xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 4d26f41f76c4f92023c02ec96ffbd02a6eb2c46d)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Rewrite call/invoke instructions so as to make potential relocations
10 // performed by the garbage collector explicit in the IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueHandle.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <set>
75 #include <string>
76 #include <utility>
77 #include <vector>
78 
79 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
80 
81 using namespace llvm;
82 
83 // Print the liveset found at the insert location
84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
85                                   cl::init(false));
86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
87                                       cl::init(false));
88 
89 // Print out the base pointers for debugging
90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
91                                        cl::init(false));
92 
93 // Cost threshold measuring when it is profitable to rematerialize value instead
94 // of relocating it
95 static cl::opt<unsigned>
96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
97                            cl::init(6));
98 
99 #ifdef EXPENSIVE_CHECKS
100 static bool ClobberNonLive = true;
101 #else
102 static bool ClobberNonLive = false;
103 #endif
104 
105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
106                                                   cl::location(ClobberNonLive),
107                                                   cl::Hidden);
108 
109 static cl::opt<bool>
110     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
111                                    cl::Hidden, cl::init(true));
112 
113 /// The IR fed into RewriteStatepointsForGC may have had attributes and
114 /// metadata implying dereferenceability that are no longer valid/correct after
115 /// RewriteStatepointsForGC has run. This is because semantically, after
116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
117 /// heap. stripNonValidData (conservatively) restores
118 /// correctness by erasing all attributes in the module that externally imply
119 /// dereferenceability. Similar reasoning also applies to the noalias
120 /// attributes and metadata. gc.statepoint can touch the entire heap including
121 /// noalias objects.
122 /// Apart from attributes and metadata, we also remove instructions that imply
123 /// constant physical memory: llvm.invariant.start.
124 static void stripNonValidData(Module &M);
125 
126 static bool shouldRewriteStatepointsIn(Function &F);
127 
128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
129                                                ModuleAnalysisManager &AM) {
130   bool Changed = false;
131   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
132   for (Function &F : M) {
133     // Nothing to do for declarations.
134     if (F.isDeclaration() || F.empty())
135       continue;
136 
137     // Policy choice says not to rewrite - the most common reason is that we're
138     // compiling code without a GCStrategy.
139     if (!shouldRewriteStatepointsIn(F))
140       continue;
141 
142     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
143     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
144     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
145     Changed |= runOnFunction(F, DT, TTI, TLI);
146   }
147   if (!Changed)
148     return PreservedAnalyses::all();
149 
150   // stripNonValidData asserts that shouldRewriteStatepointsIn
151   // returns true for at least one function in the module.  Since at least
152   // one function changed, we know that the precondition is satisfied.
153   stripNonValidData(M);
154 
155   PreservedAnalyses PA;
156   PA.preserve<TargetIRAnalysis>();
157   PA.preserve<TargetLibraryAnalysis>();
158   return PA;
159 }
160 
161 namespace {
162 
163 class RewriteStatepointsForGCLegacyPass : public ModulePass {
164   RewriteStatepointsForGC Impl;
165 
166 public:
167   static char ID; // Pass identification, replacement for typeid
168 
169   RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
170     initializeRewriteStatepointsForGCLegacyPassPass(
171         *PassRegistry::getPassRegistry());
172   }
173 
174   bool runOnModule(Module &M) override {
175     bool Changed = false;
176     for (Function &F : M) {
177       // Nothing to do for declarations.
178       if (F.isDeclaration() || F.empty())
179         continue;
180 
181       // Policy choice says not to rewrite - the most common reason is that
182       // we're compiling code without a GCStrategy.
183       if (!shouldRewriteStatepointsIn(F))
184         continue;
185 
186       TargetTransformInfo &TTI =
187           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
188       const TargetLibraryInfo &TLI =
189           getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
190       auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
191 
192       Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
193     }
194 
195     if (!Changed)
196       return false;
197 
198     // stripNonValidData asserts that shouldRewriteStatepointsIn
199     // returns true for at least one function in the module.  Since at least
200     // one function changed, we know that the precondition is satisfied.
201     stripNonValidData(M);
202     return true;
203   }
204 
205   void getAnalysisUsage(AnalysisUsage &AU) const override {
206     // We add and rewrite a bunch of instructions, but don't really do much
207     // else.  We could in theory preserve a lot more analyses here.
208     AU.addRequired<DominatorTreeWrapperPass>();
209     AU.addRequired<TargetTransformInfoWrapperPass>();
210     AU.addRequired<TargetLibraryInfoWrapperPass>();
211   }
212 };
213 
214 } // end anonymous namespace
215 
216 char RewriteStatepointsForGCLegacyPass::ID = 0;
217 
218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
219   return new RewriteStatepointsForGCLegacyPass();
220 }
221 
222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
223                       "rewrite-statepoints-for-gc",
224                       "Make relocations explicit at statepoints", false, false)
225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
228                     "rewrite-statepoints-for-gc",
229                     "Make relocations explicit at statepoints", false, false)
230 
231 namespace {
232 
233 struct GCPtrLivenessData {
234   /// Values defined in this block.
235   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
236 
237   /// Values used in this block (and thus live); does not included values
238   /// killed within this block.
239   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
240 
241   /// Values live into this basic block (i.e. used by any
242   /// instruction in this basic block or ones reachable from here)
243   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
244 
245   /// Values live out of this basic block (i.e. live into
246   /// any successor block)
247   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
248 };
249 
250 // The type of the internal cache used inside the findBasePointers family
251 // of functions.  From the callers perspective, this is an opaque type and
252 // should not be inspected.
253 //
254 // In the actual implementation this caches two relations:
255 // - The base relation itself (i.e. this pointer is based on that one)
256 // - The base defining value relation (i.e. before base_phi insertion)
257 // Generally, after the execution of a full findBasePointer call, only the
258 // base relation will remain.  Internally, we add a mixture of the two
259 // types, then update all the second type to the first type
260 using DefiningValueMapTy = MapVector<Value *, Value *>;
261 using StatepointLiveSetTy = SetVector<Value *>;
262 using RematerializedValueMapTy =
263     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
264 
265 struct PartiallyConstructedSafepointRecord {
266   /// The set of values known to be live across this safepoint
267   StatepointLiveSetTy LiveSet;
268 
269   /// Mapping from live pointers to a base-defining-value
270   MapVector<Value *, Value *> PointerToBase;
271 
272   /// The *new* gc.statepoint instruction itself.  This produces the token
273   /// that normal path gc.relocates and the gc.result are tied to.
274   GCStatepointInst *StatepointToken;
275 
276   /// Instruction to which exceptional gc relocates are attached
277   /// Makes it easier to iterate through them during relocationViaAlloca.
278   Instruction *UnwindToken;
279 
280   /// Record live values we are rematerialized instead of relocating.
281   /// They are not included into 'LiveSet' field.
282   /// Maps rematerialized copy to it's original value.
283   RematerializedValueMapTy RematerializedValues;
284 };
285 
286 } // end anonymous namespace
287 
288 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
289   Optional<OperandBundleUse> DeoptBundle =
290       Call->getOperandBundle(LLVMContext::OB_deopt);
291 
292   if (!DeoptBundle.hasValue()) {
293     assert(AllowStatepointWithNoDeoptInfo &&
294            "Found non-leaf call without deopt info!");
295     return None;
296   }
297 
298   return DeoptBundle.getValue().Inputs;
299 }
300 
301 /// Compute the live-in set for every basic block in the function
302 static void computeLiveInValues(DominatorTree &DT, Function &F,
303                                 GCPtrLivenessData &Data);
304 
305 /// Given results from the dataflow liveness computation, find the set of live
306 /// Values at a particular instruction.
307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
308                               StatepointLiveSetTy &out);
309 
310 // TODO: Once we can get to the GCStrategy, this becomes
311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
312 
313 static bool isGCPointerType(Type *T) {
314   if (auto *PT = dyn_cast<PointerType>(T))
315     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
316     // GC managed heap.  We know that a pointer into this heap needs to be
317     // updated and that no other pointer does.
318     return PT->getAddressSpace() == 1;
319   return false;
320 }
321 
322 // Return true if this type is one which a) is a gc pointer or contains a GC
323 // pointer and b) is of a type this code expects to encounter as a live value.
324 // (The insertion code will assert that a type which matches (a) and not (b)
325 // is not encountered.)
326 static bool isHandledGCPointerType(Type *T) {
327   // We fully support gc pointers
328   if (isGCPointerType(T))
329     return true;
330   // We partially support vectors of gc pointers. The code will assert if it
331   // can't handle something.
332   if (auto VT = dyn_cast<VectorType>(T))
333     if (isGCPointerType(VT->getElementType()))
334       return true;
335   return false;
336 }
337 
338 #ifndef NDEBUG
339 /// Returns true if this type contains a gc pointer whether we know how to
340 /// handle that type or not.
341 static bool containsGCPtrType(Type *Ty) {
342   if (isGCPointerType(Ty))
343     return true;
344   if (VectorType *VT = dyn_cast<VectorType>(Ty))
345     return isGCPointerType(VT->getScalarType());
346   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
347     return containsGCPtrType(AT->getElementType());
348   if (StructType *ST = dyn_cast<StructType>(Ty))
349     return llvm::any_of(ST->elements(), containsGCPtrType);
350   return false;
351 }
352 
353 // Returns true if this is a type which a) is a gc pointer or contains a GC
354 // pointer and b) is of a type which the code doesn't expect (i.e. first class
355 // aggregates).  Used to trip assertions.
356 static bool isUnhandledGCPointerType(Type *Ty) {
357   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
358 }
359 #endif
360 
361 // Return the name of the value suffixed with the provided value, or if the
362 // value didn't have a name, the default value specified.
363 static std::string suffixed_name_or(Value *V, StringRef Suffix,
364                                     StringRef DefaultName) {
365   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
366 }
367 
368 // Conservatively identifies any definitions which might be live at the
369 // given instruction. The  analysis is performed immediately before the
370 // given instruction. Values defined by that instruction are not considered
371 // live.  Values used by that instruction are considered live.
372 static void analyzeParsePointLiveness(
373     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
374     PartiallyConstructedSafepointRecord &Result) {
375   StatepointLiveSetTy LiveSet;
376   findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
377 
378   if (PrintLiveSet) {
379     dbgs() << "Live Variables:\n";
380     for (Value *V : LiveSet)
381       dbgs() << " " << V->getName() << " " << *V << "\n";
382   }
383   if (PrintLiveSetSize) {
384     dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n";
385     dbgs() << "Number live values: " << LiveSet.size() << "\n";
386   }
387   Result.LiveSet = LiveSet;
388 }
389 
390 // Returns true is V is a knownBaseResult.
391 static bool isKnownBaseResult(Value *V);
392 
393 // Returns true if V is a BaseResult that already exists in the IR, i.e. it is
394 // not created by the findBasePointers algorithm.
395 static bool isOriginalBaseResult(Value *V);
396 
397 namespace {
398 
399 /// A single base defining value - An immediate base defining value for an
400 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
401 /// For instructions which have multiple pointer [vector] inputs or that
402 /// transition between vector and scalar types, there is no immediate base
403 /// defining value.  The 'base defining value' for 'Def' is the transitive
404 /// closure of this relation stopping at the first instruction which has no
405 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
406 /// but it can also be an arbitrary derived pointer.
407 struct BaseDefiningValueResult {
408   /// Contains the value which is the base defining value.
409   Value * const BDV;
410 
411   /// True if the base defining value is also known to be an actual base
412   /// pointer.
413   const bool IsKnownBase;
414 
415   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
416     : BDV(BDV), IsKnownBase(IsKnownBase) {
417 #ifndef NDEBUG
418     // Check consistency between new and old means of checking whether a BDV is
419     // a base.
420     bool MustBeBase = isKnownBaseResult(BDV);
421     assert(!MustBeBase || MustBeBase == IsKnownBase);
422 #endif
423   }
424 };
425 
426 } // end anonymous namespace
427 
428 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
429 
430 /// Return a base defining value for the 'Index' element of the given vector
431 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
432 /// 'I'.  As an optimization, this method will try to determine when the
433 /// element is known to already be a base pointer.  If this can be established,
434 /// the second value in the returned pair will be true.  Note that either a
435 /// vector or a pointer typed value can be returned.  For the former, the
436 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
437 /// If the later, the return pointer is a BDV (or possibly a base) for the
438 /// particular element in 'I'.
439 static BaseDefiningValueResult
440 findBaseDefiningValueOfVector(Value *I) {
441   // Each case parallels findBaseDefiningValue below, see that code for
442   // detailed motivation.
443 
444   if (isa<Argument>(I))
445     // An incoming argument to the function is a base pointer
446     return BaseDefiningValueResult(I, true);
447 
448   if (isa<Constant>(I))
449     // Base of constant vector consists only of constant null pointers.
450     // For reasoning see similar case inside 'findBaseDefiningValue' function.
451     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
452                                    true);
453 
454   if (isa<LoadInst>(I))
455     return BaseDefiningValueResult(I, true);
456 
457   if (isa<InsertElementInst>(I))
458     // We don't know whether this vector contains entirely base pointers or
459     // not.  To be conservatively correct, we treat it as a BDV and will
460     // duplicate code as needed to construct a parallel vector of bases.
461     return BaseDefiningValueResult(I, false);
462 
463   if (isa<ShuffleVectorInst>(I))
464     // We don't know whether this vector contains entirely base pointers or
465     // not.  To be conservatively correct, we treat it as a BDV and will
466     // duplicate code as needed to construct a parallel vector of bases.
467     // TODO: There a number of local optimizations which could be applied here
468     // for particular sufflevector patterns.
469     return BaseDefiningValueResult(I, false);
470 
471   // The behavior of getelementptr instructions is the same for vector and
472   // non-vector data types.
473   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
474     return findBaseDefiningValue(GEP->getPointerOperand());
475 
476   // If the pointer comes through a bitcast of a vector of pointers to
477   // a vector of another type of pointer, then look through the bitcast
478   if (auto *BC = dyn_cast<BitCastInst>(I))
479     return findBaseDefiningValue(BC->getOperand(0));
480 
481   // We assume that functions in the source language only return base
482   // pointers.  This should probably be generalized via attributes to support
483   // both source language and internal functions.
