1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstIterator.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/Cloning.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 45 46 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 47 48 using namespace llvm; 49 50 // Print the liveset found at the insert location 51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 52 cl::init(false)); 53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 54 cl::init(false)); 55 // Print out the base pointers for debugging 56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 57 cl::init(false)); 58 59 // Cost threshold measuring when it is profitable to rematerialize value instead 60 // of relocating it 61 static cl::opt<unsigned> 62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 63 cl::init(6)); 64 65 #ifdef EXPENSIVE_CHECKS 66 static bool ClobberNonLive = true; 67 #else 68 static bool ClobberNonLive = false; 69 #endif 70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 71 cl::location(ClobberNonLive), 72 cl::Hidden); 73 74 static cl::opt<bool> 75 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 76 cl::Hidden, cl::init(true)); 77 78 namespace { 79 struct RewriteStatepointsForGC : public ModulePass { 80 static char ID; // Pass identification, replacement for typeid 81 82 RewriteStatepointsForGC() : ModulePass(ID) { 83 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 84 } 85 bool runOnFunction(Function &F); 86 bool runOnModule(Module &M) override { 87 bool Changed = false; 88 for (Function &F : M) 89 Changed |= runOnFunction(F); 90 91 if (Changed) { 92 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 93 // returns true for at least one function in the module. Since at least 94 // one function changed, we know that the precondition is satisfied. 95 stripNonValidAttributes(M); 96 } 97 98 return Changed; 99 } 100 101 void getAnalysisUsage(AnalysisUsage &AU) const override { 102 // We add and rewrite a bunch of instructions, but don't really do much 103 // else. We could in theory preserve a lot more analyses here. 104 AU.addRequired<DominatorTreeWrapperPass>(); 105 AU.addRequired<TargetTransformInfoWrapperPass>(); 106 } 107 108 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 109 /// dereferenceability that are no longer valid/correct after 110 /// RewriteStatepointsForGC has run. This is because semantically, after 111 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 112 /// heap. stripNonValidAttributes (conservatively) restores correctness 113 /// by erasing all attributes in the module that externally imply 114 /// dereferenceability. 115 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 116 /// can touch the entire heap including noalias objects. 117 void stripNonValidAttributes(Module &M); 118 119 // Helpers for stripNonValidAttributes 120 void stripNonValidAttributesFromBody(Function &F); 121 void stripNonValidAttributesFromPrototype(Function &F); 122 }; 123 } // namespace 124 125 char RewriteStatepointsForGC::ID = 0; 126 127 ModulePass *llvm::createRewriteStatepointsForGCPass() { 128 return new RewriteStatepointsForGC(); 129 } 130 131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 132 "Make relocations explicit at statepoints", false, false) 133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 136 "Make relocations explicit at statepoints", false, false) 137 138 namespace { 139 struct GCPtrLivenessData { 140 /// Values defined in this block. 141 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 142 /// Values used in this block (and thus live); does not included values 143 /// killed within this block. 144 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 145 146 /// Values live into this basic block (i.e. used by any 147 /// instruction in this basic block or ones reachable from here) 148 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 149 150 /// Values live out of this basic block (i.e. live into 151 /// any successor block) 152 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 153 }; 154 155 // The type of the internal cache used inside the findBasePointers family 156 // of functions. From the callers perspective, this is an opaque type and 157 // should not be inspected. 158 // 159 // In the actual implementation this caches two relations: 160 // - The base relation itself (i.e. this pointer is based on that one) 161 // - The base defining value relation (i.e. before base_phi insertion) 162 // Generally, after the execution of a full findBasePointer call, only the 163 // base relation will remain. Internally, we add a mixture of the two 164 // types, then update all the second type to the first type 165 typedef MapVector<Value *, Value *> DefiningValueMapTy; 166 typedef SetVector<Value *> StatepointLiveSetTy; 167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>> 168 RematerializedValueMapTy; 169 170 struct PartiallyConstructedSafepointRecord { 171 /// The set of values known to be live across this safepoint 172 StatepointLiveSetTy LiveSet; 173 174 /// Mapping from live pointers to a base-defining-value 175 MapVector<Value *, Value *> PointerToBase; 176 177 /// The *new* gc.statepoint instruction itself. This produces the token 178 /// that normal path gc.relocates and the gc.result are tied to. 179 Instruction *StatepointToken; 180 181 /// Instruction to which exceptional gc relocates are attached 182 /// Makes it easier to iterate through them during relocationViaAlloca. 183 Instruction *UnwindToken; 184 185 /// Record live values we are rematerialized instead of relocating. 186 /// They are not included into 'LiveSet' field. 187 /// Maps rematerialized copy to it's original value. 188 RematerializedValueMapTy RematerializedValues; 189 }; 190 } 191 192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 193 Optional<OperandBundleUse> DeoptBundle = 194 CS.getOperandBundle(LLVMContext::OB_deopt); 195 196 if (!DeoptBundle.hasValue()) { 197 assert(AllowStatepointWithNoDeoptInfo && 198 "Found non-leaf call without deopt info!"); 199 return None; 200 } 201 202 return DeoptBundle.getValue().Inputs; 203 } 204 205 /// Compute the live-in set for every basic block in the function 206 static void computeLiveInValues(DominatorTree &DT, Function &F, 207 GCPtrLivenessData &Data); 208 209 /// Given results from the dataflow liveness computation, find the set of live 210 /// Values at a particular instruction. 211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 212 StatepointLiveSetTy &out); 213 214 // TODO: Once we can get to the GCStrategy, this becomes 215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 216 217 static bool isGCPointerType(Type *T) { 218 if (auto *PT = dyn_cast<PointerType>(T)) 219 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 220 // GC managed heap. We know that a pointer into this heap needs to be 221 // updated and that no other pointer does. 222 return (1 == PT->getAddressSpace()); 223 return false; 224 } 225 226 // Return true if this type is one which a) is a gc pointer or contains a GC 227 // pointer and b) is of a type this code expects to encounter as a live value. 228 // (The insertion code will assert that a type which matches (a) and not (b) 229 // is not encountered.) 230 static bool isHandledGCPointerType(Type *T) { 231 // We fully support gc pointers 232 if (isGCPointerType(T)) 233 return true; 234 // We partially support vectors of gc pointers. The code will assert if it 235 // can't handle something. 236 if (auto VT = dyn_cast<VectorType>(T)) 237 if (isGCPointerType(VT->getElementType())) 238 return true; 239 return false; 240 } 241 242 #ifndef NDEBUG 243 /// Returns true if this type contains a gc pointer whether we know how to 244 /// handle that type or not. 245 static bool containsGCPtrType(Type *Ty) { 246 if (isGCPointerType(Ty)) 247 return true; 248 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 249 return isGCPointerType(VT->getScalarType()); 250 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 251 return containsGCPtrType(AT->getElementType()); 252 if (StructType *ST = dyn_cast<StructType>(Ty)) 253 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 254 containsGCPtrType); 255 return false; 256 } 257 258 // Returns true if this is a type which a) is a gc pointer or contains a GC 259 // pointer and b) is of a type which the code doesn't expect (i.e. first class 260 // aggregates). Used to trip assertions. 261 static bool isUnhandledGCPointerType(Type *Ty) { 262 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 263 } 264 #endif 265 266 // Return the name of the value suffixed with the provided value, or if the 267 // value didn't have a name, the default value specified. 268 static std::string suffixed_name_or(Value *V, StringRef Suffix, 269 StringRef DefaultName) { 270 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 271 } 272 273 // Conservatively identifies any definitions which might be live at the 274 // given instruction. The analysis is performed immediately before the 275 // given instruction. Values defined by that instruction are not considered 276 // live. Values used by that instruction are considered live. 277 static void 278 analyzeParsePointLiveness(DominatorTree &DT, 279 GCPtrLivenessData &OriginalLivenessData, CallSite CS, 280 PartiallyConstructedSafepointRecord &result) { 281 Instruction *inst = CS.getInstruction(); 282 283 StatepointLiveSetTy LiveSet; 284 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet); 285 286 if (PrintLiveSet) { 287 errs() << "Live Variables:\n"; 288 for (Value *V : LiveSet) 289 dbgs() << " " << V->getName() << " " << *V << "\n"; 290 } 291 if (PrintLiveSetSize) { 292 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 293 errs() << "Number live values: " << LiveSet.size() << "\n"; 294 } 295 result.LiveSet = LiveSet; 296 } 297 298 static bool isKnownBaseResult(Value *V); 299 namespace { 300 /// A single base defining value - An immediate base defining value for an 301 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 302 /// For instructions which have multiple pointer [vector] inputs or that 303 /// transition between vector and scalar types, there is no immediate base 304 /// defining value. The 'base defining value' for 'Def' is the transitive 305 /// closure of this relation stopping at the first instruction which has no 306 /// immediate base defining value. The b.d.v. might itself be a base pointer, 307 /// but it can also be an arbitrary derived pointer. 308 struct BaseDefiningValueResult { 309 /// Contains the value which is the base defining value. 310 Value * const BDV; 311 /// True if the base defining value is also known to be an actual base 312 /// pointer. 313 const bool IsKnownBase; 314 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 315 : BDV(BDV), IsKnownBase(IsKnownBase) { 316 #ifndef NDEBUG 317 // Check consistency between new and old means of checking whether a BDV is 318 // a base. 319 bool MustBeBase = isKnownBaseResult(BDV); 320 assert(!MustBeBase || MustBeBase == IsKnownBase); 321 #endif 322 } 323 }; 324 } 325 326 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 327 328 /// Return a base defining value for the 'Index' element of the given vector 329 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 330 /// 'I'. As an optimization, this method will try to determine when the 331 /// element is known to already be a base pointer. If this can be established, 332 /// the second value in the returned pair will be true. Note that either a 333 /// vector or a pointer typed value can be returned. For the former, the 334 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 335 /// If the later, the return pointer is a BDV (or possibly a base) for the 336 /// particular element in 'I'. 337 static BaseDefiningValueResult 338 findBaseDefiningValueOfVector(Value *I) { 339 // Each case parallels findBaseDefiningValue below, see that code for 340 // detailed motivation. 341 342 if (isa<Argument>(I)) 343 // An incoming argument to the function is a base pointer 344 return BaseDefiningValueResult(I, true); 345 346 if (isa<Constant>(I)) 347 // Base of constant vector consists only of constant null pointers. 348 // For reasoning see similar case inside 'findBaseDefiningValue' function. 349 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 350 true); 351 352 if (isa<LoadInst>(I)) 353 return BaseDefiningValueResult(I, true); 354 355 if (isa<InsertElementInst>(I)) 356 // We don't know whether this vector contains entirely base pointers or 357 // not. To be conservatively correct, we treat it as a BDV and will 358 // duplicate code as needed to construct a parallel vector of bases. 