1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/Cloning.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 46 47 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 48 49 using namespace llvm; 50 51 // Print the liveset found at the insert location 52 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 53 cl::init(false)); 54 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 55 cl::init(false)); 56 // Print out the base pointers for debugging 57 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 58 cl::init(false)); 59 60 // Cost threshold measuring when it is profitable to rematerialize value instead 61 // of relocating it 62 static cl::opt<unsigned> 63 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 64 cl::init(6)); 65 66 #ifdef XDEBUG 67 static bool ClobberNonLive = true; 68 #else 69 static bool ClobberNonLive = false; 70 #endif 71 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 72 cl::location(ClobberNonLive), 73 cl::Hidden); 74 75 static cl::opt<bool> UseDeoptBundles("rs4gc-use-deopt-bundles", cl::Hidden, 76 cl::init(false)); 77 static cl::opt<bool> 78 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 79 cl::Hidden, cl::init(true)); 80 81 namespace { 82 struct RewriteStatepointsForGC : public ModulePass { 83 static char ID; // Pass identification, replacement for typeid 84 85 RewriteStatepointsForGC() : ModulePass(ID) { 86 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 87 } 88 bool runOnFunction(Function &F); 89 bool runOnModule(Module &M) override { 90 bool Changed = false; 91 for (Function &F : M) 92 Changed |= runOnFunction(F); 93 94 if (Changed) { 95 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 96 // returns true for at least one function in the module. Since at least 97 // one function changed, we know that the precondition is satisfied. 98 stripNonValidAttributes(M); 99 } 100 101 return Changed; 102 } 103 104 void getAnalysisUsage(AnalysisUsage &AU) const override { 105 // We add and rewrite a bunch of instructions, but don't really do much 106 // else. We could in theory preserve a lot more analyses here. 107 AU.addRequired<DominatorTreeWrapperPass>(); 108 AU.addRequired<TargetTransformInfoWrapperPass>(); 109 } 110 111 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 112 /// dereferenceability that are no longer valid/correct after 113 /// RewriteStatepointsForGC has run. This is because semantically, after 114 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 115 /// heap. stripNonValidAttributes (conservatively) restores correctness 116 /// by erasing all attributes in the module that externally imply 117 /// dereferenceability. 118 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 119 /// can touch the entire heap including noalias objects. 120 void stripNonValidAttributes(Module &M); 121 122 // Helpers for stripNonValidAttributes 123 void stripNonValidAttributesFromBody(Function &F); 124 void stripNonValidAttributesFromPrototype(Function &F); 125 }; 126 } // namespace 127 128 char RewriteStatepointsForGC::ID = 0; 129 130 ModulePass *llvm::createRewriteStatepointsForGCPass() { 131 return new RewriteStatepointsForGC(); 132 } 133 134 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 135 "Make relocations explicit at statepoints", false, false) 136 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 137 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 138 "Make relocations explicit at statepoints", false, false) 139 140 namespace { 141 struct GCPtrLivenessData { 142 /// Values defined in this block. 143 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 144 /// Values used in this block (and thus live); does not included values 145 /// killed within this block. 146 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 147 148 /// Values live into this basic block (i.e. used by any 149 /// instruction in this basic block or ones reachable from here) 150 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 151 152 /// Values live out of this basic block (i.e. live into 153 /// any successor block) 154 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 155 }; 156 157 // The type of the internal cache used inside the findBasePointers family 158 // of functions. From the callers perspective, this is an opaque type and 159 // should not be inspected. 160 // 161 // In the actual implementation this caches two relations: 162 // - The base relation itself (i.e. this pointer is based on that one) 163 // - The base defining value relation (i.e. before base_phi insertion) 164 // Generally, after the execution of a full findBasePointer call, only the 165 // base relation will remain. Internally, we add a mixture of the two 166 // types, then update all the second type to the first type 167 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 168 typedef DenseSet<Value *> StatepointLiveSetTy; 169 typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>> 170 RematerializedValueMapTy; 171 172 struct PartiallyConstructedSafepointRecord { 173 /// The set of values known to be live across this safepoint 174 StatepointLiveSetTy LiveSet; 175 176 /// Mapping from live pointers to a base-defining-value 177 DenseMap<Value *, Value *> PointerToBase; 178 179 /// The *new* gc.statepoint instruction itself. This produces the token 180 /// that normal path gc.relocates and the gc.result are tied to. 181 Instruction *StatepointToken; 182 183 /// Instruction to which exceptional gc relocates are attached 184 /// Makes it easier to iterate through them during relocationViaAlloca. 185 Instruction *UnwindToken; 186 187 /// Record live values we are rematerialized instead of relocating. 188 /// They are not included into 'LiveSet' field. 189 /// Maps rematerialized copy to it's original value. 190 RematerializedValueMapTy RematerializedValues; 191 }; 192 } 193 194 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 195 assert(UseDeoptBundles && "Should not be called otherwise!"); 196 197 Optional<OperandBundleUse> DeoptBundle = CS.getOperandBundle("deopt"); 198 199 if (!DeoptBundle.hasValue()) { 200 assert(AllowStatepointWithNoDeoptInfo && 201 "Found non-leaf call without deopt info!"); 202 return None; 203 } 204 205 return DeoptBundle.getValue().Inputs; 206 } 207 208 /// Compute the live-in set for every basic block in the function 209 static void computeLiveInValues(DominatorTree &DT, Function &F, 210 GCPtrLivenessData &Data); 211 212 /// Given results from the dataflow liveness computation, find the set of live 213 /// Values at a particular instruction. 214 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 215 StatepointLiveSetTy &out); 216 217 // TODO: Once we can get to the GCStrategy, this becomes 218 // Optional<bool> isGCManagedPointer(const Value *V) const override { 219 220 static bool isGCPointerType(Type *T) { 221 if (auto *PT = dyn_cast<PointerType>(T)) 222 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 223 // GC managed heap. We know that a pointer into this heap needs to be 224 // updated and that no other pointer does. 225 return (1 == PT->getAddressSpace()); 226 return false; 227 } 228 229 // Return true if this type is one which a) is a gc pointer or contains a GC 230 // pointer and b) is of a type this code expects to encounter as a live value. 231 // (The insertion code will assert that a type which matches (a) and not (b) 232 // is not encountered.) 233 static bool isHandledGCPointerType(Type *T) { 234 // We fully support gc pointers 235 if (isGCPointerType(T)) 236 return true; 237 // We partially support vectors of gc pointers. The code will assert if it 238 // can't handle something. 239 if (auto VT = dyn_cast<VectorType>(T)) 240 if (isGCPointerType(VT->getElementType())) 241 return true; 242 return false; 243 } 244 245 #ifndef NDEBUG 246 /// Returns true if this type contains a gc pointer whether we know how to 247 /// handle that type or not. 248 static bool containsGCPtrType(Type *Ty) { 249 if (isGCPointerType(Ty)) 250 return true; 251 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 252 return isGCPointerType(VT->getScalarType()); 253 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 254 return containsGCPtrType(AT->getElementType()); 255 if (StructType *ST = dyn_cast<StructType>(Ty)) 256 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 257 containsGCPtrType); 258 return false; 259 } 260 261 // Returns true if this is a type which a) is a gc pointer or contains a GC 262 // pointer and b) is of a type which the code doesn't expect (i.e. first class 263 // aggregates). Used to trip assertions. 264 static bool isUnhandledGCPointerType(Type *Ty) { 265 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 266 } 267 #endif 268 269 static bool order_by_name(Value *a, Value *b) { 270 if (a->hasName() && b->hasName()) { 271 return -1 == a->getName().compare(b->getName()); 272 } else if (a->hasName() && !b->hasName()) { 273 return true; 274 } else if (!a->hasName() && b->hasName()) { 275 return false; 276 } else { 277 // Better than nothing, but not stable 278 return a < b; 279 } 280 } 281 282 // Return the name of the value suffixed with the provided value, or if the 283 // value didn't have a name, the default value specified. 284 static std::string suffixed_name_or(Value *V, StringRef Suffix, 285 StringRef DefaultName) { 286 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 287 } 288 289 // Conservatively identifies any definitions which might be live at the 290 // given instruction. The analysis is performed immediately before the 291 // given instruction. Values defined by that instruction are not considered 292 // live. Values used by that instruction are considered live. 293 static void analyzeParsePointLiveness( 294 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 295 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 296 Instruction *inst = CS.getInstruction(); 297 298 StatepointLiveSetTy LiveSet; 299 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet); 300 301 if (PrintLiveSet) { 302 // Note: This output is used by several of the test cases 303 // The order of elements in a set is not stable, put them in a vec and sort 304 // by name 305 SmallVector<Value *, 64> Temp; 306 Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end()); 307 std::sort(Temp.begin(), Temp.end(), order_by_name); 308 errs() << "Live Variables:\n"; 309 for (Value *V : Temp) 310 dbgs() << " " << V->getName() << " " << *V << "\n"; 311 } 312 if (PrintLiveSetSize) { 313 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 314 errs() << "Number live values: " << LiveSet.size() << "\n"; 315 } 316 result.LiveSet = LiveSet; 317 } 318 319 static bool isKnownBaseResult(Value *V); 320 namespace { 321 /// A single base defining value - An immediate base defining value for an 322 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 323 /// For instructions which have multiple pointer [vector] inputs or that 324 /// transition between vector and scalar types, there is no immediate base 325 /// defining value. The 'base defining value' for 'Def' is the transitive 326 /// closure of this relation stopping at the first instruction which has no 327 /// immediate base defining value. The b.d.v. might itself be a base pointer, 328 /// but it can also be an arbitrary derived pointer. 329 struct BaseDefiningValueResult { 330 /// Contains the value which is the base defining value. 331 Value * const BDV; 332 /// True if the base defining value is also known to be an actual base 333 /// pointer. 334 const bool IsKnownBase; 335 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 336 : BDV(BDV), IsKnownBase(IsKnownBase) { 337 #ifndef NDEBUG 338 // Check consistency between new and old means of checking whether a BDV is 339 // a base. 340 bool MustBeBase = isKnownBaseResult(BDV); 341 assert(!MustBeBase || MustBeBase == IsKnownBase); 342 #endif 343 } 344 }; 345 } 346 347 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 348 349 /// Return a base defining value for the 'Index' element of the given vector 350 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 351 /// 'I'. As an optimization, this method will try to determine when the 352 /// element is known to already be a base pointer. If this can be established, 353 /// the second value in the returned pair will be true. Note that either a 354 /// vector or a pointer typed value can be returned. For the former, the 355 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 356 /// If the later, the return pointer is a BDV (or possibly a base) for the 357 /// particular element in 'I'. 358 static BaseDefiningValueResult 359 findBaseDefiningValueOfVector(Value *I) { 360 assert(I->getType()->isVectorTy() && 361 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 362 "Illegal to ask for the base pointer of a non-pointer type"); 363 364 // Each case parallels findBaseDefiningValue below, see that code for 365 // detailed motivation. 366 367 if (isa<Argument>(I)) 368 // An incoming argument to the function is a base pointer 369 return BaseDefiningValueResult(I, true); 370 371 // We shouldn't see the address of a global as a vector value? 372 assert(!isa<GlobalVariable>(I) && 373 "unexpected global variable found in base of vector"); 374 375 // inlining could possibly introduce phi node that contains 376 // undef if callee has multiple returns 377 if (isa<UndefValue>(I)) 378 // utterly meaningless, but useful for dealing with partially optimized 379 // code. 380 return BaseDefiningValueResult(I, true); 381 382 // Due to inheritance, this must be _after_ the global variable and undef 383 // checks 384 if (Constant *Con = dyn_cast<Constant>(I)) { 385 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 386 "order of checks wrong!"); 387 assert(Con->isNullValue() && "null is the only case which makes sense"); 388 return BaseDefiningValueResult(Con, true); 389 } 390 391 if (isa<LoadInst>(I)) 392 return BaseDefiningValueResult(I, true); 393 394 if (isa<InsertElementInst>(I)) 395 // We don't know whether this vector contains entirely base pointers or 396 // not. To be conservatively correct, we treat it as a BDV and will 397 // duplicate code as needed to construct a parallel vector of bases. 