484   if (isa<CallInst>(I) || isa<InvokeInst>(I))
485     return BaseDefiningValueResult(I, true);
486 
487   // A PHI or Select is a base defining value.  The outer findBasePointer
488   // algorithm is responsible for constructing a base value for this BDV.
489   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
490          "unknown vector instruction - no base found for vector element");
491   return BaseDefiningValueResult(I, false);
492 }
493 
494 /// Helper function for findBasePointer - Will return a value which either a)
495 /// defines the base pointer for the input, b) blocks the simple search
496 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
497 /// from pointer to vector type or back.
498 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
499   assert(I->getType()->isPtrOrPtrVectorTy() &&
500          "Illegal to ask for the base pointer of a non-pointer type");
501 
502   if (I->getType()->isVectorTy())
503     return findBaseDefiningValueOfVector(I);
504 
505   if (isa<Argument>(I))
506     // An incoming argument to the function is a base pointer
507     // We should have never reached here if this argument isn't an gc value
508     return BaseDefiningValueResult(I, true);
509 
510   if (isa<Constant>(I)) {
511     // We assume that objects with a constant base (e.g. a global) can't move
512     // and don't need to be reported to the collector because they are always
513     // live. Besides global references, all kinds of constants (e.g. undef,
514     // constant expressions, null pointers) can be introduced by the inliner or
515     // the optimizer, especially on dynamically dead paths.
516     // Here we treat all of them as having single null base. By doing this we
517     // trying to avoid problems reporting various conflicts in a form of
518     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
519     // See constant.ll file for relevant test cases.
520 
521     return BaseDefiningValueResult(
522         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
523   }
524 
525   if (CastInst *CI = dyn_cast<CastInst>(I)) {
526     Value *Def = CI->stripPointerCasts();
527     // If stripping pointer casts changes the address space there is an
528     // addrspacecast in between.
529     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
530                cast<PointerType>(CI->getType())->getAddressSpace() &&
531            "unsupported addrspacecast");
532     // If we find a cast instruction here, it means we've found a cast which is
533     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
534     // handle int->ptr conversion.
535     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
536     return findBaseDefiningValue(Def);
537   }
538 
539   if (isa<LoadInst>(I))
540     // The value loaded is an gc base itself
541     return BaseDefiningValueResult(I, true);
542 
543   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
544     // The base of this GEP is the base
545     return findBaseDefiningValue(GEP->getPointerOperand());
546 
547   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
548     switch (II->getIntrinsicID()) {
549     default:
550       // fall through to general call handling
551       break;
552     case Intrinsic::experimental_gc_statepoint:
553       llvm_unreachable("statepoints don't produce pointers");
554     case Intrinsic::experimental_gc_relocate:
555       // Rerunning safepoint insertion after safepoints are already
556       // inserted is not supported.  It could probably be made to work,
557       // but why are you doing this?  There's no good reason.
558       llvm_unreachable("repeat safepoint insertion is not supported");
559     case Intrinsic::gcroot:
560       // Currently, this mechanism hasn't been extended to work with gcroot.
561       // There's no reason it couldn't be, but I haven't thought about the
562       // implications much.
563       llvm_unreachable(
564           "interaction with the gcroot mechanism is not supported");
565     case Intrinsic::experimental_gc_get_pointer_base:
566       return findBaseDefiningValue(II->getOperand(0));
567     }
568   }
569   // We assume that functions in the source language only return base
570   // pointers.  This should probably be generalized via attributes to support
571   // both source language and internal functions.
572   if (isa<CallInst>(I) || isa<InvokeInst>(I))
573     return BaseDefiningValueResult(I, true);
574 
575   // TODO: I have absolutely no idea how to implement this part yet.  It's not
576   // necessarily hard, I just haven't really looked at it yet.
577   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
578 
579   if (isa<AtomicCmpXchgInst>(I))
580     // A CAS is effectively a atomic store and load combined under a
581     // predicate.  From the perspective of base pointers, we just treat it
582     // like a load.
583     return BaseDefiningValueResult(I, true);
584 
585   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
586                                    "binary ops which don't apply to pointers");
587 
588   // The aggregate ops.  Aggregates can either be in the heap or on the
589   // stack, but in either case, this is simply a field load.  As a result,
590   // this is a defining definition of the base just like a load is.
591   if (isa<ExtractValueInst>(I))
592     return BaseDefiningValueResult(I, true);
593 
594   // We should never see an insert vector since that would require we be
595   // tracing back a struct value not a pointer value.
596   assert(!isa<InsertValueInst>(I) &&
597          "Base pointer for a struct is meaningless");
598 
599   // This value might have been generated by findBasePointer() called when
600   // substituting gc.get.pointer.base() intrinsic.
601   bool IsKnownBase =
602       isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value");
603 
604   // An extractelement produces a base result exactly when it's input does.
605   // We may need to insert a parallel instruction to extract the appropriate
606   // element out of the base vector corresponding to the input. Given this,
607   // it's analogous to the phi and select case even though it's not a merge.
608   if (isa<ExtractElementInst>(I))
609     // Note: There a lot of obvious peephole cases here.  This are deliberately
610     // handled after the main base pointer inference algorithm to make writing
611     // test cases to exercise that code easier.
612     return BaseDefiningValueResult(I, IsKnownBase);
613 
614   // The last two cases here don't return a base pointer.  Instead, they
615   // return a value which dynamically selects from among several base
616   // derived pointers (each with it's own base potentially).  It's the job of
617   // the caller to resolve these.
618   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
619          "missing instruction case in findBaseDefiningValing");
620   return BaseDefiningValueResult(I, IsKnownBase);
621 }
622 
623 /// Returns the base defining value for this value.
624 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
625   Value *&Cached = Cache[I];
626   if (!Cached) {
627     Cached = findBaseDefiningValue(I).BDV;
628     LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
629                       << Cached->getName() << "\n");
630   }
631   assert(Cache[I] != nullptr);
632   return Cached;
633 }
634 
635 /// Return a base pointer for this value if known.  Otherwise, return it's
636 /// base defining value.
637 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
638   Value *Def = findBaseDefiningValueCached(I, Cache);
639   auto Found = Cache.find(Def);
640   if (Found != Cache.end()) {
641     // Either a base-of relation, or a self reference.  Caller must check.
642     return Found->second;
643   }
644   // Only a BDV available
645   return Def;
646 }
647 
648 /// This value is a base pointer that is not generated by RS4GC, i.e. it already
649 /// exists in the code.
650 static bool isOriginalBaseResult(Value *V) {
651   // no recursion possible
652   return !isa<PHINode>(V) && !isa<SelectInst>(V) &&
653          !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
654          !isa<ShuffleVectorInst>(V);
655 }
656 
657 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
658 /// is it known to be a base pointer?  Or do we need to continue searching.
659 static bool isKnownBaseResult(Value *V) {
660   if (isOriginalBaseResult(V))
661     return true;
662   if (isa<Instruction>(V) &&
663       cast<Instruction>(V)->getMetadata("is_base_value")) {
664     // This is a previously inserted base phi or select.  We know
665     // that this is a base value.
666     return true;
667   }
668 
669   // We need to keep searching
670   return false;
671 }
672 
673 // Returns true if First and Second values are both scalar or both vector.
674 static bool areBothVectorOrScalar(Value *First, Value *Second) {
675   return isa<VectorType>(First->getType()) ==
676          isa<VectorType>(Second->getType());
677 }
678 
679 namespace {
680 
681 /// Models the state of a single base defining value in the findBasePointer
682 /// algorithm for determining where a new instruction is needed to propagate
683 /// the base of this BDV.
684 class BDVState {
685 public:
686   enum StatusTy {
687      // Starting state of lattice
688      Unknown,
689      // Some specific base value -- does *not* mean that instruction
690      // propagates the base of the object
691      // ex: gep %arg, 16 -> %arg is the base value
692      Base,
693      // Need to insert a node to represent a merge.
694      Conflict
695   };
696 
697   BDVState() {
698     llvm_unreachable("missing state in map");
699   }
700 
701   explicit BDVState(Value *OriginalValue)
702     : OriginalValue(OriginalValue) {}
703   explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr)
704     : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) {
705     assert(Status != Base || BaseValue);
706   }
707 
708   StatusTy getStatus() const { return Status; }
709   Value *getOriginalValue() const { return OriginalValue; }
710   Value *getBaseValue() const { return BaseValue; }
711 
712   bool isBase() const { return getStatus() == Base; }
713   bool isUnknown() const { return getStatus() == Unknown; }
714   bool isConflict() const { return getStatus() == Conflict; }
715 
716   // Values of type BDVState form a lattice, and this function implements the
717   // meet
718   // operation.
719   void meet(const BDVState &Other) {
720     auto markConflict = [&]() {
721       Status = BDVState::Conflict;
722       BaseValue = nullptr;
723     };
724     // Conflict is a final state.
725     if (isConflict())
726       return;
727     // if we are not known - just take other state.
728     if (isUnknown()) {
729       Status = Other.getStatus();
730       BaseValue = Other.getBaseValue();
731       return;
732     }
733     // We are base.
734     assert(isBase() && "Unknown state");
735     // If other is unknown - just keep our state.
736     if (Other.isUnknown())
737       return;
738     // If other is conflict - it is a final state.
739     if (Other.isConflict())
740       return markConflict();
741     // Other is base as well.
742     assert(Other.isBase() && "Unknown state");
743     // If bases are different - Conflict.
744     if (getBaseValue() != Other.getBaseValue())
745       return markConflict();
746     // We are identical, do nothing.
747   }
748 
749   bool operator==(const BDVState &Other) const {
750     return OriginalValue == OriginalValue && BaseValue == Other.BaseValue &&
751       Status == Other.Status;
752   }
753 
754   bool operator!=(const BDVState &other) const { return !(*this == other); }
755 
756   LLVM_DUMP_METHOD
757   void dump() const {
758     print(dbgs());
759     dbgs() << '\n';
760   }
761 
762   void print(raw_ostream &OS) const {
763     switch (getStatus()) {
764     case Unknown:
765       OS << "U";
766       break;
767     case Base:
768       OS << "B";
769       break;
770     case Conflict:
771       OS << "C";
772       break;
773     }
774     OS << " (base " << getBaseValue() << " - "
775        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")"
776        << " for  "  << OriginalValue->getName() << ":";
777   }
778 
779 private:
780   AssertingVH<Value> OriginalValue; // instruction this state corresponds to
781   StatusTy Status = Unknown;
782   AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base.
783 };
784 
785 } // end anonymous namespace
786 
787 #ifndef NDEBUG
788 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
789   State.print(OS);
790   return OS;
791 }
792 #endif
793 
794 /// For a given value or instruction, figure out what base ptr its derived from.
795 /// For gc objects, this is simply itself.  On success, returns a value which is
796 /// the base pointer.  (This is reliable and can be used for relocation.)  On
797 /// failure, returns nullptr.
798 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
799   Value *Def = findBaseOrBDV(I, Cache);
800 
801   if (isKnownBaseResult(Def) && areBothVectorOrScalar(Def, I))
802     return Def;
803 
804   // Here's the rough algorithm:
805   // - For every SSA value, construct a mapping to either an actual base
806   //   pointer or a PHI which obscures the base pointer.
807   // - Construct a mapping from PHI to unknown TOP state.  Use an
808   //   optimistic algorithm to propagate base pointer information.  Lattice
809   //   looks like:
810   //   UNKNOWN
811   //   b1 b2 b3 b4
812   //   CONFLICT
813   //   When algorithm terminates, all PHIs will either have a single concrete
814   //   base or be in a conflict state.
815   // - For every conflict, insert a dummy PHI node without arguments.  Add
816   //   these to the base[Instruction] = BasePtr mapping.  For every
817   //   non-conflict, add the actual base.
818   //  - For every conflict, add arguments for the base[a] of each input
819   //   arguments.
820   //
821   // Note: A simpler form of this would be to add the conflict form of all
822   // PHIs without running the optimistic algorithm.  This would be
823   // analogous to pessimistic data flow and would likely lead to an
824   // overall worse solution.
825 
826 #ifndef NDEBUG
827   auto isExpectedBDVType = [](Value *BDV) {
828     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
829            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
830            isa<ShuffleVectorInst>(BDV);
831   };
832 #endif
833 
834   // Once populated, will contain a mapping from each potentially non-base BDV
835   // to a lattice value (described above) which corresponds to that BDV.
836   // We use the order of insertion (DFS over the def/use graph) to provide a
837   // stable deterministic ordering for visiting DenseMaps (which are unordered)
838   // below.  This is important for deterministic compilation.
839   MapVector<Value *, BDVState> States;
840 
841 #ifndef NDEBUG
842   auto VerifyStates = [&]() {
843     for (auto &Entry : States) {
844       assert(Entry.first == Entry.second.getOriginalValue());
845     }
846   };
847 #endif
848 
849   auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) {
850     if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
851       for (Value *InVal : PN->incoming_values())
852         F(InVal);
853     } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
854       F(SI->getTrueValue());
855       F(SI->getFalseValue());
856     } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
857       F(EE->getVectorOperand());
858     } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) {
859       F(IE->getOperand(0));
860       F(IE->getOperand(1));
861     } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) {
862       // For a canonical broadcast, ignore the undef argument
863       // (without this, we insert a parallel base shuffle for every broadcast)
864       F(SV->getOperand(0));
865       if (!SV->isZeroEltSplat())
866         F(SV->getOperand(1));
867     } else {
868       llvm_unreachable("unexpected BDV type");
869     }
870   };
871 
872 
873   // Recursively fill in all base defining values reachable from the initial
874   // one for which we don't already know a definite base value for
875   /* scope */ {
876     SmallVector<Value*, 16> Worklist;
877     Worklist.push_back(Def);
878     States.insert({Def, BDVState(Def)});
879     while (!Worklist.empty()) {
880       Value *Current = Worklist.pop_back_val();
881       assert(!isOriginalBaseResult(Current) && "why did it get added?");
882 
883       auto visitIncomingValue = [&](Value *InVal) {
884         Value *Base = findBaseOrBDV(InVal, Cache);
885         if (isKnownBaseResult(Base) && areBothVectorOrScalar(Base, InVal))
886           // Known bases won't need new instructions introduced and can be
887           // ignored safely. However, this can only be done when InVal and Base
888           // are both scalar or both vector. Otherwise, we need to find a
889           // correct BDV for InVal, by creating an entry in the lattice
890           // (States).
