1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/Cloning.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 46 47 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 48 49 using namespace llvm; 50 51 // Print the liveset found at the insert location 52 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 53 cl::init(false)); 54 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 55 cl::init(false)); 56 // Print out the base pointers for debugging 57 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 58 cl::init(false)); 59 60 // Cost threshold measuring when it is profitable to rematerialize value instead 61 // of relocating it 62 static cl::opt<unsigned> 63 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 64 cl::init(6)); 65 66 #ifdef XDEBUG 67 static bool ClobberNonLive = true; 68 #else 69 static bool ClobberNonLive = false; 70 #endif 71 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 72 cl::location(ClobberNonLive), 73 cl::Hidden); 74 75 static cl::opt<bool> UseDeoptBundles("rs4gc-use-deopt-bundles", cl::Hidden, 76 cl::init(false)); 77 static cl::opt<bool> 78 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 79 cl::Hidden, cl::init(true)); 80 81 /// Should we split vectors of pointers into their individual elements? This 82 /// is known to be buggy, but the alternate implementation isn't yet ready. 83 /// This is purely to provide a debugging and dianostic hook until the vector 84 /// split is replaced with vector relocations. 85 static cl::opt<bool> UseVectorSplit("rs4gc-split-vector-values", cl::Hidden, 86 cl::init(true)); 87 88 namespace { 89 struct RewriteStatepointsForGC : public ModulePass { 90 static char ID; // Pass identification, replacement for typeid 91 92 RewriteStatepointsForGC() : ModulePass(ID) { 93 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 94 } 95 bool runOnFunction(Function &F); 96 bool runOnModule(Module &M) override { 97 bool Changed = false; 98 for (Function &F : M) 99 Changed |= runOnFunction(F); 100 101 if (Changed) { 102 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 103 // returns true for at least one function in the module. Since at least 104 // one function changed, we know that the precondition is satisfied. 105 stripNonValidAttributes(M); 106 } 107 108 return Changed; 109 } 110 111 void getAnalysisUsage(AnalysisUsage &AU) const override { 112 // We add and rewrite a bunch of instructions, but don't really do much 113 // else. We could in theory preserve a lot more analyses here. 114 AU.addRequired<DominatorTreeWrapperPass>(); 115 AU.addRequired<TargetTransformInfoWrapperPass>(); 116 } 117 118 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 119 /// dereferenceability that are no longer valid/correct after 120 /// RewriteStatepointsForGC has run. This is because semantically, after 121 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 122 /// heap. stripNonValidAttributes (conservatively) restores correctness 123 /// by erasing all attributes in the module that externally imply 124 /// dereferenceability. 125 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 126 /// can touch the entire heap including noalias objects. 127 void stripNonValidAttributes(Module &M); 128 129 // Helpers for stripNonValidAttributes 130 void stripNonValidAttributesFromBody(Function &F); 131 void stripNonValidAttributesFromPrototype(Function &F); 132 }; 133 } // namespace 134 135 char RewriteStatepointsForGC::ID = 0; 136 137 ModulePass *llvm::createRewriteStatepointsForGCPass() { 138 return new RewriteStatepointsForGC(); 139 } 140 141 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 142 "Make relocations explicit at statepoints", false, false) 143 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 144 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 145 "Make relocations explicit at statepoints", false, false) 146 147 namespace { 148 struct GCPtrLivenessData { 149 /// Values defined in this block. 150 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 151 /// Values used in this block (and thus live); does not included values 152 /// killed within this block. 153 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 154 155 /// Values live into this basic block (i.e. used by any 156 /// instruction in this basic block or ones reachable from here) 157 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 158 159 /// Values live out of this basic block (i.e. live into 160 /// any successor block) 161 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 162 }; 163 164 // The type of the internal cache used inside the findBasePointers family 165 // of functions. From the callers perspective, this is an opaque type and 166 // should not be inspected. 167 // 168 // In the actual implementation this caches two relations: 169 // - The base relation itself (i.e. this pointer is based on that one) 170 // - The base defining value relation (i.e. before base_phi insertion) 171 // Generally, after the execution of a full findBasePointer call, only the 172 // base relation will remain. Internally, we add a mixture of the two 173 // types, then update all the second type to the first type 174 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 175 typedef DenseSet<Value *> StatepointLiveSetTy; 176 typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>> 177 RematerializedValueMapTy; 178 179 struct PartiallyConstructedSafepointRecord { 180 /// The set of values known to be live across this safepoint 181 StatepointLiveSetTy LiveSet; 182 183 /// Mapping from live pointers to a base-defining-value 184 DenseMap<Value *, Value *> PointerToBase; 185 186 /// The *new* gc.statepoint instruction itself. This produces the token 187 /// that normal path gc.relocates and the gc.result are tied to. 188 Instruction *StatepointToken; 189 190 /// Instruction to which exceptional gc relocates are attached 191 /// Makes it easier to iterate through them during relocationViaAlloca. 192 Instruction *UnwindToken; 193 194 /// Record live values we are rematerialized instead of relocating. 195 /// They are not included into 'LiveSet' field. 196 /// Maps rematerialized copy to it's original value. 197 RematerializedValueMapTy RematerializedValues; 198 }; 199 } 200 201 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 202 assert(UseDeoptBundles && "Should not be called otherwise!"); 203 204 Optional<OperandBundleUse> DeoptBundle = CS.getOperandBundle("deopt"); 205 206 if (!DeoptBundle.hasValue()) { 207 assert(AllowStatepointWithNoDeoptInfo && 208 "Found non-leaf call without deopt info!"); 209 return None; 210 } 211 212 return DeoptBundle.getValue().Inputs; 213 } 214 215 /// Compute the live-in set for every basic block in the function 216 static void computeLiveInValues(DominatorTree &DT, Function &F, 217 GCPtrLivenessData &Data); 218 219 /// Given results from the dataflow liveness computation, find the set of live 220 /// Values at a particular instruction. 221 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 222 StatepointLiveSetTy &out); 223 224 // TODO: Once we can get to the GCStrategy, this becomes 225 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 226 227 static bool isGCPointerType(Type *T) { 228 if (auto *PT = dyn_cast<PointerType>(T)) 229 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 230 // GC managed heap. We know that a pointer into this heap needs to be 231 // updated and that no other pointer does. 232 return (1 == PT->getAddressSpace()); 233 return false; 234 } 235 236 // Return true if this type is one which a) is a gc pointer or contains a GC 237 // pointer and b) is of a type this code expects to encounter as a live value. 238 // (The insertion code will assert that a type which matches (a) and not (b) 239 // is not encountered.) 240 static bool isHandledGCPointerType(Type *T) { 241 // We fully support gc pointers 242 if (isGCPointerType(T)) 243 return true; 244 // We partially support vectors of gc pointers. The code will assert if it 245 // can't handle something. 246 if (auto VT = dyn_cast<VectorType>(T)) 247 if (isGCPointerType(VT->getElementType())) 248 return true; 249 return false; 250 } 251 252 #ifndef NDEBUG 253 /// Returns true if this type contains a gc pointer whether we know how to 254 /// handle that type or not. 255 static bool containsGCPtrType(Type *Ty) { 256 if (isGCPointerType(Ty)) 257 return true; 258 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 259 return isGCPointerType(VT->getScalarType()); 260 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 261 return containsGCPtrType(AT->getElementType()); 262 if (StructType *ST = dyn_cast<StructType>(Ty)) 263 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 264 containsGCPtrType); 265 return false; 266 } 267 268 // Returns true if this is a type which a) is a gc pointer or contains a GC 269 // pointer and b) is of a type which the code doesn't expect (i.e. first class 270 // aggregates). Used to trip assertions. 271 static bool isUnhandledGCPointerType(Type *Ty) { 272 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 273 } 274 #endif 275 276 static bool order_by_name(Value *a, Value *b) { 277 if (a->hasName() && b->hasName()) { 278 return -1 == a->getName().compare(b->getName()); 279 } else if (a->hasName() && !b->hasName()) { 280 return true; 281 } else if (!a->hasName() && b->hasName()) { 282 return false; 283 } else { 284 // Better than nothing, but not stable 285 return a < b; 286 } 287 } 288 289 // Return the name of the value suffixed with the provided value, or if the 290 // value didn't have a name, the default value specified. 291 static std::string suffixed_name_or(Value *V, StringRef Suffix, 292 StringRef DefaultName) { 293 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 294 } 295 296 // Conservatively identifies any definitions which might be live at the 297 // given instruction. The analysis is performed immediately before the 298 // given instruction. Values defined by that instruction are not considered 299 // live. Values used by that instruction are considered live. 300 static void analyzeParsePointLiveness( 301 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 302 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 303 Instruction *inst = CS.getInstruction(); 304 305 StatepointLiveSetTy LiveSet; 306 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet); 307 308 if (PrintLiveSet) { 309 // Note: This output is used by several of the test cases 310 // The order of elements in a set is not stable, put them in a vec and sort 311 // by name 312 SmallVector<Value *, 64> Temp; 313 Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end()); 314 std::sort(Temp.begin(), Temp.end(), order_by_name); 315 errs() << "Live Variables:\n"; 316 for (Value *V : Temp) 317 dbgs() << " " << V->getName() << " " << *V << "\n"; 318 } 319 if (PrintLiveSetSize) { 320 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 321 errs() << "Number live values: " << LiveSet.size() << "\n"; 322 } 323 result.LiveSet = LiveSet; 324 } 325 326 static bool isKnownBaseResult(Value *V); 327 namespace { 328 /// A single base defining value - An immediate base defining value for an 329 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 330 /// For instructions which have multiple pointer [vector] inputs or that 331 /// transition between vector and scalar types, there is no immediate base 332 /// defining value. The 'base defining value' for 'Def' is the transitive 333 /// closure of this relation stopping at the first instruction which has no 334 /// immediate base defining value. The b.d.v. might itself be a base pointer, 335 /// but it can also be an arbitrary derived pointer. 336 struct BaseDefiningValueResult { 337 /// Contains the value which is the base defining value. 338 Value * const BDV; 339 /// True if the base defining value is also known to be an actual base 340 /// pointer. 341 const bool IsKnownBase; 342 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 343 : BDV(BDV), IsKnownBase(IsKnownBase) { 344 #ifndef NDEBUG 345 // Check consistency between new and old means of checking whether a BDV is 346 // a base. 347 bool MustBeBase = isKnownBaseResult(BDV); 348 assert(!MustBeBase || MustBeBase == IsKnownBase); 349 #endif 350 } 351 }; 352 } 353 354 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 355 356 /// Return a base defining value for the 'Index' element of the given vector 357 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 358 /// 'I'. As an optimization, this method will try to determine when the 359 /// element is known to already be a base pointer. If this can be established, 360 /// the second value in the returned pair will be true. Note that either a 361 /// vector or a pointer typed value can be returned. For the former, the 362 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 363 /// If the later, the return pointer is a BDV (or possibly a base) for the 364 /// particular element in 'I'. 365 static BaseDefiningValueResult 366 findBaseDefiningValueOfVector(Value *I) { 367 assert(I->getType()->isVectorTy() && 368 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 369 "Illegal to ask for the base pointer of a non-pointer type"); 370 371 // Each case parallels findBaseDefiningValue below, see that code for 372 // detailed motivation. 373 374 if (isa<Argument>(I)) 375 // An incoming argument to the function is a base pointer 376 return BaseDefiningValueResult(I, true); 377 378 // We shouldn't see the address of a global as a vector value? 379 assert(!isa<GlobalVariable>(I) && 380 "unexpected global variable found in base of vector"); 381 382 // inlining could possibly introduce phi node that contains 383 // undef if callee has multiple returns 384 if (isa<UndefValue>(I)) 385 // utterly meaningless, but useful for dealing with partially optimized 386 // code. 387 return BaseDefiningValueResult(I, true); 388 389 // Due to inheritance, this must be _after_ the global variable and undef 390 // checks 391 if (Constant *Con = dyn_cast<Constant>(I)) { 392 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 393 "order of checks wrong!"); 394 assert(Con->isNullValue() && "null is the only case which makes sense"); 395 return BaseDefiningValueResult(Con, true); 396 } 397 398 if (isa<LoadInst>(I)) 399 return BaseDefiningValueResult(I, true); 400 401 if (isa<InsertElementInst>(I)) 402 // We don't know whether this vector contains entirely base pointers or 403 // not. To be conservatively correct, we treat it as a BDV and will 404 // duplicate code as needed to construct a parallel vector of bases. 