1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstIterator.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/Cloning.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 45 46 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 47 48 using namespace llvm; 49 50 // Print the liveset found at the insert location 51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 52 cl::init(false)); 53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 54 cl::init(false)); 55 // Print out the base pointers for debugging 56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 57 cl::init(false)); 58 59 // Cost threshold measuring when it is profitable to rematerialize value instead 60 // of relocating it 61 static cl::opt<unsigned> 62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 63 cl::init(6)); 64 65 #ifdef EXPENSIVE_CHECKS 66 static bool ClobberNonLive = true; 67 #else 68 static bool ClobberNonLive = false; 69 #endif 70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 71 cl::location(ClobberNonLive), 72 cl::Hidden); 73 74 static cl::opt<bool> 75 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 76 cl::Hidden, cl::init(true)); 77 78 namespace { 79 struct RewriteStatepointsForGC : public ModulePass { 80 static char ID; // Pass identification, replacement for typeid 81 82 RewriteStatepointsForGC() : ModulePass(ID) { 83 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 84 } 85 bool runOnFunction(Function &F); 86 bool runOnModule(Module &M) override { 87 bool Changed = false; 88 for (Function &F : M) 89 Changed |= runOnFunction(F); 90 91 if (Changed) { 92 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 93 // returns true for at least one function in the module. Since at least 94 // one function changed, we know that the precondition is satisfied. 95 stripNonValidAttributes(M); 96 } 97 98 return Changed; 99 } 100 101 void getAnalysisUsage(AnalysisUsage &AU) const override { 102 // We add and rewrite a bunch of instructions, but don't really do much 103 // else. We could in theory preserve a lot more analyses here. 104 AU.addRequired<DominatorTreeWrapperPass>(); 105 AU.addRequired<TargetTransformInfoWrapperPass>(); 106 } 107 108 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 109 /// dereferenceability that are no longer valid/correct after 110 /// RewriteStatepointsForGC has run. This is because semantically, after 111 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 112 /// heap. stripNonValidAttributes (conservatively) restores correctness 113 /// by erasing all attributes in the module that externally imply 114 /// dereferenceability. 115 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 116 /// can touch the entire heap including noalias objects. 117 void stripNonValidAttributes(Module &M); 118 119 // Helpers for stripNonValidAttributes 120 void stripNonValidAttributesFromBody(Function &F); 121 void stripNonValidAttributesFromPrototype(Function &F); 122 }; 123 } // namespace 124 125 char RewriteStatepointsForGC::ID = 0; 126 127 ModulePass *llvm::createRewriteStatepointsForGCPass() { 128 return new RewriteStatepointsForGC(); 129 } 130 131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 132 "Make relocations explicit at statepoints", false, false) 133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 136 "Make relocations explicit at statepoints", false, false) 137 138 namespace { 139 struct GCPtrLivenessData { 140 /// Values defined in this block. 141 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 142 /// Values used in this block (and thus live); does not included values 143 /// killed within this block. 144 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 145 146 /// Values live into this basic block (i.e. used by any 147 /// instruction in this basic block or ones reachable from here) 148 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 149 150 /// Values live out of this basic block (i.e. live into 151 /// any successor block) 152 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 153 }; 154 155 // The type of the internal cache used inside the findBasePointers family 156 // of functions. From the callers perspective, this is an opaque type and 157 // should not be inspected. 158 // 159 // In the actual implementation this caches two relations: 160 // - The base relation itself (i.e. this pointer is based on that one) 161 // - The base defining value relation (i.e. before base_phi insertion) 162 // Generally, after the execution of a full findBasePointer call, only the 163 // base relation will remain. Internally, we add a mixture of the two 164 // types, then update all the second type to the first type 165 typedef MapVector<Value *, Value *> DefiningValueMapTy; 166 typedef SetVector<Value *> StatepointLiveSetTy; 167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>> 168 RematerializedValueMapTy; 169 170 struct PartiallyConstructedSafepointRecord { 171 /// The set of values known to be live across this safepoint 172 StatepointLiveSetTy LiveSet; 173 174 /// Mapping from live pointers to a base-defining-value 175 MapVector<Value *, Value *> PointerToBase; 176 177 /// The *new* gc.statepoint instruction itself. This produces the token 178 /// that normal path gc.relocates and the gc.result are tied to. 179 Instruction *StatepointToken; 180 181 /// Instruction to which exceptional gc relocates are attached 182 /// Makes it easier to iterate through them during relocationViaAlloca. 183 Instruction *UnwindToken; 184 185 /// Record live values we are rematerialized instead of relocating. 186 /// They are not included into 'LiveSet' field. 187 /// Maps rematerialized copy to it's original value. 188 RematerializedValueMapTy RematerializedValues; 189 }; 190 } 191 192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 193 Optional<OperandBundleUse> DeoptBundle = 194 CS.getOperandBundle(LLVMContext::OB_deopt); 195 196 if (!DeoptBundle.hasValue()) { 197 assert(AllowStatepointWithNoDeoptInfo && 198 "Found non-leaf call without deopt info!"); 199 return None; 200 } 201 202 return DeoptBundle.getValue().Inputs; 203 } 204 205 /// Compute the live-in set for every basic block in the function 206 static void computeLiveInValues(DominatorTree &DT, Function &F, 207 GCPtrLivenessData &Data); 208 209 /// Given results from the dataflow liveness computation, find the set of live 210 /// Values at a particular instruction. 211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 212 StatepointLiveSetTy &out); 213 214 // TODO: Once we can get to the GCStrategy, this becomes 215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 216 217 static bool isGCPointerType(Type *T) { 218 if (auto *PT = dyn_cast<PointerType>(T)) 219 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 220 // GC managed heap. We know that a pointer into this heap needs to be 221 // updated and that no other pointer does. 222 return (1 == PT->getAddressSpace()); 223 return false; 224 } 225 226 // Return true if this type is one which a) is a gc pointer or contains a GC 227 // pointer and b) is of a type this code expects to encounter as a live value. 228 // (The insertion code will assert that a type which matches (a) and not (b) 229 // is not encountered.) 230 static bool isHandledGCPointerType(Type *T) { 231 // We fully support gc pointers 232 if (isGCPointerType(T)) 233 return true; 234 // We partially support vectors of gc pointers. The code will assert if it 235 // can't handle something. 236 if (auto VT = dyn_cast<VectorType>(T)) 237 if (isGCPointerType(VT->getElementType())) 238 return true; 239 return false; 240 } 241 242 #ifndef NDEBUG 243 /// Returns true if this type contains a gc pointer whether we know how to 244 /// handle that type or not. 245 static bool containsGCPtrType(Type *Ty) { 246 if (isGCPointerType(Ty)) 247 return true; 248 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 249 return isGCPointerType(VT->getScalarType()); 250 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 251 return containsGCPtrType(AT->getElementType()); 252 if (StructType *ST = dyn_cast<StructType>(Ty)) 253 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 254 containsGCPtrType); 255 return false; 256 } 257 258 // Returns true if this is a type which a) is a gc pointer or contains a GC 259 // pointer and b) is of a type which the code doesn't expect (i.e. first class 260 // aggregates). Used to trip assertions. 261 static bool isUnhandledGCPointerType(Type *Ty) { 262 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 263 } 264 #endif 265 266 // Return the name of the value suffixed with the provided value, or if the 267 // value didn't have a name, the default value specified. 268 static std::string suffixed_name_or(Value *V, StringRef Suffix, 269 StringRef DefaultName) { 270 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 271 } 272 273 // Conservatively identifies any definitions which might be live at the 274 // given instruction. The analysis is performed immediately before the 275 // given instruction. Values defined by that instruction are not considered 276 // live. Values used by that instruction are considered live. 277 static void 278 analyzeParsePointLiveness(DominatorTree &DT, 279 GCPtrLivenessData &OriginalLivenessData, CallSite CS, 280 PartiallyConstructedSafepointRecord &result) { 281 Instruction *inst = CS.getInstruction(); 282 283 StatepointLiveSetTy LiveSet; 284 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet); 285 286 if (PrintLiveSet) { 287 errs() << "Live Variables:\n"; 288 for (Value *V : LiveSet) 289 dbgs() << " " << V->getName() << " " << *V << "\n"; 290 } 291 if (PrintLiveSetSize) { 292 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 293 errs() << "Number live values: " << LiveSet.size() << "\n"; 294 } 295 result.LiveSet = LiveSet; 296 } 297 298 static bool isKnownBaseResult(Value *V); 299 namespace { 300 /// A single base defining value - An immediate base defining value for an 301 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 302 /// For instructions which have multiple pointer [vector] inputs or that 303 /// transition between vector and scalar types, there is no immediate base 304 /// defining value. The 'base defining value' for 'Def' is the transitive 305 /// closure of this relation stopping at the first instruction which has no 306 /// immediate base defining value. The b.d.v. might itself be a base pointer, 307 /// but it can also be an arbitrary derived pointer. 308 struct BaseDefiningValueResult { 309 /// Contains the value which is the base defining value. 310 Value * const BDV; 311 /// True if the base defining value is also known to be an actual base 312 /// pointer. 313 const bool IsKnownBase; 314 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 315 : BDV(BDV), IsKnownBase(IsKnownBase) { 316 #ifndef NDEBUG 317 // Check consistency between new and old means of checking whether a BDV is 318 // a base. 319 bool MustBeBase = isKnownBaseResult(BDV); 320 assert(!MustBeBase || MustBeBase == IsKnownBase); 321 #endif 322 } 323 }; 324 } 325 326 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 327 328 /// Return a base defining value for the 'Index' element of the given vector 329 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 330 /// 'I'. As an optimization, this method will try to determine when the 331 /// element is known to already be a base pointer. If this can be established, 332 /// the second value in the returned pair will be true. Note that either a 333 /// vector or a pointer typed value can be returned. For the former, the 334 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 335 /// If the later, the return pointer is a BDV (or possibly a base) for the 336 /// particular element in 'I'. 337 static BaseDefiningValueResult 338 findBaseDefiningValueOfVector(Value *I) { 339 // Each case parallels findBaseDefiningValue below, see that code for 340 // detailed motivation. 341 342 if (isa<Argument>(I)) 343 // An incoming argument to the function is a base pointer 344 return BaseDefiningValueResult(I, true); 345 346 if (isa<Constant>(I)) 347 // Base of constant vector consists only of constant null pointers. 348 // For reasoning see similar case inside 'findBaseDefiningValue' function. 349 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 350 true); 351 352 if (isa<LoadInst>(I)) 353 return BaseDefiningValueResult(I, true); 354 355 if (isa<InsertElementInst>(I)) 356 // We don't know whether this vector contains entirely base pointers or 357 // not. To be conservatively correct, we treat it as a BDV and will 358 // duplicate code as needed to construct a parallel vector of bases. 