398 return BaseDefiningValueResult(I, false); 399 400 if (isa<ShuffleVectorInst>(I)) 401 // We don't know whether this vector contains entirely base pointers or 402 // not. To be conservatively correct, we treat it as a BDV and will 403 // duplicate code as needed to construct a parallel vector of bases. 404 // TODO: There a number of local optimizations which could be applied here 405 // for particular sufflevector patterns. 406 return BaseDefiningValueResult(I, false); 407 408 // A PHI or Select is a base defining value. The outer findBasePointer 409 // algorithm is responsible for constructing a base value for this BDV. 410 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 411 "unknown vector instruction - no base found for vector element"); 412 return BaseDefiningValueResult(I, false); 413 } 414 415 /// Helper function for findBasePointer - Will return a value which either a) 416 /// defines the base pointer for the input, b) blocks the simple search 417 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 418 /// from pointer to vector type or back. 419 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 420 if (I->getType()->isVectorTy()) 421 return findBaseDefiningValueOfVector(I); 422 423 assert(I->getType()->isPointerTy() && 424 "Illegal to ask for the base pointer of a non-pointer type"); 425 426 if (isa<Argument>(I)) 427 // An incoming argument to the function is a base pointer 428 // We should have never reached here if this argument isn't an gc value 429 return BaseDefiningValueResult(I, true); 430 431 if (isa<GlobalVariable>(I)) 432 // base case 433 return BaseDefiningValueResult(I, true); 434 435 // inlining could possibly introduce phi node that contains 436 // undef if callee has multiple returns 437 if (isa<UndefValue>(I)) 438 // utterly meaningless, but useful for dealing with 439 // partially optimized code. 440 return BaseDefiningValueResult(I, true); 441 442 // Due to inheritance, this must be _after_ the global variable and undef 443 // checks 444 if (isa<Constant>(I)) { 445 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 446 "order of checks wrong!"); 447 // Note: Even for frontends which don't have constant references, we can 448 // see constants appearing after optimizations. A simple example is 449 // specialization of an address computation on null feeding into a merge 450 // point where the actual use of the now-constant input is protected by 451 // another null check. (e.g. test4 in constants.ll) 452 return BaseDefiningValueResult(I, true); 453 } 454 455 if (CastInst *CI = dyn_cast<CastInst>(I)) { 456 Value *Def = CI->stripPointerCasts(); 457 // If we find a cast instruction here, it means we've found a cast which is 458 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 459 // handle int->ptr conversion. 460 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 461 return findBaseDefiningValue(Def); 462 } 463 464 if (isa<LoadInst>(I)) 465 // The value loaded is an gc base itself 466 return BaseDefiningValueResult(I, true); 467 468 469 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 470 // The base of this GEP is the base 471 return findBaseDefiningValue(GEP->getPointerOperand()); 472 473 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 474 switch (II->getIntrinsicID()) { 475 case Intrinsic::experimental_gc_result_ptr: 476 default: 477 // fall through to general call handling 478 break; 479 case Intrinsic::experimental_gc_statepoint: 480 case Intrinsic::experimental_gc_result_float: 481 case Intrinsic::experimental_gc_result_int: 482 llvm_unreachable("these don't produce pointers"); 483 case Intrinsic::experimental_gc_relocate: { 484 // Rerunning safepoint insertion after safepoints are already 485 // inserted is not supported. It could probably be made to work, 486 // but why are you doing this? There's no good reason. 487 llvm_unreachable("repeat safepoint insertion is not supported"); 488 } 489 case Intrinsic::gcroot: 490 // Currently, this mechanism hasn't been extended to work with gcroot. 491 // There's no reason it couldn't be, but I haven't thought about the 492 // implications much. 493 llvm_unreachable( 494 "interaction with the gcroot mechanism is not supported"); 495 } 496 } 497 // We assume that functions in the source language only return base 498 // pointers. This should probably be generalized via attributes to support 499 // both source language and internal functions. 500 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 501 return BaseDefiningValueResult(I, true); 502 503 // I have absolutely no idea how to implement this part yet. It's not 504 // necessarily hard, I just haven't really looked at it yet. 505 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 506 507 if (isa<AtomicCmpXchgInst>(I)) 508 // A CAS is effectively a atomic store and load combined under a 509 // predicate. From the perspective of base pointers, we just treat it 510 // like a load. 511 return BaseDefiningValueResult(I, true); 512 513 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 514 "binary ops which don't apply to pointers"); 515 516 // The aggregate ops. Aggregates can either be in the heap or on the 517 // stack, but in either case, this is simply a field load. As a result, 518 // this is a defining definition of the base just like a load is. 519 if (isa<ExtractValueInst>(I)) 520 return BaseDefiningValueResult(I, true); 521 522 // We should never see an insert vector since that would require we be 523 // tracing back a struct value not a pointer value. 524 assert(!isa<InsertValueInst>(I) && 525 "Base pointer for a struct is meaningless"); 526 527 // An extractelement produces a base result exactly when it's input does. 528 // We may need to insert a parallel instruction to extract the appropriate 529 // element out of the base vector corresponding to the input. Given this, 530 // it's analogous to the phi and select case even though it's not a merge. 531 if (isa<ExtractElementInst>(I)) 532 // Note: There a lot of obvious peephole cases here. This are deliberately 533 // handled after the main base pointer inference algorithm to make writing 534 // test cases to exercise that code easier. 535 return BaseDefiningValueResult(I, false); 536 537 // The last two cases here don't return a base pointer. Instead, they 538 // return a value which dynamically selects from among several base 539 // derived pointers (each with it's own base potentially). It's the job of 540 // the caller to resolve these. 541 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 542 "missing instruction case in findBaseDefiningValing"); 543 return BaseDefiningValueResult(I, false); 544 } 545 546 /// Returns the base defining value for this value. 547 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 548 Value *&Cached = Cache[I]; 549 if (!Cached) { 550 Cached = findBaseDefiningValue(I).BDV; 551 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 552 << Cached->getName() << "\n"); 553 } 554 assert(Cache[I] != nullptr); 555 return Cached; 556 } 557 558 /// Return a base pointer for this value if known. Otherwise, return it's 559 /// base defining value. 560 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 561 Value *Def = findBaseDefiningValueCached(I, Cache); 562 auto Found = Cache.find(Def); 563 if (Found != Cache.end()) { 564 // Either a base-of relation, or a self reference. Caller must check. 565 return Found->second; 566 } 567 // Only a BDV available 568 return Def; 569 } 570 571 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 572 /// is it known to be a base pointer? Or do we need to continue searching. 573 static bool isKnownBaseResult(Value *V) { 574 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 575 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 576 !isa<ShuffleVectorInst>(V)) { 577 // no recursion possible 578 return true; 579 } 580 if (isa<Instruction>(V) && 581 cast<Instruction>(V)->getMetadata("is_base_value")) { 582 // This is a previously inserted base phi or select. We know 583 // that this is a base value. 584 return true; 585 } 586 587 // We need to keep searching 588 return false; 589 } 590 591 namespace { 592 /// Models the state of a single base defining value in the findBasePointer 593 /// algorithm for determining where a new instruction is needed to propagate 594 /// the base of this BDV. 595 class BDVState { 596 public: 597 enum Status { Unknown, Base, Conflict }; 598 599 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 600 assert(status != Base || b); 601 } 602 explicit BDVState(Value *b) : status(Base), base(b) {} 603 BDVState() : status(Unknown), base(nullptr) {} 604 605 Status getStatus() const { return status; } 606 Value *getBase() const { return base; } 607 608 bool isBase() const { return getStatus() == Base; } 609 bool isUnknown() const { return getStatus() == Unknown; } 610 bool isConflict() const { return getStatus() == Conflict; } 611 612 bool operator==(const BDVState &other) const { 613 return base == other.base && status == other.status; 614 } 615 616 bool operator!=(const BDVState &other) const { return !(*this == other); } 617 618 LLVM_DUMP_METHOD 619 void dump() const { print(dbgs()); dbgs() << '\n'; } 620 621 void print(raw_ostream &OS) const { 622 switch (status) { 623 case Unknown: 624 OS << "U"; 625 break; 626 case Base: 627 OS << "B"; 628 break; 629 case Conflict: 630 OS << "C"; 631 break; 632 }; 633 OS << " (" << base << " - " 634 << (base ? base->getName() : "nullptr") << "): "; 635 } 636 637 private: 638 Status status; 639 AssertingVH<Value> base; // non null only if status == base 640 }; 641 } 642 643 #ifndef NDEBUG 644 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 645 State.print(OS); 646 return OS; 647 } 648 #endif 649 650 namespace { 651 // Values of type BDVState form a lattice, and this is a helper 652 // class that implementes the meet operation. The meat of the meet 653 // operation is implemented in MeetBDVStates::pureMeet 654 class MeetBDVStates { 655 public: 656 /// Initializes the currentResult to the TOP state so that if can be met with 657 /// any other state to produce that state. 658 MeetBDVStates() {} 659 660 // Destructively meet the current result with the given BDVState 661 void meetWith(BDVState otherState) { 662 currentResult = meet(otherState, currentResult); 663 } 664 665 BDVState getResult() const { return currentResult; } 666 667 private: 668 BDVState currentResult; 669 670 /// Perform a meet operation on two elements of the BDVState lattice. 671 static BDVState meet(BDVState LHS, BDVState RHS) { 672 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 673 "math is wrong: meet does not commute!"); 674 BDVState Result = pureMeet(LHS, RHS); 675 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 676 << " produced " << Result << "\n"); 677 return Result; 678 } 679 680 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 681 switch (stateA.getStatus()) { 682 case BDVState::Unknown: 683 return stateB; 684 685 case BDVState::Base: 686 assert(stateA.getBase() && "can't be null"); 687 if (stateB.isUnknown()) 688 return stateA; 689 690 if (stateB.isBase()) { 691 if (stateA.getBase() == stateB.getBase()) { 692 assert(stateA == stateB && "equality broken!"); 693 return stateA; 694 } 695 return BDVState(BDVState::Conflict); 696 } 697 assert(stateB.isConflict() && "only three states!"); 698 return BDVState(BDVState::Conflict); 699 700 case BDVState::Conflict: 701 return stateA; 702 } 703 llvm_unreachable("only three states!"); 704 } 705 }; 706 } 707 708 709 /// For a given value or instruction, figure out what base ptr it's derived 710 /// from. For gc objects, this is simply itself. On success, returns a value 711 /// which is the base pointer. (This is reliable and can be used for 712 /// relocation.) On failure, returns nullptr. 713 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 714 Value *def = findBaseOrBDV(I, cache); 715 716 if (isKnownBaseResult(def)) { 717 return def; 718 } 719 720 // Here's the rough algorithm: 721 // - For every SSA value, construct a mapping to either an actual base 722 // pointer or a PHI which obscures the base pointer. 723 // - Construct a mapping from PHI to unknown TOP state. Use an 724 // optimistic algorithm to propagate base pointer information. Lattice 725 // looks like: 726 // UNKNOWN 727 // b1 b2 b3 b4 728 // CONFLICT 729 // When algorithm terminates, all PHIs will either have a single concrete 730 // base or be in a conflict state. 731 // - For every conflict, insert a dummy PHI node without arguments. Add 732 // these to the base[Instruction] = BasePtr mapping. For every 733 // non-conflict, add the actual base. 734 // - For every conflict, add arguments for the base[a] of each input 735 // arguments. 736 // 737 // Note: A simpler form of this would be to add the conflict form of all 738 // PHIs without running the optimistic algorithm. This would be 739 // analogous to pessimistic data flow and would likely lead to an 740 // overall worse solution. 741 742 #ifndef NDEBUG 743 auto isExpectedBDVType = [](Value *BDV) { 744 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 745 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 746 }; 747 #endif 748 749 // Once populated, will contain a mapping from each potentially non-base BDV 750 // to a lattice value (described above) which corresponds to that BDV. 751 // We use the order of insertion (DFS over the def/use graph) to provide a 752 // stable deterministic ordering for visiting DenseMaps (which are unordered) 753 // below. This is important for deterministic compilation. 