359 return BaseDefiningValueResult(I, false); 360 361 if (isa<ShuffleVectorInst>(I)) 362 // We don't know whether this vector contains entirely base pointers or 363 // not. To be conservatively correct, we treat it as a BDV and will 364 // duplicate code as needed to construct a parallel vector of bases. 365 // TODO: There a number of local optimizations which could be applied here 366 // for particular sufflevector patterns. 367 return BaseDefiningValueResult(I, false); 368 369 // A PHI or Select is a base defining value. The outer findBasePointer 370 // algorithm is responsible for constructing a base value for this BDV. 371 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 372 "unknown vector instruction - no base found for vector element"); 373 return BaseDefiningValueResult(I, false); 374 } 375 376 /// Helper function for findBasePointer - Will return a value which either a) 377 /// defines the base pointer for the input, b) blocks the simple search 378 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 379 /// from pointer to vector type or back. 380 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 381 assert(I->getType()->isPtrOrPtrVectorTy() && 382 "Illegal to ask for the base pointer of a non-pointer type"); 383 384 if (I->getType()->isVectorTy()) 385 return findBaseDefiningValueOfVector(I); 386 387 if (isa<Argument>(I)) 388 // An incoming argument to the function is a base pointer 389 // We should have never reached here if this argument isn't an gc value 390 return BaseDefiningValueResult(I, true); 391 392 if (isa<Constant>(I)) { 393 // We assume that objects with a constant base (e.g. a global) can't move 394 // and don't need to be reported to the collector because they are always 395 // live. Besides global references, all kinds of constants (e.g. undef, 396 // constant expressions, null pointers) can be introduced by the inliner or 397 // the optimizer, especially on dynamically dead paths. 398 // Here we treat all of them as having single null base. By doing this we 399 // trying to avoid problems reporting various conflicts in a form of 400 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 401 // See constant.ll file for relevant test cases. 402 403 return BaseDefiningValueResult( 404 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 405 } 406 407 if (CastInst *CI = dyn_cast<CastInst>(I)) { 408 Value *Def = CI->stripPointerCasts(); 409 // If stripping pointer casts changes the address space there is an 410 // addrspacecast in between. 411 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 412 cast<PointerType>(CI->getType())->getAddressSpace() && 413 "unsupported addrspacecast"); 414 // If we find a cast instruction here, it means we've found a cast which is 415 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 416 // handle int->ptr conversion. 417 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 418 return findBaseDefiningValue(Def); 419 } 420 421 if (isa<LoadInst>(I)) 422 // The value loaded is an gc base itself 423 return BaseDefiningValueResult(I, true); 424 425 426 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 427 // The base of this GEP is the base 428 return findBaseDefiningValue(GEP->getPointerOperand()); 429 430 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 431 switch (II->getIntrinsicID()) { 432 default: 433 // fall through to general call handling 434 break; 435 case Intrinsic::experimental_gc_statepoint: 436 llvm_unreachable("statepoints don't produce pointers"); 437 case Intrinsic::experimental_gc_relocate: { 438 // Rerunning safepoint insertion after safepoints are already 439 // inserted is not supported. It could probably be made to work, 440 // but why are you doing this? There's no good reason. 441 llvm_unreachable("repeat safepoint insertion is not supported"); 442 } 443 case Intrinsic::gcroot: 444 // Currently, this mechanism hasn't been extended to work with gcroot. 445 // There's no reason it couldn't be, but I haven't thought about the 446 // implications much. 447 llvm_unreachable( 448 "interaction with the gcroot mechanism is not supported"); 449 } 450 } 451 // We assume that functions in the source language only return base 452 // pointers. This should probably be generalized via attributes to support 453 // both source language and internal functions. 454 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 455 return BaseDefiningValueResult(I, true); 456 457 // I have absolutely no idea how to implement this part yet. It's not 458 // necessarily hard, I just haven't really looked at it yet. 459 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 460 461 if (isa<AtomicCmpXchgInst>(I)) 462 // A CAS is effectively a atomic store and load combined under a 463 // predicate. From the perspective of base pointers, we just treat it 464 // like a load. 465 return BaseDefiningValueResult(I, true); 466 467 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 468 "binary ops which don't apply to pointers"); 469 470 // The aggregate ops. Aggregates can either be in the heap or on the 471 // stack, but in either case, this is simply a field load. As a result, 472 // this is a defining definition of the base just like a load is. 473 if (isa<ExtractValueInst>(I)) 474 return BaseDefiningValueResult(I, true); 475 476 // We should never see an insert vector since that would require we be 477 // tracing back a struct value not a pointer value. 478 assert(!isa<InsertValueInst>(I) && 479 "Base pointer for a struct is meaningless"); 480 481 // An extractelement produces a base result exactly when it's input does. 482 // We may need to insert a parallel instruction to extract the appropriate 483 // element out of the base vector corresponding to the input. Given this, 484 // it's analogous to the phi and select case even though it's not a merge. 485 if (isa<ExtractElementInst>(I)) 486 // Note: There a lot of obvious peephole cases here. This are deliberately 487 // handled after the main base pointer inference algorithm to make writing 488 // test cases to exercise that code easier. 489 return BaseDefiningValueResult(I, false); 490 491 // The last two cases here don't return a base pointer. Instead, they 492 // return a value which dynamically selects from among several base 493 // derived pointers (each with it's own base potentially). It's the job of 494 // the caller to resolve these. 495 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 496 "missing instruction case in findBaseDefiningValing"); 497 return BaseDefiningValueResult(I, false); 498 } 499 500 /// Returns the base defining value for this value. 501 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 502 Value *&Cached = Cache[I]; 503 if (!Cached) { 504 Cached = findBaseDefiningValue(I).BDV; 505 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 506 << Cached->getName() << "\n"); 507 } 508 assert(Cache[I] != nullptr); 509 return Cached; 510 } 511 512 /// Return a base pointer for this value if known. Otherwise, return it's 513 /// base defining value. 514 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 515 Value *Def = findBaseDefiningValueCached(I, Cache); 516 auto Found = Cache.find(Def); 517 if (Found != Cache.end()) { 518 // Either a base-of relation, or a self reference. Caller must check. 519 return Found->second; 520 } 521 // Only a BDV available 522 return Def; 523 } 524 525 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 526 /// is it known to be a base pointer? Or do we need to continue searching. 527 static bool isKnownBaseResult(Value *V) { 528 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 529 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 530 !isa<ShuffleVectorInst>(V)) { 531 // no recursion possible 532 return true; 533 } 534 if (isa<Instruction>(V) && 535 cast<Instruction>(V)->getMetadata("is_base_value")) { 536 // This is a previously inserted base phi or select. We know 537 // that this is a base value. 538 return true; 539 } 540 541 // We need to keep searching 542 return false; 543 } 544 545 namespace { 546 /// Models the state of a single base defining value in the findBasePointer 547 /// algorithm for determining where a new instruction is needed to propagate 548 /// the base of this BDV. 549 class BDVState { 550 public: 551 enum Status { Unknown, Base, Conflict }; 552 553 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 554 assert(status != Base || b); 555 } 556 explicit BDVState(Value *b) : status(Base), base(b) {} 557 BDVState() : status(Unknown), base(nullptr) {} 558 559 Status getStatus() const { return status; } 560 Value *getBase() const { return base; } 561 562 bool isBase() const { return getStatus() == Base; } 563 bool isUnknown() const { return getStatus() == Unknown; } 564 bool isConflict() const { return getStatus() == Conflict; } 565 566 bool operator==(const BDVState &other) const { 567 return base == other.base && status == other.status; 568 } 569 570 bool operator!=(const BDVState &other) const { return !(*this == other); } 571 572 LLVM_DUMP_METHOD 573 void dump() const { print(dbgs()); dbgs() << '\n'; } 574 575 void print(raw_ostream &OS) const { 576 switch (status) { 577 case Unknown: 578 OS << "U"; 579 break; 580 case Base: 581 OS << "B"; 582 break; 583 case Conflict: 584 OS << "C"; 585 break; 586 }; 587 OS << " (" << base << " - " 588 << (base ? base->getName() : "nullptr") << "): "; 589 } 590 591 private: 592 Status status; 593 AssertingVH<Value> base; // non null only if status == base 594 }; 595 } 596 597 #ifndef NDEBUG 598 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 599 State.print(OS); 600 return OS; 601 } 602 #endif 603 604 namespace { 605 // Values of type BDVState form a lattice, and this is a helper 606 // class that implementes the meet operation. The meat of the meet 607 // operation is implemented in MeetBDVStates::pureMeet 608 class MeetBDVStates { 609 public: 610 /// Initializes the currentResult to the TOP state so that if can be met with 611 /// any other state to produce that state. 612 MeetBDVStates() {} 613 614 // Destructively meet the current result with the given BDVState 615 void meetWith(BDVState otherState) { 616 currentResult = meet(otherState, currentResult); 617 } 618 619 BDVState getResult() const { return currentResult; } 620 621 private: 622 BDVState currentResult; 623 624 /// Perform a meet operation on two elements of the BDVState lattice. 625 static BDVState meet(BDVState LHS, BDVState RHS) { 626 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 627 "math is wrong: meet does not commute!"); 628 BDVState Result = pureMeet(LHS, RHS); 629 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 630 << " produced " << Result << "\n"); 631 return Result; 632 } 633 634 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 635 switch (stateA.getStatus()) { 636 case BDVState::Unknown: 637 return stateB; 638 639 case BDVState::Base: 640 assert(stateA.getBase() && "can't be null"); 641 if (stateB.isUnknown()) 642 return stateA; 643 644 if (stateB.isBase()) { 645 if (stateA.getBase() == stateB.getBase()) { 646 assert(stateA == stateB && "equality broken!"); 647 return stateA; 648 } 649 return BDVState(BDVState::Conflict); 650 } 651 assert(stateB.isConflict() && "only three states!"); 652 return BDVState(BDVState::Conflict); 653 654 case BDVState::Conflict: 655 return stateA; 656 } 657 llvm_unreachable("only three states!"); 658 } 659 }; 660 } 661 662 663 /// For a given value or instruction, figure out what base ptr it's derived 664 /// from. For gc objects, this is simply itself. On success, returns a value 665 /// which is the base pointer. (This is reliable and can be used for 666 /// relocation.) On failure, returns nullptr. 667 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 668 Value *def = findBaseOrBDV(I, cache); 669 670 if (isKnownBaseResult(def)) { 671 return def; 672 } 673 674 // Here's the rough algorithm: 675 // - For every SSA value, construct a mapping to either an actual base 676 // pointer or a PHI which obscures the base pointer. 677 // - Construct a mapping from PHI to unknown TOP state. Use an 678 // optimistic algorithm to propagate base pointer information. Lattice 679 // looks like: 680 // UNKNOWN 681 // b1 b2 b3 b4 682 // CONFLICT 683 // When algorithm terminates, all PHIs will either have a single concrete 684 // base or be in a conflict state. 685 // - For every conflict, insert a dummy PHI node without arguments. Add 686 // these to the base[Instruction] = BasePtr mapping. For every 687 // non-conflict, add the actual base. 688 // - For every conflict, add arguments for the base[a] of each input 689 // arguments. 690 // 691 // Note: A simpler form of this would be to add the conflict form of all 692 // PHIs without running the optimistic algorithm. This would be 693 // analogous to pessimistic data flow and would likely lead to an 694 // overall worse solution. 