1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstIterator.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/Cloning.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 45 46 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 47 48 using namespace llvm; 49 50 // Print the liveset found at the insert location 51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 52 cl::init(false)); 53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 54 cl::init(false)); 55 // Print out the base pointers for debugging 56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 57 cl::init(false)); 58 59 // Cost threshold measuring when it is profitable to rematerialize value instead 60 // of relocating it 61 static cl::opt<unsigned> 62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 63 cl::init(6)); 64 65 #ifdef XDEBUG 66 static bool ClobberNonLive = true; 67 #else 68 static bool ClobberNonLive = false; 69 #endif 70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 71 cl::location(ClobberNonLive), 72 cl::Hidden); 73 74 namespace { 75 struct RewriteStatepointsForGC : public ModulePass { 76 static char ID; // Pass identification, replacement for typeid 77 78 RewriteStatepointsForGC() : ModulePass(ID) { 79 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 80 } 81 bool runOnFunction(Function &F); 82 bool runOnModule(Module &M) override { 83 bool Changed = false; 84 for (Function &F : M) 85 Changed |= runOnFunction(F); 86 87 if (Changed) { 88 // stripDereferenceabilityInfo asserts that shouldRewriteStatepointsIn 89 // returns true for at least one function in the module. Since at least 90 // one function changed, we know that the precondition is satisfied. 91 stripDereferenceabilityInfo(M); 92 } 93 94 return Changed; 95 } 96 97 void getAnalysisUsage(AnalysisUsage &AU) const override { 98 // We add and rewrite a bunch of instructions, but don't really do much 99 // else. We could in theory preserve a lot more analyses here. 100 AU.addRequired<DominatorTreeWrapperPass>(); 101 AU.addRequired<TargetTransformInfoWrapperPass>(); 102 } 103 104 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 105 /// dereferenceability that are no longer valid/correct after 106 /// RewriteStatepointsForGC has run. This is because semantically, after 107 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 108 /// heap. stripDereferenceabilityInfo (conservatively) restores correctness 109 /// by erasing all attributes in the module that externally imply 110 /// dereferenceability. 111 /// 112 void stripDereferenceabilityInfo(Module &M); 113 114 // Helpers for stripDereferenceabilityInfo 115 void stripDereferenceabilityInfoFromBody(Function &F); 116 void stripDereferenceabilityInfoFromPrototype(Function &F); 117 }; 118 } // namespace 119 120 char RewriteStatepointsForGC::ID = 0; 121 122 ModulePass *llvm::createRewriteStatepointsForGCPass() { 123 return new RewriteStatepointsForGC(); 124 } 125 126 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 127 "Make relocations explicit at statepoints", false, false) 128 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 129 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 130 "Make relocations explicit at statepoints", false, false) 131 132 namespace { 133 struct GCPtrLivenessData { 134 /// Values defined in this block. 135 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 136 /// Values used in this block (and thus live); does not included values 137 /// killed within this block. 138 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 139 140 /// Values live into this basic block (i.e. used by any 141 /// instruction in this basic block or ones reachable from here) 142 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 143 144 /// Values live out of this basic block (i.e. live into 145 /// any successor block) 146 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 147 }; 148 149 // The type of the internal cache used inside the findBasePointers family 150 // of functions. From the callers perspective, this is an opaque type and 151 // should not be inspected. 152 // 153 // In the actual implementation this caches two relations: 154 // - The base relation itself (i.e. this pointer is based on that one) 155 // - The base defining value relation (i.e. before base_phi insertion) 156 // Generally, after the execution of a full findBasePointer call, only the 157 // base relation will remain. Internally, we add a mixture of the two 158 // types, then update all the second type to the first type 159 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 160 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 161 typedef DenseMap<Instruction *, Value *> RematerializedValueMapTy; 162 163 struct PartiallyConstructedSafepointRecord { 164 /// The set of values known to be live across this safepoint 165 StatepointLiveSetTy liveset; 166 167 /// Mapping from live pointers to a base-defining-value 168 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 169 170 /// The *new* gc.statepoint instruction itself. This produces the token 171 /// that normal path gc.relocates and the gc.result are tied to. 172 Instruction *StatepointToken; 173 174 /// Instruction to which exceptional gc relocates are attached 175 /// Makes it easier to iterate through them during relocationViaAlloca. 176 Instruction *UnwindToken; 177 178 /// Record live values we are rematerialized instead of relocating. 179 /// They are not included into 'liveset' field. 180 /// Maps rematerialized copy to it's original value. 181 RematerializedValueMapTy RematerializedValues; 182 }; 183 } 184 185 /// Compute the live-in set for every basic block in the function 186 static void computeLiveInValues(DominatorTree &DT, Function &F, 187 GCPtrLivenessData &Data); 188 189 /// Given results from the dataflow liveness computation, find the set of live 190 /// Values at a particular instruction. 191 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 192 StatepointLiveSetTy &out); 193 194 // TODO: Once we can get to the GCStrategy, this becomes 195 // Optional<bool> isGCManagedPointer(const Value *V) const override { 196 197 static bool isGCPointerType(Type *T) { 198 if (auto *PT = dyn_cast<PointerType>(T)) 199 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 200 // GC managed heap. We know that a pointer into this heap needs to be 201 // updated and that no other pointer does. 202 return (1 == PT->getAddressSpace()); 203 return false; 204 } 205 206 // Return true if this type is one which a) is a gc pointer or contains a GC 207 // pointer and b) is of a type this code expects to encounter as a live value. 208 // (The insertion code will assert that a type which matches (a) and not (b) 209 // is not encountered.) 210 static bool isHandledGCPointerType(Type *T) { 211 // We fully support gc pointers 212 if (isGCPointerType(T)) 213 return true; 214 // We partially support vectors of gc pointers. The code will assert if it 215 // can't handle something. 216 if (auto VT = dyn_cast<VectorType>(T)) 217 if (isGCPointerType(VT->getElementType())) 218 return true; 219 return false; 220 } 221 222 #ifndef NDEBUG 223 /// Returns true if this type contains a gc pointer whether we know how to 224 /// handle that type or not. 225 static bool containsGCPtrType(Type *Ty) { 226 if (isGCPointerType(Ty)) 227 return true; 228 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 229 return isGCPointerType(VT->getScalarType()); 230 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 231 return containsGCPtrType(AT->getElementType()); 232 if (StructType *ST = dyn_cast<StructType>(Ty)) 233 return std::any_of( 234 ST->subtypes().begin(), ST->subtypes().end(), 235 [](Type *SubType) { return containsGCPtrType(SubType); }); 236 return false; 237 } 238 239 // Returns true if this is a type which a) is a gc pointer or contains a GC 240 // pointer and b) is of a type which the code doesn't expect (i.e. first class 241 // aggregates). Used to trip assertions. 242 static bool isUnhandledGCPointerType(Type *Ty) { 243 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 244 } 245 #endif 246 247 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 248 if (a->hasName() && b->hasName()) { 249 return -1 == a->getName().compare(b->getName()); 250 } else if (a->hasName() && !b->hasName()) { 251 return true; 252 } else if (!a->hasName() && b->hasName()) { 253 return false; 254 } else { 255 // Better than nothing, but not stable 256 return a < b; 257 } 258 } 259 260 // Conservatively identifies any definitions which might be live at the 261 // given instruction. The analysis is performed immediately before the 262 // given instruction. Values defined by that instruction are not considered 263 // live. Values used by that instruction are considered live. 264 static void analyzeParsePointLiveness( 265 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 266 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 267 Instruction *inst = CS.getInstruction(); 268 269 StatepointLiveSetTy liveset; 270 findLiveSetAtInst(inst, OriginalLivenessData, liveset); 271 272 if (PrintLiveSet) { 273 // Note: This output is used by several of the test cases 274 // The order of elements in a set is not stable, put them in a vec and sort 275 // by name 276 SmallVector<Value *, 64> Temp; 277 Temp.insert(Temp.end(), liveset.begin(), liveset.end()); 278 std::sort(Temp.begin(), Temp.end(), order_by_name); 279 errs() << "Live Variables:\n"; 280 for (Value *V : Temp) 281 dbgs() << " " << V->getName() << " " << *V << "\n"; 282 } 283 if (PrintLiveSetSize) { 284 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 285 errs() << "Number live values: " << liveset.size() << "\n"; 286 } 287 result.liveset = liveset; 288 } 289 290 static Value *findBaseDefiningValue(Value *I); 291 292 /// Return a base defining value for the 'Index' element of the given vector 293 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 294 /// 'I'. As an optimization, this method will try to determine when the 295 /// element is known to already be a base pointer. If this can be established, 296 /// the second value in the returned pair will be true. Note that either a 297 /// vector or a pointer typed value can be returned. For the former, the 298 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 299 /// If the later, the return pointer is a BDV (or possibly a base) for the 300 /// particular element in 'I'. 301 static std::pair<Value *, bool> 302 findBaseDefiningValueOfVector(Value *I, Value *Index = nullptr) { 303 assert(I->getType()->isVectorTy() && 304 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 305 "Illegal to ask for the base pointer of a non-pointer type"); 306 307 // Each case parallels findBaseDefiningValue below, see that code for 308 // detailed motivation. 309 310 if (isa<Argument>(I)) 311 // An incoming argument to the function is a base pointer 312 return std::make_pair(I, true); 313 314 // We shouldn't see the address of a global as a vector value? 315 assert(!isa<GlobalVariable>(I) && 316 "unexpected global variable found in base of vector"); 317 318 // inlining could possibly introduce phi node that contains 319 // undef if callee has multiple returns 320 if (isa<UndefValue>(I)) 321 // utterly meaningless, but useful for dealing with partially optimized 322 // code. 323 return std::make_pair(I, true); 324 325 // Due to inheritance, this must be _after_ the global variable and undef 326 // checks 327 if (Constant *Con = dyn_cast<Constant>(I)) { 328 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 329 "order of checks wrong!"); 330 assert(Con->isNullValue() && "null is the only case which makes sense"); 331 return std::make_pair(Con, true); 332 } 333 334 if (isa<LoadInst>(I)) 335 return std::make_pair(I, true); 336 337 // For an insert element, we might be able to look through it if we know 338 // something about the indexes. 339 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(I)) { 340 if (Index) { 341 Value *InsertIndex = IEI->getOperand(2); 342 // This index is inserting the value, look for its BDV 343 if (InsertIndex == Index) 344 return std::make_pair(findBaseDefiningValue(IEI->getOperand(1)), false); 345 // Both constant, and can't be equal per above. This insert is definitely 346 // not relevant, look back at the rest of the vector and keep trying. 347 if (isa<ConstantInt>(Index) && isa<ConstantInt>(InsertIndex)) 348 return findBaseDefiningValueOfVector(IEI->getOperand(0), Index); 349 } 350 351 // We don't know whether this vector contains entirely base pointers or 352 // not. To be conservatively correct, we treat it as a BDV and will 353 // duplicate code as needed to construct a parallel vector of bases. 354 return std::make_pair(IEI, false); 355 } 356 357 if (isa<ShuffleVectorInst>(I)) 358 // We don't know whether this vector contains entirely base pointers or 359 // not. To be conservatively correct, we treat it as a BDV and will 360 // duplicate code as needed to construct a parallel vector of bases. 361 // TODO: There a number of local optimizations which could be applied here 362 // for particular sufflevector patterns. 