754 MapVector<Value *, BDVState> States; 755 756 // Recursively fill in all base defining values reachable from the initial 757 // one for which we don't already know a definite base value for 758 /* scope */ { 759 SmallVector<Value*, 16> Worklist; 760 Worklist.push_back(def); 761 States.insert(std::make_pair(def, BDVState())); 762 while (!Worklist.empty()) { 763 Value *Current = Worklist.pop_back_val(); 764 assert(!isKnownBaseResult(Current) && "why did it get added?"); 765 766 auto visitIncomingValue = [&](Value *InVal) { 767 Value *Base = findBaseOrBDV(InVal, cache); 768 if (isKnownBaseResult(Base)) 769 // Known bases won't need new instructions introduced and can be 770 // ignored safely 771 return; 772 assert(isExpectedBDVType(Base) && "the only non-base values " 773 "we see should be base defining values"); 774 if (States.insert(std::make_pair(Base, BDVState())).second) 775 Worklist.push_back(Base); 776 }; 777 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 778 for (Value *InVal : Phi->incoming_values()) 779 visitIncomingValue(InVal); 780 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 781 visitIncomingValue(Sel->getTrueValue()); 782 visitIncomingValue(Sel->getFalseValue()); 783 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 784 visitIncomingValue(EE->getVectorOperand()); 785 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 786 visitIncomingValue(IE->getOperand(0)); // vector operand 787 visitIncomingValue(IE->getOperand(1)); // scalar operand 788 } else { 789 // There is one known class of instructions we know we don't handle. 790 assert(isa<ShuffleVectorInst>(Current)); 791 llvm_unreachable("unimplemented instruction case"); 792 } 793 } 794 } 795 796 #ifndef NDEBUG 797 DEBUG(dbgs() << "States after initialization:\n"); 798 for (auto Pair : States) { 799 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 800 } 801 #endif 802 803 // Return a phi state for a base defining value. We'll generate a new 804 // base state for known bases and expect to find a cached state otherwise. 805 auto getStateForBDV = [&](Value *baseValue) { 806 if (isKnownBaseResult(baseValue)) 807 return BDVState(baseValue); 808 auto I = States.find(baseValue); 809 assert(I != States.end() && "lookup failed!"); 810 return I->second; 811 }; 812 813 bool progress = true; 814 while (progress) { 815 #ifndef NDEBUG 816 const size_t oldSize = States.size(); 817 #endif 818 progress = false; 819 // We're only changing values in this loop, thus safe to keep iterators. 820 // Since this is computing a fixed point, the order of visit does not 821 // effect the result. TODO: We could use a worklist here and make this run 822 // much faster. 823 for (auto Pair : States) { 824 Value *BDV = Pair.first; 825 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 826 827 // Given an input value for the current instruction, return a BDVState 828 // instance which represents the BDV of that value. 829 auto getStateForInput = [&](Value *V) mutable { 830 Value *BDV = findBaseOrBDV(V, cache); 831 return getStateForBDV(BDV); 832 }; 833 834 MeetBDVStates calculateMeet; 835 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) { 836 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 837 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 838 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) { 839 for (Value *Val : Phi->incoming_values()) 840 calculateMeet.meetWith(getStateForInput(Val)); 841 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 842 // The 'meet' for an extractelement is slightly trivial, but it's still 843 // useful in that it drives us to conflict if our input is. 844 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 845 } else { 846 // Given there's a inherent type mismatch between the operands, will 847 // *always* produce Conflict. 848 auto *IE = cast<InsertElementInst>(BDV); 849 calculateMeet.meetWith(getStateForInput(IE->getOperand(0))); 850 calculateMeet.meetWith(getStateForInput(IE->getOperand(1))); 851 } 852 853 BDVState oldState = States[BDV]; 854 BDVState newState = calculateMeet.getResult(); 855 if (oldState != newState) { 856 progress = true; 857 States[BDV] = newState; 858 } 859 } 860 861 assert(oldSize == States.size() && 862 "fixed point shouldn't be adding any new nodes to state"); 863 } 864 865 #ifndef NDEBUG 866 DEBUG(dbgs() << "States after meet iteration:\n"); 867 for (auto Pair : States) { 868 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 869 } 870 #endif 871 872 // Insert Phis for all conflicts 873 // TODO: adjust naming patterns to avoid this order of iteration dependency 874 for (auto Pair : States) { 875 Instruction *I = cast<Instruction>(Pair.first); 876 BDVState State = Pair.second; 877 assert(!isKnownBaseResult(I) && "why did it get added?"); 878 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 879 880 // extractelement instructions are a bit special in that we may need to 881 // insert an extract even when we know an exact base for the instruction. 882 // The problem is that we need to convert from a vector base to a scalar 883 // base for the particular indice we're interested in. 884 if (State.isBase() && isa<ExtractElementInst>(I) && 885 isa<VectorType>(State.getBase()->getType())) { 886 auto *EE = cast<ExtractElementInst>(I); 887 // TODO: In many cases, the new instruction is just EE itself. We should 888 // exploit this, but can't do it here since it would break the invariant 889 // about the BDV not being known to be a base. 890 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 891 EE->getIndexOperand(), 892 "base_ee", EE); 893 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 894 States[I] = BDVState(BDVState::Base, BaseInst); 895 } 896 897 // Since we're joining a vector and scalar base, they can never be the 898 // same. As a result, we should always see insert element having reached 899 // the conflict state. 900 if (isa<InsertElementInst>(I)) { 901 assert(State.isConflict()); 902 } 903 904 if (!State.isConflict()) 905 continue; 906 907 /// Create and insert a new instruction which will represent the base of 908 /// the given instruction 'I'. 909 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 910 if (isa<PHINode>(I)) { 911 BasicBlock *BB = I->getParent(); 912 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 913 assert(NumPreds > 0 && "how did we reach here"); 914 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 915 return PHINode::Create(I->getType(), NumPreds, Name, I); 916 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 917 // The undef will be replaced later 918 UndefValue *Undef = UndefValue::get(Sel->getType()); 919 std::string Name = suffixed_name_or(I, ".base", "base_select"); 920 return SelectInst::Create(Sel->getCondition(), Undef, 921 Undef, Name, Sel); 922 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 923 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 924 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 925 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 926 EE); 927 } else { 928 auto *IE = cast<InsertElementInst>(I); 929 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 930 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 931 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 932 return InsertElementInst::Create(VecUndef, ScalarUndef, 933 IE->getOperand(2), Name, IE); 934 } 935 936 }; 937 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 938 // Add metadata marking this as a base value 939 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 940 States[I] = BDVState(BDVState::Conflict, BaseInst); 941 } 942 943 // Returns a instruction which produces the base pointer for a given 944 // instruction. The instruction is assumed to be an input to one of the BDVs 945 // seen in the inference algorithm above. As such, we must either already 946 // know it's base defining value is a base, or have inserted a new 947 // instruction to propagate the base of it's BDV and have entered that newly 948 // introduced instruction into the state table. In either case, we are 949 // assured to be able to determine an instruction which produces it's base 950 // pointer. 951 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 952 Value *BDV = findBaseOrBDV(Input, cache); 953 Value *Base = nullptr; 954 if (isKnownBaseResult(BDV)) { 955 Base = BDV; 956 } else { 957 // Either conflict or base. 958 assert(States.count(BDV)); 959 Base = States[BDV].getBase(); 960 } 961 assert(Base && "can't be null"); 962 // The cast is needed since base traversal may strip away bitcasts 963 if (Base->getType() != Input->getType() && 964 InsertPt) { 965 Base = new BitCastInst(Base, Input->getType(), "cast", 966 InsertPt); 967 } 968 return Base; 969 }; 970 971 // Fixup all the inputs of the new PHIs. Visit order needs to be 972 // deterministic and predictable because we're naming newly created 973 // instructions. 974 for (auto Pair : States) { 975 Instruction *BDV = cast<Instruction>(Pair.first); 976 BDVState State = Pair.second; 977 978 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 979 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 980 if (!State.isConflict()) 981 continue; 982 983 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) { 984 PHINode *phi = cast<PHINode>(BDV); 985 unsigned NumPHIValues = phi->getNumIncomingValues(); 986 for (unsigned i = 0; i < NumPHIValues; i++) { 987 Value *InVal = phi->getIncomingValue(i); 988 BasicBlock *InBB = phi->getIncomingBlock(i); 989 990 // If we've already seen InBB, add the same incoming value 991 // we added for it earlier. The IR verifier requires phi 992 // nodes with multiple entries from the same basic block 993 // to have the same incoming value for each of those 994 // entries. If we don't do this check here and basephi 995 // has a different type than base, we'll end up adding two 996 // bitcasts (and hence two distinct values) as incoming 997 // values for the same basic block. 998 999 int blockIndex = basephi->getBasicBlockIndex(InBB); 1000 if (blockIndex != -1) { 1001 Value *oldBase = basephi->getIncomingValue(blockIndex); 1002 basephi->addIncoming(oldBase, InBB); 1003 1004 #ifndef NDEBUG 1005 Value *Base = getBaseForInput(InVal, nullptr); 1006 // In essence this assert states: the only way two 1007 // values incoming from the same basic block may be 1008 // different is by being different bitcasts of the same 1009 // value. A cleanup that remains TODO is changing 1010 // findBaseOrBDV to return an llvm::Value of the correct 1011 // type (and still remain pure). This will remove the 1012 // need to add bitcasts. 1013 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() && 1014 "sanity -- findBaseOrBDV should be pure!"); 1015 #endif 1016 continue; 1017 } 1018 1019 // Find the instruction which produces the base for each input. We may 1020 // need to insert a bitcast in the incoming block. 1021 // TODO: Need to split critical edges if insertion is needed 1022 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1023 basephi->addIncoming(Base, InBB); 1024 } 1025 assert(basephi->getNumIncomingValues() == NumPHIValues); 1026 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) { 1027 SelectInst *Sel = cast<SelectInst>(BDV); 1028 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 1029 // something more safe and less hacky. 1030 for (int i = 1; i <= 2; i++) { 1031 Value *InVal = Sel->getOperand(i); 1032 // Find the instruction which produces the base for each input. We may 1033 // need to insert a bitcast. 1034 Value *Base = getBaseForInput(InVal, BaseSel); 1035 BaseSel->setOperand(i, Base); 1036 } 1037 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 1038 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1039 // Find the instruction which produces the base for each input. We may 1040 // need to insert a bitcast. 1041 Value *Base = getBaseForInput(InVal, BaseEE); 1042 BaseEE->setOperand(0, Base); 1043 } else { 1044 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 1045 auto *BdvIE = cast<InsertElementInst>(BDV); 1046 auto UpdateOperand = [&](int OperandIdx) { 1047 Value *InVal = BdvIE->getOperand(OperandIdx); 1048 Value *Base = getBaseForInput(InVal, BaseIE); 1049 BaseIE->setOperand(OperandIdx, Base); 1050 }; 1051 UpdateOperand(0); // vector operand 1052 UpdateOperand(1); // scalar operand 1053 } 1054 1055 } 1056 1057 // Now that we're done with the algorithm, see if we can optimize the 1058 // results slightly by reducing the number of new instructions needed. 1059 // Arguably, this should be integrated into the algorithm above, but 1060 // doing as a post process step is easier to reason about for the moment. 