1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/Cloning.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 46 47 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 48 49 using namespace llvm; 50 51 // Print the liveset found at the insert location 52 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 53 cl::init(false)); 54 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 55 cl::init(false)); 56 // Print out the base pointers for debugging 57 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 58 cl::init(false)); 59 60 // Cost threshold measuring when it is profitable to rematerialize value instead 61 // of relocating it 62 static cl::opt<unsigned> 63 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 64 cl::init(6)); 65 66 #ifdef XDEBUG 67 static bool ClobberNonLive = true; 68 #else 69 static bool ClobberNonLive = false; 70 #endif 71 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 72 cl::location(ClobberNonLive), 73 cl::Hidden); 74 75 namespace { 76 struct RewriteStatepointsForGC : public ModulePass { 77 static char ID; // Pass identification, replacement for typeid 78 79 RewriteStatepointsForGC() : ModulePass(ID) { 80 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 81 } 82 bool runOnFunction(Function &F); 83 bool runOnModule(Module &M) override { 84 bool Changed = false; 85 for (Function &F : M) 86 Changed |= runOnFunction(F); 87 88 if (Changed) { 89 // stripDereferenceabilityInfo asserts that shouldRewriteStatepointsIn 90 // returns true for at least one function in the module. Since at least 91 // one function changed, we know that the precondition is satisfied. 92 stripDereferenceabilityInfo(M); 93 } 94 95 return Changed; 96 } 97 98 void getAnalysisUsage(AnalysisUsage &AU) const override { 99 // We add and rewrite a bunch of instructions, but don't really do much 100 // else. We could in theory preserve a lot more analyses here. 101 AU.addRequired<DominatorTreeWrapperPass>(); 102 AU.addRequired<TargetTransformInfoWrapperPass>(); 103 } 104 105 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 106 /// dereferenceability that are no longer valid/correct after 107 /// RewriteStatepointsForGC has run. This is because semantically, after 108 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 109 /// heap. stripDereferenceabilityInfo (conservatively) restores correctness 110 /// by erasing all attributes in the module that externally imply 111 /// dereferenceability. 112 /// 113 void stripDereferenceabilityInfo(Module &M); 114 115 // Helpers for stripDereferenceabilityInfo 116 void stripDereferenceabilityInfoFromBody(Function &F); 117 void stripDereferenceabilityInfoFromPrototype(Function &F); 118 }; 119 } // namespace 120 121 char RewriteStatepointsForGC::ID = 0; 122 123 ModulePass *llvm::createRewriteStatepointsForGCPass() { 124 return new RewriteStatepointsForGC(); 125 } 126 127 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 128 "Make relocations explicit at statepoints", false, false) 129 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 130 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 131 "Make relocations explicit at statepoints", false, false) 132 133 namespace { 134 struct GCPtrLivenessData { 135 /// Values defined in this block. 136 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 137 /// Values used in this block (and thus live); does not included values 138 /// killed within this block. 139 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 140 141 /// Values live into this basic block (i.e. used by any 142 /// instruction in this basic block or ones reachable from here) 143 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 144 145 /// Values live out of this basic block (i.e. live into 146 /// any successor block) 147 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 148 }; 149 150 // The type of the internal cache used inside the findBasePointers family 151 // of functions. From the callers perspective, this is an opaque type and 152 // should not be inspected. 153 // 154 // In the actual implementation this caches two relations: 155 // - The base relation itself (i.e. this pointer is based on that one) 156 // - The base defining value relation (i.e. before base_phi insertion) 157 // Generally, after the execution of a full findBasePointer call, only the 158 // base relation will remain. Internally, we add a mixture of the two 159 // types, then update all the second type to the first type 160 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 161 typedef DenseSet<Value *> StatepointLiveSetTy; 162 typedef DenseMap<Instruction *, Value *> RematerializedValueMapTy; 163 164 struct PartiallyConstructedSafepointRecord { 165 /// The set of values known to be live across this safepoint 166 StatepointLiveSetTy LiveSet; 167 168 /// Mapping from live pointers to a base-defining-value 169 DenseMap<Value *, Value *> PointerToBase; 170 171 /// The *new* gc.statepoint instruction itself. This produces the token 172 /// that normal path gc.relocates and the gc.result are tied to. 173 Instruction *StatepointToken; 174 175 /// Instruction to which exceptional gc relocates are attached 176 /// Makes it easier to iterate through them during relocationViaAlloca. 177 Instruction *UnwindToken; 178 179 /// Record live values we are rematerialized instead of relocating. 180 /// They are not included into 'LiveSet' field. 181 /// Maps rematerialized copy to it's original value. 182 RematerializedValueMapTy RematerializedValues; 183 }; 184 } 185 186 /// Compute the live-in set for every basic block in the function 187 static void computeLiveInValues(DominatorTree &DT, Function &F, 188 GCPtrLivenessData &Data); 189 190 /// Given results from the dataflow liveness computation, find the set of live 191 /// Values at a particular instruction. 192 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 193 StatepointLiveSetTy &out); 194 195 // TODO: Once we can get to the GCStrategy, this becomes 196 // Optional<bool> isGCManagedPointer(const Value *V) const override { 197 198 static bool isGCPointerType(Type *T) { 199 if (auto *PT = dyn_cast<PointerType>(T)) 200 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 201 // GC managed heap. We know that a pointer into this heap needs to be 202 // updated and that no other pointer does. 203 return (1 == PT->getAddressSpace()); 204 return false; 205 } 206 207 // Return true if this type is one which a) is a gc pointer or contains a GC 208 // pointer and b) is of a type this code expects to encounter as a live value. 209 // (The insertion code will assert that a type which matches (a) and not (b) 210 // is not encountered.) 211 static bool isHandledGCPointerType(Type *T) { 212 // We fully support gc pointers 213 if (isGCPointerType(T)) 214 return true; 215 // We partially support vectors of gc pointers. The code will assert if it 216 // can't handle something. 217 if (auto VT = dyn_cast<VectorType>(T)) 218 if (isGCPointerType(VT->getElementType())) 219 return true; 220 return false; 221 } 222 223 #ifndef NDEBUG 224 /// Returns true if this type contains a gc pointer whether we know how to 225 /// handle that type or not. 226 static bool containsGCPtrType(Type *Ty) { 227 if (isGCPointerType(Ty)) 228 return true; 229 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 230 return isGCPointerType(VT->getScalarType()); 231 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 232 return containsGCPtrType(AT->getElementType()); 233 if (StructType *ST = dyn_cast<StructType>(Ty)) 234 return std::any_of( 235 ST->subtypes().begin(), ST->subtypes().end(), 236 [](Type *SubType) { return containsGCPtrType(SubType); }); 237 return false; 238 } 239 240 // Returns true if this is a type which a) is a gc pointer or contains a GC 241 // pointer and b) is of a type which the code doesn't expect (i.e. first class 242 // aggregates). Used to trip assertions. 243 static bool isUnhandledGCPointerType(Type *Ty) { 244 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 245 } 246 #endif 247 248 static bool order_by_name(Value *a, Value *b) { 249 if (a->hasName() && b->hasName()) { 250 return -1 == a->getName().compare(b->getName()); 251 } else if (a->hasName() && !b->hasName()) { 252 return true; 253 } else if (!a->hasName() && b->hasName()) { 254 return false; 255 } else { 256 // Better than nothing, but not stable 257 return a < b; 258 } 259 } 260 261 // Return the name of the value suffixed with the provided value, or if the 262 // value didn't have a name, the default value specified. 263 static std::string suffixed_name_or(Value *V, StringRef Suffix, 264 StringRef DefaultName) { 265 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 266 } 267 268 // Conservatively identifies any definitions which might be live at the 269 // given instruction. The analysis is performed immediately before the 270 // given instruction. Values defined by that instruction are not considered 271 // live. Values used by that instruction are considered live. 272 static void analyzeParsePointLiveness( 273 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 274 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 275 Instruction *inst = CS.getInstruction(); 276 277 StatepointLiveSetTy LiveSet; 278 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet); 279 280 if (PrintLiveSet) { 281 // Note: This output is used by several of the test cases 282 // The order of elements in a set is not stable, put them in a vec and sort 283 // by name 284 SmallVector<Value *, 64> Temp; 285 Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end()); 286 std::sort(Temp.begin(), Temp.end(), order_by_name); 287 errs() << "Live Variables:\n"; 288 for (Value *V : Temp) 289 dbgs() << " " << V->getName() << " " << *V << "\n"; 290 } 291 if (PrintLiveSetSize) { 292 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 293 errs() << "Number live values: " << LiveSet.size() << "\n"; 294 } 295 result.LiveSet = LiveSet; 296 } 297 298 static bool isKnownBaseResult(Value *V); 299 namespace { 300 /// A single base defining value - An immediate base defining value for an 301 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 302 /// For instructions which have multiple pointer [vector] inputs or that 303 /// transition between vector and scalar types, there is no immediate base 304 /// defining value. The 'base defining value' for 'Def' is the transitive 305 /// closure of this relation stopping at the first instruction which has no 306 /// immediate base defining value. The b.d.v. might itself be a base pointer, 307 /// but it can also be an arbitrary derived pointer. 308 struct BaseDefiningValueResult { 309 /// Contains the value which is the base defining value. 310 Value * const BDV; 311 /// True if the base defining value is also known to be an actual base 312 /// pointer. 313 const bool IsKnownBase; 314 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 315 : BDV(BDV), IsKnownBase(IsKnownBase) { 316 #ifndef NDEBUG 317 // Check consistency between new and old means of checking whether a BDV is 318 // a base. 319 bool MustBeBase = isKnownBaseResult(BDV); 320 assert(!MustBeBase || MustBeBase == IsKnownBase); 321 #endif 322 } 323 }; 324 } 325 326 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 327 328 /// Return a base defining value for the 'Index' element of the given vector 329 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 330 /// 'I'. As an optimization, this method will try to determine when the 331 /// element is known to already be a base pointer. If this can be established, 332 /// the second value in the returned pair will be true. Note that either a 333 /// vector or a pointer typed value can be returned. For the former, the 334 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 335 /// If the later, the return pointer is a BDV (or possibly a base) for the 336 /// particular element in 'I'. 337 static BaseDefiningValueResult 338 findBaseDefiningValueOfVector(Value *I) { 339 assert(I->getType()->isVectorTy() && 340 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 341 "Illegal to ask for the base pointer of a non-pointer type"); 342 343 // Each case parallels findBaseDefiningValue below, see that code for 344 // detailed motivation. 345 346 if (isa<Argument>(I)) 347 // An incoming argument to the function is a base pointer 348 return BaseDefiningValueResult(I, true); 349 350 // We shouldn't see the address of a global as a vector value? 351 assert(!isa<GlobalVariable>(I) && 352 "unexpected global variable found in base of vector"); 353 354 // inlining could possibly introduce phi node that contains 355 // undef if callee has multiple returns 356 if (isa<UndefValue>(I)) 357 // utterly meaningless, but useful for dealing with partially optimized 358 // code. 359 return BaseDefiningValueResult(I, true); 360 361 // Due to inheritance, this must be _after_ the global variable and undef 362 // checks 363 if (Constant *Con = dyn_cast<Constant>(I)) { 364 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 365 "order of checks wrong!"); 366 assert(Con->isNullValue() && "null is the only case which makes sense"); 367 return BaseDefiningValueResult(Con, true); 368 } 369 370 if (isa<LoadInst>(I)) 371 return BaseDefiningValueResult(I, true); 372 373 if (isa<InsertElementInst>(I)) 374 // We don't know whether this vector contains entirely base pointers or 375 // not. To be conservatively correct, we treat it as a BDV and will 376 // duplicate code as needed to construct a parallel vector of bases. 