695 696 #ifndef NDEBUG 697 auto isExpectedBDVType = [](Value *BDV) { 698 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 699 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 700 }; 701 #endif 702 703 // Once populated, will contain a mapping from each potentially non-base BDV 704 // to a lattice value (described above) which corresponds to that BDV. 705 // We use the order of insertion (DFS over the def/use graph) to provide a 706 // stable deterministic ordering for visiting DenseMaps (which are unordered) 707 // below. This is important for deterministic compilation. 708 MapVector<Value *, BDVState> States; 709 710 // Recursively fill in all base defining values reachable from the initial 711 // one for which we don't already know a definite base value for 712 /* scope */ { 713 SmallVector<Value*, 16> Worklist; 714 Worklist.push_back(def); 715 States.insert(std::make_pair(def, BDVState())); 716 while (!Worklist.empty()) { 717 Value *Current = Worklist.pop_back_val(); 718 assert(!isKnownBaseResult(Current) && "why did it get added?"); 719 720 auto visitIncomingValue = [&](Value *InVal) { 721 Value *Base = findBaseOrBDV(InVal, cache); 722 if (isKnownBaseResult(Base)) 723 // Known bases won't need new instructions introduced and can be 724 // ignored safely 725 return; 726 assert(isExpectedBDVType(Base) && "the only non-base values " 727 "we see should be base defining values"); 728 if (States.insert(std::make_pair(Base, BDVState())).second) 729 Worklist.push_back(Base); 730 }; 731 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 732 for (Value *InVal : Phi->incoming_values()) 733 visitIncomingValue(InVal); 734 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 735 visitIncomingValue(Sel->getTrueValue()); 736 visitIncomingValue(Sel->getFalseValue()); 737 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 738 visitIncomingValue(EE->getVectorOperand()); 739 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 740 visitIncomingValue(IE->getOperand(0)); // vector operand 741 visitIncomingValue(IE->getOperand(1)); // scalar operand 742 } else { 743 // There is one known class of instructions we know we don't handle. 744 assert(isa<ShuffleVectorInst>(Current)); 745 llvm_unreachable("unimplemented instruction case"); 746 } 747 } 748 } 749 750 #ifndef NDEBUG 751 DEBUG(dbgs() << "States after initialization:\n"); 752 for (auto Pair : States) { 753 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 754 } 755 #endif 756 757 // Return a phi state for a base defining value. We'll generate a new 758 // base state for known bases and expect to find a cached state otherwise. 759 auto getStateForBDV = [&](Value *baseValue) { 760 if (isKnownBaseResult(baseValue)) 761 return BDVState(baseValue); 762 auto I = States.find(baseValue); 763 assert(I != States.end() && "lookup failed!"); 764 return I->second; 765 }; 766 767 bool progress = true; 768 while (progress) { 769 #ifndef NDEBUG 770 const size_t oldSize = States.size(); 771 #endif 772 progress = false; 773 // We're only changing values in this loop, thus safe to keep iterators. 774 // Since this is computing a fixed point, the order of visit does not 775 // effect the result. TODO: We could use a worklist here and make this run 776 // much faster. 777 for (auto Pair : States) { 778 Value *BDV = Pair.first; 779 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 780 781 // Given an input value for the current instruction, return a BDVState 782 // instance which represents the BDV of that value. 783 auto getStateForInput = [&](Value *V) mutable { 784 Value *BDV = findBaseOrBDV(V, cache); 785 return getStateForBDV(BDV); 786 }; 787 788 MeetBDVStates calculateMeet; 789 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) { 790 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 791 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 792 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) { 793 for (Value *Val : Phi->incoming_values()) 794 calculateMeet.meetWith(getStateForInput(Val)); 795 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 796 // The 'meet' for an extractelement is slightly trivial, but it's still 797 // useful in that it drives us to conflict if our input is. 798 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 799 } else { 800 // Given there's a inherent type mismatch between the operands, will 801 // *always* produce Conflict. 802 auto *IE = cast<InsertElementInst>(BDV); 803 calculateMeet.meetWith(getStateForInput(IE->getOperand(0))); 804 calculateMeet.meetWith(getStateForInput(IE->getOperand(1))); 805 } 806 807 BDVState oldState = States[BDV]; 808 BDVState newState = calculateMeet.getResult(); 809 if (oldState != newState) { 810 progress = true; 811 States[BDV] = newState; 812 } 813 } 814 815 assert(oldSize == States.size() && 816 "fixed point shouldn't be adding any new nodes to state"); 817 } 818 819 #ifndef NDEBUG 820 DEBUG(dbgs() << "States after meet iteration:\n"); 821 for (auto Pair : States) { 822 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 823 } 824 #endif 825 826 // Insert Phis for all conflicts 827 // TODO: adjust naming patterns to avoid this order of iteration dependency 828 for (auto Pair : States) { 829 Instruction *I = cast<Instruction>(Pair.first); 830 BDVState State = Pair.second; 831 assert(!isKnownBaseResult(I) && "why did it get added?"); 832 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 833 834 // extractelement instructions are a bit special in that we may need to 835 // insert an extract even when we know an exact base for the instruction. 836 // The problem is that we need to convert from a vector base to a scalar 837 // base for the particular indice we're interested in. 838 if (State.isBase() && isa<ExtractElementInst>(I) && 839 isa<VectorType>(State.getBase()->getType())) { 840 auto *EE = cast<ExtractElementInst>(I); 841 // TODO: In many cases, the new instruction is just EE itself. We should 842 // exploit this, but can't do it here since it would break the invariant 843 // about the BDV not being known to be a base. 844 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 845 EE->getIndexOperand(), 846 "base_ee", EE); 847 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 848 States[I] = BDVState(BDVState::Base, BaseInst); 849 } 850 851 // Since we're joining a vector and scalar base, they can never be the 852 // same. As a result, we should always see insert element having reached 853 // the conflict state. 854 if (isa<InsertElementInst>(I)) { 855 assert(State.isConflict()); 856 } 857 858 if (!State.isConflict()) 859 continue; 860 861 /// Create and insert a new instruction which will represent the base of 862 /// the given instruction 'I'. 863 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 864 if (isa<PHINode>(I)) { 865 BasicBlock *BB = I->getParent(); 866 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 867 assert(NumPreds > 0 && "how did we reach here"); 868 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 869 return PHINode::Create(I->getType(), NumPreds, Name, I); 870 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 871 // The undef will be replaced later 872 UndefValue *Undef = UndefValue::get(Sel->getType()); 873 std::string Name = suffixed_name_or(I, ".base", "base_select"); 874 return SelectInst::Create(Sel->getCondition(), Undef, 875 Undef, Name, Sel); 876 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 877 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 878 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 879 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 880 EE); 881 } else { 882 auto *IE = cast<InsertElementInst>(I); 883 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 884 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 885 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 886 return InsertElementInst::Create(VecUndef, ScalarUndef, 887 IE->getOperand(2), Name, IE); 888 } 889 890 }; 891 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 892 // Add metadata marking this as a base value 893 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 894 States[I] = BDVState(BDVState::Conflict, BaseInst); 895 } 896 897 // Returns a instruction which produces the base pointer for a given 898 // instruction. The instruction is assumed to be an input to one of the BDVs 899 // seen in the inference algorithm above. As such, we must either already 900 // know it's base defining value is a base, or have inserted a new 901 // instruction to propagate the base of it's BDV and have entered that newly 902 // introduced instruction into the state table. In either case, we are 903 // assured to be able to determine an instruction which produces it's base 904 // pointer. 905 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 906 Value *BDV = findBaseOrBDV(Input, cache); 907 Value *Base = nullptr; 908 if (isKnownBaseResult(BDV)) { 909 Base = BDV; 910 } else { 911 // Either conflict or base. 912 assert(States.count(BDV)); 913 Base = States[BDV].getBase(); 914 } 915 assert(Base && "can't be null"); 916 // The cast is needed since base traversal may strip away bitcasts 917 if (Base->getType() != Input->getType() && 918 InsertPt) { 919 Base = new BitCastInst(Base, Input->getType(), "cast", 920 InsertPt); 921 } 922 return Base; 923 }; 924 925 // Fixup all the inputs of the new PHIs. Visit order needs to be 926 // deterministic and predictable because we're naming newly created 927 // instructions. 928 for (auto Pair : States) { 929 Instruction *BDV = cast<Instruction>(Pair.first); 930 BDVState State = Pair.second; 931 932 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 933 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 934 if (!State.isConflict()) 935 continue; 936 937 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) { 938 PHINode *phi = cast<PHINode>(BDV); 939 unsigned NumPHIValues = phi->getNumIncomingValues(); 940 for (unsigned i = 0; i < NumPHIValues; i++) { 941 Value *InVal = phi->getIncomingValue(i); 942 BasicBlock *InBB = phi->getIncomingBlock(i); 943 944 // If we've already seen InBB, add the same incoming value 945 // we added for it earlier. The IR verifier requires phi 946 // nodes with multiple entries from the same basic block 947 // to have the same incoming value for each of those 948 // entries. If we don't do this check here and basephi 949 // has a different type than base, we'll end up adding two 950 // bitcasts (and hence two distinct values) as incoming 951 // values for the same basic block. 952 953 int blockIndex = basephi->getBasicBlockIndex(InBB); 954 if (blockIndex != -1) { 955 Value *oldBase = basephi->getIncomingValue(blockIndex); 956 basephi->addIncoming(oldBase, InBB); 957 958 #ifndef NDEBUG 959 Value *Base = getBaseForInput(InVal, nullptr); 960 // In essence this assert states: the only way two 961 // values incoming from the same basic block may be 962 // different is by being different bitcasts of the same 963 // value. A cleanup that remains TODO is changing 964 // findBaseOrBDV to return an llvm::Value of the correct 965 // type (and still remain pure). This will remove the 966 // need to add bitcasts. 967 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() && 968 "sanity -- findBaseOrBDV should be pure!"); 969 #endif 970 continue; 971 } 972 973 // Find the instruction which produces the base for each input. We may 974 // need to insert a bitcast in the incoming block. 975 // TODO: Need to split critical edges if insertion is needed 976 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 977 basephi->addIncoming(Base, InBB); 978 } 979 assert(basephi->getNumIncomingValues() == NumPHIValues); 980 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) { 981 SelectInst *Sel = cast<SelectInst>(BDV); 982 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 983 // something more safe and less hacky. 984 for (int i = 1; i <= 2; i++) { 985 Value *InVal = Sel->getOperand(i); 986 // Find the instruction which produces the base for each input. We may 987 // need to insert a bitcast. 988 Value *Base = getBaseForInput(InVal, BaseSel); 989 BaseSel->setOperand(i, Base); 990 } 991 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 992 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 993 // Find the instruction which produces the base for each input. We may 994 // need to insert a bitcast. 