1061 DenseMap<Value *, Value *> ReverseMap; 1062 SmallPtrSet<Instruction *, 16> NewInsts; 1063 SmallSetVector<AssertingVH<Instruction>, 16> Worklist; 1064 // Note: We need to visit the states in a deterministic order. We uses the 1065 // Keys we sorted above for this purpose. Note that we are papering over a 1066 // bigger problem with the algorithm above - it's visit order is not 1067 // deterministic. A larger change is needed to fix this. 1068 for (auto Pair : States) { 1069 auto *BDV = Pair.first; 1070 auto State = Pair.second; 1071 Value *Base = State.getBase(); 1072 assert(BDV && Base); 1073 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1074 assert(isKnownBaseResult(Base) && 1075 "must be something we 'know' is a base pointer"); 1076 if (!State.isConflict()) 1077 continue; 1078 1079 ReverseMap[Base] = BDV; 1080 if (auto *BaseI = dyn_cast<Instruction>(Base)) { 1081 NewInsts.insert(BaseI); 1082 Worklist.insert(BaseI); 1083 } 1084 } 1085 auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI, 1086 Value *Replacement) { 1087 // Add users which are new instructions (excluding self references) 1088 for (User *U : BaseI->users()) 1089 if (auto *UI = dyn_cast<Instruction>(U)) 1090 if (NewInsts.count(UI) && UI != BaseI) 1091 Worklist.insert(UI); 1092 // Then do the actual replacement 1093 NewInsts.erase(BaseI); 1094 ReverseMap.erase(BaseI); 1095 BaseI->replaceAllUsesWith(Replacement); 1096 assert(States.count(BDV)); 1097 assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI); 1098 States[BDV] = BDVState(BDVState::Conflict, Replacement); 1099 BaseI->eraseFromParent(); 1100 }; 1101 const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout(); 1102 while (!Worklist.empty()) { 1103 Instruction *BaseI = Worklist.pop_back_val(); 1104 assert(NewInsts.count(BaseI)); 1105 Value *Bdv = ReverseMap[BaseI]; 1106 if (auto *BdvI = dyn_cast<Instruction>(Bdv)) 1107 if (BaseI->isIdenticalTo(BdvI)) { 1108 DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n"); 1109 ReplaceBaseInstWith(Bdv, BaseI, Bdv); 1110 continue; 1111 } 1112 if (Value *V = SimplifyInstruction(BaseI, DL)) { 1113 DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n"); 1114 ReplaceBaseInstWith(Bdv, BaseI, V); 1115 continue; 1116 } 1117 } 1118 1119 // Cache all of our results so we can cheaply reuse them 1120 // NOTE: This is actually two caches: one of the base defining value 1121 // relation and one of the base pointer relation! FIXME 1122 for (auto Pair : States) { 1123 auto *BDV = Pair.first; 1124 Value *base = Pair.second.getBase(); 1125 assert(BDV && base); 1126 1127 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none"; 1128 DEBUG(dbgs() << "Updating base value cache" 1129 << " for: " << BDV->getName() 1130 << " from: " << fromstr 1131 << " to: " << base->getName() << "\n"); 1132 1133 if (cache.count(BDV)) { 1134 // Once we transition from the BDV relation being store in the cache to 1135 // the base relation being stored, it must be stable 1136 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) && 1137 "base relation should be stable"); 1138 } 1139 cache[BDV] = base; 1140 } 1141 assert(cache.find(def) != cache.end()); 1142 return cache[def]; 1143 } 1144 1145 // For a set of live pointers (base and/or derived), identify the base 1146 // pointer of the object which they are derived from. This routine will 1147 // mutate the IR graph as needed to make the 'base' pointer live at the 1148 // definition site of 'derived'. This ensures that any use of 'derived' can 1149 // also use 'base'. This may involve the insertion of a number of 1150 // additional PHI nodes. 1151 // 1152 // preconditions: live is a set of pointer type Values 1153 // 1154 // side effects: may insert PHI nodes into the existing CFG, will preserve 1155 // CFG, will not remove or mutate any existing nodes 1156 // 1157 // post condition: PointerToBase contains one (derived, base) pair for every 1158 // pointer in live. Note that derived can be equal to base if the original 1159 // pointer was a base pointer. 1160 static void 1161 findBasePointers(const StatepointLiveSetTy &live, 1162 DenseMap<Value *, Value *> &PointerToBase, 1163 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1164 // For the naming of values inserted to be deterministic - which makes for 1165 // much cleaner and more stable tests - we need to assign an order to the 1166 // live values. DenseSets do not provide a deterministic order across runs. 1167 SmallVector<Value *, 64> Temp; 1168 Temp.insert(Temp.end(), live.begin(), live.end()); 1169 std::sort(Temp.begin(), Temp.end(), order_by_name); 1170 for (Value *ptr : Temp) { 1171 Value *base = findBasePointer(ptr, DVCache); 1172 assert(base && "failed to find base pointer"); 1173 PointerToBase[ptr] = base; 1174 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1175 DT->dominates(cast<Instruction>(base)->getParent(), 1176 cast<Instruction>(ptr)->getParent())) && 1177 "The base we found better dominate the derived pointer"); 1178 1179 // If you see this trip and like to live really dangerously, the code should 1180 // be correct, just with idioms the verifier can't handle. You can try 1181 // disabling the verifier at your own substantial risk. 1182 assert(!isa<ConstantPointerNull>(base) && 1183 "the relocation code needs adjustment to handle the relocation of " 1184 "a null pointer constant without causing false positives in the " 1185 "safepoint ir verifier."); 1186 } 1187 } 1188 1189 /// Find the required based pointers (and adjust the live set) for the given 1190 /// parse point. 1191 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1192 const CallSite &CS, 1193 PartiallyConstructedSafepointRecord &result) { 1194 DenseMap<Value *, Value *> PointerToBase; 1195 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1196 1197 if (PrintBasePointers) { 1198 // Note: Need to print these in a stable order since this is checked in 1199 // some tests. 1200 errs() << "Base Pairs (w/o Relocation):\n"; 1201 SmallVector<Value *, 64> Temp; 1202 Temp.reserve(PointerToBase.size()); 1203 for (auto Pair : PointerToBase) { 1204 Temp.push_back(Pair.first); 1205 } 1206 std::sort(Temp.begin(), Temp.end(), order_by_name); 1207 for (Value *Ptr : Temp) { 1208 Value *Base = PointerToBase[Ptr]; 1209 errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() 1210 << "\n"; 1211 } 1212 } 1213 1214 result.PointerToBase = PointerToBase; 1215 } 1216 1217 /// Given an updated version of the dataflow liveness results, update the 1218 /// liveset and base pointer maps for the call site CS. 1219 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1220 const CallSite &CS, 1221 PartiallyConstructedSafepointRecord &result); 1222 1223 static void recomputeLiveInValues( 1224 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1225 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1226 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1227 // again. The old values are still live and will help it stabilize quickly. 1228 GCPtrLivenessData RevisedLivenessData; 1229 computeLiveInValues(DT, F, RevisedLivenessData); 1230 for (size_t i = 0; i < records.size(); i++) { 1231 struct PartiallyConstructedSafepointRecord &info = records[i]; 1232 const CallSite &CS = toUpdate[i]; 1233 recomputeLiveInValues(RevisedLivenessData, CS, info); 1234 } 1235 } 1236 1237 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1238 // no uses of the original value / return value between the gc.statepoint and 1239 // the gc.relocate / gc.result call. One case which can arise is a phi node 1240 // starting one of the successor blocks. We also need to be able to insert the 1241 // gc.relocates only on the path which goes through the statepoint. We might 1242 // need to split an edge to make this possible. 1243 static BasicBlock * 1244 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1245 DominatorTree &DT) { 1246 BasicBlock *Ret = BB; 1247 if (!BB->getUniquePredecessor()) 1248 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1249 1250 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1251 // from it 1252 FoldSingleEntryPHINodes(Ret); 1253 assert(!isa<PHINode>(Ret->begin()) && 1254 "All PHI nodes should have been removed!"); 1255 1256 // At this point, we can safely insert a gc.relocate or gc.result as the first 1257 // instruction in Ret if needed. 1258 return Ret; 1259 } 1260 1261 // Create new attribute set containing only attributes which can be transferred 1262 // from original call to the safepoint. 1263 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1264 AttributeSet Ret; 1265 1266 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1267 unsigned Index = AS.getSlotIndex(Slot); 1268 1269 if (Index == AttributeSet::ReturnIndex || 1270 Index == AttributeSet::FunctionIndex) { 1271 1272 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { 1273 1274 // Do not allow certain attributes - just skip them 1275 // Safepoint can not be read only or read none. 1276 if (Attr.hasAttribute(Attribute::ReadNone) || 1277 Attr.hasAttribute(Attribute::ReadOnly)) 1278 continue; 1279 1280 // These attributes control the generation of the gc.statepoint call / 1281 // invoke itself; and once the gc.statepoint is in place, they're of no 1282 // use. 1283 if (Attr.hasAttribute("statepoint-num-patch-bytes") || 1284 Attr.hasAttribute("statepoint-id")) 1285 continue; 1286 1287 Ret = Ret.addAttributes( 1288 AS.getContext(), Index, 1289 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); 1290 } 1291 } 1292 1293 // Just skip parameter attributes for now 1294 } 1295 1296 return Ret; 1297 } 1298 1299 /// Helper function to place all gc relocates necessary for the given 1300 /// statepoint. 1301 /// Inputs: 1302 /// liveVariables - list of variables to be relocated. 1303 /// liveStart - index of the first live variable. 1304 /// basePtrs - base pointers. 1305 /// statepointToken - statepoint instruction to which relocates should be 1306 /// bound. 1307 /// Builder - Llvm IR builder to be used to construct new calls. 1308 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1309 const int LiveStart, 1310 ArrayRef<Value *> BasePtrs, 1311 Instruction *StatepointToken, 1312 IRBuilder<> Builder) { 1313 if (LiveVariables.empty()) 1314 return; 1315 1316 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1317 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val); 1318 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1319 size_t Index = std::distance(LiveVec.begin(), ValIt); 1320 assert(Index < LiveVec.size() && "Bug in std::find?"); 1321 return Index; 1322 }; 1323 1324 // All gc_relocate are set to i8 addrspace(1)* type. We originally generated 1325 // unique declarations for each pointer type, but this proved problematic 1326 // because the intrinsic mangling code is incomplete and fragile. Since 1327 // we're moving towards a single unified pointer type anyways, we can just 1328 // cast everything to an i8* of the right address space. A bitcast is added 1329 // later to convert gc_relocate to the actual value's type. 1330 Module *M = StatepointToken->getModule(); 1331 auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace(); 1332 Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)}; 1333 Value *GCRelocateDecl = 1334 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); 1335 1336 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1337 // Generate the gc.relocate call and save the result 1338 Value *BaseIdx = 1339 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1340 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1341 1342 // only specify a debug name if we can give a useful one 1343 CallInst *Reloc = Builder.CreateCall( 1344 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1345 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1346 // Trick CodeGen into thinking there are lots of free registers at this 1347 // fake call. 1348 Reloc->setCallingConv(CallingConv::Cold); 1349 } 1350 } 1351 1352 namespace { 1353 1354 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1355 /// avoids having to worry about keeping around dangling pointers to Values. 1356 class DeferredReplacement { 1357 AssertingVH<Instruction> Old; 1358 AssertingVH<Instruction> New; 1359 1360 public: 1361 explicit DeferredReplacement(Instruction *Old, Instruction *New) : 1362 Old(Old), New(New) { 1363 assert(Old != New && "Not allowed!"); 1364 } 1365 1366 /// Does the task represented by this instance. 1367 void doReplacement() { 1368 Instruction *OldI = Old; 1369 Instruction *NewI = New; 1370 1371 assert(OldI != NewI && "Disallowed at construction?!"); 1372 1373 Old = nullptr; 1374 New = nullptr; 1375 1376 if (NewI) 1377 OldI->replaceAllUsesWith(NewI); 1378 OldI->eraseFromParent(); 1379 } 1380 }; 1381 } 1382 1383 static void 1384 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1385 const SmallVectorImpl<Value *> &BasePtrs, 1386 const SmallVectorImpl<Value *> &LiveVariables, 1387 PartiallyConstructedSafepointRecord &Result, 1388 std::vector<DeferredReplacement> &Replacements) { 1389 assert(BasePtrs.size() == LiveVariables.size()); 1390 assert((UseDeoptBundles || isStatepoint(CS)) && 1391 "This method expects to be rewriting a statepoint"); 1392 1393 // Then go ahead and use the builder do actually do the inserts. We insert 1394 // immediately before the previous instruction under the assumption that all 1395 // arguments will be available here. We can't insert afterwards since we may 1396 // be replacing a terminator. 1397 Instruction *InsertBefore = CS.getInstruction(); 1398 IRBuilder<> Builder(InsertBefore); 1399 1400 ArrayRef<Value *> GCArgs(LiveVariables); 1401 uint64_t StatepointID = 0xABCDEF00; 1402 uint32_t NumPatchBytes = 0; 1403 uint32_t Flags = uint32_t(StatepointFlags::None); 1404 1405 ArrayRef<Use> CallArgs; 1406 ArrayRef<Use> DeoptArgs; 1407 ArrayRef<Use> TransitionArgs; 1408 1409 Value *CallTarget = nullptr; 1410 1411 if (UseDeoptBundles) { 1412 CallArgs = {CS.arg_begin(), CS.arg_end()}; 1413 DeoptArgs = GetDeoptBundleOperands(CS); 1414 // TODO: we don't fill in TransitionArgs or Flags in this branch, but we 1415 // could have an operand bundle for that too. 1416 AttributeSet OriginalAttrs = CS.getAttributes(); 1417 1418 Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex, 1419 "statepoint-id"); 1420 if (AttrID.isStringAttribute()) 1421 AttrID.getValueAsString().getAsInteger(10, StatepointID); 1422 1423 Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute( 1424 AttributeSet::FunctionIndex, "statepoint-num-patch-bytes"); 1425 if (AttrNumPatchBytes.isStringAttribute()) 1426 AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes); 1427 1428 CallTarget = CS.getCalledValue(); 1429 } else { 1430 // This branch will be gone soon, and we will soon only support the 1431 // UseDeoptBundles == true configuration. 1432 Statepoint OldSP(CS); 1433 StatepointID = OldSP.getID(); 1434 NumPatchBytes = OldSP.getNumPatchBytes(); 1435 Flags = OldSP.getFlags(); 1436 1437 CallArgs = {OldSP.arg_begin(), OldSP.arg_end()}; 1438 DeoptArgs = {OldSP.vm_state_begin(), OldSP.vm_state_end()}; 1439 TransitionArgs = {OldSP.gc_transition_args_begin(), 1440 OldSP.gc_transition_args_end()}; 1441 CallTarget = OldSP.getCalledValue(); 1442 } 1443 1444 // Create the statepoint given all the arguments 1445 Instruction *Token = nullptr; 1446 AttributeSet ReturnAttrs; 1447 if (CS.isCall()) { 1448 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1449 CallInst *Call = Builder.CreateGCStatepointCall( 1450 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1451 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1452 1453 Call->setTailCall(ToReplace->isTailCall()); 1454 Call->setCallingConv(ToReplace->getCallingConv()); 1455 1456 // Currently we will fail on parameter attributes and on certain 1457 // function attributes. 