405 return BaseDefiningValueResult(I, false); 406 407 if (isa<ShuffleVectorInst>(I)) 408 // We don't know whether this vector contains entirely base pointers or 409 // not. To be conservatively correct, we treat it as a BDV and will 410 // duplicate code as needed to construct a parallel vector of bases. 411 // TODO: There a number of local optimizations which could be applied here 412 // for particular sufflevector patterns. 413 return BaseDefiningValueResult(I, false); 414 415 // A PHI or Select is a base defining value. The outer findBasePointer 416 // algorithm is responsible for constructing a base value for this BDV. 417 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 418 "unknown vector instruction - no base found for vector element"); 419 return BaseDefiningValueResult(I, false); 420 } 421 422 /// Helper function for findBasePointer - Will return a value which either a) 423 /// defines the base pointer for the input, b) blocks the simple search 424 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 425 /// from pointer to vector type or back. 426 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 427 if (I->getType()->isVectorTy()) 428 return findBaseDefiningValueOfVector(I); 429 430 assert(I->getType()->isPointerTy() && 431 "Illegal to ask for the base pointer of a non-pointer type"); 432 433 if (isa<Argument>(I)) 434 // An incoming argument to the function is a base pointer 435 // We should have never reached here if this argument isn't an gc value 436 return BaseDefiningValueResult(I, true); 437 438 if (isa<Constant>(I)) 439 // We assume that objects with a constant base (e.g. a global) can't move 440 // and don't need to be reported to the collector because they are always 441 // live. All constants have constant bases. Besides global references, all 442 // kinds of constants (e.g. undef, constant expressions, null pointers) can 443 // be introduced by the inliner or the optimizer, especially on dynamically 444 // dead paths. See e.g. test4 in constants.ll. 445 return BaseDefiningValueResult(I, true); 446 447 if (CastInst *CI = dyn_cast<CastInst>(I)) { 448 Value *Def = CI->stripPointerCasts(); 449 // If stripping pointer casts changes the address space there is an 450 // addrspacecast in between. 451 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 452 cast<PointerType>(CI->getType())->getAddressSpace() && 453 "unsupported addrspacecast"); 454 // If we find a cast instruction here, it means we've found a cast which is 455 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 456 // handle int->ptr conversion. 457 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 458 return findBaseDefiningValue(Def); 459 } 460 461 if (isa<LoadInst>(I)) 462 // The value loaded is an gc base itself 463 return BaseDefiningValueResult(I, true); 464 465 466 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 467 // The base of this GEP is the base 468 return findBaseDefiningValue(GEP->getPointerOperand()); 469 470 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 471 switch (II->getIntrinsicID()) { 472 default: 473 // fall through to general call handling 474 break; 475 case Intrinsic::experimental_gc_statepoint: 476 llvm_unreachable("statepoints don't produce pointers"); 477 case Intrinsic::experimental_gc_relocate: { 478 // Rerunning safepoint insertion after safepoints are already 479 // inserted is not supported. It could probably be made to work, 480 // but why are you doing this? There's no good reason. 481 llvm_unreachable("repeat safepoint insertion is not supported"); 482 } 483 case Intrinsic::gcroot: 484 // Currently, this mechanism hasn't been extended to work with gcroot. 485 // There's no reason it couldn't be, but I haven't thought about the 486 // implications much. 487 llvm_unreachable( 488 "interaction with the gcroot mechanism is not supported"); 489 } 490 } 491 // We assume that functions in the source language only return base 492 // pointers. This should probably be generalized via attributes to support 493 // both source language and internal functions. 494 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 495 return BaseDefiningValueResult(I, true); 496 497 // I have absolutely no idea how to implement this part yet. It's not 498 // necessarily hard, I just haven't really looked at it yet. 499 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 500 501 if (isa<AtomicCmpXchgInst>(I)) 502 // A CAS is effectively a atomic store and load combined under a 503 // predicate. From the perspective of base pointers, we just treat it 504 // like a load. 505 return BaseDefiningValueResult(I, true); 506 507 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 508 "binary ops which don't apply to pointers"); 509 510 // The aggregate ops. Aggregates can either be in the heap or on the 511 // stack, but in either case, this is simply a field load. As a result, 512 // this is a defining definition of the base just like a load is. 513 if (isa<ExtractValueInst>(I)) 514 return BaseDefiningValueResult(I, true); 515 516 // We should never see an insert vector since that would require we be 517 // tracing back a struct value not a pointer value. 518 assert(!isa<InsertValueInst>(I) && 519 "Base pointer for a struct is meaningless"); 520 521 // An extractelement produces a base result exactly when it's input does. 522 // We may need to insert a parallel instruction to extract the appropriate 523 // element out of the base vector corresponding to the input. Given this, 524 // it's analogous to the phi and select case even though it's not a merge. 525 if (isa<ExtractElementInst>(I)) 526 // Note: There a lot of obvious peephole cases here. This are deliberately 527 // handled after the main base pointer inference algorithm to make writing 528 // test cases to exercise that code easier. 529 return BaseDefiningValueResult(I, false); 530 531 // The last two cases here don't return a base pointer. Instead, they 532 // return a value which dynamically selects from among several base 533 // derived pointers (each with it's own base potentially). It's the job of 534 // the caller to resolve these. 535 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 536 "missing instruction case in findBaseDefiningValing"); 537 return BaseDefiningValueResult(I, false); 538 } 539 540 /// Returns the base defining value for this value. 541 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 542 Value *&Cached = Cache[I]; 543 if (!Cached) { 544 Cached = findBaseDefiningValue(I).BDV; 545 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 546 << Cached->getName() << "\n"); 547 } 548 assert(Cache[I] != nullptr); 549 return Cached; 550 } 551 552 /// Return a base pointer for this value if known. Otherwise, return it's 553 /// base defining value. 554 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 555 Value *Def = findBaseDefiningValueCached(I, Cache); 556 auto Found = Cache.find(Def); 557 if (Found != Cache.end()) { 558 // Either a base-of relation, or a self reference. Caller must check. 559 return Found->second; 560 } 561 // Only a BDV available 562 return Def; 563 } 564 565 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 566 /// is it known to be a base pointer? Or do we need to continue searching. 567 static bool isKnownBaseResult(Value *V) { 568 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 569 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 570 !isa<ShuffleVectorInst>(V)) { 571 // no recursion possible 572 return true; 573 } 574 if (isa<Instruction>(V) && 575 cast<Instruction>(V)->getMetadata("is_base_value")) { 576 // This is a previously inserted base phi or select. We know 577 // that this is a base value. 578 return true; 579 } 580 581 // We need to keep searching 582 return false; 583 } 584 585 namespace { 586 /// Models the state of a single base defining value in the findBasePointer 587 /// algorithm for determining where a new instruction is needed to propagate 588 /// the base of this BDV. 589 class BDVState { 590 public: 591 enum Status { Unknown, Base, Conflict }; 592 593 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 594 assert(status != Base || b); 595 } 596 explicit BDVState(Value *b) : status(Base), base(b) {} 597 BDVState() : status(Unknown), base(nullptr) {} 598 599 Status getStatus() const { return status; } 600 Value *getBase() const { return base; } 601 602 bool isBase() const { return getStatus() == Base; } 603 bool isUnknown() const { return getStatus() == Unknown; } 604 bool isConflict() const { return getStatus() == Conflict; } 605 606 bool operator==(const BDVState &other) const { 607 return base == other.base && status == other.status; 608 } 609 610 bool operator!=(const BDVState &other) const { return !(*this == other); } 611 612 LLVM_DUMP_METHOD 613 void dump() const { print(dbgs()); dbgs() << '\n'; } 614 615 void print(raw_ostream &OS) const { 616 switch (status) { 617 case Unknown: 618 OS << "U"; 619 break; 620 case Base: 621 OS << "B"; 622 break; 623 case Conflict: 624 OS << "C"; 625 break; 626 }; 627 OS << " (" << base << " - " 628 << (base ? base->getName() : "nullptr") << "): "; 629 } 630 631 private: 632 Status status; 633 AssertingVH<Value> base; // non null only if status == base 634 }; 635 } 636 637 #ifndef NDEBUG 638 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 639 State.print(OS); 640 return OS; 641 } 642 #endif 643 644 namespace { 645 // Values of type BDVState form a lattice, and this is a helper 646 // class that implementes the meet operation. The meat of the meet 647 // operation is implemented in MeetBDVStates::pureMeet 648 class MeetBDVStates { 649 public: 650 /// Initializes the currentResult to the TOP state so that if can be met with 651 /// any other state to produce that state. 652 MeetBDVStates() {} 653 654 // Destructively meet the current result with the given BDVState 655 void meetWith(BDVState otherState) { 656 currentResult = meet(otherState, currentResult); 657 } 658 659 BDVState getResult() const { return currentResult; } 660 661 private: 662 BDVState currentResult; 663 664 /// Perform a meet operation on two elements of the BDVState lattice. 665 static BDVState meet(BDVState LHS, BDVState RHS) { 666 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 667 "math is wrong: meet does not commute!"); 668 BDVState Result = pureMeet(LHS, RHS); 669 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 670 << " produced " << Result << "\n"); 671 return Result; 672 } 673 674 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 675 switch (stateA.getStatus()) { 676 case BDVState::Unknown: 677 return stateB; 678 679 case BDVState::Base: 680 assert(stateA.getBase() && "can't be null"); 681 if (stateB.isUnknown()) 682 return stateA; 683 684 if (stateB.isBase()) { 685 if (stateA.getBase() == stateB.getBase()) { 686 assert(stateA == stateB && "equality broken!"); 687 return stateA; 688 } 689 return BDVState(BDVState::Conflict); 690 } 691 assert(stateB.isConflict() && "only three states!"); 692 return BDVState(BDVState::Conflict); 693 694 case BDVState::Conflict: 695 return stateA; 696 } 697 llvm_unreachable("only three states!"); 698 } 699 }; 700 } 701 702 703 /// For a given value or instruction, figure out what base ptr it's derived 704 /// from. For gc objects, this is simply itself. On success, returns a value 705 /// which is the base pointer. (This is reliable and can be used for 706 /// relocation.) On failure, returns nullptr. 707 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 708 Value *def = findBaseOrBDV(I, cache); 709 710 if (isKnownBaseResult(def)) { 711 return def; 712 } 713 714 // Here's the rough algorithm: 715 // - For every SSA value, construct a mapping to either an actual base 716 // pointer or a PHI which obscures the base pointer. 717 // - Construct a mapping from PHI to unknown TOP state. Use an 718 // optimistic algorithm to propagate base pointer information. Lattice 719 // looks like: 720 // UNKNOWN 721 // b1 b2 b3 b4 722 // CONFLICT 723 // When algorithm terminates, all PHIs will either have a single concrete 724 // base or be in a conflict state. 725 // - For every conflict, insert a dummy PHI node without arguments. Add 726 // these to the base[Instruction] = BasePtr mapping. For every 727 // non-conflict, add the actual base. 728 // - For every conflict, add arguments for the base[a] of each input 729 // arguments. 730 // 731 // Note: A simpler form of this would be to add the conflict form of all 732 // PHIs without running the optimistic algorithm. This would be 733 // analogous to pessimistic data flow and would likely lead to an 734 // overall worse solution. 735 736 #ifndef NDEBUG 737 auto isExpectedBDVType = [](Value *BDV) { 738 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 739 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 740 }; 741 #endif 742 743 // Once populated, will contain a mapping from each potentially non-base BDV 744 // to a lattice value (described above) which corresponds to that BDV. 745 // We use the order of insertion (DFS over the def/use graph) to provide a 746 // stable deterministic ordering for visiting DenseMaps (which are unordered) 747 // below. This is important for deterministic compilation. 