363 return std::make_pair(I, false); 364 365 // A PHI or Select is a base defining value. The outer findBasePointer 366 // algorithm is responsible for constructing a base value for this BDV. 367 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 368 "unknown vector instruction - no base found for vector element"); 369 return std::make_pair(I, false); 370 } 371 372 static bool isKnownBaseResult(Value *V); 373 374 /// Helper function for findBasePointer - Will return a value which either a) 375 /// defines the base pointer for the input, b) blocks the simple search 376 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 377 /// from pointer to vector type or back. 378 static Value *findBaseDefiningValue(Value *I) { 379 if (I->getType()->isVectorTy()) 380 return findBaseDefiningValueOfVector(I).first; 381 382 assert(I->getType()->isPointerTy() && 383 "Illegal to ask for the base pointer of a non-pointer type"); 384 385 if (isa<Argument>(I)) 386 // An incoming argument to the function is a base pointer 387 // We should have never reached here if this argument isn't an gc value 388 return I; 389 390 if (isa<GlobalVariable>(I)) 391 // base case 392 return I; 393 394 // inlining could possibly introduce phi node that contains 395 // undef if callee has multiple returns 396 if (isa<UndefValue>(I)) 397 // utterly meaningless, but useful for dealing with 398 // partially optimized code. 399 return I; 400 401 // Due to inheritance, this must be _after_ the global variable and undef 402 // checks 403 if (Constant *Con = dyn_cast<Constant>(I)) { 404 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 405 "order of checks wrong!"); 406 // Note: Finding a constant base for something marked for relocation 407 // doesn't really make sense. The most likely case is either a) some 408 // screwed up the address space usage or b) your validating against 409 // compiled C++ code w/o the proper separation. The only real exception 410 // is a null pointer. You could have generic code written to index of 411 // off a potentially null value and have proven it null. We also use 412 // null pointers in dead paths of relocation phis (which we might later 413 // want to find a base pointer for). 414 assert(isa<ConstantPointerNull>(Con) && 415 "null is the only case which makes sense"); 416 return Con; 417 } 418 419 if (CastInst *CI = dyn_cast<CastInst>(I)) { 420 Value *Def = CI->stripPointerCasts(); 421 // If we find a cast instruction here, it means we've found a cast which is 422 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 423 // handle int->ptr conversion. 424 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 425 return findBaseDefiningValue(Def); 426 } 427 428 if (isa<LoadInst>(I)) 429 return I; // The value loaded is an gc base itself 430 431 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 432 // The base of this GEP is the base 433 return findBaseDefiningValue(GEP->getPointerOperand()); 434 435 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 436 switch (II->getIntrinsicID()) { 437 case Intrinsic::experimental_gc_result_ptr: 438 default: 439 // fall through to general call handling 440 break; 441 case Intrinsic::experimental_gc_statepoint: 442 case Intrinsic::experimental_gc_result_float: 443 case Intrinsic::experimental_gc_result_int: 444 llvm_unreachable("these don't produce pointers"); 445 case Intrinsic::experimental_gc_relocate: { 446 // Rerunning safepoint insertion after safepoints are already 447 // inserted is not supported. It could probably be made to work, 448 // but why are you doing this? There's no good reason. 449 llvm_unreachable("repeat safepoint insertion is not supported"); 450 } 451 case Intrinsic::gcroot: 452 // Currently, this mechanism hasn't been extended to work with gcroot. 453 // There's no reason it couldn't be, but I haven't thought about the 454 // implications much. 455 llvm_unreachable( 456 "interaction with the gcroot mechanism is not supported"); 457 } 458 } 459 // We assume that functions in the source language only return base 460 // pointers. This should probably be generalized via attributes to support 461 // both source language and internal functions. 462 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 463 return I; 464 465 // I have absolutely no idea how to implement this part yet. It's not 466 // necessarily hard, I just haven't really looked at it yet. 467 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 468 469 if (isa<AtomicCmpXchgInst>(I)) 470 // A CAS is effectively a atomic store and load combined under a 471 // predicate. From the perspective of base pointers, we just treat it 472 // like a load. 473 return I; 474 475 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 476 "binary ops which don't apply to pointers"); 477 478 // The aggregate ops. Aggregates can either be in the heap or on the 479 // stack, but in either case, this is simply a field load. As a result, 480 // this is a defining definition of the base just like a load is. 481 if (isa<ExtractValueInst>(I)) 482 return I; 483 484 // We should never see an insert vector since that would require we be 485 // tracing back a struct value not a pointer value. 486 assert(!isa<InsertValueInst>(I) && 487 "Base pointer for a struct is meaningless"); 488 489 // An extractelement produces a base result exactly when it's input does. 490 // We may need to insert a parallel instruction to extract the appropriate 491 // element out of the base vector corresponding to the input. Given this, 492 // it's analogous to the phi and select case even though it's not a merge. 493 if (auto *EEI = dyn_cast<ExtractElementInst>(I)) { 494 Value *VectorOperand = EEI->getVectorOperand(); 495 Value *Index = EEI->getIndexOperand(); 496 std::pair<Value *, bool> pair = 497 findBaseDefiningValueOfVector(VectorOperand, Index); 498 Value *VectorBase = pair.first; 499 if (VectorBase->getType()->isPointerTy()) 500 // We found a BDV for this specific element with the vector. This is an 501 // optimization, but in practice it covers most of the useful cases 502 // created via scalarization. Note: The peephole optimization here is 503 // currently needed for correctness since the general algorithm doesn't 504 // yet handle insertelements. That will change shortly. 505 return VectorBase; 506 else { 507 assert(VectorBase->getType()->isVectorTy()); 508 // Otherwise, we have an instruction which potentially produces a 509 // derived pointer and we need findBasePointers to clone code for us 510 // such that we can create an instruction which produces the 511 // accompanying base pointer. 512 return EEI; 513 } 514 } 515 516 // The last two cases here don't return a base pointer. Instead, they 517 // return a value which dynamically selects from among several base 518 // derived pointers (each with it's own base potentially). It's the job of 519 // the caller to resolve these. 520 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 521 "missing instruction case in findBaseDefiningValing"); 522 return I; 523 } 524 525 /// Returns the base defining value for this value. 526 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 527 Value *&Cached = Cache[I]; 528 if (!Cached) { 529 Cached = findBaseDefiningValue(I); 530 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 531 << Cached->getName() << "\n"); 532 } 533 assert(Cache[I] != nullptr); 534 return Cached; 535 } 536 537 /// Return a base pointer for this value if known. Otherwise, return it's 538 /// base defining value. 539 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 540 Value *Def = findBaseDefiningValueCached(I, Cache); 541 auto Found = Cache.find(Def); 542 if (Found != Cache.end()) { 543 // Either a base-of relation, or a self reference. Caller must check. 544 return Found->second; 545 } 546 // Only a BDV available 547 return Def; 548 } 549 550 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 551 /// is it known to be a base pointer? Or do we need to continue searching. 552 static bool isKnownBaseResult(Value *V) { 553 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && !isa<ExtractElementInst>(V)) { 554 // no recursion possible 555 return true; 556 } 557 if (isa<Instruction>(V) && 558 cast<Instruction>(V)->getMetadata("is_base_value")) { 559 // This is a previously inserted base phi or select. We know 560 // that this is a base value. 561 return true; 562 } 563 564 // We need to keep searching 565 return false; 566 } 567 568 namespace { 569 /// Models the state of a single base defining value in the findBasePointer 570 /// algorithm for determining where a new instruction is needed to propagate 571 /// the base of this BDV. 572 class BDVState { 573 public: 574 enum Status { Unknown, Base, Conflict }; 575 576 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 577 assert(status != Base || b); 578 } 579 explicit BDVState(Value *b) : status(Base), base(b) {} 580 BDVState() : status(Unknown), base(nullptr) {} 581 582 Status getStatus() const { return status; } 583 Value *getBase() const { return base; } 584 585 bool isBase() const { return getStatus() == Base; } 586 bool isUnknown() const { return getStatus() == Unknown; } 587 bool isConflict() const { return getStatus() == Conflict; } 588 589 bool operator==(const BDVState &other) const { 590 return base == other.base && status == other.status; 591 } 592 593 bool operator!=(const BDVState &other) const { return !(*this == other); } 594 595 LLVM_DUMP_METHOD 596 void dump() const { print(dbgs()); dbgs() << '\n'; } 597 598 void print(raw_ostream &OS) const { 599 switch (status) { 600 case Unknown: 601 OS << "U"; 602 break; 603 case Base: 604 OS << "B"; 605 break; 606 case Conflict: 607 OS << "C"; 608 break; 609 }; 610 OS << " (" << base << " - " 611 << (base ? base->getName() : "nullptr") << "): "; 612 } 613 614 private: 615 Status status; 616 Value *base; // non null only if status == base 617 }; 618 619 #ifndef NDEBUG 620 inline raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 621 State.print(OS); 622 return OS; 623 } 624 #endif 625 626 typedef DenseMap<Value *, BDVState> ConflictStateMapTy; 627 // Values of type BDVState form a lattice, and this is a helper 628 // class that implementes the meet operation. The meat of the meet 629 // operation is implemented in MeetBDVStates::pureMeet 630 class MeetBDVStates { 631 public: 632 /// Initializes the currentResult to the TOP state so that if can be met with 633 /// any other state to produce that state. 634 MeetBDVStates() {} 635 636 // Destructively meet the current result with the given BDVState 637 void meetWith(BDVState otherState) { 638 currentResult = meet(otherState, currentResult); 639 } 640 641 BDVState getResult() const { return currentResult; } 642 643 private: 644 BDVState currentResult; 645 646 /// Perform a meet operation on two elements of the BDVState lattice. 647 static BDVState meet(BDVState LHS, BDVState RHS) { 648 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 649 "math is wrong: meet does not commute!"); 650 BDVState Result = pureMeet(LHS, RHS); 651 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 652 << " produced " << Result << "\n"); 653 return Result; 654 } 655 656 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 657 switch (stateA.getStatus()) { 658 case BDVState::Unknown: 659 return stateB; 660 661 case BDVState::Base: 662 assert(stateA.getBase() && "can't be null"); 663 if (stateB.isUnknown()) 664 return stateA; 665 666 if (stateB.isBase()) { 667 if (stateA.getBase() == stateB.getBase()) { 668 assert(stateA == stateB && "equality broken!"); 669 return stateA; 670 } 671 return BDVState(BDVState::Conflict); 672 } 673 assert(stateB.isConflict() && "only three states!"); 674 return BDVState(BDVState::Conflict); 675 676 case BDVState::Conflict: 677 return stateA; 678 } 679 llvm_unreachable("only three states!"); 680 } 681 }; 682 } 683 /// For a given value or instruction, figure out what base ptr it's derived 684 /// from. For gc objects, this is simply itself. On success, returns a value 685 /// which is the base pointer. (This is reliable and can be used for 686 /// relocation.) On failure, returns nullptr. 687 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 688 Value *def = findBaseOrBDV(I, cache); 689 690 if (isKnownBaseResult(def)) { 691 return def; 692 } 693 694 // Here's the rough algorithm: 695 // - For every SSA value, construct a mapping to either an actual base 696 // pointer or a PHI which obscures the base pointer. 697 // - Construct a mapping from PHI to unknown TOP state. Use an 698 // optimistic algorithm to propagate base pointer information. Lattice 699 // looks like: 700 // UNKNOWN 701 // b1 b2 b3 b4 702 // CONFLICT 703 // When algorithm terminates, all PHIs will either have a single concrete 704 // base or be in a conflict state. 705 // - For every conflict, insert a dummy PHI node without arguments. Add 706 // these to the base[Instruction] = BasePtr mapping. For every 707 // non-conflict, add the actual base. 708 // - For every conflict, add arguments for the base[a] of each input 709 // arguments. 710 // 711 // Note: A simpler form of this would be to add the conflict form of all 712 // PHIs without running the optimistic algorithm. This would be 713 // analogous to pessimistic data flow and would likely lead to an 714 // overall worse solution. 