1458 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1459 // In case if we can handle this set of attributes - set up function attrs 1460 // directly on statepoint and return attrs later for gc_result intrinsic. 1461 Call->setAttributes(NewAttrs.getFnAttributes()); 1462 ReturnAttrs = NewAttrs.getRetAttributes(); 1463 1464 Token = Call; 1465 1466 // Put the following gc_result and gc_relocate calls immediately after the 1467 // the old call (which we're about to delete) 1468 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1469 Builder.SetInsertPoint(ToReplace->getNextNode()); 1470 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1471 } else { 1472 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1473 1474 // Insert the new invoke into the old block. We'll remove the old one in a 1475 // moment at which point this will become the new terminator for the 1476 // original block. 1477 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1478 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1479 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1480 GCArgs, "statepoint_token"); 1481 1482 Invoke->setCallingConv(ToReplace->getCallingConv()); 1483 1484 // Currently we will fail on parameter attributes and on certain 1485 // function attributes. 1486 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1487 // In case if we can handle this set of attributes - set up function attrs 1488 // directly on statepoint and return attrs later for gc_result intrinsic. 1489 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1490 ReturnAttrs = NewAttrs.getRetAttributes(); 1491 1492 Token = Invoke; 1493 1494 // Generate gc relocates in exceptional path 1495 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1496 assert(!isa<PHINode>(UnwindBlock->begin()) && 1497 UnwindBlock->getUniquePredecessor() && 1498 "can't safely insert in this block!"); 1499 1500 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1501 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1502 1503 // Extract second element from landingpad return value. We will attach 1504 // exceptional gc relocates to it. 1505 Instruction *ExceptionalToken = 1506 cast<Instruction>(Builder.CreateExtractValue( 1507 UnwindBlock->getLandingPadInst(), 1, "relocate_token")); 1508 Result.UnwindToken = ExceptionalToken; 1509 1510 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1511 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1512 Builder); 1513 1514 // Generate gc relocates and returns for normal block 1515 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1516 assert(!isa<PHINode>(NormalDest->begin()) && 1517 NormalDest->getUniquePredecessor() && 1518 "can't safely insert in this block!"); 1519 1520 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1521 1522 // gc relocates will be generated later as if it were regular call 1523 // statepoint 1524 } 1525 assert(Token && "Should be set in one of the above branches!"); 1526 1527 if (UseDeoptBundles) { 1528 Token->setName("statepoint_token"); 1529 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1530 StringRef Name = 1531 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1532 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1533 GCResult->setAttributes(CS.getAttributes().getRetAttributes()); 1534 1535 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1536 // live set of some other safepoint, in which case that safepoint's 1537 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1538 // llvm::Instruction. Instead, we defer the replacement and deletion to 1539 // after the live sets have been made explicit in the IR, and we no longer 1540 // have raw pointers to worry about. 1541 Replacements.emplace_back(CS.getInstruction(), GCResult); 1542 } else { 1543 Replacements.emplace_back(CS.getInstruction(), nullptr); 1544 } 1545 } else { 1546 assert(!CS.getInstruction()->hasNUsesOrMore(2) && 1547 "only valid use before rewrite is gc.result"); 1548 assert(!CS.getInstruction()->hasOneUse() || 1549 isGCResult(cast<Instruction>(*CS.getInstruction()->user_begin()))); 1550 1551 // Take the name of the original statepoint token if there was one. 1552 Token->takeName(CS.getInstruction()); 1553 1554 // Update the gc.result of the original statepoint (if any) to use the newly 1555 // inserted statepoint. This is safe to do here since the token can't be 1556 // considered a live reference. 1557 CS.getInstruction()->replaceAllUsesWith(Token); 1558 CS.getInstruction()->eraseFromParent(); 1559 } 1560 1561 Result.StatepointToken = Token; 1562 1563 // Second, create a gc.relocate for every live variable 1564 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1565 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1566 } 1567 1568 namespace { 1569 struct NameOrdering { 1570 Value *Base; 1571 Value *Derived; 1572 1573 bool operator()(NameOrdering const &a, NameOrdering const &b) { 1574 return -1 == a.Derived->getName().compare(b.Derived->getName()); 1575 } 1576 }; 1577 } 1578 1579 static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec, 1580 SmallVectorImpl<Value *> &LiveVec) { 1581 assert(BaseVec.size() == LiveVec.size()); 1582 1583 SmallVector<NameOrdering, 64> Temp; 1584 for (size_t i = 0; i < BaseVec.size(); i++) { 1585 NameOrdering v; 1586 v.Base = BaseVec[i]; 1587 v.Derived = LiveVec[i]; 1588 Temp.push_back(v); 1589 } 1590 1591 std::sort(Temp.begin(), Temp.end(), NameOrdering()); 1592 for (size_t i = 0; i < BaseVec.size(); i++) { 1593 BaseVec[i] = Temp[i].Base; 1594 LiveVec[i] = Temp[i].Derived; 1595 } 1596 } 1597 1598 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1599 // which make the relocations happening at this safepoint explicit. 1600 // 1601 // WARNING: Does not do any fixup to adjust users of the original live 1602 // values. That's the callers responsibility. 1603 static void 1604 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, 1605 PartiallyConstructedSafepointRecord &Result, 1606 std::vector<DeferredReplacement> &Replacements) { 1607 const auto &LiveSet = Result.LiveSet; 1608 const auto &PointerToBase = Result.PointerToBase; 1609 1610 // Convert to vector for efficient cross referencing. 1611 SmallVector<Value *, 64> BaseVec, LiveVec; 1612 LiveVec.reserve(LiveSet.size()); 1613 BaseVec.reserve(LiveSet.size()); 1614 for (Value *L : LiveSet) { 1615 LiveVec.push_back(L); 1616 assert(PointerToBase.count(L)); 1617 Value *Base = PointerToBase.find(L)->second; 1618 BaseVec.push_back(Base); 1619 } 1620 assert(LiveVec.size() == BaseVec.size()); 1621 1622 // To make the output IR slightly more stable (for use in diffs), ensure a 1623 // fixed order of the values in the safepoint (by sorting the value name). 1624 // The order is otherwise meaningless. 1625 StabilizeOrder(BaseVec, LiveVec); 1626 1627 // Do the actual rewriting and delete the old statepoint 1628 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1629 } 1630 1631 // Helper function for the relocationViaAlloca. 1632 // 1633 // It receives iterator to the statepoint gc relocates and emits a store to the 1634 // assigned location (via allocaMap) for the each one of them. It adds the 1635 // visited values into the visitedLiveValues set, which we will later use them 1636 // for sanity checking. 1637 static void 1638 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1639 DenseMap<Value *, Value *> &AllocaMap, 1640 DenseSet<Value *> &VisitedLiveValues) { 1641 1642 for (User *U : GCRelocs) { 1643 if (!isa<IntrinsicInst>(U)) 1644 continue; 1645 1646 IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U); 1647 1648 // We only care about relocates 1649 if (RelocatedValue->getIntrinsicID() != 1650 Intrinsic::experimental_gc_relocate) { 1651 continue; 1652 } 1653 1654 GCRelocateOperands RelocateOperands(RelocatedValue); 1655 Value *OriginalValue = 1656 const_cast<Value *>(RelocateOperands.getDerivedPtr()); 1657 assert(AllocaMap.count(OriginalValue)); 1658 Value *Alloca = AllocaMap[OriginalValue]; 1659 1660 // Emit store into the related alloca 1661 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1662 // the correct type according to alloca. 1663 assert(RelocatedValue->getNextNode() && 1664 "Should always have one since it's not a terminator"); 1665 IRBuilder<> Builder(RelocatedValue->getNextNode()); 1666 Value *CastedRelocatedValue = 1667 Builder.CreateBitCast(RelocatedValue, 1668 cast<AllocaInst>(Alloca)->getAllocatedType(), 1669 suffixed_name_or(RelocatedValue, ".casted", "")); 1670 1671 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1672 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1673 1674 #ifndef NDEBUG 1675 VisitedLiveValues.insert(OriginalValue); 1676 #endif 1677 } 1678 } 1679 1680 // Helper function for the "relocationViaAlloca". Similar to the 1681 // "insertRelocationStores" but works for rematerialized values. 1682 static void 1683 insertRematerializationStores( 1684 RematerializedValueMapTy RematerializedValues, 1685 DenseMap<Value *, Value *> &AllocaMap, 1686 DenseSet<Value *> &VisitedLiveValues) { 1687 1688 for (auto RematerializedValuePair: RematerializedValues) { 1689 Instruction *RematerializedValue = RematerializedValuePair.first; 1690 Value *OriginalValue = RematerializedValuePair.second; 1691 1692 assert(AllocaMap.count(OriginalValue) && 1693 "Can not find alloca for rematerialized value"); 1694 Value *Alloca = AllocaMap[OriginalValue]; 1695 1696 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1697 Store->insertAfter(RematerializedValue); 1698 1699 #ifndef NDEBUG 1700 VisitedLiveValues.insert(OriginalValue); 1701 #endif 1702 } 1703 } 1704 1705 /// Do all the relocation update via allocas and mem2reg 1706 static void relocationViaAlloca( 1707 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1708 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1709 #ifndef NDEBUG 1710 // record initial number of (static) allocas; we'll check we have the same 1711 // number when we get done. 1712 int InitialAllocaNum = 0; 1713 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1714 I++) 1715 if (isa<AllocaInst>(*I)) 1716 InitialAllocaNum++; 1717 #endif 1718 1719 // TODO-PERF: change data structures, reserve 1720 DenseMap<Value *, Value *> AllocaMap; 1721 SmallVector<AllocaInst *, 200> PromotableAllocas; 1722 // Used later to chack that we have enough allocas to store all values 1723 std::size_t NumRematerializedValues = 0; 1724 PromotableAllocas.reserve(Live.size()); 1725 1726 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1727 // "PromotableAllocas" 1728 auto emitAllocaFor = [&](Value *LiveValue) { 1729 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1730 F.getEntryBlock().getFirstNonPHI()); 1731 AllocaMap[LiveValue] = Alloca; 1732 PromotableAllocas.push_back(Alloca); 1733 }; 1734 1735 // Emit alloca for each live gc pointer 1736 for (Value *V : Live) 1737 emitAllocaFor(V); 1738 1739 // Emit allocas for rematerialized values 1740 for (const auto &Info : Records) 1741 for (auto RematerializedValuePair : Info.RematerializedValues) { 1742 Value *OriginalValue = RematerializedValuePair.second; 1743 if (AllocaMap.count(OriginalValue) != 0) 1744 continue; 1745 1746 emitAllocaFor(OriginalValue); 1747 ++NumRematerializedValues; 1748 } 1749 1750 // The next two loops are part of the same conceptual operation. We need to 1751 // insert a store to the alloca after the original def and at each 1752 // redefinition. We need to insert a load before each use. These are split 1753 // into distinct loops for performance reasons. 1754 1755 // Update gc pointer after each statepoint: either store a relocated value or 1756 // null (if no relocated value was found for this gc pointer and it is not a 1757 // gc_result). This must happen before we update the statepoint with load of 1758 // alloca otherwise we lose the link between statepoint and old def. 1759 for (const auto &Info : Records) { 1760 Value *Statepoint = Info.StatepointToken; 1761 1762 // This will be used for consistency check 1763 DenseSet<Value *> VisitedLiveValues; 1764 1765 // Insert stores for normal statepoint gc relocates 1766 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1767 1768 // In case if it was invoke statepoint 1769 // we will insert stores for exceptional path gc relocates. 1770 if (isa<InvokeInst>(Statepoint)) { 1771 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1772 VisitedLiveValues); 1773 } 1774 1775 // Do similar thing with rematerialized values 1776 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1777 VisitedLiveValues); 1778 1779 if (ClobberNonLive) { 1780 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1781 // the gc.statepoint. This will turn some subtle GC problems into 1782 // slightly easier to debug SEGVs. Note that on large IR files with 1783 // lots of gc.statepoints this is extremely costly both memory and time 1784 // wise. 1785 SmallVector<AllocaInst *, 64> ToClobber; 1786 for (auto Pair : AllocaMap) { 1787 Value *Def = Pair.first; 1788 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1789 1790 // This value was relocated 1791 if (VisitedLiveValues.count(Def)) { 1792 continue; 1793 } 1794 ToClobber.push_back(Alloca); 1795 } 1796 1797 auto InsertClobbersAt = [&](Instruction *IP) { 1798 for (auto *AI : ToClobber) { 1799 auto AIType = cast<PointerType>(AI->getType()); 1800 auto PT = cast<PointerType>(AIType->getElementType()); 1801 Constant *CPN = ConstantPointerNull::get(PT); 1802 StoreInst *Store = new StoreInst(CPN, AI); 1803 Store->insertBefore(IP); 1804 } 1805 }; 1806 1807 // Insert the clobbering stores. These may get intermixed with the 1808 // gc.results and gc.relocates, but that's fine. 1809 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1810 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1811 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1812 } else { 1813 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1814 } 1815 } 1816 } 1817 1818 // Update use with load allocas and add store for gc_relocated. 1819 for (auto Pair : AllocaMap) { 1820 Value *Def = Pair.first; 1821 Value *Alloca = Pair.second; 1822 1823 // We pre-record the uses of allocas so that we dont have to worry about 1824 // later update that changes the user information.. 