891           return;
892         assert(isExpectedBDVType(Base) && "the only non-base values "
893                "we see should be base defining values");
894         if (States.insert(std::make_pair(Base, BDVState(Base))).second)
895           Worklist.push_back(Base);
896       };
897 
898       visitBDVOperands(Current, visitIncomingValue);
899     }
900   }
901 
902 #ifndef NDEBUG
903   VerifyStates();
904   LLVM_DEBUG(dbgs() << "States after initialization:\n");
905   for (auto Pair : States) {
906     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
907   }
908 #endif
909 
910   // Iterate forward through the value graph pruning any node from the state
911   // list where all of the inputs are base pointers.  The purpose of this is to
912   // reuse existing values when the derived pointer we were asked to materialize
913   // a base pointer for happens to be a base pointer itself.  (Or a sub-graph
914   // feeding it does.)
915   SmallVector<Value *> ToRemove;
916   do {
917     ToRemove.clear();
918     for (auto Pair : States) {
919       Value *BDV = Pair.first;
920       auto canPruneInput = [&](Value *V) {
921         Value *BDV = findBaseOrBDV(V, Cache);
922         if (V->stripPointerCasts() != BDV)
923           return false;
924         // The assumption is that anything not in the state list is
925         // propagates a base pointer.
926         return States.count(BDV) == 0;
927       };
928 
929       bool CanPrune = true;
930       visitBDVOperands(BDV, [&](Value *Op) {
931         CanPrune = CanPrune && canPruneInput(Op);
932       });
933       if (CanPrune)
934         ToRemove.push_back(BDV);
935     }
936     for (Value *V : ToRemove) {
937       States.erase(V);
938       // Cache the fact V is it's own base for later usage.
939       Cache[V] = V;
940     }
941   } while (!ToRemove.empty());
942 
943   // Did we manage to prove that Def itself must be a base pointer?
944   if (!States.count(Def))
945     return Def;
946 
947   // Return a phi state for a base defining value.  We'll generate a new
948   // base state for known bases and expect to find a cached state otherwise.
949   auto GetStateForBDV = [&](Value *BaseValue, Value *Input) {
950     auto I = States.find(BaseValue);
951     if (I != States.end())
952       return I->second;
953     assert(areBothVectorOrScalar(BaseValue, Input));
954     return BDVState(BaseValue, BDVState::Base, BaseValue);
955   };
956 
957   bool Progress = true;
958   while (Progress) {
959 #ifndef NDEBUG
960     const size_t OldSize = States.size();
961 #endif
962     Progress = false;
963     // We're only changing values in this loop, thus safe to keep iterators.
964     // Since this is computing a fixed point, the order of visit does not
965     // effect the result.  TODO: We could use a worklist here and make this run
966     // much faster.
967     for (auto Pair : States) {
968       Value *BDV = Pair.first;
969       // Only values that do not have known bases or those that have differing
970       // type (scalar versus vector) from a possible known base should be in the
971       // lattice.
972       assert((!isKnownBaseResult(BDV) ||
973              !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) &&
974                  "why did it get added?");
975 
976       BDVState NewState(BDV);
977       visitBDVOperands(BDV, [&](Value *Op) {
978         Value *BDV = findBaseOrBDV(Op, Cache);
979         auto OpState = GetStateForBDV(BDV, Op);
980         NewState.meet(OpState);
981       });
982 
983       BDVState OldState = States[BDV];
984       if (OldState != NewState) {
985         Progress = true;
986         States[BDV] = NewState;
987       }
988     }
989 
990     assert(OldSize == States.size() &&
991            "fixed point shouldn't be adding any new nodes to state");
992   }
993 
994 #ifndef NDEBUG
995   VerifyStates();
996   LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
997   for (auto Pair : States) {
998     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
999   }
1000 #endif
1001 
1002   // Handle all instructions that have a vector BDV, but the instruction itself
1003   // is of scalar type.
1004   for (auto Pair : States) {
1005     Instruction *I = cast<Instruction>(Pair.first);
1006     BDVState State = Pair.second;
1007     auto *BaseValue = State.getBaseValue();
1008     // Only values that do not have known bases or those that have differing
1009     // type (scalar versus vector) from a possible known base should be in the
1010     // lattice.
1011     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, BaseValue)) &&
1012            "why did it get added?");
1013     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1014 
1015     if (!State.isBase() || !isa<VectorType>(BaseValue->getType()))
1016       continue;
1017     // extractelement instructions are a bit special in that we may need to
1018     // insert an extract even when we know an exact base for the instruction.
1019     // The problem is that we need to convert from a vector base to a scalar
1020     // base for the particular indice we're interested in.
1021     if (isa<ExtractElementInst>(I)) {
1022       auto *EE = cast<ExtractElementInst>(I);
1023       // TODO: In many cases, the new instruction is just EE itself.  We should
1024       // exploit this, but can't do it here since it would break the invariant
1025       // about the BDV not being known to be a base.
1026       auto *BaseInst = ExtractElementInst::Create(
1027           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
1028       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1029       States[I] = BDVState(I, BDVState::Base, BaseInst);
1030     } else if (!isa<VectorType>(I->getType())) {
1031       // We need to handle cases that have a vector base but the instruction is
1032       // a scalar type (these could be phis or selects or any instruction that
1033       // are of scalar type, but the base can be a vector type).  We
1034       // conservatively set this as conflict.  Setting the base value for these
1035       // conflicts is handled in the next loop which traverses States.
1036       States[I] = BDVState(I, BDVState::Conflict);
1037     }
1038   }
1039 
1040 #ifndef NDEBUG
1041   VerifyStates();
1042 #endif
1043 
1044   // Insert Phis for all conflicts
1045   // TODO: adjust naming patterns to avoid this order of iteration dependency
1046   for (auto Pair : States) {
1047     Instruction *I = cast<Instruction>(Pair.first);
1048     BDVState State = Pair.second;
1049     // Only values that do not have known bases or those that have differing
1050     // type (scalar versus vector) from a possible known base should be in the
1051     // lattice.
1052     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, State.getBaseValue())) &&
1053            "why did it get added?");
1054     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1055 
1056     // Since we're joining a vector and scalar base, they can never be the
1057     // same.  As a result, we should always see insert element having reached
1058     // the conflict state.
1059     assert(!isa<InsertElementInst>(I) || State.isConflict());
1060 
1061     if (!State.isConflict())
1062       continue;
1063 
1064     auto getMangledName = [](Instruction *I) -> std::string {
1065       if (isa<PHINode>(I)) {
1066         return suffixed_name_or(I, ".base", "base_phi");
1067       } else if (isa<SelectInst>(I)) {
1068         return suffixed_name_or(I, ".base", "base_select");
1069       } else if (isa<ExtractElementInst>(I)) {
1070         return suffixed_name_or(I, ".base", "base_ee");
1071       } else if (isa<InsertElementInst>(I)) {
1072         return suffixed_name_or(I, ".base", "base_ie");
1073       } else {
1074         return suffixed_name_or(I, ".base", "base_sv");
1075       }
1076     };
1077 
1078     Instruction *BaseInst = I->clone();
1079     BaseInst->insertBefore(I);
1080     BaseInst->setName(getMangledName(I));
1081     // Add metadata marking this as a base value
1082     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1083     States[I] = BDVState(I, BDVState::Conflict, BaseInst);
1084   }
1085 
1086 #ifndef NDEBUG
1087   VerifyStates();
1088 #endif
1089 
1090   // Returns a instruction which produces the base pointer for a given
1091   // instruction.  The instruction is assumed to be an input to one of the BDVs
1092   // seen in the inference algorithm above.  As such, we must either already
1093   // know it's base defining value is a base, or have inserted a new
1094   // instruction to propagate the base of it's BDV and have entered that newly
1095   // introduced instruction into the state table.  In either case, we are
1096   // assured to be able to determine an instruction which produces it's base
1097   // pointer.
1098   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1099     Value *BDV = findBaseOrBDV(Input, Cache);
1100     Value *Base = nullptr;
1101     if (!States.count(BDV)) {
1102       assert(areBothVectorOrScalar(BDV, Input));
1103       Base = BDV;
1104     } else {
1105       // Either conflict or base.
1106       assert(States.count(BDV));
1107       Base = States[BDV].getBaseValue();
1108     }
1109     assert(Base && "Can't be null");
1110     // The cast is needed since base traversal may strip away bitcasts
1111     if (Base->getType() != Input->getType() && InsertPt)
1112       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1113     return Base;
1114   };
1115 
1116   // Fixup all the inputs of the new PHIs.  Visit order needs to be
1117   // deterministic and predictable because we're naming newly created
1118   // instructions.
1119   for (auto Pair : States) {
1120     Instruction *BDV = cast<Instruction>(Pair.first);
1121     BDVState State = Pair.second;
1122 
1123     // Only values that do not have known bases or those that have differing
1124     // type (scalar versus vector) from a possible known base should be in the
1125     // lattice.
1126     assert((!isKnownBaseResult(BDV) ||
1127             !areBothVectorOrScalar(BDV, State.getBaseValue())) &&
1128            "why did it get added?");
1129     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1130     if (!State.isConflict())
1131       continue;
1132 
1133     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1134       PHINode *PN = cast<PHINode>(BDV);
1135       const unsigned NumPHIValues = PN->getNumIncomingValues();
1136 
1137       // The IR verifier requires phi nodes with multiple entries from the
1138       // same basic block to have the same incoming value for each of those
1139       // entries.  Since we're inserting bitcasts in the loop, make sure we
1140       // do so at least once per incoming block.
1141       DenseMap<BasicBlock *, Value*> BlockToValue;
1142       for (unsigned i = 0; i < NumPHIValues; i++) {
1143         Value *InVal = PN->getIncomingValue(i);
1144         BasicBlock *InBB = PN->getIncomingBlock(i);
1145         if (!BlockToValue.count(InBB))
1146           BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator());
1147         else {
1148 #ifndef NDEBUG
1149           Value *OldBase = BlockToValue[InBB];
1150           Value *Base = getBaseForInput(InVal, nullptr);
1151           // In essence this assert states: the only way two values
1152           // incoming from the same basic block may be different is by
1153           // being different bitcasts of the same value.  A cleanup
1154           // that remains TODO is changing findBaseOrBDV to return an
1155           // llvm::Value of the correct type (and still remain pure).
1156           // This will remove the need to add bitcasts.
1157           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1158                  "Sanity -- findBaseOrBDV should be pure!");
1159 #endif
1160         }
1161         Value *Base = BlockToValue[InBB];
1162         BasePHI->setIncomingValue(i, Base);
1163       }
1164     } else if (SelectInst *BaseSI =
1165                    dyn_cast<SelectInst>(State.getBaseValue())) {
1166       SelectInst *SI = cast<SelectInst>(BDV);
1167 
1168       // Find the instruction which produces the base for each input.
1169       // We may need to insert a bitcast.
1170       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1171       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1172     } else if (auto *BaseEE =
1173                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1174       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1175       // Find the instruction which produces the base for each input.  We may
1176       // need to insert a bitcast.
1177       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1178     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1179       auto *BdvIE = cast<InsertElementInst>(BDV);
1180       auto UpdateOperand = [&](int OperandIdx) {
1181         Value *InVal = BdvIE->getOperand(OperandIdx);
1182         Value *Base = getBaseForInput(InVal, BaseIE);
1183         BaseIE->setOperand(OperandIdx, Base);
1184       };
1185       UpdateOperand(0); // vector operand
1186       UpdateOperand(1); // scalar operand
1187     } else {
1188       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1189       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1190       auto UpdateOperand = [&](int OperandIdx) {
1191         Value *InVal = BdvSV->getOperand(OperandIdx);
1192         Value *Base = getBaseForInput(InVal, BaseSV);
1193         BaseSV->setOperand(OperandIdx, Base);
1194       };
1195       UpdateOperand(0); // vector operand
1196       if (!BdvSV->isZeroEltSplat())
1197         UpdateOperand(1); // vector operand
1198       else {
1199         // Never read, so just use undef
1200         Value *InVal = BdvSV->getOperand(1);
1201         BaseSV->setOperand(1, UndefValue::get(InVal->getType()));
1202       }
1203     }
1204   }
1205 
1206 #ifndef NDEBUG
1207   VerifyStates();
1208 #endif
1209 
1210   // Cache all of our results so we can cheaply reuse them
1211   // NOTE: This is actually two caches: one of the base defining value
1212   // relation and one of the base pointer relation!  FIXME
1213   for (auto Pair : States) {
1214     auto *BDV = Pair.first;
1215     Value *Base = Pair.second.getBaseValue();
1216     assert(BDV && Base);
1217     // Only values that do not have known bases or those that have differing
1218     // type (scalar versus vector) from a possible known base should be in the
1219     // lattice.
1220     assert((!isKnownBaseResult(BDV) || !areBothVectorOrScalar(BDV, Base)) &&
1221            "why did it get added?");
1222 
1223     LLVM_DEBUG(
1224         dbgs() << "Updating base value cache"
1225                << " for: " << BDV->getName() << " from: "
1226                << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1227                << " to: " << Base->getName() << "\n");
1228 
1229     Cache[BDV] = Base;
1230   }
1231   assert(Cache.count(Def));
1232   return Cache[Def];
1233 }
1234 
1235 // For a set of live pointers (base and/or derived), identify the base
1236 // pointer of the object which they are derived from.  This routine will
1237 // mutate the IR graph as needed to make the 'base' pointer live at the
1238 // definition site of 'derived'.  This ensures that any use of 'derived' can
1239 // also use 'base'.  This may involve the insertion of a number of
1240 // additional PHI nodes.
1241 //
1242 // preconditions: live is a set of pointer type Values
1243 //
1244 // side effects: may insert PHI nodes into the existing CFG, will preserve
1245 // CFG, will not remove or mutate any existing nodes
1246 //
1247 // post condition: PointerToBase contains one (derived, base) pair for every
1248 // pointer in live.  Note that derived can be equal to base if the original
1249 // pointer was a base pointer.