715 716 #ifndef NDEBUG 717 auto isExpectedBDVType = [](Value *BDV) { 718 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || isa<ExtractElementInst>(BDV); 719 }; 720 #endif 721 722 // Once populated, will contain a mapping from each potentially non-base BDV 723 // to a lattice value (described above) which corresponds to that BDV. 724 ConflictStateMapTy states; 725 // Recursively fill in all phis & selects reachable from the initial one 726 // for which we don't already know a definite base value for 727 /* scope */ { 728 DenseSet<Value *> Visited; 729 SmallVector<Value*, 16> Worklist; 730 Worklist.push_back(def); 731 Visited.insert(def); 732 while (!Worklist.empty()) { 733 Value *Current = Worklist.pop_back_val(); 734 assert(!isKnownBaseResult(Current) && "why did it get added?"); 735 736 auto visitIncomingValue = [&](Value *InVal) { 737 Value *Base = findBaseOrBDV(InVal, cache); 738 if (isKnownBaseResult(Base)) 739 // Known bases won't need new instructions introduced and can be 740 // ignored safely 741 return; 742 assert(isExpectedBDVType(Base) && "the only non-base values " 743 "we see should be base defining values"); 744 if (Visited.insert(Base).second) 745 Worklist.push_back(Base); 746 }; 747 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 748 for (Value *InVal : Phi->incoming_values()) 749 visitIncomingValue(InVal); 750 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 751 visitIncomingValue(Sel->getTrueValue()); 752 visitIncomingValue(Sel->getFalseValue()); 753 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 754 visitIncomingValue(EE->getVectorOperand()); 755 } else { 756 // There are two classes of instructions we know we don't handle. 757 assert(isa<ShuffleVectorInst>(Current) || 758 isa<InsertElementInst>(Current)); 759 llvm_unreachable("unimplemented instruction case"); 760 } 761 } 762 // The frontier of visited instructions are the ones we might need to 763 // duplicate, so fill in the starting state for the optimistic algorithm 764 // that follows. 765 for (Value *BDV : Visited) { 766 states[BDV] = BDVState(); 767 } 768 } 769 770 #ifndef NDEBUG 771 DEBUG(dbgs() << "States after initialization:\n"); 772 for (auto Pair : states) { 773 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 774 } 775 #endif 776 777 // TODO: come back and revisit the state transitions around inputs which 778 // have reached conflict state. The current version seems too conservative. 779 780 // Return a phi state for a base defining value. We'll generate a new 781 // base state for known bases and expect to find a cached state otherwise. 782 auto getStateForBDV = [&](Value *baseValue) { 783 if (isKnownBaseResult(baseValue)) 784 return BDVState(baseValue); 785 auto I = states.find(baseValue); 786 assert(I != states.end() && "lookup failed!"); 787 return I->second; 788 }; 789 790 bool progress = true; 791 while (progress) { 792 #ifndef NDEBUG 793 size_t oldSize = states.size(); 794 #endif 795 progress = false; 796 // We're only changing keys in this loop, thus safe to keep iterators 797 for (auto Pair : states) { 798 Value *v = Pair.first; 799 assert(!isKnownBaseResult(v) && "why did it get added?"); 800 801 // Given an input value for the current instruction, return a BDVState 802 // instance which represents the BDV of that value. 803 auto getStateForInput = [&](Value *V) mutable { 804 Value *BDV = findBaseOrBDV(V, cache); 805 return getStateForBDV(BDV); 806 }; 807 808 MeetBDVStates calculateMeet; 809 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 810 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 811 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 812 } else if (PHINode *Phi = dyn_cast<PHINode>(v)) { 813 for (Value *Val : Phi->incoming_values()) 814 calculateMeet.meetWith(getStateForInput(Val)); 815 } else { 816 // The 'meet' for an extractelement is slightly trivial, but it's still 817 // useful in that it drives us to conflict if our input is. 818 auto *EE = cast<ExtractElementInst>(v); 819 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 820 } 821 822 823 BDVState oldState = states[v]; 824 BDVState newState = calculateMeet.getResult(); 825 if (oldState != newState) { 826 progress = true; 827 states[v] = newState; 828 } 829 } 830 831 assert(oldSize <= states.size()); 832 assert(oldSize == states.size() || progress); 833 } 834 835 #ifndef NDEBUG 836 DEBUG(dbgs() << "States after meet iteration:\n"); 837 for (auto Pair : states) { 838 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 839 } 840 #endif 841 842 // Insert Phis for all conflicts 843 // We want to keep naming deterministic in the loop that follows, so 844 // sort the keys before iteration. This is useful in allowing us to 845 // write stable tests. Note that there is no invalidation issue here. 846 SmallVector<Value *, 16> Keys; 847 Keys.reserve(states.size()); 848 for (auto Pair : states) { 849 Value *V = Pair.first; 850 Keys.push_back(V); 851 } 852 std::sort(Keys.begin(), Keys.end(), order_by_name); 853 // TODO: adjust naming patterns to avoid this order of iteration dependency 854 for (Value *V : Keys) { 855 Instruction *I = cast<Instruction>(V); 856 BDVState State = states[I]; 857 assert(!isKnownBaseResult(I) && "why did it get added?"); 858 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 859 860 // extractelement instructions are a bit special in that we may need to 861 // insert an extract even when we know an exact base for the instruction. 862 // The problem is that we need to convert from a vector base to a scalar 863 // base for the particular indice we're interested in. 864 if (State.isBase() && isa<ExtractElementInst>(I) && 865 isa<VectorType>(State.getBase()->getType())) { 866 auto *EE = cast<ExtractElementInst>(I); 867 // TODO: In many cases, the new instruction is just EE itself. We should 868 // exploit this, but can't do it here since it would break the invariant 869 // about the BDV not being known to be a base. 870 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 871 EE->getIndexOperand(), 872 "base_ee", EE); 873 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 874 states[I] = BDVState(BDVState::Base, BaseInst); 875 } 876 877 if (!State.isConflict()) 878 continue; 879 880 /// Create and insert a new instruction which will represent the base of 881 /// the given instruction 'I'. 882 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 883 if (isa<PHINode>(I)) { 884 BasicBlock *BB = I->getParent(); 885 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 886 assert(NumPreds > 0 && "how did we reach here"); 887 std::string Name = I->hasName() ? 888 (I->getName() + ".base").str() : "base_phi"; 889 return PHINode::Create(I->getType(), NumPreds, Name, I); 890 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 891 // The undef will be replaced later 892 UndefValue *Undef = UndefValue::get(Sel->getType()); 893 std::string Name = I->hasName() ? 894 (I->getName() + ".base").str() : "base_select"; 895 return SelectInst::Create(Sel->getCondition(), Undef, 896 Undef, Name, Sel); 897 } else { 898 auto *EE = cast<ExtractElementInst>(I); 899 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 900 std::string Name = I->hasName() ? 901 (I->getName() + ".base").str() : "base_ee"; 902 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 903 EE); 904 } 905 }; 906 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 907 // Add metadata marking this as a base value 908 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 909 states[I] = BDVState(BDVState::Conflict, BaseInst); 910 } 911 912 // Fixup all the inputs of the new PHIs 913 for (auto Pair : states) { 914 Instruction *v = cast<Instruction>(Pair.first); 915 BDVState state = Pair.second; 916 917 assert(!isKnownBaseResult(v) && "why did it get added?"); 918 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 919 if (!state.isConflict()) 920 continue; 921 922 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 923 PHINode *phi = cast<PHINode>(v); 924 unsigned NumPHIValues = phi->getNumIncomingValues(); 925 for (unsigned i = 0; i < NumPHIValues; i++) { 926 Value *InVal = phi->getIncomingValue(i); 927 BasicBlock *InBB = phi->getIncomingBlock(i); 928 929 // If we've already seen InBB, add the same incoming value 930 // we added for it earlier. The IR verifier requires phi 931 // nodes with multiple entries from the same basic block 932 // to have the same incoming value for each of those 933 // entries. If we don't do this check here and basephi 934 // has a different type than base, we'll end up adding two 935 // bitcasts (and hence two distinct values) as incoming 936 // values for the same basic block. 937 938 int blockIndex = basephi->getBasicBlockIndex(InBB); 939 if (blockIndex != -1) { 940 Value *oldBase = basephi->getIncomingValue(blockIndex); 941 basephi->addIncoming(oldBase, InBB); 942 #ifndef NDEBUG 943 Value *base = findBaseOrBDV(InVal, cache); 944 if (!isKnownBaseResult(base)) { 945 // Either conflict or base. 946 assert(states.count(base)); 947 base = states[base].getBase(); 948 assert(base != nullptr && "unknown BDVState!"); 949 } 950 951 // In essence this assert states: the only way two 952 // values incoming from the same basic block may be 953 // different is by being different bitcasts of the same 954 // value. A cleanup that remains TODO is changing 955 // findBaseOrBDV to return an llvm::Value of the correct 956 // type (and still remain pure). This will remove the 957 // need to add bitcasts. 958 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 959 "sanity -- findBaseOrBDV should be pure!"); 960 #endif 961 continue; 962 } 963 964 // Find either the defining value for the PHI or the normal base for 965 // a non-phi node 966 Value *base = findBaseOrBDV(InVal, cache); 967 if (!isKnownBaseResult(base)) { 968 // Either conflict or base. 969 assert(states.count(base)); 970 base = states[base].getBase(); 971 assert(base != nullptr && "unknown BDVState!"); 972 } 973 assert(base && "can't be null"); 974 // Must use original input BB since base may not be Instruction 975 // The cast is needed since base traversal may strip away bitcasts 976 if (base->getType() != basephi->getType()) { 977 base = new BitCastInst(base, basephi->getType(), "cast", 978 InBB->getTerminator()); 979 } 980 basephi->addIncoming(base, InBB); 981 } 982 assert(basephi->getNumIncomingValues() == NumPHIValues); 983 } else if (SelectInst *basesel = dyn_cast<SelectInst>(state.getBase())) { 984 SelectInst *sel = cast<SelectInst>(v); 985 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 986 // something more safe and less hacky. 987 for (int i = 1; i <= 2; i++) { 988 Value *InVal = sel->getOperand(i); 989 // Find either the defining value for the PHI or the normal base for 990 // a non-phi node 991 Value *base = findBaseOrBDV(InVal, cache); 992 if (!isKnownBaseResult(base)) { 993 // Either conflict or base. 994 assert(states.count(base)); 995 base = states[base].getBase(); 996 assert(base != nullptr && "unknown BDVState!"); 997 } 998 assert(base && "can't be null"); 999 // Must use original input BB since base may not be Instruction 1000 // The cast is needed since base traversal may strip away bitcasts 1001 if (base->getType() != basesel->getType()) { 1002 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 1003 } 1004 basesel->setOperand(i, base); 1005 } 1006 } else { 1007 auto *BaseEE = cast<ExtractElementInst>(state.getBase()); 1008 Value *InVal = cast<ExtractElementInst>(v)->getVectorOperand(); 1009 Value *Base = findBaseOrBDV(InVal, cache); 1010 if (!isKnownBaseResult(Base)) { 1011 // Either conflict or base. 1012 assert(states.count(Base)); 1013 Base = states[Base].getBase(); 1014 assert(Base != nullptr && "unknown BDVState!"); 1015 } 1016 assert(Base && "can't be null"); 1017 BaseEE->setOperand(0, Base); 1018 } 1019 } 1020 1021 // Now that we're done with the algorithm, see if we can optimize the 1022 // results slightly by reducing the number of new instructions needed. 1023 // Arguably, this should be integrated into the algorithm above, but 1024 // doing as a post process step is easier to reason about for the moment. 1025 DenseMap<Value *, Value *> ReverseMap; 1026 SmallPtrSet<Instruction *, 16> NewInsts; 1027 SmallSetVector<Instruction *, 16> Worklist; 1028 for (auto Item : states) { 1029 Value *V = Item.first; 1030 Value *Base = Item.second.getBase(); 1031 assert(V && Base); 1032 assert(!isKnownBaseResult(V) && "why did it get added?"); 1033 assert(isKnownBaseResult(Base) && 1034 "must be something we 'know' is a base pointer"); 1035 if (!Item.second.isConflict()) 1036 continue; 1037 1038 ReverseMap[Base] = V; 1039 if (auto *BaseI = dyn_cast<Instruction>(Base)) { 1040 NewInsts.insert(BaseI); 1041 Worklist.insert(BaseI); 1042 } 1043 } 1044 auto PushNewUsers = [&](Instruction *I) { 1045 for (User *U : I->users()) 1046 if (auto *UI = dyn_cast<Instruction>(U)) 1047 if (NewInsts.count(UI)) 1048 Worklist.insert(UI); 1049 }; 1050 const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout(); 1051 while (!Worklist.empty()) { 1052 Instruction *BaseI = Worklist.pop_back_val(); 1053 assert(NewInsts.count(BaseI)); 1054 Value *Bdv = ReverseMap[BaseI]; 1055 if (auto *BdvI = dyn_cast<Instruction>(Bdv)) 1056 if (BaseI->isIdenticalTo(BdvI)) { 1057 DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n"); 1058 PushNewUsers(BaseI); 1059 BaseI->replaceAllUsesWith(Bdv); 1060 BaseI->eraseFromParent(); 1061 states[Bdv] = BDVState(BDVState::Conflict, Bdv); 1062 NewInsts.erase(BaseI); 1063 ReverseMap.erase(BaseI); 1064 continue; 1065 } 1066 if (Value *V = SimplifyInstruction(BaseI, DL)) { 1067 DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n"); 1068 PushNewUsers(BaseI); 1069 BaseI->replaceAllUsesWith(V); 1070 BaseI->eraseFromParent(); 1071 states[Bdv] = BDVState(BDVState::Conflict, V); 1072 NewInsts.erase(BaseI); 1073 ReverseMap.erase(BaseI); 1074 continue; 1075 } 1076 } 1077 1078 // Cache all of our results so we can cheaply reuse them 1079 // NOTE: This is actually two caches: one of the base defining value 1080 // relation and one of the base pointer relation! FIXME 1081 for (auto item : states) { 1082 Value *v = item.first; 1083 Value *base = item.second.getBase(); 1084 assert(v && base); 1085 1086 std::string fromstr = 1087 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 1088 : "none"; 1089 DEBUG(dbgs() << "Updating base value cache" 1090 << " for: " << (v->hasName() ? v->getName() : "") 1091 << " from: " << fromstr 1092 << " to: " << (base->hasName() ? base->getName() : "") << "\n"); 1093 1094 if (cache.count(v)) { 1095 // Once we transition from the BDV relation being store in the cache to 1096 // the base relation being stored, it must be stable 1097 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 1098 "base relation should be stable"); 1099 } 1100 cache[v] = base; 1101 } 1102 assert(cache.find(def) != cache.end()); 1103 return cache[def]; 1104 } 1105 1106 // For a set of live pointers (base and/or derived), identify the base 1107 // pointer of the object which they are derived from. This routine will 1108 // mutate the IR graph as needed to make the 'base' pointer live at the 1109 // definition site of 'derived'. This ensures that any use of 'derived' can 1110 // also use 'base'. This may involve the insertion of a number of 1111 // additional PHI nodes. 