359 return BaseDefiningValueResult(I, false); 360 361 if (isa<ShuffleVectorInst>(I)) 362 // We don't know whether this vector contains entirely base pointers or 363 // not. To be conservatively correct, we treat it as a BDV and will 364 // duplicate code as needed to construct a parallel vector of bases. 365 // TODO: There a number of local optimizations which could be applied here 366 // for particular sufflevector patterns. 367 return BaseDefiningValueResult(I, false); 368 369 // A PHI or Select is a base defining value. The outer findBasePointer 370 // algorithm is responsible for constructing a base value for this BDV. 371 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 372 "unknown vector instruction - no base found for vector element"); 373 return BaseDefiningValueResult(I, false); 374 } 375 376 /// Helper function for findBasePointer - Will return a value which either a) 377 /// defines the base pointer for the input, b) blocks the simple search 378 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 379 /// from pointer to vector type or back. 380 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 381 assert(I->getType()->isPtrOrPtrVectorTy() && 382 "Illegal to ask for the base pointer of a non-pointer type"); 383 384 if (I->getType()->isVectorTy()) 385 return findBaseDefiningValueOfVector(I); 386 387 if (isa<Argument>(I)) 388 // An incoming argument to the function is a base pointer 389 // We should have never reached here if this argument isn't an gc value 390 return BaseDefiningValueResult(I, true); 391 392 if (isa<Constant>(I)) { 393 // We assume that objects with a constant base (e.g. a global) can't move 394 // and don't need to be reported to the collector because they are always 395 // live. Besides global references, all kinds of constants (e.g. undef, 396 // constant expressions, null pointers) can be introduced by the inliner or 397 // the optimizer, especially on dynamically dead paths. 398 // Here we treat all of them as having single null base. By doing this we 399 // trying to avoid problems reporting various conflicts in a form of 400 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 401 // See constant.ll file for relevant test cases. 402 403 return BaseDefiningValueResult( 404 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 405 } 406 407 if (CastInst *CI = dyn_cast<CastInst>(I)) { 408 Value *Def = CI->stripPointerCasts(); 409 // If stripping pointer casts changes the address space there is an 410 // addrspacecast in between. 411 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 412 cast<PointerType>(CI->getType())->getAddressSpace() && 413 "unsupported addrspacecast"); 414 // If we find a cast instruction here, it means we've found a cast which is 415 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 416 // handle int->ptr conversion. 417 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 418 return findBaseDefiningValue(Def); 419 } 420 421 if (isa<LoadInst>(I)) 422 // The value loaded is an gc base itself 423 return BaseDefiningValueResult(I, true); 424 425 426 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 427 // The base of this GEP is the base 428 return findBaseDefiningValue(GEP->getPointerOperand()); 429 430 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 431 switch (II->getIntrinsicID()) { 432 default: 433 // fall through to general call handling 434 break; 435 case Intrinsic::experimental_gc_statepoint: 436 llvm_unreachable("statepoints don't produce pointers"); 437 case Intrinsic::experimental_gc_relocate: { 438 // Rerunning safepoint insertion after safepoints are already 439 // inserted is not supported. It could probably be made to work, 440 // but why are you doing this? There's no good reason. 441 llvm_unreachable("repeat safepoint insertion is not supported"); 442 } 443 case Intrinsic::gcroot: 444 // Currently, this mechanism hasn't been extended to work with gcroot. 445 // There's no reason it couldn't be, but I haven't thought about the 446 // implications much. 447 llvm_unreachable( 448 "interaction with the gcroot mechanism is not supported"); 449 } 450 } 451 // We assume that functions in the source language only return base 452 // pointers. This should probably be generalized via attributes to support 453 // both source language and internal functions. 454 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 455 return BaseDefiningValueResult(I, true); 456 457 // I have absolutely no idea how to implement this part yet. It's not 458 // necessarily hard, I just haven't really looked at it yet. 459 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 460 461 if (isa<AtomicCmpXchgInst>(I)) 462 // A CAS is effectively a atomic store and load combined under a 463 // predicate. From the perspective of base pointers, we just treat it 464 // like a load. 465 return BaseDefiningValueResult(I, true); 466 467 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 468 "binary ops which don't apply to pointers"); 469 470 // The aggregate ops. Aggregates can either be in the heap or on the 471 // stack, but in either case, this is simply a field load. As a result, 472 // this is a defining definition of the base just like a load is. 473 if (isa<ExtractValueInst>(I)) 474 return BaseDefiningValueResult(I, true); 475 476 // We should never see an insert vector since that would require we be 477 // tracing back a struct value not a pointer value. 478 assert(!isa<InsertValueInst>(I) && 479 "Base pointer for a struct is meaningless"); 480 481 // An extractelement produces a base result exactly when it's input does. 482 // We may need to insert a parallel instruction to extract the appropriate 483 // element out of the base vector corresponding to the input. Given this, 484 // it's analogous to the phi and select case even though it's not a merge. 485 if (isa<ExtractElementInst>(I)) 486 // Note: There a lot of obvious peephole cases here. This are deliberately 487 // handled after the main base pointer inference algorithm to make writing 488 // test cases to exercise that code easier. 489 return BaseDefiningValueResult(I, false); 490 491 // The last two cases here don't return a base pointer. Instead, they 492 // return a value which dynamically selects from among several base 493 // derived pointers (each with it's own base potentially). It's the job of 494 // the caller to resolve these. 495 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 496 "missing instruction case in findBaseDefiningValing"); 497 return BaseDefiningValueResult(I, false); 498 } 499 500 /// Returns the base defining value for this value. 501 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 502 Value *&Cached = Cache[I]; 503 if (!Cached) { 504 Cached = findBaseDefiningValue(I).BDV; 505 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 506 << Cached->getName() << "\n"); 507 } 508 assert(Cache[I] != nullptr); 509 return Cached; 510 } 511 512 /// Return a base pointer for this value if known. Otherwise, return it's 513 /// base defining value. 514 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 515 Value *Def = findBaseDefiningValueCached(I, Cache); 516 auto Found = Cache.find(Def); 517 if (Found != Cache.end()) { 518 // Either a base-of relation, or a self reference. Caller must check. 519 return Found->second; 520 } 521 // Only a BDV available 522 return Def; 523 } 524 525 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 526 /// is it known to be a base pointer? Or do we need to continue searching. 527 static bool isKnownBaseResult(Value *V) { 528 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 529 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 530 !isa<ShuffleVectorInst>(V)) { 531 // no recursion possible 532 return true; 533 } 534 if (isa<Instruction>(V) && 535 cast<Instruction>(V)->getMetadata("is_base_value")) { 536 // This is a previously inserted base phi or select. We know 537 // that this is a base value. 538 return true; 539 } 540 541 // We need to keep searching 542 return false; 543 } 544 545 namespace { 546 /// Models the state of a single base defining value in the findBasePointer 547 /// algorithm for determining where a new instruction is needed to propagate 548 /// the base of this BDV. 549 class BDVState { 550 public: 551 enum Status { Unknown, Base, Conflict }; 552 553 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 554 assert(status != Base || b); 555 } 556 explicit BDVState(Value *b) : status(Base), base(b) {} 557 BDVState() : status(Unknown), base(nullptr) {} 558 559 Status getStatus() const { return status; } 560 Value *getBase() const { return base; } 561 562 bool isBase() const { return getStatus() == Base; } 563 bool isUnknown() const { return getStatus() == Unknown; } 564 bool isConflict() const { return getStatus() == Conflict; } 565 566 bool operator==(const BDVState &other) const { 567 return base == other.base && status == other.status; 568 } 569 570 bool operator!=(const BDVState &other) const { return !(*this == other); } 571 572 LLVM_DUMP_METHOD 573 void dump() const { print(dbgs()); dbgs() << '\n'; } 574 575 void print(raw_ostream &OS) const { 576 switch (status) { 577 case Unknown: 578 OS << "U"; 579 break; 580 case Base: 581 OS << "B"; 582 break; 583 case Conflict: 584 OS << "C"; 585 break; 586 }; 587 OS << " (" << base << " - " 588 << (base ? base->getName() : "nullptr") << "): "; 589 } 590 591 private: 592 Status status; 593 AssertingVH<Value> base; // non null only if status == base 594 }; 595 } 596 597 #ifndef NDEBUG 598 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 599 State.print(OS); 600 return OS; 601 } 602 #endif 603 604 namespace { 605 // Values of type BDVState form a lattice, and this is a helper 606 // class that implementes the meet operation. The meat of the meet 607 // operation is implemented in MeetBDVStates::pureMeet 608 class MeetBDVStates { 609 public: 610 /// Initializes the currentResult to the TOP state so that if can be met with 611 /// any other state to produce that state. 612 MeetBDVStates() {} 613 614 // Destructively meet the current result with the given BDVState 615 void meetWith(BDVState otherState) { 616 currentResult = meet(otherState, currentResult); 617 } 618 619 BDVState getResult() const { return currentResult; } 620 621 private: 622 BDVState currentResult; 623 624 /// Perform a meet operation on two elements of the BDVState lattice. 625 static BDVState meet(BDVState LHS, BDVState RHS) { 626 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 627 "math is wrong: meet does not commute!"); 628 BDVState Result = pureMeet(LHS, RHS); 629 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 630 << " produced " << Result << "\n"); 631 return Result; 632 } 633 634 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 635 switch (stateA.getStatus()) { 636 case BDVState::Unknown: 637 return stateB; 638 639 case BDVState::Base: 640 assert(stateA.getBase() && "can't be null"); 641 if (stateB.isUnknown()) 642 return stateA; 643 644 if (stateB.isBase()) { 645 if (stateA.getBase() == stateB.getBase()) { 646 assert(stateA == stateB && "equality broken!"); 647 return stateA; 648 } 649 return BDVState(BDVState::Conflict); 650 } 651 assert(stateB.isConflict() && "only three states!"); 652 return BDVState(BDVState::Conflict); 653 654 case BDVState::Conflict: 655 return stateA; 656 } 657 llvm_unreachable("only three states!"); 658 } 659 }; 660 } 661 662 663 /// For a given value or instruction, figure out what base ptr it's derived 664 /// from. For gc objects, this is simply itself. On success, returns a value 665 /// which is the base pointer. (This is reliable and can be used for 666 /// relocation.) On failure, returns nullptr. 667 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 668 Value *def = findBaseOrBDV(I, cache); 669 670 if (isKnownBaseResult(def)) { 671 return def; 672 } 673 674 // Here's the rough algorithm: 675 // - For every SSA value, construct a mapping to either an actual base 676 // pointer or a PHI which obscures the base pointer. 677 // - Construct a mapping from PHI to unknown TOP state. Use an 678 // optimistic algorithm to propagate base pointer information. Lattice 679 // looks like: 680 // UNKNOWN 681 // b1 b2 b3 b4 682 // CONFLICT 683 // When algorithm terminates, all PHIs will either have a single concrete 684 // base or be in a conflict state. 685 // - For every conflict, insert a dummy PHI node without arguments. Add 686 // these to the base[Instruction] = BasePtr mapping. For every 687 // non-conflict, add the actual base. 688 // - For every conflict, add arguments for the base[a] of each input 689 // arguments. 690 // 691 // Note: A simpler form of this would be to add the conflict form of all 692 // PHIs without running the optimistic algorithm. This would be 693 // analogous to pessimistic data flow and would likely lead to an 694 // overall worse solution. 