cast<CallInst>(Old)->getCalledFunction();
1230     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1231            "Only way to construct a deoptimize deferred replacement");
1232 #endif
1233     DeferredReplacement D;
1234     D.Old = Old;
1235     D.IsDeoptimize = true;
1236     return D;
1237   }
1238 
1239   /// Does the task represented by this instance.
1240   void doReplacement() {
1241     Instruction *OldI = Old;
1242     Instruction *NewI = New;
1243 
1244     assert(OldI != NewI && "Disallowed at construction?!");
1245     assert((!IsDeoptimize || !New) &&
1246            "Deoptimize instrinsics are not replaced!");
1247 
1248     Old = nullptr;
1249     New = nullptr;
1250 
1251     if (NewI)
1252       OldI->replaceAllUsesWith(NewI);
1253 
1254     if (IsDeoptimize) {
1255       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1256       // not necessarilly be followed by the matching return.
1257       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1258       new UnreachableInst(RI->getContext(), RI);
1259       RI->eraseFromParent();
1260     }
1261 
1262     OldI->eraseFromParent();
1263   }
1264 };
1265 }
1266 
1267 static void
1268 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1269                            const SmallVectorImpl<Value *> &BasePtrs,
1270                            const SmallVectorImpl<Value *> &LiveVariables,
1271                            PartiallyConstructedSafepointRecord &Result,
1272                            std::vector<DeferredReplacement> &Replacements) {
1273   assert(BasePtrs.size() == LiveVariables.size());
1274 
1275   // Then go ahead and use the builder do actually do the inserts.  We insert
1276   // immediately before the previous instruction under the assumption that all
1277   // arguments will be available here.  We can't insert afterwards since we may
1278   // be replacing a terminator.
1279   Instruction *InsertBefore = CS.getInstruction();
1280   IRBuilder<> Builder(InsertBefore);
1281 
1282   ArrayRef<Value *> GCArgs(LiveVariables);
1283   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1284   uint32_t NumPatchBytes = 0;
1285   uint32_t Flags = uint32_t(StatepointFlags::None);
1286 
1287   ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
1288   ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
1289   ArrayRef<Use> TransitionArgs;
1290   if (auto TransitionBundle =
1291       CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
1292     Flags |= uint32_t(StatepointFlags::GCTransition);
1293     TransitionArgs = TransitionBundle->Inputs;
1294   }
1295 
1296   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1297   // with a return value, we lower then as never returning calls to
1298   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1299   bool IsDeoptimize = false;
1300 
1301   StatepointDirectives SD =
1302       parseStatepointDirectivesFromAttrs(CS.getAttributes());
1303   if (SD.NumPatchBytes)
1304     NumPatchBytes = *SD.NumPatchBytes;
1305   if (SD.StatepointID)
1306     StatepointID = *SD.StatepointID;
1307 
1308   Value *CallTarget = CS.getCalledValue();
1309   if (Function *F = dyn_cast<Function>(CallTarget)) {
1310     if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1311       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1312       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1313       // verifier does not allow taking the address of an intrinsic function.
1314 
1315       SmallVector<Type *, 8> DomainTy;
1316       for (Value *Arg : CallArgs)
1317         DomainTy.push_back(Arg->getType());
1318       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1319                                     /* isVarArg = */ false);
1320 
1321       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1322       // calls to @llvm.experimental.deoptimize with different argument types in
1323       // the same module.  This is fine -- we assume the frontend knew what it
1324       // was doing when generating this kind of IR.
1325       CallTarget =
1326           F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
1327 
1328       IsDeoptimize = true;
1329     }
1330   }
1331 
1332   // Create the statepoint given all the arguments
1333   Instruction *Token = nullptr;
1334   AttributeSet ReturnAttrs;
1335   if (CS.isCall()) {
1336     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1337     CallInst *Call = Builder.CreateGCStatepointCall(
1338         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1339         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1340 
1341     Call->setTailCall(ToReplace->isTailCall());
1342     Call->setCallingConv(ToReplace->getCallingConv());
1343 
1344     // Currently we will fail on parameter attributes and on certain
1345     // function attributes.
1346     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1347     // In case if we can handle this set of attributes - set up function attrs
1348     // directly on statepoint and return attrs later for gc_result intrinsic.
1349     Call->setAttributes(NewAttrs.getFnAttributes());
1350     ReturnAttrs = NewAttrs.getRetAttributes();
1351 
1352     Token = Call;
1353 
1354     // Put the following gc_result and gc_relocate calls immediately after the
1355     // the old call (which we're about to delete)
1356     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1357     Builder.SetInsertPoint(ToReplace->getNextNode());
1358     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1359   } else {
1360     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1361 
1362     // Insert the new invoke into the old block.  We'll remove the old one in a
1363     // moment at which point this will become the new terminator for the
1364     // original block.
1365     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1366         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1367         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1368         GCArgs, "statepoint_token");
1369 
1370     Invoke->setCallingConv(ToReplace->getCallingConv());
1371 
1372     // Currently we will fail on parameter attributes and on certain
1373     // function attributes.
1374     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1375     // In case if we can handle this set of attributes - set up function attrs
1376     // directly on statepoint and return attrs later for gc_result intrinsic.
1377     Invoke->setAttributes(NewAttrs.getFnAttributes());
1378     ReturnAttrs = NewAttrs.getRetAttributes();
1379 
1380     Token = Invoke;
1381 
1382     // Generate gc relocates in exceptional path
1383     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1384     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1385            UnwindBlock->getUniquePredecessor() &&
1386            "can't safely insert in this block!");
1387 
1388     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1389     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1390 
1391     // Attach exceptional gc relocates to the landingpad.
1392     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1393     Result.UnwindToken = ExceptionalToken;
1394 
1395     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1396     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1397                       Builder);
1398 
1399     // Generate gc relocates and returns for normal block
1400     BasicBlock *NormalDest = ToReplace->getNormalDest();
1401     assert(!isa<PHINode>(NormalDest->begin()) &&
1402            NormalDest->getUniquePredecessor() &&
1403            "can't safely insert in this block!");
1404 
1405     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1406 
1407     // gc relocates will be generated later as if it were regular call
1408     // statepoint
1409   }
1410   assert(Token && "Should be set in one of the above branches!");
1411 
1412   if (IsDeoptimize) {
1413     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1414     // transform the tail-call like structure to a call to a void function
1415     // followed by unreachable to get better codegen.
