xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 6334952ff00ea32ba4692d3f1a0dcf948409a18b)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Rewrite call/invoke instructions so as to make potential relocations
10 // performed by the garbage collector explicit in the IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueHandle.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <set>
75 #include <string>
76 #include <utility>
77 #include <vector>
78 
79 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
80 
81 using namespace llvm;
82 
83 // Print the liveset found at the insert location
84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
85                                   cl::init(false));
86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
87                                       cl::init(false));
88 
89 // Print out the base pointers for debugging
90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
91                                        cl::init(false));
92 
93 // Cost threshold measuring when it is profitable to rematerialize value instead
94 // of relocating it
95 static cl::opt<unsigned>
96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
97                            cl::init(6));
98 
99 #ifdef EXPENSIVE_CHECKS
100 static bool ClobberNonLive = true;
101 #else
102 static bool ClobberNonLive = false;
103 #endif
104 
105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
106                                                   cl::location(ClobberNonLive),
107                                                   cl::Hidden);
108 
109 static cl::opt<bool>
110     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
111                                    cl::Hidden, cl::init(true));
112 
113 /// The IR fed into RewriteStatepointsForGC may have had attributes and
114 /// metadata implying dereferenceability that are no longer valid/correct after
115 /// RewriteStatepointsForGC has run. This is because semantically, after
116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
117 /// heap. stripNonValidData (conservatively) restores
118 /// correctness by erasing all attributes in the module that externally imply
119 /// dereferenceability. Similar reasoning also applies to the noalias
120 /// attributes and metadata. gc.statepoint can touch the entire heap including
121 /// noalias objects.
122 /// Apart from attributes and metadata, we also remove instructions that imply
123 /// constant physical memory: llvm.invariant.start.
124 static void stripNonValidData(Module &M);
125 
126 static bool shouldRewriteStatepointsIn(Function &F);
127 
128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
129                                                ModuleAnalysisManager &AM) {
130   bool Changed = false;
131   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
132   for (Function &F : M) {
133     // Nothing to do for declarations.
134     if (F.isDeclaration() || F.empty())
135       continue;
136 
137     // Policy choice says not to rewrite - the most common reason is that we're
138     // compiling code without a GCStrategy.
139     if (!shouldRewriteStatepointsIn(F))
140       continue;
141 
142     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
143     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
144     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
145     Changed |= runOnFunction(F, DT, TTI, TLI);
146   }
147   if (!Changed)
148     return PreservedAnalyses::all();
149 
150   // stripNonValidData asserts that shouldRewriteStatepointsIn
151   // returns true for at least one function in the module.  Since at least
152   // one function changed, we know that the precondition is satisfied.
153   stripNonValidData(M);
154 
155   PreservedAnalyses PA;
156   PA.preserve<TargetIRAnalysis>();
157   PA.preserve<TargetLibraryAnalysis>();
158   return PA;
159 }
160 
161 namespace {
162 
163 class RewriteStatepointsForGCLegacyPass : public ModulePass {
164   RewriteStatepointsForGC Impl;
165 
166 public:
167   static char ID; // Pass identification, replacement for typeid
168 
169   RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
170     initializeRewriteStatepointsForGCLegacyPassPass(
171         *PassRegistry::getPassRegistry());
172   }
173 
174   bool runOnModule(Module &M) override {
175     bool Changed = false;
176     for (Function &F : M) {
177       // Nothing to do for declarations.
178       if (F.isDeclaration() || F.empty())
179         continue;
180 
181       // Policy choice says not to rewrite - the most common reason is that
182       // we're compiling code without a GCStrategy.
183       if (!shouldRewriteStatepointsIn(F))
184         continue;
185 
186       TargetTransformInfo &TTI =
187           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
188       const TargetLibraryInfo &TLI =
189           getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
190       auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
191 
192       Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
193     }
194 
195     if (!Changed)
196       return false;
197 
198     // stripNonValidData asserts that shouldRewriteStatepointsIn
199     // returns true for at least one function in the module.  Since at least
200     // one function changed, we know that the precondition is satisfied.
201     stripNonValidData(M);
202     return true;
203   }
204 
205   void getAnalysisUsage(AnalysisUsage &AU) const override {
206     // We add and rewrite a bunch of instructions, but don't really do much
207     // else.  We could in theory preserve a lot more analyses here.
208     AU.addRequired<DominatorTreeWrapperPass>();
209     AU.addRequired<TargetTransformInfoWrapperPass>();
210     AU.addRequired<TargetLibraryInfoWrapperPass>();
211   }
212 };
213 
214 } // end anonymous namespace
215 
216 char RewriteStatepointsForGCLegacyPass::ID = 0;
217 
218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
219   return new RewriteStatepointsForGCLegacyPass();
220 }
221 
222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
223                       "rewrite-statepoints-for-gc",
224                       "Make relocations explicit at statepoints", false, false)
225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
228                     "rewrite-statepoints-for-gc",
229                     "Make relocations explicit at statepoints", false, false)
230 
231 namespace {
232 
233 struct GCPtrLivenessData {
234   /// Values defined in this block.
235   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
236 
237   /// Values used in this block (and thus live); does not included values
238   /// killed within this block.
239   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
240 
241   /// Values live into this basic block (i.e. used by any
242   /// instruction in this basic block or ones reachable from here)
243   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
244 
245   /// Values live out of this basic block (i.e. live into
246   /// any successor block)
247   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
248 };
249 
250 // The type of the internal cache used inside the findBasePointers family
251 // of functions.  From the callers perspective, this is an opaque type and
252 // should not be inspected.
253 //
254 // In the actual implementation this caches two relations:
255 // - The base relation itself (i.e. this pointer is based on that one)
256 // - The base defining value relation (i.e. before base_phi insertion)
257 // Generally, after the execution of a full findBasePointer call, only the
258 // base relation will remain.  Internally, we add a mixture of the two
259 // types, then update all the second type to the first type
260 using DefiningValueMapTy = MapVector<Value *, Value *>;
261 using StatepointLiveSetTy = SetVector<Value *>;
262 using RematerializedValueMapTy =
263     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
264 
265 struct PartiallyConstructedSafepointRecord {
266   /// The set of values known to be live across this safepoint
267   StatepointLiveSetTy LiveSet;
268 
269   /// Mapping from live pointers to a base-defining-value
270   MapVector<Value *, Value *> PointerToBase;
271 
272   /// The *new* gc.statepoint instruction itself.  This produces the token
273   /// that normal path gc.relocates and the gc.result are tied to.
274   GCStatepointInst *StatepointToken;
275 
276   /// Instruction to which exceptional gc relocates are attached
277   /// Makes it easier to iterate through them during relocationViaAlloca.
278   Instruction *UnwindToken;
279 
280   /// Record live values we are rematerialized instead of relocating.
281   /// They are not included into 'LiveSet' field.
282   /// Maps rematerialized copy to it's original value.
283   RematerializedValueMapTy RematerializedValues;
284 };
285 
286 } // end anonymous namespace
287 
288 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
289   Optional<OperandBundleUse> DeoptBundle =
290       Call->getOperandBundle(LLVMContext::OB_deopt);
291 
292   if (!DeoptBundle.hasValue()) {
293     assert(AllowStatepointWithNoDeoptInfo &&
294            "Found non-leaf call without deopt info!");
295     return None;
296   }
297 
298   return DeoptBundle.getValue().Inputs;
299 }
300 
301 /// Compute the live-in set for every basic block in the function
302 static void computeLiveInValues(DominatorTree &DT, Function &F,
303                                 GCPtrLivenessData &Data);
304 
305 /// Given results from the dataflow liveness computation, find the set of live
306 /// Values at a particular instruction.
307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
308                               StatepointLiveSetTy &out);
309 
310 // TODO: Once we can get to the GCStrategy, this becomes
311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
312 
313 static bool isGCPointerType(Type *T) {
314   if (auto *PT = dyn_cast<PointerType>(T))
315     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
316     // GC managed heap.  We know that a pointer into this heap needs to be
317     // updated and that no other pointer does.
318     return PT->getAddressSpace() == 1;
319   return false;
320 }
321 
322 // Return true if this type is one which a) is a gc pointer or contains a GC
323 // pointer and b) is of a type this code expects to encounter as a live value.
324 // (The insertion code will assert that a type which matches (a) and not (b)
325 // is not encountered.)
326 static bool isHandledGCPointerType(Type *T) {
327   // We fully support gc pointers
328   if (isGCPointerType(T))
329     return true;
330   // We partially support vectors of gc pointers. The code will assert if it
331   // can't handle something.
332   if (auto VT = dyn_cast<VectorType>(T))
333     if (isGCPointerType(VT->getElementType()))
334       return true;
335   return false;
336 }
337 
338 #ifndef NDEBUG
339 /// Returns true if this type contains a gc pointer whether we know how to
340 /// handle that type or not.
341 static bool containsGCPtrType(Type *Ty) {
342   if (isGCPointerType(Ty))
343     return true;
344   if (VectorType *VT = dyn_cast<VectorType>(Ty))
345     return isGCPointerType(VT->getScalarType());
346   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
347     return containsGCPtrType(AT->getElementType());
348   if (StructType *ST = dyn_cast<StructType>(Ty))
349     return llvm::any_of(ST->elements(), containsGCPtrType);
350   return false;
351 }
352 
353 // Returns true if this is a type which a) is a gc pointer or contains a GC
354 // pointer and b) is of a type which the code doesn't expect (i.e. first class
355 // aggregates).  Used to trip assertions.
356 static bool isUnhandledGCPointerType(Type *Ty) {
357   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
358 }
359 #endif
360 
361 // Return the name of the value suffixed with the provided value, or if the
362 // value didn't have a name, the default value specified.
363 static std::string suffixed_name_or(Value *V, StringRef Suffix,
364                                     StringRef DefaultName) {
365   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
366 }
367 
368 // Conservatively identifies any definitions which might be live at the
369 // given instruction. The  analysis is performed immediately before the
370 // given instruction. Values defined by that instruction are not considered
371 // live.  Values used by that instruction are considered live.
372 static void analyzeParsePointLiveness(
373     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
374     PartiallyConstructedSafepointRecord &Result) {
375   StatepointLiveSetTy LiveSet;
376   findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
377 
378   if (PrintLiveSet) {
379     dbgs() << "Live Variables:\n";
380     for (Value *V : LiveSet)
381       dbgs() << " " << V->getName() << " " << *V << "\n";
382   }
383   if (PrintLiveSetSize) {
384     dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n";
385     dbgs() << "Number live values: " << LiveSet.size() << "\n";
386   }
387   Result.LiveSet = LiveSet;
388 }
389 
390 // Returns true is V is a knownBaseResult.
391 static bool isKnownBaseResult(Value *V);
392 
393 // Returns true if V is a BaseResult that already exists in the IR, i.e. it is
394 // not created by the findBasePointers algorithm.
395 static bool isOriginalBaseResult(Value *V);
396 
397 namespace {
398 
399 /// A single base defining value - An immediate base defining value for an
400 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
401 /// For instructions which have multiple pointer [vector] inputs or that
402 /// transition between vector and scalar types, there is no immediate base
403 /// defining value.  The 'base defining value' for 'Def' is the transitive
404 /// closure of this relation stopping at the first instruction which has no
405 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
406 /// but it can also be an arbitrary derived pointer.
407 struct BaseDefiningValueResult {
408   /// Contains the value which is the base defining value.
409   Value * const BDV;
410 
411   /// True if the base defining value is also known to be an actual base
412   /// pointer.
413   const bool IsKnownBase;
414 
415   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
416     : BDV(BDV), IsKnownBase(IsKnownBase) {
417 #ifndef NDEBUG
418     // Check consistency between new and old means of checking whether a BDV is
419     // a base.
420     bool MustBeBase = isKnownBaseResult(BDV);
421     assert(!MustBeBase || MustBeBase == IsKnownBase);
422 #endif
423   }
424 };
425 
426 } // end anonymous namespace
427 
428 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
429 
430 /// Return a base defining value for the 'Index' element of the given vector
431 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
432 /// 'I'.  As an optimization, this method will try to determine when the
433 /// element is known to already be a base pointer.  If this can be established,
434 /// the second value in the returned pair will be true.  Note that either a
435 /// vector or a pointer typed value can be returned.  For the former, the
436 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
437 /// If the later, the return pointer is a BDV (or possibly a base) for the
438 /// particular element in 'I'.
439 static BaseDefiningValueResult
440 findBaseDefiningValueOfVector(Value *I) {
441   // Each case parallels findBaseDefiningValue below, see that code for
442   // detailed motivation.
443 
444   if (isa<Argument>(I))
445     // An incoming argument to the function is a base pointer
446     return BaseDefiningValueResult(I, true);
447 
448   if (isa<Constant>(I))
449     // Base of constant vector consists only of constant null pointers.
450     // For reasoning see similar case inside 'findBaseDefiningValue' function.
451     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
452                                    true);
453 
454   if (isa<LoadInst>(I))
455     return BaseDefiningValueResult(I, true);
456 
457   if (isa<InsertElementInst>(I))
458     // We don't know whether this vector contains entirely base pointers or
459     // not.  To be conservatively correct, we treat it as a BDV and will
460     // duplicate code as needed to construct a parallel vector of bases.
461     return BaseDefiningValueResult(I, false);
462 
463   if (isa<ShuffleVectorInst>(I))
464     // We don't know whether this vector contains entirely base pointers or
465     // not.  To be conservatively correct, we treat it as a BDV and will
466     // duplicate code as needed to construct a parallel vector of bases.
467     // TODO: There a number of local optimizations which could be applied here
468     // for particular sufflevector patterns.
469     return BaseDefiningValueResult(I, false);
470 
471   // The behavior of getelementptr instructions is the same for vector and
472   // non-vector data types.