1112 // 1113 // preconditions: live is a set of pointer type Values 1114 // 1115 // side effects: may insert PHI nodes into the existing CFG, will preserve 1116 // CFG, will not remove or mutate any existing nodes 1117 // 1118 // post condition: PointerToBase contains one (derived, base) pair for every 1119 // pointer in live. Note that derived can be equal to base if the original 1120 // pointer was a base pointer. 1121 static void 1122 findBasePointers(const StatepointLiveSetTy &live, 1123 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 1124 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1125 // For the naming of values inserted to be deterministic - which makes for 1126 // much cleaner and more stable tests - we need to assign an order to the 1127 // live values. DenseSets do not provide a deterministic order across runs. 1128 SmallVector<Value *, 64> Temp; 1129 Temp.insert(Temp.end(), live.begin(), live.end()); 1130 std::sort(Temp.begin(), Temp.end(), order_by_name); 1131 for (Value *ptr : Temp) { 1132 Value *base = findBasePointer(ptr, DVCache); 1133 assert(base && "failed to find base pointer"); 1134 PointerToBase[ptr] = base; 1135 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1136 DT->dominates(cast<Instruction>(base)->getParent(), 1137 cast<Instruction>(ptr)->getParent())) && 1138 "The base we found better dominate the derived pointer"); 1139 1140 // If you see this trip and like to live really dangerously, the code should 1141 // be correct, just with idioms the verifier can't handle. You can try 1142 // disabling the verifier at your own substantial risk. 1143 assert(!isa<ConstantPointerNull>(base) && 1144 "the relocation code needs adjustment to handle the relocation of " 1145 "a null pointer constant without causing false positives in the " 1146 "safepoint ir verifier."); 1147 } 1148 } 1149 1150 /// Find the required based pointers (and adjust the live set) for the given 1151 /// parse point. 1152 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1153 const CallSite &CS, 1154 PartiallyConstructedSafepointRecord &result) { 1155 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 1156 findBasePointers(result.liveset, PointerToBase, &DT, DVCache); 1157 1158 if (PrintBasePointers) { 1159 // Note: Need to print these in a stable order since this is checked in 1160 // some tests. 1161 errs() << "Base Pairs (w/o Relocation):\n"; 1162 SmallVector<Value *, 64> Temp; 1163 Temp.reserve(PointerToBase.size()); 1164 for (auto Pair : PointerToBase) { 1165 Temp.push_back(Pair.first); 1166 } 1167 std::sort(Temp.begin(), Temp.end(), order_by_name); 1168 for (Value *Ptr : Temp) { 1169 Value *Base = PointerToBase[Ptr]; 1170 errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() 1171 << "\n"; 1172 } 1173 } 1174 1175 result.PointerToBase = PointerToBase; 1176 } 1177 1178 /// Given an updated version of the dataflow liveness results, update the 1179 /// liveset and base pointer maps for the call site CS. 1180 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1181 const CallSite &CS, 1182 PartiallyConstructedSafepointRecord &result); 1183 1184 static void recomputeLiveInValues( 1185 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1186 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1187 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1188 // again. The old values are still live and will help it stabilize quickly. 1189 GCPtrLivenessData RevisedLivenessData; 1190 computeLiveInValues(DT, F, RevisedLivenessData); 1191 for (size_t i = 0; i < records.size(); i++) { 1192 struct PartiallyConstructedSafepointRecord &info = records[i]; 1193 const CallSite &CS = toUpdate[i]; 1194 recomputeLiveInValues(RevisedLivenessData, CS, info); 1195 } 1196 } 1197 1198 // When inserting gc.relocate calls, we need to ensure there are no uses 1199 // of the original value between the gc.statepoint and the gc.relocate call. 1200 // One case which can arise is a phi node starting one of the successor blocks. 1201 // We also need to be able to insert the gc.relocates only on the path which 1202 // goes through the statepoint. We might need to split an edge to make this 1203 // possible. 1204 static BasicBlock * 1205 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1206 DominatorTree &DT) { 1207 BasicBlock *Ret = BB; 1208 if (!BB->getUniquePredecessor()) { 1209 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1210 } 1211 1212 // Now that 'ret' has unique predecessor we can safely remove all phi nodes 1213 // from it 1214 FoldSingleEntryPHINodes(Ret); 1215 assert(!isa<PHINode>(Ret->begin())); 1216 1217 // At this point, we can safely insert a gc.relocate as the first instruction 1218 // in Ret if needed. 1219 return Ret; 1220 } 1221 1222 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1223 auto itr = std::find(livevec.begin(), livevec.end(), val); 1224 assert(livevec.end() != itr); 1225 size_t index = std::distance(livevec.begin(), itr); 1226 assert(index < livevec.size()); 1227 return index; 1228 } 1229 1230 // Create new attribute set containing only attributes which can be transferred 1231 // from original call to the safepoint. 1232 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1233 AttributeSet ret; 1234 1235 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1236 unsigned index = AS.getSlotIndex(Slot); 1237 1238 if (index == AttributeSet::ReturnIndex || 1239 index == AttributeSet::FunctionIndex) { 1240 1241 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1242 ++it) { 1243 Attribute attr = *it; 1244 1245 // Do not allow certain attributes - just skip them 1246 // Safepoint can not be read only or read none. 1247 if (attr.hasAttribute(Attribute::ReadNone) || 1248 attr.hasAttribute(Attribute::ReadOnly)) 1249 continue; 1250 1251 ret = ret.addAttributes( 1252 AS.getContext(), index, 1253 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1254 } 1255 } 1256 1257 // Just skip parameter attributes for now 1258 } 1259 1260 return ret; 1261 } 1262 1263 /// Helper function to place all gc relocates necessary for the given 1264 /// statepoint. 1265 /// Inputs: 1266 /// liveVariables - list of variables to be relocated. 1267 /// liveStart - index of the first live variable. 1268 /// basePtrs - base pointers. 1269 /// statepointToken - statepoint instruction to which relocates should be 1270 /// bound. 1271 /// Builder - Llvm IR builder to be used to construct new calls. 1272 static void CreateGCRelocates(ArrayRef<llvm::Value *> LiveVariables, 1273 const int LiveStart, 1274 ArrayRef<llvm::Value *> BasePtrs, 1275 Instruction *StatepointToken, 1276 IRBuilder<> Builder) { 1277 if (LiveVariables.empty()) 1278 return; 1279 1280 // All gc_relocate are set to i8 addrspace(1)* type. We originally generated 1281 // unique declarations for each pointer type, but this proved problematic 1282 // because the intrinsic mangling code is incomplete and fragile. Since 1283 // we're moving towards a single unified pointer type anyways, we can just 1284 // cast everything to an i8* of the right address space. A bitcast is added 1285 // later to convert gc_relocate to the actual value's type. 1286 Module *M = StatepointToken->getModule(); 1287 auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace(); 1288 Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)}; 1289 Value *GCRelocateDecl = 1290 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); 1291 1292 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1293 // Generate the gc.relocate call and save the result 1294 Value *BaseIdx = 1295 Builder.getInt32(LiveStart + find_index(LiveVariables, BasePtrs[i])); 1296 Value *LiveIdx = 1297 Builder.getInt32(LiveStart + find_index(LiveVariables, LiveVariables[i])); 1298 1299 // only specify a debug name if we can give a useful one 1300 CallInst *Reloc = Builder.CreateCall( 1301 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1302 LiveVariables[i]->hasName() ? LiveVariables[i]->getName() + ".relocated" 1303 : ""); 1304 // Trick CodeGen into thinking there are lots of free registers at this 1305 // fake call. 1306 Reloc->setCallingConv(CallingConv::Cold); 1307 } 1308 } 1309 1310 static void 1311 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1312 const SmallVectorImpl<llvm::Value *> &basePtrs, 1313 const SmallVectorImpl<llvm::Value *> &liveVariables, 1314 Pass *P, 1315 PartiallyConstructedSafepointRecord &result) { 1316 assert(basePtrs.size() == liveVariables.size()); 1317 assert(isStatepoint(CS) && 1318 "This method expects to be rewriting a statepoint"); 1319 1320 BasicBlock *BB = CS.getInstruction()->getParent(); 1321 assert(BB); 1322 Function *F = BB->getParent(); 1323 assert(F && "must be set"); 1324 Module *M = F->getParent(); 1325 (void)M; 1326 assert(M && "must be set"); 1327 1328 // We're not changing the function signature of the statepoint since the gc 1329 // arguments go into the var args section. 1330 Function *gc_statepoint_decl = CS.getCalledFunction(); 1331 1332 // Then go ahead and use the builder do actually do the inserts. We insert 1333 // immediately before the previous instruction under the assumption that all 1334 // arguments will be available here. We can't insert afterwards since we may 1335 // be replacing a terminator. 1336 Instruction *insertBefore = CS.getInstruction(); 1337 IRBuilder<> Builder(insertBefore); 1338 // Copy all of the arguments from the original statepoint - this includes the 1339 // target, call args, and deopt args 1340 SmallVector<llvm::Value *, 64> args; 1341 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1342 // TODO: Clear the 'needs rewrite' flag 1343 1344 // add all the pointers to be relocated (gc arguments) 1345 // Capture the start of the live variable list for use in the gc_relocates 1346 const int live_start = args.size(); 1347 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1348 1349 // Create the statepoint given all the arguments 1350 Instruction *token = nullptr; 1351 AttributeSet return_attributes; 1352 if (CS.isCall()) { 1353 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1354 CallInst *call = 1355 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1356 call->setTailCall(toReplace->isTailCall()); 1357 call->setCallingConv(toReplace->getCallingConv()); 1358 1359 // Currently we will fail on parameter attributes and on certain 1360 // function attributes. 1361 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1362 // In case if we can handle this set of attributes - set up function attrs 1363 // directly on statepoint and return attrs later for gc_result intrinsic. 1364 call->setAttributes(new_attrs.getFnAttributes()); 1365 return_attributes = new_attrs.getRetAttributes(); 1366 1367 token = call; 1368 1369 // Put the following gc_result and gc_relocate calls immediately after the 1370 // the old call (which we're about to delete) 1371 BasicBlock::iterator next(toReplace); 1372 assert(BB->end() != next && "not a terminator, must have next"); 1373 next++; 1374 Instruction *IP = &*(next); 1375 Builder.SetInsertPoint(IP); 1376 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1377 1378 } else { 1379 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1380 1381 // Insert the new invoke into the old block. We'll remove the old one in a 1382 // moment at which point this will become the new terminator for the 1383 // original block. 1384 InvokeInst *invoke = InvokeInst::Create( 1385 gc_statepoint_decl, toReplace->getNormalDest(), 1386 toReplace->getUnwindDest(), args, "statepoint_token", toReplace->getParent()); 1387 invoke->setCallingConv(toReplace->getCallingConv()); 1388 1389 // Currently we will fail on parameter attributes and on certain 1390 // function attributes. 1391 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1392 // In case if we can handle this set of attributes - set up function attrs 1393 // directly on statepoint and return attrs later for gc_result intrinsic. 