695 696 #ifndef NDEBUG 697 auto isExpectedBDVType = [](Value *BDV) { 698 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 699 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 700 }; 701 #endif 702 703 // Once populated, will contain a mapping from each potentially non-base BDV 704 // to a lattice value (described above) which corresponds to that BDV. 705 // We use the order of insertion (DFS over the def/use graph) to provide a 706 // stable deterministic ordering for visiting DenseMaps (which are unordered) 707 // below. This is important for deterministic compilation. 708 MapVector<Value *, BDVState> States; 709 710 // Recursively fill in all base defining values reachable from the initial 711 // one for which we don't already know a definite base value for 712 /* scope */ { 713 SmallVector<Value*, 16> Worklist; 714 Worklist.push_back(def); 715 States.insert(std::make_pair(def, BDVState())); 716 while (!Worklist.empty()) { 717 Value *Current = Worklist.pop_back_val(); 718 assert(!isKnownBaseResult(Current) && "why did it get added?"); 719 720 auto visitIncomingValue = [&](Value *InVal) { 721 Value *Base = findBaseOrBDV(InVal, cache); 722 if (isKnownBaseResult(Base)) 723 // Known bases won't need new instructions introduced and can be 724 // ignored safely 725 return; 726 assert(isExpectedBDVType(Base) && "the only non-base values " 727 "we see should be base defining values"); 728 if (States.insert(std::make_pair(Base, BDVState())).second) 729 Worklist.push_back(Base); 730 }; 731 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 732 for (Value *InVal : Phi->incoming_values()) 733 visitIncomingValue(InVal); 734 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 735 visitIncomingValue(Sel->getTrueValue()); 736 visitIncomingValue(Sel->getFalseValue()); 737 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 738 visitIncomingValue(EE->getVectorOperand()); 739 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 740 visitIncomingValue(IE->getOperand(0)); // vector operand 741 visitIncomingValue(IE->getOperand(1)); // scalar operand 742 } else { 743 // There is one known class of instructions we know we don't handle. 744 assert(isa<ShuffleVectorInst>(Current)); 745 llvm_unreachable("unimplemented instruction case"); 746 } 747 } 748 } 749 750 #ifndef NDEBUG 751 DEBUG(dbgs() << "States after initialization:\n"); 752 for (auto Pair : States) { 753 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 754 } 755 #endif 756 757 // Return a phi state for a base defining value. We'll generate a new 758 // base state for known bases and expect to find a cached state otherwise. 759 auto getStateForBDV = [&](Value *baseValue) { 760 if (isKnownBaseResult(baseValue)) 761 return BDVState(baseValue); 762 auto I = States.find(baseValue); 763 assert(I != States.end() && "lookup failed!"); 764 return I->second; 765 }; 766 767 bool progress = true; 768 while (progress) { 769 #ifndef NDEBUG 770 const size_t oldSize = States.size(); 771 #endif 772 progress = false; 773 // We're only changing values in this loop, thus safe to keep iterators. 774 // Since this is computing a fixed point, the order of visit does not 775 // effect the result. TODO: We could use a worklist here and make this run 776 // much faster. 777 for (auto Pair : States) { 778 Value *BDV = Pair.first; 779 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 780 781 // Given an input value for the current instruction, return a BDVState 782 // instance which represents the BDV of that value. 783 auto getStateForInput = [&](Value *V) mutable { 784 Value *BDV = findBaseOrBDV(V, cache); 785 return getStateForBDV(BDV); 786 }; 787 788 MeetBDVStates calculateMeet; 789 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) { 790 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 791 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 792 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) { 793 for (Value *Val : Phi->incoming_values()) 794 calculateMeet.meetWith(getStateForInput(Val)); 795 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 796 // The 'meet' for an extractelement is slightly trivial, but it's still 797 // useful in that it drives us to conflict if our input is. 798 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 799 } else { 800 // Given there's a inherent type mismatch between the operands, will 801 // *always* produce Conflict. 802 auto *IE = cast<InsertElementInst>(BDV); 803 calculateMeet.meetWith(getStateForInput(IE->getOperand(0))); 804 calculateMeet.meetWith(getStateForInput(IE->getOperand(1))); 805 } 806 807 BDVState oldState = States[BDV]; 808 BDVState newState = calculateMeet.getResult(); 809 if (oldState != newState) { 810 progress = true; 811 States[BDV] = newState; 812 } 813 } 814 815 assert(oldSize == States.size() && 816 "fixed point shouldn't be adding any new nodes to state"); 817 } 818 819 #ifndef NDEBUG 820 DEBUG(dbgs() << "States after meet iteration:\n"); 821 for (auto Pair : States) { 822 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 823 } 824 #endif 825 826 // Insert Phis for all conflicts 827 // TODO: adjust naming patterns to avoid this order of iteration dependency 828 for (auto Pair : States) { 829 Instruction *I = cast<Instruction>(Pair.first); 830 BDVState State = Pair.second; 831 assert(!isKnownBaseResult(I) && "why did it get added?"); 832 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 833 834 // extractelement instructions are a bit special in that we may need to 835 // insert an extract even when we know an exact base for the instruction. 836 // The problem is that we need to convert from a vector base to a scalar 837 // base for the particular indice we're interested in. 838 if (State.isBase() && isa<ExtractElementInst>(I) && 839 isa<VectorType>(State.getBase()->getType())) { 840 auto *EE = cast<ExtractElementInst>(I); 841 // TODO: In many cases, the new instruction is just EE itself. We should 842 // exploit this, but can't do it here since it would break the invariant 843 // about the BDV not being known to be a base. 844 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 845 EE->getIndexOperand(), 846 "base_ee", EE); 847 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 848 States[I] = BDVState(BDVState::Base, BaseInst); 849 } 850 851 // Since we're joining a vector and scalar base, they can never be the 852 // same. As a result, we should always see insert element having reached 853 // the conflict state. 854 if (isa<InsertElementInst>(I)) { 855 assert(State.isConflict()); 856 } 857 858 if (!State.isConflict()) 859 continue; 860 861 /// Create and insert a new instruction which will represent the base of 862 /// the given instruction 'I'. 863 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 864 if (isa<PHINode>(I)) { 865 BasicBlock *BB = I->getParent(); 866 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 867 assert(NumPreds > 0 && "how did we reach here"); 868 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 869 return PHINode::Create(I->getType(), NumPreds, Name, I); 870 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 871 // The undef will be replaced later 872 UndefValue *Undef = UndefValue::get(Sel->getType()); 873 std::string Name = suffixed_name_or(I, ".base", "base_select"); 874 return SelectInst::Create(Sel->getCondition(), Undef, 875 Undef, Name, Sel); 876 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 877 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 878 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 879 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 880 EE); 881 } else { 882 auto *IE = cast<InsertElementInst>(I); 883 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 884 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 885 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 886 return InsertElementInst::Create(VecUndef, ScalarUndef, 887 IE->getOperand(2), Name, IE); 888 } 889 890 }; 891 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 892 // Add metadata marking this as a base value 893 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 894 States[I] = BDVState(BDVState::Conflict, BaseInst); 895 } 896 897 // Returns a instruction which produces the base pointer for a given 898 // instruction. The instruction is assumed to be an input to one of the BDVs 899 // seen in the inference algorithm above. As such, we must either already 900 // know it's base defining value is a base, or have inserted a new 901 // instruction to propagate the base of it's BDV and have entered that newly 902 // introduced instruction into the state table. In either case, we are 903 // assured to be able to determine an instruction which produces it's base 904 // pointer. 905 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 906 Value *BDV = findBaseOrBDV(Input, cache); 907 Value *Base = nullptr; 908 if (isKnownBaseResult(BDV)) { 909 Base = BDV; 910 } else { 911 // Either conflict or base. 912 assert(States.count(BDV)); 913 Base = States[BDV].getBase(); 914 } 915 assert(Base && "can't be null"); 916 // The cast is needed since base traversal may strip away bitcasts 917 if (Base->getType() != Input->getType() && 918 InsertPt) { 919 Base = new BitCastInst(Base, Input->getType(), "cast", 920 InsertPt); 921 } 922 return Base; 923 }; 924 925 // Fixup all the inputs of the new PHIs. Visit order needs to be 926 // deterministic and predictable because we're naming newly created 927 // instructions. 928 for (auto Pair : States) { 929 Instruction *BDV = cast<Instruction>(Pair.first); 930 BDVState State = Pair.second; 931 932 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 933 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 934 if (!State.isConflict()) 935 continue; 936 937 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) { 938 PHINode *phi = cast<PHINode>(BDV); 939 unsigned NumPHIValues = phi->getNumIncomingValues(); 940 for (unsigned i = 0; i < NumPHIValues; i++) { 941 Value *InVal = phi->getIncomingValue(i); 942 BasicBlock *InBB = phi->getIncomingBlock(i); 943 944 // If we've already seen InBB, add the same incoming value 945 // we added for it earlier. The IR verifier requires phi 946 // nodes with multiple entries from the same basic block 947 // to have the same incoming value for each of those 948 // entries. If we don't do this check here and basephi 949 // has a different type than base, we'll end up adding two 950 // bitcasts (and hence two distinct values) as incoming 951 // values for the same basic block. 952 953 int blockIndex = basephi->getBasicBlockIndex(InBB); 954 if (blockIndex != -1) { 955 Value *oldBase = basephi->getIncomingValue(blockIndex); 956 basephi->addIncoming(oldBase, InBB); 957 958 #ifndef NDEBUG 959 Value *Base = getBaseForInput(InVal, nullptr); 960 // In essence this assert states: the only way two 961 // values incoming from the same basic block may be 962 // different is by being different bitcasts of the same 963 // value. A cleanup that remains TODO is changing 964 // findBaseOrBDV to return an llvm::Value of the correct 965 // type (and still remain pure). This will remove the 966 // need to add bitcasts. 967 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() && 968 "sanity -- findBaseOrBDV should be pure!"); 969 #endif 970 continue; 971 } 972 973 // Find the instruction which produces the base for each input. We may 974 // need to insert a bitcast in the incoming block. 975 // TODO: Need to split critical edges if insertion is needed 976 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 977 basephi->addIncoming(Base, InBB); 978 } 979 assert(basephi->getNumIncomingValues() == NumPHIValues); 980 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) { 981 SelectInst *Sel = cast<SelectInst>(BDV); 982 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 983 // something more safe and less hacky. 984 for (int i = 1; i <= 2; i++) { 985 Value *InVal = Sel->getOperand(i); 986 // Find the instruction which produces the base for each input. We may 987 // need to insert a bitcast. 988 Value *Base = getBaseForInput(InVal, BaseSel); 989 BaseSel->setOperand(i, Base); 990 } 991 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 992 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 993 // Find the instruction which produces the base for each input. We may 994 // need to insert a bitcast. 