748 MapVector<Value *, BDVState> States; 749 750 // Recursively fill in all base defining values reachable from the initial 751 // one for which we don't already know a definite base value for 752 /* scope */ { 753 SmallVector<Value*, 16> Worklist; 754 Worklist.push_back(def); 755 States.insert(std::make_pair(def, BDVState())); 756 while (!Worklist.empty()) { 757 Value *Current = Worklist.pop_back_val(); 758 assert(!isKnownBaseResult(Current) && "why did it get added?"); 759 760 auto visitIncomingValue = [&](Value *InVal) { 761 Value *Base = findBaseOrBDV(InVal, cache); 762 if (isKnownBaseResult(Base)) 763 // Known bases won't need new instructions introduced and can be 764 // ignored safely 765 return; 766 assert(isExpectedBDVType(Base) && "the only non-base values " 767 "we see should be base defining values"); 768 if (States.insert(std::make_pair(Base, BDVState())).second) 769 Worklist.push_back(Base); 770 }; 771 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 772 for (Value *InVal : Phi->incoming_values()) 773 visitIncomingValue(InVal); 774 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 775 visitIncomingValue(Sel->getTrueValue()); 776 visitIncomingValue(Sel->getFalseValue()); 777 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 778 visitIncomingValue(EE->getVectorOperand()); 779 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 780 visitIncomingValue(IE->getOperand(0)); // vector operand 781 visitIncomingValue(IE->getOperand(1)); // scalar operand 782 } else { 783 // There is one known class of instructions we know we don't handle. 784 assert(isa<ShuffleVectorInst>(Current)); 785 llvm_unreachable("unimplemented instruction case"); 786 } 787 } 788 } 789 790 #ifndef NDEBUG 791 DEBUG(dbgs() << "States after initialization:\n"); 792 for (auto Pair : States) { 793 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 794 } 795 #endif 796 797 // Return a phi state for a base defining value. We'll generate a new 798 // base state for known bases and expect to find a cached state otherwise. 799 auto getStateForBDV = [&](Value *baseValue) { 800 if (isKnownBaseResult(baseValue)) 801 return BDVState(baseValue); 802 auto I = States.find(baseValue); 803 assert(I != States.end() && "lookup failed!"); 804 return I->second; 805 }; 806 807 bool progress = true; 808 while (progress) { 809 #ifndef NDEBUG 810 const size_t oldSize = States.size(); 811 #endif 812 progress = false; 813 // We're only changing values in this loop, thus safe to keep iterators. 814 // Since this is computing a fixed point, the order of visit does not 815 // effect the result. TODO: We could use a worklist here and make this run 816 // much faster. 817 for (auto Pair : States) { 818 Value *BDV = Pair.first; 819 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 820 821 // Given an input value for the current instruction, return a BDVState 822 // instance which represents the BDV of that value. 823 auto getStateForInput = [&](Value *V) mutable { 824 Value *BDV = findBaseOrBDV(V, cache); 825 return getStateForBDV(BDV); 826 }; 827 828 MeetBDVStates calculateMeet; 829 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) { 830 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 831 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 832 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) { 833 for (Value *Val : Phi->incoming_values()) 834 calculateMeet.meetWith(getStateForInput(Val)); 835 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 836 // The 'meet' for an extractelement is slightly trivial, but it's still 837 // useful in that it drives us to conflict if our input is. 838 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 839 } else { 840 // Given there's a inherent type mismatch between the operands, will 841 // *always* produce Conflict. 842 auto *IE = cast<InsertElementInst>(BDV); 843 calculateMeet.meetWith(getStateForInput(IE->getOperand(0))); 844 calculateMeet.meetWith(getStateForInput(IE->getOperand(1))); 845 } 846 847 BDVState oldState = States[BDV]; 848 BDVState newState = calculateMeet.getResult(); 849 if (oldState != newState) { 850 progress = true; 851 States[BDV] = newState; 852 } 853 } 854 855 assert(oldSize == States.size() && 856 "fixed point shouldn't be adding any new nodes to state"); 857 } 858 859 #ifndef NDEBUG 860 DEBUG(dbgs() << "States after meet iteration:\n"); 861 for (auto Pair : States) { 862 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 863 } 864 #endif 865 866 // Insert Phis for all conflicts 867 // TODO: adjust naming patterns to avoid this order of iteration dependency 868 for (auto Pair : States) { 869 Instruction *I = cast<Instruction>(Pair.first); 870 BDVState State = Pair.second; 871 assert(!isKnownBaseResult(I) && "why did it get added?"); 872 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 873 874 // extractelement instructions are a bit special in that we may need to 875 // insert an extract even when we know an exact base for the instruction. 876 // The problem is that we need to convert from a vector base to a scalar 877 // base for the particular indice we're interested in. 878 if (State.isBase() && isa<ExtractElementInst>(I) && 879 isa<VectorType>(State.getBase()->getType())) { 880 auto *EE = cast<ExtractElementInst>(I); 881 // TODO: In many cases, the new instruction is just EE itself. We should 882 // exploit this, but can't do it here since it would break the invariant 883 // about the BDV not being known to be a base. 884 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 885 EE->getIndexOperand(), 886 "base_ee", EE); 887 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 888 States[I] = BDVState(BDVState::Base, BaseInst); 889 } 890 891 // Since we're joining a vector and scalar base, they can never be the 892 // same. As a result, we should always see insert element having reached 893 // the conflict state. 894 if (isa<InsertElementInst>(I)) { 895 assert(State.isConflict()); 896 } 897 898 if (!State.isConflict()) 899 continue; 900 901 /// Create and insert a new instruction which will represent the base of 902 /// the given instruction 'I'. 903 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 904 if (isa<PHINode>(I)) { 905 BasicBlock *BB = I->getParent(); 906 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 907 assert(NumPreds > 0 && "how did we reach here"); 908 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 909 return PHINode::Create(I->getType(), NumPreds, Name, I); 910 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 911 // The undef will be replaced later 912 UndefValue *Undef = UndefValue::get(Sel->getType()); 913 std::string Name = suffixed_name_or(I, ".base", "base_select"); 914 return SelectInst::Create(Sel->getCondition(), Undef, 915 Undef, Name, Sel); 916 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 917 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 918 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 919 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 920 EE); 921 } else { 922 auto *IE = cast<InsertElementInst>(I); 923 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 924 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 925 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 926 return InsertElementInst::Create(VecUndef, ScalarUndef, 927 IE->getOperand(2), Name, IE); 928 } 929 930 }; 931 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 932 // Add metadata marking this as a base value 933 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 934 States[I] = BDVState(BDVState::Conflict, BaseInst); 935 } 936 937 // Returns a instruction which produces the base pointer for a given 938 // instruction. The instruction is assumed to be an input to one of the BDVs 939 // seen in the inference algorithm above. As such, we must either already 940 // know it's base defining value is a base, or have inserted a new 941 // instruction to propagate the base of it's BDV and have entered that newly 942 // introduced instruction into the state table. In either case, we are 943 // assured to be able to determine an instruction which produces it's base 944 // pointer. 945 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 946 Value *BDV = findBaseOrBDV(Input, cache); 947 Value *Base = nullptr; 948 if (isKnownBaseResult(BDV)) { 949 Base = BDV; 950 } else { 951 // Either conflict or base. 952 assert(States.count(BDV)); 953 Base = States[BDV].getBase(); 954 } 955 assert(Base && "can't be null"); 956 // The cast is needed since base traversal may strip away bitcasts 957 if (Base->getType() != Input->getType() && 958 InsertPt) { 959 Base = new BitCastInst(Base, Input->getType(), "cast", 960 InsertPt); 961 } 962 return Base; 963 }; 964 965 // Fixup all the inputs of the new PHIs. Visit order needs to be 966 // deterministic and predictable because we're naming newly created 967 // instructions. 968 for (auto Pair : States) { 969 Instruction *BDV = cast<Instruction>(Pair.first); 970 BDVState State = Pair.second; 971 972 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 973 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 974 if (!State.isConflict()) 975 continue; 976 977 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) { 978 PHINode *phi = cast<PHINode>(BDV); 979 unsigned NumPHIValues = phi->getNumIncomingValues(); 980 for (unsigned i = 0; i < NumPHIValues; i++) { 981 Value *InVal = phi->getIncomingValue(i); 982 BasicBlock *InBB = phi->getIncomingBlock(i); 983 984 // If we've already seen InBB, add the same incoming value 985 // we added for it earlier. The IR verifier requires phi 986 // nodes with multiple entries from the same basic block 987 // to have the same incoming value for each of those 988 // entries. If we don't do this check here and basephi 989 // has a different type than base, we'll end up adding two 990 // bitcasts (and hence two distinct values) as incoming 991 // values for the same basic block. 992 993 int blockIndex = basephi->getBasicBlockIndex(InBB); 994 if (blockIndex != -1) { 995 Value *oldBase = basephi->getIncomingValue(blockIndex); 996 basephi->addIncoming(oldBase, InBB); 997 998 #ifndef NDEBUG 999 Value *Base = getBaseForInput(InVal, nullptr); 1000 // In essence this assert states: the only way two 1001 // values incoming from the same basic block may be 1002 // different is by being different bitcasts of the same 1003 // value. A cleanup that remains TODO is changing 1004 // findBaseOrBDV to return an llvm::Value of the correct 1005 // type (and still remain pure). This will remove the 1006 // need to add bitcasts. 1007 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() && 1008 "sanity -- findBaseOrBDV should be pure!"); 1009 #endif 1010 continue; 1011 } 1012 1013 // Find the instruction which produces the base for each input. We may 1014 // need to insert a bitcast in the incoming block. 1015 // TODO: Need to split critical edges if insertion is needed 1016 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1017 basephi->addIncoming(Base, InBB); 1018 } 1019 assert(basephi->getNumIncomingValues() == NumPHIValues); 1020 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) { 1021 SelectInst *Sel = cast<SelectInst>(BDV); 1022 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 1023 // something more safe and less hacky. 1024 for (int i = 1; i <= 2; i++) { 1025 Value *InVal = Sel->getOperand(i); 1026 // Find the instruction which produces the base for each input. We may 1027 // need to insert a bitcast. 1028 Value *Base = getBaseForInput(InVal, BaseSel); 1029 BaseSel->setOperand(i, Base); 1030 } 1031 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 1032 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1033 // Find the instruction which produces the base for each input. We may 1034 // need to insert a bitcast. 1035 Value *Base = getBaseForInput(InVal, BaseEE); 1036 BaseEE->setOperand(0, Base); 1037 } else { 1038 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 1039 auto *BdvIE = cast<InsertElementInst>(BDV); 1040 auto UpdateOperand = [&](int OperandIdx) { 1041 Value *InVal = BdvIE->getOperand(OperandIdx); 1042 Value *Base = getBaseForInput(InVal, BaseIE); 1043 BaseIE->setOperand(OperandIdx, Base); 1044 }; 1045 UpdateOperand(0); // vector operand 1046 UpdateOperand(1); // scalar operand 1047 } 1048 1049 } 1050 1051 // Now that we're done with the algorithm, see if we can optimize the 1052 // results slightly by reducing the number of new instructions needed. 1053 // Arguably, this should be integrated into the algorithm above, but 1054 // doing as a post process step is easier to reason about for the moment. 1055 DenseMap<Value *, Value *> ReverseMap; 1056 SmallPtrSet<Instruction *, 16> NewInsts; 1057 SmallSetVector<AssertingVH<Instruction>, 16> Worklist; 1058 // Note: We need to visit the states in a deterministic order. We uses the 1059 // Keys we sorted above for this purpose. Note that we are papering over a 1060 // bigger problem with the algorithm above - it's visit order is not 1061 // deterministic. A larger change is needed to fix this. 1062 for (auto Pair : States) { 1063 auto *BDV = Pair.first; 1064 auto State = Pair.second; 1065 Value *Base = State.getBase(); 1066 assert(BDV && Base); 1067 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1068 assert(isKnownBaseResult(Base) && 1069 "must be something we 'know' is a base pointer"); 1070 if (!State.isConflict()) 1071 continue; 1072 1073 ReverseMap[Base] = BDV; 1074 if (auto *BaseI = dyn_cast<Instruction>(Base)) { 1075 NewInsts.insert(BaseI); 1076 Worklist.insert(BaseI); 1077 } 1078 } 1079 auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI, 1080 Value *Replacement) { 1081 // Add users which are new instructions (excluding self references) 1082 for (User *U : BaseI->users()) 1083 if (auto *UI = dyn_cast<Instruction>(U)) 1084 if (NewInsts.count(UI) && UI != BaseI) 1085 Worklist.insert(UI); 1086 // Then do the actual replacement 1087 NewInsts.erase(BaseI); 1088 ReverseMap.erase(BaseI); 1089 BaseI->replaceAllUsesWith(Replacement); 1090 assert(States.count(BDV)); 1091 assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI); 1092 States[BDV] = BDVState(BDVState::Conflict, Replacement); 1093 BaseI->eraseFromParent(); 1094 }; 1095 const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout(); 1096 while (!Worklist.empty()) { 1097 Instruction *BaseI = Worklist.pop_back_val(); 1098 assert(NewInsts.count(BaseI)); 1099 Value *Bdv = ReverseMap[BaseI]; 1100 if (auto *BdvI = dyn_cast<Instruction>(Bdv)) 1101 if (BaseI->isIdenticalTo(BdvI)) { 1102 DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n"); 1103 ReplaceBaseInstWith(Bdv, BaseI, Bdv); 1104 continue; 1105 } 1106 if (Value *V = SimplifyInstruction(BaseI, DL)) { 1107 DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n"); 1108 ReplaceBaseInstWith(Bdv, BaseI, V); 1109 continue; 1110 } 1111 } 1112 1113 // Cache all of our results so we can cheaply reuse them 1114 // NOTE: This is actually two caches: one of the base defining value 1115 // relation and one of the base pointer relation! FIXME 1116 for (auto Pair : States) { 1117 auto *BDV = Pair.first; 1118 Value *base = Pair.second.getBase(); 1119 assert(BDV && base); 1120 1121 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none"; 1122 DEBUG(dbgs() << "Updating base value cache" 1123 << " for: " << BDV->getName() 1124 << " from: " << fromstr 1125 << " to: " << base->getName() << "\n"); 1126 1127 if (cache.count(BDV)) { 1128 // Once we transition from the BDV relation being store in the cache to 1129 // the base relation being stored, it must be stable 1130 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) && 1131 "base relation should be stable"); 1132 } 1133 cache[BDV] = base; 1134 } 1135 assert(cache.count(def)); 1136 return cache[def]; 1137 } 1138 1139 // For a set of live pointers (base and/or derived), identify the base 1140 // pointer of the object which they are derived from. This routine will 1141 // mutate the IR graph as needed to make the 'base' pointer live at the 1142 // definition site of 'derived'. This ensures that any use of 'derived' can 1143 // also use 'base'. This may involve the insertion of a number of 1144 // additional PHI nodes. 