1416     Replacements.push_back(
1417         DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
1418   } else {
1419     Token->setName("statepoint_token");
1420     if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1421       StringRef Name =
1422           CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1423       CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1424       GCResult->setAttributes(CS.getAttributes().getRetAttributes());
1425 
1426       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1427       // live set of some other safepoint, in which case that safepoint's
1428       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1429       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1430       // after the live sets have been made explicit in the IR, and we no longer
1431       // have raw pointers to worry about.
1432       Replacements.emplace_back(
1433           DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
1434     } else {
1435       Replacements.emplace_back(
1436           DeferredReplacement::createDelete(CS.getInstruction()));
1437     }
1438   }
1439 
1440   Result.StatepointToken = Token;
1441 
1442   // Second, create a gc.relocate for every live variable
1443   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1444   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1445 }
1446 
1447 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1448 // which make the relocations happening at this safepoint explicit.
1449 //
1450 // WARNING: Does not do any fixup to adjust users of the original live
1451 // values.  That's the callers responsibility.
1452 static void
1453 makeStatepointExplicit(DominatorTree &DT, CallSite CS,
1454                        PartiallyConstructedSafepointRecord &Result,
1455                        std::vector<DeferredReplacement> &Replacements) {
1456   const auto &LiveSet = Result.LiveSet;
1457   const auto &PointerToBase = Result.PointerToBase;
1458 
1459   // Convert to vector for efficient cross referencing.
1460   SmallVector<Value *, 64> BaseVec, LiveVec;
1461   LiveVec.reserve(LiveSet.size());
1462   BaseVec.reserve(LiveSet.size());
1463   for (Value *L : LiveSet) {
1464     LiveVec.push_back(L);
1465     assert(PointerToBase.count(L));
1466     Value *Base = PointerToBase.find(L)->second;
1467     BaseVec.push_back(Base);
1468   }
1469   assert(LiveVec.size() == BaseVec.size());
1470 
1471   // Do the actual rewriting and delete the old statepoint
1472   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1473 }
1474 
1475 // Helper function for the relocationViaAlloca.
1476 //
1477 // It receives iterator to the statepoint gc relocates and emits a store to the
1478 // assigned location (via allocaMap) for the each one of them.  It adds the
1479 // visited values into the visitedLiveValues set, which we will later use them
1480 // for sanity checking.
1481 static void
1482 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1483                        DenseMap<Value *, Value *> &AllocaMap,
1484                        DenseSet<Value *> &VisitedLiveValues) {
1485 
1486   for (User *U : GCRelocs) {
1487     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1488     if (!Relocate)
1489       continue;
1490 
1491     Value *OriginalValue = Relocate->getDerivedPtr();
1492     assert(AllocaMap.count(OriginalValue));
1493     Value *Alloca = AllocaMap[OriginalValue];
1494 
1495     // Emit store into the related alloca
1496     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1497     // the correct type according to alloca.
1498     assert(Relocate->getNextNode() &&
1499            "Should always have one since it's not a terminator");
1500     IRBuilder<> Builder(Relocate->getNextNode());
1501     Value *CastedRelocatedValue =
1502       Builder.CreateBitCast(Relocate,
1503                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1504                             suffixed_name_or(Relocate, ".casted", ""));
1505 
1506     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1507     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1508 
1509 #ifndef NDEBUG
1510     VisitedLiveValues.insert(OriginalValue);
1511 #endif
1512   }
1513 }
1514 
1515 // Helper function for the "relocationViaAlloca". Similar to the
1516 // "insertRelocationStores" but works for rematerialized values.
1517 static void insertRematerializationStores(
1518     const RematerializedValueMapTy &RematerializedValues,
1519     DenseMap<Value *, Value *> &AllocaMap,
1520     DenseSet<Value *> &VisitedLiveValues) {
1521 
1522   for (auto RematerializedValuePair: RematerializedValues) {
1523     Instruction *RematerializedValue = RematerializedValuePair.first;
1524     Value *OriginalValue = RematerializedValuePair.second;
1525 
1526     assert(AllocaMap.count(OriginalValue) &&
1527            "Can not find alloca for rematerialized value");
1528     Value *Alloca = AllocaMap[OriginalValue];
1529 
1530     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1531     Store->insertAfter(RematerializedValue);
1532 
1533 #ifndef NDEBUG
1534     VisitedLiveValues.insert(OriginalValue);
1535 #endif
1536   }
1537 }
1538 
1539 /// Do all the relocation update via allocas and mem2reg
1540 static void relocationViaAlloca(
1541     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1542     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1543 #ifndef NDEBUG
1544   // record initial number of (static) allocas; we'll check we have the same
1545   // number when we get done.
1546   int InitialAllocaNum = 0;
1547   for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1548        I++)
1549     if (isa<AllocaInst>(*I))
1550       InitialAllocaNum++;
1551 #endif
1552 
1553   // TODO-PERF: change data structures, reserve
1554   DenseMap<Value *, Value *> AllocaMap;
1555   SmallVector<AllocaInst *, 200> PromotableAllocas;
1556   // Used later to chack that we have enough allocas to store all values
1557   std::size_t NumRematerializedValues = 0;
1558   PromotableAllocas.reserve(Live.size());
1559 
1560   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1561   // "PromotableAllocas"
1562   auto emitAllocaFor = [&](Value *LiveValue) {
1563     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1564                                         F.getEntryBlock().getFirstNonPHI());
1565     AllocaMap[LiveValue] = Alloca;
1566     PromotableAllocas.push_back(Alloca);
1567   };
1568 
1569   // Emit alloca for each live gc pointer
1570   for (Value *V : Live)
1571     emitAllocaFor(V);
1572 
1573   // Emit allocas for rematerialized values
1574   for (const auto &Info : Records)
1575     for (auto RematerializedValuePair : Info.RematerializedValues) {
1576       Value *OriginalValue = RematerializedValuePair.second;
1577       if (AllocaMap.count(OriginalValue) != 0)
1578         continue;
1579 
1580       emitAllocaFor(OriginalValue);
1581       ++NumRematerializedValues;
1582     }
1583 
1584   // The next two loops are part of the same conceptual operation.  We need to
1585   // insert a store to the alloca after the original def and at each
1586   // redefinition.  We need to insert a load before each use.  These are split
1587   // into distinct loops for performance reasons.