995 Value *Base = getBaseForInput(InVal, BaseEE); 996 BaseEE->setOperand(0, Base); 997 } else { 998 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 999 auto *BdvIE = cast<InsertElementInst>(BDV); 1000 auto UpdateOperand = [&](int OperandIdx) { 1001 Value *InVal = BdvIE->getOperand(OperandIdx); 1002 Value *Base = getBaseForInput(InVal, BaseIE); 1003 BaseIE->setOperand(OperandIdx, Base); 1004 }; 1005 UpdateOperand(0); // vector operand 1006 UpdateOperand(1); // scalar operand 1007 } 1008 1009 } 1010 1011 // Cache all of our results so we can cheaply reuse them 1012 // NOTE: This is actually two caches: one of the base defining value 1013 // relation and one of the base pointer relation! FIXME 1014 for (auto Pair : States) { 1015 auto *BDV = Pair.first; 1016 Value *base = Pair.second.getBase(); 1017 assert(BDV && base); 1018 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1019 1020 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none"; 1021 DEBUG(dbgs() << "Updating base value cache" 1022 << " for: " << BDV->getName() 1023 << " from: " << fromstr 1024 << " to: " << base->getName() << "\n"); 1025 1026 if (cache.count(BDV)) { 1027 assert(isKnownBaseResult(base) && 1028 "must be something we 'know' is a base pointer"); 1029 // Once we transition from the BDV relation being store in the cache to 1030 // the base relation being stored, it must be stable 1031 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) && 1032 "base relation should be stable"); 1033 } 1034 cache[BDV] = base; 1035 } 1036 assert(cache.count(def)); 1037 return cache[def]; 1038 } 1039 1040 // For a set of live pointers (base and/or derived), identify the base 1041 // pointer of the object which they are derived from. This routine will 1042 // mutate the IR graph as needed to make the 'base' pointer live at the 1043 // definition site of 'derived'. This ensures that any use of 'derived' can 1044 // also use 'base'. This may involve the insertion of a number of 1045 // additional PHI nodes. 1046 // 1047 // preconditions: live is a set of pointer type Values 1048 // 1049 // side effects: may insert PHI nodes into the existing CFG, will preserve 1050 // CFG, will not remove or mutate any existing nodes 1051 // 1052 // post condition: PointerToBase contains one (derived, base) pair for every 1053 // pointer in live. Note that derived can be equal to base if the original 1054 // pointer was a base pointer. 1055 static void 1056 findBasePointers(const StatepointLiveSetTy &live, 1057 MapVector<Value *, Value *> &PointerToBase, 1058 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1059 for (Value *ptr : live) { 1060 Value *base = findBasePointer(ptr, DVCache); 1061 assert(base && "failed to find base pointer"); 1062 PointerToBase[ptr] = base; 1063 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1064 DT->dominates(cast<Instruction>(base)->getParent(), 1065 cast<Instruction>(ptr)->getParent())) && 1066 "The base we found better dominate the derived pointer"); 1067 } 1068 } 1069 1070 /// Find the required based pointers (and adjust the live set) for the given 1071 /// parse point. 1072 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1073 CallSite CS, 1074 PartiallyConstructedSafepointRecord &result) { 1075 MapVector<Value *, Value *> PointerToBase; 1076 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1077 1078 if (PrintBasePointers) { 1079 errs() << "Base Pairs (w/o Relocation):\n"; 1080 for (auto &Pair : PointerToBase) { 1081 errs() << " derived "; 1082 Pair.first->printAsOperand(errs(), false); 1083 errs() << " base "; 1084 Pair.second->printAsOperand(errs(), false); 1085 errs() << "\n";; 1086 } 1087 } 1088 1089 result.PointerToBase = PointerToBase; 1090 } 1091 1092 /// Given an updated version of the dataflow liveness results, update the 1093 /// liveset and base pointer maps for the call site CS. 1094 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1095 CallSite CS, 1096 PartiallyConstructedSafepointRecord &result); 1097 1098 static void recomputeLiveInValues( 1099 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1100 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1101 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1102 // again. The old values are still live and will help it stabilize quickly. 1103 GCPtrLivenessData RevisedLivenessData; 1104 computeLiveInValues(DT, F, RevisedLivenessData); 1105 for (size_t i = 0; i < records.size(); i++) { 1106 struct PartiallyConstructedSafepointRecord &info = records[i]; 1107 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1108 } 1109 } 1110 1111 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1112 // no uses of the original value / return value between the gc.statepoint and 1113 // the gc.relocate / gc.result call. One case which can arise is a phi node 1114 // starting one of the successor blocks. We also need to be able to insert the 1115 // gc.relocates only on the path which goes through the statepoint. We might 1116 // need to split an edge to make this possible. 1117 static BasicBlock * 1118 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1119 DominatorTree &DT) { 1120 BasicBlock *Ret = BB; 1121 if (!BB->getUniquePredecessor()) 1122 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1123 1124 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1125 // from it 1126 FoldSingleEntryPHINodes(Ret); 1127 assert(!isa<PHINode>(Ret->begin()) && 1128 "All PHI nodes should have been removed!"); 1129 1130 // At this point, we can safely insert a gc.relocate or gc.result as the first 1131 // instruction in Ret if needed. 1132 return Ret; 1133 } 1134 1135 // Create new attribute set containing only attributes which can be transferred 1136 // from original call to the safepoint. 1137 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1138 AttributeSet Ret; 1139 1140 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1141 unsigned Index = AS.getSlotIndex(Slot); 1142 1143 if (Index == AttributeSet::ReturnIndex || 1144 Index == AttributeSet::FunctionIndex) { 1145 1146 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { 1147 1148 // Do not allow certain attributes - just skip them 1149 // Safepoint can not be read only or read none. 1150 if (Attr.hasAttribute(Attribute::ReadNone) || 1151 Attr.hasAttribute(Attribute::ReadOnly)) 1152 continue; 1153 1154 // These attributes control the generation of the gc.statepoint call / 1155 // invoke itself; and once the gc.statepoint is in place, they're of no 1156 // use. 1157 if (isStatepointDirectiveAttr(Attr)) 1158 continue; 1159 1160 Ret = Ret.addAttributes( 1161 AS.getContext(), Index, 1162 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); 1163 } 1164 } 1165 1166 // Just skip parameter attributes for now 1167 } 1168 1169 return Ret; 1170 } 1171 1172 /// Helper function to place all gc relocates necessary for the given 1173 /// statepoint. 1174 /// Inputs: 1175 /// liveVariables - list of variables to be relocated. 1176 /// liveStart - index of the first live variable. 1177 /// basePtrs - base pointers. 1178 /// statepointToken - statepoint instruction to which relocates should be 1179 /// bound. 1180 /// Builder - Llvm IR builder to be used to construct new calls. 1181 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1182 const int LiveStart, 1183 ArrayRef<Value *> BasePtrs, 1184 Instruction *StatepointToken, 1185 IRBuilder<> Builder) { 1186 if (LiveVariables.empty()) 1187 return; 1188 1189 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1190 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val); 1191 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1192 size_t Index = std::distance(LiveVec.begin(), ValIt); 1193 assert(Index < LiveVec.size() && "Bug in std::find?"); 1194 return Index; 1195 }; 1196 Module *M = StatepointToken->getModule(); 1197 1198 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1199 // element type is i8 addrspace(1)*). We originally generated unique 1200 // declarations for each pointer type, but this proved problematic because 1201 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1202 // towards a single unified pointer type anyways, we can just cast everything 1203 // to an i8* of the right address space. A bitcast is added later to convert 1204 // gc_relocate to the actual value's type. 1205 auto getGCRelocateDecl = [&] (Type *Ty) { 1206 assert(isHandledGCPointerType(Ty)); 1207 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1208 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1209 if (auto *VT = dyn_cast<VectorType>(Ty)) 1210 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1211 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1212 {NewTy}); 1213 }; 1214 1215 // Lazily populated map from input types to the canonicalized form mentioned 1216 // in the comment above. This should probably be cached somewhere more 1217 // broadly. 1218 DenseMap<Type*, Value*> TypeToDeclMap; 1219 1220 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1221 // Generate the gc.relocate call and save the result 1222 Value *BaseIdx = 1223 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1224 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1225 1226 Type *Ty = LiveVariables[i]->getType(); 1227 if (!TypeToDeclMap.count(Ty)) 1228 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1229 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1230 1231 // only specify a debug name if we can give a useful one 1232 CallInst *Reloc = Builder.CreateCall( 1233 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1234 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1235 // Trick CodeGen into thinking there are lots of free registers at this 1236 // fake call. 1237 Reloc->setCallingConv(CallingConv::Cold); 1238 } 1239 } 1240 1241 namespace { 1242 1243 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1244 /// avoids having to worry about keeping around dangling pointers to Values. 1245 class DeferredReplacement { 1246 AssertingVH<Instruction> Old; 1247 AssertingVH<Instruction> New; 1248 bool IsDeoptimize = false; 1249 1250 DeferredReplacement() {} 1251 1252 public: 1253 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1254 assert(Old != New && Old && New && 1255 "Cannot RAUW equal values or to / from null!"); 1256 1257 DeferredReplacement D; 1258 D.Old = Old; 1259 D.New = New; 1260 return D; 1261 } 1262 1263 static DeferredReplacement createDelete(Instruction *ToErase) { 1264 DeferredReplacement D; 1265 D.Old = ToErase; 1266 return D; 1267 } 1268 1269 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1270 #ifndef NDEBUG 1271 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1272 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1273 "Only way to construct a deoptimize deferred replacement"); 1274 #endif 1275 DeferredReplacement D; 1276 D.Old = Old; 1277 D.IsDeoptimize = true; 1278 return D; 1279 } 1280 1281 /// Does the task represented by this instance. 1282 void doReplacement() { 1283 Instruction *OldI = Old; 1284 Instruction *NewI = New; 1285 1286 assert(OldI != NewI && "Disallowed at construction?!"); 1287 assert((!IsDeoptimize || !New) && 1288 "Deoptimize instrinsics are not replaced!"); 1289 1290 Old = nullptr; 1291 New = nullptr; 1292 1293 if (NewI) 1294 OldI->replaceAllUsesWith(NewI); 1295 1296 if (IsDeoptimize) { 1297 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1298 // not necessarilly be followed by the matching return. 1299 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1300 new UnreachableInst(RI->getContext(), RI); 1301 RI->eraseFromParent(); 1302 } 1303 1304 OldI->eraseFromParent(); 1305 } 1306 }; 1307 } 1308 1309 static void 1310 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1311 const SmallVectorImpl<Value *> &BasePtrs, 1312 const SmallVectorImpl<Value *> &LiveVariables, 1313 PartiallyConstructedSafepointRecord &Result, 1314 std::vector<DeferredReplacement> &Replacements) { 1315 assert(BasePtrs.size() == LiveVariables.size()); 1316 1317 // Then go ahead and use the builder do actually do the inserts. We insert 1318 // immediately before the previous instruction under the assumption that all 1319 // arguments will be available here. We can't insert afterwards since we may 1320 // be replacing a terminator. 