1394 invoke->setAttributes(new_attrs.getFnAttributes()); 1395 return_attributes = new_attrs.getRetAttributes(); 1396 1397 token = invoke; 1398 1399 // Generate gc relocates in exceptional path 1400 BasicBlock *unwindBlock = toReplace->getUnwindDest(); 1401 assert(!isa<PHINode>(unwindBlock->begin()) && 1402 unwindBlock->getUniquePredecessor() && 1403 "can't safely insert in this block!"); 1404 1405 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1406 Builder.SetInsertPoint(IP); 1407 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1408 1409 // Extract second element from landingpad return value. We will attach 1410 // exceptional gc relocates to it. 1411 const unsigned idx = 1; 1412 Instruction *exceptional_token = 1413 cast<Instruction>(Builder.CreateExtractValue( 1414 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1415 result.UnwindToken = exceptional_token; 1416 1417 CreateGCRelocates(liveVariables, live_start, basePtrs, 1418 exceptional_token, Builder); 1419 1420 // Generate gc relocates and returns for normal block 1421 BasicBlock *normalDest = toReplace->getNormalDest(); 1422 assert(!isa<PHINode>(normalDest->begin()) && 1423 normalDest->getUniquePredecessor() && 1424 "can't safely insert in this block!"); 1425 1426 IP = &*(normalDest->getFirstInsertionPt()); 1427 Builder.SetInsertPoint(IP); 1428 1429 // gc relocates will be generated later as if it were regular call 1430 // statepoint 1431 } 1432 assert(token); 1433 1434 // Take the name of the original value call if it had one. 1435 token->takeName(CS.getInstruction()); 1436 1437 // The GCResult is already inserted, we just need to find it 1438 #ifndef NDEBUG 1439 Instruction *toReplace = CS.getInstruction(); 1440 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1441 "only valid use before rewrite is gc.result"); 1442 assert(!toReplace->hasOneUse() || 1443 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1444 #endif 1445 1446 // Update the gc.result of the original statepoint (if any) to use the newly 1447 // inserted statepoint. This is safe to do here since the token can't be 1448 // considered a live reference. 1449 CS.getInstruction()->replaceAllUsesWith(token); 1450 1451 result.StatepointToken = token; 1452 1453 // Second, create a gc.relocate for every live variable 1454 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1455 } 1456 1457 namespace { 1458 struct name_ordering { 1459 Value *base; 1460 Value *derived; 1461 bool operator()(name_ordering const &a, name_ordering const &b) { 1462 return -1 == a.derived->getName().compare(b.derived->getName()); 1463 } 1464 }; 1465 } 1466 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1467 SmallVectorImpl<Value *> &livevec) { 1468 assert(basevec.size() == livevec.size()); 1469 1470 SmallVector<name_ordering, 64> temp; 1471 for (size_t i = 0; i < basevec.size(); i++) { 1472 name_ordering v; 1473 v.base = basevec[i]; 1474 v.derived = livevec[i]; 1475 temp.push_back(v); 1476 } 1477 std::sort(temp.begin(), temp.end(), name_ordering()); 1478 for (size_t i = 0; i < basevec.size(); i++) { 1479 basevec[i] = temp[i].base; 1480 livevec[i] = temp[i].derived; 1481 } 1482 } 1483 1484 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1485 // which make the relocations happening at this safepoint explicit. 1486 // 1487 // WARNING: Does not do any fixup to adjust users of the original live 1488 // values. That's the callers responsibility. 1489 static void 1490 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1491 PartiallyConstructedSafepointRecord &result) { 1492 auto liveset = result.liveset; 1493 auto PointerToBase = result.PointerToBase; 1494 1495 // Convert to vector for efficient cross referencing. 1496 SmallVector<Value *, 64> basevec, livevec; 1497 livevec.reserve(liveset.size()); 1498 basevec.reserve(liveset.size()); 1499 for (Value *L : liveset) { 1500 livevec.push_back(L); 1501 assert(PointerToBase.count(L)); 1502 Value *base = PointerToBase[L]; 1503 basevec.push_back(base); 1504 } 1505 assert(livevec.size() == basevec.size()); 1506 1507 // To make the output IR slightly more stable (for use in diffs), ensure a 1508 // fixed order of the values in the safepoint (by sorting the value name). 1509 // The order is otherwise meaningless. 1510 stablize_order(basevec, livevec); 1511 1512 // Do the actual rewriting and delete the old statepoint 1513 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1514 CS.getInstruction()->eraseFromParent(); 1515 } 1516 1517 // Helper function for the relocationViaAlloca. 1518 // It receives iterator to the statepoint gc relocates and emits store to the 1519 // assigned 1520 // location (via allocaMap) for the each one of them. 1521 // Add visited values into the visitedLiveValues set we will later use them 1522 // for sanity check. 1523 static void 1524 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1525 DenseMap<Value *, Value *> &AllocaMap, 1526 DenseSet<Value *> &VisitedLiveValues) { 1527 1528 for (User *U : GCRelocs) { 1529 if (!isa<IntrinsicInst>(U)) 1530 continue; 1531 1532 IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U); 1533 1534 // We only care about relocates 1535 if (RelocatedValue->getIntrinsicID() != 1536 Intrinsic::experimental_gc_relocate) { 1537 continue; 1538 } 1539 1540 GCRelocateOperands RelocateOperands(RelocatedValue); 1541 Value *OriginalValue = 1542 const_cast<Value *>(RelocateOperands.getDerivedPtr()); 1543 assert(AllocaMap.count(OriginalValue)); 1544 Value *Alloca = AllocaMap[OriginalValue]; 1545 1546 // Emit store into the related alloca 1547 // All gc_relocate are i8 addrspace(1)* typed, and it must be bitcasted to 1548 // the correct type according to alloca. 1549 assert(RelocatedValue->getNextNode() && "Should always have one since it's not a terminator"); 1550 IRBuilder<> Builder(RelocatedValue->getNextNode()); 1551 Value *CastedRelocatedValue = 1552 Builder.CreateBitCast(RelocatedValue, cast<AllocaInst>(Alloca)->getAllocatedType(), 1553 RelocatedValue->hasName() ? RelocatedValue->getName() + ".casted" : ""); 1554 1555 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1556 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1557 1558 #ifndef NDEBUG 1559 VisitedLiveValues.insert(OriginalValue); 1560 #endif 1561 } 1562 } 1563 1564 // Helper function for the "relocationViaAlloca". Similar to the 1565 // "insertRelocationStores" but works for rematerialized values. 1566 static void 1567 insertRematerializationStores( 1568 RematerializedValueMapTy RematerializedValues, 1569 DenseMap<Value *, Value *> &AllocaMap, 1570 DenseSet<Value *> &VisitedLiveValues) { 1571 1572 for (auto RematerializedValuePair: RematerializedValues) { 1573 Instruction *RematerializedValue = RematerializedValuePair.first; 1574 Value *OriginalValue = RematerializedValuePair.second; 1575 1576 assert(AllocaMap.count(OriginalValue) && 1577 "Can not find alloca for rematerialized value"); 1578 Value *Alloca = AllocaMap[OriginalValue]; 1579 1580 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1581 Store->insertAfter(RematerializedValue); 1582 1583 #ifndef NDEBUG 1584 VisitedLiveValues.insert(OriginalValue); 1585 #endif 1586 } 1587 } 1588 1589 /// do all the relocation update via allocas and mem2reg 1590 static void relocationViaAlloca( 1591 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1592 ArrayRef<struct PartiallyConstructedSafepointRecord> Records) { 1593 #ifndef NDEBUG 1594 // record initial number of (static) allocas; we'll check we have the same 1595 // number when we get done. 1596 int InitialAllocaNum = 0; 1597 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1598 I++) 1599 if (isa<AllocaInst>(*I)) 1600 InitialAllocaNum++; 1601 #endif 1602 1603 // TODO-PERF: change data structures, reserve 1604 DenseMap<Value *, Value *> AllocaMap; 1605 SmallVector<AllocaInst *, 200> PromotableAllocas; 1606 // Used later to chack that we have enough allocas to store all values 1607 std::size_t NumRematerializedValues = 0; 1608 PromotableAllocas.reserve(Live.size()); 1609 1610 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1611 // "PromotableAllocas" 1612 auto emitAllocaFor = [&](Value *LiveValue) { 1613 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1614 F.getEntryBlock().getFirstNonPHI()); 1615 AllocaMap[LiveValue] = Alloca; 1616 PromotableAllocas.push_back(Alloca); 1617 }; 1618 1619 // emit alloca for each live gc pointer 1620 for (unsigned i = 0; i < Live.size(); i++) { 1621 emitAllocaFor(Live[i]); 1622 } 1623 1624 // emit allocas for rematerialized values 1625 for (size_t i = 0; i < Records.size(); i++) { 1626 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1627 1628 for (auto RematerializedValuePair : Info.RematerializedValues) { 1629 Value *OriginalValue = RematerializedValuePair.second; 1630 if (AllocaMap.count(OriginalValue) != 0) 1631 continue; 1632 1633 emitAllocaFor(OriginalValue); 1634 ++NumRematerializedValues; 1635 } 1636 } 1637 1638 // The next two loops are part of the same conceptual operation. We need to 1639 // insert a store to the alloca after the original def and at each 1640 // redefinition. We need to insert a load before each use. These are split 1641 // into distinct loops for performance reasons. 1642 1643 // update gc pointer after each statepoint 1644 // either store a relocated value or null (if no relocated value found for 1645 // this gc pointer and it is not a gc_result) 1646 // this must happen before we update the statepoint with load of alloca 1647 // otherwise we lose the link between statepoint and old def 1648 for (size_t i = 0; i < Records.size(); i++) { 1649 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1650 Value *Statepoint = Info.StatepointToken; 1651 1652 // This will be used for consistency check 1653 DenseSet<Value *> VisitedLiveValues; 1654 1655 // Insert stores for normal statepoint gc relocates 1656 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1657 1658 // In case if it was invoke statepoint 1659 // we will insert stores for exceptional path gc relocates. 1660 if (isa<InvokeInst>(Statepoint)) { 1661 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1662 VisitedLiveValues); 1663 } 1664 1665 // Do similar thing with rematerialized values 1666 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1667 VisitedLiveValues); 1668 1669 if (ClobberNonLive) { 1670 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1671 // the gc.statepoint. This will turn some subtle GC problems into 1672 // slightly easier to debug SEGVs. Note that on large IR files with 1673 // lots of gc.statepoints this is extremely costly both memory and time 1674 // wise. 1675 SmallVector<AllocaInst *, 64> ToClobber; 1676 for (auto Pair : AllocaMap) { 1677 Value *Def = Pair.first; 1678 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1679 1680 // This value was relocated 1681 if (VisitedLiveValues.count(Def)) { 1682 continue; 1683 } 1684 ToClobber.push_back(Alloca); 1685 } 1686 1687 auto InsertClobbersAt = [&](Instruction *IP) { 1688 for (auto *AI : ToClobber) { 1689 auto AIType = cast<PointerType>(AI->getType()); 1690 auto PT = cast<PointerType>(AIType->getElementType()); 1691 Constant *CPN = ConstantPointerNull::get(PT); 1692 StoreInst *Store = new StoreInst(CPN, AI); 1693 Store->insertBefore(IP); 1694 } 1695 }; 1696 1697 // Insert the clobbering stores. These may get intermixed with the 1698 // gc.results and gc.relocates, but that's fine. 1699 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1700 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1701 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1702 } else { 1703 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1704 Next++; 1705 InsertClobbersAt(Next); 1706 } 1707 } 1708 } 1709 // update use with load allocas and add store for gc_relocated 1710 for (auto Pair : AllocaMap) { 1711 Value *Def = Pair.first; 1712 Value *Alloca = Pair.second; 1713 1714 // we pre-record the uses of allocas so that we dont have to worry about 1715 // later update 1716 // that change the user information. 1717 SmallVector<Instruction *, 20> Uses; 1718 // PERF: trade a linear scan for repeated reallocation 1719 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1720 for (User *U : Def->users()) { 1721 if (!isa<ConstantExpr>(U)) { 1722 // If the def has a ConstantExpr use, then the def is either a 1723 // ConstantExpr use itself or null. In either case 1724 // (recursively in the first, directly in the second), the oop 1725 // it is ultimately dependent on is null and this particular 1726 // use does not need to be fixed up. 1727 Uses.push_back(cast<Instruction>(U)); 1728 } 1729 } 1730 1731 std::sort(Uses.begin(), Uses.end()); 1732 auto Last = std::unique(Uses.begin(), Uses.end()); 1733 Uses.erase(Last, Uses.end()); 1734 1735 for (Instruction *Use : Uses) { 1736 if (isa<PHINode>(Use)) { 1737 PHINode *Phi = cast<PHINode>(Use); 1738 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1739 if (Def == Phi->getIncomingValue(i)) { 1740 LoadInst *Load = new LoadInst( 1741 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1742 Phi->setIncomingValue(i, Load); 1743 } 1744 } 1745 } else { 1746 LoadInst *Load = new LoadInst(Alloca, "", Use); 1747 Use->replaceUsesOfWith(Def, Load); 1748 } 1749 } 1750 1751 // emit store for the initial gc value 1752 // store must be inserted after load, otherwise store will be in alloca's 1753 // use list and an extra load will be inserted before it 1754 StoreInst *Store = new StoreInst(Def, Alloca); 1755 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1756 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1757 // InvokeInst is a TerminatorInst so the store need to be inserted 1758 // into its normal destination block. 