1825 1826 SmallVector<Instruction *, 20> Uses; 1827 // PERF: trade a linear scan for repeated reallocation 1828 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1829 for (User *U : Def->users()) { 1830 if (!isa<ConstantExpr>(U)) { 1831 // If the def has a ConstantExpr use, then the def is either a 1832 // ConstantExpr use itself or null. In either case 1833 // (recursively in the first, directly in the second), the oop 1834 // it is ultimately dependent on is null and this particular 1835 // use does not need to be fixed up. 1836 Uses.push_back(cast<Instruction>(U)); 1837 } 1838 } 1839 1840 std::sort(Uses.begin(), Uses.end()); 1841 auto Last = std::unique(Uses.begin(), Uses.end()); 1842 Uses.erase(Last, Uses.end()); 1843 1844 for (Instruction *Use : Uses) { 1845 if (isa<PHINode>(Use)) { 1846 PHINode *Phi = cast<PHINode>(Use); 1847 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1848 if (Def == Phi->getIncomingValue(i)) { 1849 LoadInst *Load = new LoadInst( 1850 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1851 Phi->setIncomingValue(i, Load); 1852 } 1853 } 1854 } else { 1855 LoadInst *Load = new LoadInst(Alloca, "", Use); 1856 Use->replaceUsesOfWith(Def, Load); 1857 } 1858 } 1859 1860 // Emit store for the initial gc value. Store must be inserted after load, 1861 // otherwise store will be in alloca's use list and an extra load will be 1862 // inserted before it. 1863 StoreInst *Store = new StoreInst(Def, Alloca); 1864 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1865 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1866 // InvokeInst is a TerminatorInst so the store need to be inserted 1867 // into its normal destination block. 1868 BasicBlock *NormalDest = Invoke->getNormalDest(); 1869 Store->insertBefore(NormalDest->getFirstNonPHI()); 1870 } else { 1871 assert(!Inst->isTerminator() && 1872 "The only TerminatorInst that can produce a value is " 1873 "InvokeInst which is handled above."); 1874 Store->insertAfter(Inst); 1875 } 1876 } else { 1877 assert(isa<Argument>(Def)); 1878 Store->insertAfter(cast<Instruction>(Alloca)); 1879 } 1880 } 1881 1882 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1883 "we must have the same allocas with lives"); 1884 if (!PromotableAllocas.empty()) { 1885 // Apply mem2reg to promote alloca to SSA 1886 PromoteMemToReg(PromotableAllocas, DT); 1887 } 1888 1889 #ifndef NDEBUG 1890 for (auto &I : F.getEntryBlock()) 1891 if (isa<AllocaInst>(I)) 1892 InitialAllocaNum--; 1893 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1894 #endif 1895 } 1896 1897 /// Implement a unique function which doesn't require we sort the input 1898 /// vector. Doing so has the effect of changing the output of a couple of 1899 /// tests in ways which make them less useful in testing fused safepoints. 1900 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1901 SmallSet<T, 8> Seen; 1902 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1903 return !Seen.insert(V).second; 1904 }), Vec.end()); 1905 } 1906 1907 /// Insert holders so that each Value is obviously live through the entire 1908 /// lifetime of the call. 1909 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1910 SmallVectorImpl<CallInst *> &Holders) { 1911 if (Values.empty()) 1912 // No values to hold live, might as well not insert the empty holder 1913 return; 1914 1915 Module *M = CS.getInstruction()->getModule(); 1916 // Use a dummy vararg function to actually hold the values live 1917 Function *Func = cast<Function>(M->getOrInsertFunction( 1918 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1919 if (CS.isCall()) { 1920 // For call safepoints insert dummy calls right after safepoint 1921 Holders.push_back(CallInst::Create(Func, Values, "", 1922 &*++CS.getInstruction()->getIterator())); 1923 return; 1924 } 1925 // For invoke safepooints insert dummy calls both in normal and 1926 // exceptional destination blocks 1927 auto *II = cast<InvokeInst>(CS.getInstruction()); 1928 Holders.push_back(CallInst::Create( 1929 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1930 Holders.push_back(CallInst::Create( 1931 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1932 } 1933 1934 static void findLiveReferences( 1935 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1936 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1937 GCPtrLivenessData OriginalLivenessData; 1938 computeLiveInValues(DT, F, OriginalLivenessData); 1939 for (size_t i = 0; i < records.size(); i++) { 1940 struct PartiallyConstructedSafepointRecord &info = records[i]; 1941 const CallSite &CS = toUpdate[i]; 1942 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1943 } 1944 } 1945 1946 /// Remove any vector of pointers from the live set by scalarizing them over the 1947 /// statepoint instruction. Adds the scalarized pieces to the live set. It 1948 /// would be preferable to include the vector in the statepoint itself, but 1949 /// the lowering code currently does not handle that. Extending it would be 1950 /// slightly non-trivial since it requires a format change. Given how rare 1951 /// such cases are (for the moment?) scalarizing is an acceptable compromise. 1952 static void splitVectorValues(Instruction *StatepointInst, 1953 StatepointLiveSetTy &LiveSet, 1954 DenseMap<Value *, Value *>& PointerToBase, 1955 DominatorTree &DT) { 1956 SmallVector<Value *, 16> ToSplit; 1957 for (Value *V : LiveSet) 1958 if (isa<VectorType>(V->getType())) 1959 ToSplit.push_back(V); 1960 1961 if (ToSplit.empty()) 1962 return; 1963 1964 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1965 1966 Function &F = *(StatepointInst->getParent()->getParent()); 1967 1968 DenseMap<Value *, AllocaInst *> AllocaMap; 1969 // First is normal return, second is exceptional return (invoke only) 1970 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1971 for (Value *V : ToSplit) { 1972 AllocaInst *Alloca = 1973 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1974 AllocaMap[V] = Alloca; 1975 1976 VectorType *VT = cast<VectorType>(V->getType()); 1977 IRBuilder<> Builder(StatepointInst); 1978 SmallVector<Value *, 16> Elements; 1979 for (unsigned i = 0; i < VT->getNumElements(); i++) 1980 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1981 ElementMapping[V] = Elements; 1982 1983 auto InsertVectorReform = [&](Instruction *IP) { 1984 Builder.SetInsertPoint(IP); 1985 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1986 Value *ResultVec = UndefValue::get(VT); 1987 for (unsigned i = 0; i < VT->getNumElements(); i++) 1988 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1989 Builder.getInt32(i)); 1990 return ResultVec; 1991 }; 1992 1993 if (isa<CallInst>(StatepointInst)) { 1994 BasicBlock::iterator Next(StatepointInst); 1995 Next++; 1996 Instruction *IP = &*(Next); 1997 Replacements[V].first = InsertVectorReform(IP); 1998 Replacements[V].second = nullptr; 1999 } else { 2000 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 2001 // We've already normalized - check that we don't have shared destination 2002 // blocks 2003 BasicBlock *NormalDest = Invoke->getNormalDest(); 2004 assert(!isa<PHINode>(NormalDest->begin())); 2005 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 2006 assert(!isa<PHINode>(UnwindDest->begin())); 2007 // Insert insert element sequences in both successors 2008 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 2009 Replacements[V].first = InsertVectorReform(IP); 2010 IP = &*(UnwindDest->getFirstInsertionPt()); 2011 Replacements[V].second = InsertVectorReform(IP); 2012 } 2013 } 2014 2015 for (Value *V : ToSplit) { 2016 AllocaInst *Alloca = AllocaMap[V]; 2017 2018 // Capture all users before we start mutating use lists 2019 SmallVector<Instruction *, 16> Users; 2020 for (User *U : V->users()) 2021 Users.push_back(cast<Instruction>(U)); 2022 2023 for (Instruction *I : Users) { 2024 if (auto Phi = dyn_cast<PHINode>(I)) { 2025 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 2026 if (V == Phi->getIncomingValue(i)) { 2027 LoadInst *Load = new LoadInst( 2028 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 2029 Phi->setIncomingValue(i, Load); 2030 } 2031 } else { 2032 LoadInst *Load = new LoadInst(Alloca, "", I); 2033 I->replaceUsesOfWith(V, Load); 2034 } 2035 } 2036 2037 // Store the original value and the replacement value into the alloca 2038 StoreInst *Store = new StoreInst(V, Alloca); 2039 if (auto I = dyn_cast<Instruction>(V)) 2040 Store->insertAfter(I); 2041 else 2042 Store->insertAfter(Alloca); 2043 2044 // Normal return for invoke, or call return 2045 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 2046 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 2047 // Unwind return for invoke only 2048 Replacement = cast_or_null<Instruction>(Replacements[V].second); 2049 if (Replacement) 2050 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 2051 } 2052 2053 // apply mem2reg to promote alloca to SSA 2054 SmallVector<AllocaInst *, 16> Allocas; 2055 for (Value *V : ToSplit) 2056 Allocas.push_back(AllocaMap[V]); 2057 PromoteMemToReg(Allocas, DT); 2058 2059 // Update our tracking of live pointers and base mappings to account for the 2060 // changes we just made. 2061 for (Value *V : ToSplit) { 2062 auto &Elements = ElementMapping[V]; 2063 2064 LiveSet.erase(V); 2065 LiveSet.insert(Elements.begin(), Elements.end()); 2066 // We need to update the base mapping as well. 2067 assert(PointerToBase.count(V)); 2068 Value *OldBase = PointerToBase[V]; 2069 auto &BaseElements = ElementMapping[OldBase]; 2070 PointerToBase.erase(V); 2071 assert(Elements.size() == BaseElements.size()); 2072 for (unsigned i = 0; i < Elements.size(); i++) { 2073 Value *Elem = Elements[i]; 2074 PointerToBase[Elem] = BaseElements[i]; 2075 } 2076 } 2077 } 2078 2079 // Helper function for the "rematerializeLiveValues". It walks use chain 2080 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 2081 // values are visited (currently it is GEP's and casts). Returns true if it 2082 // successfully reached "BaseValue" and false otherwise. 2083 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 2084 // recorded. 2085 static bool findRematerializableChainToBasePointer( 2086 SmallVectorImpl<Instruction*> &ChainToBase, 2087 Value *CurrentValue, Value *BaseValue) { 2088 2089 // We have found a base value 2090 if (CurrentValue == BaseValue) { 2091 return true; 2092 } 2093 2094 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2095 ChainToBase.push_back(GEP); 2096 return findRematerializableChainToBasePointer(ChainToBase, 2097 GEP->getPointerOperand(), 2098 BaseValue); 2099 } 2100 2101 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2102 Value *Def = CI->stripPointerCasts(); 2103 2104 // This two checks are basically similar. First one is here for the 2105 // consistency with findBasePointers logic. 2106 assert(!isa<CastInst>(Def) && "not a pointer cast found"); 2107 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2108 return false; 2109 2110 ChainToBase.push_back(CI); 2111 return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue); 2112 } 2113 2114 // Not supported instruction in the chain 2115 return false; 2116 } 2117 2118 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2119 // chain we are going to rematerialize. 2120 static unsigned 2121 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 2122 TargetTransformInfo &TTI) { 2123 unsigned Cost = 0; 2124 2125 for (Instruction *Instr : Chain) { 2126 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2127 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2128 "non noop cast is found during rematerialization"); 2129 2130 Type *SrcTy = CI->getOperand(0)->getType(); 2131 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 2132 2133 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2134 // Cost of the address calculation 2135 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); 2136 Cost += TTI.getAddressComputationCost(ValTy); 2137 2138 // And cost of the GEP itself 2139 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2140 // allowed for the external usage) 2141 if (!GEP->hasAllConstantIndices()) 2142 Cost += 2; 2143 2144 } else { 2145 llvm_unreachable("unsupported instruciton type during rematerialization"); 2146 } 2147 } 2148 2149 return Cost; 2150 } 2151 2152 // From the statepoint live set pick values that are cheaper to recompute then 2153 // to relocate. Remove this values from the live set, rematerialize them after 2154 // statepoint and record them in "Info" structure. Note that similar to 2155 // relocated values we don't do any user adjustments here. 2156 static void rematerializeLiveValues(CallSite CS, 2157 PartiallyConstructedSafepointRecord &Info, 2158 TargetTransformInfo &TTI) { 2159 const unsigned int ChainLengthThreshold = 10; 2160 2161 // Record values we are going to delete from this statepoint live set. 2162 // We can not di this in following loop due to iterator invalidation. 2163 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2164 2165 for (Value *LiveValue: Info.LiveSet) { 2166 // For each live pointer find it's defining chain 2167 SmallVector<Instruction *, 3> ChainToBase; 2168 assert(Info.PointerToBase.count(LiveValue)); 2169 bool FoundChain = 2170 findRematerializableChainToBasePointer(ChainToBase, 2171 LiveValue, 2172 Info.PointerToBase[LiveValue]); 2173 // Nothing to do, or chain is too long 2174 if (!FoundChain || 2175 ChainToBase.size() == 0 || 2176 ChainToBase.size() > ChainLengthThreshold) 2177 continue; 2178 2179 // Compute cost of this chain 2180 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2181 // TODO: We can also account for cases when we will be able to remove some 2182 // of the rematerialized values by later optimization passes. I.e if 2183 // we rematerialized several intersecting chains. Or if original values 2184 // don't have any uses besides this statepoint. 