377 return BaseDefiningValueResult(I, false); 378 379 if (isa<ShuffleVectorInst>(I)) 380 // We don't know whether this vector contains entirely base pointers or 381 // not. To be conservatively correct, we treat it as a BDV and will 382 // duplicate code as needed to construct a parallel vector of bases. 383 // TODO: There a number of local optimizations which could be applied here 384 // for particular sufflevector patterns. 385 return BaseDefiningValueResult(I, false); 386 387 // A PHI or Select is a base defining value. The outer findBasePointer 388 // algorithm is responsible for constructing a base value for this BDV. 389 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 390 "unknown vector instruction - no base found for vector element"); 391 return BaseDefiningValueResult(I, false); 392 } 393 394 /// Helper function for findBasePointer - Will return a value which either a) 395 /// defines the base pointer for the input, b) blocks the simple search 396 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 397 /// from pointer to vector type or back. 398 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 399 if (I->getType()->isVectorTy()) 400 return findBaseDefiningValueOfVector(I); 401 402 assert(I->getType()->isPointerTy() && 403 "Illegal to ask for the base pointer of a non-pointer type"); 404 405 if (isa<Argument>(I)) 406 // An incoming argument to the function is a base pointer 407 // We should have never reached here if this argument isn't an gc value 408 return BaseDefiningValueResult(I, true); 409 410 if (isa<GlobalVariable>(I)) 411 // base case 412 return BaseDefiningValueResult(I, true); 413 414 // inlining could possibly introduce phi node that contains 415 // undef if callee has multiple returns 416 if (isa<UndefValue>(I)) 417 // utterly meaningless, but useful for dealing with 418 // partially optimized code. 419 return BaseDefiningValueResult(I, true); 420 421 // Due to inheritance, this must be _after_ the global variable and undef 422 // checks 423 if (isa<Constant>(I)) { 424 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 425 "order of checks wrong!"); 426 // Note: Finding a constant base for something marked for relocation 427 // doesn't really make sense. The most likely case is either a) some 428 // screwed up the address space usage or b) your validating against 429 // compiled C++ code w/o the proper separation. The only real exception 430 // is a null pointer. You could have generic code written to index of 431 // off a potentially null value and have proven it null. We also use 432 // null pointers in dead paths of relocation phis (which we might later 433 // want to find a base pointer for). 434 assert(isa<ConstantPointerNull>(I) && 435 "null is the only case which makes sense"); 436 return BaseDefiningValueResult(I, true); 437 } 438 439 if (CastInst *CI = dyn_cast<CastInst>(I)) { 440 Value *Def = CI->stripPointerCasts(); 441 // If we find a cast instruction here, it means we've found a cast which is 442 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 443 // handle int->ptr conversion. 444 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 445 return findBaseDefiningValue(Def); 446 } 447 448 if (isa<LoadInst>(I)) 449 // The value loaded is an gc base itself 450 return BaseDefiningValueResult(I, true); 451 452 453 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 454 // The base of this GEP is the base 455 return findBaseDefiningValue(GEP->getPointerOperand()); 456 457 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 458 switch (II->getIntrinsicID()) { 459 case Intrinsic::experimental_gc_result_ptr: 460 default: 461 // fall through to general call handling 462 break; 463 case Intrinsic::experimental_gc_statepoint: 464 case Intrinsic::experimental_gc_result_float: 465 case Intrinsic::experimental_gc_result_int: 466 llvm_unreachable("these don't produce pointers"); 467 case Intrinsic::experimental_gc_relocate: { 468 // Rerunning safepoint insertion after safepoints are already 469 // inserted is not supported. It could probably be made to work, 470 // but why are you doing this? There's no good reason. 471 llvm_unreachable("repeat safepoint insertion is not supported"); 472 } 473 case Intrinsic::gcroot: 474 // Currently, this mechanism hasn't been extended to work with gcroot. 475 // There's no reason it couldn't be, but I haven't thought about the 476 // implications much. 477 llvm_unreachable( 478 "interaction with the gcroot mechanism is not supported"); 479 } 480 } 481 // We assume that functions in the source language only return base 482 // pointers. This should probably be generalized via attributes to support 483 // both source language and internal functions. 484 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 485 return BaseDefiningValueResult(I, true); 486 487 // I have absolutely no idea how to implement this part yet. It's not 488 // necessarily hard, I just haven't really looked at it yet. 489 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 490 491 if (isa<AtomicCmpXchgInst>(I)) 492 // A CAS is effectively a atomic store and load combined under a 493 // predicate. From the perspective of base pointers, we just treat it 494 // like a load. 495 return BaseDefiningValueResult(I, true); 496 497 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 498 "binary ops which don't apply to pointers"); 499 500 // The aggregate ops. Aggregates can either be in the heap or on the 501 // stack, but in either case, this is simply a field load. As a result, 502 // this is a defining definition of the base just like a load is. 503 if (isa<ExtractValueInst>(I)) 504 return BaseDefiningValueResult(I, true); 505 506 // We should never see an insert vector since that would require we be 507 // tracing back a struct value not a pointer value. 508 assert(!isa<InsertValueInst>(I) && 509 "Base pointer for a struct is meaningless"); 510 511 // An extractelement produces a base result exactly when it's input does. 512 // We may need to insert a parallel instruction to extract the appropriate 513 // element out of the base vector corresponding to the input. Given this, 514 // it's analogous to the phi and select case even though it's not a merge. 515 if (isa<ExtractElementInst>(I)) 516 // Note: There a lot of obvious peephole cases here. This are deliberately 517 // handled after the main base pointer inference algorithm to make writing 518 // test cases to exercise that code easier. 519 return BaseDefiningValueResult(I, false); 520 521 // The last two cases here don't return a base pointer. Instead, they 522 // return a value which dynamically selects from among several base 523 // derived pointers (each with it's own base potentially). It's the job of 524 // the caller to resolve these. 525 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 526 "missing instruction case in findBaseDefiningValing"); 527 return BaseDefiningValueResult(I, false); 528 } 529 530 /// Returns the base defining value for this value. 531 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 532 Value *&Cached = Cache[I]; 533 if (!Cached) { 534 Cached = findBaseDefiningValue(I).BDV; 535 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 536 << Cached->getName() << "\n"); 537 } 538 assert(Cache[I] != nullptr); 539 return Cached; 540 } 541 542 /// Return a base pointer for this value if known. Otherwise, return it's 543 /// base defining value. 544 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 545 Value *Def = findBaseDefiningValueCached(I, Cache); 546 auto Found = Cache.find(Def); 547 if (Found != Cache.end()) { 548 // Either a base-of relation, or a self reference. Caller must check. 549 return Found->second; 550 } 551 // Only a BDV available 552 return Def; 553 } 554 555 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 556 /// is it known to be a base pointer? Or do we need to continue searching. 557 static bool isKnownBaseResult(Value *V) { 558 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 559 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 560 !isa<ShuffleVectorInst>(V)) { 561 // no recursion possible 562 return true; 563 } 564 if (isa<Instruction>(V) && 565 cast<Instruction>(V)->getMetadata("is_base_value")) { 566 // This is a previously inserted base phi or select. We know 567 // that this is a base value. 568 return true; 569 } 570 571 // We need to keep searching 572 return false; 573 } 574 575 namespace { 576 /// Models the state of a single base defining value in the findBasePointer 577 /// algorithm for determining where a new instruction is needed to propagate 578 /// the base of this BDV. 579 class BDVState { 580 public: 581 enum Status { Unknown, Base, Conflict }; 582 583 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 584 assert(status != Base || b); 585 } 586 explicit BDVState(Value *b) : status(Base), base(b) {} 587 BDVState() : status(Unknown), base(nullptr) {} 588 589 Status getStatus() const { return status; } 590 Value *getBase() const { return base; } 591 592 bool isBase() const { return getStatus() == Base; } 593 bool isUnknown() const { return getStatus() == Unknown; } 594 bool isConflict() const { return getStatus() == Conflict; } 595 596 bool operator==(const BDVState &other) const { 597 return base == other.base && status == other.status; 598 } 599 600 bool operator!=(const BDVState &other) const { return !(*this == other); } 601 602 LLVM_DUMP_METHOD 603 void dump() const { print(dbgs()); dbgs() << '\n'; } 604 605 void print(raw_ostream &OS) const { 606 switch (status) { 607 case Unknown: 608 OS << "U"; 609 break; 610 case Base: 611 OS << "B"; 612 break; 613 case Conflict: 614 OS << "C"; 615 break; 616 }; 617 OS << " (" << base << " - " 618 << (base ? base->getName() : "nullptr") << "): "; 619 } 620 621 private: 622 Status status; 623 Value *base; // non null only if status == base 624 }; 625 } 626 627 #ifndef NDEBUG 628 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 629 State.print(OS); 630 return OS; 631 } 632 #endif 633 634 namespace { 635 // Values of type BDVState form a lattice, and this is a helper 636 // class that implementes the meet operation. The meat of the meet 637 // operation is implemented in MeetBDVStates::pureMeet 638 class MeetBDVStates { 639 public: 640 /// Initializes the currentResult to the TOP state so that if can be met with 641 /// any other state to produce that state. 642 MeetBDVStates() {} 643 644 // Destructively meet the current result with the given BDVState 645 void meetWith(BDVState otherState) { 646 currentResult = meet(otherState, currentResult); 647 } 648 649 BDVState getResult() const { return currentResult; } 650 651 private: 652 BDVState currentResult; 653 654 /// Perform a meet operation on two elements of the BDVState lattice. 655 static BDVState meet(BDVState LHS, BDVState RHS) { 656 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 657 "math is wrong: meet does not commute!"); 658 BDVState Result = pureMeet(LHS, RHS); 659 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 660 << " produced " << Result << "\n"); 661 return Result; 662 } 663 664 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 665 switch (stateA.getStatus()) { 666 case BDVState::Unknown: 667 return stateB; 668 669 case BDVState::Base: 670 assert(stateA.getBase() && "can't be null"); 671 if (stateB.isUnknown()) 672 return stateA; 673 674 if (stateB.isBase()) { 675 if (stateA.getBase() == stateB.getBase()) { 676 assert(stateA == stateB && "equality broken!"); 677 return stateA; 678 } 679 return BDVState(BDVState::Conflict); 680 } 681 assert(stateB.isConflict() && "only three states!"); 682 return BDVState(BDVState::Conflict); 683 684 case BDVState::Conflict: 685 return stateA; 686 } 687 llvm_unreachable("only three states!"); 688 } 689 }; 690 } 691 692 693 /// For a given value or instruction, figure out what base ptr it's derived 694 /// from. For gc objects, this is simply itself. On success, returns a value 695 /// which is the base pointer. (This is reliable and can be used for 696 /// relocation.) On failure, returns nullptr. 697 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 698 Value *def = findBaseOrBDV(I, cache); 699 700 if (isKnownBaseResult(def)) { 701 return def; 702 } 703 704 // Here's the rough algorithm: 705 // - For every SSA value, construct a mapping to either an actual base 706 // pointer or a PHI which obscures the base pointer. 707 // - Construct a mapping from PHI to unknown TOP state. Use an 708 // optimistic algorithm to propagate base pointer information. Lattice 709 // looks like: 710 // UNKNOWN 711 // b1 b2 b3 b4 712 // CONFLICT 713 // When algorithm terminates, all PHIs will either have a single concrete 714 // base or be in a conflict state. 715 // - For every conflict, insert a dummy PHI node without arguments. Add 716 // these to the base[Instruction] = BasePtr mapping. For every 717 // non-conflict, add the actual base. 718 // - For every conflict, add arguments for the base[a] of each input 719 // arguments. 720 // 721 // Note: A simpler form of this would be to add the conflict form of all 722 // PHIs without running the optimistic algorithm. This would be 723 // analogous to pessimistic data flow and would likely lead to an 724 // overall worse solution. 