995 Value *Base = getBaseForInput(InVal, BaseEE); 996 BaseEE->setOperand(0, Base); 997 } else { 998 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 999 auto *BdvIE = cast<InsertElementInst>(BDV); 1000 auto UpdateOperand = [&](int OperandIdx) { 1001 Value *InVal = BdvIE->getOperand(OperandIdx); 1002 Value *Base = getBaseForInput(InVal, BaseIE); 1003 BaseIE->setOperand(OperandIdx, Base); 1004 }; 1005 UpdateOperand(0); // vector operand 1006 UpdateOperand(1); // scalar operand 1007 } 1008 1009 } 1010 1011 // Cache all of our results so we can cheaply reuse them 1012 // NOTE: This is actually two caches: one of the base defining value 1013 // relation and one of the base pointer relation! FIXME 1014 for (auto Pair : States) { 1015 auto *BDV = Pair.first; 1016 Value *base = Pair.second.getBase(); 1017 assert(BDV && base); 1018 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1019 1020 StringRef FromStr = cache.count(BDV) ? cache[BDV]->getName() : "none"; 1021 DEBUG(dbgs() << "Updating base value cache" 1022 << " for: " << BDV->getName() << " from: " << FromStr 1023 << " to: " << base->getName() << "\n"); 1024 1025 if (cache.count(BDV)) { 1026 assert(isKnownBaseResult(base) && 1027 "must be something we 'know' is a base pointer"); 1028 // Once we transition from the BDV relation being store in the cache to 1029 // the base relation being stored, it must be stable 1030 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) && 1031 "base relation should be stable"); 1032 } 1033 cache[BDV] = base; 1034 } 1035 assert(cache.count(def)); 1036 return cache[def]; 1037 } 1038 1039 // For a set of live pointers (base and/or derived), identify the base 1040 // pointer of the object which they are derived from. This routine will 1041 // mutate the IR graph as needed to make the 'base' pointer live at the 1042 // definition site of 'derived'. This ensures that any use of 'derived' can 1043 // also use 'base'. This may involve the insertion of a number of 1044 // additional PHI nodes. 1045 // 1046 // preconditions: live is a set of pointer type Values 1047 // 1048 // side effects: may insert PHI nodes into the existing CFG, will preserve 1049 // CFG, will not remove or mutate any existing nodes 1050 // 1051 // post condition: PointerToBase contains one (derived, base) pair for every 1052 // pointer in live. Note that derived can be equal to base if the original 1053 // pointer was a base pointer. 1054 static void 1055 findBasePointers(const StatepointLiveSetTy &live, 1056 MapVector<Value *, Value *> &PointerToBase, 1057 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1058 for (Value *ptr : live) { 1059 Value *base = findBasePointer(ptr, DVCache); 1060 assert(base && "failed to find base pointer"); 1061 PointerToBase[ptr] = base; 1062 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1063 DT->dominates(cast<Instruction>(base)->getParent(), 1064 cast<Instruction>(ptr)->getParent())) && 1065 "The base we found better dominate the derived pointer"); 1066 } 1067 } 1068 1069 /// Find the required based pointers (and adjust the live set) for the given 1070 /// parse point. 1071 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1072 CallSite CS, 1073 PartiallyConstructedSafepointRecord &result) { 1074 MapVector<Value *, Value *> PointerToBase; 1075 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1076 1077 if (PrintBasePointers) { 1078 errs() << "Base Pairs (w/o Relocation):\n"; 1079 for (auto &Pair : PointerToBase) { 1080 errs() << " derived "; 1081 Pair.first->printAsOperand(errs(), false); 1082 errs() << " base "; 1083 Pair.second->printAsOperand(errs(), false); 1084 errs() << "\n";; 1085 } 1086 } 1087 1088 result.PointerToBase = PointerToBase; 1089 } 1090 1091 /// Given an updated version of the dataflow liveness results, update the 1092 /// liveset and base pointer maps for the call site CS. 1093 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1094 CallSite CS, 1095 PartiallyConstructedSafepointRecord &result); 1096 1097 static void recomputeLiveInValues( 1098 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1099 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1100 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1101 // again. The old values are still live and will help it stabilize quickly. 1102 GCPtrLivenessData RevisedLivenessData; 1103 computeLiveInValues(DT, F, RevisedLivenessData); 1104 for (size_t i = 0; i < records.size(); i++) { 1105 struct PartiallyConstructedSafepointRecord &info = records[i]; 1106 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1107 } 1108 } 1109 1110 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1111 // no uses of the original value / return value between the gc.statepoint and 1112 // the gc.relocate / gc.result call. One case which can arise is a phi node 1113 // starting one of the successor blocks. We also need to be able to insert the 1114 // gc.relocates only on the path which goes through the statepoint. We might 1115 // need to split an edge to make this possible. 1116 static BasicBlock * 1117 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1118 DominatorTree &DT) { 1119 BasicBlock *Ret = BB; 1120 if (!BB->getUniquePredecessor()) 1121 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1122 1123 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1124 // from it 1125 FoldSingleEntryPHINodes(Ret); 1126 assert(!isa<PHINode>(Ret->begin()) && 1127 "All PHI nodes should have been removed!"); 1128 1129 // At this point, we can safely insert a gc.relocate or gc.result as the first 1130 // instruction in Ret if needed. 1131 return Ret; 1132 } 1133 1134 // Create new attribute set containing only attributes which can be transferred 1135 // from original call to the safepoint. 1136 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1137 AttributeSet Ret; 1138 1139 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1140 unsigned Index = AS.getSlotIndex(Slot); 1141 1142 if (Index == AttributeSet::ReturnIndex || 1143 Index == AttributeSet::FunctionIndex) { 1144 1145 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { 1146 1147 // Do not allow certain attributes - just skip them 1148 // Safepoint can not be read only or read none. 1149 if (Attr.hasAttribute(Attribute::ReadNone) || 1150 Attr.hasAttribute(Attribute::ReadOnly)) 1151 continue; 1152 1153 // These attributes control the generation of the gc.statepoint call / 1154 // invoke itself; and once the gc.statepoint is in place, they're of no 1155 // use. 1156 if (isStatepointDirectiveAttr(Attr)) 1157 continue; 1158 1159 Ret = Ret.addAttributes( 1160 AS.getContext(), Index, 1161 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); 1162 } 1163 } 1164 1165 // Just skip parameter attributes for now 1166 } 1167 1168 return Ret; 1169 } 1170 1171 /// Helper function to place all gc relocates necessary for the given 1172 /// statepoint. 1173 /// Inputs: 1174 /// liveVariables - list of variables to be relocated. 1175 /// liveStart - index of the first live variable. 1176 /// basePtrs - base pointers. 1177 /// statepointToken - statepoint instruction to which relocates should be 1178 /// bound. 1179 /// Builder - Llvm IR builder to be used to construct new calls. 1180 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1181 const int LiveStart, 1182 ArrayRef<Value *> BasePtrs, 1183 Instruction *StatepointToken, 1184 IRBuilder<> Builder) { 1185 if (LiveVariables.empty()) 1186 return; 1187 1188 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1189 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val); 1190 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1191 size_t Index = std::distance(LiveVec.begin(), ValIt); 1192 assert(Index < LiveVec.size() && "Bug in std::find?"); 1193 return Index; 1194 }; 1195 Module *M = StatepointToken->getModule(); 1196 1197 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1198 // element type is i8 addrspace(1)*). We originally generated unique 1199 // declarations for each pointer type, but this proved problematic because 1200 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1201 // towards a single unified pointer type anyways, we can just cast everything 1202 // to an i8* of the right address space. A bitcast is added later to convert 1203 // gc_relocate to the actual value's type. 1204 auto getGCRelocateDecl = [&] (Type *Ty) { 1205 assert(isHandledGCPointerType(Ty)); 1206 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1207 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1208 if (auto *VT = dyn_cast<VectorType>(Ty)) 1209 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1210 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1211 {NewTy}); 1212 }; 1213 1214 // Lazily populated map from input types to the canonicalized form mentioned 1215 // in the comment above. This should probably be cached somewhere more 1216 // broadly. 1217 DenseMap<Type*, Value*> TypeToDeclMap; 1218 1219 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1220 // Generate the gc.relocate call and save the result 1221 Value *BaseIdx = 1222 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1223 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1224 1225 Type *Ty = LiveVariables[i]->getType(); 1226 if (!TypeToDeclMap.count(Ty)) 1227 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1228 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1229 1230 // only specify a debug name if we can give a useful one 1231 CallInst *Reloc = Builder.CreateCall( 1232 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1233 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1234 // Trick CodeGen into thinking there are lots of free registers at this 1235 // fake call. 1236 Reloc->setCallingConv(CallingConv::Cold); 1237 } 1238 } 1239 1240 namespace { 1241 1242 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1243 /// avoids having to worry about keeping around dangling pointers to Values. 1244 class DeferredReplacement { 1245 AssertingVH<Instruction> Old; 1246 AssertingVH<Instruction> New; 1247 bool IsDeoptimize = false; 1248 1249 DeferredReplacement() {} 1250 1251 public: 1252 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1253 assert(Old != New && Old && New && 1254 "Cannot RAUW equal values or to / from null!"); 1255 1256 DeferredReplacement D; 1257 D.Old = Old; 1258 D.New = New; 1259 return D; 1260 } 1261 1262 static DeferredReplacement createDelete(Instruction *ToErase) { 1263 DeferredReplacement D; 1264 D.Old = ToErase; 1265 return D; 1266 } 1267 1268 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1269 #ifndef NDEBUG 1270 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1271 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1272 "Only way to construct a deoptimize deferred replacement"); 1273 #endif 1274 DeferredReplacement D; 1275 D.Old = Old; 1276 D.IsDeoptimize = true; 1277 return D; 1278 } 1279 1280 /// Does the task represented by this instance. 1281 void doReplacement() { 1282 Instruction *OldI = Old; 1283 Instruction *NewI = New; 1284 1285 assert(OldI != NewI && "Disallowed at construction?!"); 1286 assert((!IsDeoptimize || !New) && 1287 "Deoptimize instrinsics are not replaced!"); 1288 1289 Old = nullptr; 1290 New = nullptr; 1291 1292 if (NewI) 1293 OldI->replaceAllUsesWith(NewI); 1294 1295 if (IsDeoptimize) { 1296 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1297 // not necessarilly be followed by the matching return. 1298 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1299 new UnreachableInst(RI->getContext(), RI); 1300 RI->eraseFromParent(); 1301 } 1302 1303 OldI->eraseFromParent(); 1304 } 1305 }; 1306 } 1307 1308 static void 1309 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1310 const SmallVectorImpl<Value *> &BasePtrs, 1311 const SmallVectorImpl<Value *> &LiveVariables, 1312 PartiallyConstructedSafepointRecord &Result, 1313 std::vector<DeferredReplacement> &Replacements) { 1314 assert(BasePtrs.size() == LiveVariables.size()); 1315 1316 // Then go ahead and use the builder do actually do the inserts. We insert 1317 // immediately before the previous instruction under the assumption that all 1318 // arguments will be available here. We can't insert afterwards since we may 1319 // be replacing a terminator. 