1250 static void
1251 findBasePointers(const StatepointLiveSetTy &live,
1252                  MapVector<Value *, Value *> &PointerToBase,
1253                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1254   for (Value *ptr : live) {
1255     Value *base = findBasePointer(ptr, DVCache);
1256     assert(base && "failed to find base pointer");
1257     PointerToBase[ptr] = base;
1258     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1259             DT->dominates(cast<Instruction>(base)->getParent(),
1260                           cast<Instruction>(ptr)->getParent())) &&
1261            "The base we found better dominate the derived pointer");
1262   }
1263 }
1264 
1265 /// Find the required based pointers (and adjust the live set) for the given
1266 /// parse point.
1267 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1268                              CallBase *Call,
1269                              PartiallyConstructedSafepointRecord &result) {
1270   MapVector<Value *, Value *> PointerToBase;
1271   StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet;
1272   // We assume that all pointers passed to deopt are base pointers; as an
1273   // optimization, we can use this to avoid seperately materializing the base
1274   // pointer graph.  This is only relevant since we're very conservative about
1275   // generating new conflict nodes during base pointer insertion.  If we were
1276   // smarter there, this would be irrelevant.
1277   if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt))
1278     for (Value *V : Opt->Inputs) {
1279       if (!PotentiallyDerivedPointers.count(V))
1280         continue;
1281       PotentiallyDerivedPointers.remove(V);
1282       PointerToBase[V] = V;
1283     }
1284   findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache);
1285 
1286   if (PrintBasePointers) {
1287     errs() << "Base Pairs (w/o Relocation):\n";
1288     for (auto &Pair : PointerToBase) {
1289       errs() << " derived ";
1290       Pair.first->printAsOperand(errs(), false);
1291       errs() << " base ";
1292       Pair.second->printAsOperand(errs(), false);
1293       errs() << "\n";;
1294     }
1295   }
1296 
1297   result.PointerToBase = PointerToBase;
1298 }
1299 
1300 /// Given an updated version of the dataflow liveness results, update the
1301 /// liveset and base pointer maps for the call site CS.
1302 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1303                                   CallBase *Call,
1304                                   PartiallyConstructedSafepointRecord &result);
1305 
1306 static void recomputeLiveInValues(
1307     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1308     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1309   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1310   // again.  The old values are still live and will help it stabilize quickly.
1311   GCPtrLivenessData RevisedLivenessData;
1312   computeLiveInValues(DT, F, RevisedLivenessData);
1313   for (size_t i = 0; i < records.size(); i++) {
1314     struct PartiallyConstructedSafepointRecord &info = records[i];
1315     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1316   }
1317 }
1318 
1319 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1320 // no uses of the original value / return value between the gc.statepoint and
1321 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1322 // starting one of the successor blocks.  We also need to be able to insert the
1323 // gc.relocates only on the path which goes through the statepoint.  We might
1324 // need to split an edge to make this possible.
1325 static BasicBlock *
1326 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1327                             DominatorTree &DT) {
1328   BasicBlock *Ret = BB;
1329   if (!BB->getUniquePredecessor())
1330     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1331 
1332   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1333   // from it
1334   FoldSingleEntryPHINodes(Ret);
1335   assert(!isa<PHINode>(Ret->begin()) &&
1336          "All PHI nodes should have been removed!");
1337 
1338   // At this point, we can safely insert a gc.relocate or gc.result as the first
1339   // instruction in Ret if needed.
1340   return Ret;
1341 }
1342 
1343 // List of all function attributes which must be stripped when lowering from
1344 // abstract machine model to physical machine model.  Essentially, these are
1345 // all the effects a safepoint might have which we ignored in the abstract
1346 // machine model for purposes of optimization.  We have to strip these on
1347 // both function declarations and call sites.
1348 static constexpr Attribute::AttrKind FnAttrsToStrip[] =
1349   {Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly,
1350    Attribute::ArgMemOnly, Attribute::InaccessibleMemOnly,
1351    Attribute::InaccessibleMemOrArgMemOnly,
1352    Attribute::NoSync, Attribute::NoFree};
1353 
1354 // List of all parameter and return attributes which must be stripped when
1355 // lowering from the abstract machine model.  Note that we list attributes
1356 // here which aren't valid as return attributes, that is okay.  There are
1357 // also some additional attributes with arguments which are handled
1358 // explicitly and are not in this list.
1359 static constexpr Attribute::AttrKind ParamAttrsToStrip[] =
1360   {Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly,
1361    Attribute::NoAlias, Attribute::NoFree};
1362 
1363 
1364 // Create new attribute set containing only attributes which can be transferred
1365 // from original call to the safepoint.
1366 static AttributeList legalizeCallAttributes(LLVMContext &Ctx,
1367                                             AttributeList AL) {
1368   if (AL.isEmpty())
1369     return AL;
1370 
1371   // Remove the readonly, readnone, and statepoint function attributes.
1372   AttrBuilder FnAttrs = AL.getFnAttributes();
1373   for (auto Attr : FnAttrsToStrip)
1374     FnAttrs.removeAttribute(Attr);
1375 
1376   for (Attribute A : AL.getFnAttributes()) {
1377     if (isStatepointDirectiveAttr(A))
1378       FnAttrs.remove(A);
1379   }
1380 
1381   // Just skip parameter and return attributes for now
1382   return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1383                             AttributeSet::get(Ctx, FnAttrs));
1384 }
1385 
1386 /// Helper function to place all gc relocates necessary for the given
1387 /// statepoint.
1388 /// Inputs:
1389 ///   liveVariables - list of variables to be relocated.
1390 ///   basePtrs - base pointers.
1391 ///   statepointToken - statepoint instruction to which relocates should be
1392 ///   bound.
1393 ///   Builder - Llvm IR builder to be used to construct new calls.
1394 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1395                               ArrayRef<Value *> BasePtrs,
1396                               Instruction *StatepointToken,
1397                               IRBuilder<> &Builder) {
1398   if (LiveVariables.empty())
1399     return;
1400 
1401   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1402     auto ValIt = llvm::find(LiveVec, Val);
1403     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1404     size_t Index = std::distance(LiveVec.begin(), ValIt);
1405     assert(Index < LiveVec.size() && "Bug in std::find?");
1406     return Index;
1407   };
1408   Module *M = StatepointToken->getModule();
1409 
1410   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1411   // element type is i8 addrspace(1)*). We originally generated unique
1412   // declarations for each pointer type, but this proved problematic because
1413   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1414   // towards a single unified pointer type anyways, we can just cast everything
1415   // to an i8* of the right address space.  A bitcast is added later to convert
1416   // gc_relocate to the actual value's type.
1417   auto getGCRelocateDecl = [&] (Type *Ty) {
1418     assert(isHandledGCPointerType(Ty));
1419     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1420     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1421     if (auto *VT = dyn_cast<VectorType>(Ty))
1422       NewTy = FixedVectorType::get(NewTy,
1423                                    cast<FixedVectorType>(VT)->getNumElements());
1424     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1425                                      {NewTy});
1426   };
1427 
1428   // Lazily populated map from input types to the canonicalized form mentioned
1429   // in the comment above.  This should probably be cached somewhere more
1430   // broadly.
1431   DenseMap<Type *, Function *> TypeToDeclMap;
1432 
1433   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1434     // Generate the gc.relocate call and save the result
1435     Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i]));
1436     Value *LiveIdx = Builder.getInt32(i);
1437 
1438     Type *Ty = LiveVariables[i]->getType();
1439     if (!TypeToDeclMap.count(Ty))
1440       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1441     Function *GCRelocateDecl = TypeToDeclMap[Ty];
1442 
1443     // only specify a debug name if we can give a useful one
1444     CallInst *Reloc = Builder.CreateCall(
1445         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1446         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1447     // Trick CodeGen into thinking there are lots of free registers at this
1448     // fake call.
1449     Reloc->setCallingConv(CallingConv::Cold);
1450   }
1451 }
1452 
1453 namespace {
1454 
1455 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1456 /// avoids having to worry about keeping around dangling pointers to Values.
1457 class DeferredReplacement {
1458   AssertingVH<Instruction> Old;
1459   AssertingVH<Instruction> New;
1460   bool IsDeoptimize = false;
1461 
1462   DeferredReplacement() = default;
1463 
1464 public:
1465   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1466     assert(Old != New && Old && New &&
1467            "Cannot RAUW equal values or to / from null!");
1468 
1469     DeferredReplacement D;
1470     D.Old = Old;
1471     D.New = New;
1472     return D;
1473   }
1474 
1475   static DeferredReplacement createDelete(Instruction *ToErase) {
1476     DeferredReplacement D;
1477     D.Old = ToErase;
1478     return D;
1479   }
1480 
1481   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1482 #ifndef NDEBUG
1483     auto *F = cast<CallInst>(Old)->getCalledFunction();
1484     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1485            "Only way to construct a deoptimize deferred replacement");
1486 #endif
1487     DeferredReplacement D;
1488     D.Old = Old;
1489     D.IsDeoptimize = true;
1490     return D;
1491   }
1492 
1493   /// Does the task represented by this instance.
1494   void doReplacement() {
1495     Instruction *OldI = Old;
1496     Instruction *NewI = New;
1497 
1498     assert(OldI != NewI && "Disallowed at construction?!");
1499     assert((!IsDeoptimize || !New) &&
1500            "Deoptimize intrinsics are not replaced!");
1501 
1502     Old = nullptr;
1503     New = nullptr;
1504 
1505     if (NewI)
1506       OldI->replaceAllUsesWith(NewI);
1507 
1508     if (IsDeoptimize) {
1509       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1510       // not necessarily be followed by the matching return.
1511       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1512       new UnreachableInst(RI->getContext(), RI);
1513       RI->eraseFromParent();
1514     }
1515 
1516     OldI->eraseFromParent();
1517   }
1518 };
1519 
1520 } // end anonymous namespace
1521 
1522 static StringRef getDeoptLowering(CallBase *Call) {
1523   const char *DeoptLowering = "deopt-lowering";
1524   if (Call->hasFnAttr(DeoptLowering)) {
1525     // FIXME: Calls have a *really* confusing interface around attributes
1526     // with values.
1527     const AttributeList &CSAS = Call->getAttributes();
1528     if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1529       return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1530           .getValueAsString();
1531     Function *F = Call->getCalledFunction();
1532     assert(F && F->hasFnAttribute(DeoptLowering));
1533     return F->getFnAttribute(DeoptLowering).getValueAsString();
1534   }
1535   return "live-through";
1536 }
1537 
1538 static void
1539 makeStatepointExplicitImpl(CallBase *Call, /* to replace */
1540                            const SmallVectorImpl<Value *> &BasePtrs,
1541                            const SmallVectorImpl<Value *> &LiveVariables,
1542                            PartiallyConstructedSafepointRecord &Result,
1543                            std::vector<DeferredReplacement> &Replacements) {
1544   assert(BasePtrs.size() == LiveVariables.size());
1545 
1546   // Then go ahead and use the builder do actually do the inserts.  We insert
1547   // immediately before the previous instruction under the assumption that all
1548   // arguments will be available here.  We can't insert afterwards since we may
1549   // be replacing a terminator.
1550   IRBuilder<> Builder(Call);
1551 
1552   ArrayRef<Value *> GCArgs(LiveVariables);
1553   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1554   uint32_t NumPatchBytes = 0;
1555   uint32_t Flags = uint32_t(StatepointFlags::None);
1556 
1557   SmallVector<Value *, 8> CallArgs(Call->args());
1558   Optional<ArrayRef<Use>> DeoptArgs;
1559   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt))
1560     DeoptArgs = Bundle->Inputs;
1561   Optional<ArrayRef<Use>> TransitionArgs;
1562   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
1563     TransitionArgs = Bundle->Inputs;
1564     // TODO: This flag no longer serves a purpose and can be removed later
1565     Flags |= uint32_t(StatepointFlags::GCTransition);
1566   }
1567 
1568   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1569   // with a return value, we lower then as never returning calls to
1570   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1571   bool IsDeoptimize = false;
1572 
1573   StatepointDirectives SD =
1574       parseStatepointDirectivesFromAttrs(Call->getAttributes());
1575   if (SD.NumPatchBytes)
1576     NumPatchBytes = *SD.NumPatchBytes;
1577   if (SD.StatepointID)
1578     StatepointID = *SD.StatepointID;
1579 
1580   // Pass through the requested lowering if any.  The default is live-through.
1581   StringRef DeoptLowering = getDeoptLowering(Call);
1582   if (DeoptLowering.equals("live-in"))
1583     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1584   else {
1585     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1586   }
1587 
1588   Value *CallTarget = Call->getCalledOperand();
1589   if (Function *F = dyn_cast<Function>(CallTarget)) {
1590     auto IID = F->getIntrinsicID();
1591     if (IID == Intrinsic::experimental_deoptimize) {
1592       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1593       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1594       // verifier does not allow taking the address of an intrinsic function.
1595 
1596       SmallVector<Type *, 8> DomainTy;
1597       for (Value *Arg : CallArgs)
1598         DomainTy.push_back(Arg->getType());
1599       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1600                                     /* isVarArg = */ false);
1601 
1602       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1603       // calls to @llvm.experimental.deoptimize with different argument types in
1604       // the same module.  This is fine -- we assume the frontend knew what it
1605       // was doing when generating this kind of IR.
1606       CallTarget = F->getParent()
1607                        ->getOrInsertFunction("__llvm_deoptimize", FTy)
1608                        .getCallee();
1609 
1610       IsDeoptimize = true;
1611     } else if (IID == Intrinsic::memcpy_element_unordered_atomic ||
1612                IID == Intrinsic::memmove_element_unordered_atomic) {
1613       // Unordered atomic memcpy and memmove intrinsics which are not explicitly
1614       // marked as "gc-leaf-function" should be lowered in a GC parseable way.
1615       // Specifically, these calls should be lowered to the
1616       // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols.
1617       // Similarly to __llvm_deoptimize we want to resolve this now, since the
1618       // verifier does not allow taking the address of an intrinsic function.
1619       //
1620       // Moreover we need to shuffle the arguments for the call in order to
1621       // accommodate GC. The underlying source and destination objects might be
1622       // relocated during copy operation should the GC occur. To relocate the
1623       // derived source and destination pointers the implementation of the
1624       // intrinsic should know the corresponding base pointers.
1625       //
1626       // To make the base pointers available pass them explicitly as arguments:
1627       //   memcpy(dest_derived, source_derived, ...) =>
1628       //   memcpy(dest_base, dest_offset, source_base, source_offset, ...)