1588 
1589   // Update gc pointer after each statepoint: either store a relocated value or
1590   // null (if no relocated value was found for this gc pointer and it is not a
1591   // gc_result).  This must happen before we update the statepoint with load of
1592   // alloca otherwise we lose the link between statepoint and old def.
1593   for (const auto &Info : Records) {
1594     Value *Statepoint = Info.StatepointToken;
1595 
1596     // This will be used for consistency check
1597     DenseSet<Value *> VisitedLiveValues;
1598 
1599     // Insert stores for normal statepoint gc relocates
1600     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1601 
1602     // In case if it was invoke statepoint
1603     // we will insert stores for exceptional path gc relocates.
1604     if (isa<InvokeInst>(Statepoint)) {
1605       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1606                              VisitedLiveValues);
1607     }
1608 
1609     // Do similar thing with rematerialized values
1610     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1611                                   VisitedLiveValues);
1612 
1613     if (ClobberNonLive) {
1614       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1615       // the gc.statepoint.  This will turn some subtle GC problems into
1616       // slightly easier to debug SEGVs.  Note that on large IR files with
1617       // lots of gc.statepoints this is extremely costly both memory and time
1618       // wise.
1619       SmallVector<AllocaInst *, 64> ToClobber;
1620       for (auto Pair : AllocaMap) {
1621         Value *Def = Pair.first;
1622         AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1623 
1624         // This value was relocated
1625         if (VisitedLiveValues.count(Def)) {
1626           continue;
1627         }
1628         ToClobber.push_back(Alloca);
1629       }
1630 
1631       auto InsertClobbersAt = [&](Instruction *IP) {
1632         for (auto *AI : ToClobber) {
1633           auto PT = cast<PointerType>(AI->getAllocatedType());
1634           Constant *CPN = ConstantPointerNull::get(PT);
1635           StoreInst *Store = new StoreInst(CPN, AI);
1636           Store->insertBefore(IP);
1637         }
1638       };
1639 
1640       // Insert the clobbering stores.  These may get intermixed with the
1641       // gc.results and gc.relocates, but that's fine.
1642       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1643         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1644         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1645       } else {
1646         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1647       }
1648     }
1649   }
1650 
1651   // Update use with load allocas and add store for gc_relocated.
1652   for (auto Pair : AllocaMap) {
1653     Value *Def = Pair.first;
1654     Value *Alloca = Pair.second;
1655 
1656     // We pre-record the uses of allocas so that we dont have to worry about
1657     // later update that changes the user information..
1658 
1659     SmallVector<Instruction *, 20> Uses;
1660     // PERF: trade a linear scan for repeated reallocation
1661     Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1662     for (User *U : Def->users()) {
1663       if (!isa<ConstantExpr>(U)) {
1664         // If the def has a ConstantExpr use, then the def is either a
1665         // ConstantExpr use itself or null.  In either case
1666         // (recursively in the first, directly in the second), the oop
1667         // it is ultimately dependent on is null and this particular
1668         // use does not need to be fixed up.
1669         Uses.push_back(cast<Instruction>(U));
1670       }
1671     }
1672 
1673     std::sort(Uses.begin(), Uses.end());
1674     auto Last = std::unique(Uses.begin(), Uses.end());
1675     Uses.erase(Last, Uses.end());
1676 
1677     for (Instruction *Use : Uses) {
1678       if (isa<PHINode>(Use)) {
1679         PHINode *Phi = cast<PHINode>(Use);
1680         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1681           if (Def == Phi->getIncomingValue(i)) {
1682             LoadInst *Load = new LoadInst(
1683                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1684             Phi->setIncomingValue(i, Load);
1685           }
1686         }
1687       } else {
1688         LoadInst *Load = new LoadInst(Alloca, "", Use);
1689         Use->replaceUsesOfWith(Def, Load);
1690       }
1691     }
1692 
1693     // Emit store for the initial gc value.  Store must be inserted after load,
1694     // otherwise store will be in alloca's use list and an extra load will be
1695     // inserted before it.
1696     StoreInst *Store = new StoreInst(Def, Alloca);
1697     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1698       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1699         // InvokeInst is a TerminatorInst so the store need to be inserted
1700         // into its normal destination block.
1701         BasicBlock *NormalDest = Invoke->getNormalDest();
1702         Store->insertBefore(NormalDest->getFirstNonPHI());
1703       } else {
1704         assert(!Inst->isTerminator() &&
1705                "The only TerminatorInst that can produce a value is "
1706                "InvokeInst which is handled above.");
1707         Store->insertAfter(Inst);
1708       }
1709     } else {
1710       assert(isa<Argument>(Def));
1711       Store->insertAfter(cast<Instruction>(Alloca));
1712     }
1713   }
1714 
1715   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1716          "we must have the same allocas with lives");
1717   if (!PromotableAllocas.empty()) {
1718     // Apply mem2reg to promote alloca to SSA
1719     PromoteMemToReg(PromotableAllocas, DT);
1720   }
1721 
1722 #ifndef NDEBUG
1723   for (auto &I : F.getEntryBlock())
1724     if (isa<AllocaInst>(I))
1725       InitialAllocaNum--;
1726   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1727 #endif
1728 }
1729 
1730 /// Implement a unique function which doesn't require we sort the input
1731 /// vector.  Doing so has the effect of changing the output of a couple of
1732 /// tests in ways which make them less useful in testing fused safepoints.
1733 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1734   SmallSet<T, 8> Seen;
1735   Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1736               return !Seen.insert(V).second;
1737             }), Vec.end());
1738 }
1739 
1740 /// Insert holders so that each Value is obviously live through the entire
1741 /// lifetime of the call.
1742 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1743                                  SmallVectorImpl<CallInst *> &Holders) {
1744   if (Values.empty())
1745     // No values to hold live, might as well not insert the empty holder
1746     return;
1747 
1748   Module *M = CS.getInstruction()->getModule();
1749   // Use a dummy vararg function to actually hold the values live
1750   Function *Func = cast<Function>(M->getOrInsertFunction(
1751       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1752   if (CS.isCall()) {
1753     // For call safepoints insert dummy calls right after safepoint
1754     Holders.push_back(CallInst::Create(Func, Values, "",
1755                                        &*++CS.getInstruction()->getIterator()));
1756     return;
1757   }
1758   // For invoke safepooints insert dummy calls both in normal and
1759   // exceptional destination blocks
1760   auto *II = cast<InvokeInst>(CS.getInstruction());
1761   Holders.push_back(CallInst::Create(
1762       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1763   Holders.push_back(CallInst::Create(
1764       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1765 }
1766 
1767 static void findLiveReferences(
1768     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1769     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1770   GCPtrLivenessData OriginalLivenessData;
1771   computeLiveInValues(DT, F, OriginalLivenessData);
1772   for (size_t i = 0; i < records.size(); i++) {
1773     struct PartiallyConstructedSafepointRecord &info = records[i];
1774     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
1775   }
1776 }
1777 
1778 // Helper function for the "rematerializeLiveValues". It walks use chain
1779 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
1780 // values are visited (currently it is GEP's and casts). Returns true if it
1781 // successfully reached "BaseValue" and false otherwise.