1320 Instruction *InsertBefore = CS.getInstruction(); 1321 IRBuilder<> Builder(InsertBefore); 1322 1323 ArrayRef<Value *> GCArgs(LiveVariables); 1324 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1325 uint32_t NumPatchBytes = 0; 1326 uint32_t Flags = uint32_t(StatepointFlags::None); 1327 1328 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1329 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1330 ArrayRef<Use> TransitionArgs; 1331 if (auto TransitionBundle = 1332 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1333 Flags |= uint32_t(StatepointFlags::GCTransition); 1334 TransitionArgs = TransitionBundle->Inputs; 1335 } 1336 1337 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1338 // with a return value, we lower then as never returning calls to 1339 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1340 bool IsDeoptimize = false; 1341 1342 StatepointDirectives SD = 1343 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1344 if (SD.NumPatchBytes) 1345 NumPatchBytes = *SD.NumPatchBytes; 1346 if (SD.StatepointID) 1347 StatepointID = *SD.StatepointID; 1348 1349 Value *CallTarget = CS.getCalledValue(); 1350 if (Function *F = dyn_cast<Function>(CallTarget)) { 1351 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1352 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1353 // __llvm_deoptimize symbol. We want to resolve this now, since the 1354 // verifier does not allow taking the address of an intrinsic function. 1355 1356 SmallVector<Type *, 8> DomainTy; 1357 for (Value *Arg : CallArgs) 1358 DomainTy.push_back(Arg->getType()); 1359 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1360 /* isVarArg = */ false); 1361 1362 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1363 // calls to @llvm.experimental.deoptimize with different argument types in 1364 // the same module. This is fine -- we assume the frontend knew what it 1365 // was doing when generating this kind of IR. 1366 CallTarget = 1367 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1368 1369 IsDeoptimize = true; 1370 } 1371 } 1372 1373 // Create the statepoint given all the arguments 1374 Instruction *Token = nullptr; 1375 AttributeSet ReturnAttrs; 1376 if (CS.isCall()) { 1377 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1378 CallInst *Call = Builder.CreateGCStatepointCall( 1379 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1380 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1381 1382 Call->setTailCall(ToReplace->isTailCall()); 1383 Call->setCallingConv(ToReplace->getCallingConv()); 1384 1385 // Currently we will fail on parameter attributes and on certain 1386 // function attributes. 1387 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1388 // In case if we can handle this set of attributes - set up function attrs 1389 // directly on statepoint and return attrs later for gc_result intrinsic. 1390 Call->setAttributes(NewAttrs.getFnAttributes()); 1391 ReturnAttrs = NewAttrs.getRetAttributes(); 1392 1393 Token = Call; 1394 1395 // Put the following gc_result and gc_relocate calls immediately after the 1396 // the old call (which we're about to delete) 1397 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1398 Builder.SetInsertPoint(ToReplace->getNextNode()); 1399 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1400 } else { 1401 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1402 1403 // Insert the new invoke into the old block. We'll remove the old one in a 1404 // moment at which point this will become the new terminator for the 1405 // original block. 1406 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1407 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1408 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1409 GCArgs, "statepoint_token"); 1410 1411 Invoke->setCallingConv(ToReplace->getCallingConv()); 1412 1413 // Currently we will fail on parameter attributes and on certain 1414 // function attributes. 1415 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1416 // In case if we can handle this set of attributes - set up function attrs 1417 // directly on statepoint and return attrs later for gc_result intrinsic. 1418 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1419 ReturnAttrs = NewAttrs.getRetAttributes(); 1420 1421 Token = Invoke; 1422 1423 // Generate gc relocates in exceptional path 1424 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1425 assert(!isa<PHINode>(UnwindBlock->begin()) && 1426 UnwindBlock->getUniquePredecessor() && 1427 "can't safely insert in this block!"); 1428 1429 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1430 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1431 1432 // Attach exceptional gc relocates to the landingpad. 1433 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1434 Result.UnwindToken = ExceptionalToken; 1435 1436 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1437 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1438 Builder); 1439 1440 // Generate gc relocates and returns for normal block 1441 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1442 assert(!isa<PHINode>(NormalDest->begin()) && 1443 NormalDest->getUniquePredecessor() && 1444 "can't safely insert in this block!"); 1445 1446 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1447 1448 // gc relocates will be generated later as if it were regular call 1449 // statepoint 1450 } 1451 assert(Token && "Should be set in one of the above branches!"); 1452 1453 if (IsDeoptimize) { 1454 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1455 // transform the tail-call like structure to a call to a void function 1456 // followed by unreachable to get better codegen. 1457 Replacements.push_back( 1458 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1459 } else { 1460 Token->setName("statepoint_token"); 1461 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1462 StringRef Name = 1463 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1464 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1465 GCResult->setAttributes(CS.getAttributes().getRetAttributes()); 1466 1467 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1468 // live set of some other safepoint, in which case that safepoint's 1469 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1470 // llvm::Instruction. Instead, we defer the replacement and deletion to 1471 // after the live sets have been made explicit in the IR, and we no longer 1472 // have raw pointers to worry about. 1473 Replacements.emplace_back( 1474 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1475 } else { 1476 Replacements.emplace_back( 1477 DeferredReplacement::createDelete(CS.getInstruction())); 1478 } 1479 } 1480 1481 Result.StatepointToken = Token; 1482 1483 // Second, create a gc.relocate for every live variable 1484 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1485 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1486 } 1487 1488 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1489 // which make the relocations happening at this safepoint explicit. 1490 // 1491 // WARNING: Does not do any fixup to adjust users of the original live 1492 // values. That's the callers responsibility. 1493 static void 1494 makeStatepointExplicit(DominatorTree &DT, CallSite CS, 1495 PartiallyConstructedSafepointRecord &Result, 1496 std::vector<DeferredReplacement> &Replacements) { 1497 const auto &LiveSet = Result.LiveSet; 1498 const auto &PointerToBase = Result.PointerToBase; 1499 1500 // Convert to vector for efficient cross referencing. 1501 SmallVector<Value *, 64> BaseVec, LiveVec; 1502 LiveVec.reserve(LiveSet.size()); 1503 BaseVec.reserve(LiveSet.size()); 1504 for (Value *L : LiveSet) { 1505 LiveVec.push_back(L); 1506 assert(PointerToBase.count(L)); 1507 Value *Base = PointerToBase.find(L)->second; 1508 BaseVec.push_back(Base); 1509 } 1510 assert(LiveVec.size() == BaseVec.size()); 1511 1512 // Do the actual rewriting and delete the old statepoint 1513 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1514 } 1515 1516 // Helper function for the relocationViaAlloca. 1517 // 1518 // It receives iterator to the statepoint gc relocates and emits a store to the 1519 // assigned location (via allocaMap) for the each one of them. It adds the 1520 // visited values into the visitedLiveValues set, which we will later use them 1521 // for sanity checking. 1522 static void 1523 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1524 DenseMap<Value *, Value *> &AllocaMap, 1525 DenseSet<Value *> &VisitedLiveValues) { 1526 1527 for (User *U : GCRelocs) { 1528 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1529 if (!Relocate) 1530 continue; 1531 1532 Value *OriginalValue = Relocate->getDerivedPtr(); 1533 assert(AllocaMap.count(OriginalValue)); 1534 Value *Alloca = AllocaMap[OriginalValue]; 1535 1536 // Emit store into the related alloca 1537 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1538 // the correct type according to alloca. 1539 assert(Relocate->getNextNode() && 1540 "Should always have one since it's not a terminator"); 1541 IRBuilder<> Builder(Relocate->getNextNode()); 1542 Value *CastedRelocatedValue = 1543 Builder.CreateBitCast(Relocate, 1544 cast<AllocaInst>(Alloca)->getAllocatedType(), 1545 suffixed_name_or(Relocate, ".casted", "")); 1546 1547 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1548 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1549 1550 #ifndef NDEBUG 1551 VisitedLiveValues.insert(OriginalValue); 1552 #endif 1553 } 1554 } 1555 1556 // Helper function for the "relocationViaAlloca". Similar to the 1557 // "insertRelocationStores" but works for rematerialized values. 1558 static void insertRematerializationStores( 1559 const RematerializedValueMapTy &RematerializedValues, 1560 DenseMap<Value *, Value *> &AllocaMap, 1561 DenseSet<Value *> &VisitedLiveValues) { 1562 1563 for (auto RematerializedValuePair: RematerializedValues) { 1564 Instruction *RematerializedValue = RematerializedValuePair.first; 1565 Value *OriginalValue = RematerializedValuePair.second; 1566 1567 assert(AllocaMap.count(OriginalValue) && 1568 "Can not find alloca for rematerialized value"); 1569 Value *Alloca = AllocaMap[OriginalValue]; 1570 1571 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1572 Store->insertAfter(RematerializedValue); 1573 1574 #ifndef NDEBUG 1575 VisitedLiveValues.insert(OriginalValue); 1576 #endif 1577 } 1578 } 1579 1580 /// Do all the relocation update via allocas and mem2reg 1581 static void relocationViaAlloca( 1582 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1583 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1584 #ifndef NDEBUG 1585 // record initial number of (static) allocas; we'll check we have the same 1586 // number when we get done. 1587 int InitialAllocaNum = 0; 1588 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1589 I++) 1590 if (isa<AllocaInst>(*I)) 1591 InitialAllocaNum++; 1592 #endif 1593 1594 // TODO-PERF: change data structures, reserve 1595 DenseMap<Value *, Value *> AllocaMap; 1596 SmallVector<AllocaInst *, 200> PromotableAllocas; 1597 // Used later to chack that we have enough allocas to store all values 1598 std::size_t NumRematerializedValues = 0; 1599 PromotableAllocas.reserve(Live.size()); 1600 1601 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1602 // "PromotableAllocas" 1603 auto emitAllocaFor = [&](Value *LiveValue) { 1604 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1605 F.getEntryBlock().getFirstNonPHI()); 1606 AllocaMap[LiveValue] = Alloca; 1607 PromotableAllocas.push_back(Alloca); 1608 }; 1609 1610 // Emit alloca for each live gc pointer 1611 for (Value *V : Live) 1612 emitAllocaFor(V); 1613 1614 // Emit allocas for rematerialized values 1615 for (const auto &Info : Records) 1616 for (auto RematerializedValuePair : Info.RematerializedValues) { 1617 Value *OriginalValue = RematerializedValuePair.second; 1618 if (AllocaMap.count(OriginalValue) != 0) 1619 continue; 1620 1621 emitAllocaFor(OriginalValue); 1622 ++NumRematerializedValues; 1623 } 1624 1625 // The next two loops are part of the same conceptual operation. We need to 1626 // insert a store to the alloca after the original def and at each 1627 // redefinition. We need to insert a load before each use. These are split 1628 // into distinct loops for performance reasons. 1629 1630 // Update gc pointer after each statepoint: either store a relocated value or 1631 // null (if no relocated value was found for this gc pointer and it is not a 1632 // gc_result). This must happen before we update the statepoint with load of 1633 // alloca otherwise we lose the link between statepoint and old def. 1634 for (const auto &Info : Records) { 1635 Value *Statepoint = Info.StatepointToken; 1636 1637 // This will be used for consistency check 1638 DenseSet<Value *> VisitedLiveValues; 1639 1640 // Insert stores for normal statepoint gc relocates 1641 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1642 1643 // In case if it was invoke statepoint 1644 // we will insert stores for exceptional path gc relocates. 