473   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
474     return findBaseDefiningValue(GEP->getPointerOperand());
475 
476   // If the pointer comes through a bitcast of a vector of pointers to
477   // a vector of another type of pointer, then look through the bitcast
478   if (auto *BC = dyn_cast<BitCastInst>(I))
479     return findBaseDefiningValue(BC->getOperand(0));
480 
481   // We assume that functions in the source language only return base
482   // pointers.  This should probably be generalized via attributes to support
483   // both source language and internal functions.
484   if (isa<CallInst>(I) || isa<InvokeInst>(I))
485     return BaseDefiningValueResult(I, true);
486 
487   // A PHI or Select is a base defining value.  The outer findBasePointer
488   // algorithm is responsible for constructing a base value for this BDV.
489   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
490          "unknown vector instruction - no base found for vector element");
491   return BaseDefiningValueResult(I, false);
492 }
493 
494 /// Helper function for findBasePointer - Will return a value which either a)
495 /// defines the base pointer for the input, b) blocks the simple search
496 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
497 /// from pointer to vector type or back.
498 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
499   assert(I->getType()->isPtrOrPtrVectorTy() &&
500          "Illegal to ask for the base pointer of a non-pointer type");
501 
502   if (I->getType()->isVectorTy())
503     return findBaseDefiningValueOfVector(I);
504 
505   if (isa<Argument>(I))
506     // An incoming argument to the function is a base pointer
507     // We should have never reached here if this argument isn't an gc value
508     return BaseDefiningValueResult(I, true);
509 
510   if (isa<Constant>(I)) {
511     // We assume that objects with a constant base (e.g. a global) can't move
512     // and don't need to be reported to the collector because they are always
513     // live. Besides global references, all kinds of constants (e.g. undef,
514     // constant expressions, null pointers) can be introduced by the inliner or
515     // the optimizer, especially on dynamically dead paths.
516     // Here we treat all of them as having single null base. By doing this we
517     // trying to avoid problems reporting various conflicts in a form of
518     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
519     // See constant.ll file for relevant test cases.
520 
521     return BaseDefiningValueResult(
522         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
523   }
524 
525   if (CastInst *CI = dyn_cast<CastInst>(I)) {
526     Value *Def = CI->stripPointerCasts();
527     // If stripping pointer casts changes the address space there is an
528     // addrspacecast in between.
529     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
530                cast<PointerType>(CI->getType())->getAddressSpace() &&
531            "unsupported addrspacecast");
532     // If we find a cast instruction here, it means we've found a cast which is
533     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
534     // handle int->ptr conversion.
535     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
536     return findBaseDefiningValue(Def);
537   }
538 
539   if (isa<LoadInst>(I))
540     // The value loaded is an gc base itself
541     return BaseDefiningValueResult(I, true);
542 
543   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
544     // The base of this GEP is the base
545     return findBaseDefiningValue(GEP->getPointerOperand());
546 
547   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
548     switch (II->getIntrinsicID()) {
549     default:
550       // fall through to general call handling
551       break;
552     case Intrinsic::experimental_gc_statepoint:
553       llvm_unreachable("statepoints don't produce pointers");
554     case Intrinsic::experimental_gc_relocate:
555       // Rerunning safepoint insertion after safepoints are already
556       // inserted is not supported.  It could probably be made to work,
557       // but why are you doing this?  There's no good reason.
558       llvm_unreachable("repeat safepoint insertion is not supported");
559     case Intrinsic::gcroot:
560       // Currently, this mechanism hasn't been extended to work with gcroot.
561       // There's no reason it couldn't be, but I haven't thought about the
562       // implications much.
563       llvm_unreachable(
564           "interaction with the gcroot mechanism is not supported");
565     }
566   }
567   // We assume that functions in the source language only return base
568   // pointers.  This should probably be generalized via attributes to support
569   // both source language and internal functions.
570   if (isa<CallInst>(I) || isa<InvokeInst>(I))
571     return BaseDefiningValueResult(I, true);
572 
573   // TODO: I have absolutely no idea how to implement this part yet.  It's not
574   // necessarily hard, I just haven't really looked at it yet.
575   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
576 
577   if (isa<AtomicCmpXchgInst>(I))
578     // A CAS is effectively a atomic store and load combined under a
579     // predicate.  From the perspective of base pointers, we just treat it
580     // like a load.
581     return BaseDefiningValueResult(I, true);
582 
583   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
584                                    "binary ops which don't apply to pointers");
585 
586   // The aggregate ops.  Aggregates can either be in the heap or on the
587   // stack, but in either case, this is simply a field load.  As a result,
588   // this is a defining definition of the base just like a load is.
589   if (isa<ExtractValueInst>(I))
590     return BaseDefiningValueResult(I, true);
591 
592   // We should never see an insert vector since that would require we be
593   // tracing back a struct value not a pointer value.
594   assert(!isa<InsertValueInst>(I) &&
595          "Base pointer for a struct is meaningless");
596 
597   // An extractelement produces a base result exactly when it's input does.
598   // We may need to insert a parallel instruction to extract the appropriate
599   // element out of the base vector corresponding to the input. Given this,
600   // it's analogous to the phi and select case even though it's not a merge.
601   if (isa<ExtractElementInst>(I))
602     // Note: There a lot of obvious peephole cases here.  This are deliberately
603     // handled after the main base pointer inference algorithm to make writing
604     // test cases to exercise that code easier.
605     return BaseDefiningValueResult(I, false);
606 
607   // The last two cases here don't return a base pointer.  Instead, they
608   // return a value which dynamically selects from among several base
609   // derived pointers (each with it's own base potentially).  It's the job of
610   // the caller to resolve these.
611   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
612          "missing instruction case in findBaseDefiningValing");
613   return BaseDefiningValueResult(I, false);
614 }
615 
616 /// Returns the base defining value for this value.
617 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
618   Value *&Cached = Cache[I];
619   if (!Cached) {
620     Cached = findBaseDefiningValue(I).BDV;
621     LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
622                       << Cached->getName() << "\n");
623   }
624   assert(Cache[I] != nullptr);
625   return Cached;
626 }
627 
628 /// Return a base pointer for this value if known.  Otherwise, return it's
629 /// base defining value.
630 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
631   Value *Def = findBaseDefiningValueCached(I, Cache);
632   auto Found = Cache.find(Def);
633   if (Found != Cache.end()) {
634     // Either a base-of relation, or a self reference.  Caller must check.
635     return Found->second;
636   }
637   // Only a BDV available
638   return Def;
639 }
640 
641 /// This value is a base pointer that is not generated by RS4GC, i.e. it already
642 /// exists in the code.
643 static bool isOriginalBaseResult(Value *V) {
644   // no recursion possible
645   return !isa<PHINode>(V) && !isa<SelectInst>(V) &&
646          !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
647          !isa<ShuffleVectorInst>(V);
648 }
649 
650 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
651 /// is it known to be a base pointer?  Or do we need to continue searching.
652 static bool isKnownBaseResult(Value *V) {
653   if (isOriginalBaseResult(V))
654     return true;
655   if (isa<Instruction>(V) &&
656       cast<Instruction>(V)->getMetadata("is_base_value")) {
657     // This is a previously inserted base phi or select.  We know
658     // that this is a base value.
659     return true;
660   }
661 
662   // We need to keep searching
663   return false;
664 }
665 
666 // Returns true if First and Second values are both scalar or both vector.
667 static bool areBothVectorOrScalar(Value *First, Value *Second) {
668   return isa<VectorType>(First->getType()) ==
669          isa<VectorType>(Second->getType());
670 }
671 
672 namespace {
673 
674 /// Models the state of a single base defining value in the findBasePointer
675 /// algorithm for determining where a new instruction is needed to propagate
676 /// the base of this BDV.
677 class BDVState {
678 public:
679   enum Status {
680      // Starting state of lattice
681      Unknown,
682      // Some specific base value
683      Base,
684      // Need to insert a node to represent a merge.
685      Conflict
686   };
687 
688   BDVState() {}
689   explicit BDVState(Status Status, Value *BaseValue = nullptr)
690       : Status(Status), BaseValue(BaseValue) {
691     assert(Status != Base || BaseValue);
692   }
693 
694   Status getStatus() const { return Status; }
695   Value *getBaseValue() const { return BaseValue; }
696 
697   bool isBase() const { return getStatus() == Base; }
698   bool isUnknown() const { return getStatus() == Unknown; }
699   bool isConflict() const { return getStatus() == Conflict; }
700 
701   bool operator==(const BDVState &Other) const {
702     return BaseValue == Other.BaseValue && Status == Other.Status;
703   }
704 
705   bool operator!=(const BDVState &other) const { return !(*this == other); }
706 
707   LLVM_DUMP_METHOD
708   void dump() const {
709     print(dbgs());
710     dbgs() << '\n';
711   }
712 
713   void print(raw_ostream &OS) const {
714     switch (getStatus()) {
715     case Unknown:
716       OS << "U";
717       break;
718     case Base:
719       OS << "B";
720       break;
721     case Conflict:
722       OS << "C";
723       break;
724     }
725     OS << " (" << getBaseValue() << " - "
726        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
727   }
728 
729 private:
730   Status Status = Unknown;
731   AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base.
732 };
733 
734 } // end anonymous namespace
735 
736 #ifndef NDEBUG
737 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
738   State.print(OS);
739   return OS;
740 }
741 #endif
742 
743 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
744   switch (LHS.getStatus()) {
745   case BDVState::Unknown:
746     return RHS;
747 
748   case BDVState::Base:
749     assert(LHS.getBaseValue() && "can't be null");
750     if (RHS.isUnknown())
751       return LHS;
752 
753     if (RHS.isBase()) {
754       if (LHS.getBaseValue() == RHS.getBaseValue()) {
755         assert(LHS == RHS && "equality broken!");
756         return LHS;
757       }
758       return BDVState(BDVState::Conflict);
759     }
760     assert(RHS.isConflict() && "only three states!");
761     return BDVState(BDVState::Conflict);
762 
763   case BDVState::Conflict:
764     return LHS;
765   }
766   llvm_unreachable("only three states!");
767 }
768 
769 // Values of type BDVState form a lattice, and this function implements the meet
770 // operation.
771 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
772   BDVState Result = meetBDVStateImpl(LHS, RHS);
773   assert(Result == meetBDVStateImpl(RHS, LHS) &&
774          "Math is wrong: meet does not commute!");
775   return Result;
776 }
777 
778 /// For a given value or instruction, figure out what base ptr its derived from.
779 /// For gc objects, this is simply itself.  On success, returns a value which is
780 /// the base pointer.  (This is reliable and can be used for relocation.)  On
781 /// failure, returns nullptr.
782 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
783   Value *Def = findBaseOrBDV(I, Cache);
784 
785   if (isKnownBaseResult(Def) && areBothVectorOrScalar(Def, I))
786     return Def;
787 
788   // Here's the rough algorithm:
789   // - For every SSA value, construct a mapping to either an actual base
790   //   pointer or a PHI which obscures the base pointer.
791   // - Construct a mapping from PHI to unknown TOP state.  Use an
792   //   optimistic algorithm to propagate base pointer information.  Lattice
793   //   looks like:
794   //   UNKNOWN
795   //   b1 b2 b3 b4
796   //   CONFLICT
797   //   When algorithm terminates, all PHIs will either have a single concrete
798   //   base or be in a conflict state.
799   // - For every conflict, insert a dummy PHI node without arguments.  Add
800   //   these to the base[Instruction] = BasePtr mapping.  For every
801   //   non-conflict, add the actual base.
802   //  - For every conflict, add arguments for the base[a] of each input
803   //   arguments.
804   //
805   // Note: A simpler form of this would be to add the conflict form of all
806   // PHIs without running the optimistic algorithm.  This would be
807   // analogous to pessimistic data flow and would likely lead to an
808   // overall worse solution.
809 
810 #ifndef NDEBUG
811   auto isExpectedBDVType = [](Value *BDV) {
812     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
813            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
814            isa<ShuffleVectorInst>(BDV);
815   };
816 #endif
817 
818   // Once populated, will contain a mapping from each potentially non-base BDV
819   // to a lattice value (described above) which corresponds to that BDV.
820   // We use the order of insertion (DFS over the def/use graph) to provide a
821   // stable deterministic ordering for visiting DenseMaps (which are unordered)
822   // below.  This is important for deterministic compilation.
823   MapVector<Value *, BDVState> States;
824 
825   // Recursively fill in all base defining values reachable from the initial
826   // one for which we don't already know a definite base value for
827   /* scope */ {
828     SmallVector<Value*, 16> Worklist;
829     Worklist.push_back(Def);
830     States.insert({Def, BDVState()});
831     while (!Worklist.empty()) {
832       Value *Current = Worklist.pop_back_val();
833       assert(!isOriginalBaseResult(Current) && "why did it get added?");
834 
835       auto visitIncomingValue = [&](Value *InVal) {
836         Value *Base = findBaseOrBDV(InVal, Cache);
837         if (isKnownBaseResult(Base) && areBothVectorOrScalar(Base, InVal))
838           // Known bases won't need new instructions introduced and can be
839           // ignored safely. However, this can only be done when InVal and Base
840           // are both scalar or both vector. Otherwise, we need to find a
841           // correct BDV for InVal, by creating an entry in the lattice
842           // (States).
843           return;
844         assert(isExpectedBDVType(Base) && "the only non-base values "
845                "we see should be base defining values");
846         if (States.insert(std::make_pair(Base, BDVState())).second)
847           Worklist.push_back(Base);
848       };
849       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
850         for (Value *InVal : PN->incoming_values())
851           visitIncomingValue(InVal);
852       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
853         visitIncomingValue(SI->getTrueValue());
854         visitIncomingValue(SI->getFalseValue());
855       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
856         visitIncomingValue(EE->getVectorOperand());
857       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
858         visitIncomingValue(IE->getOperand(0)); // vector operand
859         visitIncomingValue(IE->getOperand(1)); // scalar operand
860       } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
861         visitIncomingValue(SV->getOperand(0));
862         visitIncomingValue(SV->getOperand(1));
863       }
864       else {
865         llvm_unreachable("Unimplemented instruction case");
866       }
867     }
868   }
869 
870 #ifndef NDEBUG
871   LLVM_DEBUG(dbgs() << "States after initialization:\n");
872   for (auto Pair : States) {
873     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
874   }
875 #endif
876 
877   // Return a phi state for a base defining value.  We'll generate a new
878   // base state for known bases and expect to find a cached state otherwise.