725 726 #ifndef NDEBUG 727 auto isExpectedBDVType = [](Value *BDV) { 728 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 729 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 730 }; 731 #endif 732 733 // Once populated, will contain a mapping from each potentially non-base BDV 734 // to a lattice value (described above) which corresponds to that BDV. 735 // We use the order of insertion (DFS over the def/use graph) to provide a 736 // stable deterministic ordering for visiting DenseMaps (which are unordered) 737 // below. This is important for deterministic compilation. 738 MapVector<Value *, BDVState> States; 739 740 // Recursively fill in all base defining values reachable from the initial 741 // one for which we don't already know a definite base value for 742 /* scope */ { 743 SmallVector<Value*, 16> Worklist; 744 Worklist.push_back(def); 745 States.insert(std::make_pair(def, BDVState())); 746 while (!Worklist.empty()) { 747 Value *Current = Worklist.pop_back_val(); 748 assert(!isKnownBaseResult(Current) && "why did it get added?"); 749 750 auto visitIncomingValue = [&](Value *InVal) { 751 Value *Base = findBaseOrBDV(InVal, cache); 752 if (isKnownBaseResult(Base)) 753 // Known bases won't need new instructions introduced and can be 754 // ignored safely 755 return; 756 assert(isExpectedBDVType(Base) && "the only non-base values " 757 "we see should be base defining values"); 758 if (States.insert(std::make_pair(Base, BDVState())).second) 759 Worklist.push_back(Base); 760 }; 761 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 762 for (Value *InVal : Phi->incoming_values()) 763 visitIncomingValue(InVal); 764 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 765 visitIncomingValue(Sel->getTrueValue()); 766 visitIncomingValue(Sel->getFalseValue()); 767 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 768 visitIncomingValue(EE->getVectorOperand()); 769 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 770 visitIncomingValue(IE->getOperand(0)); // vector operand 771 visitIncomingValue(IE->getOperand(1)); // scalar operand 772 } else { 773 // There is one known class of instructions we know we don't handle. 774 assert(isa<ShuffleVectorInst>(Current)); 775 llvm_unreachable("unimplemented instruction case"); 776 } 777 } 778 } 779 780 #ifndef NDEBUG 781 DEBUG(dbgs() << "States after initialization:\n"); 782 for (auto Pair : States) { 783 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 784 } 785 #endif 786 787 // Return a phi state for a base defining value. We'll generate a new 788 // base state for known bases and expect to find a cached state otherwise. 789 auto getStateForBDV = [&](Value *baseValue) { 790 if (isKnownBaseResult(baseValue)) 791 return BDVState(baseValue); 792 auto I = States.find(baseValue); 793 assert(I != States.end() && "lookup failed!"); 794 return I->second; 795 }; 796 797 bool progress = true; 798 while (progress) { 799 #ifndef NDEBUG 800 const size_t oldSize = States.size(); 801 #endif 802 progress = false; 803 // We're only changing values in this loop, thus safe to keep iterators. 804 // Since this is computing a fixed point, the order of visit does not 805 // effect the result. TODO: We could use a worklist here and make this run 806 // much faster. 807 for (auto Pair : States) { 808 Value *BDV = Pair.first; 809 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 810 811 // Given an input value for the current instruction, return a BDVState 812 // instance which represents the BDV of that value. 813 auto getStateForInput = [&](Value *V) mutable { 814 Value *BDV = findBaseOrBDV(V, cache); 815 return getStateForBDV(BDV); 816 }; 817 818 MeetBDVStates calculateMeet; 819 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) { 820 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 821 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 822 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) { 823 for (Value *Val : Phi->incoming_values()) 824 calculateMeet.meetWith(getStateForInput(Val)); 825 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 826 // The 'meet' for an extractelement is slightly trivial, but it's still 827 // useful in that it drives us to conflict if our input is. 828 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 829 } else { 830 // Given there's a inherent type mismatch between the operands, will 831 // *always* produce Conflict. 832 auto *IE = cast<InsertElementInst>(BDV); 833 calculateMeet.meetWith(getStateForInput(IE->getOperand(0))); 834 calculateMeet.meetWith(getStateForInput(IE->getOperand(1))); 835 } 836 837 BDVState oldState = States[BDV]; 838 BDVState newState = calculateMeet.getResult(); 839 if (oldState != newState) { 840 progress = true; 841 States[BDV] = newState; 842 } 843 } 844 845 assert(oldSize == States.size() && 846 "fixed point shouldn't be adding any new nodes to state"); 847 } 848 849 #ifndef NDEBUG 850 DEBUG(dbgs() << "States after meet iteration:\n"); 851 for (auto Pair : States) { 852 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 853 } 854 #endif 855 856 // Insert Phis for all conflicts 857 // TODO: adjust naming patterns to avoid this order of iteration dependency 858 for (auto Pair : States) { 859 Instruction *I = cast<Instruction>(Pair.first); 860 BDVState State = Pair.second; 861 assert(!isKnownBaseResult(I) && "why did it get added?"); 862 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 863 864 // extractelement instructions are a bit special in that we may need to 865 // insert an extract even when we know an exact base for the instruction. 866 // The problem is that we need to convert from a vector base to a scalar 867 // base for the particular indice we're interested in. 868 if (State.isBase() && isa<ExtractElementInst>(I) && 869 isa<VectorType>(State.getBase()->getType())) { 870 auto *EE = cast<ExtractElementInst>(I); 871 // TODO: In many cases, the new instruction is just EE itself. We should 872 // exploit this, but can't do it here since it would break the invariant 873 // about the BDV not being known to be a base. 874 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 875 EE->getIndexOperand(), 876 "base_ee", EE); 877 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 878 States[I] = BDVState(BDVState::Base, BaseInst); 879 } 880 881 // Since we're joining a vector and scalar base, they can never be the 882 // same. As a result, we should always see insert element having reached 883 // the conflict state. 884 if (isa<InsertElementInst>(I)) { 885 assert(State.isConflict()); 886 } 887 888 if (!State.isConflict()) 889 continue; 890 891 /// Create and insert a new instruction which will represent the base of 892 /// the given instruction 'I'. 893 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 894 if (isa<PHINode>(I)) { 895 BasicBlock *BB = I->getParent(); 896 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 897 assert(NumPreds > 0 && "how did we reach here"); 898 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 899 return PHINode::Create(I->getType(), NumPreds, Name, I); 900 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 901 // The undef will be replaced later 902 UndefValue *Undef = UndefValue::get(Sel->getType()); 903 std::string Name = suffixed_name_or(I, ".base", "base_select"); 904 return SelectInst::Create(Sel->getCondition(), Undef, 905 Undef, Name, Sel); 906 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 907 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 908 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 909 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 910 EE); 911 } else { 912 auto *IE = cast<InsertElementInst>(I); 913 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 914 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 915 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 916 return InsertElementInst::Create(VecUndef, ScalarUndef, 917 IE->getOperand(2), Name, IE); 918 } 919 920 }; 921 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 922 // Add metadata marking this as a base value 923 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 924 States[I] = BDVState(BDVState::Conflict, BaseInst); 925 } 926 927 // Returns a instruction which produces the base pointer for a given 928 // instruction. The instruction is assumed to be an input to one of the BDVs 929 // seen in the inference algorithm above. As such, we must either already 930 // know it's base defining value is a base, or have inserted a new 931 // instruction to propagate the base of it's BDV and have entered that newly 932 // introduced instruction into the state table. In either case, we are 933 // assured to be able to determine an instruction which produces it's base 934 // pointer. 935 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 936 Value *BDV = findBaseOrBDV(Input, cache); 937 Value *Base = nullptr; 938 if (isKnownBaseResult(BDV)) { 939 Base = BDV; 940 } else { 941 // Either conflict or base. 942 assert(States.count(BDV)); 943 Base = States[BDV].getBase(); 944 } 945 assert(Base && "can't be null"); 946 // The cast is needed since base traversal may strip away bitcasts 947 if (Base->getType() != Input->getType() && 948 InsertPt) { 949 Base = new BitCastInst(Base, Input->getType(), "cast", 950 InsertPt); 951 } 952 return Base; 953 }; 954 955 // Fixup all the inputs of the new PHIs. Visit order needs to be 956 // deterministic and predictable because we're naming newly created 957 // instructions. 958 for (auto Pair : States) { 959 Instruction *BDV = cast<Instruction>(Pair.first); 960 BDVState State = Pair.second; 961 962 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 963 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 964 if (!State.isConflict()) 965 continue; 966 967 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) { 968 PHINode *phi = cast<PHINode>(BDV); 969 unsigned NumPHIValues = phi->getNumIncomingValues(); 970 for (unsigned i = 0; i < NumPHIValues; i++) { 971 Value *InVal = phi->getIncomingValue(i); 972 BasicBlock *InBB = phi->getIncomingBlock(i); 973 974 // If we've already seen InBB, add the same incoming value 975 // we added for it earlier. The IR verifier requires phi 976 // nodes with multiple entries from the same basic block 977 // to have the same incoming value for each of those 978 // entries. If we don't do this check here and basephi 979 // has a different type than base, we'll end up adding two 980 // bitcasts (and hence two distinct values) as incoming 981 // values for the same basic block. 982 983 int blockIndex = basephi->getBasicBlockIndex(InBB); 984 if (blockIndex != -1) { 985 Value *oldBase = basephi->getIncomingValue(blockIndex); 986 basephi->addIncoming(oldBase, InBB); 987 988 #ifndef NDEBUG 989 Value *Base = getBaseForInput(InVal, nullptr); 990 // In essence this assert states: the only way two 991 // values incoming from the same basic block may be 992 // different is by being different bitcasts of the same 993 // value. A cleanup that remains TODO is changing 994 // findBaseOrBDV to return an llvm::Value of the correct 995 // type (and still remain pure). This will remove the 996 // need to add bitcasts. 997 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() && 998 "sanity -- findBaseOrBDV should be pure!"); 999 #endif 1000 continue; 1001 } 1002 1003 // Find the instruction which produces the base for each input. We may 1004 // need to insert a bitcast in the incoming block. 1005 // TODO: Need to split critical edges if insertion is needed 1006 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1007 basephi->addIncoming(Base, InBB); 1008 } 1009 assert(basephi->getNumIncomingValues() == NumPHIValues); 1010 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) { 1011 SelectInst *Sel = cast<SelectInst>(BDV); 1012 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 1013 // something more safe and less hacky. 1014 for (int i = 1; i <= 2; i++) { 1015 Value *InVal = Sel->getOperand(i); 1016 // Find the instruction which produces the base for each input. We may 1017 // need to insert a bitcast. 1018 Value *Base = getBaseForInput(InVal, BaseSel); 1019 BaseSel->setOperand(i, Base); 1020 } 1021 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 1022 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1023 // Find the instruction which produces the base for each input. We may 1024 // need to insert a bitcast. 1025 Value *Base = getBaseForInput(InVal, BaseEE); 1026 BaseEE->setOperand(0, Base); 1027 } else { 1028 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 1029 auto *BdvIE = cast<InsertElementInst>(BDV); 1030 auto UpdateOperand = [&](int OperandIdx) { 1031 Value *InVal = BdvIE->getOperand(OperandIdx); 1032 Value *Base = getBaseForInput(InVal, BaseIE); 1033 BaseIE->setOperand(OperandIdx, Base); 1034 }; 1035 UpdateOperand(0); // vector operand 1036 UpdateOperand(1); // scalar operand 1037 } 1038 1039 } 1040 1041 // Now that we're done with the algorithm, see if we can optimize the 1042 // results slightly by reducing the number of new instructions needed. 1043 // Arguably, this should be integrated into the algorithm above, but 1044 // doing as a post process step is easier to reason about for the moment. 