2185 2186 // For invokes we need to rematerialize each chain twice - for normal and 2187 // for unwind basic blocks. Model this by multiplying cost by two. 2188 if (CS.isInvoke()) { 2189 Cost *= 2; 2190 } 2191 // If it's too expensive - skip it 2192 if (Cost >= RematerializationThreshold) 2193 continue; 2194 2195 // Remove value from the live set 2196 LiveValuesToBeDeleted.push_back(LiveValue); 2197 2198 // Clone instructions and record them inside "Info" structure 2199 2200 // Walk backwards to visit top-most instructions first 2201 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2202 2203 // Utility function which clones all instructions from "ChainToBase" 2204 // and inserts them before "InsertBefore". Returns rematerialized value 2205 // which should be used after statepoint. 2206 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 2207 Instruction *LastClonedValue = nullptr; 2208 Instruction *LastValue = nullptr; 2209 for (Instruction *Instr: ChainToBase) { 2210 // Only GEP's and casts are suported as we need to be careful to not 2211 // introduce any new uses of pointers not in the liveset. 2212 // Note that it's fine to introduce new uses of pointers which were 2213 // otherwise not used after this statepoint. 2214 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2215 2216 Instruction *ClonedValue = Instr->clone(); 2217 ClonedValue->insertBefore(InsertBefore); 2218 ClonedValue->setName(Instr->getName() + ".remat"); 2219 2220 // If it is not first instruction in the chain then it uses previously 2221 // cloned value. We should update it to use cloned value. 2222 if (LastClonedValue) { 2223 assert(LastValue); 2224 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2225 #ifndef NDEBUG 2226 // Assert that cloned instruction does not use any instructions from 2227 // this chain other than LastClonedValue 2228 for (auto OpValue : ClonedValue->operand_values()) { 2229 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2230 ChainToBase.end() && 2231 "incorrect use in rematerialization chain"); 2232 } 2233 #endif 2234 } 2235 2236 LastClonedValue = ClonedValue; 2237 LastValue = Instr; 2238 } 2239 assert(LastClonedValue); 2240 return LastClonedValue; 2241 }; 2242 2243 // Different cases for calls and invokes. For invokes we need to clone 2244 // instructions both on normal and unwind path. 2245 if (CS.isCall()) { 2246 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2247 assert(InsertBefore); 2248 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2249 Info.RematerializedValues[RematerializedValue] = LiveValue; 2250 } else { 2251 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2252 2253 Instruction *NormalInsertBefore = 2254 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2255 Instruction *UnwindInsertBefore = 2256 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2257 2258 Instruction *NormalRematerializedValue = 2259 rematerializeChain(NormalInsertBefore); 2260 Instruction *UnwindRematerializedValue = 2261 rematerializeChain(UnwindInsertBefore); 2262 2263 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2264 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2265 } 2266 } 2267 2268 // Remove rematerializaed values from the live set 2269 for (auto LiveValue: LiveValuesToBeDeleted) { 2270 Info.LiveSet.erase(LiveValue); 2271 } 2272 } 2273 2274 static bool insertParsePoints(Function &F, DominatorTree &DT, 2275 TargetTransformInfo &TTI, 2276 SmallVectorImpl<CallSite> &ToUpdate) { 2277 #ifndef NDEBUG 2278 // sanity check the input 2279 std::set<CallSite> Uniqued; 2280 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2281 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2282 2283 for (CallSite CS : ToUpdate) { 2284 assert(CS.getInstruction()->getParent()->getParent() == &F); 2285 assert((UseDeoptBundles || isStatepoint(CS)) && 2286 "expected to already be a deopt statepoint"); 2287 } 2288 #endif 2289 2290 // When inserting gc.relocates for invokes, we need to be able to insert at 2291 // the top of the successor blocks. See the comment on 2292 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2293 // may restructure the CFG. 2294 for (CallSite CS : ToUpdate) { 2295 if (!CS.isInvoke()) 2296 continue; 2297 auto *II = cast<InvokeInst>(CS.getInstruction()); 2298 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2299 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2300 } 2301 2302 // A list of dummy calls added to the IR to keep various values obviously 2303 // live in the IR. We'll remove all of these when done. 2304 SmallVector<CallInst *, 64> Holders; 2305 2306 // Insert a dummy call with all of the arguments to the vm_state we'll need 2307 // for the actual safepoint insertion. This ensures reference arguments in 2308 // the deopt argument list are considered live through the safepoint (and 2309 // thus makes sure they get relocated.) 2310 for (CallSite CS : ToUpdate) { 2311 SmallVector<Value *, 64> DeoptValues; 2312 2313 iterator_range<const Use *> DeoptStateRange = 2314 UseDeoptBundles 2315 ? iterator_range<const Use *>(GetDeoptBundleOperands(CS)) 2316 : iterator_range<const Use *>(Statepoint(CS).vm_state_args()); 2317 2318 for (Value *Arg : DeoptStateRange) { 2319 assert(!isUnhandledGCPointerType(Arg->getType()) && 2320 "support for FCA unimplemented"); 2321 if (isHandledGCPointerType(Arg->getType())) 2322 DeoptValues.push_back(Arg); 2323 } 2324 2325 insertUseHolderAfter(CS, DeoptValues, Holders); 2326 } 2327 2328 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2329 2330 // A) Identify all gc pointers which are statically live at the given call 2331 // site. 2332 findLiveReferences(F, DT, ToUpdate, Records); 2333 2334 // B) Find the base pointers for each live pointer 2335 /* scope for caching */ { 2336 // Cache the 'defining value' relation used in the computation and 2337 // insertion of base phis and selects. This ensures that we don't insert 2338 // large numbers of duplicate base_phis. 2339 DefiningValueMapTy DVCache; 2340 2341 for (size_t i = 0; i < Records.size(); i++) { 2342 PartiallyConstructedSafepointRecord &info = Records[i]; 2343 findBasePointers(DT, DVCache, ToUpdate[i], info); 2344 } 2345 } // end of cache scope 2346 2347 // The base phi insertion logic (for any safepoint) may have inserted new 2348 // instructions which are now live at some safepoint. The simplest such 2349 // example is: 2350 // loop: 2351 // phi a <-- will be a new base_phi here 2352 // safepoint 1 <-- that needs to be live here 2353 // gep a + 1 2354 // safepoint 2 2355 // br loop 2356 // We insert some dummy calls after each safepoint to definitely hold live 2357 // the base pointers which were identified for that safepoint. We'll then 2358 // ask liveness for _every_ base inserted to see what is now live. Then we 2359 // remove the dummy calls. 2360 Holders.reserve(Holders.size() + Records.size()); 2361 for (size_t i = 0; i < Records.size(); i++) { 2362 PartiallyConstructedSafepointRecord &Info = Records[i]; 2363 2364 SmallVector<Value *, 128> Bases; 2365 for (auto Pair : Info.PointerToBase) 2366 Bases.push_back(Pair.second); 2367 2368 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2369 } 2370 2371 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2372 // need to rerun liveness. We may *also* have inserted new defs, but that's 2373 // not the key issue. 2374 recomputeLiveInValues(F, DT, ToUpdate, Records); 2375 2376 if (PrintBasePointers) { 2377 for (auto &Info : Records) { 2378 errs() << "Base Pairs: (w/Relocation)\n"; 2379 for (auto Pair : Info.PointerToBase) 2380 errs() << " derived %" << Pair.first->getName() << " base %" 2381 << Pair.second->getName() << "\n"; 2382 } 2383 } 2384 2385 for (CallInst *CI : Holders) 2386 CI->eraseFromParent(); 2387 2388 Holders.clear(); 2389 2390 // Do a limited scalarization of any live at safepoint vector values which 2391 // contain pointers. This enables this pass to run after vectorization at 2392 // the cost of some possible performance loss. TODO: it would be nice to 2393 // natively support vectors all the way through the backend so we don't need 2394 // to scalarize here. 2395 for (size_t i = 0; i < Records.size(); i++) { 2396 PartiallyConstructedSafepointRecord &Info = Records[i]; 2397 Instruction *Statepoint = ToUpdate[i].getInstruction(); 2398 splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet, 2399 Info.PointerToBase, DT); 2400 } 2401 2402 // In order to reduce live set of statepoint we might choose to rematerialize 2403 // some values instead of relocating them. This is purely an optimization and 2404 // does not influence correctness. 2405 for (size_t i = 0; i < Records.size(); i++) 2406 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2407 2408 // We need this to safely RAUW and delete call or invoke return values that 2409 // may themselves be live over a statepoint. For details, please see usage in 2410 // makeStatepointExplicitImpl. 2411 std::vector<DeferredReplacement> Replacements; 2412 2413 // Now run through and replace the existing statepoints with new ones with 2414 // the live variables listed. We do not yet update uses of the values being 2415 // relocated. We have references to live variables that need to 2416 // survive to the last iteration of this loop. (By construction, the 2417 // previous statepoint can not be a live variable, thus we can and remove 2418 // the old statepoint calls as we go.) 2419 for (size_t i = 0; i < Records.size(); i++) 2420 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2421 2422 ToUpdate.clear(); // prevent accident use of invalid CallSites 2423 2424 for (auto &PR : Replacements) 2425 PR.doReplacement(); 2426 2427 Replacements.clear(); 2428 2429 for (auto &Info : Records) { 2430 // These live sets may contain state Value pointers, since we replaced calls 2431 // with operand bundles with calls wrapped in gc.statepoint, and some of 2432 // those calls may have been def'ing live gc pointers. Clear these out to 2433 // avoid accidentally using them. 2434 // 2435 // TODO: We should create a separate data structure that does not contain 2436 // these live sets, and migrate to using that data structure from this point 2437 // onward. 2438 Info.LiveSet.clear(); 2439 Info.PointerToBase.clear(); 2440 } 2441 2442 // Do all the fixups of the original live variables to their relocated selves 2443 SmallVector<Value *, 128> Live; 2444 for (size_t i = 0; i < Records.size(); i++) { 2445 PartiallyConstructedSafepointRecord &Info = Records[i]; 2446 2447 // We can't simply save the live set from the original insertion. One of 2448 // the live values might be the result of a call which needs a safepoint. 2449 // That Value* no longer exists and we need to use the new gc_result. 2450 // Thankfully, the live set is embedded in the statepoint (and updated), so 2451 // we just grab that. 2452 Statepoint Statepoint(Info.StatepointToken); 2453 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2454 Statepoint.gc_args_end()); 2455 #ifndef NDEBUG 2456 // Do some basic sanity checks on our liveness results before performing 2457 // relocation. Relocation can and will turn mistakes in liveness results 2458 // into non-sensical code which is must harder to debug. 2459 // TODO: It would be nice to test consistency as well 2460 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2461 "statepoint must be reachable or liveness is meaningless"); 2462 for (Value *V : Statepoint.gc_args()) { 2463 if (!isa<Instruction>(V)) 2464 // Non-instruction values trivial dominate all possible uses 2465 continue; 2466 auto *LiveInst = cast<Instruction>(V); 2467 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2468 "unreachable values should never be live"); 2469 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2470 "basic SSA liveness expectation violated by liveness analysis"); 2471 } 2472 #endif 2473 } 2474 unique_unsorted(Live); 2475 2476 #ifndef NDEBUG 2477 // sanity check 2478 for (auto *Ptr : Live) 2479 assert(isGCPointerType(Ptr->getType()) && "must be a gc pointer type"); 2480 #endif 2481 2482 relocationViaAlloca(F, DT, Live, Records); 2483 return !Records.empty(); 2484 } 2485 2486 // Handles both return values and arguments for Functions and CallSites. 2487 template <typename AttrHolder> 2488 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2489 unsigned Index) { 2490 AttrBuilder R; 2491 if (AH.getDereferenceableBytes(Index)) 2492 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2493 AH.getDereferenceableBytes(Index))); 2494 if (AH.getDereferenceableOrNullBytes(Index)) 2495 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2496 AH.getDereferenceableOrNullBytes(Index))); 2497 if (AH.doesNotAlias(Index)) 2498 R.addAttribute(Attribute::NoAlias); 2499 2500 if (!R.empty()) 2501 AH.setAttributes(AH.getAttributes().removeAttributes( 2502 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2503 } 2504 2505 void 2506 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2507 LLVMContext &Ctx = F.getContext(); 2508 2509 for (Argument &A : F.args()) 2510 if (isa<PointerType>(A.getType())) 2511 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2512 2513 if (isa<PointerType>(F.getReturnType())) 2514 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2515 } 2516 2517 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2518 if (F.empty()) 2519 return; 2520 2521 LLVMContext &Ctx = F.getContext(); 2522 MDBuilder Builder(Ctx); 2523 2524 for (Instruction &I : instructions(F)) { 2525 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2526 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2527 bool IsImmutableTBAA = 2528 MD->getNumOperands() == 4 && 2529 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2530 2531 if (!IsImmutableTBAA) 2532 continue; // no work to do, MD_tbaa is already marked mutable 2533 2534 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2535 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2536 uint64_t Offset = 2537 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2538 2539 MDNode *MutableTBAA = 2540 Builder.createTBAAStructTagNode(Base, Access, Offset); 2541 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2542 } 2543 2544 if (CallSite CS = CallSite(&I)) { 2545 for (int i = 0, e = CS.arg_size(); i != e; i++) 2546 if (isa<PointerType>(CS.getArgument(i)->getType())) 2547 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); 2548 if (isa<PointerType>(CS.getType())) 2549 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2550 } 2551 } 2552 } 2553 2554 /// Returns true if this function should be rewritten by this pass. The main 2555 /// point of this function is as an extension point for custom logic. 