879   auto GetStateForBDV = [&](Value *BaseValue, Value *Input) {
880     if (isKnownBaseResult(BaseValue) && areBothVectorOrScalar(BaseValue, Input))
881       return BDVState(BDVState::Base, BaseValue);
882     auto I = States.find(BaseValue);
883     assert(I != States.end() && "lookup failed!");
884     return I->second;
885   };
886 
887   bool Progress = true;
888   while (Progress) {
889 #ifndef NDEBUG
890     const size_t OldSize = States.size();
891 #endif
892     Progress = false;
893     // We're only changing values in this loop, thus safe to keep iterators.
894     // Since this is computing a fixed point, the order of visit does not
895     // effect the result.  TODO: We could use a worklist here and make this run
896     // much faster.
897     for (auto Pair : States) {
898       Value *BDV = Pair.first;
899       // Only values that do not have known bases or those that have differing
900       // type (scalar versus vector) from a possible known base should be in the
901       // lattice.
902       assert((!isKnownBaseResult(BDV) ||
903              !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) &&
904                  "why did it get added?");
905 
906       // Given an input value for the current instruction, return a BDVState
907       // instance which represents the BDV of that value.
908       auto getStateForInput = [&](Value *V) mutable {
909         Value *BDV = findBaseOrBDV(V, Cache);
910         return GetStateForBDV(BDV, V);
911       };
912 
913       BDVState NewState;
914       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
915         NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
916         NewState =
917             meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
918       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
919         for (Value *Val : PN->incoming_values())
920           NewState = meetBDVState(NewState, getStateForInput(Val));
921       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
922         // The 'meet' for an extractelement is slightly trivial, but it's still
923         // useful in that it drives us to conflict if our input is.
924         NewState =
925             meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
926       } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
927         // Given there's a inherent type mismatch between the operands, will
928         // *always* produce Conflict.
929         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
930         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
931       } else {
932         // The only instance this does not return a Conflict is when both the
933         // vector operands are the same vector.
934         auto *SV = cast<ShuffleVectorInst>(BDV);
935         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
936         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
937       }
938 
939       BDVState OldState = States[BDV];
940       if (OldState != NewState) {
941         Progress = true;
942         States[BDV] = NewState;
943       }
944     }
945 
946     assert(OldSize == States.size() &&
947            "fixed point shouldn't be adding any new nodes to state");
948   }
949 
950 #ifndef NDEBUG
951   LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
952   for (auto Pair : States) {
953     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
954   }
955 #endif
956 
957   // Handle all instructions that have a vector BDV, but the instruction itself
958   // is of scalar type.
959   for (auto Pair : States) {
960     Instruction *I = cast<Instruction>(Pair.first);
961     BDVState State = Pair.second;
962     auto *BaseValue = State.getBaseValue();
963     // Only values that do not have known bases or those that have differing
964     // type (scalar versus vector) from a possible known base should be in the
965     // lattice.
966     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, BaseValue)) &&
967            "why did it get added?");
968     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
969 
970     if (!State.isBase() || !isa<VectorType>(BaseValue->getType()))
971       continue;
972     // extractelement instructions are a bit special in that we may need to
973     // insert an extract even when we know an exact base for the instruction.
974     // The problem is that we need to convert from a vector base to a scalar
975     // base for the particular indice we're interested in.
976     if (isa<ExtractElementInst>(I)) {
977       auto *EE = cast<ExtractElementInst>(I);
978       // TODO: In many cases, the new instruction is just EE itself.  We should
979       // exploit this, but can't do it here since it would break the invariant
980       // about the BDV not being known to be a base.
981       auto *BaseInst = ExtractElementInst::Create(
982           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
983       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
984       States[I] = BDVState(BDVState::Base, BaseInst);
985     } else if (!isa<VectorType>(I->getType())) {
986       // We need to handle cases that have a vector base but the instruction is
987       // a scalar type (these could be phis or selects or any instruction that
988       // are of scalar type, but the base can be a vector type).  We
989       // conservatively set this as conflict.  Setting the base value for these
990       // conflicts is handled in the next loop which traverses States.
991       States[I] = BDVState(BDVState::Conflict);
992     }
993   }
994 
995   // Insert Phis for all conflicts
996   // TODO: adjust naming patterns to avoid this order of iteration dependency
997   for (auto Pair : States) {
998     Instruction *I = cast<Instruction>(Pair.first);
999     BDVState State = Pair.second;
1000     // Only values that do not have known bases or those that have differing
1001     // type (scalar versus vector) from a possible known base should be in the
1002     // lattice.
1003     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, State.getBaseValue())) &&
1004            "why did it get added?");
1005     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1006 
1007     // Since we're joining a vector and scalar base, they can never be the
1008     // same.  As a result, we should always see insert element having reached
1009     // the conflict state.
1010     assert(!isa<InsertElementInst>(I) || State.isConflict());
1011 
1012     if (!State.isConflict())
1013       continue;
1014 
1015     /// Create and insert a new instruction which will represent the base of
1016     /// the given instruction 'I'.
1017     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
1018       if (isa<PHINode>(I)) {
1019         BasicBlock *BB = I->getParent();
1020         int NumPreds = pred_size(BB);
1021         assert(NumPreds > 0 && "how did we reach here");
1022         std::string Name = suffixed_name_or(I, ".base", "base_phi");
1023         return PHINode::Create(I->getType(), NumPreds, Name, I);
1024       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
1025         // The undef will be replaced later
1026         UndefValue *Undef = UndefValue::get(SI->getType());
1027         std::string Name = suffixed_name_or(I, ".base", "base_select");
1028         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
1029       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
1030         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
1031         std::string Name = suffixed_name_or(I, ".base", "base_ee");
1032         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
1033                                           EE);
1034       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
1035         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
1036         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
1037         std::string Name = suffixed_name_or(I, ".base", "base_ie");
1038         return InsertElementInst::Create(VecUndef, ScalarUndef,
1039                                          IE->getOperand(2), Name, IE);
1040       } else {
1041         auto *SV = cast<ShuffleVectorInst>(I);
1042         UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
1043         std::string Name = suffixed_name_or(I, ".base", "base_sv");
1044         return new ShuffleVectorInst(VecUndef, VecUndef, SV->getShuffleMask(),
1045                                      Name, SV);
1046       }
1047     };
1048     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
1049     // Add metadata marking this as a base value
1050     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1051     States[I] = BDVState(BDVState::Conflict, BaseInst);
1052   }
1053 
1054   // Returns a instruction which produces the base pointer for a given
1055   // instruction.  The instruction is assumed to be an input to one of the BDVs
1056   // seen in the inference algorithm above.  As such, we must either already
1057   // know it's base defining value is a base, or have inserted a new
1058   // instruction to propagate the base of it's BDV and have entered that newly
1059   // introduced instruction into the state table.  In either case, we are
1060   // assured to be able to determine an instruction which produces it's base
1061   // pointer.
1062   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1063     Value *BDV = findBaseOrBDV(Input, Cache);
1064     Value *Base = nullptr;
1065     if (isKnownBaseResult(BDV) && areBothVectorOrScalar(BDV, Input)) {
1066       Base = BDV;
1067     } else {
1068       // Either conflict or base.
1069       assert(States.count(BDV));
1070       Base = States[BDV].getBaseValue();
1071     }
1072     assert(Base && "Can't be null");
1073     // The cast is needed since base traversal may strip away bitcasts
1074     if (Base->getType() != Input->getType() && InsertPt)
1075       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1076     return Base;
1077   };
1078 
1079   // Fixup all the inputs of the new PHIs.  Visit order needs to be
1080   // deterministic and predictable because we're naming newly created
1081   // instructions.
1082   for (auto Pair : States) {
1083     Instruction *BDV = cast<Instruction>(Pair.first);
1084     BDVState State = Pair.second;
1085 
1086     // Only values that do not have known bases or those that have differing
1087     // type (scalar versus vector) from a possible known base should be in the
1088     // lattice.
1089     assert((!isKnownBaseResult(BDV) ||
1090             !areBothVectorOrScalar(BDV, State.getBaseValue())) &&
1091            "why did it get added?");
1092     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1093     if (!State.isConflict())
1094       continue;
1095 
1096     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1097       PHINode *PN = cast<PHINode>(BDV);
1098       unsigned NumPHIValues = PN->getNumIncomingValues();
1099       for (unsigned i = 0; i < NumPHIValues; i++) {
1100         Value *InVal = PN->getIncomingValue(i);
1101         BasicBlock *InBB = PN->getIncomingBlock(i);
1102 
1103         // If we've already seen InBB, add the same incoming value
1104         // we added for it earlier.  The IR verifier requires phi
1105         // nodes with multiple entries from the same basic block
1106         // to have the same incoming value for each of those
1107         // entries.  If we don't do this check here and basephi
1108         // has a different type than base, we'll end up adding two
1109         // bitcasts (and hence two distinct values) as incoming
1110         // values for the same basic block.
1111 
1112         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
1113         if (BlockIndex != -1) {
1114           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
1115           BasePHI->addIncoming(OldBase, InBB);
1116 
1117 #ifndef NDEBUG
1118           Value *Base = getBaseForInput(InVal, nullptr);
1119           // In essence this assert states: the only way two values
1120           // incoming from the same basic block may be different is by
1121           // being different bitcasts of the same value.  A cleanup
1122           // that remains TODO is changing findBaseOrBDV to return an
1123           // llvm::Value of the correct type (and still remain pure).
1124           // This will remove the need to add bitcasts.
1125           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1126                  "Sanity -- findBaseOrBDV should be pure!");
1127 #endif
1128           continue;
1129         }
1130 
1131         // Find the instruction which produces the base for each input.  We may
1132         // need to insert a bitcast in the incoming block.
1133         // TODO: Need to split critical edges if insertion is needed
1134         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1135         BasePHI->addIncoming(Base, InBB);
1136       }
1137       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
1138     } else if (SelectInst *BaseSI =
1139                    dyn_cast<SelectInst>(State.getBaseValue())) {
1140       SelectInst *SI = cast<SelectInst>(BDV);
1141 
1142       // Find the instruction which produces the base for each input.
1143       // We may need to insert a bitcast.
1144       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1145       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1146     } else if (auto *BaseEE =
1147                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1148       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1149       // Find the instruction which produces the base for each input.  We may
1150       // need to insert a bitcast.
1151       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1152     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1153       auto *BdvIE = cast<InsertElementInst>(BDV);
1154       auto UpdateOperand = [&](int OperandIdx) {
1155         Value *InVal = BdvIE->getOperand(OperandIdx);
1156         Value *Base = getBaseForInput(InVal, BaseIE);
1157         BaseIE->setOperand(OperandIdx, Base);
1158       };
1159       UpdateOperand(0); // vector operand
1160       UpdateOperand(1); // scalar operand
1161     } else {
1162       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1163       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1164       auto UpdateOperand = [&](int OperandIdx) {
1165         Value *InVal = BdvSV->getOperand(OperandIdx);
1166         Value *Base = getBaseForInput(InVal, BaseSV);
1167         BaseSV->setOperand(OperandIdx, Base);
1168       };
1169       UpdateOperand(0); // vector operand
1170       UpdateOperand(1); // vector operand
1171     }
1172   }
1173 
1174   // Cache all of our results so we can cheaply reuse them
1175   // NOTE: This is actually two caches: one of the base defining value
1176   // relation and one of the base pointer relation!  FIXME
1177   for (auto Pair : States) {
1178     auto *BDV = Pair.first;
1179     Value *Base = Pair.second.getBaseValue();
1180     assert(BDV && Base);
1181     // Only values that do not have known bases or those that have differing
1182     // type (scalar versus vector) from a possible known base should be in the
1183     // lattice.
1184     assert((!isKnownBaseResult(BDV) || !areBothVectorOrScalar(BDV, Base)) &&
1185            "why did it get added?");
1186 
1187     LLVM_DEBUG(
1188         dbgs() << "Updating base value cache"
1189                << " for: " << BDV->getName() << " from: "
1190                << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1191                << " to: " << Base->getName() << "\n");
1192 
1193     if (Cache.count(BDV)) {
1194       assert(isKnownBaseResult(Base) &&
1195              "must be something we 'know' is a base pointer");
1196       // Once we transition from the BDV relation being store in the Cache to
1197       // the base relation being stored, it must be stable
1198       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
1199              "base relation should be stable");
1200     }
1201     Cache[BDV] = Base;
1202   }
1203   assert(Cache.count(Def));
1204   return Cache[Def];
1205 }
1206 
1207 // For a set of live pointers (base and/or derived), identify the base
1208 // pointer of the object which they are derived from.  This routine will
1209 // mutate the IR graph as needed to make the 'base' pointer live at the
1210 // definition site of 'derived'.  This ensures that any use of 'derived' can
1211 // also use 'base'.  This may involve the insertion of a number of
1212 // additional PHI nodes.
1213 //
1214 // preconditions: live is a set of pointer type Values
1215 //
1216 // side effects: may insert PHI nodes into the existing CFG, will preserve
1217 // CFG, will not remove or mutate any existing nodes
1218 //
1219 // post condition: PointerToBase contains one (derived, base) pair for every
1220 // pointer in live.  Note that derived can be equal to base if the original
1221 // pointer was a base pointer.