1645 if (isa<InvokeInst>(Statepoint)) { 1646 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1647 VisitedLiveValues); 1648 } 1649 1650 // Do similar thing with rematerialized values 1651 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1652 VisitedLiveValues); 1653 1654 if (ClobberNonLive) { 1655 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1656 // the gc.statepoint. This will turn some subtle GC problems into 1657 // slightly easier to debug SEGVs. Note that on large IR files with 1658 // lots of gc.statepoints this is extremely costly both memory and time 1659 // wise. 1660 SmallVector<AllocaInst *, 64> ToClobber; 1661 for (auto Pair : AllocaMap) { 1662 Value *Def = Pair.first; 1663 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1664 1665 // This value was relocated 1666 if (VisitedLiveValues.count(Def)) { 1667 continue; 1668 } 1669 ToClobber.push_back(Alloca); 1670 } 1671 1672 auto InsertClobbersAt = [&](Instruction *IP) { 1673 for (auto *AI : ToClobber) { 1674 auto PT = cast<PointerType>(AI->getAllocatedType()); 1675 Constant *CPN = ConstantPointerNull::get(PT); 1676 StoreInst *Store = new StoreInst(CPN, AI); 1677 Store->insertBefore(IP); 1678 } 1679 }; 1680 1681 // Insert the clobbering stores. These may get intermixed with the 1682 // gc.results and gc.relocates, but that's fine. 1683 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1684 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1685 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1686 } else { 1687 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1688 } 1689 } 1690 } 1691 1692 // Update use with load allocas and add store for gc_relocated. 1693 for (auto Pair : AllocaMap) { 1694 Value *Def = Pair.first; 1695 Value *Alloca = Pair.second; 1696 1697 // We pre-record the uses of allocas so that we dont have to worry about 1698 // later update that changes the user information.. 1699 1700 SmallVector<Instruction *, 20> Uses; 1701 // PERF: trade a linear scan for repeated reallocation 1702 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1703 for (User *U : Def->users()) { 1704 if (!isa<ConstantExpr>(U)) { 1705 // If the def has a ConstantExpr use, then the def is either a 1706 // ConstantExpr use itself or null. In either case 1707 // (recursively in the first, directly in the second), the oop 1708 // it is ultimately dependent on is null and this particular 1709 // use does not need to be fixed up. 1710 Uses.push_back(cast<Instruction>(U)); 1711 } 1712 } 1713 1714 std::sort(Uses.begin(), Uses.end()); 1715 auto Last = std::unique(Uses.begin(), Uses.end()); 1716 Uses.erase(Last, Uses.end()); 1717 1718 for (Instruction *Use : Uses) { 1719 if (isa<PHINode>(Use)) { 1720 PHINode *Phi = cast<PHINode>(Use); 1721 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1722 if (Def == Phi->getIncomingValue(i)) { 1723 LoadInst *Load = new LoadInst( 1724 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1725 Phi->setIncomingValue(i, Load); 1726 } 1727 } 1728 } else { 1729 LoadInst *Load = new LoadInst(Alloca, "", Use); 1730 Use->replaceUsesOfWith(Def, Load); 1731 } 1732 } 1733 1734 // Emit store for the initial gc value. Store must be inserted after load, 1735 // otherwise store will be in alloca's use list and an extra load will be 1736 // inserted before it. 1737 StoreInst *Store = new StoreInst(Def, Alloca); 1738 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1739 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1740 // InvokeInst is a TerminatorInst so the store need to be inserted 1741 // into its normal destination block. 1742 BasicBlock *NormalDest = Invoke->getNormalDest(); 1743 Store->insertBefore(NormalDest->getFirstNonPHI()); 1744 } else { 1745 assert(!Inst->isTerminator() && 1746 "The only TerminatorInst that can produce a value is " 1747 "InvokeInst which is handled above."); 1748 Store->insertAfter(Inst); 1749 } 1750 } else { 1751 assert(isa<Argument>(Def)); 1752 Store->insertAfter(cast<Instruction>(Alloca)); 1753 } 1754 } 1755 1756 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1757 "we must have the same allocas with lives"); 1758 if (!PromotableAllocas.empty()) { 1759 // Apply mem2reg to promote alloca to SSA 1760 PromoteMemToReg(PromotableAllocas, DT); 1761 } 1762 1763 #ifndef NDEBUG 1764 for (auto &I : F.getEntryBlock()) 1765 if (isa<AllocaInst>(I)) 1766 InitialAllocaNum--; 1767 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1768 #endif 1769 } 1770 1771 /// Implement a unique function which doesn't require we sort the input 1772 /// vector. Doing so has the effect of changing the output of a couple of 1773 /// tests in ways which make them less useful in testing fused safepoints. 1774 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1775 SmallSet<T, 8> Seen; 1776 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1777 return !Seen.insert(V).second; 1778 }), Vec.end()); 1779 } 1780 1781 /// Insert holders so that each Value is obviously live through the entire 1782 /// lifetime of the call. 1783 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1784 SmallVectorImpl<CallInst *> &Holders) { 1785 if (Values.empty()) 1786 // No values to hold live, might as well not insert the empty holder 1787 return; 1788 1789 Module *M = CS.getInstruction()->getModule(); 1790 // Use a dummy vararg function to actually hold the values live 1791 Function *Func = cast<Function>(M->getOrInsertFunction( 1792 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1793 if (CS.isCall()) { 1794 // For call safepoints insert dummy calls right after safepoint 1795 Holders.push_back(CallInst::Create(Func, Values, "", 1796 &*++CS.getInstruction()->getIterator())); 1797 return; 1798 } 1799 // For invoke safepooints insert dummy calls both in normal and 1800 // exceptional destination blocks 1801 auto *II = cast<InvokeInst>(CS.getInstruction()); 1802 Holders.push_back(CallInst::Create( 1803 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1804 Holders.push_back(CallInst::Create( 1805 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1806 } 1807 1808 static void findLiveReferences( 1809 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1810 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1811 GCPtrLivenessData OriginalLivenessData; 1812 computeLiveInValues(DT, F, OriginalLivenessData); 1813 for (size_t i = 0; i < records.size(); i++) { 1814 struct PartiallyConstructedSafepointRecord &info = records[i]; 1815 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1816 } 1817 } 1818 1819 // Helper function for the "rematerializeLiveValues". It walks use chain 1820 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1821 // values are visited (currently it is GEP's and casts). Returns true if it 1822 // successfully reached "BaseValue" and false otherwise. 1823 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1824 // recorded. 1825 static bool findRematerializableChainToBasePointer( 1826 SmallVectorImpl<Instruction*> &ChainToBase, 1827 Value *CurrentValue, Value *BaseValue) { 1828 1829 // We have found a base value 1830 if (CurrentValue == BaseValue) { 1831 return true; 1832 } 1833 1834 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1835 ChainToBase.push_back(GEP); 1836 return findRematerializableChainToBasePointer(ChainToBase, 1837 GEP->getPointerOperand(), 1838 BaseValue); 1839 } 1840 1841 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1842 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1843 return false; 1844 1845 ChainToBase.push_back(CI); 1846 return findRematerializableChainToBasePointer(ChainToBase, 1847 CI->getOperand(0), BaseValue); 1848 } 1849 1850 // Not supported instruction in the chain 1851 return false; 1852 } 1853 1854 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1855 // chain we are going to rematerialize. 1856 static unsigned 1857 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1858 TargetTransformInfo &TTI) { 1859 unsigned Cost = 0; 1860 1861 for (Instruction *Instr : Chain) { 1862 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1863 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1864 "non noop cast is found during rematerialization"); 1865 1866 Type *SrcTy = CI->getOperand(0)->getType(); 1867 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 1868 1869 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1870 // Cost of the address calculation 1871 Type *ValTy = GEP->getSourceElementType(); 1872 Cost += TTI.getAddressComputationCost(ValTy); 1873 1874 // And cost of the GEP itself 1875 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1876 // allowed for the external usage) 1877 if (!GEP->hasAllConstantIndices()) 1878 Cost += 2; 1879 1880 } else { 1881 llvm_unreachable("unsupported instruciton type during rematerialization"); 1882 } 1883 } 1884 1885 return Cost; 1886 } 1887 1888 // From the statepoint live set pick values that are cheaper to recompute then 1889 // to relocate. Remove this values from the live set, rematerialize them after 1890 // statepoint and record them in "Info" structure. Note that similar to 1891 // relocated values we don't do any user adjustments here. 1892 static void rematerializeLiveValues(CallSite CS, 1893 PartiallyConstructedSafepointRecord &Info, 1894 TargetTransformInfo &TTI) { 1895 const unsigned int ChainLengthThreshold = 10; 1896 1897 // Record values we are going to delete from this statepoint live set. 1898 // We can not di this in following loop due to iterator invalidation. 1899 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1900 1901 for (Value *LiveValue: Info.LiveSet) { 1902 // For each live pointer find it's defining chain 1903 SmallVector<Instruction *, 3> ChainToBase; 1904 assert(Info.PointerToBase.count(LiveValue)); 1905 bool FoundChain = 1906 findRematerializableChainToBasePointer(ChainToBase, 1907 LiveValue, 1908 Info.PointerToBase[LiveValue]); 1909 // Nothing to do, or chain is too long 1910 if (!FoundChain || 1911 ChainToBase.size() == 0 || 1912 ChainToBase.size() > ChainLengthThreshold) 1913 continue; 1914 1915 // Compute cost of this chain 1916 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1917 // TODO: We can also account for cases when we will be able to remove some 1918 // of the rematerialized values by later optimization passes. I.e if 1919 // we rematerialized several intersecting chains. Or if original values 1920 // don't have any uses besides this statepoint. 1921 1922 // For invokes we need to rematerialize each chain twice - for normal and 1923 // for unwind basic blocks. Model this by multiplying cost by two. 1924 if (CS.isInvoke()) { 1925 Cost *= 2; 1926 } 1927 // If it's too expensive - skip it 1928 if (Cost >= RematerializationThreshold) 1929 continue; 1930 1931 // Remove value from the live set 1932 LiveValuesToBeDeleted.push_back(LiveValue); 1933 1934 // Clone instructions and record them inside "Info" structure 1935 1936 // Walk backwards to visit top-most instructions first 1937 std::reverse(ChainToBase.begin(), ChainToBase.end()); 1938 1939 // Utility function which clones all instructions from "ChainToBase" 1940 // and inserts them before "InsertBefore". Returns rematerialized value 1941 // which should be used after statepoint. 1942 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 1943 Instruction *LastClonedValue = nullptr; 1944 Instruction *LastValue = nullptr; 1945 for (Instruction *Instr: ChainToBase) { 1946 // Only GEP's and casts are suported as we need to be careful to not 1947 // introduce any new uses of pointers not in the liveset. 1948 // Note that it's fine to introduce new uses of pointers which were 1949 // otherwise not used after this statepoint. 1950 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 1951 1952 Instruction *ClonedValue = Instr->clone(); 1953 ClonedValue->insertBefore(InsertBefore); 1954 ClonedValue->setName(Instr->getName() + ".remat"); 1955 1956 // If it is not first instruction in the chain then it uses previously 1957 // cloned value. We should update it to use cloned value. 