1321 Instruction *InsertBefore = CS.getInstruction(); 1322 IRBuilder<> Builder(InsertBefore); 1323 1324 ArrayRef<Value *> GCArgs(LiveVariables); 1325 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1326 uint32_t NumPatchBytes = 0; 1327 uint32_t Flags = uint32_t(StatepointFlags::None); 1328 1329 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1330 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1331 ArrayRef<Use> TransitionArgs; 1332 if (auto TransitionBundle = 1333 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1334 Flags |= uint32_t(StatepointFlags::GCTransition); 1335 TransitionArgs = TransitionBundle->Inputs; 1336 } 1337 1338 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1339 // with a return value, we lower then as never returning calls to 1340 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1341 bool IsDeoptimize = false; 1342 1343 StatepointDirectives SD = 1344 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1345 if (SD.NumPatchBytes) 1346 NumPatchBytes = *SD.NumPatchBytes; 1347 if (SD.StatepointID) 1348 StatepointID = *SD.StatepointID; 1349 1350 Value *CallTarget = CS.getCalledValue(); 1351 if (Function *F = dyn_cast<Function>(CallTarget)) { 1352 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1353 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1354 // __llvm_deoptimize symbol. We want to resolve this now, since the 1355 // verifier does not allow taking the address of an intrinsic function. 1356 1357 SmallVector<Type *, 8> DomainTy; 1358 for (Value *Arg : CallArgs) 1359 DomainTy.push_back(Arg->getType()); 1360 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1361 /* isVarArg = */ false); 1362 1363 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1364 // calls to @llvm.experimental.deoptimize with different argument types in 1365 // the same module. This is fine -- we assume the frontend knew what it 1366 // was doing when generating this kind of IR. 1367 CallTarget = 1368 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1369 1370 IsDeoptimize = true; 1371 } 1372 } 1373 1374 // Create the statepoint given all the arguments 1375 Instruction *Token = nullptr; 1376 AttributeSet ReturnAttrs; 1377 if (CS.isCall()) { 1378 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1379 CallInst *Call = Builder.CreateGCStatepointCall( 1380 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1381 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1382 1383 Call->setTailCall(ToReplace->isTailCall()); 1384 Call->setCallingConv(ToReplace->getCallingConv()); 1385 1386 // Currently we will fail on parameter attributes and on certain 1387 // function attributes. 1388 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1389 // In case if we can handle this set of attributes - set up function attrs 1390 // directly on statepoint and return attrs later for gc_result intrinsic. 1391 Call->setAttributes(NewAttrs.getFnAttributes()); 1392 ReturnAttrs = NewAttrs.getRetAttributes(); 1393 1394 Token = Call; 1395 1396 // Put the following gc_result and gc_relocate calls immediately after the 1397 // the old call (which we're about to delete) 1398 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1399 Builder.SetInsertPoint(ToReplace->getNextNode()); 1400 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1401 } else { 1402 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1403 1404 // Insert the new invoke into the old block. We'll remove the old one in a 1405 // moment at which point this will become the new terminator for the 1406 // original block. 1407 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1408 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1409 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1410 GCArgs, "statepoint_token"); 1411 1412 Invoke->setCallingConv(ToReplace->getCallingConv()); 1413 1414 // Currently we will fail on parameter attributes and on certain 1415 // function attributes. 1416 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1417 // In case if we can handle this set of attributes - set up function attrs 1418 // directly on statepoint and return attrs later for gc_result intrinsic. 1419 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1420 ReturnAttrs = NewAttrs.getRetAttributes(); 1421 1422 Token = Invoke; 1423 1424 // Generate gc relocates in exceptional path 1425 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1426 assert(!isa<PHINode>(UnwindBlock->begin()) && 1427 UnwindBlock->getUniquePredecessor() && 1428 "can't safely insert in this block!"); 1429 1430 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1431 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1432 1433 // Attach exceptional gc relocates to the landingpad. 1434 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1435 Result.UnwindToken = ExceptionalToken; 1436 1437 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1438 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1439 Builder); 1440 1441 // Generate gc relocates and returns for normal block 1442 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1443 assert(!isa<PHINode>(NormalDest->begin()) && 1444 NormalDest->getUniquePredecessor() && 1445 "can't safely insert in this block!"); 1446 1447 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1448 1449 // gc relocates will be generated later as if it were regular call 1450 // statepoint 1451 } 1452 assert(Token && "Should be set in one of the above branches!"); 1453 1454 if (IsDeoptimize) { 1455 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1456 // transform the tail-call like structure to a call to a void function 1457 // followed by unreachable to get better codegen. 1458 Replacements.push_back( 1459 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1460 } else { 1461 Token->setName("statepoint_token"); 1462 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1463 StringRef Name = 1464 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1465 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1466 GCResult->setAttributes(CS.getAttributes().getRetAttributes()); 1467 1468 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1469 // live set of some other safepoint, in which case that safepoint's 1470 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1471 // llvm::Instruction. Instead, we defer the replacement and deletion to 1472 // after the live sets have been made explicit in the IR, and we no longer 1473 // have raw pointers to worry about. 1474 Replacements.emplace_back( 1475 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1476 } else { 1477 Replacements.emplace_back( 1478 DeferredReplacement::createDelete(CS.getInstruction())); 1479 } 1480 } 1481 1482 Result.StatepointToken = Token; 1483 1484 // Second, create a gc.relocate for every live variable 1485 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1486 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1487 } 1488 1489 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1490 // which make the relocations happening at this safepoint explicit. 1491 // 1492 // WARNING: Does not do any fixup to adjust users of the original live 1493 // values. That's the callers responsibility. 1494 static void 1495 makeStatepointExplicit(DominatorTree &DT, CallSite CS, 1496 PartiallyConstructedSafepointRecord &Result, 1497 std::vector<DeferredReplacement> &Replacements) { 1498 const auto &LiveSet = Result.LiveSet; 1499 const auto &PointerToBase = Result.PointerToBase; 1500 1501 // Convert to vector for efficient cross referencing. 1502 SmallVector<Value *, 64> BaseVec, LiveVec; 1503 LiveVec.reserve(LiveSet.size()); 1504 BaseVec.reserve(LiveSet.size()); 1505 for (Value *L : LiveSet) { 1506 LiveVec.push_back(L); 1507 assert(PointerToBase.count(L)); 1508 Value *Base = PointerToBase.find(L)->second; 1509 BaseVec.push_back(Base); 1510 } 1511 assert(LiveVec.size() == BaseVec.size()); 1512 1513 // Do the actual rewriting and delete the old statepoint 1514 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1515 } 1516 1517 // Helper function for the relocationViaAlloca. 1518 // 1519 // It receives iterator to the statepoint gc relocates and emits a store to the 1520 // assigned location (via allocaMap) for the each one of them. It adds the 1521 // visited values into the visitedLiveValues set, which we will later use them 1522 // for sanity checking. 1523 static void 1524 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1525 DenseMap<Value *, Value *> &AllocaMap, 1526 DenseSet<Value *> &VisitedLiveValues) { 1527 1528 for (User *U : GCRelocs) { 1529 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1530 if (!Relocate) 1531 continue; 1532 1533 Value *OriginalValue = Relocate->getDerivedPtr(); 1534 assert(AllocaMap.count(OriginalValue)); 1535 Value *Alloca = AllocaMap[OriginalValue]; 1536 1537 // Emit store into the related alloca 1538 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1539 // the correct type according to alloca. 1540 assert(Relocate->getNextNode() && 1541 "Should always have one since it's not a terminator"); 1542 IRBuilder<> Builder(Relocate->getNextNode()); 1543 Value *CastedRelocatedValue = 1544 Builder.CreateBitCast(Relocate, 1545 cast<AllocaInst>(Alloca)->getAllocatedType(), 1546 suffixed_name_or(Relocate, ".casted", "")); 1547 1548 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1549 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1550 1551 #ifndef NDEBUG 1552 VisitedLiveValues.insert(OriginalValue); 1553 #endif 1554 } 1555 } 1556 1557 // Helper function for the "relocationViaAlloca". Similar to the 1558 // "insertRelocationStores" but works for rematerialized values. 1559 static void insertRematerializationStores( 1560 const RematerializedValueMapTy &RematerializedValues, 1561 DenseMap<Value *, Value *> &AllocaMap, 1562 DenseSet<Value *> &VisitedLiveValues) { 1563 1564 for (auto RematerializedValuePair: RematerializedValues) { 1565 Instruction *RematerializedValue = RematerializedValuePair.first; 1566 Value *OriginalValue = RematerializedValuePair.second; 1567 1568 assert(AllocaMap.count(OriginalValue) && 1569 "Can not find alloca for rematerialized value"); 1570 Value *Alloca = AllocaMap[OriginalValue]; 1571 1572 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1573 Store->insertAfter(RematerializedValue); 1574 1575 #ifndef NDEBUG 1576 VisitedLiveValues.insert(OriginalValue); 1577 #endif 1578 } 1579 } 1580 1581 /// Do all the relocation update via allocas and mem2reg 1582 static void relocationViaAlloca( 1583 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1584 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1585 #ifndef NDEBUG 1586 // record initial number of (static) allocas; we'll check we have the same 1587 // number when we get done. 1588 int InitialAllocaNum = 0; 1589 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1590 I++) 1591 if (isa<AllocaInst>(*I)) 1592 InitialAllocaNum++; 1593 #endif 1594 1595 // TODO-PERF: change data structures, reserve 1596 DenseMap<Value *, Value *> AllocaMap; 1597 SmallVector<AllocaInst *, 200> PromotableAllocas; 1598 // Used later to chack that we have enough allocas to store all values 1599 std::size_t NumRematerializedValues = 0; 1600 PromotableAllocas.reserve(Live.size()); 1601 1602 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1603 // "PromotableAllocas" 1604 auto emitAllocaFor = [&](Value *LiveValue) { 1605 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1606 F.getEntryBlock().getFirstNonPHI()); 1607 AllocaMap[LiveValue] = Alloca; 1608 PromotableAllocas.push_back(Alloca); 1609 }; 1610 1611 // Emit alloca for each live gc pointer 1612 for (Value *V : Live) 1613 emitAllocaFor(V); 1614 1615 // Emit allocas for rematerialized values 1616 for (const auto &Info : Records) 1617 for (auto RematerializedValuePair : Info.RematerializedValues) { 1618 Value *OriginalValue = RematerializedValuePair.second; 1619 if (AllocaMap.count(OriginalValue) != 0) 1620 continue; 1621 1622 emitAllocaFor(OriginalValue); 1623 ++NumRematerializedValues; 1624 } 1625 1626 // The next two loops are part of the same conceptual operation. We need to 1627 // insert a store to the alloca after the original def and at each 1628 // redefinition. We need to insert a load before each use. These are split 1629 // into distinct loops for performance reasons. 1630 1631 // Update gc pointer after each statepoint: either store a relocated value or 1632 // null (if no relocated value was found for this gc pointer and it is not a 1633 // gc_result). This must happen before we update the statepoint with load of 1634 // alloca otherwise we lose the link between statepoint and old def. 1635 for (const auto &Info : Records) { 1636 Value *Statepoint = Info.StatepointToken; 1637 1638 // This will be used for consistency check 1639 DenseSet<Value *> VisitedLiveValues; 1640 1641 // Insert stores for normal statepoint gc relocates 1642 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1643 1644 // In case if it was invoke statepoint 1645 // we will insert stores for exceptional path gc relocates. 