1759 BasicBlock *NormalDest = Invoke->getNormalDest(); 1760 Store->insertBefore(NormalDest->getFirstNonPHI()); 1761 } else { 1762 assert(!Inst->isTerminator() && 1763 "The only TerminatorInst that can produce a value is " 1764 "InvokeInst which is handled above."); 1765 Store->insertAfter(Inst); 1766 } 1767 } else { 1768 assert(isa<Argument>(Def)); 1769 Store->insertAfter(cast<Instruction>(Alloca)); 1770 } 1771 } 1772 1773 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1774 "we must have the same allocas with lives"); 1775 if (!PromotableAllocas.empty()) { 1776 // apply mem2reg to promote alloca to SSA 1777 PromoteMemToReg(PromotableAllocas, DT); 1778 } 1779 1780 #ifndef NDEBUG 1781 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1782 I++) 1783 if (isa<AllocaInst>(*I)) 1784 InitialAllocaNum--; 1785 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1786 #endif 1787 } 1788 1789 /// Implement a unique function which doesn't require we sort the input 1790 /// vector. Doing so has the effect of changing the output of a couple of 1791 /// tests in ways which make them less useful in testing fused safepoints. 1792 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1793 SmallSet<T, 8> Seen; 1794 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1795 return !Seen.insert(V).second; 1796 }), Vec.end()); 1797 } 1798 1799 /// Insert holders so that each Value is obviously live through the entire 1800 /// lifetime of the call. 1801 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1802 SmallVectorImpl<CallInst *> &Holders) { 1803 if (Values.empty()) 1804 // No values to hold live, might as well not insert the empty holder 1805 return; 1806 1807 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1808 // Use a dummy vararg function to actually hold the values live 1809 Function *Func = cast<Function>(M->getOrInsertFunction( 1810 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1811 if (CS.isCall()) { 1812 // For call safepoints insert dummy calls right after safepoint 1813 BasicBlock::iterator Next(CS.getInstruction()); 1814 Next++; 1815 Holders.push_back(CallInst::Create(Func, Values, "", Next)); 1816 return; 1817 } 1818 // For invoke safepooints insert dummy calls both in normal and 1819 // exceptional destination blocks 1820 auto *II = cast<InvokeInst>(CS.getInstruction()); 1821 Holders.push_back(CallInst::Create( 1822 Func, Values, "", II->getNormalDest()->getFirstInsertionPt())); 1823 Holders.push_back(CallInst::Create( 1824 Func, Values, "", II->getUnwindDest()->getFirstInsertionPt())); 1825 } 1826 1827 static void findLiveReferences( 1828 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1829 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1830 GCPtrLivenessData OriginalLivenessData; 1831 computeLiveInValues(DT, F, OriginalLivenessData); 1832 for (size_t i = 0; i < records.size(); i++) { 1833 struct PartiallyConstructedSafepointRecord &info = records[i]; 1834 const CallSite &CS = toUpdate[i]; 1835 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1836 } 1837 } 1838 1839 /// Remove any vector of pointers from the liveset by scalarizing them over the 1840 /// statepoint instruction. Adds the scalarized pieces to the liveset. It 1841 /// would be preferable to include the vector in the statepoint itself, but 1842 /// the lowering code currently does not handle that. Extending it would be 1843 /// slightly non-trivial since it requires a format change. Given how rare 1844 /// such cases are (for the moment?) scalarizing is an acceptable compromise. 1845 static void splitVectorValues(Instruction *StatepointInst, 1846 StatepointLiveSetTy &LiveSet, 1847 DenseMap<Value *, Value *>& PointerToBase, 1848 DominatorTree &DT) { 1849 SmallVector<Value *, 16> ToSplit; 1850 for (Value *V : LiveSet) 1851 if (isa<VectorType>(V->getType())) 1852 ToSplit.push_back(V); 1853 1854 if (ToSplit.empty()) 1855 return; 1856 1857 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1858 1859 Function &F = *(StatepointInst->getParent()->getParent()); 1860 1861 DenseMap<Value *, AllocaInst *> AllocaMap; 1862 // First is normal return, second is exceptional return (invoke only) 1863 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1864 for (Value *V : ToSplit) { 1865 AllocaInst *Alloca = 1866 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1867 AllocaMap[V] = Alloca; 1868 1869 VectorType *VT = cast<VectorType>(V->getType()); 1870 IRBuilder<> Builder(StatepointInst); 1871 SmallVector<Value *, 16> Elements; 1872 for (unsigned i = 0; i < VT->getNumElements(); i++) 1873 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1874 ElementMapping[V] = Elements; 1875 1876 auto InsertVectorReform = [&](Instruction *IP) { 1877 Builder.SetInsertPoint(IP); 1878 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1879 Value *ResultVec = UndefValue::get(VT); 1880 for (unsigned i = 0; i < VT->getNumElements(); i++) 1881 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1882 Builder.getInt32(i)); 1883 return ResultVec; 1884 }; 1885 1886 if (isa<CallInst>(StatepointInst)) { 1887 BasicBlock::iterator Next(StatepointInst); 1888 Next++; 1889 Instruction *IP = &*(Next); 1890 Replacements[V].first = InsertVectorReform(IP); 1891 Replacements[V].second = nullptr; 1892 } else { 1893 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 1894 // We've already normalized - check that we don't have shared destination 1895 // blocks 1896 BasicBlock *NormalDest = Invoke->getNormalDest(); 1897 assert(!isa<PHINode>(NormalDest->begin())); 1898 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 1899 assert(!isa<PHINode>(UnwindDest->begin())); 1900 // Insert insert element sequences in both successors 1901 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 1902 Replacements[V].first = InsertVectorReform(IP); 1903 IP = &*(UnwindDest->getFirstInsertionPt()); 1904 Replacements[V].second = InsertVectorReform(IP); 1905 } 1906 } 1907 1908 for (Value *V : ToSplit) { 1909 AllocaInst *Alloca = AllocaMap[V]; 1910 1911 // Capture all users before we start mutating use lists 1912 SmallVector<Instruction *, 16> Users; 1913 for (User *U : V->users()) 1914 Users.push_back(cast<Instruction>(U)); 1915 1916 for (Instruction *I : Users) { 1917 if (auto Phi = dyn_cast<PHINode>(I)) { 1918 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 1919 if (V == Phi->getIncomingValue(i)) { 1920 LoadInst *Load = new LoadInst( 1921 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1922 Phi->setIncomingValue(i, Load); 1923 } 1924 } else { 1925 LoadInst *Load = new LoadInst(Alloca, "", I); 1926 I->replaceUsesOfWith(V, Load); 1927 } 1928 } 1929 1930 // Store the original value and the replacement value into the alloca 1931 StoreInst *Store = new StoreInst(V, Alloca); 1932 if (auto I = dyn_cast<Instruction>(V)) 1933 Store->insertAfter(I); 1934 else 1935 Store->insertAfter(Alloca); 1936 1937 // Normal return for invoke, or call return 1938 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 1939 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1940 // Unwind return for invoke only 1941 Replacement = cast_or_null<Instruction>(Replacements[V].second); 1942 if (Replacement) 1943 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1944 } 1945 1946 // apply mem2reg to promote alloca to SSA 1947 SmallVector<AllocaInst *, 16> Allocas; 1948 for (Value *V : ToSplit) 1949 Allocas.push_back(AllocaMap[V]); 1950 PromoteMemToReg(Allocas, DT); 1951 1952 // Update our tracking of live pointers and base mappings to account for the 1953 // changes we just made. 1954 for (Value *V : ToSplit) { 1955 auto &Elements = ElementMapping[V]; 1956 1957 LiveSet.erase(V); 1958 LiveSet.insert(Elements.begin(), Elements.end()); 1959 // We need to update the base mapping as well. 1960 assert(PointerToBase.count(V)); 1961 Value *OldBase = PointerToBase[V]; 1962 auto &BaseElements = ElementMapping[OldBase]; 1963 PointerToBase.erase(V); 1964 assert(Elements.size() == BaseElements.size()); 1965 for (unsigned i = 0; i < Elements.size(); i++) { 1966 Value *Elem = Elements[i]; 1967 PointerToBase[Elem] = BaseElements[i]; 1968 } 1969 } 1970 } 1971 1972 // Helper function for the "rematerializeLiveValues". It walks use chain 1973 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1974 // values are visited (currently it is GEP's and casts). Returns true if it 1975 // successfully reached "BaseValue" and false otherwise. 1976 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1977 // recorded. 1978 static bool findRematerializableChainToBasePointer( 1979 SmallVectorImpl<Instruction*> &ChainToBase, 1980 Value *CurrentValue, Value *BaseValue) { 1981 1982 // We have found a base value 1983 if (CurrentValue == BaseValue) { 1984 return true; 1985 } 1986 1987 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1988 ChainToBase.push_back(GEP); 1989 return findRematerializableChainToBasePointer(ChainToBase, 1990 GEP->getPointerOperand(), 1991 BaseValue); 1992 } 1993 1994 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1995 Value *Def = CI->stripPointerCasts(); 1996 1997 // This two checks are basically similar. First one is here for the 1998 // consistency with findBasePointers logic. 1999 assert(!isa<CastInst>(Def) && "not a pointer cast found"); 2000 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2001 return false; 2002 2003 ChainToBase.push_back(CI); 2004 return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue); 2005 } 2006 2007 // Not supported instruction in the chain 2008 return false; 2009 } 2010 2011 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2012 // chain we are going to rematerialize. 2013 static unsigned 2014 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 2015 TargetTransformInfo &TTI) { 2016 unsigned Cost = 0; 2017 2018 for (Instruction *Instr : Chain) { 2019 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2020 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2021 "non noop cast is found during rematerialization"); 2022 2023 Type *SrcTy = CI->getOperand(0)->getType(); 2024 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 2025 2026 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2027 // Cost of the address calculation 2028 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); 2029 Cost += TTI.getAddressComputationCost(ValTy); 2030 2031 // And cost of the GEP itself 2032 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2033 // allowed for the external usage) 2034 if (!GEP->hasAllConstantIndices()) 2035 Cost += 2; 2036 2037 } else { 2038 llvm_unreachable("unsupported instruciton type during rematerialization"); 2039 } 2040 } 2041 2042 return Cost; 2043 } 2044 2045 // From the statepoint liveset pick values that are cheaper to recompute then to 2046 // relocate. Remove this values from the liveset, rematerialize them after 2047 // statepoint and record them in "Info" structure. Note that similar to 2048 // relocated values we don't do any user adjustments here. 2049 static void rematerializeLiveValues(CallSite CS, 2050 PartiallyConstructedSafepointRecord &Info, 2051 TargetTransformInfo &TTI) { 2052 const unsigned int ChainLengthThreshold = 10; 2053 2054 // Record values we are going to delete from this statepoint live set. 2055 // We can not di this in following loop due to iterator invalidation. 2056 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2057 2058 for (Value *LiveValue: Info.liveset) { 2059 // For each live pointer find it's defining chain 2060 SmallVector<Instruction *, 3> ChainToBase; 2061 assert(Info.PointerToBase.count(LiveValue)); 2062 bool FoundChain = 2063 findRematerializableChainToBasePointer(ChainToBase, 2064 LiveValue, 2065 Info.PointerToBase[LiveValue]); 2066 // Nothing to do, or chain is too long 2067 if (!FoundChain || 2068 ChainToBase.size() == 0 || 2069 ChainToBase.size() > ChainLengthThreshold) 2070 continue; 2071 2072 // Compute cost of this chain 2073 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2074 // TODO: We can also account for cases when we will be able to remove some 2075 // of the rematerialized values by later optimization passes. I.e if 2076 // we rematerialized several intersecting chains. Or if original values 2077 // don't have any uses besides this statepoint. 2078 2079 // For invokes we need to rematerialize each chain twice - for normal and 2080 // for unwind basic blocks. Model this by multiplying cost by two. 2081 if (CS.isInvoke()) { 2082 Cost *= 2; 2083 } 2084 // If it's too expensive - skip it 2085 if (Cost >= RematerializationThreshold) 2086 continue; 2087 2088 // Remove value from the live set 2089 LiveValuesToBeDeleted.push_back(LiveValue); 2090 2091 // Clone instructions and record them inside "Info" structure 2092 2093 // Walk backwards to visit top-most instructions first 2094 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2095 2096 // Utility function which clones all instructions from "ChainToBase" 2097 // and inserts them before "InsertBefore". Returns rematerialized value 2098 // which should be used after statepoint. 