1958 if (LastClonedValue) { 1959 assert(LastValue); 1960 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 1961 #ifndef NDEBUG 1962 // Assert that cloned instruction does not use any instructions from 1963 // this chain other than LastClonedValue 1964 for (auto OpValue : ClonedValue->operand_values()) { 1965 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 1966 ChainToBase.end() && 1967 "incorrect use in rematerialization chain"); 1968 } 1969 #endif 1970 } 1971 1972 LastClonedValue = ClonedValue; 1973 LastValue = Instr; 1974 } 1975 assert(LastClonedValue); 1976 return LastClonedValue; 1977 }; 1978 1979 // Different cases for calls and invokes. For invokes we need to clone 1980 // instructions both on normal and unwind path. 1981 if (CS.isCall()) { 1982 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 1983 assert(InsertBefore); 1984 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 1985 Info.RematerializedValues[RematerializedValue] = LiveValue; 1986 } else { 1987 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 1988 1989 Instruction *NormalInsertBefore = 1990 &*Invoke->getNormalDest()->getFirstInsertionPt(); 1991 Instruction *UnwindInsertBefore = 1992 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 1993 1994 Instruction *NormalRematerializedValue = 1995 rematerializeChain(NormalInsertBefore); 1996 Instruction *UnwindRematerializedValue = 1997 rematerializeChain(UnwindInsertBefore); 1998 1999 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2000 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2001 } 2002 } 2003 2004 // Remove rematerializaed values from the live set 2005 for (auto LiveValue: LiveValuesToBeDeleted) { 2006 Info.LiveSet.remove(LiveValue); 2007 } 2008 } 2009 2010 static bool insertParsePoints(Function &F, DominatorTree &DT, 2011 TargetTransformInfo &TTI, 2012 SmallVectorImpl<CallSite> &ToUpdate) { 2013 #ifndef NDEBUG 2014 // sanity check the input 2015 std::set<CallSite> Uniqued; 2016 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2017 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2018 2019 for (CallSite CS : ToUpdate) 2020 assert(CS.getInstruction()->getFunction() == &F); 2021 #endif 2022 2023 // When inserting gc.relocates for invokes, we need to be able to insert at 2024 // the top of the successor blocks. See the comment on 2025 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2026 // may restructure the CFG. 2027 for (CallSite CS : ToUpdate) { 2028 if (!CS.isInvoke()) 2029 continue; 2030 auto *II = cast<InvokeInst>(CS.getInstruction()); 2031 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2032 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2033 } 2034 2035 // A list of dummy calls added to the IR to keep various values obviously 2036 // live in the IR. We'll remove all of these when done. 2037 SmallVector<CallInst *, 64> Holders; 2038 2039 // Insert a dummy call with all of the arguments to the vm_state we'll need 2040 // for the actual safepoint insertion. This ensures reference arguments in 2041 // the deopt argument list are considered live through the safepoint (and 2042 // thus makes sure they get relocated.) 2043 for (CallSite CS : ToUpdate) { 2044 SmallVector<Value *, 64> DeoptValues; 2045 2046 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2047 assert(!isUnhandledGCPointerType(Arg->getType()) && 2048 "support for FCA unimplemented"); 2049 if (isHandledGCPointerType(Arg->getType())) 2050 DeoptValues.push_back(Arg); 2051 } 2052 2053 insertUseHolderAfter(CS, DeoptValues, Holders); 2054 } 2055 2056 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2057 2058 // A) Identify all gc pointers which are statically live at the given call 2059 // site. 2060 findLiveReferences(F, DT, ToUpdate, Records); 2061 2062 // B) Find the base pointers for each live pointer 2063 /* scope for caching */ { 2064 // Cache the 'defining value' relation used in the computation and 2065 // insertion of base phis and selects. This ensures that we don't insert 2066 // large numbers of duplicate base_phis. 2067 DefiningValueMapTy DVCache; 2068 2069 for (size_t i = 0; i < Records.size(); i++) { 2070 PartiallyConstructedSafepointRecord &info = Records[i]; 2071 findBasePointers(DT, DVCache, ToUpdate[i], info); 2072 } 2073 } // end of cache scope 2074 2075 // The base phi insertion logic (for any safepoint) may have inserted new 2076 // instructions which are now live at some safepoint. The simplest such 2077 // example is: 2078 // loop: 2079 // phi a <-- will be a new base_phi here 2080 // safepoint 1 <-- that needs to be live here 2081 // gep a + 1 2082 // safepoint 2 2083 // br loop 2084 // We insert some dummy calls after each safepoint to definitely hold live 2085 // the base pointers which were identified for that safepoint. We'll then 2086 // ask liveness for _every_ base inserted to see what is now live. Then we 2087 // remove the dummy calls. 2088 Holders.reserve(Holders.size() + Records.size()); 2089 for (size_t i = 0; i < Records.size(); i++) { 2090 PartiallyConstructedSafepointRecord &Info = Records[i]; 2091 2092 SmallVector<Value *, 128> Bases; 2093 for (auto Pair : Info.PointerToBase) 2094 Bases.push_back(Pair.second); 2095 2096 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2097 } 2098 2099 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2100 // need to rerun liveness. We may *also* have inserted new defs, but that's 2101 // not the key issue. 2102 recomputeLiveInValues(F, DT, ToUpdate, Records); 2103 2104 if (PrintBasePointers) { 2105 for (auto &Info : Records) { 2106 errs() << "Base Pairs: (w/Relocation)\n"; 2107 for (auto Pair : Info.PointerToBase) { 2108 errs() << " derived "; 2109 Pair.first->printAsOperand(errs(), false); 2110 errs() << " base "; 2111 Pair.second->printAsOperand(errs(), false); 2112 errs() << "\n"; 2113 } 2114 } 2115 } 2116 2117 // It is possible that non-constant live variables have a constant base. For 2118 // example, a GEP with a variable offset from a global. In this case we can 2119 // remove it from the liveset. We already don't add constants to the liveset 2120 // because we assume they won't move at runtime and the GC doesn't need to be 2121 // informed about them. The same reasoning applies if the base is constant. 2122 // Note that the relocation placement code relies on this filtering for 2123 // correctness as it expects the base to be in the liveset, which isn't true 2124 // if the base is constant. 2125 for (auto &Info : Records) 2126 for (auto &BasePair : Info.PointerToBase) 2127 if (isa<Constant>(BasePair.second)) 2128 Info.LiveSet.remove(BasePair.first); 2129 2130 for (CallInst *CI : Holders) 2131 CI->eraseFromParent(); 2132 2133 Holders.clear(); 2134 2135 // In order to reduce live set of statepoint we might choose to rematerialize 2136 // some values instead of relocating them. This is purely an optimization and 2137 // does not influence correctness. 2138 for (size_t i = 0; i < Records.size(); i++) 2139 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2140 2141 // We need this to safely RAUW and delete call or invoke return values that 2142 // may themselves be live over a statepoint. For details, please see usage in 2143 // makeStatepointExplicitImpl. 2144 std::vector<DeferredReplacement> Replacements; 2145 2146 // Now run through and replace the existing statepoints with new ones with 2147 // the live variables listed. We do not yet update uses of the values being 2148 // relocated. We have references to live variables that need to 2149 // survive to the last iteration of this loop. (By construction, the 2150 // previous statepoint can not be a live variable, thus we can and remove 2151 // the old statepoint calls as we go.) 2152 for (size_t i = 0; i < Records.size(); i++) 2153 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2154 2155 ToUpdate.clear(); // prevent accident use of invalid CallSites 2156 2157 for (auto &PR : Replacements) 2158 PR.doReplacement(); 2159 2160 Replacements.clear(); 2161 2162 for (auto &Info : Records) { 2163 // These live sets may contain state Value pointers, since we replaced calls 2164 // with operand bundles with calls wrapped in gc.statepoint, and some of 2165 // those calls may have been def'ing live gc pointers. Clear these out to 2166 // avoid accidentally using them. 2167 // 2168 // TODO: We should create a separate data structure that does not contain 2169 // these live sets, and migrate to using that data structure from this point 2170 // onward. 2171 Info.LiveSet.clear(); 2172 Info.PointerToBase.clear(); 2173 } 2174 2175 // Do all the fixups of the original live variables to their relocated selves 2176 SmallVector<Value *, 128> Live; 2177 for (size_t i = 0; i < Records.size(); i++) { 2178 PartiallyConstructedSafepointRecord &Info = Records[i]; 2179 2180 // We can't simply save the live set from the original insertion. One of 2181 // the live values might be the result of a call which needs a safepoint. 2182 // That Value* no longer exists and we need to use the new gc_result. 2183 // Thankfully, the live set is embedded in the statepoint (and updated), so 2184 // we just grab that. 2185 Statepoint Statepoint(Info.StatepointToken); 2186 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2187 Statepoint.gc_args_end()); 2188 #ifndef NDEBUG 2189 // Do some basic sanity checks on our liveness results before performing 2190 // relocation. Relocation can and will turn mistakes in liveness results 2191 // into non-sensical code which is must harder to debug. 2192 // TODO: It would be nice to test consistency as well 2193 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2194 "statepoint must be reachable or liveness is meaningless"); 2195 for (Value *V : Statepoint.gc_args()) { 2196 if (!isa<Instruction>(V)) 2197 // Non-instruction values trivial dominate all possible uses 2198 continue; 2199 auto *LiveInst = cast<Instruction>(V); 2200 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2201 "unreachable values should never be live"); 2202 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2203 "basic SSA liveness expectation violated by liveness analysis"); 2204 } 2205 #endif 2206 } 2207 unique_unsorted(Live); 2208 2209 #ifndef NDEBUG 2210 // sanity check 2211 for (auto *Ptr : Live) 2212 assert(isHandledGCPointerType(Ptr->getType()) && 2213 "must be a gc pointer type"); 2214 #endif 2215 2216 relocationViaAlloca(F, DT, Live, Records); 2217 return !Records.empty(); 2218 } 2219 2220 // Handles both return values and arguments for Functions and CallSites. 2221 template <typename AttrHolder> 2222 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2223 unsigned Index) { 2224 AttrBuilder R; 2225 if (AH.getDereferenceableBytes(Index)) 2226 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2227 AH.getDereferenceableBytes(Index))); 2228 if (AH.getDereferenceableOrNullBytes(Index)) 2229 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2230 AH.getDereferenceableOrNullBytes(Index))); 2231 if (AH.doesNotAlias(Index)) 2232 R.addAttribute(Attribute::NoAlias); 2233 2234 if (!R.empty()) 2235 AH.setAttributes(AH.getAttributes().removeAttributes( 2236 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2237 } 2238 2239 void 2240 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2241 LLVMContext &Ctx = F.getContext(); 2242 2243 for (Argument &A : F.args()) 2244 if (isa<PointerType>(A.getType())) 2245 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2246 2247 if (isa<PointerType>(F.getReturnType())) 2248 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2249 } 2250 2251 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2252 if (F.empty()) 2253 return; 2254 2255 LLVMContext &Ctx = F.getContext(); 2256 MDBuilder Builder(Ctx); 2257 2258 for (Instruction &I : instructions(F)) { 2259 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2260 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2261 bool IsImmutableTBAA = 2262 MD->getNumOperands() == 4 && 2263 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2264 2265 if (!IsImmutableTBAA) 2266 continue; // no work to do, MD_tbaa is already marked mutable 2267 2268 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2269 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2270 uint64_t Offset = 2271 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2272 2273 MDNode *MutableTBAA = 2274 Builder.createTBAAStructTagNode(Base, Access, Offset); 2275 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2276 } 2277 2278 if (CallSite CS = CallSite(&I)) { 2279 for (int i = 0, e = CS.arg_size(); i != e; i++) 2280 if (isa<PointerType>(CS.getArgument(i)->getType())) 2281 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); 2282 if (isa<PointerType>(CS.getType())) 2283 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2284 } 2285 } 2286 } 2287 2288 /// Returns true if this function should be rewritten by this pass. The main 2289 /// point of this function is as an extension point for custom logic. 2290 static bool shouldRewriteStatepointsIn(Function &F) { 2291 // TODO: This should check the GCStrategy 2292 if (F.hasGC()) { 2293 const auto &FunctionGCName = F.getGC(); 2294 const StringRef StatepointExampleName("statepoint-example"); 2295 const StringRef CoreCLRName("coreclr"); 2296 return (StatepointExampleName == FunctionGCName) || 2297 (CoreCLRName == FunctionGCName); 2298 } else 2299 return false; 2300 } 2301 2302 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2303 #ifndef NDEBUG 2304 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2305 "precondition!"); 2306 #endif 2307 2308 for (Function &F : M) 2309 stripNonValidAttributesFromPrototype(F); 2310 2311 for (Function &F : M) 2312 stripNonValidAttributesFromBody(F); 2313 } 2314 2315 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2316 // Nothing to do for declarations. 