1782 // Fills "ChainToBase" array with all visited values. "BaseValue" is not
1783 // recorded.
1784 static bool findRematerializableChainToBasePointer(
1785   SmallVectorImpl<Instruction*> &ChainToBase,
1786   Value *CurrentValue, Value *BaseValue) {
1787 
1788   // We have found a base value
1789   if (CurrentValue == BaseValue) {
1790     return true;
1791   }
1792 
1793   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1794     ChainToBase.push_back(GEP);
1795     return findRematerializableChainToBasePointer(ChainToBase,
1796                                                   GEP->getPointerOperand(),
1797                                                   BaseValue);
1798   }
1799 
1800   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1801     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1802       return false;
1803 
1804     ChainToBase.push_back(CI);
1805     return findRematerializableChainToBasePointer(ChainToBase,
1806                                                   CI->getOperand(0), BaseValue);
1807   }
1808 
1809   // Not supported instruction in the chain
1810   return false;
1811 }
1812 
1813 // Helper function for the "rematerializeLiveValues". Compute cost of the use
1814 // chain we are going to rematerialize.
1815 static unsigned
1816 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1817                        TargetTransformInfo &TTI) {
1818   unsigned Cost = 0;
1819 
1820   for (Instruction *Instr : Chain) {
1821     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1822       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1823              "non noop cast is found during rematerialization");
1824 
1825       Type *SrcTy = CI->getOperand(0)->getType();
1826       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
1827 
1828     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1829       // Cost of the address calculation
1830       Type *ValTy = GEP->getSourceElementType();
1831       Cost += TTI.getAddressComputationCost(ValTy);
1832 
1833       // And cost of the GEP itself
1834       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1835       //       allowed for the external usage)
1836       if (!GEP->hasAllConstantIndices())
1837         Cost += 2;
1838 
1839     } else {
1840       llvm_unreachable("unsupported instruciton type during rematerialization");
1841     }
1842   }
1843 
1844   return Cost;
1845 }
1846 
1847 // From the statepoint live set pick values that are cheaper to recompute then
1848 // to relocate. Remove this values from the live set, rematerialize them after
1849 // statepoint and record them in "Info" structure. Note that similar to
1850 // relocated values we don't do any user adjustments here.
1851 static void rematerializeLiveValues(CallSite CS,
1852                                     PartiallyConstructedSafepointRecord &Info,
1853                                     TargetTransformInfo &TTI) {
1854   const unsigned int ChainLengthThreshold = 10;
1855 
1856   // Record values we are going to delete from this statepoint live set.
1857   // We can not di this in following loop due to iterator invalidation.
1858   SmallVector<Value *, 32> LiveValuesToBeDeleted;
1859 
1860   for (Value *LiveValue: Info.LiveSet) {
1861     // For each live pointer find it's defining chain
1862     SmallVector<Instruction *, 3> ChainToBase;
1863     assert(Info.PointerToBase.count(LiveValue));
1864     bool FoundChain =
1865       findRematerializableChainToBasePointer(ChainToBase,
1866                                              LiveValue,
1867                                              Info.PointerToBase[LiveValue]);
1868     // Nothing to do, or chain is too long
1869     if (!FoundChain ||
1870         ChainToBase.size() == 0 ||
1871         ChainToBase.size() > ChainLengthThreshold)
1872       continue;
1873 
1874     // Compute cost of this chain
1875     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
1876     // TODO: We can also account for cases when we will be able to remove some
1877     //       of the rematerialized values by later optimization passes. I.e if
1878     //       we rematerialized several intersecting chains. Or if original values
1879     //       don't have any uses besides this statepoint.
1880 
1881     // For invokes we need to rematerialize each chain twice - for normal and
1882     // for unwind basic blocks. Model this by multiplying cost by two.
1883     if (CS.isInvoke()) {
1884       Cost *= 2;
1885     }
1886     // If it's too expensive - skip it
1887     if (Cost >= RematerializationThreshold)
1888       continue;
1889 
1890     // Remove value from the live set
1891     LiveValuesToBeDeleted.push_back(LiveValue);
1892 
1893     // Clone instructions and record them inside "Info" structure
1894 
1895     // Walk backwards to visit top-most instructions first
1896     std::reverse(ChainToBase.begin(), ChainToBase.end());
1897 
1898     // Utility function which clones all instructions from "ChainToBase"
1899     // and inserts them before "InsertBefore". Returns rematerialized value
1900     // which should be used after statepoint.
1901     auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
1902       Instruction *LastClonedValue = nullptr;
1903       Instruction *LastValue = nullptr;
1904       for (Instruction *Instr: ChainToBase) {
1905         // Only GEP's and casts are suported as we need to be careful to not
1906         // introduce any new uses of pointers not in the liveset.
1907         // Note that it's fine to introduce new uses of pointers which were
1908         // otherwise not used after this statepoint.
1909         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
1910 
1911         Instruction *ClonedValue = Instr->clone();
1912         ClonedValue->insertBefore(InsertBefore);
1913         ClonedValue->setName(Instr->getName() + ".remat");
1914 
1915         // If it is not first instruction in the chain then it uses previously
1916         // cloned value. We should update it to use cloned value.
1917         if (LastClonedValue) {
1918           assert(LastValue);
1919           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
1920 #ifndef NDEBUG
1921           // Assert that cloned instruction does not use any instructions from
1922           // this chain other than LastClonedValue
1923           for (auto OpValue : ClonedValue->operand_values()) {
1924             assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
1925                        ChainToBase.end() &&
1926                    "incorrect use in rematerialization chain");
1927           }
1928 #endif
1929         }
1930 
1931         LastClonedValue = ClonedValue;
1932         LastValue = Instr;
1933       }
1934       assert(LastClonedValue);
1935       return LastClonedValue;
1936     };
1937 
1938     // Different cases for calls and invokes. For invokes we need to clone
1939     // instructions both on normal and unwind path.