1646 if (isa<InvokeInst>(Statepoint)) { 1647 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1648 VisitedLiveValues); 1649 } 1650 1651 // Do similar thing with rematerialized values 1652 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1653 VisitedLiveValues); 1654 1655 if (ClobberNonLive) { 1656 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1657 // the gc.statepoint. This will turn some subtle GC problems into 1658 // slightly easier to debug SEGVs. Note that on large IR files with 1659 // lots of gc.statepoints this is extremely costly both memory and time 1660 // wise. 1661 SmallVector<AllocaInst *, 64> ToClobber; 1662 for (auto Pair : AllocaMap) { 1663 Value *Def = Pair.first; 1664 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1665 1666 // This value was relocated 1667 if (VisitedLiveValues.count(Def)) { 1668 continue; 1669 } 1670 ToClobber.push_back(Alloca); 1671 } 1672 1673 auto InsertClobbersAt = [&](Instruction *IP) { 1674 for (auto *AI : ToClobber) { 1675 auto PT = cast<PointerType>(AI->getAllocatedType()); 1676 Constant *CPN = ConstantPointerNull::get(PT); 1677 StoreInst *Store = new StoreInst(CPN, AI); 1678 Store->insertBefore(IP); 1679 } 1680 }; 1681 1682 // Insert the clobbering stores. These may get intermixed with the 1683 // gc.results and gc.relocates, but that's fine. 1684 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1685 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1686 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1687 } else { 1688 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1689 } 1690 } 1691 } 1692 1693 // Update use with load allocas and add store for gc_relocated. 1694 for (auto Pair : AllocaMap) { 1695 Value *Def = Pair.first; 1696 Value *Alloca = Pair.second; 1697 1698 // We pre-record the uses of allocas so that we dont have to worry about 1699 // later update that changes the user information.. 1700 1701 SmallVector<Instruction *, 20> Uses; 1702 // PERF: trade a linear scan for repeated reallocation 1703 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1704 for (User *U : Def->users()) { 1705 if (!isa<ConstantExpr>(U)) { 1706 // If the def has a ConstantExpr use, then the def is either a 1707 // ConstantExpr use itself or null. In either case 1708 // (recursively in the first, directly in the second), the oop 1709 // it is ultimately dependent on is null and this particular 1710 // use does not need to be fixed up. 1711 Uses.push_back(cast<Instruction>(U)); 1712 } 1713 } 1714 1715 std::sort(Uses.begin(), Uses.end()); 1716 auto Last = std::unique(Uses.begin(), Uses.end()); 1717 Uses.erase(Last, Uses.end()); 1718 1719 for (Instruction *Use : Uses) { 1720 if (isa<PHINode>(Use)) { 1721 PHINode *Phi = cast<PHINode>(Use); 1722 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1723 if (Def == Phi->getIncomingValue(i)) { 1724 LoadInst *Load = new LoadInst( 1725 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1726 Phi->setIncomingValue(i, Load); 1727 } 1728 } 1729 } else { 1730 LoadInst *Load = new LoadInst(Alloca, "", Use); 1731 Use->replaceUsesOfWith(Def, Load); 1732 } 1733 } 1734 1735 // Emit store for the initial gc value. Store must be inserted after load, 1736 // otherwise store will be in alloca's use list and an extra load will be 1737 // inserted before it. 1738 StoreInst *Store = new StoreInst(Def, Alloca); 1739 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1740 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1741 // InvokeInst is a TerminatorInst so the store need to be inserted 1742 // into its normal destination block. 1743 BasicBlock *NormalDest = Invoke->getNormalDest(); 1744 Store->insertBefore(NormalDest->getFirstNonPHI()); 1745 } else { 1746 assert(!Inst->isTerminator() && 1747 "The only TerminatorInst that can produce a value is " 1748 "InvokeInst which is handled above."); 1749 Store->insertAfter(Inst); 1750 } 1751 } else { 1752 assert(isa<Argument>(Def)); 1753 Store->insertAfter(cast<Instruction>(Alloca)); 1754 } 1755 } 1756 1757 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1758 "we must have the same allocas with lives"); 1759 if (!PromotableAllocas.empty()) { 1760 // Apply mem2reg to promote alloca to SSA 1761 PromoteMemToReg(PromotableAllocas, DT); 1762 } 1763 1764 #ifndef NDEBUG 1765 for (auto &I : F.getEntryBlock()) 1766 if (isa<AllocaInst>(I)) 1767 InitialAllocaNum--; 1768 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1769 #endif 1770 } 1771 1772 /// Implement a unique function which doesn't require we sort the input 1773 /// vector. Doing so has the effect of changing the output of a couple of 1774 /// tests in ways which make them less useful in testing fused safepoints. 1775 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1776 SmallSet<T, 8> Seen; 1777 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1778 return !Seen.insert(V).second; 1779 }), Vec.end()); 1780 } 1781 1782 /// Insert holders so that each Value is obviously live through the entire 1783 /// lifetime of the call. 1784 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1785 SmallVectorImpl<CallInst *> &Holders) { 1786 if (Values.empty()) 1787 // No values to hold live, might as well not insert the empty holder 1788 return; 1789 1790 Module *M = CS.getInstruction()->getModule(); 1791 // Use a dummy vararg function to actually hold the values live 1792 Function *Func = cast<Function>(M->getOrInsertFunction( 1793 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1794 if (CS.isCall()) { 1795 // For call safepoints insert dummy calls right after safepoint 1796 Holders.push_back(CallInst::Create(Func, Values, "", 1797 &*++CS.getInstruction()->getIterator())); 1798 return; 1799 } 1800 // For invoke safepooints insert dummy calls both in normal and 1801 // exceptional destination blocks 1802 auto *II = cast<InvokeInst>(CS.getInstruction()); 1803 Holders.push_back(CallInst::Create( 1804 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1805 Holders.push_back(CallInst::Create( 1806 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1807 } 1808 1809 static void findLiveReferences( 1810 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1811 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1812 GCPtrLivenessData OriginalLivenessData; 1813 computeLiveInValues(DT, F, OriginalLivenessData); 1814 for (size_t i = 0; i < records.size(); i++) { 1815 struct PartiallyConstructedSafepointRecord &info = records[i]; 1816 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1817 } 1818 } 1819 1820 // Helper function for the "rematerializeLiveValues". It walks use chain 1821 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1822 // values are visited (currently it is GEP's and casts). Returns true if it 1823 // successfully reached "BaseValue" and false otherwise. 1824 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1825 // recorded. 1826 static bool findRematerializableChainToBasePointer( 1827 SmallVectorImpl<Instruction*> &ChainToBase, 1828 Value *CurrentValue, Value *BaseValue) { 1829 1830 // We have found a base value 1831 if (CurrentValue == BaseValue) { 1832 return true; 1833 } 1834 1835 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1836 ChainToBase.push_back(GEP); 1837 return findRematerializableChainToBasePointer(ChainToBase, 1838 GEP->getPointerOperand(), 1839 BaseValue); 1840 } 1841 1842 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1843 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1844 return false; 1845 1846 ChainToBase.push_back(CI); 1847 return findRematerializableChainToBasePointer(ChainToBase, 1848 CI->getOperand(0), BaseValue); 1849 } 1850 1851 // Not supported instruction in the chain 1852 return false; 1853 } 1854 1855 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1856 // chain we are going to rematerialize. 1857 static unsigned 1858 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1859 TargetTransformInfo &TTI) { 1860 unsigned Cost = 0; 1861 1862 for (Instruction *Instr : Chain) { 1863 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1864 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1865 "non noop cast is found during rematerialization"); 1866 1867 Type *SrcTy = CI->getOperand(0)->getType(); 1868 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 1869 1870 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1871 // Cost of the address calculation 1872 Type *ValTy = GEP->getSourceElementType(); 1873 Cost += TTI.getAddressComputationCost(ValTy); 1874 1875 // And cost of the GEP itself 1876 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1877 // allowed for the external usage) 1878 if (!GEP->hasAllConstantIndices()) 1879 Cost += 2; 1880 1881 } else { 1882 llvm_unreachable("unsupported instruciton type during rematerialization"); 1883 } 1884 } 1885 1886 return Cost; 1887 } 1888 1889 // From the statepoint live set pick values that are cheaper to recompute then 1890 // to relocate. Remove this values from the live set, rematerialize them after 1891 // statepoint and record them in "Info" structure. Note that similar to 1892 // relocated values we don't do any user adjustments here. 1893 static void rematerializeLiveValues(CallSite CS, 1894 PartiallyConstructedSafepointRecord &Info, 1895 TargetTransformInfo &TTI) { 1896 const unsigned int ChainLengthThreshold = 10; 1897 1898 // Record values we are going to delete from this statepoint live set. 1899 // We can not di this in following loop due to iterator invalidation. 1900 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1901 1902 for (Value *LiveValue: Info.LiveSet) { 1903 // For each live pointer find it's defining chain 1904 SmallVector<Instruction *, 3> ChainToBase; 1905 assert(Info.PointerToBase.count(LiveValue)); 1906 bool FoundChain = 1907 findRematerializableChainToBasePointer(ChainToBase, 1908 LiveValue, 1909 Info.PointerToBase[LiveValue]); 1910 // Nothing to do, or chain is too long 1911 if (!FoundChain || 1912 ChainToBase.size() == 0 || 1913 ChainToBase.size() > ChainLengthThreshold) 1914 continue; 1915 1916 // Compute cost of this chain 1917 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1918 // TODO: We can also account for cases when we will be able to remove some 1919 // of the rematerialized values by later optimization passes. I.e if 1920 // we rematerialized several intersecting chains. Or if original values 1921 // don't have any uses besides this statepoint. 1922 1923 // For invokes we need to rematerialize each chain twice - for normal and 1924 // for unwind basic blocks. Model this by multiplying cost by two. 1925 if (CS.isInvoke()) { 1926 Cost *= 2; 1927 } 1928 // If it's too expensive - skip it 1929 if (Cost >= RematerializationThreshold) 1930 continue; 1931 1932 // Remove value from the live set 1933 LiveValuesToBeDeleted.push_back(LiveValue); 1934 1935 // Clone instructions and record them inside "Info" structure 1936 1937 // Walk backwards to visit top-most instructions first 1938 std::reverse(ChainToBase.begin(), ChainToBase.end()); 1939 1940 // Utility function which clones all instructions from "ChainToBase" 1941 // and inserts them before "InsertBefore". Returns rematerialized value 1942 // which should be used after statepoint. 1943 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 1944 Instruction *LastClonedValue = nullptr; 1945 Instruction *LastValue = nullptr; 1946 for (Instruction *Instr: ChainToBase) { 1947 // Only GEP's and casts are suported as we need to be careful to not 1948 // introduce any new uses of pointers not in the liveset. 1949 // Note that it's fine to introduce new uses of pointers which were 1950 // otherwise not used after this statepoint. 1951 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 1952 1953 Instruction *ClonedValue = Instr->clone(); 1954 ClonedValue->insertBefore(InsertBefore); 1955 ClonedValue->setName(Instr->getName() + ".remat"); 1956 1957 // If it is not first instruction in the chain then it uses previously 1958 // cloned value. We should update it to use cloned value. 