1222 static void
1223 findBasePointers(const StatepointLiveSetTy &live,
1224                  MapVector<Value *, Value *> &PointerToBase,
1225                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1226   for (Value *ptr : live) {
1227     Value *base = findBasePointer(ptr, DVCache);
1228     assert(base && "failed to find base pointer");
1229     PointerToBase[ptr] = base;
1230     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1231             DT->dominates(cast<Instruction>(base)->getParent(),
1232                           cast<Instruction>(ptr)->getParent())) &&
1233            "The base we found better dominate the derived pointer");
1234   }
1235 }
1236 
1237 /// Find the required based pointers (and adjust the live set) for the given
1238 /// parse point.
1239 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1240                              CallBase *Call,
1241                              PartiallyConstructedSafepointRecord &result) {
1242   MapVector<Value *, Value *> PointerToBase;
1243   StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet;
1244   // We assume that all pointers passed to deopt are base pointers; as an
1245   // optimization, we can use this to avoid seperately materializing the base
1246   // pointer graph.  This is only relevant since we're very conservative about
1247   // generating new conflict nodes during base pointer insertion.  If we were
1248   // smarter there, this would be irrelevant.
1249   if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt))
1250     for (Value *V : Opt->Inputs) {
1251       if (!PotentiallyDerivedPointers.count(V))
1252         continue;
1253       PotentiallyDerivedPointers.remove(V);
1254       PointerToBase[V] = V;
1255     }
1256   findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache);
1257 
1258   if (PrintBasePointers) {
1259     errs() << "Base Pairs (w/o Relocation):\n";
1260     for (auto &Pair : PointerToBase) {
1261       errs() << " derived ";
1262       Pair.first->printAsOperand(errs(), false);
1263       errs() << " base ";
1264       Pair.second->printAsOperand(errs(), false);
1265       errs() << "\n";;
1266     }
1267   }
1268 
1269   result.PointerToBase = PointerToBase;
1270 }
1271 
1272 /// Given an updated version of the dataflow liveness results, update the
1273 /// liveset and base pointer maps for the call site CS.
1274 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1275                                   CallBase *Call,
1276                                   PartiallyConstructedSafepointRecord &result);
1277 
1278 static void recomputeLiveInValues(
1279     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1280     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1281   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1282   // again.  The old values are still live and will help it stabilize quickly.
1283   GCPtrLivenessData RevisedLivenessData;
1284   computeLiveInValues(DT, F, RevisedLivenessData);
1285   for (size_t i = 0; i < records.size(); i++) {
1286     struct PartiallyConstructedSafepointRecord &info = records[i];
1287     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1288   }
1289 }
1290 
1291 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1292 // no uses of the original value / return value between the gc.statepoint and
1293 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1294 // starting one of the successor blocks.  We also need to be able to insert the
1295 // gc.relocates only on the path which goes through the statepoint.  We might
1296 // need to split an edge to make this possible.
1297 static BasicBlock *
1298 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1299                             DominatorTree &DT) {
1300   BasicBlock *Ret = BB;
1301   if (!BB->getUniquePredecessor())
1302     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1303 
1304   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1305   // from it
1306   FoldSingleEntryPHINodes(Ret);
1307   assert(!isa<PHINode>(Ret->begin()) &&
1308          "All PHI nodes should have been removed!");
1309 
1310   // At this point, we can safely insert a gc.relocate or gc.result as the first
1311   // instruction in Ret if needed.
1312   return Ret;
1313 }
1314 
1315 // Create new attribute set containing only attributes which can be transferred
1316 // from original call to the safepoint.
1317 static AttributeList legalizeCallAttributes(LLVMContext &Ctx,
1318                                             AttributeList AL) {
1319   if (AL.isEmpty())
1320     return AL;
1321 
1322   // Remove the readonly, readnone, and statepoint function attributes.
1323   AttrBuilder FnAttrs = AL.getFnAttributes();
1324   FnAttrs.removeAttribute(Attribute::ReadNone);
1325   FnAttrs.removeAttribute(Attribute::ReadOnly);
1326   for (Attribute A : AL.getFnAttributes()) {
1327     if (isStatepointDirectiveAttr(A))
1328       FnAttrs.remove(A);
1329   }
1330 
1331   // Just skip parameter and return attributes for now
1332   return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1333                             AttributeSet::get(Ctx, FnAttrs));
1334 }
1335 
1336 /// Helper function to place all gc relocates necessary for the given
1337 /// statepoint.
1338 /// Inputs:
1339 ///   liveVariables - list of variables to be relocated.
1340 ///   basePtrs - base pointers.
1341 ///   statepointToken - statepoint instruction to which relocates should be
1342 ///   bound.
1343 ///   Builder - Llvm IR builder to be used to construct new calls.
1344 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1345                               ArrayRef<Value *> BasePtrs,
1346                               Instruction *StatepointToken,
1347                               IRBuilder<> &Builder) {
1348   if (LiveVariables.empty())
1349     return;
1350 
1351   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1352     auto ValIt = llvm::find(LiveVec, Val);
1353     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1354     size_t Index = std::distance(LiveVec.begin(), ValIt);
1355     assert(Index < LiveVec.size() && "Bug in std::find?");
1356     return Index;
1357   };
1358   Module *M = StatepointToken->getModule();
1359 
1360   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1361   // element type is i8 addrspace(1)*). We originally generated unique
1362   // declarations for each pointer type, but this proved problematic because
1363   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1364   // towards a single unified pointer type anyways, we can just cast everything
1365   // to an i8* of the right address space.  A bitcast is added later to convert
1366   // gc_relocate to the actual value's type.
1367   auto getGCRelocateDecl = [&] (Type *Ty) {
1368     assert(isHandledGCPointerType(Ty));
1369     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1370     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1371     if (auto *VT = dyn_cast<VectorType>(Ty))
1372       NewTy = FixedVectorType::get(NewTy,
1373                                    cast<FixedVectorType>(VT)->getNumElements());
1374     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1375                                      {NewTy});
1376   };
1377 
1378   // Lazily populated map from input types to the canonicalized form mentioned
1379   // in the comment above.  This should probably be cached somewhere more
1380   // broadly.
1381   DenseMap<Type *, Function *> TypeToDeclMap;
1382 
1383   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1384     // Generate the gc.relocate call and save the result
1385     Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i]));
1386     Value *LiveIdx = Builder.getInt32(i);
1387 
1388     Type *Ty = LiveVariables[i]->getType();
1389     if (!TypeToDeclMap.count(Ty))
1390       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1391     Function *GCRelocateDecl = TypeToDeclMap[Ty];
1392 
1393     // only specify a debug name if we can give a useful one
1394     CallInst *Reloc = Builder.CreateCall(
1395         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1396         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1397     // Trick CodeGen into thinking there are lots of free registers at this
1398     // fake call.
1399     Reloc->setCallingConv(CallingConv::Cold);
1400   }
1401 }
1402 
1403 namespace {
1404 
1405 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1406 /// avoids having to worry about keeping around dangling pointers to Values.
1407 class DeferredReplacement {
1408   AssertingVH<Instruction> Old;
1409   AssertingVH<Instruction> New;
1410   bool IsDeoptimize = false;
1411 
1412   DeferredReplacement() = default;
1413 
1414 public:
1415   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1416     assert(Old != New && Old && New &&
1417            "Cannot RAUW equal values or to / from null!");
1418 
1419     DeferredReplacement D;
1420     D.Old = Old;
1421     D.New = New;
1422     return D;
1423   }
1424 
1425   static DeferredReplacement createDelete(Instruction *ToErase) {
1426     DeferredReplacement D;
1427     D.Old = ToErase;
1428     return D;
1429   }
1430 
1431   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1432 #ifndef NDEBUG
1433     auto *F = cast<CallInst>(Old)->getCalledFunction();
1434     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1435            "Only way to construct a deoptimize deferred replacement");
1436 #endif
1437     DeferredReplacement D;
1438     D.Old = Old;
1439     D.IsDeoptimize = true;
1440     return D;
1441   }
1442 
1443   /// Does the task represented by this instance.
1444   void doReplacement() {
1445     Instruction *OldI = Old;
1446     Instruction *NewI = New;
1447 
1448     assert(OldI != NewI && "Disallowed at construction?!");
1449     assert((!IsDeoptimize || !New) &&
1450            "Deoptimize intrinsics are not replaced!");
1451 
1452     Old = nullptr;
1453     New = nullptr;
1454 
1455     if (NewI)
1456       OldI->replaceAllUsesWith(NewI);
1457 
1458     if (IsDeoptimize) {
1459       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1460       // not necessarily be followed by the matching return.
1461       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1462       new UnreachableInst(RI->getContext(), RI);
1463       RI->eraseFromParent();
1464     }
1465 
1466     OldI->eraseFromParent();
1467   }
1468 };
1469 
1470 } // end anonymous namespace
1471 
1472 static StringRef getDeoptLowering(CallBase *Call) {
1473   const char *DeoptLowering = "deopt-lowering";
1474   if (Call->hasFnAttr(DeoptLowering)) {
1475     // FIXME: Calls have a *really* confusing interface around attributes
1476     // with values.
1477     const AttributeList &CSAS = Call->getAttributes();
1478     if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1479       return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1480           .getValueAsString();
1481     Function *F = Call->getCalledFunction();
1482     assert(F && F->hasFnAttribute(DeoptLowering));
1483     return F->getFnAttribute(DeoptLowering).getValueAsString();
1484   }
1485   return "live-through";
1486 }
1487 
1488 static void
1489 makeStatepointExplicitImpl(CallBase *Call, /* to replace */
1490                            const SmallVectorImpl<Value *> &BasePtrs,
1491                            const SmallVectorImpl<Value *> &LiveVariables,
1492                            PartiallyConstructedSafepointRecord &Result,
1493                            std::vector<DeferredReplacement> &Replacements) {
1494   assert(BasePtrs.size() == LiveVariables.size());
1495 
1496   // Then go ahead and use the builder do actually do the inserts.  We insert
1497   // immediately before the previous instruction under the assumption that all
1498   // arguments will be available here.  We can't insert afterwards since we may
1499   // be replacing a terminator.
1500   IRBuilder<> Builder(Call);
1501 
1502   ArrayRef<Value *> GCArgs(LiveVariables);
1503   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1504   uint32_t NumPatchBytes = 0;
1505   uint32_t Flags = uint32_t(StatepointFlags::None);
1506 
1507   SmallVector<Value *, 8> CallArgs(Call->args());
1508   Optional<ArrayRef<Use>> DeoptArgs;
1509   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt))
1510     DeoptArgs = Bundle->Inputs;
1511   Optional<ArrayRef<Use>> TransitionArgs;
1512   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
1513     TransitionArgs = Bundle->Inputs;
1514     // TODO: This flag no longer serves a purpose and can be removed later
1515     Flags |= uint32_t(StatepointFlags::GCTransition);
1516   }
1517 
1518   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1519   // with a return value, we lower then as never returning calls to
1520   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1521   bool IsDeoptimize = false;
1522 
1523   StatepointDirectives SD =
1524       parseStatepointDirectivesFromAttrs(Call->getAttributes());
1525   if (SD.NumPatchBytes)
1526     NumPatchBytes = *SD.NumPatchBytes;
1527   if (SD.StatepointID)
1528     StatepointID = *SD.StatepointID;
1529 
1530   // Pass through the requested lowering if any.  The default is live-through.
1531   StringRef DeoptLowering = getDeoptLowering(Call);
1532   if (DeoptLowering.equals("live-in"))
1533     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1534   else {
1535     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1536   }
1537 
1538   Value *CallTarget = Call->getCalledOperand();
1539   if (Function *F = dyn_cast<Function>(CallTarget)) {
1540     auto IID = F->getIntrinsicID();
1541     if (IID == Intrinsic::experimental_deoptimize) {
1542       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1543       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1544       // verifier does not allow taking the address of an intrinsic function.
1545 
1546       SmallVector<Type *, 8> DomainTy;
1547       for (Value *Arg : CallArgs)
1548         DomainTy.push_back(Arg->getType());
1549       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1550                                     /* isVarArg = */ false);
1551 
1552       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1553       // calls to @llvm.experimental.deoptimize with different argument types in
1554       // the same module.  This is fine -- we assume the frontend knew what it
1555       // was doing when generating this kind of IR.
1556       CallTarget = F->getParent()
1557                        ->getOrInsertFunction("__llvm_deoptimize", FTy)
1558                        .getCallee();
1559 
1560       IsDeoptimize = true;
1561     } else if (IID == Intrinsic::memcpy_element_unordered_atomic ||
1562                IID == Intrinsic::memmove_element_unordered_atomic) {
1563       // Unordered atomic memcpy and memmove intrinsics which are not explicitly
1564       // marked as "gc-leaf-function" should be lowered in a GC parseable way.
1565       // Specifically, these calls should be lowered to the
1566       // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols.
1567       // Similarly to __llvm_deoptimize we want to resolve this now, since the
1568       // verifier does not allow taking the address of an intrinsic function.
1569       //
1570       // Moreover we need to shuffle the arguments for the call in order to
1571       // accommodate GC. The underlying source and destination objects might be
1572       // relocated during copy operation should the GC occur. To relocate the
1573       // derived source and destination pointers the implementation of the
1574       // intrinsic should know the corresponding base pointers.
1575       //
1576       // To make the base pointers available pass them explicitly as arguments:
1577       //   memcpy(dest_derived, source_derived, ...) =>
1578       //   memcpy(dest_base, dest_offset, source_base, source_offset, ...)