1940     if (CS.isCall()) {
1941       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
1942       assert(InsertBefore);
1943       Instruction *RematerializedValue = rematerializeChain(InsertBefore);
1944       Info.RematerializedValues[RematerializedValue] = LiveValue;
1945     } else {
1946       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
1947 
1948       Instruction *NormalInsertBefore =
1949           &*Invoke->getNormalDest()->getFirstInsertionPt();
1950       Instruction *UnwindInsertBefore =
1951           &*Invoke->getUnwindDest()->getFirstInsertionPt();
1952 
1953       Instruction *NormalRematerializedValue =
1954           rematerializeChain(NormalInsertBefore);
1955       Instruction *UnwindRematerializedValue =
1956           rematerializeChain(UnwindInsertBefore);
1957 
1958       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
1959       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
1960     }
1961   }
1962 
1963   // Remove rematerializaed values from the live set
1964   for (auto LiveValue: LiveValuesToBeDeleted) {
1965     Info.LiveSet.remove(LiveValue);
1966   }
1967 }
1968 
1969 static bool insertParsePoints(Function &F, DominatorTree &DT,
1970                               TargetTransformInfo &TTI,
1971                               SmallVectorImpl<CallSite> &ToUpdate) {
1972 #ifndef NDEBUG
1973   // sanity check the input
1974   std::set<CallSite> Uniqued;
1975   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
1976   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
1977 
1978   for (CallSite CS : ToUpdate)
1979     assert(CS.getInstruction()->getFunction() == &F);
1980 #endif
1981 
1982   // When inserting gc.relocates for invokes, we need to be able to insert at
1983   // the top of the successor blocks.  See the comment on
1984   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
1985   // may restructure the CFG.
1986   for (CallSite CS : ToUpdate) {
1987     if (!CS.isInvoke())
1988       continue;
1989     auto *II = cast<InvokeInst>(CS.getInstruction());
1990     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
1991     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
1992   }
1993 
1994   // A list of dummy calls added to the IR to keep various values obviously
1995   // live in the IR.  We'll remove all of these when done.
1996   SmallVector<CallInst *, 64> Holders;
1997 
1998   // Insert a dummy call with all of the arguments to the vm_state we'll need
1999   // for the actual safepoint insertion.  This ensures reference arguments in
2000   // the deopt argument list are considered live through the safepoint (and
2001   // thus makes sure they get relocated.)
2002   for (CallSite CS : ToUpdate) {
2003     SmallVector<Value *, 64> DeoptValues;
2004 
2005     for (Value *Arg : GetDeoptBundleOperands(CS)) {
2006       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2007              "support for FCA unimplemented");
2008       if (isHandledGCPointerType(Arg->getType()))
2009         DeoptValues.push_back(Arg);
2010     }
2011 
2012     insertUseHolderAfter(CS, DeoptValues, Holders);
2013   }
2014 
2015   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2016 
2017   // A) Identify all gc pointers which are statically live at the given call
2018   // site.
2019   findLiveReferences(F, DT, ToUpdate, Records);
2020 
2021   // B) Find the base pointers for each live pointer
2022   /* scope for caching */ {
2023     // Cache the 'defining value' relation used in the computation and
2024     // insertion of base phis and selects.  This ensures that we don't insert
2025     // large numbers of duplicate base_phis.
2026     DefiningValueMapTy DVCache;
2027 
2028     for (size_t i = 0; i < Records.size(); i++) {
2029       PartiallyConstructedSafepointRecord &info = Records[i];
2030       findBasePointers(DT, DVCache, ToUpdate[i], info);
2031     }
2032   } // end of cache scope
2033 
2034   // The base phi insertion logic (for any safepoint) may have inserted new
2035   // instructions which are now live at some safepoint.  The simplest such
2036   // example is:
2037   // loop:
2038   //   phi a  <-- will be a new base_phi here
2039   //   safepoint 1 <-- that needs to be live here
2040   //   gep a + 1
2041   //   safepoint 2
2042   //   br loop
2043   // We insert some dummy calls after each safepoint to definitely hold live
2044   // the base pointers which were identified for that safepoint.  We'll then
2045   // ask liveness for _every_ base inserted to see what is now live.  Then we
2046   // remove the dummy calls.
2047   Holders.reserve(Holders.size() + Records.size());
2048   for (size_t i = 0; i < Records.size(); i++) {
2049     PartiallyConstructedSafepointRecord &Info = Records[i];
2050 
2051     SmallVector<Value *, 128> Bases;
2052     for (auto Pair : Info.PointerToBase)
2053       Bases.push_back(Pair.second);
2054 
2055     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2056   }
2057 
2058   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2059   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2060   // not the key issue.
2061   recomputeLiveInValues(F, DT, ToUpdate, Records);
2062 
2063   if (PrintBasePointers) {
2064     for (auto &Info : Records) {
2065       errs() << "Base Pairs: (w/Relocation)\n";
2066       for (auto Pair : Info.PointerToBase) {
2067         errs() << " derived ";
2068         Pair.first->printAsOperand(errs(), false);
2069         errs() << " base ";
2070         Pair.second->printAsOperand(errs(), false);
2071         errs() << "\n";
2072       }
2073     }
2074   }
2075 
2076   // It is possible that non-constant live variables have a constant base.  For
2077   // example, a GEP with a variable offset from a global.  In this case we can
2078   // remove it from the liveset.  We already don't add constants to the liveset
2079   // because we assume they won't move at runtime and the GC doesn't need to be
2080   // informed about them.  The same reasoning applies if the base is constant.
2081   // Note that the relocation placement code relies on this filtering for
2082   // correctness as it expects the base to be in the liveset, which isn't true
2083   // if the base is constant.
2084   for (auto &Info : Records)
2085     for (auto &BasePair : Info.PointerToBase)
2086       if (isa<Constant>(BasePair.second))
2087         Info.LiveSet.remove(BasePair.first);
2088 
2089   for (CallInst *CI : Holders)
2090     CI->eraseFromParent();
2091 
2092   Holders.clear();
2093 
2094   // In order to reduce live set of statepoint we might choose to rematerialize
2095   // some values instead of relocating them. This is purely an optimization and
2096   // does not influence correctness.