1959 if (LastClonedValue) { 1960 assert(LastValue); 1961 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 1962 #ifndef NDEBUG 1963 // Assert that cloned instruction does not use any instructions from 1964 // this chain other than LastClonedValue 1965 for (auto OpValue : ClonedValue->operand_values()) { 1966 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 1967 ChainToBase.end() && 1968 "incorrect use in rematerialization chain"); 1969 } 1970 #endif 1971 } 1972 1973 LastClonedValue = ClonedValue; 1974 LastValue = Instr; 1975 } 1976 assert(LastClonedValue); 1977 return LastClonedValue; 1978 }; 1979 1980 // Different cases for calls and invokes. For invokes we need to clone 1981 // instructions both on normal and unwind path. 1982 if (CS.isCall()) { 1983 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 1984 assert(InsertBefore); 1985 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 1986 Info.RematerializedValues[RematerializedValue] = LiveValue; 1987 } else { 1988 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 1989 1990 Instruction *NormalInsertBefore = 1991 &*Invoke->getNormalDest()->getFirstInsertionPt(); 1992 Instruction *UnwindInsertBefore = 1993 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 1994 1995 Instruction *NormalRematerializedValue = 1996 rematerializeChain(NormalInsertBefore); 1997 Instruction *UnwindRematerializedValue = 1998 rematerializeChain(UnwindInsertBefore); 1999 2000 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2001 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2002 } 2003 } 2004 2005 // Remove rematerializaed values from the live set 2006 for (auto LiveValue: LiveValuesToBeDeleted) { 2007 Info.LiveSet.remove(LiveValue); 2008 } 2009 } 2010 2011 static bool insertParsePoints(Function &F, DominatorTree &DT, 2012 TargetTransformInfo &TTI, 2013 SmallVectorImpl<CallSite> &ToUpdate) { 2014 #ifndef NDEBUG 2015 // sanity check the input 2016 std::set<CallSite> Uniqued; 2017 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2018 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2019 2020 for (CallSite CS : ToUpdate) 2021 assert(CS.getInstruction()->getFunction() == &F); 2022 #endif 2023 2024 // When inserting gc.relocates for invokes, we need to be able to insert at 2025 // the top of the successor blocks. See the comment on 2026 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2027 // may restructure the CFG. 2028 for (CallSite CS : ToUpdate) { 2029 if (!CS.isInvoke()) 2030 continue; 2031 auto *II = cast<InvokeInst>(CS.getInstruction()); 2032 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2033 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2034 } 2035 2036 // A list of dummy calls added to the IR to keep various values obviously 2037 // live in the IR. We'll remove all of these when done. 2038 SmallVector<CallInst *, 64> Holders; 2039 2040 // Insert a dummy call with all of the arguments to the vm_state we'll need 2041 // for the actual safepoint insertion. This ensures reference arguments in 2042 // the deopt argument list are considered live through the safepoint (and 2043 // thus makes sure they get relocated.) 2044 for (CallSite CS : ToUpdate) { 2045 SmallVector<Value *, 64> DeoptValues; 2046 2047 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2048 assert(!isUnhandledGCPointerType(Arg->getType()) && 2049 "support for FCA unimplemented"); 2050 if (isHandledGCPointerType(Arg->getType())) 2051 DeoptValues.push_back(Arg); 2052 } 2053 2054 insertUseHolderAfter(CS, DeoptValues, Holders); 2055 } 2056 2057 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2058 2059 // A) Identify all gc pointers which are statically live at the given call 2060 // site. 2061 findLiveReferences(F, DT, ToUpdate, Records); 2062 2063 // B) Find the base pointers for each live pointer 2064 /* scope for caching */ { 2065 // Cache the 'defining value' relation used in the computation and 2066 // insertion of base phis and selects. This ensures that we don't insert 2067 // large numbers of duplicate base_phis. 2068 DefiningValueMapTy DVCache; 2069 2070 for (size_t i = 0; i < Records.size(); i++) { 2071 PartiallyConstructedSafepointRecord &info = Records[i]; 2072 findBasePointers(DT, DVCache, ToUpdate[i], info); 2073 } 2074 } // end of cache scope 2075 2076 // The base phi insertion logic (for any safepoint) may have inserted new 2077 // instructions which are now live at some safepoint. The simplest such 2078 // example is: 2079 // loop: 2080 // phi a <-- will be a new base_phi here 2081 // safepoint 1 <-- that needs to be live here 2082 // gep a + 1 2083 // safepoint 2 2084 // br loop 2085 // We insert some dummy calls after each safepoint to definitely hold live 2086 // the base pointers which were identified for that safepoint. We'll then 2087 // ask liveness for _every_ base inserted to see what is now live. Then we 2088 // remove the dummy calls. 2089 Holders.reserve(Holders.size() + Records.size()); 2090 for (size_t i = 0; i < Records.size(); i++) { 2091 PartiallyConstructedSafepointRecord &Info = Records[i]; 2092 2093 SmallVector<Value *, 128> Bases; 2094 for (auto Pair : Info.PointerToBase) 2095 Bases.push_back(Pair.second); 2096 2097 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2098 } 2099 2100 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2101 // need to rerun liveness. We may *also* have inserted new defs, but that's 2102 // not the key issue. 2103 recomputeLiveInValues(F, DT, ToUpdate, Records); 2104 2105 if (PrintBasePointers) { 2106 for (auto &Info : Records) { 2107 errs() << "Base Pairs: (w/Relocation)\n"; 2108 for (auto Pair : Info.PointerToBase) { 2109 errs() << " derived "; 2110 Pair.first->printAsOperand(errs(), false); 2111 errs() << " base "; 2112 Pair.second->printAsOperand(errs(), false); 2113 errs() << "\n"; 2114 } 2115 } 2116 } 2117 2118 // It is possible that non-constant live variables have a constant base. For 2119 // example, a GEP with a variable offset from a global. In this case we can 2120 // remove it from the liveset. We already don't add constants to the liveset 2121 // because we assume they won't move at runtime and the GC doesn't need to be 2122 // informed about them. The same reasoning applies if the base is constant. 2123 // Note that the relocation placement code relies on this filtering for 2124 // correctness as it expects the base to be in the liveset, which isn't true 2125 // if the base is constant. 2126 for (auto &Info : Records) 2127 for (auto &BasePair : Info.PointerToBase) 2128 if (isa<Constant>(BasePair.second)) 2129 Info.LiveSet.remove(BasePair.first); 2130 2131 for (CallInst *CI : Holders) 2132 CI->eraseFromParent(); 2133 2134 Holders.clear(); 2135 2136 // In order to reduce live set of statepoint we might choose to rematerialize 2137 // some values instead of relocating them. This is purely an optimization and 2138 // does not influence correctness. 2139 for (size_t i = 0; i < Records.size(); i++) 2140 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2141 2142 // We need this to safely RAUW and delete call or invoke return values that 2143 // may themselves be live over a statepoint. For details, please see usage in 2144 // makeStatepointExplicitImpl. 2145 std::vector<DeferredReplacement> Replacements; 2146 2147 // Now run through and replace the existing statepoints with new ones with 2148 // the live variables listed. We do not yet update uses of the values being 2149 // relocated. We have references to live variables that need to 2150 // survive to the last iteration of this loop. (By construction, the 2151 // previous statepoint can not be a live variable, thus we can and remove 2152 // the old statepoint calls as we go.) 2153 for (size_t i = 0; i < Records.size(); i++) 2154 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2155 2156 ToUpdate.clear(); // prevent accident use of invalid CallSites 2157 2158 for (auto &PR : Replacements) 2159 PR.doReplacement(); 2160 2161 Replacements.clear(); 2162 2163 for (auto &Info : Records) { 2164 // These live sets may contain state Value pointers, since we replaced calls 2165 // with operand bundles with calls wrapped in gc.statepoint, and some of 2166 // those calls may have been def'ing live gc pointers. Clear these out to 2167 // avoid accidentally using them. 2168 // 2169 // TODO: We should create a separate data structure that does not contain 2170 // these live sets, and migrate to using that data structure from this point 2171 // onward. 2172 Info.LiveSet.clear(); 2173 Info.PointerToBase.clear(); 2174 } 2175 2176 // Do all the fixups of the original live variables to their relocated selves 2177 SmallVector<Value *, 128> Live; 2178 for (size_t i = 0; i < Records.size(); i++) { 2179 PartiallyConstructedSafepointRecord &Info = Records[i]; 2180 2181 // We can't simply save the live set from the original insertion. One of 2182 // the live values might be the result of a call which needs a safepoint. 2183 // That Value* no longer exists and we need to use the new gc_result. 2184 // Thankfully, the live set is embedded in the statepoint (and updated), so 2185 // we just grab that. 2186 Statepoint Statepoint(Info.StatepointToken); 2187 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2188 Statepoint.gc_args_end()); 2189 #ifndef NDEBUG 2190 // Do some basic sanity checks on our liveness results before performing 2191 // relocation. Relocation can and will turn mistakes in liveness results 2192 // into non-sensical code which is must harder to debug. 2193 // TODO: It would be nice to test consistency as well 2194 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2195 "statepoint must be reachable or liveness is meaningless"); 2196 for (Value *V : Statepoint.gc_args()) { 2197 if (!isa<Instruction>(V)) 2198 // Non-instruction values trivial dominate all possible uses 2199 continue; 2200 auto *LiveInst = cast<Instruction>(V); 2201 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2202 "unreachable values should never be live"); 2203 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2204 "basic SSA liveness expectation violated by liveness analysis"); 2205 } 2206 #endif 2207 } 2208 unique_unsorted(Live); 2209 2210 #ifndef NDEBUG 2211 // sanity check 2212 for (auto *Ptr : Live) 2213 assert(isHandledGCPointerType(Ptr->getType()) && 2214 "must be a gc pointer type"); 2215 #endif 2216 2217 relocationViaAlloca(F, DT, Live, Records); 2218 return !Records.empty(); 2219 } 2220 2221 // Handles both return values and arguments for Functions and CallSites. 2222 template <typename AttrHolder> 2223 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2224 unsigned Index) { 2225 AttrBuilder R; 2226 if (AH.getDereferenceableBytes(Index)) 2227 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2228 AH.getDereferenceableBytes(Index))); 2229 if (AH.getDereferenceableOrNullBytes(Index)) 2230 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2231 AH.getDereferenceableOrNullBytes(Index))); 2232 if (AH.doesNotAlias(Index)) 2233 R.addAttribute(Attribute::NoAlias); 2234 2235 if (!R.empty()) 2236 AH.setAttributes(AH.getAttributes().removeAttributes( 2237 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2238 } 2239 2240 void 2241 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2242 LLVMContext &Ctx = F.getContext(); 2243 2244 for (Argument &A : F.args()) 2245 if (isa<PointerType>(A.getType())) 2246 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2247 2248 if (isa<PointerType>(F.getReturnType())) 2249 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2250 } 2251 2252 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2253 if (F.empty()) 2254 return; 2255 2256 LLVMContext &Ctx = F.getContext(); 2257 MDBuilder Builder(Ctx); 2258 2259 for (Instruction &I : instructions(F)) { 2260 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2261 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2262 bool IsImmutableTBAA = 2263 MD->getNumOperands() == 4 && 2264 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2265 2266 if (!IsImmutableTBAA) 2267 continue; // no work to do, MD_tbaa is already marked mutable 2268 2269 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2270 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2271 uint64_t Offset = 2272 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2273 2274 MDNode *MutableTBAA = 2275 Builder.createTBAAStructTagNode(Base, Access, Offset); 2276 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2277 } 2278 2279 if (CallSite CS = CallSite(&I)) { 2280 for (int i = 0, e = CS.arg_size(); i != e; i++) 2281 if (isa<PointerType>(CS.getArgument(i)->getType())) 2282 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); 2283 if (isa<PointerType>(CS.getType())) 2284 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2285 } 2286 } 2287 } 2288 2289 /// Returns true if this function should be rewritten by this pass. The main 2290 /// point of this function is as an extension point for custom logic. 2291 static bool shouldRewriteStatepointsIn(Function &F) { 2292 // TODO: This should check the GCStrategy 2293 if (F.hasGC()) { 2294 const auto &FunctionGCName = F.getGC(); 2295 const StringRef StatepointExampleName("statepoint-example"); 2296 const StringRef CoreCLRName("coreclr"); 2297 return (StatepointExampleName == FunctionGCName) || 2298 (CoreCLRName == FunctionGCName); 2299 } else 2300 return false; 2301 } 2302 2303 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2304 #ifndef NDEBUG 2305 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2306 "precondition!"); 2307 #endif 2308 2309 for (Function &F : M) 2310 stripNonValidAttributesFromPrototype(F); 2311 2312 for (Function &F : M) 2313 stripNonValidAttributesFromBody(F); 2314 } 2315 2316 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2317 // Nothing to do for declarations. 