1629       auto &Context = Call->getContext();
1630       auto &DL = Call->getModule()->getDataLayout();
1631       auto GetBaseAndOffset = [&](Value *Derived) {
1632         assert(Result.PointerToBase.count(Derived));
1633         unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
1634         unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
1635         Value *Base = Result.PointerToBase.find(Derived)->second;
1636         Value *Base_int = Builder.CreatePtrToInt(
1637             Base, Type::getIntNTy(Context, IntPtrSize));
1638         Value *Derived_int = Builder.CreatePtrToInt(
1639             Derived, Type::getIntNTy(Context, IntPtrSize));
1640         return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int));
1641       };
1642 
1643       auto *Dest = CallArgs[0];
1644       Value *DestBase, *DestOffset;
1645       std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest);
1646 
1647       auto *Source = CallArgs[1];
1648       Value *SourceBase, *SourceOffset;
1649       std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source);
1650 
1651       auto *LengthInBytes = CallArgs[2];
1652       auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]);
1653 
1654       CallArgs.clear();
1655       CallArgs.push_back(DestBase);
1656       CallArgs.push_back(DestOffset);
1657       CallArgs.push_back(SourceBase);
1658       CallArgs.push_back(SourceOffset);
1659       CallArgs.push_back(LengthInBytes);
1660 
1661       SmallVector<Type *, 8> DomainTy;
1662       for (Value *Arg : CallArgs)
1663         DomainTy.push_back(Arg->getType());
1664       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1665                                     /* isVarArg = */ false);
1666 
1667       auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) {
1668         uint64_t ElementSize = ElementSizeCI->getZExtValue();
1669         if (IID == Intrinsic::memcpy_element_unordered_atomic) {
1670           switch (ElementSize) {
1671           case 1:
1672             return "__llvm_memcpy_element_unordered_atomic_safepoint_1";
1673           case 2:
1674             return "__llvm_memcpy_element_unordered_atomic_safepoint_2";
1675           case 4:
1676             return "__llvm_memcpy_element_unordered_atomic_safepoint_4";
1677           case 8:
1678             return "__llvm_memcpy_element_unordered_atomic_safepoint_8";
1679           case 16:
1680             return "__llvm_memcpy_element_unordered_atomic_safepoint_16";
1681           default:
1682             llvm_unreachable("unexpected element size!");
1683           }
1684         }
1685         assert(IID == Intrinsic::memmove_element_unordered_atomic);
1686         switch (ElementSize) {
1687         case 1:
1688           return "__llvm_memmove_element_unordered_atomic_safepoint_1";
1689         case 2:
1690           return "__llvm_memmove_element_unordered_atomic_safepoint_2";
1691         case 4:
1692           return "__llvm_memmove_element_unordered_atomic_safepoint_4";
1693         case 8:
1694           return "__llvm_memmove_element_unordered_atomic_safepoint_8";
1695         case 16:
1696           return "__llvm_memmove_element_unordered_atomic_safepoint_16";
1697         default:
1698           llvm_unreachable("unexpected element size!");
1699         }
1700       };
1701 
1702       CallTarget =
1703           F->getParent()
1704               ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy)
1705               .getCallee();
1706     }
1707   }
1708 
1709   // Create the statepoint given all the arguments
1710   GCStatepointInst *Token = nullptr;
1711   if (auto *CI = dyn_cast<CallInst>(Call)) {
1712     CallInst *SPCall = Builder.CreateGCStatepointCall(
1713         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1714         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1715 
1716     SPCall->setTailCallKind(CI->getTailCallKind());
1717     SPCall->setCallingConv(CI->getCallingConv());
1718 
1719     // Currently we will fail on parameter attributes and on certain
1720     // function attributes.  In case if we can handle this set of attributes -
1721     // set up function attrs directly on statepoint and return attrs later for
1722     // gc_result intrinsic.
1723     SPCall->setAttributes(
1724         legalizeCallAttributes(CI->getContext(), CI->getAttributes()));
1725 
1726     Token = cast<GCStatepointInst>(SPCall);
1727 
1728     // Put the following gc_result and gc_relocate calls immediately after the
1729     // the old call (which we're about to delete)
1730     assert(CI->getNextNode() && "Not a terminator, must have next!");
1731     Builder.SetInsertPoint(CI->getNextNode());
1732     Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
1733   } else {
1734     auto *II = cast<InvokeInst>(Call);
1735 
1736     // Insert the new invoke into the old block.  We'll remove the old one in a
1737     // moment at which point this will become the new terminator for the
1738     // original block.
1739     InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
1740         StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
1741         II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
1742         "statepoint_token");
1743 
1744     SPInvoke->setCallingConv(II->getCallingConv());
1745 
1746     // Currently we will fail on parameter attributes and on certain
1747     // function attributes.  In case if we can handle this set of attributes -
1748     // set up function attrs directly on statepoint and return attrs later for
1749     // gc_result intrinsic.
1750     SPInvoke->setAttributes(
1751         legalizeCallAttributes(II->getContext(), II->getAttributes()));
1752 
1753     Token = cast<GCStatepointInst>(SPInvoke);
1754 
1755     // Generate gc relocates in exceptional path
1756     BasicBlock *UnwindBlock = II->getUnwindDest();
1757     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1758            UnwindBlock->getUniquePredecessor() &&
1759            "can't safely insert in this block!");
1760 
1761     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1762     Builder.SetCurrentDebugLocation(II->getDebugLoc());
1763 
1764     // Attach exceptional gc relocates to the landingpad.
1765     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1766     Result.UnwindToken = ExceptionalToken;
1767 
1768     CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder);
1769 
1770     // Generate gc relocates and returns for normal block
1771     BasicBlock *NormalDest = II->getNormalDest();
1772     assert(!isa<PHINode>(NormalDest->begin()) &&
1773            NormalDest->getUniquePredecessor() &&
1774            "can't safely insert in this block!");
1775 
1776     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1777 
1778     // gc relocates will be generated later as if it were regular call
1779     // statepoint
1780   }
1781   assert(Token && "Should be set in one of the above branches!");
1782 
1783   if (IsDeoptimize) {
1784     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1785     // transform the tail-call like structure to a call to a void function
1786     // followed by unreachable to get better codegen.
1787     Replacements.push_back(
1788         DeferredReplacement::createDeoptimizeReplacement(Call));
1789   } else {
1790     Token->setName("statepoint_token");
1791     if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
1792       StringRef Name = Call->hasName() ? Call->getName() : "";
1793       CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
1794       GCResult->setAttributes(
1795           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1796                              Call->getAttributes().getRetAttributes()));
1797 
1798       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1799       // live set of some other safepoint, in which case that safepoint's
1800       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1801       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1802       // after the live sets have been made explicit in the IR, and we no longer
1803       // have raw pointers to worry about.
1804       Replacements.emplace_back(
1805           DeferredReplacement::createRAUW(Call, GCResult));
1806     } else {
1807       Replacements.emplace_back(DeferredReplacement::createDelete(Call));
1808     }
1809   }
1810 
1811   Result.StatepointToken = Token;
1812 
1813   // Second, create a gc.relocate for every live variable
1814   CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder);
1815 }
1816 
1817 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1818 // which make the relocations happening at this safepoint explicit.
1819 //
1820 // WARNING: Does not do any fixup to adjust users of the original live
1821 // values.  That's the callers responsibility.
1822 static void
1823 makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
1824                        PartiallyConstructedSafepointRecord &Result,
1825                        std::vector<DeferredReplacement> &Replacements) {
1826   const auto &LiveSet = Result.LiveSet;
1827   const auto &PointerToBase = Result.PointerToBase;
1828 
1829   // Convert to vector for efficient cross referencing.
1830   SmallVector<Value *, 64> BaseVec, LiveVec;
1831   LiveVec.reserve(LiveSet.size());
1832   BaseVec.reserve(LiveSet.size());
1833   for (Value *L : LiveSet) {
1834     LiveVec.push_back(L);
1835     assert(PointerToBase.count(L));
1836     Value *Base = PointerToBase.find(L)->second;
1837     BaseVec.push_back(Base);
1838   }
1839   assert(LiveVec.size() == BaseVec.size());
1840 
1841   // Do the actual rewriting and delete the old statepoint
1842   makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
1843 }
1844 
1845 // Helper function for the relocationViaAlloca.
1846 //
1847 // It receives iterator to the statepoint gc relocates and emits a store to the
1848 // assigned location (via allocaMap) for the each one of them.  It adds the
1849 // visited values into the visitedLiveValues set, which we will later use them
1850 // for sanity checking.
1851 static void
1852 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1853                        DenseMap<Value *, AllocaInst *> &AllocaMap,
1854                        DenseSet<Value *> &VisitedLiveValues) {
1855   for (User *U : GCRelocs) {
1856     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1857     if (!Relocate)
1858       continue;
1859 
1860     Value *OriginalValue = Relocate->getDerivedPtr();
1861     assert(AllocaMap.count(OriginalValue));
1862     Value *Alloca = AllocaMap[OriginalValue];
1863 
1864     // Emit store into the related alloca
1865     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1866     // the correct type according to alloca.
1867     assert(Relocate->getNextNode() &&
1868            "Should always have one since it's not a terminator");
1869     IRBuilder<> Builder(Relocate->getNextNode());
1870     Value *CastedRelocatedValue =
1871       Builder.CreateBitCast(Relocate,
1872                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1873                             suffixed_name_or(Relocate, ".casted", ""));
1874 
1875     new StoreInst(CastedRelocatedValue, Alloca,
1876                   cast<Instruction>(CastedRelocatedValue)->getNextNode());
1877 
1878 #ifndef NDEBUG
1879     VisitedLiveValues.insert(OriginalValue);
1880 #endif
1881   }
1882 }
1883 
1884 // Helper function for the "relocationViaAlloca". Similar to the
1885 // "insertRelocationStores" but works for rematerialized values.
1886 static void insertRematerializationStores(
1887     const RematerializedValueMapTy &RematerializedValues,
1888     DenseMap<Value *, AllocaInst *> &AllocaMap,
1889     DenseSet<Value *> &VisitedLiveValues) {
1890   for (auto RematerializedValuePair: RematerializedValues) {
1891     Instruction *RematerializedValue = RematerializedValuePair.first;
1892     Value *OriginalValue = RematerializedValuePair.second;
1893 
1894     assert(AllocaMap.count(OriginalValue) &&
1895            "Can not find alloca for rematerialized value");
1896     Value *Alloca = AllocaMap[OriginalValue];
1897 
1898     new StoreInst(RematerializedValue, Alloca,
1899                   RematerializedValue->getNextNode());
1900 
1901 #ifndef NDEBUG
1902     VisitedLiveValues.insert(OriginalValue);
1903 #endif
1904   }
1905 }
1906 
1907 /// Do all the relocation update via allocas and mem2reg
1908 static void relocationViaAlloca(
1909     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1910     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1911 #ifndef NDEBUG
1912   // record initial number of (static) allocas; we'll check we have the same
1913   // number when we get done.
1914   int InitialAllocaNum = 0;
1915   for (Instruction &I : F.getEntryBlock())
1916     if (isa<AllocaInst>(I))
1917       InitialAllocaNum++;
1918 #endif
1919 
1920   // TODO-PERF: change data structures, reserve
1921   DenseMap<Value *, AllocaInst *> AllocaMap;
1922   SmallVector<AllocaInst *, 200> PromotableAllocas;
1923   // Used later to chack that we have enough allocas to store all values
1924   std::size_t NumRematerializedValues = 0;
1925   PromotableAllocas.reserve(Live.size());
1926 
1927   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1928   // "PromotableAllocas"
1929   const DataLayout &DL = F.getParent()->getDataLayout();
1930   auto emitAllocaFor = [&](Value *LiveValue) {
1931     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1932                                         DL.getAllocaAddrSpace(), "",
1933                                         F.getEntryBlock().getFirstNonPHI());
1934     AllocaMap[LiveValue] = Alloca;
1935     PromotableAllocas.push_back(Alloca);
1936   };
1937 
1938   // Emit alloca for each live gc pointer
1939   for (Value *V : Live)
1940     emitAllocaFor(V);
1941 
1942   // Emit allocas for rematerialized values
1943   for (const auto &Info : Records)
1944     for (auto RematerializedValuePair : Info.RematerializedValues) {
1945       Value *OriginalValue = RematerializedValuePair.second;
1946       if (AllocaMap.count(OriginalValue) != 0)
1947         continue;
1948 
1949       emitAllocaFor(OriginalValue);
1950       ++NumRematerializedValues;
1951     }
1952 
1953   // The next two loops are part of the same conceptual operation.  We need to
1954   // insert a store to the alloca after the original def and at each
1955   // redefinition.  We need to insert a load before each use.  These are split
1956   // into distinct loops for performance reasons.
1957 
1958   // Update gc pointer after each statepoint: either store a relocated value or
1959   // null (if no relocated value was found for this gc pointer and it is not a
1960   // gc_result).  This must happen before we update the statepoint with load of
1961   // alloca otherwise we lose the link between statepoint and old def.
1962   for (const auto &Info : Records) {
1963     Value *Statepoint = Info.StatepointToken;
1964 
1965     // This will be used for consistency check
1966     DenseSet<Value *> VisitedLiveValues;
1967 
1968     // Insert stores for normal statepoint gc relocates
1969     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1970 
1971     // In case if it was invoke statepoint
1972     // we will insert stores for exceptional path gc relocates.
1973     if (isa<InvokeInst>(Statepoint)) {
1974       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1975                              VisitedLiveValues);
1976     }
1977 
1978     // Do similar thing with rematerialized values
1979     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1980                                   VisitedLiveValues);
1981 
1982     if (ClobberNonLive) {
1983       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1984       // the gc.statepoint.  This will turn some subtle GC problems into
1985       // slightly easier to debug SEGVs.  Note that on large IR files with
1986       // lots of gc.statepoints this is extremely costly both memory and time
1987       // wise.