1145 // 1146 // preconditions: live is a set of pointer type Values 1147 // 1148 // side effects: may insert PHI nodes into the existing CFG, will preserve 1149 // CFG, will not remove or mutate any existing nodes 1150 // 1151 // post condition: PointerToBase contains one (derived, base) pair for every 1152 // pointer in live. Note that derived can be equal to base if the original 1153 // pointer was a base pointer. 1154 static void 1155 findBasePointers(const StatepointLiveSetTy &live, 1156 DenseMap<Value *, Value *> &PointerToBase, 1157 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1158 // For the naming of values inserted to be deterministic - which makes for 1159 // much cleaner and more stable tests - we need to assign an order to the 1160 // live values. DenseSets do not provide a deterministic order across runs. 1161 SmallVector<Value *, 64> Temp; 1162 Temp.insert(Temp.end(), live.begin(), live.end()); 1163 std::sort(Temp.begin(), Temp.end(), order_by_name); 1164 for (Value *ptr : Temp) { 1165 Value *base = findBasePointer(ptr, DVCache); 1166 assert(base && "failed to find base pointer"); 1167 PointerToBase[ptr] = base; 1168 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1169 DT->dominates(cast<Instruction>(base)->getParent(), 1170 cast<Instruction>(ptr)->getParent())) && 1171 "The base we found better dominate the derived pointer"); 1172 1173 // If you see this trip and like to live really dangerously, the code should 1174 // be correct, just with idioms the verifier can't handle. You can try 1175 // disabling the verifier at your own substantial risk. 1176 assert(!isa<ConstantPointerNull>(base) && 1177 "the relocation code needs adjustment to handle the relocation of " 1178 "a null pointer constant without causing false positives in the " 1179 "safepoint ir verifier."); 1180 } 1181 } 1182 1183 /// Find the required based pointers (and adjust the live set) for the given 1184 /// parse point. 1185 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1186 const CallSite &CS, 1187 PartiallyConstructedSafepointRecord &result) { 1188 DenseMap<Value *, Value *> PointerToBase; 1189 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1190 1191 if (PrintBasePointers) { 1192 // Note: Need to print these in a stable order since this is checked in 1193 // some tests. 1194 errs() << "Base Pairs (w/o Relocation):\n"; 1195 SmallVector<Value *, 64> Temp; 1196 Temp.reserve(PointerToBase.size()); 1197 for (auto Pair : PointerToBase) { 1198 Temp.push_back(Pair.first); 1199 } 1200 std::sort(Temp.begin(), Temp.end(), order_by_name); 1201 for (Value *Ptr : Temp) { 1202 Value *Base = PointerToBase[Ptr]; 1203 errs() << " derived "; 1204 Ptr->printAsOperand(errs(), false); 1205 errs() << " base "; 1206 Base->printAsOperand(errs(), false); 1207 errs() << "\n";; 1208 } 1209 } 1210 1211 result.PointerToBase = PointerToBase; 1212 } 1213 1214 /// Given an updated version of the dataflow liveness results, update the 1215 /// liveset and base pointer maps for the call site CS. 1216 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1217 const CallSite &CS, 1218 PartiallyConstructedSafepointRecord &result); 1219 1220 static void recomputeLiveInValues( 1221 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1222 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1223 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1224 // again. The old values are still live and will help it stabilize quickly. 1225 GCPtrLivenessData RevisedLivenessData; 1226 computeLiveInValues(DT, F, RevisedLivenessData); 1227 for (size_t i = 0; i < records.size(); i++) { 1228 struct PartiallyConstructedSafepointRecord &info = records[i]; 1229 const CallSite &CS = toUpdate[i]; 1230 recomputeLiveInValues(RevisedLivenessData, CS, info); 1231 } 1232 } 1233 1234 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1235 // no uses of the original value / return value between the gc.statepoint and 1236 // the gc.relocate / gc.result call. One case which can arise is a phi node 1237 // starting one of the successor blocks. We also need to be able to insert the 1238 // gc.relocates only on the path which goes through the statepoint. We might 1239 // need to split an edge to make this possible. 1240 static BasicBlock * 1241 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1242 DominatorTree &DT) { 1243 BasicBlock *Ret = BB; 1244 if (!BB->getUniquePredecessor()) 1245 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1246 1247 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1248 // from it 1249 FoldSingleEntryPHINodes(Ret); 1250 assert(!isa<PHINode>(Ret->begin()) && 1251 "All PHI nodes should have been removed!"); 1252 1253 // At this point, we can safely insert a gc.relocate or gc.result as the first 1254 // instruction in Ret if needed. 1255 return Ret; 1256 } 1257 1258 // Create new attribute set containing only attributes which can be transferred 1259 // from original call to the safepoint. 1260 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1261 AttributeSet Ret; 1262 1263 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1264 unsigned Index = AS.getSlotIndex(Slot); 1265 1266 if (Index == AttributeSet::ReturnIndex || 1267 Index == AttributeSet::FunctionIndex) { 1268 1269 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { 1270 1271 // Do not allow certain attributes - just skip them 1272 // Safepoint can not be read only or read none. 1273 if (Attr.hasAttribute(Attribute::ReadNone) || 1274 Attr.hasAttribute(Attribute::ReadOnly)) 1275 continue; 1276 1277 // These attributes control the generation of the gc.statepoint call / 1278 // invoke itself; and once the gc.statepoint is in place, they're of no 1279 // use. 1280 if (Attr.hasAttribute("statepoint-num-patch-bytes") || 1281 Attr.hasAttribute("statepoint-id")) 1282 continue; 1283 1284 Ret = Ret.addAttributes( 1285 AS.getContext(), Index, 1286 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); 1287 } 1288 } 1289 1290 // Just skip parameter attributes for now 1291 } 1292 1293 return Ret; 1294 } 1295 1296 /// Helper function to place all gc relocates necessary for the given 1297 /// statepoint. 1298 /// Inputs: 1299 /// liveVariables - list of variables to be relocated. 1300 /// liveStart - index of the first live variable. 1301 /// basePtrs - base pointers. 1302 /// statepointToken - statepoint instruction to which relocates should be 1303 /// bound. 1304 /// Builder - Llvm IR builder to be used to construct new calls. 1305 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1306 const int LiveStart, 1307 ArrayRef<Value *> BasePtrs, 1308 Instruction *StatepointToken, 1309 IRBuilder<> Builder) { 1310 if (LiveVariables.empty()) 1311 return; 1312 1313 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1314 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val); 1315 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1316 size_t Index = std::distance(LiveVec.begin(), ValIt); 1317 assert(Index < LiveVec.size() && "Bug in std::find?"); 1318 return Index; 1319 }; 1320 Module *M = StatepointToken->getModule(); 1321 1322 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1323 // element type is i8 addrspace(1)*). We originally generated unique 1324 // declarations for each pointer type, but this proved problematic because 1325 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1326 // towards a single unified pointer type anyways, we can just cast everything 1327 // to an i8* of the right address space. A bitcast is added later to convert 1328 // gc_relocate to the actual value's type. 1329 auto getGCRelocateDecl = [&] (Type *Ty) { 1330 assert(isHandledGCPointerType(Ty)); 1331 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1332 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1333 if (auto *VT = dyn_cast<VectorType>(Ty)) 1334 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1335 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1336 {NewTy}); 1337 }; 1338 1339 // Lazily populated map from input types to the canonicalized form mentioned 1340 // in the comment above. This should probably be cached somewhere more 1341 // broadly. 1342 DenseMap<Type*, Value*> TypeToDeclMap; 1343 1344 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1345 // Generate the gc.relocate call and save the result 1346 Value *BaseIdx = 1347 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1348 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1349 1350 Type *Ty = LiveVariables[i]->getType(); 1351 if (!TypeToDeclMap.count(Ty)) 1352 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1353 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1354 1355 // only specify a debug name if we can give a useful one 1356 CallInst *Reloc = Builder.CreateCall( 1357 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1358 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1359 // Trick CodeGen into thinking there are lots of free registers at this 1360 // fake call. 1361 Reloc->setCallingConv(CallingConv::Cold); 1362 } 1363 } 1364 1365 namespace { 1366 1367 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1368 /// avoids having to worry about keeping around dangling pointers to Values. 1369 class DeferredReplacement { 1370 AssertingVH<Instruction> Old; 1371 AssertingVH<Instruction> New; 1372 1373 public: 1374 explicit DeferredReplacement(Instruction *Old, Instruction *New) : 1375 Old(Old), New(New) { 1376 assert(Old != New && "Not allowed!"); 1377 } 1378 1379 /// Does the task represented by this instance. 1380 void doReplacement() { 1381 Instruction *OldI = Old; 1382 Instruction *NewI = New; 1383 1384 assert(OldI != NewI && "Disallowed at construction?!"); 1385 1386 Old = nullptr; 1387 New = nullptr; 1388 1389 if (NewI) 1390 OldI->replaceAllUsesWith(NewI); 1391 OldI->eraseFromParent(); 1392 } 1393 }; 1394 } 1395 1396 static void 1397 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1398 const SmallVectorImpl<Value *> &BasePtrs, 1399 const SmallVectorImpl<Value *> &LiveVariables, 1400 PartiallyConstructedSafepointRecord &Result, 1401 std::vector<DeferredReplacement> &Replacements) { 1402 assert(BasePtrs.size() == LiveVariables.size()); 1403 assert((UseDeoptBundles || isStatepoint(CS)) && 1404 "This method expects to be rewriting a statepoint"); 1405 1406 // Then go ahead and use the builder do actually do the inserts. We insert 1407 // immediately before the previous instruction under the assumption that all 1408 // arguments will be available here. We can't insert afterwards since we may 1409 // be replacing a terminator. 1410 Instruction *InsertBefore = CS.getInstruction(); 1411 IRBuilder<> Builder(InsertBefore); 1412 1413 ArrayRef<Value *> GCArgs(LiveVariables); 1414 uint64_t StatepointID = 0xABCDEF00; 1415 uint32_t NumPatchBytes = 0; 1416 uint32_t Flags = uint32_t(StatepointFlags::None); 1417 1418 ArrayRef<Use> CallArgs; 1419 ArrayRef<Use> DeoptArgs; 1420 ArrayRef<Use> TransitionArgs; 1421 1422 Value *CallTarget = nullptr; 1423 1424 if (UseDeoptBundles) { 1425 CallArgs = {CS.arg_begin(), CS.arg_end()}; 1426 DeoptArgs = GetDeoptBundleOperands(CS); 1427 // TODO: we don't fill in TransitionArgs or Flags in this branch, but we 1428 // could have an operand bundle for that too. 1429 AttributeSet OriginalAttrs = CS.getAttributes(); 1430 1431 Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex, 1432 "statepoint-id"); 1433 if (AttrID.isStringAttribute()) 1434 AttrID.getValueAsString().getAsInteger(10, StatepointID); 1435 1436 Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute( 1437 AttributeSet::FunctionIndex, "statepoint-num-patch-bytes"); 1438 if (AttrNumPatchBytes.isStringAttribute()) 1439 AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes); 1440 1441 CallTarget = CS.getCalledValue(); 1442 } else { 1443 // This branch will be gone soon, and we will soon only support the 1444 // UseDeoptBundles == true configuration. 1445 Statepoint OldSP(CS); 1446 StatepointID = OldSP.getID(); 1447 NumPatchBytes = OldSP.getNumPatchBytes(); 1448 Flags = OldSP.getFlags(); 1449 1450 CallArgs = {OldSP.arg_begin(), OldSP.arg_end()}; 1451 DeoptArgs = {OldSP.vm_state_begin(), OldSP.vm_state_end()}; 1452 TransitionArgs = {OldSP.gc_transition_args_begin(), 1453 OldSP.gc_transition_args_end()}; 1454 CallTarget = OldSP.getCalledValue(); 1455 } 1456 1457 // Create the statepoint given all the arguments 1458 Instruction *Token = nullptr; 1459 AttributeSet ReturnAttrs; 1460 if (CS.isCall()) { 1461 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1462 CallInst *Call = Builder.CreateGCStatepointCall( 1463 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1464 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1465 1466 Call->setTailCall(ToReplace->isTailCall()); 1467 Call->setCallingConv(ToReplace->getCallingConv()); 1468 1469 // Currently we will fail on parameter attributes and on certain 1470 // function attributes. 