2097   for (size_t i = 0; i < Records.size(); i++)
2098     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2099 
2100   // We need this to safely RAUW and delete call or invoke return values that
2101   // may themselves be live over a statepoint.  For details, please see usage in
2102   // makeStatepointExplicitImpl.
2103   std::vector<DeferredReplacement> Replacements;
2104 
2105   // Now run through and replace the existing statepoints with new ones with
2106   // the live variables listed.  We do not yet update uses of the values being
2107   // relocated. We have references to live variables that need to
2108   // survive to the last iteration of this loop.  (By construction, the
2109   // previous statepoint can not be a live variable, thus we can and remove
2110   // the old statepoint calls as we go.)
2111   for (size_t i = 0; i < Records.size(); i++)
2112     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2113 
2114   ToUpdate.clear(); // prevent accident use of invalid CallSites
2115 
2116   for (auto &PR : Replacements)
2117     PR.doReplacement();
2118 
2119   Replacements.clear();
2120 
2121   for (auto &Info : Records) {
2122     // These live sets may contain state Value pointers, since we replaced calls
2123     // with operand bundles with calls wrapped in gc.statepoint, and some of
2124     // those calls may have been def'ing live gc pointers.  Clear these out to
2125     // avoid accidentally using them.
2126     //
2127     // TODO: We should create a separate data structure that does not contain
2128     // these live sets, and migrate to using that data structure from this point
2129     // onward.
2130     Info.LiveSet.clear();
2131     Info.PointerToBase.clear();
2132   }
2133 
2134   // Do all the fixups of the original live variables to their relocated selves
2135   SmallVector<Value *, 128> Live;
2136   for (size_t i = 0; i < Records.size(); i++) {
2137     PartiallyConstructedSafepointRecord &Info = Records[i];
2138 
2139     // We can't simply save the live set from the original insertion.  One of
2140     // the live values might be the result of a call which needs a safepoint.
2141     // That Value* no longer exists and we need to use the new gc_result.
2142     // Thankfully, the live set is embedded in the statepoint (and updated), so
2143     // we just grab that.
2144     Statepoint Statepoint(Info.StatepointToken);
2145     Live.insert(Live.end(), Statepoint.gc_args_begin(),
2146                 Statepoint.gc_args_end());
2147 #ifndef NDEBUG
2148     // Do some basic sanity checks on our liveness results before performing
2149     // relocation.  Relocation can and will turn mistakes in liveness results
2150     // into non-sensical code which is must harder to debug.
2151     // TODO: It would be nice to test consistency as well
2152     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2153            "statepoint must be reachable or liveness is meaningless");
2154     for (Value *V : Statepoint.gc_args()) {
2155       if (!isa<Instruction>(V))
2156         // Non-instruction values trivial dominate all possible uses
2157         continue;
2158       auto *LiveInst = cast<Instruction>(V);
2159       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2160              "unreachable values should never be live");
2161       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2162              "basic SSA liveness expectation violated by liveness analysis");
2163     }
2164 #endif
2165   }
2166   unique_unsorted(Live);
2167 
2168 #ifndef NDEBUG
2169   // sanity check
2170   for (auto *Ptr : Live)
2171     assert(isHandledGCPointerType(Ptr->getType()) &&
2172            "must be a gc pointer type");
2173 #endif
2174 
2175   relocationViaAlloca(F, DT, Live, Records);
2176   return !Records.empty();
2177 }
2178 
2179 // Handles both return values and arguments for Functions and CallSites.
2180 template <typename AttrHolder>
2181 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2182                                       unsigned Index) {
2183   AttrBuilder R;
2184   if (AH.getDereferenceableBytes(Index))
2185     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2186                                   AH.getDereferenceableBytes(Index)));
2187   if (AH.getDereferenceableOrNullBytes(Index))
2188     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2189                                   AH.getDereferenceableOrNullBytes(Index)));
2190   if (AH.doesNotAlias(Index))
2191     R.addAttribute(Attribute::NoAlias);
2192 
2193   if (!R.empty())
2194     AH.setAttributes(AH.getAttributes().removeAttributes(
2195         Ctx, Index, AttributeSet::get(Ctx, Index, R)));
2196 }
2197 
2198 void
2199 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
2200   LLVMContext &Ctx = F.getContext();
2201 
2202   for (Argument &A : F.args())
2203     if (isa<PointerType>(A.getType()))
2204       RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
2205 
2206   if (isa<PointerType>(F.getReturnType()))
2207     RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
2208 }
2209 
2210 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
2211   if (F.empty())
2212     return;
2213 
2214   LLVMContext &Ctx = F.getContext();
2215   MDBuilder Builder(Ctx);
2216 
2217   for (Instruction &I : instructions(F)) {
2218     if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2219       assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2220       bool IsImmutableTBAA =
2221           MD->getNumOperands() == 4 &&
2222           mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2223 
2224       if (!IsImmutableTBAA)
2225         continue; // no work to do, MD_tbaa is already marked mutable
2226 
2227       MDNode *Base = cast<MDNode>(MD->getOperand(0));
2228       MDNode *Access = cast<MDNode>(MD->getOperand(1));
2229       uint64_t Offset =
2230           mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2231 
2232       MDNode *MutableTBAA =
2233           Builder.createTBAAStructTagNode(Base, Access, Offset);
2234       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2235     }
2236 
2237     if (CallSite CS = CallSite(&I)) {
2238       for (int i = 0, e = CS.arg_size(); i != e; i++)
2239         if (isa<PointerType>(CS.getArgument(i)->getType()))
2240           RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
2241       if (isa<PointerType>(CS.getType()))
2242         RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
2243     }
2244   }
2245 }
2246 
2247 /// Returns true if this function should be rewritten by this pass.  The main
2248 /// point of this function is as an extension point for custom logic.
2249 static bool shouldRewriteStatepointsIn(Function &F) {
2250   // TODO: This should check the GCStrategy
2251   if (F.hasGC()) {
2252     const auto &FunctionGCName = F.getGC();
2253     const StringRef StatepointExampleName("statepoint-example");
2254     const StringRef CoreCLRName("coreclr");
2255     return (StatepointExampleName == FunctionGCName) ||
2256            (CoreCLRName == FunctionGCName);
2257   } else
2258     return false;
2259 }
2260 
2261 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
2262 #ifndef NDEBUG
2263   assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2264          "precondition!");
2265 #endif
2266 
2267   for (Function &F : M)
2268     stripNonValidAttributesFromPrototype(F);
2269 
2270   for (Function &F : M)
2271     stripNonValidAttributesFromBody(F);
2272 }
2273 
2274 bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2275   // Nothing to do for declarations.