1579       auto &Context = Call->getContext();
1580       auto &DL = Call->getModule()->getDataLayout();
1581       auto GetBaseAndOffset = [&](Value *Derived) {
1582         assert(Result.PointerToBase.count(Derived));
1583         unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
1584         unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
1585         Value *Base = Result.PointerToBase.find(Derived)->second;
1586         Value *Base_int = Builder.CreatePtrToInt(
1587             Base, Type::getIntNTy(Context, IntPtrSize));
1588         Value *Derived_int = Builder.CreatePtrToInt(
1589             Derived, Type::getIntNTy(Context, IntPtrSize));
1590         return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int));
1591       };
1592 
1593       auto *Dest = CallArgs[0];
1594       Value *DestBase, *DestOffset;
1595       std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest);
1596 
1597       auto *Source = CallArgs[1];
1598       Value *SourceBase, *SourceOffset;
1599       std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source);
1600 
1601       auto *LengthInBytes = CallArgs[2];
1602       auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]);
1603 
1604       CallArgs.clear();
1605       CallArgs.push_back(DestBase);
1606       CallArgs.push_back(DestOffset);
1607       CallArgs.push_back(SourceBase);
1608       CallArgs.push_back(SourceOffset);
1609       CallArgs.push_back(LengthInBytes);
1610 
1611       SmallVector<Type *, 8> DomainTy;
1612       for (Value *Arg : CallArgs)
1613         DomainTy.push_back(Arg->getType());
1614       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1615                                     /* isVarArg = */ false);
1616 
1617       auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) {
1618         uint64_t ElementSize = ElementSizeCI->getZExtValue();
1619         if (IID == Intrinsic::memcpy_element_unordered_atomic) {
1620           switch (ElementSize) {
1621           case 1:
1622             return "__llvm_memcpy_element_unordered_atomic_safepoint_1";
1623           case 2:
1624             return "__llvm_memcpy_element_unordered_atomic_safepoint_2";
1625           case 4:
1626             return "__llvm_memcpy_element_unordered_atomic_safepoint_4";
1627           case 8:
1628             return "__llvm_memcpy_element_unordered_atomic_safepoint_8";
1629           case 16:
1630             return "__llvm_memcpy_element_unordered_atomic_safepoint_16";
1631           default:
1632             llvm_unreachable("unexpected element size!");
1633           }
1634         }
1635         assert(IID == Intrinsic::memmove_element_unordered_atomic);
1636         switch (ElementSize) {
1637         case 1:
1638           return "__llvm_memmove_element_unordered_atomic_safepoint_1";
1639         case 2:
1640           return "__llvm_memmove_element_unordered_atomic_safepoint_2";
1641         case 4:
1642           return "__llvm_memmove_element_unordered_atomic_safepoint_4";
1643         case 8:
1644           return "__llvm_memmove_element_unordered_atomic_safepoint_8";
1645         case 16:
1646           return "__llvm_memmove_element_unordered_atomic_safepoint_16";
1647         default:
1648           llvm_unreachable("unexpected element size!");
1649         }
1650       };
1651 
1652       CallTarget =
1653           F->getParent()
1654               ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy)
1655               .getCallee();
1656     }
1657   }
1658 
1659   // Create the statepoint given all the arguments
1660   GCStatepointInst *Token = nullptr;
1661   if (auto *CI = dyn_cast<CallInst>(Call)) {
1662     CallInst *SPCall = Builder.CreateGCStatepointCall(
1663         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1664         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1665 
1666     SPCall->setTailCallKind(CI->getTailCallKind());
1667     SPCall->setCallingConv(CI->getCallingConv());
1668 
1669     // Currently we will fail on parameter attributes and on certain
1670     // function attributes.  In case if we can handle this set of attributes -
1671     // set up function attrs directly on statepoint and return attrs later for
1672     // gc_result intrinsic.
1673     SPCall->setAttributes(
1674         legalizeCallAttributes(CI->getContext(), CI->getAttributes()));
1675 
1676     Token = cast<GCStatepointInst>(SPCall);
1677 
1678     // Put the following gc_result and gc_relocate calls immediately after the
1679     // the old call (which we're about to delete)
1680     assert(CI->getNextNode() && "Not a terminator, must have next!");
1681     Builder.SetInsertPoint(CI->getNextNode());
1682     Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
1683   } else {
1684     auto *II = cast<InvokeInst>(Call);
1685 
1686     // Insert the new invoke into the old block.  We'll remove the old one in a
1687     // moment at which point this will become the new terminator for the
1688     // original block.
1689     InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
1690         StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
1691         II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
1692         "statepoint_token");
1693 
1694     SPInvoke->setCallingConv(II->getCallingConv());
1695 
1696     // Currently we will fail on parameter attributes and on certain
1697     // function attributes.  In case if we can handle this set of attributes -
1698     // set up function attrs directly on statepoint and return attrs later for
1699     // gc_result intrinsic.
1700     SPInvoke->setAttributes(
1701         legalizeCallAttributes(II->getContext(), II->getAttributes()));
1702 
1703     Token = cast<GCStatepointInst>(SPInvoke);
1704 
1705     // Generate gc relocates in exceptional path
1706     BasicBlock *UnwindBlock = II->getUnwindDest();
1707     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1708            UnwindBlock->getUniquePredecessor() &&
1709            "can't safely insert in this block!");
1710 
1711     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1712     Builder.SetCurrentDebugLocation(II->getDebugLoc());
1713 
1714     // Attach exceptional gc relocates to the landingpad.
1715     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1716     Result.UnwindToken = ExceptionalToken;
1717 
1718     CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder);
1719 
1720     // Generate gc relocates and returns for normal block
1721     BasicBlock *NormalDest = II->getNormalDest();
1722     assert(!isa<PHINode>(NormalDest->begin()) &&
1723            NormalDest->getUniquePredecessor() &&
1724            "can't safely insert in this block!");
1725 
1726     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1727 
1728     // gc relocates will be generated later as if it were regular call
1729     // statepoint
1730   }
1731   assert(Token && "Should be set in one of the above branches!");
1732 
1733   if (IsDeoptimize) {
1734     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1735     // transform the tail-call like structure to a call to a void function
1736     // followed by unreachable to get better codegen.
1737     Replacements.push_back(
1738         DeferredReplacement::createDeoptimizeReplacement(Call));
1739   } else {
1740     Token->setName("statepoint_token");
1741     if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
1742       StringRef Name = Call->hasName() ? Call->getName() : "";
1743       CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
1744       GCResult->setAttributes(
1745           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1746                              Call->getAttributes().getRetAttributes()));
1747 
1748       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1749       // live set of some other safepoint, in which case that safepoint's
1750       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1751       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1752       // after the live sets have been made explicit in the IR, and we no longer
1753       // have raw pointers to worry about.
1754       Replacements.emplace_back(
1755           DeferredReplacement::createRAUW(Call, GCResult));
1756     } else {
1757       Replacements.emplace_back(DeferredReplacement::createDelete(Call));
1758     }
1759   }
1760 
1761   Result.StatepointToken = Token;
1762 
1763   // Second, create a gc.relocate for every live variable
1764   CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder);
1765 }
1766 
1767 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1768 // which make the relocations happening at this safepoint explicit.
1769 //
1770 // WARNING: Does not do any fixup to adjust users of the original live
1771 // values.  That's the callers responsibility.
1772 static void
1773 makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
1774                        PartiallyConstructedSafepointRecord &Result,
1775                        std::vector<DeferredReplacement> &Replacements) {
1776   const auto &LiveSet = Result.LiveSet;
1777   const auto &PointerToBase = Result.PointerToBase;
1778 
1779   // Convert to vector for efficient cross referencing.
1780   SmallVector<Value *, 64> BaseVec, LiveVec;
1781   LiveVec.reserve(LiveSet.size());
1782   BaseVec.reserve(LiveSet.size());
1783   for (Value *L : LiveSet) {
1784     LiveVec.push_back(L);
1785     assert(PointerToBase.count(L));
1786     Value *Base = PointerToBase.find(L)->second;
1787     BaseVec.push_back(Base);
1788   }
1789   assert(LiveVec.size() == BaseVec.size());
1790 
1791   // Do the actual rewriting and delete the old statepoint
1792   makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
1793 }
1794 
1795 // Helper function for the relocationViaAlloca.
1796 //
1797 // It receives iterator to the statepoint gc relocates and emits a store to the
1798 // assigned location (via allocaMap) for the each one of them.  It adds the
1799 // visited values into the visitedLiveValues set, which we will later use them
1800 // for sanity checking.
1801 static void
1802 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1803                        DenseMap<Value *, AllocaInst *> &AllocaMap,
1804                        DenseSet<Value *> &VisitedLiveValues) {
1805   for (User *U : GCRelocs) {
1806     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1807     if (!Relocate)
1808       continue;
1809 
1810     Value *OriginalValue = Relocate->getDerivedPtr();
1811     assert(AllocaMap.count(OriginalValue));
1812     Value *Alloca = AllocaMap[OriginalValue];
1813 
1814     // Emit store into the related alloca
1815     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1816     // the correct type according to alloca.
1817     assert(Relocate->getNextNode() &&
1818            "Should always have one since it's not a terminator");
1819     IRBuilder<> Builder(Relocate->getNextNode());
1820     Value *CastedRelocatedValue =
1821       Builder.CreateBitCast(Relocate,
1822                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1823                             suffixed_name_or(Relocate, ".casted", ""));
1824 
1825     new StoreInst(CastedRelocatedValue, Alloca,
1826                   cast<Instruction>(CastedRelocatedValue)->getNextNode());
1827 
1828 #ifndef NDEBUG
1829     VisitedLiveValues.insert(OriginalValue);
1830 #endif
1831   }
1832 }
1833 
1834 // Helper function for the "relocationViaAlloca". Similar to the
1835 // "insertRelocationStores" but works for rematerialized values.
1836 static void insertRematerializationStores(
1837     const RematerializedValueMapTy &RematerializedValues,
1838     DenseMap<Value *, AllocaInst *> &AllocaMap,
1839     DenseSet<Value *> &VisitedLiveValues) {
1840   for (auto RematerializedValuePair: RematerializedValues) {
1841     Instruction *RematerializedValue = RematerializedValuePair.first;
1842     Value *OriginalValue = RematerializedValuePair.second;
1843 
1844     assert(AllocaMap.count(OriginalValue) &&
1845            "Can not find alloca for rematerialized value");
1846     Value *Alloca = AllocaMap[OriginalValue];
1847 
1848     new StoreInst(RematerializedValue, Alloca,
1849                   RematerializedValue->getNextNode());
1850 
1851 #ifndef NDEBUG
1852     VisitedLiveValues.insert(OriginalValue);
1853 #endif
1854   }
1855 }
1856 
1857 /// Do all the relocation update via allocas and mem2reg
1858 static void relocationViaAlloca(
1859     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1860     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1861 #ifndef NDEBUG
1862   // record initial number of (static) allocas; we'll check we have the same
1863   // number when we get done.
1864   int InitialAllocaNum = 0;
1865   for (Instruction &I : F.getEntryBlock())
1866     if (isa<AllocaInst>(I))
1867       InitialAllocaNum++;
1868 #endif
1869 
1870   // TODO-PERF: change data structures, reserve
1871   DenseMap<Value *, AllocaInst *> AllocaMap;
1872   SmallVector<AllocaInst *, 200> PromotableAllocas;
1873   // Used later to chack that we have enough allocas to store all values
1874   std::size_t NumRematerializedValues = 0;
1875   PromotableAllocas.reserve(Live.size());
1876 
1877   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1878   // "PromotableAllocas"
1879   const DataLayout &DL = F.getParent()->getDataLayout();
1880   auto emitAllocaFor = [&](Value *LiveValue) {
1881     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1882                                         DL.getAllocaAddrSpace(), "",
1883                                         F.getEntryBlock().getFirstNonPHI());
1884     AllocaMap[LiveValue] = Alloca;
1885     PromotableAllocas.push_back(Alloca);
1886   };
1887 
1888   // Emit alloca for each live gc pointer
1889   for (Value *V : Live)
1890     emitAllocaFor(V);
1891 
1892   // Emit allocas for rematerialized values
1893   for (const auto &Info : Records)
1894     for (auto RematerializedValuePair : Info.RematerializedValues) {
1895       Value *OriginalValue = RematerializedValuePair.second;
1896       if (AllocaMap.count(OriginalValue) != 0)
1897         continue;
1898 
1899       emitAllocaFor(OriginalValue);
1900       ++NumRematerializedValues;
1901     }
1902 
1903   // The next two loops are part of the same conceptual operation.  We need to
1904   // insert a store to the alloca after the original def and at each
1905   // redefinition.  We need to insert a load before each use.  These are split
1906   // into distinct loops for performance reasons.
1907 
1908   // Update gc pointer after each statepoint: either store a relocated value or
1909   // null (if no relocated value was found for this gc pointer and it is not a
1910   // gc_result).  This must happen before we update the statepoint with load of
1911   // alloca otherwise we lose the link between statepoint and old def.
1912   for (const auto &Info : Records) {
1913     Value *Statepoint = Info.StatepointToken;
1914 
1915     // This will be used for consistency check
1916     DenseSet<Value *> VisitedLiveValues;
1917 
1918     // Insert stores for normal statepoint gc relocates
1919     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1920 
1921     // In case if it was invoke statepoint
1922     // we will insert stores for exceptional path gc relocates.
1923     if (isa<InvokeInst>(Statepoint)) {
1924       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1925                              VisitedLiveValues);
1926     }
1927 
1928     // Do similar thing with rematerialized values
1929     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1930                                   VisitedLiveValues);
1931 
1932     if (ClobberNonLive) {
1933       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1934       // the gc.statepoint.  This will turn some subtle GC problems into
1935       // slightly easier to debug SEGVs.  Note that on large IR files with
1936       // lots of gc.statepoints this is extremely costly both memory and time
1937       // wise.