1988       SmallVector<AllocaInst *, 64> ToClobber;
1989       for (auto Pair : AllocaMap) {
1990         Value *Def = Pair.first;
1991         AllocaInst *Alloca = Pair.second;
1992 
1993         // This value was relocated
1994         if (VisitedLiveValues.count(Def)) {
1995           continue;
1996         }
1997         ToClobber.push_back(Alloca);
1998       }
1999 
2000       auto InsertClobbersAt = [&](Instruction *IP) {
2001         for (auto *AI : ToClobber) {
2002           auto PT = cast<PointerType>(AI->getAllocatedType());
2003           Constant *CPN = ConstantPointerNull::get(PT);
2004           new StoreInst(CPN, AI, IP);
2005         }
2006       };
2007 
2008       // Insert the clobbering stores.  These may get intermixed with the
2009       // gc.results and gc.relocates, but that's fine.
2010       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
2011         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
2012         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
2013       } else {
2014         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
2015       }
2016     }
2017   }
2018 
2019   // Update use with load allocas and add store for gc_relocated.
2020   for (auto Pair : AllocaMap) {
2021     Value *Def = Pair.first;
2022     AllocaInst *Alloca = Pair.second;
2023 
2024     // We pre-record the uses of allocas so that we dont have to worry about
2025     // later update that changes the user information..
2026 
2027     SmallVector<Instruction *, 20> Uses;
2028     // PERF: trade a linear scan for repeated reallocation
2029     Uses.reserve(Def->getNumUses());
2030     for (User *U : Def->users()) {
2031       if (!isa<ConstantExpr>(U)) {
2032         // If the def has a ConstantExpr use, then the def is either a
2033         // ConstantExpr use itself or null.  In either case
2034         // (recursively in the first, directly in the second), the oop
2035         // it is ultimately dependent on is null and this particular
2036         // use does not need to be fixed up.
2037         Uses.push_back(cast<Instruction>(U));
2038       }
2039     }
2040 
2041     llvm::sort(Uses);
2042     auto Last = std::unique(Uses.begin(), Uses.end());
2043     Uses.erase(Last, Uses.end());
2044 
2045     for (Instruction *Use : Uses) {
2046       if (isa<PHINode>(Use)) {
2047         PHINode *Phi = cast<PHINode>(Use);
2048         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
2049           if (Def == Phi->getIncomingValue(i)) {
2050             LoadInst *Load =
2051                 new LoadInst(Alloca->getAllocatedType(), Alloca, "",
2052                              Phi->getIncomingBlock(i)->getTerminator());
2053             Phi->setIncomingValue(i, Load);
2054           }
2055         }
2056       } else {
2057         LoadInst *Load =
2058             new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
2059         Use->replaceUsesOfWith(Def, Load);
2060       }
2061     }
2062 
2063     // Emit store for the initial gc value.  Store must be inserted after load,
2064     // otherwise store will be in alloca's use list and an extra load will be
2065     // inserted before it.
2066     StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false,
2067                                      DL.getABITypeAlign(Def->getType()));
2068     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
2069       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
2070         // InvokeInst is a terminator so the store need to be inserted into its
2071         // normal destination block.
2072         BasicBlock *NormalDest = Invoke->getNormalDest();
2073         Store->insertBefore(NormalDest->getFirstNonPHI());
2074       } else {
2075         assert(!Inst->isTerminator() &&
2076                "The only terminator that can produce a value is "
2077                "InvokeInst which is handled above.");
2078         Store->insertAfter(Inst);
2079       }
2080     } else {
2081       assert(isa<Argument>(Def));
2082       Store->insertAfter(cast<Instruction>(Alloca));
2083     }
2084   }
2085 
2086   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
2087          "we must have the same allocas with lives");
2088   if (!PromotableAllocas.empty()) {
2089     // Apply mem2reg to promote alloca to SSA
2090     PromoteMemToReg(PromotableAllocas, DT);
2091   }
2092 
2093 #ifndef NDEBUG
2094   for (auto &I : F.getEntryBlock())
2095     if (isa<AllocaInst>(I))
2096       InitialAllocaNum--;
2097   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
2098 #endif
2099 }
2100 
2101 /// Implement a unique function which doesn't require we sort the input
2102 /// vector.  Doing so has the effect of changing the output of a couple of
2103 /// tests in ways which make them less useful in testing fused safepoints.
2104 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
2105   SmallSet<T, 8> Seen;
2106   erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; });
2107 }
2108 
2109 /// Insert holders so that each Value is obviously live through the entire
2110 /// lifetime of the call.
2111 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
2112                                  SmallVectorImpl<CallInst *> &Holders) {
2113   if (Values.empty())
2114     // No values to hold live, might as well not insert the empty holder
2115     return;
2116 
2117   Module *M = Call->getModule();
2118   // Use a dummy vararg function to actually hold the values live
2119   FunctionCallee Func = M->getOrInsertFunction(
2120       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
2121   if (isa<CallInst>(Call)) {
2122     // For call safepoints insert dummy calls right after safepoint
2123     Holders.push_back(
2124         CallInst::Create(Func, Values, "", &*++Call->getIterator()));
2125     return;
2126   }
2127   // For invoke safepooints insert dummy calls both in normal and
2128   // exceptional destination blocks
2129   auto *II = cast<InvokeInst>(Call);
2130   Holders.push_back(CallInst::Create(
2131       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
2132   Holders.push_back(CallInst::Create(
2133       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
2134 }
2135 
2136 static void findLiveReferences(
2137     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
2138     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
2139   GCPtrLivenessData OriginalLivenessData;
2140   computeLiveInValues(DT, F, OriginalLivenessData);
2141   for (size_t i = 0; i < records.size(); i++) {
2142     struct PartiallyConstructedSafepointRecord &info = records[i];
2143     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
2144   }
2145 }
2146 
2147 // Helper function for the "rematerializeLiveValues". It walks use chain
2148 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
2149 // the base or a value it cannot process. Only "simple" values are processed
2150 // (currently it is GEP's and casts). The returned root is  examined by the
2151 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
2152 // with all visited values.
2153 static Value* findRematerializableChainToBasePointer(
2154   SmallVectorImpl<Instruction*> &ChainToBase,
2155   Value *CurrentValue) {
2156   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2157     ChainToBase.push_back(GEP);
2158     return findRematerializableChainToBasePointer(ChainToBase,
2159                                                   GEP->getPointerOperand());
2160   }
2161 
2162   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2163     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2164       return CI;
2165 
2166     ChainToBase.push_back(CI);
2167     return findRematerializableChainToBasePointer(ChainToBase,
2168                                                   CI->getOperand(0));
2169   }
2170 
2171   // We have reached the root of the chain, which is either equal to the base or
2172   // is the first unsupported value along the use chain.
2173   return CurrentValue;
2174 }
2175 
2176 // Helper function for the "rematerializeLiveValues". Compute cost of the use
2177 // chain we are going to rematerialize.
2178 static InstructionCost
2179 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain,
2180                        TargetTransformInfo &TTI) {
2181   InstructionCost Cost = 0;
2182 
2183   for (Instruction *Instr : Chain) {
2184     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2185       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2186              "non noop cast is found during rematerialization");
2187 
2188       Type *SrcTy = CI->getOperand(0)->getType();
2189       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy,
2190                                    TTI::getCastContextHint(CI),
2191                                    TargetTransformInfo::TCK_SizeAndLatency, CI);
2192 
2193     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2194       // Cost of the address calculation
2195       Type *ValTy = GEP->getSourceElementType();
2196       Cost += TTI.getAddressComputationCost(ValTy);
2197 
2198       // And cost of the GEP itself
2199       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2200       //       allowed for the external usage)
2201       if (!GEP->hasAllConstantIndices())
2202         Cost += 2;
2203 
2204     } else {
2205       llvm_unreachable("unsupported instruction type during rematerialization");
2206     }
2207   }
2208 
2209   return Cost;
2210 }
2211 
2212 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
2213   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
2214   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
2215       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
2216     return false;
2217   // Map of incoming values and their corresponding basic blocks of
2218   // OrigRootPhi.
2219   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
2220   for (unsigned i = 0; i < PhiNum; i++)
2221     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2222         OrigRootPhi.getIncomingBlock(i);
2223 
2224   // Both current and base PHIs should have same incoming values and
2225   // the same basic blocks corresponding to the incoming values.
2226   for (unsigned i = 0; i < PhiNum; i++) {
2227     auto CIVI =
2228         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2229     if (CIVI == CurrentIncomingValues.end())
2230       return false;
2231     BasicBlock *CurrentIncomingBB = CIVI->second;
2232     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2233       return false;
2234   }
2235   return true;
2236 }
2237 
2238 // From the statepoint live set pick values that are cheaper to recompute then
2239 // to relocate. Remove this values from the live set, rematerialize them after
2240 // statepoint and record them in "Info" structure. Note that similar to
2241 // relocated values we don't do any user adjustments here.
2242 static void rematerializeLiveValues(CallBase *Call,
2243                                     PartiallyConstructedSafepointRecord &Info,
2244                                     TargetTransformInfo &TTI) {
2245   const unsigned int ChainLengthThreshold = 10;
2246 
2247   // Record values we are going to delete from this statepoint live set.
2248   // We can not di this in following loop due to iterator invalidation.
2249   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2250 
2251   for (Value *LiveValue: Info.LiveSet) {
2252     // For each live pointer find its defining chain
2253     SmallVector<Instruction *, 3> ChainToBase;
2254     assert(Info.PointerToBase.count(LiveValue));
2255     Value *RootOfChain =
2256       findRematerializableChainToBasePointer(ChainToBase,
2257                                              LiveValue);
2258 
2259     // Nothing to do, or chain is too long
2260     if ( ChainToBase.size() == 0 ||
2261         ChainToBase.size() > ChainLengthThreshold)
2262       continue;
2263 
2264     // Handle the scenario where the RootOfChain is not equal to the
2265     // Base Value, but they are essentially the same phi values.
2266     if (RootOfChain != Info.PointerToBase[LiveValue]) {
2267       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2268       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2269       if (!OrigRootPhi || !AlternateRootPhi)
2270         continue;
2271       // PHI nodes that have the same incoming values, and belonging to the same
2272       // basic blocks are essentially the same SSA value.  When the original phi
2273       // has incoming values with different base pointers, the original phi is
2274       // marked as conflict, and an additional `AlternateRootPhi` with the same
2275       // incoming values get generated by the findBasePointer function. We need
2276       // to identify the newly generated AlternateRootPhi (.base version of phi)
2277       // and RootOfChain (the original phi node itself) are the same, so that we
2278       // can rematerialize the gep and casts. This is a workaround for the
2279       // deficiency in the findBasePointer algorithm.
2280       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2281         continue;
2282       // Now that the phi nodes are proved to be the same, assert that
2283       // findBasePointer's newly generated AlternateRootPhi is present in the
2284       // liveset of the call.
2285       assert(Info.LiveSet.count(AlternateRootPhi));
2286     }
2287     // Compute cost of this chain
2288     InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI);
2289     // TODO: We can also account for cases when we will be able to remove some
2290     //       of the rematerialized values by later optimization passes. I.e if
2291     //       we rematerialized several intersecting chains. Or if original values
2292     //       don't have any uses besides this statepoint.
2293 
2294     // For invokes we need to rematerialize each chain twice - for normal and
2295     // for unwind basic blocks. Model this by multiplying cost by two.
2296     if (isa<InvokeInst>(Call)) {
2297       Cost *= 2;
2298     }
2299     // If it's too expensive - skip it
2300     if (Cost >= RematerializationThreshold)
2301       continue;
2302 
2303     // Remove value from the live set
2304     LiveValuesToBeDeleted.push_back(LiveValue);
2305 
2306     // Clone instructions and record them inside "Info" structure
2307 
2308     // Walk backwards to visit top-most instructions first
2309     std::reverse(ChainToBase.begin(), ChainToBase.end());
2310 
2311     // Utility function which clones all instructions from "ChainToBase"
2312     // and inserts them before "InsertBefore". Returns rematerialized value
2313     // which should be used after statepoint.
2314     auto rematerializeChain = [&ChainToBase](
2315         Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2316       Instruction *LastClonedValue = nullptr;
2317       Instruction *LastValue = nullptr;
2318       for (Instruction *Instr: ChainToBase) {
2319         // Only GEP's and casts are supported as we need to be careful to not
2320         // introduce any new uses of pointers not in the liveset.
2321         // Note that it's fine to introduce new uses of pointers which were
2322         // otherwise not used after this statepoint.
2323         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2324 
2325         Instruction *ClonedValue = Instr->clone();
2326         ClonedValue->insertBefore(InsertBefore);
2327         ClonedValue->setName(Instr->getName() + ".remat");
2328 
2329         // If it is not first instruction in the chain then it uses previously
2330         // cloned value. We should update it to use cloned value.
2331         if (LastClonedValue) {
2332           assert(LastValue);
2333           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2334 #ifndef NDEBUG
2335           for (auto OpValue : ClonedValue->operand_values()) {
2336             // Assert that cloned instruction does not use any instructions from
2337             // this chain other than LastClonedValue
2338             assert(!is_contained(ChainToBase, OpValue) &&
2339                    "incorrect use in rematerialization chain");
2340             // Assert that the cloned instruction does not use the RootOfChain
2341             // or the AlternateLiveBase.
2342             assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2343           }
2344 #endif
2345         } else {
2346           // For the first instruction, replace the use of unrelocated base i.e.
2347           // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2348           // live set. They have been proved to be the same PHI nodes.  Note
2349           // that the *only* use of the RootOfChain in the ChainToBase list is
2350           // the first Value in the list.
2351           if (RootOfChain != AlternateLiveBase)
2352             ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2353         }
2354 
2355         LastClonedValue = ClonedValue;
2356         LastValue = Instr;
2357       }
2358       assert(LastClonedValue);
2359       return LastClonedValue;
2360     };
2361 
2362     // Different cases for calls and invokes. For invokes we need to clone
2363     // instructions both on normal and unwind path.