2556 static bool shouldRewriteStatepointsIn(Function &F) { 2557 // TODO: This should check the GCStrategy 2558 if (F.hasGC()) { 2559 const char *FunctionGCName = F.getGC(); 2560 const StringRef StatepointExampleName("statepoint-example"); 2561 const StringRef CoreCLRName("coreclr"); 2562 return (StatepointExampleName == FunctionGCName) || 2563 (CoreCLRName == FunctionGCName); 2564 } else 2565 return false; 2566 } 2567 2568 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2569 #ifndef NDEBUG 2570 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2571 "precondition!"); 2572 #endif 2573 2574 for (Function &F : M) 2575 stripNonValidAttributesFromPrototype(F); 2576 2577 for (Function &F : M) 2578 stripNonValidAttributesFromBody(F); 2579 } 2580 2581 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2582 // Nothing to do for declarations. 2583 if (F.isDeclaration() || F.empty()) 2584 return false; 2585 2586 // Policy choice says not to rewrite - the most common reason is that we're 2587 // compiling code without a GCStrategy. 2588 if (!shouldRewriteStatepointsIn(F)) 2589 return false; 2590 2591 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2592 TargetTransformInfo &TTI = 2593 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2594 2595 auto NeedsRewrite = [](Instruction &I) { 2596 if (UseDeoptBundles) { 2597 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2598 return !callsGCLeafFunction(CS); 2599 return false; 2600 } 2601 2602 return isStatepoint(I); 2603 }; 2604 2605 // Gather all the statepoints which need rewritten. Be careful to only 2606 // consider those in reachable code since we need to ask dominance queries 2607 // when rewriting. We'll delete the unreachable ones in a moment. 2608 SmallVector<CallSite, 64> ParsePointNeeded; 2609 bool HasUnreachableStatepoint = false; 2610 for (Instruction &I : instructions(F)) { 2611 // TODO: only the ones with the flag set! 2612 if (NeedsRewrite(I)) { 2613 if (DT.isReachableFromEntry(I.getParent())) 2614 ParsePointNeeded.push_back(CallSite(&I)); 2615 else 2616 HasUnreachableStatepoint = true; 2617 } 2618 } 2619 2620 bool MadeChange = false; 2621 2622 // Delete any unreachable statepoints so that we don't have unrewritten 2623 // statepoints surviving this pass. This makes testing easier and the 2624 // resulting IR less confusing to human readers. Rather than be fancy, we 2625 // just reuse a utility function which removes the unreachable blocks. 2626 if (HasUnreachableStatepoint) 2627 MadeChange |= removeUnreachableBlocks(F); 2628 2629 // Return early if no work to do. 2630 if (ParsePointNeeded.empty()) 2631 return MadeChange; 2632 2633 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2634 // These are created by LCSSA. They have the effect of increasing the size 2635 // of liveness sets for no good reason. It may be harder to do this post 2636 // insertion since relocations and base phis can confuse things. 2637 for (BasicBlock &BB : F) 2638 if (BB.getUniquePredecessor()) { 2639 MadeChange = true; 2640 FoldSingleEntryPHINodes(&BB); 2641 } 2642 2643 // Before we start introducing relocations, we want to tweak the IR a bit to 2644 // avoid unfortunate code generation effects. The main example is that we 2645 // want to try to make sure the comparison feeding a branch is after any 2646 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2647 // values feeding a branch after relocation. This is semantically correct, 2648 // but results in extra register pressure since both the pre-relocation and 2649 // post-relocation copies must be available in registers. For code without 2650 // relocations this is handled elsewhere, but teaching the scheduler to 2651 // reverse the transform we're about to do would be slightly complex. 2652 // Note: This may extend the live range of the inputs to the icmp and thus 2653 // increase the liveset of any statepoint we move over. This is profitable 2654 // as long as all statepoints are in rare blocks. If we had in-register 2655 // lowering for live values this would be a much safer transform. 2656 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2657 if (auto *BI = dyn_cast<BranchInst>(TI)) 2658 if (BI->isConditional()) 2659 return dyn_cast<Instruction>(BI->getCondition()); 2660 // TODO: Extend this to handle switches 2661 return nullptr; 2662 }; 2663 for (BasicBlock &BB : F) { 2664 TerminatorInst *TI = BB.getTerminator(); 2665 if (auto *Cond = getConditionInst(TI)) 2666 // TODO: Handle more than just ICmps here. We should be able to move 2667 // most instructions without side effects or memory access. 2668 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2669 MadeChange = true; 2670 Cond->moveBefore(TI); 2671 } 2672 } 2673 2674 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2675 return MadeChange; 2676 } 2677 2678 // liveness computation via standard dataflow 2679 // ------------------------------------------------------------------- 2680 2681 // TODO: Consider using bitvectors for liveness, the set of potentially 2682 // interesting values should be small and easy to pre-compute. 2683 2684 /// Compute the live-in set for the location rbegin starting from 2685 /// the live-out set of the basic block 2686 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2687 BasicBlock::reverse_iterator rend, 2688 DenseSet<Value *> &LiveTmp) { 2689 2690 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2691 Instruction *I = &*ritr; 2692 2693 // KILL/Def - Remove this definition from LiveIn 2694 LiveTmp.erase(I); 2695 2696 // Don't consider *uses* in PHI nodes, we handle their contribution to 2697 // predecessor blocks when we seed the LiveOut sets 2698 if (isa<PHINode>(I)) 2699 continue; 2700 2701 // USE - Add to the LiveIn set for this instruction 2702 for (Value *V : I->operands()) { 2703 assert(!isUnhandledGCPointerType(V->getType()) && 2704 "support for FCA unimplemented"); 2705 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2706 // The choice to exclude all things constant here is slightly subtle. 2707 // There are two independent reasons: 2708 // - We assume that things which are constant (from LLVM's definition) 2709 // do not move at runtime. For example, the address of a global 2710 // variable is fixed, even though it's contents may not be. 2711 // - Second, we can't disallow arbitrary inttoptr constants even 2712 // if the language frontend does. Optimization passes are free to 2713 // locally exploit facts without respect to global reachability. This 2714 // can create sections of code which are dynamically unreachable and 2715 // contain just about anything. (see constants.ll in tests) 2716 LiveTmp.insert(V); 2717 } 2718 } 2719 } 2720 } 2721 2722 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2723 2724 for (BasicBlock *Succ : successors(BB)) { 2725 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2726 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2727 PHINode *Phi = cast<PHINode>(&*I); 2728 Value *V = Phi->getIncomingValueForBlock(BB); 2729 assert(!isUnhandledGCPointerType(V->getType()) && 2730 "support for FCA unimplemented"); 2731 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2732 LiveTmp.insert(V); 2733 } 2734 } 2735 } 2736 } 2737 2738 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2739 DenseSet<Value *> KillSet; 2740 for (Instruction &I : *BB) 2741 if (isHandledGCPointerType(I.getType())) 2742 KillSet.insert(&I); 2743 return KillSet; 2744 } 2745 2746 #ifndef NDEBUG 2747 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2748 /// sanity check for the liveness computation. 2749 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2750 TerminatorInst *TI, bool TermOkay = false) { 2751 for (Value *V : Live) { 2752 if (auto *I = dyn_cast<Instruction>(V)) { 2753 // The terminator can be a member of the LiveOut set. LLVM's definition 2754 // of instruction dominance states that V does not dominate itself. As 2755 // such, we need to special case this to allow it. 2756 if (TermOkay && TI == I) 2757 continue; 2758 assert(DT.dominates(I, TI) && 2759 "basic SSA liveness expectation violated by liveness analysis"); 2760 } 2761 } 2762 } 2763 2764 /// Check that all the liveness sets used during the computation of liveness 2765 /// obey basic SSA properties. This is useful for finding cases where we miss 2766 /// a def. 2767 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2768 BasicBlock &BB) { 2769 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2770 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2771 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2772 } 2773 #endif 2774 2775 static void computeLiveInValues(DominatorTree &DT, Function &F, 2776 GCPtrLivenessData &Data) { 2777 2778 SmallSetVector<BasicBlock *, 200> Worklist; 2779 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2780 // We use a SetVector so that we don't have duplicates in the worklist. 2781 Worklist.insert(pred_begin(BB), pred_end(BB)); 2782 }; 2783 auto NextItem = [&]() { 2784 BasicBlock *BB = Worklist.back(); 2785 Worklist.pop_back(); 2786 return BB; 2787 }; 2788 2789 // Seed the liveness for each individual block 2790 for (BasicBlock &BB : F) { 2791 Data.KillSet[&BB] = computeKillSet(&BB); 2792 Data.LiveSet[&BB].clear(); 2793 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2794 2795 #ifndef NDEBUG 2796 for (Value *Kill : Data.KillSet[&BB]) 2797 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2798 #endif 2799 2800 Data.LiveOut[&BB] = DenseSet<Value *>(); 2801 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2802 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2803 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2804 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2805 if (!Data.LiveIn[&BB].empty()) 2806 AddPredsToWorklist(&BB); 2807 } 2808 2809 // Propagate that liveness until stable 2810 while (!Worklist.empty()) { 2811 BasicBlock *BB = NextItem(); 2812 2813 // Compute our new liveout set, then exit early if it hasn't changed 2814 // despite the contribution of our successor. 2815 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2816 const auto OldLiveOutSize = LiveOut.size(); 2817 for (BasicBlock *Succ : successors(BB)) { 2818 assert(Data.LiveIn.count(Succ)); 2819 set_union(LiveOut, Data.LiveIn[Succ]); 2820 } 2821 // assert OutLiveOut is a subset of LiveOut 2822 if (OldLiveOutSize == LiveOut.size()) { 2823 // If the sets are the same size, then we didn't actually add anything 2824 // when unioning our successors LiveIn Thus, the LiveIn of this block 2825 // hasn't changed. 2826 continue; 2827 } 2828 Data.LiveOut[BB] = LiveOut; 2829 2830 // Apply the effects of this basic block 2831 DenseSet<Value *> LiveTmp = LiveOut; 2832 set_union(LiveTmp, Data.LiveSet[BB]); 2833 set_subtract(LiveTmp, Data.KillSet[BB]); 2834 2835 assert(Data.LiveIn.count(BB)); 2836 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2837 // assert: OldLiveIn is a subset of LiveTmp 2838 if (OldLiveIn.size() != LiveTmp.size()) { 2839 Data.LiveIn[BB] = LiveTmp; 2840 AddPredsToWorklist(BB); 2841 } 2842 } // while( !worklist.empty() ) 2843 2844 #ifndef NDEBUG 2845 // Sanity check our output against SSA properties. This helps catch any 2846 // missing kills during the above iteration. 2847 for (BasicBlock &BB : F) { 2848 checkBasicSSA(DT, Data, BB); 2849 } 2850 #endif 2851 } 2852 2853 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2854 StatepointLiveSetTy &Out) { 2855 2856 BasicBlock *BB = Inst->getParent(); 2857 2858 // Note: The copy is intentional and required 2859 assert(Data.LiveOut.count(BB)); 2860 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2861 2862 // We want to handle the statepoint itself oddly. It's 2863 // call result is not live (normal), nor are it's arguments 2864 // (unless they're used again later). This adjustment is 2865 // specifically what we need to relocate 2866 BasicBlock::reverse_iterator rend(Inst->getIterator()); 2867 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2868 LiveOut.erase(Inst); 2869 Out.insert(LiveOut.begin(), LiveOut.end()); 2870 } 2871 2872 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2873 const CallSite &CS, 2874 PartiallyConstructedSafepointRecord &Info) { 2875 Instruction *Inst = CS.getInstruction(); 2876 StatepointLiveSetTy Updated; 2877 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2878 2879 #ifndef NDEBUG 2880 DenseSet<Value *> Bases; 2881 for (auto KVPair : Info.PointerToBase) { 2882 Bases.insert(KVPair.second); 2883 } 2884 #endif 2885 // We may have base pointers which are now live that weren't before. We need 2886 // to update the PointerToBase structure to reflect this. 2887 for (auto V : Updated) 2888 if (!Info.PointerToBase.count(V)) { 2889 assert(Bases.count(V) && "can't find base for unexpected live value"); 2890 Info.PointerToBase[V] = V; 2891 continue; 2892 } 2893 2894 #ifndef NDEBUG 2895 for (auto V : Updated) { 2896 assert(Info.PointerToBase.count(V) && 2897 "must be able to find base for live value"); 2898 } 2899 #endif 2900 2901 // Remove any stale base mappings - this can happen since our liveness is 2902 // more precise then the one inherent in the base pointer analysis 2903 DenseSet<Value *> ToErase; 2904 for (auto KVPair : Info.PointerToBase) 2905 if (!Updated.count(KVPair.first)) 2906 ToErase.insert(KVPair.first); 2907 for (auto V : ToErase) 2908 Info.PointerToBase.erase(V); 2909 2910 #ifndef NDEBUG 2911 for (auto KVPair : Info.PointerToBase) 2912 assert(Updated.count(KVPair.first) && "record for non-live value"); 2913 #endif 2914 2915 Info.LiveSet = Updated; 2916 } 2917