1045 DenseMap<Value *, Value *> ReverseMap; 1046 SmallPtrSet<Instruction *, 16> NewInsts; 1047 SmallSetVector<AssertingVH<Instruction>, 16> Worklist; 1048 // Note: We need to visit the states in a deterministic order. We uses the 1049 // Keys we sorted above for this purpose. Note that we are papering over a 1050 // bigger problem with the algorithm above - it's visit order is not 1051 // deterministic. A larger change is needed to fix this. 1052 for (auto Pair : States) { 1053 auto *BDV = Pair.first; 1054 auto State = Pair.second; 1055 Value *Base = State.getBase(); 1056 assert(BDV && Base); 1057 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1058 assert(isKnownBaseResult(Base) && 1059 "must be something we 'know' is a base pointer"); 1060 if (!State.isConflict()) 1061 continue; 1062 1063 ReverseMap[Base] = BDV; 1064 if (auto *BaseI = dyn_cast<Instruction>(Base)) { 1065 NewInsts.insert(BaseI); 1066 Worklist.insert(BaseI); 1067 } 1068 } 1069 auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI, 1070 Value *Replacement) { 1071 // Add users which are new instructions (excluding self references) 1072 for (User *U : BaseI->users()) 1073 if (auto *UI = dyn_cast<Instruction>(U)) 1074 if (NewInsts.count(UI) && UI != BaseI) 1075 Worklist.insert(UI); 1076 // Then do the actual replacement 1077 NewInsts.erase(BaseI); 1078 ReverseMap.erase(BaseI); 1079 BaseI->replaceAllUsesWith(Replacement); 1080 BaseI->eraseFromParent(); 1081 assert(States.count(BDV)); 1082 assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI); 1083 States[BDV] = BDVState(BDVState::Conflict, Replacement); 1084 }; 1085 const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout(); 1086 while (!Worklist.empty()) { 1087 Instruction *BaseI = Worklist.pop_back_val(); 1088 assert(NewInsts.count(BaseI)); 1089 Value *Bdv = ReverseMap[BaseI]; 1090 if (auto *BdvI = dyn_cast<Instruction>(Bdv)) 1091 if (BaseI->isIdenticalTo(BdvI)) { 1092 DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n"); 1093 ReplaceBaseInstWith(Bdv, BaseI, Bdv); 1094 continue; 1095 } 1096 if (Value *V = SimplifyInstruction(BaseI, DL)) { 1097 DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n"); 1098 ReplaceBaseInstWith(Bdv, BaseI, V); 1099 continue; 1100 } 1101 } 1102 1103 // Cache all of our results so we can cheaply reuse them 1104 // NOTE: This is actually two caches: one of the base defining value 1105 // relation and one of the base pointer relation! FIXME 1106 for (auto Pair : States) { 1107 auto *BDV = Pair.first; 1108 Value *base = Pair.second.getBase(); 1109 assert(BDV && base); 1110 1111 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none"; 1112 DEBUG(dbgs() << "Updating base value cache" 1113 << " for: " << BDV->getName() 1114 << " from: " << fromstr 1115 << " to: " << base->getName() << "\n"); 1116 1117 if (cache.count(BDV)) { 1118 // Once we transition from the BDV relation being store in the cache to 1119 // the base relation being stored, it must be stable 1120 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) && 1121 "base relation should be stable"); 1122 } 1123 cache[BDV] = base; 1124 } 1125 assert(cache.find(def) != cache.end()); 1126 return cache[def]; 1127 } 1128 1129 // For a set of live pointers (base and/or derived), identify the base 1130 // pointer of the object which they are derived from. This routine will 1131 // mutate the IR graph as needed to make the 'base' pointer live at the 1132 // definition site of 'derived'. This ensures that any use of 'derived' can 1133 // also use 'base'. This may involve the insertion of a number of 1134 // additional PHI nodes. 1135 // 1136 // preconditions: live is a set of pointer type Values 1137 // 1138 // side effects: may insert PHI nodes into the existing CFG, will preserve 1139 // CFG, will not remove or mutate any existing nodes 1140 // 1141 // post condition: PointerToBase contains one (derived, base) pair for every 1142 // pointer in live. Note that derived can be equal to base if the original 1143 // pointer was a base pointer. 1144 static void 1145 findBasePointers(const StatepointLiveSetTy &live, 1146 DenseMap<Value *, Value *> &PointerToBase, 1147 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1148 // For the naming of values inserted to be deterministic - which makes for 1149 // much cleaner and more stable tests - we need to assign an order to the 1150 // live values. DenseSets do not provide a deterministic order across runs. 1151 SmallVector<Value *, 64> Temp; 1152 Temp.insert(Temp.end(), live.begin(), live.end()); 1153 std::sort(Temp.begin(), Temp.end(), order_by_name); 1154 for (Value *ptr : Temp) { 1155 Value *base = findBasePointer(ptr, DVCache); 1156 assert(base && "failed to find base pointer"); 1157 PointerToBase[ptr] = base; 1158 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1159 DT->dominates(cast<Instruction>(base)->getParent(), 1160 cast<Instruction>(ptr)->getParent())) && 1161 "The base we found better dominate the derived pointer"); 1162 1163 // If you see this trip and like to live really dangerously, the code should 1164 // be correct, just with idioms the verifier can't handle. You can try 1165 // disabling the verifier at your own substantial risk. 1166 assert(!isa<ConstantPointerNull>(base) && 1167 "the relocation code needs adjustment to handle the relocation of " 1168 "a null pointer constant without causing false positives in the " 1169 "safepoint ir verifier."); 1170 } 1171 } 1172 1173 /// Find the required based pointers (and adjust the live set) for the given 1174 /// parse point. 1175 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1176 const CallSite &CS, 1177 PartiallyConstructedSafepointRecord &result) { 1178 DenseMap<Value *, Value *> PointerToBase; 1179 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1180 1181 if (PrintBasePointers) { 1182 // Note: Need to print these in a stable order since this is checked in 1183 // some tests. 1184 errs() << "Base Pairs (w/o Relocation):\n"; 1185 SmallVector<Value *, 64> Temp; 1186 Temp.reserve(PointerToBase.size()); 1187 for (auto Pair : PointerToBase) { 1188 Temp.push_back(Pair.first); 1189 } 1190 std::sort(Temp.begin(), Temp.end(), order_by_name); 1191 for (Value *Ptr : Temp) { 1192 Value *Base = PointerToBase[Ptr]; 1193 errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() 1194 << "\n"; 1195 } 1196 } 1197 1198 result.PointerToBase = PointerToBase; 1199 } 1200 1201 /// Given an updated version of the dataflow liveness results, update the 1202 /// liveset and base pointer maps for the call site CS. 1203 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1204 const CallSite &CS, 1205 PartiallyConstructedSafepointRecord &result); 1206 1207 static void recomputeLiveInValues( 1208 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1209 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1210 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1211 // again. The old values are still live and will help it stabilize quickly. 1212 GCPtrLivenessData RevisedLivenessData; 1213 computeLiveInValues(DT, F, RevisedLivenessData); 1214 for (size_t i = 0; i < records.size(); i++) { 1215 struct PartiallyConstructedSafepointRecord &info = records[i]; 1216 const CallSite &CS = toUpdate[i]; 1217 recomputeLiveInValues(RevisedLivenessData, CS, info); 1218 } 1219 } 1220 1221 // When inserting gc.relocate calls, we need to ensure there are no uses 1222 // of the original value between the gc.statepoint and the gc.relocate call. 1223 // One case which can arise is a phi node starting one of the successor blocks. 1224 // We also need to be able to insert the gc.relocates only on the path which 1225 // goes through the statepoint. We might need to split an edge to make this 1226 // possible. 1227 static BasicBlock * 1228 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1229 DominatorTree &DT) { 1230 BasicBlock *Ret = BB; 1231 if (!BB->getUniquePredecessor()) { 1232 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1233 } 1234 1235 // Now that 'ret' has unique predecessor we can safely remove all phi nodes 1236 // from it 1237 FoldSingleEntryPHINodes(Ret); 1238 assert(!isa<PHINode>(Ret->begin())); 1239 1240 // At this point, we can safely insert a gc.relocate as the first instruction 1241 // in Ret if needed. 1242 return Ret; 1243 } 1244 1245 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1246 auto itr = std::find(livevec.begin(), livevec.end(), val); 1247 assert(livevec.end() != itr); 1248 size_t index = std::distance(livevec.begin(), itr); 1249 assert(index < livevec.size()); 1250 return index; 1251 } 1252 1253 // Create new attribute set containing only attributes which can be transferred 1254 // from original call to the safepoint. 1255 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1256 AttributeSet ret; 1257 1258 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1259 unsigned index = AS.getSlotIndex(Slot); 1260 1261 if (index == AttributeSet::ReturnIndex || 1262 index == AttributeSet::FunctionIndex) { 1263 1264 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1265 ++it) { 1266 Attribute attr = *it; 1267 1268 // Do not allow certain attributes - just skip them 1269 // Safepoint can not be read only or read none. 1270 if (attr.hasAttribute(Attribute::ReadNone) || 1271 attr.hasAttribute(Attribute::ReadOnly)) 1272 continue; 1273 1274 ret = ret.addAttributes( 1275 AS.getContext(), index, 1276 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1277 } 1278 } 1279 1280 // Just skip parameter attributes for now 1281 } 1282 1283 return ret; 1284 } 1285 1286 /// Helper function to place all gc relocates necessary for the given 1287 /// statepoint. 1288 /// Inputs: 1289 /// liveVariables - list of variables to be relocated. 1290 /// liveStart - index of the first live variable. 1291 /// basePtrs - base pointers. 1292 /// statepointToken - statepoint instruction to which relocates should be 1293 /// bound. 1294 /// Builder - Llvm IR builder to be used to construct new calls. 1295 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1296 const int LiveStart, 1297 ArrayRef<Value *> BasePtrs, 1298 Instruction *StatepointToken, 1299 IRBuilder<> Builder) { 1300 if (LiveVariables.empty()) 1301 return; 1302 1303 // All gc_relocate are set to i8 addrspace(1)* type. We originally generated 1304 // unique declarations for each pointer type, but this proved problematic 1305 // because the intrinsic mangling code is incomplete and fragile. Since 1306 // we're moving towards a single unified pointer type anyways, we can just 1307 // cast everything to an i8* of the right address space. A bitcast is added 1308 // later to convert gc_relocate to the actual value's type. 1309 Module *M = StatepointToken->getModule(); 1310 auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace(); 1311 Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)}; 1312 Value *GCRelocateDecl = 1313 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); 1314 1315 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1316 // Generate the gc.relocate call and save the result 1317 Value *BaseIdx = 1318 Builder.getInt32(LiveStart + find_index(LiveVariables, BasePtrs[i])); 1319 Value *LiveIdx = 1320 Builder.getInt32(LiveStart + find_index(LiveVariables, LiveVariables[i])); 1321 1322 // only specify a debug name if we can give a useful one 1323 CallInst *Reloc = Builder.CreateCall( 1324 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1325 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1326 // Trick CodeGen into thinking there are lots of free registers at this 1327 // fake call. 1328 Reloc->setCallingConv(CallingConv::Cold); 1329 } 1330 } 1331 1332 static void 1333 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1334 const SmallVectorImpl<Value *> &BasePtrs, 1335 const SmallVectorImpl<Value *> &LiveVariables, 1336 PartiallyConstructedSafepointRecord &Result) { 1337 assert(BasePtrs.size() == LiveVariables.size()); 1338 assert(isStatepoint(CS) && 1339 "This method expects to be rewriting a statepoint"); 1340 1341 // We're not changing the function signature of the statepoint since the gc 1342 // arguments go into the var args section. 1343 Function *GCStatepointDecl = CS.getCalledFunction(); 1344 1345 // Then go ahead and use the builder do actually do the inserts. We insert 1346 // immediately before the previous instruction under the assumption that all 1347 // arguments will be available here. We can't insert afterwards since we may 1348 // be replacing a terminator. 1349 Instruction *InsertBefore = CS.getInstruction(); 1350 IRBuilder<> Builder(InsertBefore); 1351 1352 // Copy all of the arguments from the original statepoint - this includes the 1353 // target, call args, and deopt args 1354 SmallVector<llvm::Value *, 64> Args; 1355 Args.insert(Args.end(), CS.arg_begin(), CS.arg_end()); 1356 // TODO: Clear the 'needs rewrite' flag 1357 1358 // Add all the pointers to be relocated (gc arguments) and capture the start 1359 // of the live variable list for use in the gc_relocates 1360 const int LiveStartIdx = Args.size(); 1361 Args.insert(Args.end(), LiveVariables.begin(), LiveVariables.end()); 1362 1363 // Create the statepoint given all the arguments 1364 Instruction *Token = nullptr; 1365 AttributeSet ReturnAttrs; 1366 if (CS.isCall()) { 1367 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1368 CallInst *Call = 1369 Builder.CreateCall(GCStatepointDecl, Args, "safepoint_token"); 1370 Call->setTailCall(ToReplace->isTailCall()); 1371 Call->setCallingConv(ToReplace->getCallingConv()); 1372 1373 // Currently we will fail on parameter attributes and on certain 1374 // function attributes. 1375 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1376 // In case if we can handle this set of attributes - set up function attrs 1377 // directly on statepoint and return attrs later for gc_result intrinsic. 