1471 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1472 // In case if we can handle this set of attributes - set up function attrs 1473 // directly on statepoint and return attrs later for gc_result intrinsic. 1474 Call->setAttributes(NewAttrs.getFnAttributes()); 1475 ReturnAttrs = NewAttrs.getRetAttributes(); 1476 1477 Token = Call; 1478 1479 // Put the following gc_result and gc_relocate calls immediately after the 1480 // the old call (which we're about to delete) 1481 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1482 Builder.SetInsertPoint(ToReplace->getNextNode()); 1483 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1484 } else { 1485 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1486 1487 // Insert the new invoke into the old block. We'll remove the old one in a 1488 // moment at which point this will become the new terminator for the 1489 // original block. 1490 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1491 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1492 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1493 GCArgs, "statepoint_token"); 1494 1495 Invoke->setCallingConv(ToReplace->getCallingConv()); 1496 1497 // Currently we will fail on parameter attributes and on certain 1498 // function attributes. 1499 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1500 // In case if we can handle this set of attributes - set up function attrs 1501 // directly on statepoint and return attrs later for gc_result intrinsic. 1502 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1503 ReturnAttrs = NewAttrs.getRetAttributes(); 1504 1505 Token = Invoke; 1506 1507 // Generate gc relocates in exceptional path 1508 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1509 assert(!isa<PHINode>(UnwindBlock->begin()) && 1510 UnwindBlock->getUniquePredecessor() && 1511 "can't safely insert in this block!"); 1512 1513 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1514 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1515 1516 // Attach exceptional gc relocates to the landingpad. 1517 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1518 Result.UnwindToken = ExceptionalToken; 1519 1520 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1521 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1522 Builder); 1523 1524 // Generate gc relocates and returns for normal block 1525 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1526 assert(!isa<PHINode>(NormalDest->begin()) && 1527 NormalDest->getUniquePredecessor() && 1528 "can't safely insert in this block!"); 1529 1530 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1531 1532 // gc relocates will be generated later as if it were regular call 1533 // statepoint 1534 } 1535 assert(Token && "Should be set in one of the above branches!"); 1536 1537 if (UseDeoptBundles) { 1538 Token->setName("statepoint_token"); 1539 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1540 StringRef Name = 1541 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1542 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1543 GCResult->setAttributes(CS.getAttributes().getRetAttributes()); 1544 1545 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1546 // live set of some other safepoint, in which case that safepoint's 1547 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1548 // llvm::Instruction. Instead, we defer the replacement and deletion to 1549 // after the live sets have been made explicit in the IR, and we no longer 1550 // have raw pointers to worry about. 1551 Replacements.emplace_back(CS.getInstruction(), GCResult); 1552 } else { 1553 Replacements.emplace_back(CS.getInstruction(), nullptr); 1554 } 1555 } else { 1556 assert(!CS.getInstruction()->hasNUsesOrMore(2) && 1557 "only valid use before rewrite is gc.result"); 1558 assert(!CS.getInstruction()->hasOneUse() || 1559 isGCResult(cast<Instruction>(*CS.getInstruction()->user_begin()))); 1560 1561 // Take the name of the original statepoint token if there was one. 1562 Token->takeName(CS.getInstruction()); 1563 1564 // Update the gc.result of the original statepoint (if any) to use the newly 1565 // inserted statepoint. This is safe to do here since the token can't be 1566 // considered a live reference. 1567 CS.getInstruction()->replaceAllUsesWith(Token); 1568 CS.getInstruction()->eraseFromParent(); 1569 } 1570 1571 Result.StatepointToken = Token; 1572 1573 // Second, create a gc.relocate for every live variable 1574 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1575 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1576 } 1577 1578 namespace { 1579 struct NameOrdering { 1580 Value *Base; 1581 Value *Derived; 1582 1583 bool operator()(NameOrdering const &a, NameOrdering const &b) { 1584 return -1 == a.Derived->getName().compare(b.Derived->getName()); 1585 } 1586 }; 1587 } 1588 1589 static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec, 1590 SmallVectorImpl<Value *> &LiveVec) { 1591 assert(BaseVec.size() == LiveVec.size()); 1592 1593 SmallVector<NameOrdering, 64> Temp; 1594 for (size_t i = 0; i < BaseVec.size(); i++) { 1595 NameOrdering v; 1596 v.Base = BaseVec[i]; 1597 v.Derived = LiveVec[i]; 1598 Temp.push_back(v); 1599 } 1600 1601 std::sort(Temp.begin(), Temp.end(), NameOrdering()); 1602 for (size_t i = 0; i < BaseVec.size(); i++) { 1603 BaseVec[i] = Temp[i].Base; 1604 LiveVec[i] = Temp[i].Derived; 1605 } 1606 } 1607 1608 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1609 // which make the relocations happening at this safepoint explicit. 1610 // 1611 // WARNING: Does not do any fixup to adjust users of the original live 1612 // values. That's the callers responsibility. 1613 static void 1614 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, 1615 PartiallyConstructedSafepointRecord &Result, 1616 std::vector<DeferredReplacement> &Replacements) { 1617 const auto &LiveSet = Result.LiveSet; 1618 const auto &PointerToBase = Result.PointerToBase; 1619 1620 // Convert to vector for efficient cross referencing. 1621 SmallVector<Value *, 64> BaseVec, LiveVec; 1622 LiveVec.reserve(LiveSet.size()); 1623 BaseVec.reserve(LiveSet.size()); 1624 for (Value *L : LiveSet) { 1625 LiveVec.push_back(L); 1626 assert(PointerToBase.count(L)); 1627 Value *Base = PointerToBase.find(L)->second; 1628 BaseVec.push_back(Base); 1629 } 1630 assert(LiveVec.size() == BaseVec.size()); 1631 1632 // To make the output IR slightly more stable (for use in diffs), ensure a 1633 // fixed order of the values in the safepoint (by sorting the value name). 1634 // The order is otherwise meaningless. 1635 StabilizeOrder(BaseVec, LiveVec); 1636 1637 // Do the actual rewriting and delete the old statepoint 1638 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1639 } 1640 1641 // Helper function for the relocationViaAlloca. 1642 // 1643 // It receives iterator to the statepoint gc relocates and emits a store to the 1644 // assigned location (via allocaMap) for the each one of them. It adds the 1645 // visited values into the visitedLiveValues set, which we will later use them 1646 // for sanity checking. 1647 static void 1648 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1649 DenseMap<Value *, Value *> &AllocaMap, 1650 DenseSet<Value *> &VisitedLiveValues) { 1651 1652 for (User *U : GCRelocs) { 1653 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1654 if (!Relocate) 1655 continue; 1656 1657 Value *OriginalValue = const_cast<Value *>(Relocate->getDerivedPtr()); 1658 assert(AllocaMap.count(OriginalValue)); 1659 Value *Alloca = AllocaMap[OriginalValue]; 1660 1661 // Emit store into the related alloca 1662 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1663 // the correct type according to alloca. 1664 assert(Relocate->getNextNode() && 1665 "Should always have one since it's not a terminator"); 1666 IRBuilder<> Builder(Relocate->getNextNode()); 1667 Value *CastedRelocatedValue = 1668 Builder.CreateBitCast(Relocate, 1669 cast<AllocaInst>(Alloca)->getAllocatedType(), 1670 suffixed_name_or(Relocate, ".casted", "")); 1671 1672 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1673 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1674 1675 #ifndef NDEBUG 1676 VisitedLiveValues.insert(OriginalValue); 1677 #endif 1678 } 1679 } 1680 1681 // Helper function for the "relocationViaAlloca". Similar to the 1682 // "insertRelocationStores" but works for rematerialized values. 1683 static void 1684 insertRematerializationStores( 1685 RematerializedValueMapTy RematerializedValues, 1686 DenseMap<Value *, Value *> &AllocaMap, 1687 DenseSet<Value *> &VisitedLiveValues) { 1688 1689 for (auto RematerializedValuePair: RematerializedValues) { 1690 Instruction *RematerializedValue = RematerializedValuePair.first; 1691 Value *OriginalValue = RematerializedValuePair.second; 1692 1693 assert(AllocaMap.count(OriginalValue) && 1694 "Can not find alloca for rematerialized value"); 1695 Value *Alloca = AllocaMap[OriginalValue]; 1696 1697 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1698 Store->insertAfter(RematerializedValue); 1699 1700 #ifndef NDEBUG 1701 VisitedLiveValues.insert(OriginalValue); 1702 #endif 1703 } 1704 } 1705 1706 /// Do all the relocation update via allocas and mem2reg 1707 static void relocationViaAlloca( 1708 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1709 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1710 #ifndef NDEBUG 1711 // record initial number of (static) allocas; we'll check we have the same 1712 // number when we get done. 1713 int InitialAllocaNum = 0; 1714 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1715 I++) 1716 if (isa<AllocaInst>(*I)) 1717 InitialAllocaNum++; 1718 #endif 1719 1720 // TODO-PERF: change data structures, reserve 1721 DenseMap<Value *, Value *> AllocaMap; 1722 SmallVector<AllocaInst *, 200> PromotableAllocas; 1723 // Used later to chack that we have enough allocas to store all values 1724 std::size_t NumRematerializedValues = 0; 1725 PromotableAllocas.reserve(Live.size()); 1726 1727 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1728 // "PromotableAllocas" 1729 auto emitAllocaFor = [&](Value *LiveValue) { 1730 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1731 F.getEntryBlock().getFirstNonPHI()); 1732 AllocaMap[LiveValue] = Alloca; 1733 PromotableAllocas.push_back(Alloca); 1734 }; 1735 1736 // Emit alloca for each live gc pointer 1737 for (Value *V : Live) 1738 emitAllocaFor(V); 1739 1740 // Emit allocas for rematerialized values 1741 for (const auto &Info : Records) 1742 for (auto RematerializedValuePair : Info.RematerializedValues) { 1743 Value *OriginalValue = RematerializedValuePair.second; 1744 if (AllocaMap.count(OriginalValue) != 0) 1745 continue; 1746 1747 emitAllocaFor(OriginalValue); 1748 ++NumRematerializedValues; 1749 } 1750 1751 // The next two loops are part of the same conceptual operation. We need to 1752 // insert a store to the alloca after the original def and at each 1753 // redefinition. We need to insert a load before each use. These are split 1754 // into distinct loops for performance reasons. 1755 1756 // Update gc pointer after each statepoint: either store a relocated value or 1757 // null (if no relocated value was found for this gc pointer and it is not a 1758 // gc_result). This must happen before we update the statepoint with load of 1759 // alloca otherwise we lose the link between statepoint and old def. 1760 for (const auto &Info : Records) { 1761 Value *Statepoint = Info.StatepointToken; 1762 1763 // This will be used for consistency check 1764 DenseSet<Value *> VisitedLiveValues; 1765 1766 // Insert stores for normal statepoint gc relocates 1767 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1768 1769 // In case if it was invoke statepoint 1770 // we will insert stores for exceptional path gc relocates. 1771 if (isa<InvokeInst>(Statepoint)) { 1772 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1773 VisitedLiveValues); 1774 } 1775 1776 // Do similar thing with rematerialized values 1777 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1778 VisitedLiveValues); 1779 1780 if (ClobberNonLive) { 1781 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1782 // the gc.statepoint. This will turn some subtle GC problems into 1783 // slightly easier to debug SEGVs. Note that on large IR files with 1784 // lots of gc.statepoints this is extremely costly both memory and time 1785 // wise. 1786 SmallVector<AllocaInst *, 64> ToClobber; 1787 for (auto Pair : AllocaMap) { 1788 Value *Def = Pair.first; 1789 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1790 1791 // This value was relocated 1792 if (VisitedLiveValues.count(Def)) { 1793 continue; 1794 } 1795 ToClobber.push_back(Alloca); 1796 } 1797 1798 auto InsertClobbersAt = [&](Instruction *IP) { 1799 for (auto *AI : ToClobber) { 1800 auto AIType = cast<PointerType>(AI->getType()); 1801 auto PT = cast<PointerType>(AIType->getElementType()); 1802 Constant *CPN = ConstantPointerNull::get(PT); 1803 StoreInst *Store = new StoreInst(CPN, AI); 1804 Store->insertBefore(IP); 1805 } 1806 }; 1807 1808 // Insert the clobbering stores. These may get intermixed with the 1809 // gc.results and gc.relocates, but that's fine. 1810 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1811 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1812 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1813 } else { 1814 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1815 } 1816 } 1817 } 1818 1819 // Update use with load allocas and add store for gc_relocated. 1820 for (auto Pair : AllocaMap) { 1821 Value *Def = Pair.first; 1822 Value *Alloca = Pair.second; 1823 1824 // We pre-record the uses of allocas so that we dont have to worry about 1825 // later update that changes the user information.. 