2276   if (F.isDeclaration() || F.empty())
2277     return false;
2278 
2279   // Policy choice says not to rewrite - the most common reason is that we're
2280   // compiling code without a GCStrategy.
2281   if (!shouldRewriteStatepointsIn(F))
2282     return false;
2283 
2284   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2285   TargetTransformInfo &TTI =
2286       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2287 
2288   auto NeedsRewrite = [](Instruction &I) {
2289     if (ImmutableCallSite CS = ImmutableCallSite(&I))
2290       return !callsGCLeafFunction(CS) && !isStatepoint(CS);
2291     return false;
2292   };
2293 
2294   // Gather all the statepoints which need rewritten.  Be careful to only
2295   // consider those in reachable code since we need to ask dominance queries
2296   // when rewriting.  We'll delete the unreachable ones in a moment.
2297   SmallVector<CallSite, 64> ParsePointNeeded;
2298   bool HasUnreachableStatepoint = false;
2299   for (Instruction &I : instructions(F)) {
2300     // TODO: only the ones with the flag set!
2301     if (NeedsRewrite(I)) {
2302       if (DT.isReachableFromEntry(I.getParent()))
2303         ParsePointNeeded.push_back(CallSite(&I));
2304       else
2305         HasUnreachableStatepoint = true;
2306     }
2307   }
2308 
2309   bool MadeChange = false;
2310 
2311   // Delete any unreachable statepoints so that we don't have unrewritten
2312   // statepoints surviving this pass.  This makes testing easier and the
2313   // resulting IR less confusing to human readers.  Rather than be fancy, we
2314   // just reuse a utility function which removes the unreachable blocks.
2315   if (HasUnreachableStatepoint)
2316     MadeChange |= removeUnreachableBlocks(F);
2317 
2318   // Return early if no work to do.
2319   if (ParsePointNeeded.empty())
2320     return MadeChange;
2321 
2322   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2323   // These are created by LCSSA.  They have the effect of increasing the size
2324   // of liveness sets for no good reason.  It may be harder to do this post
2325   // insertion since relocations and base phis can confuse things.
2326   for (BasicBlock &BB : F)
2327     if (BB.getUniquePredecessor()) {
2328       MadeChange = true;
2329       FoldSingleEntryPHINodes(&BB);
2330     }
2331 
2332   // Before we start introducing relocations, we want to tweak the IR a bit to
2333   // avoid unfortunate code generation effects.  The main example is that we
2334   // want to try to make sure the comparison feeding a branch is after any
2335   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2336   // values feeding a branch after relocation.  This is semantically correct,
2337   // but results in extra register pressure since both the pre-relocation and
2338   // post-relocation copies must be available in registers.  For code without
2339   // relocations this is handled elsewhere, but teaching the scheduler to
2340   // reverse the transform we're about to do would be slightly complex.
2341   // Note: This may extend the live range of the inputs to the icmp and thus
2342   // increase the liveset of any statepoint we move over.  This is profitable
2343   // as long as all statepoints are in rare blocks.  If we had in-register
2344   // lowering for live values this would be a much safer transform.
2345   auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2346     if (auto *BI = dyn_cast<BranchInst>(TI))
2347       if (BI->isConditional())
2348         return dyn_cast<Instruction>(BI->getCondition());
2349     // TODO: Extend this to handle switches
2350     return nullptr;
2351   };
2352   for (BasicBlock &BB : F) {
2353     TerminatorInst *TI = BB.getTerminator();
2354     if (auto *Cond = getConditionInst(TI))
2355       // TODO: Handle more than just ICmps here.  We should be able to move
2356       // most instructions without side effects or memory access.
2357       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2358         MadeChange = true;
2359         Cond->moveBefore(TI);
2360       }
2361   }
2362 
2363   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2364   return MadeChange;
2365 }
2366 
2367 // liveness computation via standard dataflow
2368 // -------------------------------------------------------------------
2369 
2370 // TODO: Consider using bitvectors for liveness, the set of potentially
2371 // interesting values should be small and easy to pre-compute.
2372 
2373 /// Compute the live-in set for the location rbegin starting from
2374 /// the live-out set of the basic block
2375 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
2376                                 BasicBlock::reverse_iterator rend,
2377                                 SetVector<Value *> &LiveTmp) {
2378 
2379   for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
2380     Instruction *I = &*ritr;
2381 
2382     // KILL/Def - Remove this definition from LiveIn
2383     LiveTmp.remove(I);
2384 
2385     // Don't consider *uses* in PHI nodes, we handle their contribution to
2386     // predecessor blocks when we seed the LiveOut sets
2387     if (isa<PHINode>(I))
2388       continue;
2389 
2390     // USE - Add to the LiveIn set for this instruction
2391     for (Value *V : I->operands()) {
2392       assert(!isUnhandledGCPointerType(V->getType()) &&
2393              "support for FCA unimplemented");
2394       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2395         // The choice to exclude all things constant here is slightly subtle.
2396         // There are two independent reasons:
2397         // - We assume that things which are constant (from LLVM's definition)
2398         // do not move at runtime.  For example, the address of a global
2399         // variable is fixed, even though it's contents may not be.
2400         // - Second, we can't disallow arbitrary inttoptr constants even
2401         // if the language frontend does.  Optimization passes are free to
2402         // locally exploit facts without respect to global reachability.  This
2403         // can create sections of code which are dynamically unreachable and
2404         // contain just about anything.  (see constants.ll in tests)
2405         LiveTmp.insert(V);
2406       }
2407     }
2408   }
2409 }
2410 
2411 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2412 
2413   for (BasicBlock *Succ : successors(BB)) {
2414     const BasicBlock::iterator E(Succ->getFirstNonPHI());
2415     for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
2416       PHINode *Phi = cast<PHINode>(&*I);
2417       Value *V = Phi->getIncomingValueForBlock(BB);
2418       assert(!isUnhandledGCPointerType(V->getType()) &&
2419              "support for FCA unimplemented");
2420       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2421         LiveTmp.insert(V);
2422       }
2423     }
2424   }
2425 }
2426 
2427 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2428   SetVector<Value *> KillSet;
2429   for (Instruction &I : *BB)
2430     if (isHandledGCPointerType(I.getType()))
2431       KillSet.insert(&I);
2432   return KillSet;
2433 }
2434 
2435 #ifndef NDEBUG
2436 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2437 /// sanity check for the liveness computation.