1378 Call->setAttributes(NewAttrs.getFnAttributes()); 1379 ReturnAttrs = NewAttrs.getRetAttributes(); 1380 1381 Token = Call; 1382 1383 // Put the following gc_result and gc_relocate calls immediately after the 1384 // the old call (which we're about to delete) 1385 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1386 Builder.SetInsertPoint(ToReplace->getNextNode()); 1387 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1388 } else { 1389 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1390 1391 // Insert the new invoke into the old block. We'll remove the old one in a 1392 // moment at which point this will become the new terminator for the 1393 // original block. 1394 InvokeInst *Invoke = 1395 InvokeInst::Create(GCStatepointDecl, ToReplace->getNormalDest(), 1396 ToReplace->getUnwindDest(), Args, "statepoint_token", 1397 ToReplace->getParent()); 1398 Invoke->setCallingConv(ToReplace->getCallingConv()); 1399 1400 // Currently we will fail on parameter attributes and on certain 1401 // function attributes. 1402 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1403 // In case if we can handle this set of attributes - set up function attrs 1404 // directly on statepoint and return attrs later for gc_result intrinsic. 1405 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1406 ReturnAttrs = NewAttrs.getRetAttributes(); 1407 1408 Token = Invoke; 1409 1410 // Generate gc relocates in exceptional path 1411 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1412 assert(!isa<PHINode>(UnwindBlock->begin()) && 1413 UnwindBlock->getUniquePredecessor() && 1414 "can't safely insert in this block!"); 1415 1416 Builder.SetInsertPoint(UnwindBlock->getFirstInsertionPt()); 1417 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1418 1419 // Extract second element from landingpad return value. We will attach 1420 // exceptional gc relocates to it. 1421 Instruction *ExceptionalToken = 1422 cast<Instruction>(Builder.CreateExtractValue( 1423 UnwindBlock->getLandingPadInst(), 1, "relocate_token")); 1424 Result.UnwindToken = ExceptionalToken; 1425 1426 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1427 Builder); 1428 1429 // Generate gc relocates and returns for normal block 1430 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1431 assert(!isa<PHINode>(NormalDest->begin()) && 1432 NormalDest->getUniquePredecessor() && 1433 "can't safely insert in this block!"); 1434 1435 Builder.SetInsertPoint(NormalDest->getFirstInsertionPt()); 1436 1437 // gc relocates will be generated later as if it were regular call 1438 // statepoint 1439 } 1440 assert(Token && "Should be set in one of the above branches!"); 1441 1442 // Take the name of the original value call if it had one. 1443 Token->takeName(CS.getInstruction()); 1444 1445 // The GCResult is already inserted, we just need to find it 1446 #ifndef NDEBUG 1447 Instruction *ToReplace = CS.getInstruction(); 1448 assert(!ToReplace->hasNUsesOrMore(2) && 1449 "only valid use before rewrite is gc.result"); 1450 assert(!ToReplace->hasOneUse() || 1451 isGCResult(cast<Instruction>(*ToReplace->user_begin()))); 1452 #endif 1453 1454 // Update the gc.result of the original statepoint (if any) to use the newly 1455 // inserted statepoint. This is safe to do here since the token can't be 1456 // considered a live reference. 1457 CS.getInstruction()->replaceAllUsesWith(Token); 1458 1459 Result.StatepointToken = Token; 1460 1461 // Second, create a gc.relocate for every live variable 1462 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1463 } 1464 1465 namespace { 1466 struct NameOrdering { 1467 Value *Base; 1468 Value *Derived; 1469 1470 bool operator()(NameOrdering const &a, NameOrdering const &b) { 1471 return -1 == a.Derived->getName().compare(b.Derived->getName()); 1472 } 1473 }; 1474 } 1475 1476 static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec, 1477 SmallVectorImpl<Value *> &LiveVec) { 1478 assert(BaseVec.size() == LiveVec.size()); 1479 1480 SmallVector<NameOrdering, 64> Temp; 1481 for (size_t i = 0; i < BaseVec.size(); i++) { 1482 NameOrdering v; 1483 v.Base = BaseVec[i]; 1484 v.Derived = LiveVec[i]; 1485 Temp.push_back(v); 1486 } 1487 1488 std::sort(Temp.begin(), Temp.end(), NameOrdering()); 1489 for (size_t i = 0; i < BaseVec.size(); i++) { 1490 BaseVec[i] = Temp[i].Base; 1491 LiveVec[i] = Temp[i].Derived; 1492 } 1493 } 1494 1495 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1496 // which make the relocations happening at this safepoint explicit. 1497 // 1498 // WARNING: Does not do any fixup to adjust users of the original live 1499 // values. That's the callers responsibility. 1500 static void 1501 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, 1502 PartiallyConstructedSafepointRecord &Result) { 1503 auto LiveSet = Result.LiveSet; 1504 auto PointerToBase = Result.PointerToBase; 1505 1506 // Convert to vector for efficient cross referencing. 1507 SmallVector<Value *, 64> BaseVec, LiveVec; 1508 LiveVec.reserve(LiveSet.size()); 1509 BaseVec.reserve(LiveSet.size()); 1510 for (Value *L : LiveSet) { 1511 LiveVec.push_back(L); 1512 assert(PointerToBase.count(L)); 1513 Value *Base = PointerToBase[L]; 1514 BaseVec.push_back(Base); 1515 } 1516 assert(LiveVec.size() == BaseVec.size()); 1517 1518 // To make the output IR slightly more stable (for use in diffs), ensure a 1519 // fixed order of the values in the safepoint (by sorting the value name). 1520 // The order is otherwise meaningless. 1521 StabilizeOrder(BaseVec, LiveVec); 1522 1523 // Do the actual rewriting and delete the old statepoint 1524 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result); 1525 CS.getInstruction()->eraseFromParent(); 1526 } 1527 1528 // Helper function for the relocationViaAlloca. 1529 // 1530 // It receives iterator to the statepoint gc relocates and emits a store to the 1531 // assigned location (via allocaMap) for the each one of them. It adds the 1532 // visited values into the visitedLiveValues set, which we will later use them 1533 // for sanity checking. 1534 static void 1535 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1536 DenseMap<Value *, Value *> &AllocaMap, 1537 DenseSet<Value *> &VisitedLiveValues) { 1538 1539 for (User *U : GCRelocs) { 1540 if (!isa<IntrinsicInst>(U)) 1541 continue; 1542 1543 IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U); 1544 1545 // We only care about relocates 1546 if (RelocatedValue->getIntrinsicID() != 1547 Intrinsic::experimental_gc_relocate) { 1548 continue; 1549 } 1550 1551 GCRelocateOperands RelocateOperands(RelocatedValue); 1552 Value *OriginalValue = 1553 const_cast<Value *>(RelocateOperands.getDerivedPtr()); 1554 assert(AllocaMap.count(OriginalValue)); 1555 Value *Alloca = AllocaMap[OriginalValue]; 1556 1557 // Emit store into the related alloca 1558 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1559 // the correct type according to alloca. 1560 assert(RelocatedValue->getNextNode() && 1561 "Should always have one since it's not a terminator"); 1562 IRBuilder<> Builder(RelocatedValue->getNextNode()); 1563 Value *CastedRelocatedValue = 1564 Builder.CreateBitCast(RelocatedValue, 1565 cast<AllocaInst>(Alloca)->getAllocatedType(), 1566 suffixed_name_or(RelocatedValue, ".casted", "")); 1567 1568 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1569 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1570 1571 #ifndef NDEBUG 1572 VisitedLiveValues.insert(OriginalValue); 1573 #endif 1574 } 1575 } 1576 1577 // Helper function for the "relocationViaAlloca". Similar to the 1578 // "insertRelocationStores" but works for rematerialized values. 1579 static void 1580 insertRematerializationStores( 1581 RematerializedValueMapTy RematerializedValues, 1582 DenseMap<Value *, Value *> &AllocaMap, 1583 DenseSet<Value *> &VisitedLiveValues) { 1584 1585 for (auto RematerializedValuePair: RematerializedValues) { 1586 Instruction *RematerializedValue = RematerializedValuePair.first; 1587 Value *OriginalValue = RematerializedValuePair.second; 1588 1589 assert(AllocaMap.count(OriginalValue) && 1590 "Can not find alloca for rematerialized value"); 1591 Value *Alloca = AllocaMap[OriginalValue]; 1592 1593 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1594 Store->insertAfter(RematerializedValue); 1595 1596 #ifndef NDEBUG 1597 VisitedLiveValues.insert(OriginalValue); 1598 #endif 1599 } 1600 } 1601 1602 /// Do all the relocation update via allocas and mem2reg 1603 static void relocationViaAlloca( 1604 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1605 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1606 #ifndef NDEBUG 1607 // record initial number of (static) allocas; we'll check we have the same 1608 // number when we get done. 1609 int InitialAllocaNum = 0; 1610 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1611 I++) 1612 if (isa<AllocaInst>(*I)) 1613 InitialAllocaNum++; 1614 #endif 1615 1616 // TODO-PERF: change data structures, reserve 1617 DenseMap<Value *, Value *> AllocaMap; 1618 SmallVector<AllocaInst *, 200> PromotableAllocas; 1619 // Used later to chack that we have enough allocas to store all values 1620 std::size_t NumRematerializedValues = 0; 1621 PromotableAllocas.reserve(Live.size()); 1622 1623 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1624 // "PromotableAllocas" 1625 auto emitAllocaFor = [&](Value *LiveValue) { 1626 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1627 F.getEntryBlock().getFirstNonPHI()); 1628 AllocaMap[LiveValue] = Alloca; 1629 PromotableAllocas.push_back(Alloca); 1630 }; 1631 1632 // Emit alloca for each live gc pointer 1633 for (Value *V : Live) 1634 emitAllocaFor(V); 1635 1636 // Emit allocas for rematerialized values 1637 for (const auto &Info : Records) 1638 for (auto RematerializedValuePair : Info.RematerializedValues) { 1639 Value *OriginalValue = RematerializedValuePair.second; 1640 if (AllocaMap.count(OriginalValue) != 0) 1641 continue; 1642 1643 emitAllocaFor(OriginalValue); 1644 ++NumRematerializedValues; 1645 } 1646 1647 // The next two loops are part of the same conceptual operation. We need to 1648 // insert a store to the alloca after the original def and at each 1649 // redefinition. We need to insert a load before each use. These are split 1650 // into distinct loops for performance reasons. 1651 1652 // Update gc pointer after each statepoint: either store a relocated value or 1653 // null (if no relocated value was found for this gc pointer and it is not a 1654 // gc_result). This must happen before we update the statepoint with load of 1655 // alloca otherwise we lose the link between statepoint and old def. 1656 for (const auto &Info : Records) { 1657 Value *Statepoint = Info.StatepointToken; 1658 1659 // This will be used for consistency check 1660 DenseSet<Value *> VisitedLiveValues; 1661 1662 // Insert stores for normal statepoint gc relocates 1663 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1664 1665 // In case if it was invoke statepoint 1666 // we will insert stores for exceptional path gc relocates. 1667 if (isa<InvokeInst>(Statepoint)) { 1668 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1669 VisitedLiveValues); 1670 } 1671 1672 // Do similar thing with rematerialized values 1673 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1674 VisitedLiveValues); 1675 1676 if (ClobberNonLive) { 1677 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1678 // the gc.statepoint. This will turn some subtle GC problems into 1679 // slightly easier to debug SEGVs. Note that on large IR files with 1680 // lots of gc.statepoints this is extremely costly both memory and time 1681 // wise. 1682 SmallVector<AllocaInst *, 64> ToClobber; 1683 for (auto Pair : AllocaMap) { 1684 Value *Def = Pair.first; 1685 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1686 1687 // This value was relocated 1688 if (VisitedLiveValues.count(Def)) { 1689 continue; 1690 } 1691 ToClobber.push_back(Alloca); 1692 } 1693 1694 auto InsertClobbersAt = [&](Instruction *IP) { 1695 for (auto *AI : ToClobber) { 1696 auto AIType = cast<PointerType>(AI->getType()); 1697 auto PT = cast<PointerType>(AIType->getElementType()); 1698 Constant *CPN = ConstantPointerNull::get(PT); 1699 StoreInst *Store = new StoreInst(CPN, AI); 1700 Store->insertBefore(IP); 1701 } 1702 }; 1703 1704 // Insert the clobbering stores. These may get intermixed with the 1705 // gc.results and gc.relocates, but that's fine. 1706 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1707 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1708 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1709 } else { 1710 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1711 } 1712 } 1713 } 1714 1715 // Update use with load allocas and add store for gc_relocated. 1716 for (auto Pair : AllocaMap) { 1717 Value *Def = Pair.first; 1718 Value *Alloca = Pair.second; 1719 1720 // We pre-record the uses of allocas so that we dont have to worry about 1721 // later update that changes the user information.. 