2364     if (isa<CallInst>(Call)) {
2365       Instruction *InsertBefore = Call->getNextNode();
2366       assert(InsertBefore);
2367       Instruction *RematerializedValue = rematerializeChain(
2368           InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2369       Info.RematerializedValues[RematerializedValue] = LiveValue;
2370     } else {
2371       auto *Invoke = cast<InvokeInst>(Call);
2372 
2373       Instruction *NormalInsertBefore =
2374           &*Invoke->getNormalDest()->getFirstInsertionPt();
2375       Instruction *UnwindInsertBefore =
2376           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2377 
2378       Instruction *NormalRematerializedValue = rematerializeChain(
2379           NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2380       Instruction *UnwindRematerializedValue = rematerializeChain(
2381           UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2382 
2383       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2384       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2385     }
2386   }
2387 
2388   // Remove rematerializaed values from the live set
2389   for (auto LiveValue: LiveValuesToBeDeleted) {
2390     Info.LiveSet.remove(LiveValue);
2391   }
2392 }
2393 
2394 static bool inlineGetBaseAndOffset(Function &F,
2395                                    SmallVectorImpl<CallInst *> &Intrinsics) {
2396   DefiningValueMapTy DVCache;
2397   auto &Context = F.getContext();
2398   auto &DL = F.getParent()->getDataLayout();
2399   bool Changed = false;
2400 
2401   for (auto *Callsite : Intrinsics)
2402     switch (Callsite->getIntrinsicID()) {
2403     case Intrinsic::experimental_gc_get_pointer_base: {
2404       Changed = true;
2405       Value *Base = findBasePointer(Callsite->getOperand(0), DVCache);
2406       assert(!DVCache.count(Callsite));
2407       auto *BaseBC = IRBuilder<>(Callsite).CreateBitCast(
2408           Base, Callsite->getType(), suffixed_name_or(Base, ".cast", ""));
2409       if (BaseBC != Base)
2410         DVCache[BaseBC] = Base;
2411       Callsite->replaceAllUsesWith(BaseBC);
2412       if (!BaseBC->hasName())
2413         BaseBC->takeName(Callsite);
2414       Callsite->eraseFromParent();
2415       break;
2416     }
2417     case Intrinsic::experimental_gc_get_pointer_offset: {
2418       Changed = true;
2419       Value *Derived = Callsite->getOperand(0);
2420       Value *Base = findBasePointer(Derived, DVCache);
2421       assert(!DVCache.count(Callsite));
2422       unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
2423       unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
2424       IRBuilder<> Builder(Callsite);
2425       Value *BaseInt =
2426           Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize),
2427                                  suffixed_name_or(Base, ".int", ""));
2428       Value *DerivedInt =
2429           Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize),
2430                                  suffixed_name_or(Derived, ".int", ""));
2431       Value *Offset = Builder.CreateSub(DerivedInt, BaseInt);
2432       Callsite->replaceAllUsesWith(Offset);
2433       Offset->takeName(Callsite);
2434       Callsite->eraseFromParent();
2435       break;
2436     }
2437     default:
2438       llvm_unreachable("Unknown intrinsic");
2439     }
2440 
2441   return Changed;
2442 }
2443 
2444 static bool insertParsePoints(Function &F, DominatorTree &DT,
2445                               TargetTransformInfo &TTI,
2446                               SmallVectorImpl<CallBase *> &ToUpdate) {
2447 #ifndef NDEBUG
2448   // sanity check the input
2449   std::set<CallBase *> Uniqued;
2450   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2451   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2452 
2453   for (CallBase *Call : ToUpdate)
2454     assert(Call->getFunction() == &F);
2455 #endif
2456 
2457   // When inserting gc.relocates for invokes, we need to be able to insert at
2458   // the top of the successor blocks.  See the comment on
2459   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2460   // may restructure the CFG.
2461   for (CallBase *Call : ToUpdate) {
2462     auto *II = dyn_cast<InvokeInst>(Call);
2463     if (!II)
2464       continue;
2465     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2466     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2467   }
2468 
2469   // A list of dummy calls added to the IR to keep various values obviously
2470   // live in the IR.  We'll remove all of these when done.
2471   SmallVector<CallInst *, 64> Holders;
2472 
2473   // Insert a dummy call with all of the deopt operands we'll need for the
2474   // actual safepoint insertion as arguments.  This ensures reference operands
2475   // in the deopt argument list are considered live through the safepoint (and
2476   // thus makes sure they get relocated.)
2477   for (CallBase *Call : ToUpdate) {
2478     SmallVector<Value *, 64> DeoptValues;
2479 
2480     for (Value *Arg : GetDeoptBundleOperands(Call)) {
2481       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2482              "support for FCA unimplemented");
2483       if (isHandledGCPointerType(Arg->getType()))
2484         DeoptValues.push_back(Arg);
2485     }
2486 
2487     insertUseHolderAfter(Call, DeoptValues, Holders);
2488   }
2489 
2490   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2491 
2492   // A) Identify all gc pointers which are statically live at the given call
2493   // site.
2494   findLiveReferences(F, DT, ToUpdate, Records);
2495 
2496   // B) Find the base pointers for each live pointer
2497   /* scope for caching */ {
2498     // Cache the 'defining value' relation used in the computation and
2499     // insertion of base phis and selects.  This ensures that we don't insert
2500     // large numbers of duplicate base_phis.
2501     DefiningValueMapTy DVCache;
2502     for (size_t i = 0; i < Records.size(); i++) {
2503       PartiallyConstructedSafepointRecord &info = Records[i];
2504       findBasePointers(DT, DVCache, ToUpdate[i], info);
2505     }
2506   } // end of cache scope
2507 
2508   // The base phi insertion logic (for any safepoint) may have inserted new
2509   // instructions which are now live at some safepoint.  The simplest such
2510   // example is:
2511   // loop:
2512   //   phi a  <-- will be a new base_phi here
2513   //   safepoint 1 <-- that needs to be live here
2514   //   gep a + 1
2515   //   safepoint 2
2516   //   br loop
2517   // We insert some dummy calls after each safepoint to definitely hold live
2518   // the base pointers which were identified for that safepoint.  We'll then
2519   // ask liveness for _every_ base inserted to see what is now live.  Then we
2520   // remove the dummy calls.
2521   Holders.reserve(Holders.size() + Records.size());
2522   for (size_t i = 0; i < Records.size(); i++) {
2523     PartiallyConstructedSafepointRecord &Info = Records[i];
2524 
2525     SmallVector<Value *, 128> Bases;
2526     for (auto Pair : Info.PointerToBase)
2527       Bases.push_back(Pair.second);
2528 
2529     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2530   }
2531 
2532   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2533   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2534   // not the key issue.
2535   recomputeLiveInValues(F, DT, ToUpdate, Records);
2536 
2537   if (PrintBasePointers) {
2538     for (auto &Info : Records) {
2539       errs() << "Base Pairs: (w/Relocation)\n";
2540       for (auto Pair : Info.PointerToBase) {
2541         errs() << " derived ";
2542         Pair.first->printAsOperand(errs(), false);
2543         errs() << " base ";
2544         Pair.second->printAsOperand(errs(), false);
2545         errs() << "\n";
2546       }
2547     }
2548   }
2549 
2550   // It is possible that non-constant live variables have a constant base.  For
2551   // example, a GEP with a variable offset from a global.  In this case we can
2552   // remove it from the liveset.  We already don't add constants to the liveset
2553   // because we assume they won't move at runtime and the GC doesn't need to be
2554   // informed about them.  The same reasoning applies if the base is constant.
2555   // Note that the relocation placement code relies on this filtering for
2556   // correctness as it expects the base to be in the liveset, which isn't true
2557   // if the base is constant.
2558   for (auto &Info : Records)
2559     for (auto &BasePair : Info.PointerToBase)
2560       if (isa<Constant>(BasePair.second))
2561         Info.LiveSet.remove(BasePair.first);
2562 
2563   for (CallInst *CI : Holders)
2564     CI->eraseFromParent();
2565 
2566   Holders.clear();
2567 
2568   // In order to reduce live set of statepoint we might choose to rematerialize
2569   // some values instead of relocating them. This is purely an optimization and
2570   // does not influence correctness.
2571   for (size_t i = 0; i < Records.size(); i++)
2572     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2573 
2574   // We need this to safely RAUW and delete call or invoke return values that
2575   // may themselves be live over a statepoint.  For details, please see usage in
2576   // makeStatepointExplicitImpl.
2577   std::vector<DeferredReplacement> Replacements;
2578 
2579   // Now run through and replace the existing statepoints with new ones with
2580   // the live variables listed.  We do not yet update uses of the values being
2581   // relocated. We have references to live variables that need to
2582   // survive to the last iteration of this loop.  (By construction, the
2583   // previous statepoint can not be a live variable, thus we can and remove
2584   // the old statepoint calls as we go.)
2585   for (size_t i = 0; i < Records.size(); i++)
2586     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2587 
2588   ToUpdate.clear(); // prevent accident use of invalid calls.
2589 
2590   for (auto &PR : Replacements)
2591     PR.doReplacement();
2592 
2593   Replacements.clear();
2594 
2595   for (auto &Info : Records) {
2596     // These live sets may contain state Value pointers, since we replaced calls
2597     // with operand bundles with calls wrapped in gc.statepoint, and some of
2598     // those calls may have been def'ing live gc pointers.  Clear these out to
2599     // avoid accidentally using them.
2600     //
2601     // TODO: We should create a separate data structure that does not contain
2602     // these live sets, and migrate to using that data structure from this point
2603     // onward.
2604     Info.LiveSet.clear();
2605     Info.PointerToBase.clear();
2606   }
2607 
2608   // Do all the fixups of the original live variables to their relocated selves
2609   SmallVector<Value *, 128> Live;
2610   for (size_t i = 0; i < Records.size(); i++) {
2611     PartiallyConstructedSafepointRecord &Info = Records[i];
2612 
2613     // We can't simply save the live set from the original insertion.  One of
2614     // the live values might be the result of a call which needs a safepoint.
2615     // That Value* no longer exists and we need to use the new gc_result.
2616     // Thankfully, the live set is embedded in the statepoint (and updated), so
2617     // we just grab that.
2618     llvm::append_range(Live, Info.StatepointToken->gc_args());
2619 #ifndef NDEBUG
2620     // Do some basic sanity checks on our liveness results before performing
2621     // relocation.  Relocation can and will turn mistakes in liveness results
2622     // into non-sensical code which is must harder to debug.
2623     // TODO: It would be nice to test consistency as well
2624     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2625            "statepoint must be reachable or liveness is meaningless");
2626     for (Value *V : Info.StatepointToken->gc_args()) {
2627       if (!isa<Instruction>(V))
2628         // Non-instruction values trivial dominate all possible uses
2629         continue;
2630       auto *LiveInst = cast<Instruction>(V);
2631       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2632              "unreachable values should never be live");
2633       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2634              "basic SSA liveness expectation violated by liveness analysis");
2635     }
2636 #endif
2637   }
2638   unique_unsorted(Live);
2639 
2640 #ifndef NDEBUG
2641   // sanity check
2642   for (auto *Ptr : Live)
2643     assert(isHandledGCPointerType(Ptr->getType()) &&
2644            "must be a gc pointer type");
2645 #endif
2646 
2647   relocationViaAlloca(F, DT, Live, Records);
2648   return !Records.empty();
2649 }
2650 
2651 // Handles both return values and arguments for Functions and calls.
2652 template <typename AttrHolder>
2653 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2654                                       unsigned Index) {
2655   AttrBuilder R;
2656   if (AH.getDereferenceableBytes(Index))
2657     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2658                                   AH.getDereferenceableBytes(Index)));
2659   if (AH.getDereferenceableOrNullBytes(Index))
2660     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2661                                   AH.getDereferenceableOrNullBytes(Index)));
2662   for (auto Attr : ParamAttrsToStrip)
2663     if (AH.getAttributes().hasAttribute(Index, Attr))
2664       R.addAttribute(Attr);
2665 
2666   if (!R.empty())
2667     AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2668 }
2669 
2670 static void stripNonValidAttributesFromPrototype(Function &F) {
2671   LLVMContext &Ctx = F.getContext();
2672 
2673   // Intrinsics are very delicate.  Lowering sometimes depends the presence
2674   // of certain attributes for correctness, but we may have also inferred
2675   // additional ones in the abstract machine model which need stripped.  This
2676   // assumes that the attributes defined in Intrinsic.td are conservatively
2677   // correct for both physical and abstract model.
2678   if (Intrinsic::ID id = F.getIntrinsicID()) {
2679     F.setAttributes(Intrinsic::getAttributes(Ctx, id));
2680     return;
2681   }
2682 
2683   for (Argument &A : F.args())
2684     if (isa<PointerType>(A.getType()))
2685       RemoveNonValidAttrAtIndex(Ctx, F,
2686                                 A.getArgNo() + AttributeList::FirstArgIndex);
2687 
2688   if (isa<PointerType>(F.getReturnType()))
2689     RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2690 
2691   for (auto Attr : FnAttrsToStrip)
2692     F.removeFnAttr(Attr);
2693 }
2694 
2695 /// Certain metadata on instructions are invalid after running RS4GC.
2696 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2697 /// optimize functions. We drop such metadata on the instruction.
2698 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2699   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2700     return;
2701   // These are the attributes that are still valid on loads and stores after
2702   // RS4GC.
2703   // The metadata implying dereferenceability and noalias are (conservatively)
2704   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2705   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2706   // touch the entire heap including noalias objects. Note: The reasoning is
2707   // same as stripping the dereferenceability and noalias attributes that are
2708   // analogous to the metadata counterparts.
2709   // We also drop the invariant.load metadata on the load because that metadata
2710   // implies the address operand to the load points to memory that is never
2711   // changed once it became dereferenceable. This is no longer true after RS4GC.
2712   // Similar reasoning applies to invariant.group metadata, which applies to
2713   // loads within a group.
2714   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2715                          LLVMContext::MD_range,
2716                          LLVMContext::MD_alias_scope,
2717                          LLVMContext::MD_nontemporal,
2718                          LLVMContext::MD_nonnull,
2719                          LLVMContext::MD_align,
2720                          LLVMContext::MD_type};
2721 
2722   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2723   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2724 }
2725 
2726 static void stripNonValidDataFromBody(Function &F) {
2727   if (F.empty())
2728     return;
2729 
2730   LLVMContext &Ctx = F.getContext();
2731   MDBuilder Builder(Ctx);
2732 
2733   // Set of invariantstart instructions that we need to remove.
2734   // Use this to avoid invalidating the instruction iterator.
2735   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2736 
2737   for (Instruction &I : instructions(F)) {
2738     // invariant.start on memory location implies that the referenced memory
2739     // location is constant and unchanging. This is no longer true after
2740     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2741     // which frees the entire heap and the presence of invariant.start allows
2742     // the optimizer to sink the load of a memory location past a statepoint,
2743     // which is incorrect.