1938       SmallVector<AllocaInst *, 64> ToClobber;
1939       for (auto Pair : AllocaMap) {
1940         Value *Def = Pair.first;
1941         AllocaInst *Alloca = Pair.second;
1942 
1943         // This value was relocated
1944         if (VisitedLiveValues.count(Def)) {
1945           continue;
1946         }
1947         ToClobber.push_back(Alloca);
1948       }
1949 
1950       auto InsertClobbersAt = [&](Instruction *IP) {
1951         for (auto *AI : ToClobber) {
1952           auto PT = cast<PointerType>(AI->getAllocatedType());
1953           Constant *CPN = ConstantPointerNull::get(PT);
1954           new StoreInst(CPN, AI, IP);
1955         }
1956       };
1957 
1958       // Insert the clobbering stores.  These may get intermixed with the
1959       // gc.results and gc.relocates, but that's fine.
1960       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1961         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1962         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1963       } else {
1964         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1965       }
1966     }
1967   }
1968 
1969   // Update use with load allocas and add store for gc_relocated.
1970   for (auto Pair : AllocaMap) {
1971     Value *Def = Pair.first;
1972     AllocaInst *Alloca = Pair.second;
1973 
1974     // We pre-record the uses of allocas so that we dont have to worry about
1975     // later update that changes the user information..
1976 
1977     SmallVector<Instruction *, 20> Uses;
1978     // PERF: trade a linear scan for repeated reallocation
1979     Uses.reserve(Def->getNumUses());
1980     for (User *U : Def->users()) {
1981       if (!isa<ConstantExpr>(U)) {
1982         // If the def has a ConstantExpr use, then the def is either a
1983         // ConstantExpr use itself or null.  In either case
1984         // (recursively in the first, directly in the second), the oop
1985         // it is ultimately dependent on is null and this particular
1986         // use does not need to be fixed up.
1987         Uses.push_back(cast<Instruction>(U));
1988       }
1989     }
1990 
1991     llvm::sort(Uses);
1992     auto Last = std::unique(Uses.begin(), Uses.end());
1993     Uses.erase(Last, Uses.end());
1994 
1995     for (Instruction *Use : Uses) {
1996       if (isa<PHINode>(Use)) {
1997         PHINode *Phi = cast<PHINode>(Use);
1998         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1999           if (Def == Phi->getIncomingValue(i)) {
2000             LoadInst *Load =
2001                 new LoadInst(Alloca->getAllocatedType(), Alloca, "",
2002                              Phi->getIncomingBlock(i)->getTerminator());
2003             Phi->setIncomingValue(i, Load);
2004           }
2005         }
2006       } else {
2007         LoadInst *Load =
2008             new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
2009         Use->replaceUsesOfWith(Def, Load);
2010       }
2011     }
2012 
2013     // Emit store for the initial gc value.  Store must be inserted after load,
2014     // otherwise store will be in alloca's use list and an extra load will be
2015     // inserted before it.
2016     StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false,
2017                                      DL.getABITypeAlign(Def->getType()));
2018     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
2019       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
2020         // InvokeInst is a terminator so the store need to be inserted into its
2021         // normal destination block.
2022         BasicBlock *NormalDest = Invoke->getNormalDest();
2023         Store->insertBefore(NormalDest->getFirstNonPHI());
2024       } else {
2025         assert(!Inst->isTerminator() &&
2026                "The only terminator that can produce a value is "
2027                "InvokeInst which is handled above.");
2028         Store->insertAfter(Inst);
2029       }
2030     } else {
2031       assert(isa<Argument>(Def));
2032       Store->insertAfter(cast<Instruction>(Alloca));
2033     }
2034   }
2035 
2036   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
2037          "we must have the same allocas with lives");
2038   if (!PromotableAllocas.empty()) {
2039     // Apply mem2reg to promote alloca to SSA
2040     PromoteMemToReg(PromotableAllocas, DT);
2041   }
2042 
2043 #ifndef NDEBUG
2044   for (auto &I : F.getEntryBlock())
2045     if (isa<AllocaInst>(I))
2046       InitialAllocaNum--;
2047   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
2048 #endif
2049 }
2050 
2051 /// Implement a unique function which doesn't require we sort the input
2052 /// vector.  Doing so has the effect of changing the output of a couple of
2053 /// tests in ways which make them less useful in testing fused safepoints.
2054 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
2055   SmallSet<T, 8> Seen;
2056   erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; });
2057 }
2058 
2059 /// Insert holders so that each Value is obviously live through the entire
2060 /// lifetime of the call.
2061 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
2062                                  SmallVectorImpl<CallInst *> &Holders) {
2063   if (Values.empty())
2064     // No values to hold live, might as well not insert the empty holder
2065     return;
2066 
2067   Module *M = Call->getModule();
2068   // Use a dummy vararg function to actually hold the values live
2069   FunctionCallee Func = M->getOrInsertFunction(
2070       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
2071   if (isa<CallInst>(Call)) {
2072     // For call safepoints insert dummy calls right after safepoint
2073     Holders.push_back(
2074         CallInst::Create(Func, Values, "", &*++Call->getIterator()));
2075     return;
2076   }
2077   // For invoke safepooints insert dummy calls both in normal and
2078   // exceptional destination blocks
2079   auto *II = cast<InvokeInst>(Call);
2080   Holders.push_back(CallInst::Create(
2081       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
2082   Holders.push_back(CallInst::Create(
2083       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
2084 }
2085 
2086 static void findLiveReferences(
2087     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
2088     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
2089   GCPtrLivenessData OriginalLivenessData;
2090   computeLiveInValues(DT, F, OriginalLivenessData);
2091   for (size_t i = 0; i < records.size(); i++) {
2092     struct PartiallyConstructedSafepointRecord &info = records[i];
2093     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
2094   }
2095 }
2096 
2097 // Helper function for the "rematerializeLiveValues". It walks use chain
2098 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
2099 // the base or a value it cannot process. Only "simple" values are processed
2100 // (currently it is GEP's and casts). The returned root is  examined by the
2101 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
2102 // with all visited values.
2103 static Value* findRematerializableChainToBasePointer(
2104   SmallVectorImpl<Instruction*> &ChainToBase,
2105   Value *CurrentValue) {
2106   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2107     ChainToBase.push_back(GEP);
2108     return findRematerializableChainToBasePointer(ChainToBase,
2109                                                   GEP->getPointerOperand());
2110   }
2111 
2112   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2113     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2114       return CI;
2115 
2116     ChainToBase.push_back(CI);
2117     return findRematerializableChainToBasePointer(ChainToBase,
2118                                                   CI->getOperand(0));
2119   }
2120 
2121   // We have reached the root of the chain, which is either equal to the base or
2122   // is the first unsupported value along the use chain.
2123   return CurrentValue;
2124 }
2125 
2126 // Helper function for the "rematerializeLiveValues". Compute cost of the use
2127 // chain we are going to rematerialize.
2128 static InstructionCost
2129 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain,
2130                        TargetTransformInfo &TTI) {
2131   InstructionCost Cost = 0;
2132 
2133   for (Instruction *Instr : Chain) {
2134     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2135       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2136              "non noop cast is found during rematerialization");
2137 
2138       Type *SrcTy = CI->getOperand(0)->getType();
2139       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy,
2140                                    TTI::getCastContextHint(CI),
2141                                    TargetTransformInfo::TCK_SizeAndLatency, CI);
2142 
2143     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2144       // Cost of the address calculation
2145       Type *ValTy = GEP->getSourceElementType();
2146       Cost += TTI.getAddressComputationCost(ValTy);
2147 
2148       // And cost of the GEP itself
2149       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2150       //       allowed for the external usage)
2151       if (!GEP->hasAllConstantIndices())
2152         Cost += 2;
2153 
2154     } else {
2155       llvm_unreachable("unsupported instruction type during rematerialization");
2156     }
2157   }
2158 
2159   return Cost;
2160 }
2161 
2162 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
2163   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
2164   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
2165       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
2166     return false;
2167   // Map of incoming values and their corresponding basic blocks of
2168   // OrigRootPhi.
2169   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
2170   for (unsigned i = 0; i < PhiNum; i++)
2171     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2172         OrigRootPhi.getIncomingBlock(i);
2173 
2174   // Both current and base PHIs should have same incoming values and
2175   // the same basic blocks corresponding to the incoming values.
2176   for (unsigned i = 0; i < PhiNum; i++) {
2177     auto CIVI =
2178         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2179     if (CIVI == CurrentIncomingValues.end())
2180       return false;
2181     BasicBlock *CurrentIncomingBB = CIVI->second;
2182     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2183       return false;
2184   }
2185   return true;
2186 }
2187 
2188 // From the statepoint live set pick values that are cheaper to recompute then
2189 // to relocate. Remove this values from the live set, rematerialize them after
2190 // statepoint and record them in "Info" structure. Note that similar to
2191 // relocated values we don't do any user adjustments here.
2192 static void rematerializeLiveValues(CallBase *Call,
2193                                     PartiallyConstructedSafepointRecord &Info,
2194                                     TargetTransformInfo &TTI) {
2195   const unsigned int ChainLengthThreshold = 10;
2196 
2197   // Record values we are going to delete from this statepoint live set.
2198   // We can not di this in following loop due to iterator invalidation.
2199   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2200 
2201   for (Value *LiveValue: Info.LiveSet) {
2202     // For each live pointer find its defining chain
2203     SmallVector<Instruction *, 3> ChainToBase;
2204     assert(Info.PointerToBase.count(LiveValue));
2205     Value *RootOfChain =
2206       findRematerializableChainToBasePointer(ChainToBase,
2207                                              LiveValue);
2208 
2209     // Nothing to do, or chain is too long
2210     if ( ChainToBase.size() == 0 ||
2211         ChainToBase.size() > ChainLengthThreshold)
2212       continue;
2213 
2214     // Handle the scenario where the RootOfChain is not equal to the
2215     // Base Value, but they are essentially the same phi values.
2216     if (RootOfChain != Info.PointerToBase[LiveValue]) {
2217       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2218       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2219       if (!OrigRootPhi || !AlternateRootPhi)
2220         continue;
2221       // PHI nodes that have the same incoming values, and belonging to the same
2222       // basic blocks are essentially the same SSA value.  When the original phi
2223       // has incoming values with different base pointers, the original phi is
2224       // marked as conflict, and an additional `AlternateRootPhi` with the same
2225       // incoming values get generated by the findBasePointer function. We need
2226       // to identify the newly generated AlternateRootPhi (.base version of phi)
2227       // and RootOfChain (the original phi node itself) are the same, so that we
2228       // can rematerialize the gep and casts. This is a workaround for the
2229       // deficiency in the findBasePointer algorithm.
2230       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2231         continue;
2232       // Now that the phi nodes are proved to be the same, assert that
2233       // findBasePointer's newly generated AlternateRootPhi is present in the
2234       // liveset of the call.
2235       assert(Info.LiveSet.count(AlternateRootPhi));
2236     }
2237     // Compute cost of this chain
2238     InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI);
2239     // TODO: We can also account for cases when we will be able to remove some
2240     //       of the rematerialized values by later optimization passes. I.e if
2241     //       we rematerialized several intersecting chains. Or if original values
2242     //       don't have any uses besides this statepoint.
2243 
2244     // For invokes we need to rematerialize each chain twice - for normal and
2245     // for unwind basic blocks. Model this by multiplying cost by two.
2246     if (isa<InvokeInst>(Call)) {
2247       Cost *= 2;
2248     }
2249     // If it's too expensive - skip it
2250     if (Cost >= RematerializationThreshold)
2251       continue;
2252 
2253     // Remove value from the live set
2254     LiveValuesToBeDeleted.push_back(LiveValue);
2255 
2256     // Clone instructions and record them inside "Info" structure
2257 
2258     // Walk backwards to visit top-most instructions first
2259     std::reverse(ChainToBase.begin(), ChainToBase.end());
2260 
2261     // Utility function which clones all instructions from "ChainToBase"
2262     // and inserts them before "InsertBefore". Returns rematerialized value
2263     // which should be used after statepoint.
2264     auto rematerializeChain = [&ChainToBase](
2265         Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2266       Instruction *LastClonedValue = nullptr;
2267       Instruction *LastValue = nullptr;
2268       for (Instruction *Instr: ChainToBase) {
2269         // Only GEP's and casts are supported as we need to be careful to not
2270         // introduce any new uses of pointers not in the liveset.
2271         // Note that it's fine to introduce new uses of pointers which were
2272         // otherwise not used after this statepoint.
2273         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2274 
2275         Instruction *ClonedValue = Instr->clone();
2276         ClonedValue->insertBefore(InsertBefore);
2277         ClonedValue->setName(Instr->getName() + ".remat");
2278 
2279         // If it is not first instruction in the chain then it uses previously
2280         // cloned value. We should update it to use cloned value.
2281         if (LastClonedValue) {
2282           assert(LastValue);
2283           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2284 #ifndef NDEBUG
2285           for (auto OpValue : ClonedValue->operand_values()) {
2286             // Assert that cloned instruction does not use any instructions from
2287             // this chain other than LastClonedValue
2288             assert(!is_contained(ChainToBase, OpValue) &&
2289                    "incorrect use in rematerialization chain");
2290             // Assert that the cloned instruction does not use the RootOfChain
2291             // or the AlternateLiveBase.
2292             assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2293           }
2294 #endif
2295         } else {
2296           // For the first instruction, replace the use of unrelocated base i.e.
2297           // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2298           // live set. They have been proved to be the same PHI nodes.  Note
2299           // that the *only* use of the RootOfChain in the ChainToBase list is
2300           // the first Value in the list.
2301           if (RootOfChain != AlternateLiveBase)
2302             ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2303         }
2304 
2305         LastClonedValue = ClonedValue;
2306         LastValue = Instr;
2307       }
2308       assert(LastClonedValue);
2309       return LastClonedValue;
2310     };
2311 
2312     // Different cases for calls and invokes. For invokes we need to clone
2313     // instructions both on normal and unwind path.