1722 1723 SmallVector<Instruction *, 20> Uses; 1724 // PERF: trade a linear scan for repeated reallocation 1725 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1726 for (User *U : Def->users()) { 1727 if (!isa<ConstantExpr>(U)) { 1728 // If the def has a ConstantExpr use, then the def is either a 1729 // ConstantExpr use itself or null. In either case 1730 // (recursively in the first, directly in the second), the oop 1731 // it is ultimately dependent on is null and this particular 1732 // use does not need to be fixed up. 1733 Uses.push_back(cast<Instruction>(U)); 1734 } 1735 } 1736 1737 std::sort(Uses.begin(), Uses.end()); 1738 auto Last = std::unique(Uses.begin(), Uses.end()); 1739 Uses.erase(Last, Uses.end()); 1740 1741 for (Instruction *Use : Uses) { 1742 if (isa<PHINode>(Use)) { 1743 PHINode *Phi = cast<PHINode>(Use); 1744 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1745 if (Def == Phi->getIncomingValue(i)) { 1746 LoadInst *Load = new LoadInst( 1747 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1748 Phi->setIncomingValue(i, Load); 1749 } 1750 } 1751 } else { 1752 LoadInst *Load = new LoadInst(Alloca, "", Use); 1753 Use->replaceUsesOfWith(Def, Load); 1754 } 1755 } 1756 1757 // Emit store for the initial gc value. Store must be inserted after load, 1758 // otherwise store will be in alloca's use list and an extra load will be 1759 // inserted before it. 1760 StoreInst *Store = new StoreInst(Def, Alloca); 1761 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1762 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1763 // InvokeInst is a TerminatorInst so the store need to be inserted 1764 // into its normal destination block. 1765 BasicBlock *NormalDest = Invoke->getNormalDest(); 1766 Store->insertBefore(NormalDest->getFirstNonPHI()); 1767 } else { 1768 assert(!Inst->isTerminator() && 1769 "The only TerminatorInst that can produce a value is " 1770 "InvokeInst which is handled above."); 1771 Store->insertAfter(Inst); 1772 } 1773 } else { 1774 assert(isa<Argument>(Def)); 1775 Store->insertAfter(cast<Instruction>(Alloca)); 1776 } 1777 } 1778 1779 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1780 "we must have the same allocas with lives"); 1781 if (!PromotableAllocas.empty()) { 1782 // Apply mem2reg to promote alloca to SSA 1783 PromoteMemToReg(PromotableAllocas, DT); 1784 } 1785 1786 #ifndef NDEBUG 1787 for (auto &I : F.getEntryBlock()) 1788 if (isa<AllocaInst>(I)) 1789 InitialAllocaNum--; 1790 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1791 #endif 1792 } 1793 1794 /// Implement a unique function which doesn't require we sort the input 1795 /// vector. Doing so has the effect of changing the output of a couple of 1796 /// tests in ways which make them less useful in testing fused safepoints. 1797 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1798 SmallSet<T, 8> Seen; 1799 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1800 return !Seen.insert(V).second; 1801 }), Vec.end()); 1802 } 1803 1804 /// Insert holders so that each Value is obviously live through the entire 1805 /// lifetime of the call. 1806 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1807 SmallVectorImpl<CallInst *> &Holders) { 1808 if (Values.empty()) 1809 // No values to hold live, might as well not insert the empty holder 1810 return; 1811 1812 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1813 // Use a dummy vararg function to actually hold the values live 1814 Function *Func = cast<Function>(M->getOrInsertFunction( 1815 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1816 if (CS.isCall()) { 1817 // For call safepoints insert dummy calls right after safepoint 1818 BasicBlock::iterator Next(CS.getInstruction()); 1819 Next++; 1820 Holders.push_back(CallInst::Create(Func, Values, "", Next)); 1821 return; 1822 } 1823 // For invoke safepooints insert dummy calls both in normal and 1824 // exceptional destination blocks 1825 auto *II = cast<InvokeInst>(CS.getInstruction()); 1826 Holders.push_back(CallInst::Create( 1827 Func, Values, "", II->getNormalDest()->getFirstInsertionPt())); 1828 Holders.push_back(CallInst::Create( 1829 Func, Values, "", II->getUnwindDest()->getFirstInsertionPt())); 1830 } 1831 1832 static void findLiveReferences( 1833 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1834 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1835 GCPtrLivenessData OriginalLivenessData; 1836 computeLiveInValues(DT, F, OriginalLivenessData); 1837 for (size_t i = 0; i < records.size(); i++) { 1838 struct PartiallyConstructedSafepointRecord &info = records[i]; 1839 const CallSite &CS = toUpdate[i]; 1840 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1841 } 1842 } 1843 1844 /// Remove any vector of pointers from the live set by scalarizing them over the 1845 /// statepoint instruction. Adds the scalarized pieces to the live set. It 1846 /// would be preferable to include the vector in the statepoint itself, but 1847 /// the lowering code currently does not handle that. Extending it would be 1848 /// slightly non-trivial since it requires a format change. Given how rare 1849 /// such cases are (for the moment?) scalarizing is an acceptable compromise. 1850 static void splitVectorValues(Instruction *StatepointInst, 1851 StatepointLiveSetTy &LiveSet, 1852 DenseMap<Value *, Value *>& PointerToBase, 1853 DominatorTree &DT) { 1854 SmallVector<Value *, 16> ToSplit; 1855 for (Value *V : LiveSet) 1856 if (isa<VectorType>(V->getType())) 1857 ToSplit.push_back(V); 1858 1859 if (ToSplit.empty()) 1860 return; 1861 1862 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1863 1864 Function &F = *(StatepointInst->getParent()->getParent()); 1865 1866 DenseMap<Value *, AllocaInst *> AllocaMap; 1867 // First is normal return, second is exceptional return (invoke only) 1868 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1869 for (Value *V : ToSplit) { 1870 AllocaInst *Alloca = 1871 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1872 AllocaMap[V] = Alloca; 1873 1874 VectorType *VT = cast<VectorType>(V->getType()); 1875 IRBuilder<> Builder(StatepointInst); 1876 SmallVector<Value *, 16> Elements; 1877 for (unsigned i = 0; i < VT->getNumElements(); i++) 1878 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1879 ElementMapping[V] = Elements; 1880 1881 auto InsertVectorReform = [&](Instruction *IP) { 1882 Builder.SetInsertPoint(IP); 1883 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1884 Value *ResultVec = UndefValue::get(VT); 1885 for (unsigned i = 0; i < VT->getNumElements(); i++) 1886 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1887 Builder.getInt32(i)); 1888 return ResultVec; 1889 }; 1890 1891 if (isa<CallInst>(StatepointInst)) { 1892 BasicBlock::iterator Next(StatepointInst); 1893 Next++; 1894 Instruction *IP = &*(Next); 1895 Replacements[V].first = InsertVectorReform(IP); 1896 Replacements[V].second = nullptr; 1897 } else { 1898 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 1899 // We've already normalized - check that we don't have shared destination 1900 // blocks 1901 BasicBlock *NormalDest = Invoke->getNormalDest(); 1902 assert(!isa<PHINode>(NormalDest->begin())); 1903 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 1904 assert(!isa<PHINode>(UnwindDest->begin())); 1905 // Insert insert element sequences in both successors 1906 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 1907 Replacements[V].first = InsertVectorReform(IP); 1908 IP = &*(UnwindDest->getFirstInsertionPt()); 1909 Replacements[V].second = InsertVectorReform(IP); 1910 } 1911 } 1912 1913 for (Value *V : ToSplit) { 1914 AllocaInst *Alloca = AllocaMap[V]; 1915 1916 // Capture all users before we start mutating use lists 1917 SmallVector<Instruction *, 16> Users; 1918 for (User *U : V->users()) 1919 Users.push_back(cast<Instruction>(U)); 1920 1921 for (Instruction *I : Users) { 1922 if (auto Phi = dyn_cast<PHINode>(I)) { 1923 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 1924 if (V == Phi->getIncomingValue(i)) { 1925 LoadInst *Load = new LoadInst( 1926 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1927 Phi->setIncomingValue(i, Load); 1928 } 1929 } else { 1930 LoadInst *Load = new LoadInst(Alloca, "", I); 1931 I->replaceUsesOfWith(V, Load); 1932 } 1933 } 1934 1935 // Store the original value and the replacement value into the alloca 1936 StoreInst *Store = new StoreInst(V, Alloca); 1937 if (auto I = dyn_cast<Instruction>(V)) 1938 Store->insertAfter(I); 1939 else 1940 Store->insertAfter(Alloca); 1941 1942 // Normal return for invoke, or call return 1943 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 1944 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1945 // Unwind return for invoke only 1946 Replacement = cast_or_null<Instruction>(Replacements[V].second); 1947 if (Replacement) 1948 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1949 } 1950 1951 // apply mem2reg to promote alloca to SSA 1952 SmallVector<AllocaInst *, 16> Allocas; 1953 for (Value *V : ToSplit) 1954 Allocas.push_back(AllocaMap[V]); 1955 PromoteMemToReg(Allocas, DT); 1956 1957 // Update our tracking of live pointers and base mappings to account for the 1958 // changes we just made. 1959 for (Value *V : ToSplit) { 1960 auto &Elements = ElementMapping[V]; 1961 1962 LiveSet.erase(V); 1963 LiveSet.insert(Elements.begin(), Elements.end()); 1964 // We need to update the base mapping as well. 1965 assert(PointerToBase.count(V)); 1966 Value *OldBase = PointerToBase[V]; 1967 auto &BaseElements = ElementMapping[OldBase]; 1968 PointerToBase.erase(V); 1969 assert(Elements.size() == BaseElements.size()); 1970 for (unsigned i = 0; i < Elements.size(); i++) { 1971 Value *Elem = Elements[i]; 1972 PointerToBase[Elem] = BaseElements[i]; 1973 } 1974 } 1975 } 1976 1977 // Helper function for the "rematerializeLiveValues". It walks use chain 1978 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1979 // values are visited (currently it is GEP's and casts). Returns true if it 1980 // successfully reached "BaseValue" and false otherwise. 1981 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1982 // recorded. 1983 static bool findRematerializableChainToBasePointer( 1984 SmallVectorImpl<Instruction*> &ChainToBase, 1985 Value *CurrentValue, Value *BaseValue) { 1986 1987 // We have found a base value 1988 if (CurrentValue == BaseValue) { 1989 return true; 1990 } 1991 1992 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1993 ChainToBase.push_back(GEP); 1994 return findRematerializableChainToBasePointer(ChainToBase, 1995 GEP->getPointerOperand(), 1996 BaseValue); 1997 } 1998 1999 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2000 Value *Def = CI->stripPointerCasts(); 2001 2002 // This two checks are basically similar. First one is here for the 2003 // consistency with findBasePointers logic. 2004 assert(!isa<CastInst>(Def) && "not a pointer cast found"); 2005 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2006 return false; 2007 2008 ChainToBase.push_back(CI); 2009 return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue); 2010 } 2011 2012 // Not supported instruction in the chain 2013 return false; 2014 } 2015 2016 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2017 // chain we are going to rematerialize. 2018 static unsigned 2019 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 2020 TargetTransformInfo &TTI) { 2021 unsigned Cost = 0; 2022 2023 for (Instruction *Instr : Chain) { 2024 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2025 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2026 "non noop cast is found during rematerialization"); 2027 2028 Type *SrcTy = CI->getOperand(0)->getType(); 2029 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 2030 2031 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2032 // Cost of the address calculation 2033 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); 2034 Cost += TTI.getAddressComputationCost(ValTy); 2035 2036 // And cost of the GEP itself 2037 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2038 // allowed for the external usage) 2039 if (!GEP->hasAllConstantIndices()) 2040 Cost += 2; 2041 2042 } else { 2043 llvm_unreachable("unsupported instruciton type during rematerialization"); 2044 } 2045 } 2046 2047 return Cost; 2048 } 2049 2050 // From the statepoint live set pick values that are cheaper to recompute then 2051 // to relocate. Remove this values from the live set, rematerialize them after 2052 // statepoint and record them in "Info" structure. Note that similar to 2053 // relocated values we don't do any user adjustments here. 2054 static void rematerializeLiveValues(CallSite CS, 2055 PartiallyConstructedSafepointRecord &Info, 2056 TargetTransformInfo &TTI) { 2057 const unsigned int ChainLengthThreshold = 10; 2058 2059 // Record values we are going to delete from this statepoint live set. 2060 // We can not di this in following loop due to iterator invalidation. 2061 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2062 2063 for (Value *LiveValue: Info.LiveSet) { 2064 // For each live pointer find it's defining chain 2065 SmallVector<Instruction *, 3> ChainToBase; 2066 assert(Info.PointerToBase.count(LiveValue)); 2067 bool FoundChain = 2068 findRematerializableChainToBasePointer(ChainToBase, 2069 LiveValue, 2070 Info.PointerToBase[LiveValue]); 2071 // Nothing to do, or chain is too long 2072 if (!FoundChain || 2073 ChainToBase.size() == 0 || 2074 ChainToBase.size() > ChainLengthThreshold) 2075 continue; 2076 2077 // Compute cost of this chain 2078 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2079 // TODO: We can also account for cases when we will be able to remove some 2080 // of the rematerialized values by later optimization passes. I.e if 2081 // we rematerialized several intersecting chains. Or if original values 2082 // don't have any uses besides this statepoint. 