2318 if (F.isDeclaration() || F.empty()) 2319 return false; 2320 2321 // Policy choice says not to rewrite - the most common reason is that we're 2322 // compiling code without a GCStrategy. 2323 if (!shouldRewriteStatepointsIn(F)) 2324 return false; 2325 2326 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2327 TargetTransformInfo &TTI = 2328 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2329 2330 auto NeedsRewrite = [](Instruction &I) { 2331 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2332 return !callsGCLeafFunction(CS) && !isStatepoint(CS); 2333 return false; 2334 }; 2335 2336 // Gather all the statepoints which need rewritten. Be careful to only 2337 // consider those in reachable code since we need to ask dominance queries 2338 // when rewriting. We'll delete the unreachable ones in a moment. 2339 SmallVector<CallSite, 64> ParsePointNeeded; 2340 bool HasUnreachableStatepoint = false; 2341 for (Instruction &I : instructions(F)) { 2342 // TODO: only the ones with the flag set! 2343 if (NeedsRewrite(I)) { 2344 if (DT.isReachableFromEntry(I.getParent())) 2345 ParsePointNeeded.push_back(CallSite(&I)); 2346 else 2347 HasUnreachableStatepoint = true; 2348 } 2349 } 2350 2351 bool MadeChange = false; 2352 2353 // Delete any unreachable statepoints so that we don't have unrewritten 2354 // statepoints surviving this pass. This makes testing easier and the 2355 // resulting IR less confusing to human readers. Rather than be fancy, we 2356 // just reuse a utility function which removes the unreachable blocks. 2357 if (HasUnreachableStatepoint) 2358 MadeChange |= removeUnreachableBlocks(F); 2359 2360 // Return early if no work to do. 2361 if (ParsePointNeeded.empty()) 2362 return MadeChange; 2363 2364 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2365 // These are created by LCSSA. They have the effect of increasing the size 2366 // of liveness sets for no good reason. It may be harder to do this post 2367 // insertion since relocations and base phis can confuse things. 2368 for (BasicBlock &BB : F) 2369 if (BB.getUniquePredecessor()) { 2370 MadeChange = true; 2371 FoldSingleEntryPHINodes(&BB); 2372 } 2373 2374 // Before we start introducing relocations, we want to tweak the IR a bit to 2375 // avoid unfortunate code generation effects. The main example is that we 2376 // want to try to make sure the comparison feeding a branch is after any 2377 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2378 // values feeding a branch after relocation. This is semantically correct, 2379 // but results in extra register pressure since both the pre-relocation and 2380 // post-relocation copies must be available in registers. For code without 2381 // relocations this is handled elsewhere, but teaching the scheduler to 2382 // reverse the transform we're about to do would be slightly complex. 2383 // Note: This may extend the live range of the inputs to the icmp and thus 2384 // increase the liveset of any statepoint we move over. This is profitable 2385 // as long as all statepoints are in rare blocks. If we had in-register 2386 // lowering for live values this would be a much safer transform. 2387 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2388 if (auto *BI = dyn_cast<BranchInst>(TI)) 2389 if (BI->isConditional()) 2390 return dyn_cast<Instruction>(BI->getCondition()); 2391 // TODO: Extend this to handle switches 2392 return nullptr; 2393 }; 2394 for (BasicBlock &BB : F) { 2395 TerminatorInst *TI = BB.getTerminator(); 2396 if (auto *Cond = getConditionInst(TI)) 2397 // TODO: Handle more than just ICmps here. We should be able to move 2398 // most instructions without side effects or memory access. 2399 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2400 MadeChange = true; 2401 Cond->moveBefore(TI); 2402 } 2403 } 2404 2405 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2406 return MadeChange; 2407 } 2408 2409 // liveness computation via standard dataflow 2410 // ------------------------------------------------------------------- 2411 2412 // TODO: Consider using bitvectors for liveness, the set of potentially 2413 // interesting values should be small and easy to pre-compute. 2414 2415 /// Compute the live-in set for the location rbegin starting from 2416 /// the live-out set of the basic block 2417 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2418 BasicBlock::reverse_iterator rend, 2419 SetVector<Value *> &LiveTmp) { 2420 2421 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2422 Instruction *I = &*ritr; 2423 2424 // KILL/Def - Remove this definition from LiveIn 2425 LiveTmp.remove(I); 2426 2427 // Don't consider *uses* in PHI nodes, we handle their contribution to 2428 // predecessor blocks when we seed the LiveOut sets 2429 if (isa<PHINode>(I)) 2430 continue; 2431 2432 // USE - Add to the LiveIn set for this instruction 2433 for (Value *V : I->operands()) { 2434 assert(!isUnhandledGCPointerType(V->getType()) && 2435 "support for FCA unimplemented"); 2436 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2437 // The choice to exclude all things constant here is slightly subtle. 2438 // There are two independent reasons: 2439 // - We assume that things which are constant (from LLVM's definition) 2440 // do not move at runtime. For example, the address of a global 2441 // variable is fixed, even though it's contents may not be. 2442 // - Second, we can't disallow arbitrary inttoptr constants even 2443 // if the language frontend does. Optimization passes are free to 2444 // locally exploit facts without respect to global reachability. This 2445 // can create sections of code which are dynamically unreachable and 2446 // contain just about anything. (see constants.ll in tests) 2447 LiveTmp.insert(V); 2448 } 2449 } 2450 } 2451 } 2452 2453 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2454 2455 for (BasicBlock *Succ : successors(BB)) { 2456 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2457 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2458 PHINode *Phi = cast<PHINode>(&*I); 2459 Value *V = Phi->getIncomingValueForBlock(BB); 2460 assert(!isUnhandledGCPointerType(V->getType()) && 2461 "support for FCA unimplemented"); 2462 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2463 LiveTmp.insert(V); 2464 } 2465 } 2466 } 2467 } 2468 2469 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2470 SetVector<Value *> KillSet; 2471 for (Instruction &I : *BB) 2472 if (isHandledGCPointerType(I.getType())) 2473 KillSet.insert(&I); 2474 return KillSet; 2475 } 2476 2477 #ifndef NDEBUG 2478 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2479 /// sanity check for the liveness computation. 2480 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2481 TerminatorInst *TI, bool TermOkay = false) { 2482 for (Value *V : Live) { 2483 if (auto *I = dyn_cast<Instruction>(V)) { 2484 // The terminator can be a member of the LiveOut set. LLVM's definition 2485 // of instruction dominance states that V does not dominate itself. As 2486 // such, we need to special case this to allow it. 2487 if (TermOkay && TI == I) 2488 continue; 2489 assert(DT.dominates(I, TI) && 2490 "basic SSA liveness expectation violated by liveness analysis"); 2491 } 2492 } 2493 } 2494 2495 /// Check that all the liveness sets used during the computation of liveness 2496 /// obey basic SSA properties. This is useful for finding cases where we miss 2497 /// a def. 2498 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2499 BasicBlock &BB) { 2500 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2501 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2502 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2503 } 2504 #endif 2505 2506 static void computeLiveInValues(DominatorTree &DT, Function &F, 2507 GCPtrLivenessData &Data) { 2508 2509 SmallSetVector<BasicBlock *, 32> Worklist; 2510 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2511 // We use a SetVector so that we don't have duplicates in the worklist. 2512 Worklist.insert(pred_begin(BB), pred_end(BB)); 2513 }; 2514 auto NextItem = [&]() { 2515 BasicBlock *BB = Worklist.back(); 2516 Worklist.pop_back(); 2517 return BB; 2518 }; 2519 2520 // Seed the liveness for each individual block 2521 for (BasicBlock &BB : F) { 2522 Data.KillSet[&BB] = computeKillSet(&BB); 2523 Data.LiveSet[&BB].clear(); 2524 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2525 2526 #ifndef NDEBUG 2527 for (Value *Kill : Data.KillSet[&BB]) 2528 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2529 #endif 2530 2531 Data.LiveOut[&BB] = SetVector<Value *>(); 2532 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2533 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2534 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2535 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2536 if (!Data.LiveIn[&BB].empty()) 2537 AddPredsToWorklist(&BB); 2538 } 2539 2540 // Propagate that liveness until stable 2541 while (!Worklist.empty()) { 2542 BasicBlock *BB = NextItem(); 2543 2544 // Compute our new liveout set, then exit early if it hasn't changed 2545 // despite the contribution of our successor. 2546 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2547 const auto OldLiveOutSize = LiveOut.size(); 2548 for (BasicBlock *Succ : successors(BB)) { 2549 assert(Data.LiveIn.count(Succ)); 2550 LiveOut.set_union(Data.LiveIn[Succ]); 2551 } 2552 // assert OutLiveOut is a subset of LiveOut 2553 if (OldLiveOutSize == LiveOut.size()) { 2554 // If the sets are the same size, then we didn't actually add anything 2555 // when unioning our successors LiveIn Thus, the LiveIn of this block 2556 // hasn't changed. 2557 continue; 2558 } 2559 Data.LiveOut[BB] = LiveOut; 2560 2561 // Apply the effects of this basic block 2562 SetVector<Value *> LiveTmp = LiveOut; 2563 LiveTmp.set_union(Data.LiveSet[BB]); 2564 LiveTmp.set_subtract(Data.KillSet[BB]); 2565 2566 assert(Data.LiveIn.count(BB)); 2567 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2568 // assert: OldLiveIn is a subset of LiveTmp 2569 if (OldLiveIn.size() != LiveTmp.size()) { 2570 Data.LiveIn[BB] = LiveTmp; 2571 AddPredsToWorklist(BB); 2572 } 2573 } // while( !worklist.empty() ) 2574 2575 #ifndef NDEBUG 2576 // Sanity check our output against SSA properties. This helps catch any 2577 // missing kills during the above iteration. 2578 for (BasicBlock &BB : F) { 2579 checkBasicSSA(DT, Data, BB); 2580 } 2581 #endif 2582 } 2583 2584 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2585 StatepointLiveSetTy &Out) { 2586 2587 BasicBlock *BB = Inst->getParent(); 2588 2589 // Note: The copy is intentional and required 2590 assert(Data.LiveOut.count(BB)); 2591 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2592 2593 // We want to handle the statepoint itself oddly. It's 2594 // call result is not live (normal), nor are it's arguments 2595 // (unless they're used again later). This adjustment is 2596 // specifically what we need to relocate 2597 BasicBlock::reverse_iterator rend(Inst->getIterator()); 2598 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2599 LiveOut.remove(Inst); 2600 Out.insert(LiveOut.begin(), LiveOut.end()); 2601 } 2602 2603 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2604 CallSite CS, 2605 PartiallyConstructedSafepointRecord &Info) { 2606 Instruction *Inst = CS.getInstruction(); 2607 StatepointLiveSetTy Updated; 2608 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2609 2610 #ifndef NDEBUG 2611 DenseSet<Value *> Bases; 2612 for (auto KVPair : Info.PointerToBase) { 2613 Bases.insert(KVPair.second); 2614 } 2615 #endif 2616 // We may have base pointers which are now live that weren't before. We need 2617 // to update the PointerToBase structure to reflect this. 2618 for (auto V : Updated) 2619 if (Info.PointerToBase.insert(std::make_pair(V, V)).second) { 2620 assert(Bases.count(V) && "can't find base for unexpected live value"); 2621 continue; 2622 } 2623 2624 #ifndef NDEBUG 2625 for (auto V : Updated) { 2626 assert(Info.PointerToBase.count(V) && 2627 "must be able to find base for live value"); 2628 } 2629 #endif 2630 2631 // Remove any stale base mappings - this can happen since our liveness is 2632 // more precise then the one inherent in the base pointer analysis 2633 DenseSet<Value *> ToErase; 2634 for (auto KVPair : Info.PointerToBase) 2635 if (!Updated.count(KVPair.first)) 2636 ToErase.insert(KVPair.first); 2637 for (auto V : ToErase) 2638 Info.PointerToBase.erase(V); 2639 2640 #ifndef NDEBUG 2641 for (auto KVPair : Info.PointerToBase) 2642 assert(Updated.count(KVPair.first) && "record for non-live value"); 2643 #endif 2644 2645 Info.LiveSet = Updated; 2646 } 2647