2099 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 2100 Instruction *LastClonedValue = nullptr; 2101 Instruction *LastValue = nullptr; 2102 for (Instruction *Instr: ChainToBase) { 2103 // Only GEP's and casts are suported as we need to be careful to not 2104 // introduce any new uses of pointers not in the liveset. 2105 // Note that it's fine to introduce new uses of pointers which were 2106 // otherwise not used after this statepoint. 2107 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2108 2109 Instruction *ClonedValue = Instr->clone(); 2110 ClonedValue->insertBefore(InsertBefore); 2111 ClonedValue->setName(Instr->getName() + ".remat"); 2112 2113 // If it is not first instruction in the chain then it uses previously 2114 // cloned value. We should update it to use cloned value. 2115 if (LastClonedValue) { 2116 assert(LastValue); 2117 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2118 #ifndef NDEBUG 2119 // Assert that cloned instruction does not use any instructions from 2120 // this chain other than LastClonedValue 2121 for (auto OpValue : ClonedValue->operand_values()) { 2122 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2123 ChainToBase.end() && 2124 "incorrect use in rematerialization chain"); 2125 } 2126 #endif 2127 } 2128 2129 LastClonedValue = ClonedValue; 2130 LastValue = Instr; 2131 } 2132 assert(LastClonedValue); 2133 return LastClonedValue; 2134 }; 2135 2136 // Different cases for calls and invokes. For invokes we need to clone 2137 // instructions both on normal and unwind path. 2138 if (CS.isCall()) { 2139 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2140 assert(InsertBefore); 2141 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2142 Info.RematerializedValues[RematerializedValue] = LiveValue; 2143 } else { 2144 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2145 2146 Instruction *NormalInsertBefore = 2147 Invoke->getNormalDest()->getFirstInsertionPt(); 2148 Instruction *UnwindInsertBefore = 2149 Invoke->getUnwindDest()->getFirstInsertionPt(); 2150 2151 Instruction *NormalRematerializedValue = 2152 rematerializeChain(NormalInsertBefore); 2153 Instruction *UnwindRematerializedValue = 2154 rematerializeChain(UnwindInsertBefore); 2155 2156 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2157 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2158 } 2159 } 2160 2161 // Remove rematerializaed values from the live set 2162 for (auto LiveValue: LiveValuesToBeDeleted) { 2163 Info.liveset.erase(LiveValue); 2164 } 2165 } 2166 2167 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 2168 SmallVectorImpl<CallSite> &toUpdate) { 2169 #ifndef NDEBUG 2170 // sanity check the input 2171 std::set<CallSite> uniqued; 2172 uniqued.insert(toUpdate.begin(), toUpdate.end()); 2173 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 2174 2175 for (size_t i = 0; i < toUpdate.size(); i++) { 2176 CallSite &CS = toUpdate[i]; 2177 assert(CS.getInstruction()->getParent()->getParent() == &F); 2178 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 2179 } 2180 #endif 2181 2182 // When inserting gc.relocates for invokes, we need to be able to insert at 2183 // the top of the successor blocks. See the comment on 2184 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2185 // may restructure the CFG. 2186 for (CallSite CS : toUpdate) { 2187 if (!CS.isInvoke()) 2188 continue; 2189 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 2190 normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(), 2191 DT); 2192 normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(), 2193 DT); 2194 } 2195 2196 // A list of dummy calls added to the IR to keep various values obviously 2197 // live in the IR. We'll remove all of these when done. 2198 SmallVector<CallInst *, 64> holders; 2199 2200 // Insert a dummy call with all of the arguments to the vm_state we'll need 2201 // for the actual safepoint insertion. This ensures reference arguments in 2202 // the deopt argument list are considered live through the safepoint (and 2203 // thus makes sure they get relocated.) 2204 for (size_t i = 0; i < toUpdate.size(); i++) { 2205 CallSite &CS = toUpdate[i]; 2206 Statepoint StatepointCS(CS); 2207 2208 SmallVector<Value *, 64> DeoptValues; 2209 for (Use &U : StatepointCS.vm_state_args()) { 2210 Value *Arg = cast<Value>(&U); 2211 assert(!isUnhandledGCPointerType(Arg->getType()) && 2212 "support for FCA unimplemented"); 2213 if (isHandledGCPointerType(Arg->getType())) 2214 DeoptValues.push_back(Arg); 2215 } 2216 insertUseHolderAfter(CS, DeoptValues, holders); 2217 } 2218 2219 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 2220 records.reserve(toUpdate.size()); 2221 for (size_t i = 0; i < toUpdate.size(); i++) { 2222 struct PartiallyConstructedSafepointRecord info; 2223 records.push_back(info); 2224 } 2225 assert(records.size() == toUpdate.size()); 2226 2227 // A) Identify all gc pointers which are statically live at the given call 2228 // site. 2229 findLiveReferences(F, DT, P, toUpdate, records); 2230 2231 // B) Find the base pointers for each live pointer 2232 /* scope for caching */ { 2233 // Cache the 'defining value' relation used in the computation and 2234 // insertion of base phis and selects. This ensures that we don't insert 2235 // large numbers of duplicate base_phis. 2236 DefiningValueMapTy DVCache; 2237 2238 for (size_t i = 0; i < records.size(); i++) { 2239 struct PartiallyConstructedSafepointRecord &info = records[i]; 2240 CallSite &CS = toUpdate[i]; 2241 findBasePointers(DT, DVCache, CS, info); 2242 } 2243 } // end of cache scope 2244 2245 // The base phi insertion logic (for any safepoint) may have inserted new 2246 // instructions which are now live at some safepoint. The simplest such 2247 // example is: 2248 // loop: 2249 // phi a <-- will be a new base_phi here 2250 // safepoint 1 <-- that needs to be live here 2251 // gep a + 1 2252 // safepoint 2 2253 // br loop 2254 // We insert some dummy calls after each safepoint to definitely hold live 2255 // the base pointers which were identified for that safepoint. We'll then 2256 // ask liveness for _every_ base inserted to see what is now live. Then we 2257 // remove the dummy calls. 2258 holders.reserve(holders.size() + records.size()); 2259 for (size_t i = 0; i < records.size(); i++) { 2260 struct PartiallyConstructedSafepointRecord &info = records[i]; 2261 CallSite &CS = toUpdate[i]; 2262 2263 SmallVector<Value *, 128> Bases; 2264 for (auto Pair : info.PointerToBase) { 2265 Bases.push_back(Pair.second); 2266 } 2267 insertUseHolderAfter(CS, Bases, holders); 2268 } 2269 2270 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2271 // need to rerun liveness. We may *also* have inserted new defs, but that's 2272 // not the key issue. 2273 recomputeLiveInValues(F, DT, P, toUpdate, records); 2274 2275 if (PrintBasePointers) { 2276 for (size_t i = 0; i < records.size(); i++) { 2277 struct PartiallyConstructedSafepointRecord &info = records[i]; 2278 errs() << "Base Pairs: (w/Relocation)\n"; 2279 for (auto Pair : info.PointerToBase) { 2280 errs() << " derived %" << Pair.first->getName() << " base %" 2281 << Pair.second->getName() << "\n"; 2282 } 2283 } 2284 } 2285 for (size_t i = 0; i < holders.size(); i++) { 2286 holders[i]->eraseFromParent(); 2287 holders[i] = nullptr; 2288 } 2289 holders.clear(); 2290 2291 // Do a limited scalarization of any live at safepoint vector values which 2292 // contain pointers. This enables this pass to run after vectorization at 2293 // the cost of some possible performance loss. TODO: it would be nice to 2294 // natively support vectors all the way through the backend so we don't need 2295 // to scalarize here. 2296 for (size_t i = 0; i < records.size(); i++) { 2297 struct PartiallyConstructedSafepointRecord &info = records[i]; 2298 Instruction *statepoint = toUpdate[i].getInstruction(); 2299 splitVectorValues(cast<Instruction>(statepoint), info.liveset, 2300 info.PointerToBase, DT); 2301 } 2302 2303 // In order to reduce live set of statepoint we might choose to rematerialize 2304 // some values instead of relocating them. This is purely an optimization and 2305 // does not influence correctness. 2306 TargetTransformInfo &TTI = 2307 P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2308 2309 for (size_t i = 0; i < records.size(); i++) { 2310 struct PartiallyConstructedSafepointRecord &info = records[i]; 2311 CallSite &CS = toUpdate[i]; 2312 2313 rematerializeLiveValues(CS, info, TTI); 2314 } 2315 2316 // Now run through and replace the existing statepoints with new ones with 2317 // the live variables listed. We do not yet update uses of the values being 2318 // relocated. We have references to live variables that need to 2319 // survive to the last iteration of this loop. (By construction, the 2320 // previous statepoint can not be a live variable, thus we can and remove 2321 // the old statepoint calls as we go.) 2322 for (size_t i = 0; i < records.size(); i++) { 2323 struct PartiallyConstructedSafepointRecord &info = records[i]; 2324 CallSite &CS = toUpdate[i]; 2325 makeStatepointExplicit(DT, CS, P, info); 2326 } 2327 toUpdate.clear(); // prevent accident use of invalid CallSites 2328 2329 // Do all the fixups of the original live variables to their relocated selves 2330 SmallVector<Value *, 128> live; 2331 for (size_t i = 0; i < records.size(); i++) { 2332 struct PartiallyConstructedSafepointRecord &info = records[i]; 2333 // We can't simply save the live set from the original insertion. One of 2334 // the live values might be the result of a call which needs a safepoint. 2335 // That Value* no longer exists and we need to use the new gc_result. 2336 // Thankfully, the liveset is embedded in the statepoint (and updated), so 2337 // we just grab that. 2338 Statepoint statepoint(info.StatepointToken); 2339 live.insert(live.end(), statepoint.gc_args_begin(), 2340 statepoint.gc_args_end()); 2341 #ifndef NDEBUG 2342 // Do some basic sanity checks on our liveness results before performing 2343 // relocation. Relocation can and will turn mistakes in liveness results 2344 // into non-sensical code which is must harder to debug. 2345 // TODO: It would be nice to test consistency as well 2346 assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) && 2347 "statepoint must be reachable or liveness is meaningless"); 2348 for (Value *V : statepoint.gc_args()) { 2349 if (!isa<Instruction>(V)) 2350 // Non-instruction values trivial dominate all possible uses 2351 continue; 2352 auto LiveInst = cast<Instruction>(V); 2353 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2354 "unreachable values should never be live"); 2355 assert(DT.dominates(LiveInst, info.StatepointToken) && 2356 "basic SSA liveness expectation violated by liveness analysis"); 2357 } 2358 #endif 2359 } 2360 unique_unsorted(live); 2361 2362 #ifndef NDEBUG 2363 // sanity check 2364 for (auto ptr : live) { 2365 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 2366 } 2367 #endif 2368 2369 relocationViaAlloca(F, DT, live, records); 2370 return !records.empty(); 2371 } 2372 2373 // Handles both return values and arguments for Functions and CallSites. 2374 template <typename AttrHolder> 2375 static void RemoveDerefAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2376 unsigned Index) { 2377 AttrBuilder R; 2378 if (AH.getDereferenceableBytes(Index)) 2379 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2380 AH.getDereferenceableBytes(Index))); 2381 if (AH.getDereferenceableOrNullBytes(Index)) 2382 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2383 AH.getDereferenceableOrNullBytes(Index))); 2384 2385 if (!R.empty()) 2386 AH.setAttributes(AH.getAttributes().removeAttributes( 2387 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2388 } 2389 2390 void 2391 RewriteStatepointsForGC::stripDereferenceabilityInfoFromPrototype(Function &F) { 2392 LLVMContext &Ctx = F.getContext(); 2393 2394 for (Argument &A : F.args()) 2395 if (isa<PointerType>(A.getType())) 2396 RemoveDerefAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2397 2398 if (isa<PointerType>(F.getReturnType())) 2399 RemoveDerefAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2400 } 2401 2402 void RewriteStatepointsForGC::stripDereferenceabilityInfoFromBody(Function &F) { 2403 if (F.empty()) 2404 return; 2405 2406 LLVMContext &Ctx = F.getContext(); 2407 MDBuilder Builder(Ctx); 2408 2409 for (Instruction &I : instructions(F)) { 2410 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2411 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2412 bool IsImmutableTBAA = 2413 MD->getNumOperands() == 4 && 2414 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2415 2416 if (!IsImmutableTBAA) 2417 continue; // no work to do, MD_tbaa is already marked mutable 2418 2419 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2420 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2421 uint64_t Offset = 2422 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2423 2424 MDNode *MutableTBAA = 2425 Builder.createTBAAStructTagNode(Base, Access, Offset); 2426 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2427 } 2428 2429 if (CallSite CS = CallSite(&I)) { 2430 for (int i = 0, e = CS.arg_size(); i != e; i++) 2431 if (isa<PointerType>(CS.getArgument(i)->getType())) 2432 RemoveDerefAttrAtIndex(Ctx, CS, i + 1); 2433 if (isa<PointerType>(CS.getType())) 2434 RemoveDerefAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2435 } 2436 } 2437 } 2438 2439 /// Returns true if this function should be rewritten by this pass. The main 2440 /// point of this function is as an extension point for custom logic. 