2083 2084 // For invokes we need to rematerialize each chain twice - for normal and 2085 // for unwind basic blocks. Model this by multiplying cost by two. 2086 if (CS.isInvoke()) { 2087 Cost *= 2; 2088 } 2089 // If it's too expensive - skip it 2090 if (Cost >= RematerializationThreshold) 2091 continue; 2092 2093 // Remove value from the live set 2094 LiveValuesToBeDeleted.push_back(LiveValue); 2095 2096 // Clone instructions and record them inside "Info" structure 2097 2098 // Walk backwards to visit top-most instructions first 2099 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2100 2101 // Utility function which clones all instructions from "ChainToBase" 2102 // and inserts them before "InsertBefore". Returns rematerialized value 2103 // which should be used after statepoint. 2104 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 2105 Instruction *LastClonedValue = nullptr; 2106 Instruction *LastValue = nullptr; 2107 for (Instruction *Instr: ChainToBase) { 2108 // Only GEP's and casts are suported as we need to be careful to not 2109 // introduce any new uses of pointers not in the liveset. 2110 // Note that it's fine to introduce new uses of pointers which were 2111 // otherwise not used after this statepoint. 2112 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2113 2114 Instruction *ClonedValue = Instr->clone(); 2115 ClonedValue->insertBefore(InsertBefore); 2116 ClonedValue->setName(Instr->getName() + ".remat"); 2117 2118 // If it is not first instruction in the chain then it uses previously 2119 // cloned value. We should update it to use cloned value. 2120 if (LastClonedValue) { 2121 assert(LastValue); 2122 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2123 #ifndef NDEBUG 2124 // Assert that cloned instruction does not use any instructions from 2125 // this chain other than LastClonedValue 2126 for (auto OpValue : ClonedValue->operand_values()) { 2127 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2128 ChainToBase.end() && 2129 "incorrect use in rematerialization chain"); 2130 } 2131 #endif 2132 } 2133 2134 LastClonedValue = ClonedValue; 2135 LastValue = Instr; 2136 } 2137 assert(LastClonedValue); 2138 return LastClonedValue; 2139 }; 2140 2141 // Different cases for calls and invokes. For invokes we need to clone 2142 // instructions both on normal and unwind path. 2143 if (CS.isCall()) { 2144 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2145 assert(InsertBefore); 2146 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2147 Info.RematerializedValues[RematerializedValue] = LiveValue; 2148 } else { 2149 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2150 2151 Instruction *NormalInsertBefore = 2152 Invoke->getNormalDest()->getFirstInsertionPt(); 2153 Instruction *UnwindInsertBefore = 2154 Invoke->getUnwindDest()->getFirstInsertionPt(); 2155 2156 Instruction *NormalRematerializedValue = 2157 rematerializeChain(NormalInsertBefore); 2158 Instruction *UnwindRematerializedValue = 2159 rematerializeChain(UnwindInsertBefore); 2160 2161 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2162 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2163 } 2164 } 2165 2166 // Remove rematerializaed values from the live set 2167 for (auto LiveValue: LiveValuesToBeDeleted) { 2168 Info.LiveSet.erase(LiveValue); 2169 } 2170 } 2171 2172 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 2173 SmallVectorImpl<CallSite> &ToUpdate) { 2174 #ifndef NDEBUG 2175 // sanity check the input 2176 std::set<CallSite> Uniqued; 2177 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2178 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2179 2180 for (CallSite CS : ToUpdate) { 2181 assert(CS.getInstruction()->getParent()->getParent() == &F); 2182 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 2183 } 2184 #endif 2185 2186 // When inserting gc.relocates for invokes, we need to be able to insert at 2187 // the top of the successor blocks. See the comment on 2188 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2189 // may restructure the CFG. 2190 for (CallSite CS : ToUpdate) { 2191 if (!CS.isInvoke()) 2192 continue; 2193 auto *II = cast<InvokeInst>(CS.getInstruction()); 2194 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2195 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2196 } 2197 2198 // A list of dummy calls added to the IR to keep various values obviously 2199 // live in the IR. We'll remove all of these when done. 2200 SmallVector<CallInst *, 64> Holders; 2201 2202 // Insert a dummy call with all of the arguments to the vm_state we'll need 2203 // for the actual safepoint insertion. This ensures reference arguments in 2204 // the deopt argument list are considered live through the safepoint (and 2205 // thus makes sure they get relocated.) 2206 for (CallSite CS : ToUpdate) { 2207 Statepoint StatepointCS(CS); 2208 2209 SmallVector<Value *, 64> DeoptValues; 2210 for (Use &U : StatepointCS.vm_state_args()) { 2211 Value *Arg = cast<Value>(&U); 2212 assert(!isUnhandledGCPointerType(Arg->getType()) && 2213 "support for FCA unimplemented"); 2214 if (isHandledGCPointerType(Arg->getType())) 2215 DeoptValues.push_back(Arg); 2216 } 2217 insertUseHolderAfter(CS, DeoptValues, Holders); 2218 } 2219 2220 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2221 2222 // A) Identify all gc pointers which are statically live at the given call 2223 // site. 2224 findLiveReferences(F, DT, P, ToUpdate, Records); 2225 2226 // B) Find the base pointers for each live pointer 2227 /* scope for caching */ { 2228 // Cache the 'defining value' relation used in the computation and 2229 // insertion of base phis and selects. This ensures that we don't insert 2230 // large numbers of duplicate base_phis. 2231 DefiningValueMapTy DVCache; 2232 2233 for (size_t i = 0; i < Records.size(); i++) { 2234 PartiallyConstructedSafepointRecord &info = Records[i]; 2235 findBasePointers(DT, DVCache, ToUpdate[i], info); 2236 } 2237 } // end of cache scope 2238 2239 // The base phi insertion logic (for any safepoint) may have inserted new 2240 // instructions which are now live at some safepoint. The simplest such 2241 // example is: 2242 // loop: 2243 // phi a <-- will be a new base_phi here 2244 // safepoint 1 <-- that needs to be live here 2245 // gep a + 1 2246 // safepoint 2 2247 // br loop 2248 // We insert some dummy calls after each safepoint to definitely hold live 2249 // the base pointers which were identified for that safepoint. We'll then 2250 // ask liveness for _every_ base inserted to see what is now live. Then we 2251 // remove the dummy calls. 2252 Holders.reserve(Holders.size() + Records.size()); 2253 for (size_t i = 0; i < Records.size(); i++) { 2254 PartiallyConstructedSafepointRecord &Info = Records[i]; 2255 2256 SmallVector<Value *, 128> Bases; 2257 for (auto Pair : Info.PointerToBase) 2258 Bases.push_back(Pair.second); 2259 2260 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2261 } 2262 2263 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2264 // need to rerun liveness. We may *also* have inserted new defs, but that's 2265 // not the key issue. 2266 recomputeLiveInValues(F, DT, P, ToUpdate, Records); 2267 2268 if (PrintBasePointers) { 2269 for (auto &Info : Records) { 2270 errs() << "Base Pairs: (w/Relocation)\n"; 2271 for (auto Pair : Info.PointerToBase) 2272 errs() << " derived %" << Pair.first->getName() << " base %" 2273 << Pair.second->getName() << "\n"; 2274 } 2275 } 2276 2277 for (CallInst *CI : Holders) 2278 CI->eraseFromParent(); 2279 2280 Holders.clear(); 2281 2282 // Do a limited scalarization of any live at safepoint vector values which 2283 // contain pointers. This enables this pass to run after vectorization at 2284 // the cost of some possible performance loss. TODO: it would be nice to 2285 // natively support vectors all the way through the backend so we don't need 2286 // to scalarize here. 2287 for (size_t i = 0; i < Records.size(); i++) { 2288 PartiallyConstructedSafepointRecord &Info = Records[i]; 2289 Instruction *Statepoint = ToUpdate[i].getInstruction(); 2290 splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet, 2291 Info.PointerToBase, DT); 2292 } 2293 2294 // In order to reduce live set of statepoint we might choose to rematerialize 2295 // some values instead of relocating them. This is purely an optimization and 2296 // does not influence correctness. 2297 TargetTransformInfo &TTI = 2298 P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2299 2300 for (size_t i = 0; i < Records.size(); i++) 2301 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2302 2303 // Now run through and replace the existing statepoints with new ones with 2304 // the live variables listed. We do not yet update uses of the values being 2305 // relocated. We have references to live variables that need to 2306 // survive to the last iteration of this loop. (By construction, the 2307 // previous statepoint can not be a live variable, thus we can and remove 2308 // the old statepoint calls as we go.) 2309 for (size_t i = 0; i < Records.size(); i++) 2310 makeStatepointExplicit(DT, ToUpdate[i], Records[i]); 2311 2312 ToUpdate.clear(); // prevent accident use of invalid CallSites 2313 2314 // Do all the fixups of the original live variables to their relocated selves 2315 SmallVector<Value *, 128> Live; 2316 for (size_t i = 0; i < Records.size(); i++) { 2317 PartiallyConstructedSafepointRecord &Info = Records[i]; 2318 // We can't simply save the live set from the original insertion. One of 2319 // the live values might be the result of a call which needs a safepoint. 2320 // That Value* no longer exists and we need to use the new gc_result. 2321 // Thankfully, the live set is embedded in the statepoint (and updated), so 2322 // we just grab that. 2323 Statepoint Statepoint(Info.StatepointToken); 2324 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2325 Statepoint.gc_args_end()); 2326 #ifndef NDEBUG 2327 // Do some basic sanity checks on our liveness results before performing 2328 // relocation. Relocation can and will turn mistakes in liveness results 2329 // into non-sensical code which is must harder to debug. 2330 // TODO: It would be nice to test consistency as well 2331 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2332 "statepoint must be reachable or liveness is meaningless"); 2333 for (Value *V : Statepoint.gc_args()) { 2334 if (!isa<Instruction>(V)) 2335 // Non-instruction values trivial dominate all possible uses 2336 continue; 2337 auto *LiveInst = cast<Instruction>(V); 2338 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2339 "unreachable values should never be live"); 2340 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2341 "basic SSA liveness expectation violated by liveness analysis"); 2342 } 2343 #endif 2344 } 2345 unique_unsorted(Live); 2346 2347 #ifndef NDEBUG 2348 // sanity check 2349 for (auto *Ptr : Live) 2350 assert(isGCPointerType(Ptr->getType()) && "must be a gc pointer type"); 2351 #endif 2352 2353 relocationViaAlloca(F, DT, Live, Records); 2354 return !Records.empty(); 2355 } 2356 2357 // Handles both return values and arguments for Functions and CallSites. 2358 template <typename AttrHolder> 2359 static void RemoveDerefAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2360 unsigned Index) { 2361 AttrBuilder R; 2362 if (AH.getDereferenceableBytes(Index)) 2363 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2364 AH.getDereferenceableBytes(Index))); 2365 if (AH.getDereferenceableOrNullBytes(Index)) 2366 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2367 AH.getDereferenceableOrNullBytes(Index))); 2368 2369 if (!R.empty()) 2370 AH.setAttributes(AH.getAttributes().removeAttributes( 2371 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2372 } 2373 2374 void 2375 RewriteStatepointsForGC::stripDereferenceabilityInfoFromPrototype(Function &F) { 2376 LLVMContext &Ctx = F.getContext(); 2377 2378 for (Argument &A : F.args()) 2379 if (isa<PointerType>(A.getType())) 2380 RemoveDerefAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2381 2382 if (isa<PointerType>(F.getReturnType())) 2383 RemoveDerefAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2384 } 2385 2386 void RewriteStatepointsForGC::stripDereferenceabilityInfoFromBody(Function &F) { 2387 if (F.empty()) 2388 return; 2389 2390 LLVMContext &Ctx = F.getContext(); 2391 MDBuilder Builder(Ctx); 2392 2393 for (Instruction &I : instructions(F)) { 2394 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2395 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2396 bool IsImmutableTBAA = 2397 MD->getNumOperands() == 4 && 2398 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2399 2400 if (!IsImmutableTBAA) 2401 continue; // no work to do, MD_tbaa is already marked mutable 2402 2403 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2404 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2405 uint64_t Offset = 2406 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2407 2408 MDNode *MutableTBAA = 2409 Builder.createTBAAStructTagNode(Base, Access, Offset); 2410 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2411 } 2412 2413 if (CallSite CS = CallSite(&I)) { 2414 for (int i = 0, e = CS.arg_size(); i != e; i++) 2415 if (isa<PointerType>(CS.getArgument(i)->getType())) 2416 RemoveDerefAttrAtIndex(Ctx, CS, i + 1); 2417 if (isa<PointerType>(CS.getType())) 2418 RemoveDerefAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2419 } 2420 } 2421 } 2422 2423 /// Returns true if this function should be rewritten by this pass. The main 2424 /// point of this function is as an extension point for custom logic. 