2317 if (F.isDeclaration() || F.empty()) 2318 return false; 2319 2320 // Policy choice says not to rewrite - the most common reason is that we're 2321 // compiling code without a GCStrategy. 2322 if (!shouldRewriteStatepointsIn(F)) 2323 return false; 2324 2325 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2326 TargetTransformInfo &TTI = 2327 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2328 2329 auto NeedsRewrite = [](Instruction &I) { 2330 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2331 return !callsGCLeafFunction(CS) && !isStatepoint(CS); 2332 return false; 2333 }; 2334 2335 // Gather all the statepoints which need rewritten. Be careful to only 2336 // consider those in reachable code since we need to ask dominance queries 2337 // when rewriting. We'll delete the unreachable ones in a moment. 2338 SmallVector<CallSite, 64> ParsePointNeeded; 2339 bool HasUnreachableStatepoint = false; 2340 for (Instruction &I : instructions(F)) { 2341 // TODO: only the ones with the flag set! 2342 if (NeedsRewrite(I)) { 2343 if (DT.isReachableFromEntry(I.getParent())) 2344 ParsePointNeeded.push_back(CallSite(&I)); 2345 else 2346 HasUnreachableStatepoint = true; 2347 } 2348 } 2349 2350 bool MadeChange = false; 2351 2352 // Delete any unreachable statepoints so that we don't have unrewritten 2353 // statepoints surviving this pass. This makes testing easier and the 2354 // resulting IR less confusing to human readers. Rather than be fancy, we 2355 // just reuse a utility function which removes the unreachable blocks. 2356 if (HasUnreachableStatepoint) 2357 MadeChange |= removeUnreachableBlocks(F); 2358 2359 // Return early if no work to do. 2360 if (ParsePointNeeded.empty()) 2361 return MadeChange; 2362 2363 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2364 // These are created by LCSSA. They have the effect of increasing the size 2365 // of liveness sets for no good reason. It may be harder to do this post 2366 // insertion since relocations and base phis can confuse things. 2367 for (BasicBlock &BB : F) 2368 if (BB.getUniquePredecessor()) { 2369 MadeChange = true; 2370 FoldSingleEntryPHINodes(&BB); 2371 } 2372 2373 // Before we start introducing relocations, we want to tweak the IR a bit to 2374 // avoid unfortunate code generation effects. The main example is that we 2375 // want to try to make sure the comparison feeding a branch is after any 2376 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2377 // values feeding a branch after relocation. This is semantically correct, 2378 // but results in extra register pressure since both the pre-relocation and 2379 // post-relocation copies must be available in registers. For code without 2380 // relocations this is handled elsewhere, but teaching the scheduler to 2381 // reverse the transform we're about to do would be slightly complex. 2382 // Note: This may extend the live range of the inputs to the icmp and thus 2383 // increase the liveset of any statepoint we move over. This is profitable 2384 // as long as all statepoints are in rare blocks. If we had in-register 2385 // lowering for live values this would be a much safer transform. 2386 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2387 if (auto *BI = dyn_cast<BranchInst>(TI)) 2388 if (BI->isConditional()) 2389 return dyn_cast<Instruction>(BI->getCondition()); 2390 // TODO: Extend this to handle switches 2391 return nullptr; 2392 }; 2393 for (BasicBlock &BB : F) { 2394 TerminatorInst *TI = BB.getTerminator(); 2395 if (auto *Cond = getConditionInst(TI)) 2396 // TODO: Handle more than just ICmps here. We should be able to move 2397 // most instructions without side effects or memory access. 2398 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2399 MadeChange = true; 2400 Cond->moveBefore(TI); 2401 } 2402 } 2403 2404 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2405 return MadeChange; 2406 } 2407 2408 // liveness computation via standard dataflow 2409 // ------------------------------------------------------------------- 2410 2411 // TODO: Consider using bitvectors for liveness, the set of potentially 2412 // interesting values should be small and easy to pre-compute. 2413 2414 /// Compute the live-in set for the location rbegin starting from 2415 /// the live-out set of the basic block 2416 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2417 BasicBlock::reverse_iterator rend, 2418 SetVector<Value *> &LiveTmp) { 2419 2420 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2421 Instruction *I = &*ritr; 2422 2423 // KILL/Def - Remove this definition from LiveIn 2424 LiveTmp.remove(I); 2425 2426 // Don't consider *uses* in PHI nodes, we handle their contribution to 2427 // predecessor blocks when we seed the LiveOut sets 2428 if (isa<PHINode>(I)) 2429 continue; 2430 2431 // USE - Add to the LiveIn set for this instruction 2432 for (Value *V : I->operands()) { 2433 assert(!isUnhandledGCPointerType(V->getType()) && 2434 "support for FCA unimplemented"); 2435 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2436 // The choice to exclude all things constant here is slightly subtle. 2437 // There are two independent reasons: 2438 // - We assume that things which are constant (from LLVM's definition) 2439 // do not move at runtime. For example, the address of a global 2440 // variable is fixed, even though it's contents may not be. 2441 // - Second, we can't disallow arbitrary inttoptr constants even 2442 // if the language frontend does. Optimization passes are free to 2443 // locally exploit facts without respect to global reachability. This 2444 // can create sections of code which are dynamically unreachable and 2445 // contain just about anything. (see constants.ll in tests) 2446 LiveTmp.insert(V); 2447 } 2448 } 2449 } 2450 } 2451 2452 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2453 2454 for (BasicBlock *Succ : successors(BB)) { 2455 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2456 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2457 PHINode *Phi = cast<PHINode>(&*I); 2458 Value *V = Phi->getIncomingValueForBlock(BB); 2459 assert(!isUnhandledGCPointerType(V->getType()) && 2460 "support for FCA unimplemented"); 2461 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2462 LiveTmp.insert(V); 2463 } 2464 } 2465 } 2466 } 2467 2468 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2469 SetVector<Value *> KillSet; 2470 for (Instruction &I : *BB) 2471 if (isHandledGCPointerType(I.getType())) 2472 KillSet.insert(&I); 2473 return KillSet; 2474 } 2475 2476 #ifndef NDEBUG 2477 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2478 /// sanity check for the liveness computation. 2479 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2480 TerminatorInst *TI, bool TermOkay = false) { 2481 for (Value *V : Live) { 2482 if (auto *I = dyn_cast<Instruction>(V)) { 2483 // The terminator can be a member of the LiveOut set. LLVM's definition 2484 // of instruction dominance states that V does not dominate itself. As 2485 // such, we need to special case this to allow it. 2486 if (TermOkay && TI == I) 2487 continue; 2488 assert(DT.dominates(I, TI) && 2489 "basic SSA liveness expectation violated by liveness analysis"); 2490 } 2491 } 2492 } 2493 2494 /// Check that all the liveness sets used during the computation of liveness 2495 /// obey basic SSA properties. This is useful for finding cases where we miss 2496 /// a def. 2497 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2498 BasicBlock &BB) { 2499 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2500 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2501 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2502 } 2503 #endif 2504 2505 static void computeLiveInValues(DominatorTree &DT, Function &F, 2506 GCPtrLivenessData &Data) { 2507 2508 SmallSetVector<BasicBlock *, 32> Worklist; 2509 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2510 // We use a SetVector so that we don't have duplicates in the worklist. 2511 Worklist.insert(pred_begin(BB), pred_end(BB)); 2512 }; 2513 auto NextItem = [&]() { 2514 BasicBlock *BB = Worklist.back(); 2515 Worklist.pop_back(); 2516 return BB; 2517 }; 2518 2519 // Seed the liveness for each individual block 2520 for (BasicBlock &BB : F) { 2521 Data.KillSet[&BB] = computeKillSet(&BB); 2522 Data.LiveSet[&BB].clear(); 2523 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2524 2525 #ifndef NDEBUG 2526 for (Value *Kill : Data.KillSet[&BB]) 2527 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2528 #endif 2529 2530 Data.LiveOut[&BB] = SetVector<Value *>(); 2531 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2532 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2533 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2534 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2535 if (!Data.LiveIn[&BB].empty()) 2536 AddPredsToWorklist(&BB); 2537 } 2538 2539 // Propagate that liveness until stable 2540 while (!Worklist.empty()) { 2541 BasicBlock *BB = NextItem(); 2542 2543 // Compute our new liveout set, then exit early if it hasn't changed 2544 // despite the contribution of our successor. 2545 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2546 const auto OldLiveOutSize = LiveOut.size(); 2547 for (BasicBlock *Succ : successors(BB)) { 2548 assert(Data.LiveIn.count(Succ)); 2549 LiveOut.set_union(Data.LiveIn[Succ]); 2550 } 2551 // assert OutLiveOut is a subset of LiveOut 2552 if (OldLiveOutSize == LiveOut.size()) { 2553 // If the sets are the same size, then we didn't actually add anything 2554 // when unioning our successors LiveIn Thus, the LiveIn of this block 2555 // hasn't changed. 2556 continue; 2557 } 2558 Data.LiveOut[BB] = LiveOut; 2559 2560 // Apply the effects of this basic block 2561 SetVector<Value *> LiveTmp = LiveOut; 2562 LiveTmp.set_union(Data.LiveSet[BB]); 2563 LiveTmp.set_subtract(Data.KillSet[BB]); 2564 2565 assert(Data.LiveIn.count(BB)); 2566 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2567 // assert: OldLiveIn is a subset of LiveTmp 2568 if (OldLiveIn.size() != LiveTmp.size()) { 2569 Data.LiveIn[BB] = LiveTmp; 2570 AddPredsToWorklist(BB); 2571 } 2572 } // while( !worklist.empty() ) 2573 2574 #ifndef NDEBUG 2575 // Sanity check our output against SSA properties. This helps catch any 2576 // missing kills during the above iteration. 2577 for (BasicBlock &BB : F) { 2578 checkBasicSSA(DT, Data, BB); 2579 } 2580 #endif 2581 } 2582 2583 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2584 StatepointLiveSetTy &Out) { 2585 2586 BasicBlock *BB = Inst->getParent(); 2587 2588 // Note: The copy is intentional and required 2589 assert(Data.LiveOut.count(BB)); 2590 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2591 2592 // We want to handle the statepoint itself oddly. It's 2593 // call result is not live (normal), nor are it's arguments 2594 // (unless they're used again later). This adjustment is 2595 // specifically what we need to relocate 2596 BasicBlock::reverse_iterator rend(Inst->getIterator()); 2597 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2598 LiveOut.remove(Inst); 2599 Out.insert(LiveOut.begin(), LiveOut.end()); 2600 } 2601 2602 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2603 CallSite CS, 2604 PartiallyConstructedSafepointRecord &Info) { 2605 Instruction *Inst = CS.getInstruction(); 2606 StatepointLiveSetTy Updated; 2607 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2608 2609 #ifndef NDEBUG 2610 DenseSet<Value *> Bases; 2611 for (auto KVPair : Info.PointerToBase) { 2612 Bases.insert(KVPair.second); 2613 } 2614 #endif 2615 // We may have base pointers which are now live that weren't before. We need 2616 // to update the PointerToBase structure to reflect this. 2617 for (auto V : Updated) 2618 if (Info.PointerToBase.insert(std::make_pair(V, V)).second) { 2619 assert(Bases.count(V) && "can't find base for unexpected live value"); 2620 continue; 2621 } 2622 2623 #ifndef NDEBUG 2624 for (auto V : Updated) { 2625 assert(Info.PointerToBase.count(V) && 2626 "must be able to find base for live value"); 2627 } 2628 #endif 2629 2630 // Remove any stale base mappings - this can happen since our liveness is 2631 // more precise then the one inherent in the base pointer analysis 2632 DenseSet<Value *> ToErase; 2633 for (auto KVPair : Info.PointerToBase) 2634 if (!Updated.count(KVPair.first)) 2635 ToErase.insert(KVPair.first); 2636 for (auto V : ToErase) 2637 Info.PointerToBase.erase(V); 2638 2639 #ifndef NDEBUG 2640 for (auto KVPair : Info.PointerToBase) 2641 assert(Updated.count(KVPair.first) && "record for non-live value"); 2642 #endif 2643 2644 Info.LiveSet = Updated; 2645 } 2646