2441 static bool shouldRewriteStatepointsIn(Function &F) { 2442 // TODO: This should check the GCStrategy 2443 if (F.hasGC()) { 2444 const char *FunctionGCName = F.getGC(); 2445 const StringRef StatepointExampleName("statepoint-example"); 2446 const StringRef CoreCLRName("coreclr"); 2447 return (StatepointExampleName == FunctionGCName) || 2448 (CoreCLRName == FunctionGCName); 2449 } else 2450 return false; 2451 } 2452 2453 void RewriteStatepointsForGC::stripDereferenceabilityInfo(Module &M) { 2454 #ifndef NDEBUG 2455 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2456 "precondition!"); 2457 #endif 2458 2459 for (Function &F : M) 2460 stripDereferenceabilityInfoFromPrototype(F); 2461 2462 for (Function &F : M) 2463 stripDereferenceabilityInfoFromBody(F); 2464 } 2465 2466 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2467 // Nothing to do for declarations. 2468 if (F.isDeclaration() || F.empty()) 2469 return false; 2470 2471 // Policy choice says not to rewrite - the most common reason is that we're 2472 // compiling code without a GCStrategy. 2473 if (!shouldRewriteStatepointsIn(F)) 2474 return false; 2475 2476 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2477 2478 // Gather all the statepoints which need rewritten. Be careful to only 2479 // consider those in reachable code since we need to ask dominance queries 2480 // when rewriting. We'll delete the unreachable ones in a moment. 2481 SmallVector<CallSite, 64> ParsePointNeeded; 2482 bool HasUnreachableStatepoint = false; 2483 for (Instruction &I : instructions(F)) { 2484 // TODO: only the ones with the flag set! 2485 if (isStatepoint(I)) { 2486 if (DT.isReachableFromEntry(I.getParent())) 2487 ParsePointNeeded.push_back(CallSite(&I)); 2488 else 2489 HasUnreachableStatepoint = true; 2490 } 2491 } 2492 2493 bool MadeChange = false; 2494 2495 // Delete any unreachable statepoints so that we don't have unrewritten 2496 // statepoints surviving this pass. This makes testing easier and the 2497 // resulting IR less confusing to human readers. Rather than be fancy, we 2498 // just reuse a utility function which removes the unreachable blocks. 2499 if (HasUnreachableStatepoint) 2500 MadeChange |= removeUnreachableBlocks(F); 2501 2502 // Return early if no work to do. 2503 if (ParsePointNeeded.empty()) 2504 return MadeChange; 2505 2506 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2507 // These are created by LCSSA. They have the effect of increasing the size 2508 // of liveness sets for no good reason. It may be harder to do this post 2509 // insertion since relocations and base phis can confuse things. 2510 for (BasicBlock &BB : F) 2511 if (BB.getUniquePredecessor()) { 2512 MadeChange = true; 2513 FoldSingleEntryPHINodes(&BB); 2514 } 2515 2516 // Before we start introducing relocations, we want to tweak the IR a bit to 2517 // avoid unfortunate code generation effects. The main example is that we 2518 // want to try to make sure the comparison feeding a branch is after any 2519 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2520 // values feeding a branch after relocation. This is semantically correct, 2521 // but results in extra register pressure since both the pre-relocation and 2522 // post-relocation copies must be available in registers. For code without 2523 // relocations this is handled elsewhere, but teaching the scheduler to 2524 // reverse the transform we're about to do would be slightly complex. 2525 // Note: This may extend the live range of the inputs to the icmp and thus 2526 // increase the liveset of any statepoint we move over. This is profitable 2527 // as long as all statepoints are in rare blocks. If we had in-register 2528 // lowering for live values this would be a much safer transform. 2529 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2530 if (auto *BI = dyn_cast<BranchInst>(TI)) 2531 if (BI->isConditional()) 2532 return dyn_cast<Instruction>(BI->getCondition()); 2533 // TODO: Extend this to handle switches 2534 return nullptr; 2535 }; 2536 for (BasicBlock &BB : F) { 2537 TerminatorInst *TI = BB.getTerminator(); 2538 if (auto *Cond = getConditionInst(TI)) 2539 // TODO: Handle more than just ICmps here. We should be able to move 2540 // most instructions without side effects or memory access. 2541 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2542 MadeChange = true; 2543 Cond->moveBefore(TI); 2544 } 2545 } 2546 2547 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); 2548 return MadeChange; 2549 } 2550 2551 // liveness computation via standard dataflow 2552 // ------------------------------------------------------------------- 2553 2554 // TODO: Consider using bitvectors for liveness, the set of potentially 2555 // interesting values should be small and easy to pre-compute. 2556 2557 /// Compute the live-in set for the location rbegin starting from 2558 /// the live-out set of the basic block 2559 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2560 BasicBlock::reverse_iterator rend, 2561 DenseSet<Value *> &LiveTmp) { 2562 2563 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2564 Instruction *I = &*ritr; 2565 2566 // KILL/Def - Remove this definition from LiveIn 2567 LiveTmp.erase(I); 2568 2569 // Don't consider *uses* in PHI nodes, we handle their contribution to 2570 // predecessor blocks when we seed the LiveOut sets 2571 if (isa<PHINode>(I)) 2572 continue; 2573 2574 // USE - Add to the LiveIn set for this instruction 2575 for (Value *V : I->operands()) { 2576 assert(!isUnhandledGCPointerType(V->getType()) && 2577 "support for FCA unimplemented"); 2578 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2579 // The choice to exclude all things constant here is slightly subtle. 2580 // There are two independent reasons: 2581 // - We assume that things which are constant (from LLVM's definition) 2582 // do not move at runtime. For example, the address of a global 2583 // variable is fixed, even though it's contents may not be. 2584 // - Second, we can't disallow arbitrary inttoptr constants even 2585 // if the language frontend does. Optimization passes are free to 2586 // locally exploit facts without respect to global reachability. This 2587 // can create sections of code which are dynamically unreachable and 2588 // contain just about anything. (see constants.ll in tests) 2589 LiveTmp.insert(V); 2590 } 2591 } 2592 } 2593 } 2594 2595 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2596 2597 for (BasicBlock *Succ : successors(BB)) { 2598 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2599 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2600 PHINode *Phi = cast<PHINode>(&*I); 2601 Value *V = Phi->getIncomingValueForBlock(BB); 2602 assert(!isUnhandledGCPointerType(V->getType()) && 2603 "support for FCA unimplemented"); 2604 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2605 LiveTmp.insert(V); 2606 } 2607 } 2608 } 2609 } 2610 2611 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2612 DenseSet<Value *> KillSet; 2613 for (Instruction &I : *BB) 2614 if (isHandledGCPointerType(I.getType())) 2615 KillSet.insert(&I); 2616 return KillSet; 2617 } 2618 2619 #ifndef NDEBUG 2620 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2621 /// sanity check for the liveness computation. 2622 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2623 TerminatorInst *TI, bool TermOkay = false) { 2624 for (Value *V : Live) { 2625 if (auto *I = dyn_cast<Instruction>(V)) { 2626 // The terminator can be a member of the LiveOut set. LLVM's definition 2627 // of instruction dominance states that V does not dominate itself. As 2628 // such, we need to special case this to allow it. 2629 if (TermOkay && TI == I) 2630 continue; 2631 assert(DT.dominates(I, TI) && 2632 "basic SSA liveness expectation violated by liveness analysis"); 2633 } 2634 } 2635 } 2636 2637 /// Check that all the liveness sets used during the computation of liveness 2638 /// obey basic SSA properties. This is useful for finding cases where we miss 2639 /// a def. 2640 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2641 BasicBlock &BB) { 2642 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2643 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2644 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2645 } 2646 #endif 2647 2648 static void computeLiveInValues(DominatorTree &DT, Function &F, 2649 GCPtrLivenessData &Data) { 2650 2651 SmallSetVector<BasicBlock *, 200> Worklist; 2652 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2653 // We use a SetVector so that we don't have duplicates in the worklist. 2654 Worklist.insert(pred_begin(BB), pred_end(BB)); 2655 }; 2656 auto NextItem = [&]() { 2657 BasicBlock *BB = Worklist.back(); 2658 Worklist.pop_back(); 2659 return BB; 2660 }; 2661 2662 // Seed the liveness for each individual block 2663 for (BasicBlock &BB : F) { 2664 Data.KillSet[&BB] = computeKillSet(&BB); 2665 Data.LiveSet[&BB].clear(); 2666 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2667 2668 #ifndef NDEBUG 2669 for (Value *Kill : Data.KillSet[&BB]) 2670 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2671 #endif 2672 2673 Data.LiveOut[&BB] = DenseSet<Value *>(); 2674 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2675 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2676 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2677 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2678 if (!Data.LiveIn[&BB].empty()) 2679 AddPredsToWorklist(&BB); 2680 } 2681 2682 // Propagate that liveness until stable 2683 while (!Worklist.empty()) { 2684 BasicBlock *BB = NextItem(); 2685 2686 // Compute our new liveout set, then exit early if it hasn't changed 2687 // despite the contribution of our successor. 2688 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2689 const auto OldLiveOutSize = LiveOut.size(); 2690 for (BasicBlock *Succ : successors(BB)) { 2691 assert(Data.LiveIn.count(Succ)); 2692 set_union(LiveOut, Data.LiveIn[Succ]); 2693 } 2694 // assert OutLiveOut is a subset of LiveOut 2695 if (OldLiveOutSize == LiveOut.size()) { 2696 // If the sets are the same size, then we didn't actually add anything 2697 // when unioning our successors LiveIn Thus, the LiveIn of this block 2698 // hasn't changed. 2699 continue; 2700 } 2701 Data.LiveOut[BB] = LiveOut; 2702 2703 // Apply the effects of this basic block 2704 DenseSet<Value *> LiveTmp = LiveOut; 2705 set_union(LiveTmp, Data.LiveSet[BB]); 2706 set_subtract(LiveTmp, Data.KillSet[BB]); 2707 2708 assert(Data.LiveIn.count(BB)); 2709 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2710 // assert: OldLiveIn is a subset of LiveTmp 2711 if (OldLiveIn.size() != LiveTmp.size()) { 2712 Data.LiveIn[BB] = LiveTmp; 2713 AddPredsToWorklist(BB); 2714 } 2715 } // while( !worklist.empty() ) 2716 2717 #ifndef NDEBUG 2718 // Sanity check our output against SSA properties. This helps catch any 2719 // missing kills during the above iteration. 2720 for (BasicBlock &BB : F) { 2721 checkBasicSSA(DT, Data, BB); 2722 } 2723 #endif 2724 } 2725 2726 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2727 StatepointLiveSetTy &Out) { 2728 2729 BasicBlock *BB = Inst->getParent(); 2730 2731 // Note: The copy is intentional and required 2732 assert(Data.LiveOut.count(BB)); 2733 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2734 2735 // We want to handle the statepoint itself oddly. It's 2736 // call result is not live (normal), nor are it's arguments 2737 // (unless they're used again later). This adjustment is 2738 // specifically what we need to relocate 2739 BasicBlock::reverse_iterator rend(Inst); 2740 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2741 LiveOut.erase(Inst); 2742 Out.insert(LiveOut.begin(), LiveOut.end()); 2743 } 2744 2745 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2746 const CallSite &CS, 2747 PartiallyConstructedSafepointRecord &Info) { 2748 Instruction *Inst = CS.getInstruction(); 2749 StatepointLiveSetTy Updated; 2750 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2751 2752 #ifndef NDEBUG 2753 DenseSet<Value *> Bases; 2754 for (auto KVPair : Info.PointerToBase) { 2755 Bases.insert(KVPair.second); 2756 } 2757 #endif 2758 // We may have base pointers which are now live that weren't before. We need 2759 // to update the PointerToBase structure to reflect this. 2760 for (auto V : Updated) 2761 if (!Info.PointerToBase.count(V)) { 2762 assert(Bases.count(V) && "can't find base for unexpected live value"); 2763 Info.PointerToBase[V] = V; 2764 continue; 2765 } 2766 2767 #ifndef NDEBUG 2768 for (auto V : Updated) { 2769 assert(Info.PointerToBase.count(V) && 2770 "must be able to find base for live value"); 2771 } 2772 #endif 2773 2774 // Remove any stale base mappings - this can happen since our liveness is 2775 // more precise then the one inherent in the base pointer analysis 2776 DenseSet<Value *> ToErase; 2777 for (auto KVPair : Info.PointerToBase) 2778 if (!Updated.count(KVPair.first)) 2779 ToErase.insert(KVPair.first); 2780 for (auto V : ToErase) 2781 Info.PointerToBase.erase(V); 2782 2783 #ifndef NDEBUG 2784 for (auto KVPair : Info.PointerToBase) 2785 assert(Updated.count(KVPair.first) && "record for non-live value"); 2786 #endif 2787 2788 Info.liveset = Updated; 2789 } 2790