2314     if (isa<CallInst>(Call)) {
2315       Instruction *InsertBefore = Call->getNextNode();
2316       assert(InsertBefore);
2317       Instruction *RematerializedValue = rematerializeChain(
2318           InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2319       Info.RematerializedValues[RematerializedValue] = LiveValue;
2320     } else {
2321       auto *Invoke = cast<InvokeInst>(Call);
2322 
2323       Instruction *NormalInsertBefore =
2324           &*Invoke->getNormalDest()->getFirstInsertionPt();
2325       Instruction *UnwindInsertBefore =
2326           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2327 
2328       Instruction *NormalRematerializedValue = rematerializeChain(
2329           NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2330       Instruction *UnwindRematerializedValue = rematerializeChain(
2331           UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2332 
2333       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2334       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2335     }
2336   }
2337 
2338   // Remove rematerializaed values from the live set
2339   for (auto LiveValue: LiveValuesToBeDeleted) {
2340     Info.LiveSet.remove(LiveValue);
2341   }
2342 }
2343 
2344 static bool insertParsePoints(Function &F, DominatorTree &DT,
2345                               TargetTransformInfo &TTI,
2346                               SmallVectorImpl<CallBase *> &ToUpdate) {
2347 #ifndef NDEBUG
2348   // sanity check the input
2349   std::set<CallBase *> Uniqued;
2350   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2351   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2352 
2353   for (CallBase *Call : ToUpdate)
2354     assert(Call->getFunction() == &F);
2355 #endif
2356 
2357   // When inserting gc.relocates for invokes, we need to be able to insert at
2358   // the top of the successor blocks.  See the comment on
2359   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2360   // may restructure the CFG.
2361   for (CallBase *Call : ToUpdate) {
2362     auto *II = dyn_cast<InvokeInst>(Call);
2363     if (!II)
2364       continue;
2365     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2366     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2367   }
2368 
2369   // A list of dummy calls added to the IR to keep various values obviously
2370   // live in the IR.  We'll remove all of these when done.
2371   SmallVector<CallInst *, 64> Holders;
2372 
2373   // Insert a dummy call with all of the deopt operands we'll need for the
2374   // actual safepoint insertion as arguments.  This ensures reference operands
2375   // in the deopt argument list are considered live through the safepoint (and
2376   // thus makes sure they get relocated.)
2377   for (CallBase *Call : ToUpdate) {
2378     SmallVector<Value *, 64> DeoptValues;
2379 
2380     for (Value *Arg : GetDeoptBundleOperands(Call)) {
2381       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2382              "support for FCA unimplemented");
2383       if (isHandledGCPointerType(Arg->getType()))
2384         DeoptValues.push_back(Arg);
2385     }
2386 
2387     insertUseHolderAfter(Call, DeoptValues, Holders);
2388   }
2389 
2390   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2391 
2392   // A) Identify all gc pointers which are statically live at the given call
2393   // site.
2394   findLiveReferences(F, DT, ToUpdate, Records);
2395 
2396   // B) Find the base pointers for each live pointer
2397   /* scope for caching */ {
2398     // Cache the 'defining value' relation used in the computation and
2399     // insertion of base phis and selects.  This ensures that we don't insert
2400     // large numbers of duplicate base_phis.
2401     DefiningValueMapTy DVCache;
2402 
2403     for (size_t i = 0; i < Records.size(); i++) {
2404       PartiallyConstructedSafepointRecord &info = Records[i];
2405       findBasePointers(DT, DVCache, ToUpdate[i], info);
2406     }
2407   } // end of cache scope
2408 
2409   // The base phi insertion logic (for any safepoint) may have inserted new
2410   // instructions which are now live at some safepoint.  The simplest such
2411   // example is:
2412   // loop:
2413   //   phi a  <-- will be a new base_phi here
2414   //   safepoint 1 <-- that needs to be live here
2415   //   gep a + 1
2416   //   safepoint 2
2417   //   br loop
2418   // We insert some dummy calls after each safepoint to definitely hold live
2419   // the base pointers which were identified for that safepoint.  We'll then
2420   // ask liveness for _every_ base inserted to see what is now live.  Then we
2421   // remove the dummy calls.
2422   Holders.reserve(Holders.size() + Records.size());
2423   for (size_t i = 0; i < Records.size(); i++) {
2424     PartiallyConstructedSafepointRecord &Info = Records[i];
2425 
2426     SmallVector<Value *, 128> Bases;
2427     for (auto Pair : Info.PointerToBase)
2428       Bases.push_back(Pair.second);
2429 
2430     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2431   }
2432 
2433   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2434   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2435   // not the key issue.
2436   recomputeLiveInValues(F, DT, ToUpdate, Records);
2437 
2438   if (PrintBasePointers) {
2439     for (auto &Info : Records) {
2440       errs() << "Base Pairs: (w/Relocation)\n";
2441       for (auto Pair : Info.PointerToBase) {
2442         errs() << " derived ";
2443         Pair.first->printAsOperand(errs(), false);
2444         errs() << " base ";
2445         Pair.second->printAsOperand(errs(), false);
2446         errs() << "\n";
2447       }
2448     }
2449   }
2450 
2451   // It is possible that non-constant live variables have a constant base.  For
2452   // example, a GEP with a variable offset from a global.  In this case we can
2453   // remove it from the liveset.  We already don't add constants to the liveset
2454   // because we assume they won't move at runtime and the GC doesn't need to be
2455   // informed about them.  The same reasoning applies if the base is constant.
2456   // Note that the relocation placement code relies on this filtering for
2457   // correctness as it expects the base to be in the liveset, which isn't true
2458   // if the base is constant.
2459   for (auto &Info : Records)
2460     for (auto &BasePair : Info.PointerToBase)
2461       if (isa<Constant>(BasePair.second))
2462         Info.LiveSet.remove(BasePair.first);
2463 
2464   for (CallInst *CI : Holders)
2465     CI->eraseFromParent();
2466 
2467   Holders.clear();
2468 
2469   // In order to reduce live set of statepoint we might choose to rematerialize
2470   // some values instead of relocating them. This is purely an optimization and
2471   // does not influence correctness.
2472   for (size_t i = 0; i < Records.size(); i++)
2473     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2474 
2475   // We need this to safely RAUW and delete call or invoke return values that
2476   // may themselves be live over a statepoint.  For details, please see usage in
2477   // makeStatepointExplicitImpl.
2478   std::vector<DeferredReplacement> Replacements;
2479 
2480   // Now run through and replace the existing statepoints with new ones with
2481   // the live variables listed.  We do not yet update uses of the values being
2482   // relocated. We have references to live variables that need to
2483   // survive to the last iteration of this loop.  (By construction, the
2484   // previous statepoint can not be a live variable, thus we can and remove
2485   // the old statepoint calls as we go.)
2486   for (size_t i = 0; i < Records.size(); i++)
2487     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2488 
2489   ToUpdate.clear(); // prevent accident use of invalid calls.
2490 
2491   for (auto &PR : Replacements)
2492     PR.doReplacement();
2493 
2494   Replacements.clear();
2495 
2496   for (auto &Info : Records) {
2497     // These live sets may contain state Value pointers, since we replaced calls
2498     // with operand bundles with calls wrapped in gc.statepoint, and some of
2499     // those calls may have been def'ing live gc pointers.  Clear these out to
2500     // avoid accidentally using them.
2501     //
2502     // TODO: We should create a separate data structure that does not contain
2503     // these live sets, and migrate to using that data structure from this point
2504     // onward.
2505     Info.LiveSet.clear();
2506     Info.PointerToBase.clear();
2507   }
2508 
2509   // Do all the fixups of the original live variables to their relocated selves
2510   SmallVector<Value *, 128> Live;
2511   for (size_t i = 0; i < Records.size(); i++) {
2512     PartiallyConstructedSafepointRecord &Info = Records[i];
2513 
2514     // We can't simply save the live set from the original insertion.  One of
2515     // the live values might be the result of a call which needs a safepoint.
2516     // That Value* no longer exists and we need to use the new gc_result.
2517     // Thankfully, the live set is embedded in the statepoint (and updated), so
2518     // we just grab that.
2519     llvm::append_range(Live, Info.StatepointToken->gc_args());
2520 #ifndef NDEBUG
2521     // Do some basic sanity checks on our liveness results before performing
2522     // relocation.  Relocation can and will turn mistakes in liveness results
2523     // into non-sensical code which is must harder to debug.
2524     // TODO: It would be nice to test consistency as well
2525     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2526            "statepoint must be reachable or liveness is meaningless");
2527     for (Value *V : Info.StatepointToken->gc_args()) {
2528       if (!isa<Instruction>(V))
2529         // Non-instruction values trivial dominate all possible uses
2530         continue;
2531       auto *LiveInst = cast<Instruction>(V);
2532       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2533              "unreachable values should never be live");
2534       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2535              "basic SSA liveness expectation violated by liveness analysis");
2536     }
2537 #endif
2538   }
2539   unique_unsorted(Live);
2540 
2541 #ifndef NDEBUG
2542   // sanity check
2543   for (auto *Ptr : Live)
2544     assert(isHandledGCPointerType(Ptr->getType()) &&
2545            "must be a gc pointer type");
2546 #endif
2547 
2548   relocationViaAlloca(F, DT, Live, Records);
2549   return !Records.empty();
2550 }
2551 
2552 // Handles both return values and arguments for Functions and calls.
2553 template <typename AttrHolder>
2554 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2555                                       unsigned Index) {
2556   AttrBuilder R;
2557   if (AH.getDereferenceableBytes(Index))
2558     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2559                                   AH.getDereferenceableBytes(Index)));
2560   if (AH.getDereferenceableOrNullBytes(Index))
2561     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2562                                   AH.getDereferenceableOrNullBytes(Index)));
2563   if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
2564     R.addAttribute(Attribute::NoAlias);
2565 
2566   if (!R.empty())
2567     AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2568 }
2569 
2570 static void stripNonValidAttributesFromPrototype(Function &F) {
2571   LLVMContext &Ctx = F.getContext();
2572 
2573   for (Argument &A : F.args())
2574     if (isa<PointerType>(A.getType()))
2575       RemoveNonValidAttrAtIndex(Ctx, F,
2576                                 A.getArgNo() + AttributeList::FirstArgIndex);
2577 
2578   if (isa<PointerType>(F.getReturnType()))
2579     RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2580 }
2581 
2582 /// Certain metadata on instructions are invalid after running RS4GC.
2583 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2584 /// optimize functions. We drop such metadata on the instruction.
2585 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2586   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2587     return;
2588   // These are the attributes that are still valid on loads and stores after
2589   // RS4GC.
2590   // The metadata implying dereferenceability and noalias are (conservatively)
2591   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2592   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2593   // touch the entire heap including noalias objects. Note: The reasoning is
2594   // same as stripping the dereferenceability and noalias attributes that are
2595   // analogous to the metadata counterparts.
2596   // We also drop the invariant.load metadata on the load because that metadata
2597   // implies the address operand to the load points to memory that is never
2598   // changed once it became dereferenceable. This is no longer true after RS4GC.
2599   // Similar reasoning applies to invariant.group metadata, which applies to
2600   // loads within a group.
2601   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2602                          LLVMContext::MD_range,
2603                          LLVMContext::MD_alias_scope,
2604                          LLVMContext::MD_nontemporal,
2605                          LLVMContext::MD_nonnull,
2606                          LLVMContext::MD_align,
2607                          LLVMContext::MD_type};
2608 
2609   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2610   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2611 }
2612 
2613 static void stripNonValidDataFromBody(Function &F) {
2614   if (F.empty())
2615     return;
2616 
2617   LLVMContext &Ctx = F.getContext();
2618   MDBuilder Builder(Ctx);
2619 
2620   // Set of invariantstart instructions that we need to remove.
2621   // Use this to avoid invalidating the instruction iterator.
2622   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2623 
2624   for (Instruction &I : instructions(F)) {
2625     // invariant.start on memory location implies that the referenced memory
2626     // location is constant and unchanging. This is no longer true after
2627     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2628     // which frees the entire heap and the presence of invariant.start allows
2629     // the optimizer to sink the load of a memory location past a statepoint,
2630     // which is incorrect.
2631     if (auto *II = dyn_cast<IntrinsicInst>(&I))
2632       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2633         InvariantStartInstructions.push_back(II);
2634         continue;
2635       }
2636 
2637     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2638       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2639       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2640     }
2641 
2642     stripInvalidMetadataFromInstruction(I);
2643 
2644     if (auto *Call = dyn_cast<CallBase>(&I)) {
2645       for (int i = 0, e = Call->arg_size(); i != e; i++)
2646         if (isa<PointerType>(Call->getArgOperand(i)->getType()))
2647           RemoveNonValidAttrAtIndex(Ctx, *Call,
2648                                     i + AttributeList::FirstArgIndex);
2649       if (isa<PointerType>(Call->getType()))
2650         RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
2651     }
2652   }
2653 
2654   // Delete the invariant.start instructions and RAUW undef.
2655   for (auto *II : InvariantStartInstructions) {
2656     II->replaceAllUsesWith(UndefValue::get(II->getType()));
2657     II->eraseFromParent();
2658   }
2659 }
2660 
2661 /// Returns true if this function should be rewritten by this pass.  The main
2662 /// point of this function is as an extension point for custom logic.