1826 1827 SmallVector<Instruction *, 20> Uses; 1828 // PERF: trade a linear scan for repeated reallocation 1829 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1830 for (User *U : Def->users()) { 1831 if (!isa<ConstantExpr>(U)) { 1832 // If the def has a ConstantExpr use, then the def is either a 1833 // ConstantExpr use itself or null. In either case 1834 // (recursively in the first, directly in the second), the oop 1835 // it is ultimately dependent on is null and this particular 1836 // use does not need to be fixed up. 1837 Uses.push_back(cast<Instruction>(U)); 1838 } 1839 } 1840 1841 std::sort(Uses.begin(), Uses.end()); 1842 auto Last = std::unique(Uses.begin(), Uses.end()); 1843 Uses.erase(Last, Uses.end()); 1844 1845 for (Instruction *Use : Uses) { 1846 if (isa<PHINode>(Use)) { 1847 PHINode *Phi = cast<PHINode>(Use); 1848 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1849 if (Def == Phi->getIncomingValue(i)) { 1850 LoadInst *Load = new LoadInst( 1851 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1852 Phi->setIncomingValue(i, Load); 1853 } 1854 } 1855 } else { 1856 LoadInst *Load = new LoadInst(Alloca, "", Use); 1857 Use->replaceUsesOfWith(Def, Load); 1858 } 1859 } 1860 1861 // Emit store for the initial gc value. Store must be inserted after load, 1862 // otherwise store will be in alloca's use list and an extra load will be 1863 // inserted before it. 1864 StoreInst *Store = new StoreInst(Def, Alloca); 1865 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1866 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1867 // InvokeInst is a TerminatorInst so the store need to be inserted 1868 // into its normal destination block. 1869 BasicBlock *NormalDest = Invoke->getNormalDest(); 1870 Store->insertBefore(NormalDest->getFirstNonPHI()); 1871 } else { 1872 assert(!Inst->isTerminator() && 1873 "The only TerminatorInst that can produce a value is " 1874 "InvokeInst which is handled above."); 1875 Store->insertAfter(Inst); 1876 } 1877 } else { 1878 assert(isa<Argument>(Def)); 1879 Store->insertAfter(cast<Instruction>(Alloca)); 1880 } 1881 } 1882 1883 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1884 "we must have the same allocas with lives"); 1885 if (!PromotableAllocas.empty()) { 1886 // Apply mem2reg to promote alloca to SSA 1887 PromoteMemToReg(PromotableAllocas, DT); 1888 } 1889 1890 #ifndef NDEBUG 1891 for (auto &I : F.getEntryBlock()) 1892 if (isa<AllocaInst>(I)) 1893 InitialAllocaNum--; 1894 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1895 #endif 1896 } 1897 1898 /// Implement a unique function which doesn't require we sort the input 1899 /// vector. Doing so has the effect of changing the output of a couple of 1900 /// tests in ways which make them less useful in testing fused safepoints. 1901 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1902 SmallSet<T, 8> Seen; 1903 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1904 return !Seen.insert(V).second; 1905 }), Vec.end()); 1906 } 1907 1908 /// Insert holders so that each Value is obviously live through the entire 1909 /// lifetime of the call. 1910 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1911 SmallVectorImpl<CallInst *> &Holders) { 1912 if (Values.empty()) 1913 // No values to hold live, might as well not insert the empty holder 1914 return; 1915 1916 Module *M = CS.getInstruction()->getModule(); 1917 // Use a dummy vararg function to actually hold the values live 1918 Function *Func = cast<Function>(M->getOrInsertFunction( 1919 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1920 if (CS.isCall()) { 1921 // For call safepoints insert dummy calls right after safepoint 1922 Holders.push_back(CallInst::Create(Func, Values, "", 1923 &*++CS.getInstruction()->getIterator())); 1924 return; 1925 } 1926 // For invoke safepooints insert dummy calls both in normal and 1927 // exceptional destination blocks 1928 auto *II = cast<InvokeInst>(CS.getInstruction()); 1929 Holders.push_back(CallInst::Create( 1930 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1931 Holders.push_back(CallInst::Create( 1932 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1933 } 1934 1935 static void findLiveReferences( 1936 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1937 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1938 GCPtrLivenessData OriginalLivenessData; 1939 computeLiveInValues(DT, F, OriginalLivenessData); 1940 for (size_t i = 0; i < records.size(); i++) { 1941 struct PartiallyConstructedSafepointRecord &info = records[i]; 1942 const CallSite &CS = toUpdate[i]; 1943 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1944 } 1945 } 1946 1947 /// Remove any vector of pointers from the live set by scalarizing them over the 1948 /// statepoint instruction. Adds the scalarized pieces to the live set. It 1949 /// would be preferable to include the vector in the statepoint itself, but 1950 /// the lowering code currently does not handle that. Extending it would be 1951 /// slightly non-trivial since it requires a format change. Given how rare 1952 /// such cases are (for the moment?) scalarizing is an acceptable compromise. 1953 static void splitVectorValues(Instruction *StatepointInst, 1954 StatepointLiveSetTy &LiveSet, 1955 DenseMap<Value *, Value *>& PointerToBase, 1956 DominatorTree &DT) { 1957 SmallVector<Value *, 16> ToSplit; 1958 for (Value *V : LiveSet) 1959 if (isa<VectorType>(V->getType())) 1960 ToSplit.push_back(V); 1961 1962 if (ToSplit.empty()) 1963 return; 1964 1965 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1966 1967 Function &F = *(StatepointInst->getParent()->getParent()); 1968 1969 DenseMap<Value *, AllocaInst *> AllocaMap; 1970 // First is normal return, second is exceptional return (invoke only) 1971 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1972 for (Value *V : ToSplit) { 1973 AllocaInst *Alloca = 1974 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1975 AllocaMap[V] = Alloca; 1976 1977 VectorType *VT = cast<VectorType>(V->getType()); 1978 IRBuilder<> Builder(StatepointInst); 1979 SmallVector<Value *, 16> Elements; 1980 for (unsigned i = 0; i < VT->getNumElements(); i++) 1981 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1982 ElementMapping[V] = Elements; 1983 1984 auto InsertVectorReform = [&](Instruction *IP) { 1985 Builder.SetInsertPoint(IP); 1986 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1987 Value *ResultVec = UndefValue::get(VT); 1988 for (unsigned i = 0; i < VT->getNumElements(); i++) 1989 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1990 Builder.getInt32(i)); 1991 return ResultVec; 1992 }; 1993 1994 if (isa<CallInst>(StatepointInst)) { 1995 BasicBlock::iterator Next(StatepointInst); 1996 Next++; 1997 Instruction *IP = &*(Next); 1998 Replacements[V].first = InsertVectorReform(IP); 1999 Replacements[V].second = nullptr; 2000 } else { 2001 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 2002 // We've already normalized - check that we don't have shared destination 2003 // blocks 2004 BasicBlock *NormalDest = Invoke->getNormalDest(); 2005 assert(!isa<PHINode>(NormalDest->begin())); 2006 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 2007 assert(!isa<PHINode>(UnwindDest->begin())); 2008 // Insert insert element sequences in both successors 2009 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 2010 Replacements[V].first = InsertVectorReform(IP); 2011 IP = &*(UnwindDest->getFirstInsertionPt()); 2012 Replacements[V].second = InsertVectorReform(IP); 2013 } 2014 } 2015 2016 for (Value *V : ToSplit) { 2017 AllocaInst *Alloca = AllocaMap[V]; 2018 2019 // Capture all users before we start mutating use lists 2020 SmallVector<Instruction *, 16> Users; 2021 for (User *U : V->users()) 2022 Users.push_back(cast<Instruction>(U)); 2023 2024 for (Instruction *I : Users) { 2025 if (auto Phi = dyn_cast<PHINode>(I)) { 2026 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 2027 if (V == Phi->getIncomingValue(i)) { 2028 LoadInst *Load = new LoadInst( 2029 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 2030 Phi->setIncomingValue(i, Load); 2031 } 2032 } else { 2033 LoadInst *Load = new LoadInst(Alloca, "", I); 2034 I->replaceUsesOfWith(V, Load); 2035 } 2036 } 2037 2038 // Store the original value and the replacement value into the alloca 2039 StoreInst *Store = new StoreInst(V, Alloca); 2040 if (auto I = dyn_cast<Instruction>(V)) 2041 Store->insertAfter(I); 2042 else 2043 Store->insertAfter(Alloca); 2044 2045 // Normal return for invoke, or call return 2046 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 2047 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 2048 // Unwind return for invoke only 2049 Replacement = cast_or_null<Instruction>(Replacements[V].second); 2050 if (Replacement) 2051 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 2052 } 2053 2054 // apply mem2reg to promote alloca to SSA 2055 SmallVector<AllocaInst *, 16> Allocas; 2056 for (Value *V : ToSplit) 2057 Allocas.push_back(AllocaMap[V]); 2058 PromoteMemToReg(Allocas, DT); 2059 2060 // Update our tracking of live pointers and base mappings to account for the 2061 // changes we just made. 2062 for (Value *V : ToSplit) { 2063 auto &Elements = ElementMapping[V]; 2064 2065 LiveSet.erase(V); 2066 LiveSet.insert(Elements.begin(), Elements.end()); 2067 // We need to update the base mapping as well. 2068 assert(PointerToBase.count(V)); 2069 Value *OldBase = PointerToBase[V]; 2070 auto &BaseElements = ElementMapping[OldBase]; 2071 PointerToBase.erase(V); 2072 assert(Elements.size() == BaseElements.size()); 2073 for (unsigned i = 0; i < Elements.size(); i++) { 2074 Value *Elem = Elements[i]; 2075 PointerToBase[Elem] = BaseElements[i]; 2076 } 2077 } 2078 } 2079 2080 // Helper function for the "rematerializeLiveValues". It walks use chain 2081 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 2082 // values are visited (currently it is GEP's and casts). Returns true if it 2083 // successfully reached "BaseValue" and false otherwise. 2084 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 2085 // recorded. 2086 static bool findRematerializableChainToBasePointer( 2087 SmallVectorImpl<Instruction*> &ChainToBase, 2088 Value *CurrentValue, Value *BaseValue) { 2089 2090 // We have found a base value 2091 if (CurrentValue == BaseValue) { 2092 return true; 2093 } 2094 2095 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2096 ChainToBase.push_back(GEP); 2097 return findRematerializableChainToBasePointer(ChainToBase, 2098 GEP->getPointerOperand(), 2099 BaseValue); 2100 } 2101 2102 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2103 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2104 return false; 2105 2106 ChainToBase.push_back(CI); 2107 return findRematerializableChainToBasePointer(ChainToBase, 2108 CI->getOperand(0), BaseValue); 2109 } 2110 2111 // Not supported instruction in the chain 2112 return false; 2113 } 2114 2115 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2116 // chain we are going to rematerialize. 2117 static unsigned 2118 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 2119 TargetTransformInfo &TTI) { 2120 unsigned Cost = 0; 2121 2122 for (Instruction *Instr : Chain) { 2123 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2124 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2125 "non noop cast is found during rematerialization"); 2126 2127 Type *SrcTy = CI->getOperand(0)->getType(); 2128 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 2129 2130 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2131 // Cost of the address calculation 2132 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); 2133 Cost += TTI.getAddressComputationCost(ValTy); 2134 2135 // And cost of the GEP itself 2136 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2137 // allowed for the external usage) 2138 if (!GEP->hasAllConstantIndices()) 2139 Cost += 2; 2140 2141 } else { 2142 llvm_unreachable("unsupported instruciton type during rematerialization"); 2143 } 2144 } 2145 2146 return Cost; 2147 } 2148 2149 // From the statepoint live set pick values that are cheaper to recompute then 2150 // to relocate. Remove this values from the live set, rematerialize them after 2151 // statepoint and record them in "Info" structure. Note that similar to 2152 // relocated values we don't do any user adjustments here. 2153 static void rematerializeLiveValues(CallSite CS, 2154 PartiallyConstructedSafepointRecord &Info, 2155 TargetTransformInfo &TTI) { 2156 const unsigned int ChainLengthThreshold = 10; 2157 2158 // Record values we are going to delete from this statepoint live set. 2159 // We can not di this in following loop due to iterator invalidation. 2160 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2161 2162 for (Value *LiveValue: Info.LiveSet) { 2163 // For each live pointer find it's defining chain 2164 SmallVector<Instruction *, 3> ChainToBase; 2165 assert(Info.PointerToBase.count(LiveValue)); 2166 bool FoundChain = 2167 findRematerializableChainToBasePointer(ChainToBase, 2168 LiveValue, 2169 Info.PointerToBase[LiveValue]); 2170 // Nothing to do, or chain is too long 2171 if (!FoundChain || 2172 ChainToBase.size() == 0 || 2173 ChainToBase.size() > ChainLengthThreshold) 2174 continue; 2175 2176 // Compute cost of this chain 2177 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2178 // TODO: We can also account for cases when we will be able to remove some 2179 // of the rematerialized values by later optimization passes. I.e if 2180 // we rematerialized several intersecting chains. Or if original values 2181 // don't have any uses besides this statepoint. 2182 2183 // For invokes we need to rematerialize each chain twice - for normal and 2184 // for unwind basic blocks. Model this by multiplying cost by two. 2185 if (CS.isInvoke()) { 2186 Cost *= 2; 2187 } 2188 // If it's too expensive - skip it 2189 if (Cost >= RematerializationThreshold) 2190 continue; 2191 2192 // Remove value from the live set 2193 LiveValuesToBeDeleted.push_back(LiveValue); 2194 2195 // Clone instructions and record them inside "Info" structure 2196 2197 // Walk backwards to visit top-most instructions first 2198 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2199 2200 // Utility function which clones all instructions from "ChainToBase" 2201 // and inserts them before "InsertBefore". Returns rematerialized value 2202 // which should be used after statepoint. 