2425 static bool shouldRewriteStatepointsIn(Function &F) { 2426 // TODO: This should check the GCStrategy 2427 if (F.hasGC()) { 2428 const char *FunctionGCName = F.getGC(); 2429 const StringRef StatepointExampleName("statepoint-example"); 2430 const StringRef CoreCLRName("coreclr"); 2431 return (StatepointExampleName == FunctionGCName) || 2432 (CoreCLRName == FunctionGCName); 2433 } else 2434 return false; 2435 } 2436 2437 void RewriteStatepointsForGC::stripDereferenceabilityInfo(Module &M) { 2438 #ifndef NDEBUG 2439 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2440 "precondition!"); 2441 #endif 2442 2443 for (Function &F : M) 2444 stripDereferenceabilityInfoFromPrototype(F); 2445 2446 for (Function &F : M) 2447 stripDereferenceabilityInfoFromBody(F); 2448 } 2449 2450 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2451 // Nothing to do for declarations. 2452 if (F.isDeclaration() || F.empty()) 2453 return false; 2454 2455 // Policy choice says not to rewrite - the most common reason is that we're 2456 // compiling code without a GCStrategy. 2457 if (!shouldRewriteStatepointsIn(F)) 2458 return false; 2459 2460 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2461 2462 // Gather all the statepoints which need rewritten. Be careful to only 2463 // consider those in reachable code since we need to ask dominance queries 2464 // when rewriting. We'll delete the unreachable ones in a moment. 2465 SmallVector<CallSite, 64> ParsePointNeeded; 2466 bool HasUnreachableStatepoint = false; 2467 for (Instruction &I : instructions(F)) { 2468 // TODO: only the ones with the flag set! 2469 if (isStatepoint(I)) { 2470 if (DT.isReachableFromEntry(I.getParent())) 2471 ParsePointNeeded.push_back(CallSite(&I)); 2472 else 2473 HasUnreachableStatepoint = true; 2474 } 2475 } 2476 2477 bool MadeChange = false; 2478 2479 // Delete any unreachable statepoints so that we don't have unrewritten 2480 // statepoints surviving this pass. This makes testing easier and the 2481 // resulting IR less confusing to human readers. Rather than be fancy, we 2482 // just reuse a utility function which removes the unreachable blocks. 2483 if (HasUnreachableStatepoint) 2484 MadeChange |= removeUnreachableBlocks(F); 2485 2486 // Return early if no work to do. 2487 if (ParsePointNeeded.empty()) 2488 return MadeChange; 2489 2490 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2491 // These are created by LCSSA. They have the effect of increasing the size 2492 // of liveness sets for no good reason. It may be harder to do this post 2493 // insertion since relocations and base phis can confuse things. 2494 for (BasicBlock &BB : F) 2495 if (BB.getUniquePredecessor()) { 2496 MadeChange = true; 2497 FoldSingleEntryPHINodes(&BB); 2498 } 2499 2500 // Before we start introducing relocations, we want to tweak the IR a bit to 2501 // avoid unfortunate code generation effects. The main example is that we 2502 // want to try to make sure the comparison feeding a branch is after any 2503 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2504 // values feeding a branch after relocation. This is semantically correct, 2505 // but results in extra register pressure since both the pre-relocation and 2506 // post-relocation copies must be available in registers. For code without 2507 // relocations this is handled elsewhere, but teaching the scheduler to 2508 // reverse the transform we're about to do would be slightly complex. 2509 // Note: This may extend the live range of the inputs to the icmp and thus 2510 // increase the liveset of any statepoint we move over. This is profitable 2511 // as long as all statepoints are in rare blocks. If we had in-register 2512 // lowering for live values this would be a much safer transform. 2513 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2514 if (auto *BI = dyn_cast<BranchInst>(TI)) 2515 if (BI->isConditional()) 2516 return dyn_cast<Instruction>(BI->getCondition()); 2517 // TODO: Extend this to handle switches 2518 return nullptr; 2519 }; 2520 for (BasicBlock &BB : F) { 2521 TerminatorInst *TI = BB.getTerminator(); 2522 if (auto *Cond = getConditionInst(TI)) 2523 // TODO: Handle more than just ICmps here. We should be able to move 2524 // most instructions without side effects or memory access. 2525 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2526 MadeChange = true; 2527 Cond->moveBefore(TI); 2528 } 2529 } 2530 2531 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); 2532 return MadeChange; 2533 } 2534 2535 // liveness computation via standard dataflow 2536 // ------------------------------------------------------------------- 2537 2538 // TODO: Consider using bitvectors for liveness, the set of potentially 2539 // interesting values should be small and easy to pre-compute. 2540 2541 /// Compute the live-in set for the location rbegin starting from 2542 /// the live-out set of the basic block 2543 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2544 BasicBlock::reverse_iterator rend, 2545 DenseSet<Value *> &LiveTmp) { 2546 2547 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2548 Instruction *I = &*ritr; 2549 2550 // KILL/Def - Remove this definition from LiveIn 2551 LiveTmp.erase(I); 2552 2553 // Don't consider *uses* in PHI nodes, we handle their contribution to 2554 // predecessor blocks when we seed the LiveOut sets 2555 if (isa<PHINode>(I)) 2556 continue; 2557 2558 // USE - Add to the LiveIn set for this instruction 2559 for (Value *V : I->operands()) { 2560 assert(!isUnhandledGCPointerType(V->getType()) && 2561 "support for FCA unimplemented"); 2562 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2563 // The choice to exclude all things constant here is slightly subtle. 2564 // There are two independent reasons: 2565 // - We assume that things which are constant (from LLVM's definition) 2566 // do not move at runtime. For example, the address of a global 2567 // variable is fixed, even though it's contents may not be. 2568 // - Second, we can't disallow arbitrary inttoptr constants even 2569 // if the language frontend does. Optimization passes are free to 2570 // locally exploit facts without respect to global reachability. This 2571 // can create sections of code which are dynamically unreachable and 2572 // contain just about anything. (see constants.ll in tests) 2573 LiveTmp.insert(V); 2574 } 2575 } 2576 } 2577 } 2578 2579 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2580 2581 for (BasicBlock *Succ : successors(BB)) { 2582 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2583 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2584 PHINode *Phi = cast<PHINode>(&*I); 2585 Value *V = Phi->getIncomingValueForBlock(BB); 2586 assert(!isUnhandledGCPointerType(V->getType()) && 2587 "support for FCA unimplemented"); 2588 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2589 LiveTmp.insert(V); 2590 } 2591 } 2592 } 2593 } 2594 2595 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2596 DenseSet<Value *> KillSet; 2597 for (Instruction &I : *BB) 2598 if (isHandledGCPointerType(I.getType())) 2599 KillSet.insert(&I); 2600 return KillSet; 2601 } 2602 2603 #ifndef NDEBUG 2604 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2605 /// sanity check for the liveness computation. 2606 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2607 TerminatorInst *TI, bool TermOkay = false) { 2608 for (Value *V : Live) { 2609 if (auto *I = dyn_cast<Instruction>(V)) { 2610 // The terminator can be a member of the LiveOut set. LLVM's definition 2611 // of instruction dominance states that V does not dominate itself. As 2612 // such, we need to special case this to allow it. 2613 if (TermOkay && TI == I) 2614 continue; 2615 assert(DT.dominates(I, TI) && 2616 "basic SSA liveness expectation violated by liveness analysis"); 2617 } 2618 } 2619 } 2620 2621 /// Check that all the liveness sets used during the computation of liveness 2622 /// obey basic SSA properties. This is useful for finding cases where we miss 2623 /// a def. 2624 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2625 BasicBlock &BB) { 2626 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2627 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2628 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2629 } 2630 #endif 2631 2632 static void computeLiveInValues(DominatorTree &DT, Function &F, 2633 GCPtrLivenessData &Data) { 2634 2635 SmallSetVector<BasicBlock *, 200> Worklist; 2636 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2637 // We use a SetVector so that we don't have duplicates in the worklist. 2638 Worklist.insert(pred_begin(BB), pred_end(BB)); 2639 }; 2640 auto NextItem = [&]() { 2641 BasicBlock *BB = Worklist.back(); 2642 Worklist.pop_back(); 2643 return BB; 2644 }; 2645 2646 // Seed the liveness for each individual block 2647 for (BasicBlock &BB : F) { 2648 Data.KillSet[&BB] = computeKillSet(&BB); 2649 Data.LiveSet[&BB].clear(); 2650 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2651 2652 #ifndef NDEBUG 2653 for (Value *Kill : Data.KillSet[&BB]) 2654 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2655 #endif 2656 2657 Data.LiveOut[&BB] = DenseSet<Value *>(); 2658 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2659 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2660 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2661 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2662 if (!Data.LiveIn[&BB].empty()) 2663 AddPredsToWorklist(&BB); 2664 } 2665 2666 // Propagate that liveness until stable 2667 while (!Worklist.empty()) { 2668 BasicBlock *BB = NextItem(); 2669 2670 // Compute our new liveout set, then exit early if it hasn't changed 2671 // despite the contribution of our successor. 2672 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2673 const auto OldLiveOutSize = LiveOut.size(); 2674 for (BasicBlock *Succ : successors(BB)) { 2675 assert(Data.LiveIn.count(Succ)); 2676 set_union(LiveOut, Data.LiveIn[Succ]); 2677 } 2678 // assert OutLiveOut is a subset of LiveOut 2679 if (OldLiveOutSize == LiveOut.size()) { 2680 // If the sets are the same size, then we didn't actually add anything 2681 // when unioning our successors LiveIn Thus, the LiveIn of this block 2682 // hasn't changed. 2683 continue; 2684 } 2685 Data.LiveOut[BB] = LiveOut; 2686 2687 // Apply the effects of this basic block 2688 DenseSet<Value *> LiveTmp = LiveOut; 2689 set_union(LiveTmp, Data.LiveSet[BB]); 2690 set_subtract(LiveTmp, Data.KillSet[BB]); 2691 2692 assert(Data.LiveIn.count(BB)); 2693 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2694 // assert: OldLiveIn is a subset of LiveTmp 2695 if (OldLiveIn.size() != LiveTmp.size()) { 2696 Data.LiveIn[BB] = LiveTmp; 2697 AddPredsToWorklist(BB); 2698 } 2699 } // while( !worklist.empty() ) 2700 2701 #ifndef NDEBUG 2702 // Sanity check our output against SSA properties. This helps catch any 2703 // missing kills during the above iteration. 2704 for (BasicBlock &BB : F) { 2705 checkBasicSSA(DT, Data, BB); 2706 } 2707 #endif 2708 } 2709 2710 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2711 StatepointLiveSetTy &Out) { 2712 2713 BasicBlock *BB = Inst->getParent(); 2714 2715 // Note: The copy is intentional and required 2716 assert(Data.LiveOut.count(BB)); 2717 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2718 2719 // We want to handle the statepoint itself oddly. It's 2720 // call result is not live (normal), nor are it's arguments 2721 // (unless they're used again later). This adjustment is 2722 // specifically what we need to relocate 2723 BasicBlock::reverse_iterator rend(Inst); 2724 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2725 LiveOut.erase(Inst); 2726 Out.insert(LiveOut.begin(), LiveOut.end()); 2727 } 2728 2729 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2730 const CallSite &CS, 2731 PartiallyConstructedSafepointRecord &Info) { 2732 Instruction *Inst = CS.getInstruction(); 2733 StatepointLiveSetTy Updated; 2734 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2735 2736 #ifndef NDEBUG 2737 DenseSet<Value *> Bases; 2738 for (auto KVPair : Info.PointerToBase) { 2739 Bases.insert(KVPair.second); 2740 } 2741 #endif 2742 // We may have base pointers which are now live that weren't before. We need 2743 // to update the PointerToBase structure to reflect this. 2744 for (auto V : Updated) 2745 if (!Info.PointerToBase.count(V)) { 2746 assert(Bases.count(V) && "can't find base for unexpected live value"); 2747 Info.PointerToBase[V] = V; 2748 continue; 2749 } 2750 2751 #ifndef NDEBUG 2752 for (auto V : Updated) { 2753 assert(Info.PointerToBase.count(V) && 2754 "must be able to find base for live value"); 2755 } 2756 #endif 2757 2758 // Remove any stale base mappings - this can happen since our liveness is 2759 // more precise then the one inherent in the base pointer analysis 2760 DenseSet<Value *> ToErase; 2761 for (auto KVPair : Info.PointerToBase) 2762 if (!Updated.count(KVPair.first)) 2763 ToErase.insert(KVPair.first); 2764 for (auto V : ToErase) 2765 Info.PointerToBase.erase(V); 2766 2767 #ifndef NDEBUG 2768 for (auto KVPair : Info.PointerToBase) 2769 assert(Updated.count(KVPair.first) && "record for non-live value"); 2770 #endif 2771 2772 Info.LiveSet = Updated; 2773 } 2774