2663 static bool shouldRewriteStatepointsIn(Function &F) {
2664   // TODO: This should check the GCStrategy
2665   if (F.hasGC()) {
2666     const auto &FunctionGCName = F.getGC();
2667     const StringRef StatepointExampleName("statepoint-example");
2668     const StringRef CoreCLRName("coreclr");
2669     return (StatepointExampleName == FunctionGCName) ||
2670            (CoreCLRName == FunctionGCName);
2671   } else
2672     return false;
2673 }
2674 
2675 static void stripNonValidData(Module &M) {
2676 #ifndef NDEBUG
2677   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2678 #endif
2679 
2680   for (Function &F : M)
2681     stripNonValidAttributesFromPrototype(F);
2682 
2683   for (Function &F : M)
2684     stripNonValidDataFromBody(F);
2685 }
2686 
2687 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2688                                             TargetTransformInfo &TTI,
2689                                             const TargetLibraryInfo &TLI) {
2690   assert(!F.isDeclaration() && !F.empty() &&
2691          "need function body to rewrite statepoints in");
2692   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2693 
2694   auto NeedsRewrite = [&TLI](Instruction &I) {
2695     if (const auto *Call = dyn_cast<CallBase>(&I)) {
2696       if (isa<GCStatepointInst>(Call))
2697         return false;
2698       if (callsGCLeafFunction(Call, TLI))
2699         return false;
2700 
2701       // Normally it's up to the frontend to make sure that non-leaf calls also
2702       // have proper deopt state if it is required. We make an exception for
2703       // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics
2704       // these are non-leaf by default. They might be generated by the optimizer
2705       // which doesn't know how to produce a proper deopt state. So if we see a
2706       // non-leaf memcpy/memmove without deopt state just treat it as a leaf
2707       // copy and don't produce a statepoint.
2708       if (!AllowStatepointWithNoDeoptInfo &&
2709           !Call->getOperandBundle(LLVMContext::OB_deopt)) {
2710         assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) &&
2711                "Don't expect any other calls here!");
2712         return false;
2713       }
2714       return true;
2715     }
2716     return false;
2717   };
2718 
2719   // Delete any unreachable statepoints so that we don't have unrewritten
2720   // statepoints surviving this pass.  This makes testing easier and the
2721   // resulting IR less confusing to human readers.
2722   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2723   bool MadeChange = removeUnreachableBlocks(F, &DTU);
2724   // Flush the Dominator Tree.
2725   DTU.getDomTree();
2726 
2727   // Gather all the statepoints which need rewritten.  Be careful to only
2728   // consider those in reachable code since we need to ask dominance queries
2729   // when rewriting.  We'll delete the unreachable ones in a moment.
2730   SmallVector<CallBase *, 64> ParsePointNeeded;
2731   for (Instruction &I : instructions(F)) {
2732     // TODO: only the ones with the flag set!
2733     if (NeedsRewrite(I)) {
2734       // NOTE removeUnreachableBlocks() is stronger than
2735       // DominatorTree::isReachableFromEntry(). In other words
2736       // removeUnreachableBlocks can remove some blocks for which
2737       // isReachableFromEntry() returns true.
2738       assert(DT.isReachableFromEntry(I.getParent()) &&
2739             "no unreachable blocks expected");
2740       ParsePointNeeded.push_back(cast<CallBase>(&I));
2741     }
2742   }
2743 
2744   // Return early if no work to do.
2745   if (ParsePointNeeded.empty())
2746     return MadeChange;
2747 
2748   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2749   // These are created by LCSSA.  They have the effect of increasing the size
2750   // of liveness sets for no good reason.  It may be harder to do this post
2751   // insertion since relocations and base phis can confuse things.
2752   for (BasicBlock &BB : F)
2753     if (BB.getUniquePredecessor())
2754       MadeChange |= FoldSingleEntryPHINodes(&BB);
2755 
2756   // Before we start introducing relocations, we want to tweak the IR a bit to
2757   // avoid unfortunate code generation effects.  The main example is that we
2758   // want to try to make sure the comparison feeding a branch is after any
2759   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2760   // values feeding a branch after relocation.  This is semantically correct,
2761   // but results in extra register pressure since both the pre-relocation and
2762   // post-relocation copies must be available in registers.  For code without
2763   // relocations this is handled elsewhere, but teaching the scheduler to
2764   // reverse the transform we're about to do would be slightly complex.
2765   // Note: This may extend the live range of the inputs to the icmp and thus
2766   // increase the liveset of any statepoint we move over.  This is profitable
2767   // as long as all statepoints are in rare blocks.  If we had in-register
2768   // lowering for live values this would be a much safer transform.
2769   auto getConditionInst = [](Instruction *TI) -> Instruction * {
2770     if (auto *BI = dyn_cast<BranchInst>(TI))
2771       if (BI->isConditional())
2772         return dyn_cast<Instruction>(BI->getCondition());
2773     // TODO: Extend this to handle switches
2774     return nullptr;
2775   };
2776   for (BasicBlock &BB : F) {
2777     Instruction *TI = BB.getTerminator();
2778     if (auto *Cond = getConditionInst(TI))
2779       // TODO: Handle more than just ICmps here.  We should be able to move
2780       // most instructions without side effects or memory access.
2781       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2782         MadeChange = true;
2783         Cond->moveBefore(TI);
2784       }
2785   }
2786 
2787   // Nasty workaround - The base computation code in the main algorithm doesn't
2788   // consider the fact that a GEP can be used to convert a scalar to a vector.
2789   // The right fix for this is to integrate GEPs into the base rewriting
2790   // algorithm properly, this is just a short term workaround to prevent
2791   // crashes by canonicalizing such GEPs into fully vector GEPs.
2792   for (Instruction &I : instructions(F)) {
2793     if (!isa<GetElementPtrInst>(I))
2794       continue;
2795 
2796     unsigned VF = 0;
2797     for (unsigned i = 0; i < I.getNumOperands(); i++)
2798       if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) {
2799         assert(VF == 0 ||
2800                VF == cast<FixedVectorType>(OpndVTy)->getNumElements());
2801         VF = cast<FixedVectorType>(OpndVTy)->getNumElements();
2802       }
2803 
2804     // It's the vector to scalar traversal through the pointer operand which
2805     // confuses base pointer rewriting, so limit ourselves to that case.
2806     if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
2807       IRBuilder<> B(&I);
2808       auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
2809       I.setOperand(0, Splat);
2810       MadeChange = true;
2811     }
2812   }
2813 
2814   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2815   return MadeChange;
2816 }
2817 
2818 // liveness computation via standard dataflow
2819 // -------------------------------------------------------------------
2820 
2821 // TODO: Consider using bitvectors for liveness, the set of potentially
2822 // interesting values should be small and easy to pre-compute.
2823 
2824 /// Compute the live-in set for the location rbegin starting from
2825 /// the live-out set of the basic block
2826 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2827                                 BasicBlock::reverse_iterator End,
2828                                 SetVector<Value *> &LiveTmp) {
2829   for (auto &I : make_range(Begin, End)) {
2830     // KILL/Def - Remove this definition from LiveIn
2831     LiveTmp.remove(&I);
2832 
2833     // Don't consider *uses* in PHI nodes, we handle their contribution to
2834     // predecessor blocks when we seed the LiveOut sets
2835     if (isa<PHINode>(I))
2836       continue;
2837 
2838     // USE - Add to the LiveIn set for this instruction
2839     for (Value *V : I.operands()) {
2840       assert(!isUnhandledGCPointerType(V->getType()) &&
2841              "support for FCA unimplemented");
2842       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2843         // The choice to exclude all things constant here is slightly subtle.
2844         // There are two independent reasons:
2845         // - We assume that things which are constant (from LLVM's definition)
2846         // do not move at runtime.  For example, the address of a global
2847         // variable is fixed, even though it's contents may not be.
2848         // - Second, we can't disallow arbitrary inttoptr constants even
2849         // if the language frontend does.  Optimization passes are free to
2850         // locally exploit facts without respect to global reachability.  This
2851         // can create sections of code which are dynamically unreachable and
2852         // contain just about anything.  (see constants.ll in tests)
2853         LiveTmp.insert(V);
2854       }
2855     }
2856   }
2857 }
2858 
2859 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2860   for (BasicBlock *Succ : successors(BB)) {
2861     for (auto &I : *Succ) {
2862       PHINode *PN = dyn_cast<PHINode>(&I);
2863       if (!PN)
2864         break;
2865 
2866       Value *V = PN->getIncomingValueForBlock(BB);
2867       assert(!isUnhandledGCPointerType(V->getType()) &&
2868              "support for FCA unimplemented");
2869       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2870         LiveTmp.insert(V);
2871     }
2872   }
2873 }
2874 
2875 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2876   SetVector<Value *> KillSet;
2877   for (Instruction &I : *BB)
2878     if (isHandledGCPointerType(I.getType()))
2879       KillSet.insert(&I);
2880   return KillSet;
2881 }
2882 
2883 #ifndef NDEBUG
2884 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2885 /// sanity check for the liveness computation.
2886 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2887                           Instruction *TI, bool TermOkay = false) {
2888   for (Value *V : Live) {
2889     if (auto *I = dyn_cast<Instruction>(V)) {
2890       // The terminator can be a member of the LiveOut set.  LLVM's definition
2891       // of instruction dominance states that V does not dominate itself.  As
2892       // such, we need to special case this to allow it.
2893       if (TermOkay && TI == I)
2894         continue;
2895       assert(DT.dominates(I, TI) &&
2896              "basic SSA liveness expectation violated by liveness analysis");
2897     }
2898   }
2899 }
2900 
2901 /// Check that all the liveness sets used during the computation of liveness
2902 /// obey basic SSA properties.  This is useful for finding cases where we miss
2903 /// a def.
2904 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2905                           BasicBlock &BB) {
2906   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2907   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2908   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2909 }
2910 #endif
2911 
2912 static void computeLiveInValues(DominatorTree &DT, Function &F,
2913                                 GCPtrLivenessData &Data) {
2914   SmallSetVector<BasicBlock *, 32> Worklist;
2915 
2916   // Seed the liveness for each individual block
2917   for (BasicBlock &BB : F) {
2918     Data.KillSet[&BB] = computeKillSet(&BB);
2919     Data.LiveSet[&BB].clear();
2920     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2921 
2922 #ifndef NDEBUG
2923     for (Value *Kill : Data.KillSet[&BB])
2924       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2925 #endif
2926 
2927     Data.LiveOut[&BB] = SetVector<Value *>();
2928     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2929     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2930     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2931     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2932     if (!Data.LiveIn[&BB].empty())
2933       Worklist.insert(pred_begin(&BB), pred_end(&BB));
2934   }
2935 
2936   // Propagate that liveness until stable
2937   while (!Worklist.empty()) {
2938     BasicBlock *BB = Worklist.pop_back_val();
2939 
2940     // Compute our new liveout set, then exit early if it hasn't changed despite
2941     // the contribution of our successor.
2942     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2943     const auto OldLiveOutSize = LiveOut.size();
2944     for (BasicBlock *Succ : successors(BB)) {
2945       assert(Data.LiveIn.count(Succ));
2946       LiveOut.set_union(Data.LiveIn[Succ]);
2947     }
2948     // assert OutLiveOut is a subset of LiveOut
2949     if (OldLiveOutSize == LiveOut.size()) {
2950       // If the sets are the same size, then we didn't actually add anything
2951       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
2952       // hasn't changed.
2953       continue;
2954     }
2955     Data.LiveOut[BB] = LiveOut;
2956 
2957     // Apply the effects of this basic block
2958     SetVector<Value *> LiveTmp = LiveOut;
2959     LiveTmp.set_union(Data.LiveSet[BB]);
2960     LiveTmp.set_subtract(Data.KillSet[BB]);
2961 
2962     assert(Data.LiveIn.count(BB));
2963     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2964     // assert: OldLiveIn is a subset of LiveTmp
2965     if (OldLiveIn.size() != LiveTmp.size()) {
2966       Data.LiveIn[BB] = LiveTmp;
2967       Worklist.insert(pred_begin(BB), pred_end(BB));
2968     }
2969   } // while (!Worklist.empty())
2970 
2971 #ifndef NDEBUG
2972   // Sanity check our output against SSA properties.  This helps catch any
2973   // missing kills during the above iteration.
2974   for (BasicBlock &BB : F)
2975     checkBasicSSA(DT, Data, BB);
2976 #endif
2977 }
2978 
2979 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2980                               StatepointLiveSetTy &Out) {
2981   BasicBlock *BB = Inst->getParent();
2982 
2983   // Note: The copy is intentional and required
2984   assert(Data.LiveOut.count(BB));
2985   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2986 
2987   // We want to handle the statepoint itself oddly.  It's
2988   // call result is not live (normal), nor are it's arguments
2989   // (unless they're used again later).  This adjustment is
2990   // specifically what we need to relocate
2991   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
2992                       LiveOut);
2993   LiveOut.remove(Inst);
2994   Out.insert(LiveOut.begin(), LiveOut.end());
2995 }
2996 
2997 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2998                                   CallBase *Call,
2999                                   PartiallyConstructedSafepointRecord &Info) {
3000   StatepointLiveSetTy Updated;
3001   findLiveSetAtInst(Call, RevisedLivenessData, Updated);
3002 
3003   // We may have base pointers which are now live that weren't before.  We need
3004   // to update the PointerToBase structure to reflect this.
3005   for (auto V : Updated)
3006     if (Info.PointerToBase.insert({V, V}).second) {
3007       assert(isKnownBaseResult(V) &&
3008              "Can't find base for unexpected live value!");
3009       continue;
3010     }
3011 
3012 #ifndef NDEBUG
3013   for (auto V : Updated)
3014     assert(Info.PointerToBase.count(V) &&
3015            "Must be able to find base for live value!");
3016 #endif
3017 
3018   // Remove any stale base mappings - this can happen since our liveness is
3019   // more precise then the one inherent in the base pointer analysis.
3020   DenseSet<Value *> ToErase;
3021   for (auto KVPair : Info.PointerToBase)
3022     if (!Updated.count(KVPair.first))
3023       ToErase.insert(KVPair.first);
3024 
3025   for (auto *V : ToErase)
3026     Info.PointerToBase.erase(V);
3027 
3028 #ifndef NDEBUG
3029   for (auto KVPair : Info.PointerToBase)
3030     assert(Updated.count(KVPair.first) && "record for non-live value");
3031 #endif
3032 
3033   Info.LiveSet = Updated;
3034 }
3035