2203 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 2204 Instruction *LastClonedValue = nullptr; 2205 Instruction *LastValue = nullptr; 2206 for (Instruction *Instr: ChainToBase) { 2207 // Only GEP's and casts are suported as we need to be careful to not 2208 // introduce any new uses of pointers not in the liveset. 2209 // Note that it's fine to introduce new uses of pointers which were 2210 // otherwise not used after this statepoint. 2211 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2212 2213 Instruction *ClonedValue = Instr->clone(); 2214 ClonedValue->insertBefore(InsertBefore); 2215 ClonedValue->setName(Instr->getName() + ".remat"); 2216 2217 // If it is not first instruction in the chain then it uses previously 2218 // cloned value. We should update it to use cloned value. 2219 if (LastClonedValue) { 2220 assert(LastValue); 2221 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2222 #ifndef NDEBUG 2223 // Assert that cloned instruction does not use any instructions from 2224 // this chain other than LastClonedValue 2225 for (auto OpValue : ClonedValue->operand_values()) { 2226 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2227 ChainToBase.end() && 2228 "incorrect use in rematerialization chain"); 2229 } 2230 #endif 2231 } 2232 2233 LastClonedValue = ClonedValue; 2234 LastValue = Instr; 2235 } 2236 assert(LastClonedValue); 2237 return LastClonedValue; 2238 }; 2239 2240 // Different cases for calls and invokes. For invokes we need to clone 2241 // instructions both on normal and unwind path. 2242 if (CS.isCall()) { 2243 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2244 assert(InsertBefore); 2245 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2246 Info.RematerializedValues[RematerializedValue] = LiveValue; 2247 } else { 2248 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2249 2250 Instruction *NormalInsertBefore = 2251 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2252 Instruction *UnwindInsertBefore = 2253 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2254 2255 Instruction *NormalRematerializedValue = 2256 rematerializeChain(NormalInsertBefore); 2257 Instruction *UnwindRematerializedValue = 2258 rematerializeChain(UnwindInsertBefore); 2259 2260 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2261 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2262 } 2263 } 2264 2265 // Remove rematerializaed values from the live set 2266 for (auto LiveValue: LiveValuesToBeDeleted) { 2267 Info.LiveSet.erase(LiveValue); 2268 } 2269 } 2270 2271 static bool insertParsePoints(Function &F, DominatorTree &DT, 2272 TargetTransformInfo &TTI, 2273 SmallVectorImpl<CallSite> &ToUpdate) { 2274 #ifndef NDEBUG 2275 // sanity check the input 2276 std::set<CallSite> Uniqued; 2277 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2278 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2279 2280 for (CallSite CS : ToUpdate) { 2281 assert(CS.getInstruction()->getParent()->getParent() == &F); 2282 assert((UseDeoptBundles || isStatepoint(CS)) && 2283 "expected to already be a deopt statepoint"); 2284 } 2285 #endif 2286 2287 // When inserting gc.relocates for invokes, we need to be able to insert at 2288 // the top of the successor blocks. See the comment on 2289 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2290 // may restructure the CFG. 2291 for (CallSite CS : ToUpdate) { 2292 if (!CS.isInvoke()) 2293 continue; 2294 auto *II = cast<InvokeInst>(CS.getInstruction()); 2295 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2296 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2297 } 2298 2299 // A list of dummy calls added to the IR to keep various values obviously 2300 // live in the IR. We'll remove all of these when done. 2301 SmallVector<CallInst *, 64> Holders; 2302 2303 // Insert a dummy call with all of the arguments to the vm_state we'll need 2304 // for the actual safepoint insertion. This ensures reference arguments in 2305 // the deopt argument list are considered live through the safepoint (and 2306 // thus makes sure they get relocated.) 2307 for (CallSite CS : ToUpdate) { 2308 SmallVector<Value *, 64> DeoptValues; 2309 2310 iterator_range<const Use *> DeoptStateRange = 2311 UseDeoptBundles 2312 ? iterator_range<const Use *>(GetDeoptBundleOperands(CS)) 2313 : iterator_range<const Use *>(Statepoint(CS).vm_state_args()); 2314 2315 for (Value *Arg : DeoptStateRange) { 2316 assert(!isUnhandledGCPointerType(Arg->getType()) && 2317 "support for FCA unimplemented"); 2318 if (isHandledGCPointerType(Arg->getType())) 2319 DeoptValues.push_back(Arg); 2320 } 2321 2322 insertUseHolderAfter(CS, DeoptValues, Holders); 2323 } 2324 2325 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2326 2327 // A) Identify all gc pointers which are statically live at the given call 2328 // site. 2329 findLiveReferences(F, DT, ToUpdate, Records); 2330 2331 // B) Find the base pointers for each live pointer 2332 /* scope for caching */ { 2333 // Cache the 'defining value' relation used in the computation and 2334 // insertion of base phis and selects. This ensures that we don't insert 2335 // large numbers of duplicate base_phis. 2336 DefiningValueMapTy DVCache; 2337 2338 for (size_t i = 0; i < Records.size(); i++) { 2339 PartiallyConstructedSafepointRecord &info = Records[i]; 2340 findBasePointers(DT, DVCache, ToUpdate[i], info); 2341 } 2342 } // end of cache scope 2343 2344 // The base phi insertion logic (for any safepoint) may have inserted new 2345 // instructions which are now live at some safepoint. The simplest such 2346 // example is: 2347 // loop: 2348 // phi a <-- will be a new base_phi here 2349 // safepoint 1 <-- that needs to be live here 2350 // gep a + 1 2351 // safepoint 2 2352 // br loop 2353 // We insert some dummy calls after each safepoint to definitely hold live 2354 // the base pointers which were identified for that safepoint. We'll then 2355 // ask liveness for _every_ base inserted to see what is now live. Then we 2356 // remove the dummy calls. 2357 Holders.reserve(Holders.size() + Records.size()); 2358 for (size_t i = 0; i < Records.size(); i++) { 2359 PartiallyConstructedSafepointRecord &Info = Records[i]; 2360 2361 SmallVector<Value *, 128> Bases; 2362 for (auto Pair : Info.PointerToBase) 2363 Bases.push_back(Pair.second); 2364 2365 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2366 } 2367 2368 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2369 // need to rerun liveness. We may *also* have inserted new defs, but that's 2370 // not the key issue. 2371 recomputeLiveInValues(F, DT, ToUpdate, Records); 2372 2373 if (PrintBasePointers) { 2374 for (auto &Info : Records) { 2375 errs() << "Base Pairs: (w/Relocation)\n"; 2376 for (auto Pair : Info.PointerToBase) { 2377 errs() << " derived "; 2378 Pair.first->printAsOperand(errs(), false); 2379 errs() << " base "; 2380 Pair.second->printAsOperand(errs(), false); 2381 errs() << "\n"; 2382 } 2383 } 2384 } 2385 2386 // It is possible that non-constant live variables have a constant base. For 2387 // example, a GEP with a variable offset from a global. In this case we can 2388 // remove it from the liveset. We already don't add constants to the liveset 2389 // because we assume they won't move at runtime and the GC doesn't need to be 2390 // informed about them. The same reasoning applies if the base is constant. 2391 // Note that the relocation placement code relies on this filtering for 2392 // correctness as it expects the base to be in the liveset, which isn't true 2393 // if the base is constant. 2394 for (auto &Info : Records) 2395 for (auto &BasePair : Info.PointerToBase) 2396 if (isa<Constant>(BasePair.second)) 2397 Info.LiveSet.erase(BasePair.first); 2398 2399 for (CallInst *CI : Holders) 2400 CI->eraseFromParent(); 2401 2402 Holders.clear(); 2403 2404 // Do a limited scalarization of any live at safepoint vector values which 2405 // contain pointers. This enables this pass to run after vectorization at 2406 // the cost of some possible performance loss. Note: This is known to not 2407 // handle updating of the side tables correctly which can lead to relocation 2408 // bugs when the same vector is live at multiple statepoints. We're in the 2409 // process of implementing the alternate lowering - relocating the 2410 // vector-of-pointers as first class item and updating the backend to 2411 // understand that - but that's not yet complete. 2412 if (UseVectorSplit) 2413 for (size_t i = 0; i < Records.size(); i++) { 2414 PartiallyConstructedSafepointRecord &Info = Records[i]; 2415 Instruction *Statepoint = ToUpdate[i].getInstruction(); 2416 splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet, 2417 Info.PointerToBase, DT); 2418 } 2419 2420 // In order to reduce live set of statepoint we might choose to rematerialize 2421 // some values instead of relocating them. This is purely an optimization and 2422 // does not influence correctness. 2423 for (size_t i = 0; i < Records.size(); i++) 2424 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2425 2426 // We need this to safely RAUW and delete call or invoke return values that 2427 // may themselves be live over a statepoint. For details, please see usage in 2428 // makeStatepointExplicitImpl. 2429 std::vector<DeferredReplacement> Replacements; 2430 2431 // Now run through and replace the existing statepoints with new ones with 2432 // the live variables listed. We do not yet update uses of the values being 2433 // relocated. We have references to live variables that need to 2434 // survive to the last iteration of this loop. (By construction, the 2435 // previous statepoint can not be a live variable, thus we can and remove 2436 // the old statepoint calls as we go.) 2437 for (size_t i = 0; i < Records.size(); i++) 2438 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2439 2440 ToUpdate.clear(); // prevent accident use of invalid CallSites 2441 2442 for (auto &PR : Replacements) 2443 PR.doReplacement(); 2444 2445 Replacements.clear(); 2446 2447 for (auto &Info : Records) { 2448 // These live sets may contain state Value pointers, since we replaced calls 2449 // with operand bundles with calls wrapped in gc.statepoint, and some of 2450 // those calls may have been def'ing live gc pointers. Clear these out to 2451 // avoid accidentally using them. 2452 // 2453 // TODO: We should create a separate data structure that does not contain 2454 // these live sets, and migrate to using that data structure from this point 2455 // onward. 2456 Info.LiveSet.clear(); 2457 Info.PointerToBase.clear(); 2458 } 2459 2460 // Do all the fixups of the original live variables to their relocated selves 2461 SmallVector<Value *, 128> Live; 2462 for (size_t i = 0; i < Records.size(); i++) { 2463 PartiallyConstructedSafepointRecord &Info = Records[i]; 2464 2465 // We can't simply save the live set from the original insertion. One of 2466 // the live values might be the result of a call which needs a safepoint. 2467 // That Value* no longer exists and we need to use the new gc_result. 2468 // Thankfully, the live set is embedded in the statepoint (and updated), so 2469 // we just grab that. 2470 Statepoint Statepoint(Info.StatepointToken); 2471 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2472 Statepoint.gc_args_end()); 2473 #ifndef NDEBUG 2474 // Do some basic sanity checks on our liveness results before performing 2475 // relocation. Relocation can and will turn mistakes in liveness results 2476 // into non-sensical code which is must harder to debug. 2477 // TODO: It would be nice to test consistency as well 2478 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2479 "statepoint must be reachable or liveness is meaningless"); 2480 for (Value *V : Statepoint.gc_args()) { 2481 if (!isa<Instruction>(V)) 2482 // Non-instruction values trivial dominate all possible uses 2483 continue; 2484 auto *LiveInst = cast<Instruction>(V); 2485 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2486 "unreachable values should never be live"); 2487 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2488 "basic SSA liveness expectation violated by liveness analysis"); 2489 } 2490 #endif 2491 } 2492 unique_unsorted(Live); 2493 2494 #ifndef NDEBUG 2495 // sanity check 2496 for (auto *Ptr : Live) 2497 assert(isHandledGCPointerType(Ptr->getType()) && 2498 "must be a gc pointer type"); 2499 #endif 2500 2501 relocationViaAlloca(F, DT, Live, Records); 2502 return !Records.empty(); 2503 } 2504 2505 // Handles both return values and arguments for Functions and CallSites. 2506 template <typename AttrHolder> 2507 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2508 unsigned Index) { 2509 AttrBuilder R; 2510 if (AH.getDereferenceableBytes(Index)) 2511 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2512 AH.getDereferenceableBytes(Index))); 2513 if (AH.getDereferenceableOrNullBytes(Index)) 2514 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2515 AH.getDereferenceableOrNullBytes(Index))); 2516 if (AH.doesNotAlias(Index)) 2517 R.addAttribute(Attribute::NoAlias); 2518 2519 if (!R.empty()) 2520 AH.setAttributes(AH.getAttributes().removeAttributes( 2521 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2522 } 2523 2524 void 2525 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2526 LLVMContext &Ctx = F.getContext(); 2527 2528 for (Argument &A : F.args()) 2529 if (isa<PointerType>(A.getType())) 2530 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2531 2532 if (isa<PointerType>(F.getReturnType())) 2533 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2534 } 2535 2536 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2537 if (F.empty()) 2538 return; 2539 2540 LLVMContext &Ctx = F.getContext(); 2541 MDBuilder Builder(Ctx); 2542 2543 for (Instruction &I : instructions(F)) { 2544 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2545 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2546 bool IsImmutableTBAA = 2547 MD->getNumOperands() == 4 && 2548 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2549 2550 if (!IsImmutableTBAA) 2551 continue; // no work to do, MD_tbaa is already marked mutable 2552 2553 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2554 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2555 uint64_t Offset = 2556 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2557 2558 MDNode *MutableTBAA = 2559 Builder.createTBAAStructTagNode(Base, Access, Offset); 2560 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2561 } 2562 2563 if (CallSite CS = CallSite(&I)) { 2564 for (int i = 0, e = CS.arg_size(); i != e; i++) 2565 if (isa<PointerType>(CS.getArgument(i)->getType())) 2566 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); 2567 if (isa<PointerType>(CS.getType())) 2568 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2569 } 2570 } 2571 } 2572 2573 /// Returns true if this function should be rewritten by this pass. The main 2574 /// point of this function is as an extension point for custom logic. 