2438 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2439                           TerminatorInst *TI, bool TermOkay = false) {
2440   for (Value *V : Live) {
2441     if (auto *I = dyn_cast<Instruction>(V)) {
2442       // The terminator can be a member of the LiveOut set.  LLVM's definition
2443       // of instruction dominance states that V does not dominate itself.  As
2444       // such, we need to special case this to allow it.
2445       if (TermOkay && TI == I)
2446         continue;
2447       assert(DT.dominates(I, TI) &&
2448              "basic SSA liveness expectation violated by liveness analysis");
2449     }
2450   }
2451 }
2452 
2453 /// Check that all the liveness sets used during the computation of liveness
2454 /// obey basic SSA properties.  This is useful for finding cases where we miss
2455 /// a def.
2456 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2457                           BasicBlock &BB) {
2458   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2459   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2460   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2461 }
2462 #endif
2463 
2464 static void computeLiveInValues(DominatorTree &DT, Function &F,
2465                                 GCPtrLivenessData &Data) {
2466 
2467   SmallSetVector<BasicBlock *, 32> Worklist;
2468   auto AddPredsToWorklist = [&](BasicBlock *BB) {
2469     // We use a SetVector so that we don't have duplicates in the worklist.
2470     Worklist.insert(pred_begin(BB), pred_end(BB));
2471   };
2472   auto NextItem = [&]() {
2473     BasicBlock *BB = Worklist.back();
2474     Worklist.pop_back();
2475     return BB;
2476   };
2477 
2478   // Seed the liveness for each individual block
2479   for (BasicBlock &BB : F) {
2480     Data.KillSet[&BB] = computeKillSet(&BB);
2481     Data.LiveSet[&BB].clear();
2482     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2483 
2484 #ifndef NDEBUG
2485     for (Value *Kill : Data.KillSet[&BB])
2486       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2487 #endif
2488 
2489     Data.LiveOut[&BB] = SetVector<Value *>();
2490     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2491     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2492     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2493     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2494     if (!Data.LiveIn[&BB].empty())
2495       AddPredsToWorklist(&BB);
2496   }
2497 
2498   // Propagate that liveness until stable
2499   while (!Worklist.empty()) {
2500     BasicBlock *BB = NextItem();
2501 
2502     // Compute our new liveout set, then exit early if it hasn't changed
2503     // despite the contribution of our successor.
2504     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2505     const auto OldLiveOutSize = LiveOut.size();
2506     for (BasicBlock *Succ : successors(BB)) {
2507       assert(Data.LiveIn.count(Succ));
2508       LiveOut.set_union(Data.LiveIn[Succ]);
2509     }
2510     // assert OutLiveOut is a subset of LiveOut
2511     if (OldLiveOutSize == LiveOut.size()) {
2512       // If the sets are the same size, then we didn't actually add anything
2513       // when unioning our successors LiveIn  Thus, the LiveIn of this block
2514       // hasn't changed.
2515       continue;
2516     }
2517     Data.LiveOut[BB] = LiveOut;
2518 
2519     // Apply the effects of this basic block
2520     SetVector<Value *> LiveTmp = LiveOut;
2521     LiveTmp.set_union(Data.LiveSet[BB]);
2522     LiveTmp.set_subtract(Data.KillSet[BB]);
2523 
2524     assert(Data.LiveIn.count(BB));
2525     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2526     // assert: OldLiveIn is a subset of LiveTmp
2527     if (OldLiveIn.size() != LiveTmp.size()) {
2528       Data.LiveIn[BB] = LiveTmp;
2529       AddPredsToWorklist(BB);
2530     }
2531   } // while( !worklist.empty() )
2532 
2533 #ifndef NDEBUG
2534   // Sanity check our output against SSA properties.  This helps catch any
2535   // missing kills during the above iteration.
2536   for (BasicBlock &BB : F) {
2537     checkBasicSSA(DT, Data, BB);
2538   }
2539 #endif
2540 }
2541 
2542 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2543                               StatepointLiveSetTy &Out) {
2544 
2545   BasicBlock *BB = Inst->getParent();
2546 
2547   // Note: The copy is intentional and required
2548   assert(Data.LiveOut.count(BB));
2549   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2550 
2551   // We want to handle the statepoint itself oddly.  It's
2552   // call result is not live (normal), nor are it's arguments
2553   // (unless they're used again later).  This adjustment is
2554   // specifically what we need to relocate
2555   BasicBlock::reverse_iterator rend(Inst->getIterator());
2556   computeLiveInValues(BB->rbegin(), rend, LiveOut);
2557   LiveOut.remove(Inst);
2558   Out.insert(LiveOut.begin(), LiveOut.end());
2559 }
2560 
2561 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2562                                   CallSite CS,
2563                                   PartiallyConstructedSafepointRecord &Info) {
2564   Instruction *Inst = CS.getInstruction();
2565   StatepointLiveSetTy Updated;
2566   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2567 
2568 #ifndef NDEBUG
2569   DenseSet<Value *> Bases;
2570   for (auto KVPair : Info.PointerToBase) {
2571     Bases.insert(KVPair.second);
2572   }
2573 #endif
2574   // We may have base pointers which are now live that weren't before.  We need
2575   // to update the PointerToBase structure to reflect this.
2576   for (auto V : Updated)
2577     if (Info.PointerToBase.insert(std::make_pair(V, V)).second) {
2578       assert(Bases.count(V) && "can't find base for unexpected live value");
2579       continue;
2580     }
2581 
2582 #ifndef NDEBUG
2583   for (auto V : Updated) {
2584     assert(Info.PointerToBase.count(V) &&
2585            "must be able to find base for live value");
2586   }
2587 #endif
2588 
2589   // Remove any stale base mappings - this can happen since our liveness is
2590   // more precise then the one inherent in the base pointer analysis
2591   DenseSet<Value *> ToErase;
2592   for (auto KVPair : Info.PointerToBase)
2593     if (!Updated.count(KVPair.first))
2594       ToErase.insert(KVPair.first);
2595   for (auto V : ToErase)
2596     Info.PointerToBase.erase(V);
2597 
2598 #ifndef NDEBUG
2599   for (auto KVPair : Info.PointerToBase)
2600     assert(Updated.count(KVPair.first) && "record for non-live value");
2601 #endif
2602 
2603   Info.LiveSet = Updated;
2604 }
2605