2575 static bool shouldRewriteStatepointsIn(Function &F) { 2576 // TODO: This should check the GCStrategy 2577 if (F.hasGC()) { 2578 const auto &FunctionGCName = F.getGC(); 2579 const StringRef StatepointExampleName("statepoint-example"); 2580 const StringRef CoreCLRName("coreclr"); 2581 return (StatepointExampleName == FunctionGCName) || 2582 (CoreCLRName == FunctionGCName); 2583 } else 2584 return false; 2585 } 2586 2587 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2588 #ifndef NDEBUG 2589 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2590 "precondition!"); 2591 #endif 2592 2593 for (Function &F : M) 2594 stripNonValidAttributesFromPrototype(F); 2595 2596 for (Function &F : M) 2597 stripNonValidAttributesFromBody(F); 2598 } 2599 2600 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2601 // Nothing to do for declarations. 2602 if (F.isDeclaration() || F.empty()) 2603 return false; 2604 2605 // Policy choice says not to rewrite - the most common reason is that we're 2606 // compiling code without a GCStrategy. 2607 if (!shouldRewriteStatepointsIn(F)) 2608 return false; 2609 2610 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2611 TargetTransformInfo &TTI = 2612 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2613 2614 auto NeedsRewrite = [](Instruction &I) { 2615 if (UseDeoptBundles) { 2616 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2617 return !callsGCLeafFunction(CS); 2618 return false; 2619 } 2620 2621 return isStatepoint(I); 2622 }; 2623 2624 // Gather all the statepoints which need rewritten. Be careful to only 2625 // consider those in reachable code since we need to ask dominance queries 2626 // when rewriting. We'll delete the unreachable ones in a moment. 2627 SmallVector<CallSite, 64> ParsePointNeeded; 2628 bool HasUnreachableStatepoint = false; 2629 for (Instruction &I : instructions(F)) { 2630 // TODO: only the ones with the flag set! 2631 if (NeedsRewrite(I)) { 2632 if (DT.isReachableFromEntry(I.getParent())) 2633 ParsePointNeeded.push_back(CallSite(&I)); 2634 else 2635 HasUnreachableStatepoint = true; 2636 } 2637 } 2638 2639 bool MadeChange = false; 2640 2641 // Delete any unreachable statepoints so that we don't have unrewritten 2642 // statepoints surviving this pass. This makes testing easier and the 2643 // resulting IR less confusing to human readers. Rather than be fancy, we 2644 // just reuse a utility function which removes the unreachable blocks. 2645 if (HasUnreachableStatepoint) 2646 MadeChange |= removeUnreachableBlocks(F); 2647 2648 // Return early if no work to do. 2649 if (ParsePointNeeded.empty()) 2650 return MadeChange; 2651 2652 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2653 // These are created by LCSSA. They have the effect of increasing the size 2654 // of liveness sets for no good reason. It may be harder to do this post 2655 // insertion since relocations and base phis can confuse things. 2656 for (BasicBlock &BB : F) 2657 if (BB.getUniquePredecessor()) { 2658 MadeChange = true; 2659 FoldSingleEntryPHINodes(&BB); 2660 } 2661 2662 // Before we start introducing relocations, we want to tweak the IR a bit to 2663 // avoid unfortunate code generation effects. The main example is that we 2664 // want to try to make sure the comparison feeding a branch is after any 2665 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2666 // values feeding a branch after relocation. This is semantically correct, 2667 // but results in extra register pressure since both the pre-relocation and 2668 // post-relocation copies must be available in registers. For code without 2669 // relocations this is handled elsewhere, but teaching the scheduler to 2670 // reverse the transform we're about to do would be slightly complex. 2671 // Note: This may extend the live range of the inputs to the icmp and thus 2672 // increase the liveset of any statepoint we move over. This is profitable 2673 // as long as all statepoints are in rare blocks. If we had in-register 2674 // lowering for live values this would be a much safer transform. 2675 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2676 if (auto *BI = dyn_cast<BranchInst>(TI)) 2677 if (BI->isConditional()) 2678 return dyn_cast<Instruction>(BI->getCondition()); 2679 // TODO: Extend this to handle switches 2680 return nullptr; 2681 }; 2682 for (BasicBlock &BB : F) { 2683 TerminatorInst *TI = BB.getTerminator(); 2684 if (auto *Cond = getConditionInst(TI)) 2685 // TODO: Handle more than just ICmps here. We should be able to move 2686 // most instructions without side effects or memory access. 2687 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2688 MadeChange = true; 2689 Cond->moveBefore(TI); 2690 } 2691 } 2692 2693 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2694 return MadeChange; 2695 } 2696 2697 // liveness computation via standard dataflow 2698 // ------------------------------------------------------------------- 2699 2700 // TODO: Consider using bitvectors for liveness, the set of potentially 2701 // interesting values should be small and easy to pre-compute. 2702 2703 /// Compute the live-in set for the location rbegin starting from 2704 /// the live-out set of the basic block 2705 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2706 BasicBlock::reverse_iterator rend, 2707 DenseSet<Value *> &LiveTmp) { 2708 2709 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2710 Instruction *I = &*ritr; 2711 2712 // KILL/Def - Remove this definition from LiveIn 2713 LiveTmp.erase(I); 2714 2715 // Don't consider *uses* in PHI nodes, we handle their contribution to 2716 // predecessor blocks when we seed the LiveOut sets 2717 if (isa<PHINode>(I)) 2718 continue; 2719 2720 // USE - Add to the LiveIn set for this instruction 2721 for (Value *V : I->operands()) { 2722 assert(!isUnhandledGCPointerType(V->getType()) && 2723 "support for FCA unimplemented"); 2724 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2725 // The choice to exclude all things constant here is slightly subtle. 2726 // There are two independent reasons: 2727 // - We assume that things which are constant (from LLVM's definition) 2728 // do not move at runtime. For example, the address of a global 2729 // variable is fixed, even though it's contents may not be. 2730 // - Second, we can't disallow arbitrary inttoptr constants even 2731 // if the language frontend does. Optimization passes are free to 2732 // locally exploit facts without respect to global reachability. This 2733 // can create sections of code which are dynamically unreachable and 2734 // contain just about anything. (see constants.ll in tests) 2735 LiveTmp.insert(V); 2736 } 2737 } 2738 } 2739 } 2740 2741 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2742 2743 for (BasicBlock *Succ : successors(BB)) { 2744 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2745 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2746 PHINode *Phi = cast<PHINode>(&*I); 2747 Value *V = Phi->getIncomingValueForBlock(BB); 2748 assert(!isUnhandledGCPointerType(V->getType()) && 2749 "support for FCA unimplemented"); 2750 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2751 LiveTmp.insert(V); 2752 } 2753 } 2754 } 2755 } 2756 2757 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2758 DenseSet<Value *> KillSet; 2759 for (Instruction &I : *BB) 2760 if (isHandledGCPointerType(I.getType())) 2761 KillSet.insert(&I); 2762 return KillSet; 2763 } 2764 2765 #ifndef NDEBUG 2766 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2767 /// sanity check for the liveness computation. 2768 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2769 TerminatorInst *TI, bool TermOkay = false) { 2770 for (Value *V : Live) { 2771 if (auto *I = dyn_cast<Instruction>(V)) { 2772 // The terminator can be a member of the LiveOut set. LLVM's definition 2773 // of instruction dominance states that V does not dominate itself. As 2774 // such, we need to special case this to allow it. 2775 if (TermOkay && TI == I) 2776 continue; 2777 assert(DT.dominates(I, TI) && 2778 "basic SSA liveness expectation violated by liveness analysis"); 2779 } 2780 } 2781 } 2782 2783 /// Check that all the liveness sets used during the computation of liveness 2784 /// obey basic SSA properties. This is useful for finding cases where we miss 2785 /// a def. 2786 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2787 BasicBlock &BB) { 2788 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2789 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2790 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2791 } 2792 #endif 2793 2794 static void computeLiveInValues(DominatorTree &DT, Function &F, 2795 GCPtrLivenessData &Data) { 2796 2797 SmallSetVector<BasicBlock *, 200> Worklist; 2798 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2799 // We use a SetVector so that we don't have duplicates in the worklist. 2800 Worklist.insert(pred_begin(BB), pred_end(BB)); 2801 }; 2802 auto NextItem = [&]() { 2803 BasicBlock *BB = Worklist.back(); 2804 Worklist.pop_back(); 2805 return BB; 2806 }; 2807 2808 // Seed the liveness for each individual block 2809 for (BasicBlock &BB : F) { 2810 Data.KillSet[&BB] = computeKillSet(&BB); 2811 Data.LiveSet[&BB].clear(); 2812 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2813 2814 #ifndef NDEBUG 2815 for (Value *Kill : Data.KillSet[&BB]) 2816 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2817 #endif 2818 2819 Data.LiveOut[&BB] = DenseSet<Value *>(); 2820 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2821 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2822 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2823 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2824 if (!Data.LiveIn[&BB].empty()) 2825 AddPredsToWorklist(&BB); 2826 } 2827 2828 // Propagate that liveness until stable 2829 while (!Worklist.empty()) { 2830 BasicBlock *BB = NextItem(); 2831 2832 // Compute our new liveout set, then exit early if it hasn't changed 2833 // despite the contribution of our successor. 2834 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2835 const auto OldLiveOutSize = LiveOut.size(); 2836 for (BasicBlock *Succ : successors(BB)) { 2837 assert(Data.LiveIn.count(Succ)); 2838 set_union(LiveOut, Data.LiveIn[Succ]); 2839 } 2840 // assert OutLiveOut is a subset of LiveOut 2841 if (OldLiveOutSize == LiveOut.size()) { 2842 // If the sets are the same size, then we didn't actually add anything 2843 // when unioning our successors LiveIn Thus, the LiveIn of this block 2844 // hasn't changed. 2845 continue; 2846 } 2847 Data.LiveOut[BB] = LiveOut; 2848 2849 // Apply the effects of this basic block 2850 DenseSet<Value *> LiveTmp = LiveOut; 2851 set_union(LiveTmp, Data.LiveSet[BB]); 2852 set_subtract(LiveTmp, Data.KillSet[BB]); 2853 2854 assert(Data.LiveIn.count(BB)); 2855 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2856 // assert: OldLiveIn is a subset of LiveTmp 2857 if (OldLiveIn.size() != LiveTmp.size()) { 2858 Data.LiveIn[BB] = LiveTmp; 2859 AddPredsToWorklist(BB); 2860 } 2861 } // while( !worklist.empty() ) 2862 2863 #ifndef NDEBUG 2864 // Sanity check our output against SSA properties. This helps catch any 2865 // missing kills during the above iteration. 2866 for (BasicBlock &BB : F) { 2867 checkBasicSSA(DT, Data, BB); 2868 } 2869 #endif 2870 } 2871 2872 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2873 StatepointLiveSetTy &Out) { 2874 2875 BasicBlock *BB = Inst->getParent(); 2876 2877 // Note: The copy is intentional and required 2878 assert(Data.LiveOut.count(BB)); 2879 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2880 2881 // We want to handle the statepoint itself oddly. It's 2882 // call result is not live (normal), nor are it's arguments 2883 // (unless they're used again later). This adjustment is 2884 // specifically what we need to relocate 2885 BasicBlock::reverse_iterator rend(Inst->getIterator()); 2886 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2887 LiveOut.erase(Inst); 2888 Out.insert(LiveOut.begin(), LiveOut.end()); 2889 } 2890 2891 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2892 const CallSite &CS, 2893 PartiallyConstructedSafepointRecord &Info) { 2894 Instruction *Inst = CS.getInstruction(); 2895 StatepointLiveSetTy Updated; 2896 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2897 2898 #ifndef NDEBUG 2899 DenseSet<Value *> Bases; 2900 for (auto KVPair : Info.PointerToBase) { 2901 Bases.insert(KVPair.second); 2902 } 2903 #endif 2904 // We may have base pointers which are now live that weren't before. We need 2905 // to update the PointerToBase structure to reflect this. 2906 for (auto V : Updated) 2907 if (!Info.PointerToBase.count(V)) { 2908 assert(Bases.count(V) && "can't find base for unexpected live value"); 2909 Info.PointerToBase[V] = V; 2910 continue; 2911 } 2912 2913 #ifndef NDEBUG 2914 for (auto V : Updated) { 2915 assert(Info.PointerToBase.count(V) && 2916 "must be able to find base for live value"); 2917 } 2918 #endif 2919 2920 // Remove any stale base mappings - this can happen since our liveness is 2921 // more precise then the one inherent in the base pointer analysis 2922 DenseSet<Value *> ToErase; 2923 for (auto KVPair : Info.PointerToBase) 2924 if (!Updated.count(KVPair.first)) 2925 ToErase.insert(KVPair.first); 2926 for (auto V : ToErase) 2927 Info.PointerToBase.erase(V); 2928 2929 #ifndef NDEBUG 2930 for (auto KVPair : Info.PointerToBase) 2931 assert(Updated.count(KVPair.first) && "record for non-live value"); 2932 #endif 2933 2934 Info.LiveSet = Updated; 2935 } 2936