2744     if (auto *II = dyn_cast<IntrinsicInst>(&I))
2745       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2746         InvariantStartInstructions.push_back(II);
2747         continue;
2748       }
2749 
2750     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2751       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2752       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2753     }
2754 
2755     stripInvalidMetadataFromInstruction(I);
2756 
2757     if (auto *Call = dyn_cast<CallBase>(&I)) {
2758       for (int i = 0, e = Call->arg_size(); i != e; i++)
2759         if (isa<PointerType>(Call->getArgOperand(i)->getType()))
2760           RemoveNonValidAttrAtIndex(Ctx, *Call,
2761                                     i + AttributeList::FirstArgIndex);
2762       if (isa<PointerType>(Call->getType()))
2763         RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
2764     }
2765   }
2766 
2767   // Delete the invariant.start instructions and RAUW undef.
2768   for (auto *II : InvariantStartInstructions) {
2769     II->replaceAllUsesWith(UndefValue::get(II->getType()));
2770     II->eraseFromParent();
2771   }
2772 }
2773 
2774 /// Returns true if this function should be rewritten by this pass.  The main
2775 /// point of this function is as an extension point for custom logic.
2776 static bool shouldRewriteStatepointsIn(Function &F) {
2777   // TODO: This should check the GCStrategy
2778   if (F.hasGC()) {
2779     const auto &FunctionGCName = F.getGC();
2780     const StringRef StatepointExampleName("statepoint-example");
2781     const StringRef CoreCLRName("coreclr");
2782     return (StatepointExampleName == FunctionGCName) ||
2783            (CoreCLRName == FunctionGCName);
2784   } else
2785     return false;
2786 }
2787 
2788 static void stripNonValidData(Module &M) {
2789 #ifndef NDEBUG
2790   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2791 #endif
2792 
2793   for (Function &F : M)
2794     stripNonValidAttributesFromPrototype(F);
2795 
2796   for (Function &F : M)
2797     stripNonValidDataFromBody(F);
2798 }
2799 
2800 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2801                                             TargetTransformInfo &TTI,
2802                                             const TargetLibraryInfo &TLI) {
2803   assert(!F.isDeclaration() && !F.empty() &&
2804          "need function body to rewrite statepoints in");
2805   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2806 
2807   auto NeedsRewrite = [&TLI](Instruction &I) {
2808     if (const auto *Call = dyn_cast<CallBase>(&I)) {
2809       if (isa<GCStatepointInst>(Call))
2810         return false;
2811       if (callsGCLeafFunction(Call, TLI))
2812         return false;
2813 
2814       // Normally it's up to the frontend to make sure that non-leaf calls also
2815       // have proper deopt state if it is required. We make an exception for
2816       // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics
2817       // these are non-leaf by default. They might be generated by the optimizer
2818       // which doesn't know how to produce a proper deopt state. So if we see a
2819       // non-leaf memcpy/memmove without deopt state just treat it as a leaf
2820       // copy and don't produce a statepoint.
2821       if (!AllowStatepointWithNoDeoptInfo &&
2822           !Call->getOperandBundle(LLVMContext::OB_deopt)) {
2823         assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) &&
2824                "Don't expect any other calls here!");
2825         return false;
2826       }
2827       return true;
2828     }
2829     return false;
2830   };
2831 
2832   // Delete any unreachable statepoints so that we don't have unrewritten
2833   // statepoints surviving this pass.  This makes testing easier and the
2834   // resulting IR less confusing to human readers.
2835   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2836   bool MadeChange = removeUnreachableBlocks(F, &DTU);
2837   // Flush the Dominator Tree.
2838   DTU.getDomTree();
2839 
2840   // Gather all the statepoints which need rewritten.  Be careful to only
2841   // consider those in reachable code since we need to ask dominance queries
2842   // when rewriting.  We'll delete the unreachable ones in a moment.
2843   SmallVector<CallBase *, 64> ParsePointNeeded;
2844   SmallVector<CallInst *, 64> Intrinsics;
2845   for (Instruction &I : instructions(F)) {
2846     // TODO: only the ones with the flag set!
2847     if (NeedsRewrite(I)) {
2848       // NOTE removeUnreachableBlocks() is stronger than
2849       // DominatorTree::isReachableFromEntry(). In other words
2850       // removeUnreachableBlocks can remove some blocks for which
2851       // isReachableFromEntry() returns true.
2852       assert(DT.isReachableFromEntry(I.getParent()) &&
2853             "no unreachable blocks expected");
2854       ParsePointNeeded.push_back(cast<CallBase>(&I));
2855     }
2856     if (auto *CI = dyn_cast<CallInst>(&I))
2857       if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base ||
2858           CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset)
2859         Intrinsics.emplace_back(CI);
2860   }
2861 
2862   // Return early if no work to do.
2863   if (ParsePointNeeded.empty() && Intrinsics.empty())
2864     return MadeChange;
2865 
2866   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2867   // These are created by LCSSA.  They have the effect of increasing the size
2868   // of liveness sets for no good reason.  It may be harder to do this post
2869   // insertion since relocations and base phis can confuse things.
2870   for (BasicBlock &BB : F)
2871     if (BB.getUniquePredecessor())
2872       MadeChange |= FoldSingleEntryPHINodes(&BB);
2873 
2874   // Before we start introducing relocations, we want to tweak the IR a bit to
2875   // avoid unfortunate code generation effects.  The main example is that we
2876   // want to try to make sure the comparison feeding a branch is after any
2877   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2878   // values feeding a branch after relocation.  This is semantically correct,
2879   // but results in extra register pressure since both the pre-relocation and
2880   // post-relocation copies must be available in registers.  For code without
2881   // relocations this is handled elsewhere, but teaching the scheduler to
2882   // reverse the transform we're about to do would be slightly complex.
2883   // Note: This may extend the live range of the inputs to the icmp and thus
2884   // increase the liveset of any statepoint we move over.  This is profitable
2885   // as long as all statepoints are in rare blocks.  If we had in-register
2886   // lowering for live values this would be a much safer transform.
2887   auto getConditionInst = [](Instruction *TI) -> Instruction * {
2888     if (auto *BI = dyn_cast<BranchInst>(TI))
2889       if (BI->isConditional())
2890         return dyn_cast<Instruction>(BI->getCondition());
2891     // TODO: Extend this to handle switches
2892     return nullptr;
2893   };
2894   for (BasicBlock &BB : F) {
2895     Instruction *TI = BB.getTerminator();
2896     if (auto *Cond = getConditionInst(TI))
2897       // TODO: Handle more than just ICmps here.  We should be able to move
2898       // most instructions without side effects or memory access.
2899       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2900         MadeChange = true;
2901         Cond->moveBefore(TI);
2902       }
2903   }
2904 
2905   // Nasty workaround - The base computation code in the main algorithm doesn't
2906   // consider the fact that a GEP can be used to convert a scalar to a vector.
2907   // The right fix for this is to integrate GEPs into the base rewriting
2908   // algorithm properly, this is just a short term workaround to prevent
2909   // crashes by canonicalizing such GEPs into fully vector GEPs.
2910   for (Instruction &I : instructions(F)) {
2911     if (!isa<GetElementPtrInst>(I))
2912       continue;
2913 
2914     unsigned VF = 0;
2915     for (unsigned i = 0; i < I.getNumOperands(); i++)
2916       if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) {
2917         assert(VF == 0 ||
2918                VF == cast<FixedVectorType>(OpndVTy)->getNumElements());
2919         VF = cast<FixedVectorType>(OpndVTy)->getNumElements();
2920       }
2921 
2922     // It's the vector to scalar traversal through the pointer operand which
2923     // confuses base pointer rewriting, so limit ourselves to that case.
2924     if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
2925       IRBuilder<> B(&I);
2926       auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
2927       I.setOperand(0, Splat);
2928       MadeChange = true;
2929     }
2930   }
2931 
2932   if (!Intrinsics.empty())
2933     // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding
2934     // live references.
2935     MadeChange |= inlineGetBaseAndOffset(F, Intrinsics);
2936 
2937   if (!ParsePointNeeded.empty())
2938     MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2939   return MadeChange;
2940 }
2941 
2942 // liveness computation via standard dataflow
2943 // -------------------------------------------------------------------
2944 
2945 // TODO: Consider using bitvectors for liveness, the set of potentially
2946 // interesting values should be small and easy to pre-compute.
2947 
2948 /// Compute the live-in set for the location rbegin starting from
2949 /// the live-out set of the basic block
2950 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2951                                 BasicBlock::reverse_iterator End,
2952                                 SetVector<Value *> &LiveTmp) {
2953   for (auto &I : make_range(Begin, End)) {
2954     // KILL/Def - Remove this definition from LiveIn
2955     LiveTmp.remove(&I);
2956 
2957     // Don't consider *uses* in PHI nodes, we handle their contribution to
2958     // predecessor blocks when we seed the LiveOut sets
2959     if (isa<PHINode>(I))
2960       continue;
2961 
2962     // USE - Add to the LiveIn set for this instruction
2963     for (Value *V : I.operands()) {
2964       assert(!isUnhandledGCPointerType(V->getType()) &&
2965              "support for FCA unimplemented");
2966       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2967         // The choice to exclude all things constant here is slightly subtle.
2968         // There are two independent reasons:
2969         // - We assume that things which are constant (from LLVM's definition)
2970         // do not move at runtime.  For example, the address of a global
2971         // variable is fixed, even though it's contents may not be.
2972         // - Second, we can't disallow arbitrary inttoptr constants even
2973         // if the language frontend does.  Optimization passes are free to
2974         // locally exploit facts without respect to global reachability.  This
2975         // can create sections of code which are dynamically unreachable and
2976         // contain just about anything.  (see constants.ll in tests)
2977         LiveTmp.insert(V);
2978       }
2979     }
2980   }
2981 }
2982 
2983 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2984   for (BasicBlock *Succ : successors(BB)) {
2985     for (auto &I : *Succ) {
2986       PHINode *PN = dyn_cast<PHINode>(&I);
2987       if (!PN)
2988         break;
2989 
2990       Value *V = PN->getIncomingValueForBlock(BB);
2991       assert(!isUnhandledGCPointerType(V->getType()) &&
2992              "support for FCA unimplemented");
2993       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2994         LiveTmp.insert(V);
2995     }
2996   }
2997 }
2998 
2999 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
3000   SetVector<Value *> KillSet;
3001   for (Instruction &I : *BB)
3002     if (isHandledGCPointerType(I.getType()))
3003       KillSet.insert(&I);
3004   return KillSet;
3005 }
3006 
3007 #ifndef NDEBUG
3008 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
3009 /// sanity check for the liveness computation.
3010 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
3011                           Instruction *TI, bool TermOkay = false) {
3012   for (Value *V : Live) {
3013     if (auto *I = dyn_cast<Instruction>(V)) {
3014       // The terminator can be a member of the LiveOut set.  LLVM's definition
3015       // of instruction dominance states that V does not dominate itself.  As
3016       // such, we need to special case this to allow it.
3017       if (TermOkay && TI == I)
3018         continue;
3019       assert(DT.dominates(I, TI) &&
3020              "basic SSA liveness expectation violated by liveness analysis");
3021     }
3022   }
3023 }
3024 
3025 /// Check that all the liveness sets used during the computation of liveness
3026 /// obey basic SSA properties.  This is useful for finding cases where we miss
3027 /// a def.
3028 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
3029                           BasicBlock &BB) {
3030   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
3031   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
3032   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
3033 }
3034 #endif
3035 
3036 static void computeLiveInValues(DominatorTree &DT, Function &F,
3037                                 GCPtrLivenessData &Data) {
3038   SmallSetVector<BasicBlock *, 32> Worklist;
3039 
3040   // Seed the liveness for each individual block
3041   for (BasicBlock &BB : F) {
3042     Data.KillSet[&BB] = computeKillSet(&BB);
3043     Data.LiveSet[&BB].clear();
3044     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
3045 
3046 #ifndef NDEBUG
3047     for (Value *Kill : Data.KillSet[&BB])
3048       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
3049 #endif
3050 
3051     Data.LiveOut[&BB] = SetVector<Value *>();
3052     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
3053     Data.LiveIn[&BB] = Data.LiveSet[&BB];
3054     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
3055     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
3056     if (!Data.LiveIn[&BB].empty())
3057       Worklist.insert(pred_begin(&BB), pred_end(&BB));
3058   }
3059 
3060   // Propagate that liveness until stable
3061   while (!Worklist.empty()) {
3062     BasicBlock *BB = Worklist.pop_back_val();
3063 
3064     // Compute our new liveout set, then exit early if it hasn't changed despite
3065     // the contribution of our successor.
3066     SetVector<Value *> LiveOut = Data.LiveOut[BB];
3067     const auto OldLiveOutSize = LiveOut.size();
3068     for (BasicBlock *Succ : successors(BB)) {
3069       assert(Data.LiveIn.count(Succ));
3070       LiveOut.set_union(Data.LiveIn[Succ]);
3071     }
3072     // assert OutLiveOut is a subset of LiveOut
3073     if (OldLiveOutSize == LiveOut.size()) {
3074       // If the sets are the same size, then we didn't actually add anything
3075       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
3076       // hasn't changed.
3077       continue;
3078     }
3079     Data.LiveOut[BB] = LiveOut;
3080 
3081     // Apply the effects of this basic block
3082     SetVector<Value *> LiveTmp = LiveOut;
3083     LiveTmp.set_union(Data.LiveSet[BB]);
3084     LiveTmp.set_subtract(Data.KillSet[BB]);
3085 
3086     assert(Data.LiveIn.count(BB));
3087     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
3088     // assert: OldLiveIn is a subset of LiveTmp
3089     if (OldLiveIn.size() != LiveTmp.size()) {
3090       Data.LiveIn[BB] = LiveTmp;
3091       Worklist.insert(pred_begin(BB), pred_end(BB));
3092     }
3093   } // while (!Worklist.empty())
3094 
3095 #ifndef NDEBUG
3096   // Sanity check our output against SSA properties.  This helps catch any
3097   // missing kills during the above iteration.
3098   for (BasicBlock &BB : F)
3099     checkBasicSSA(DT, Data, BB);
3100 #endif
3101 }
3102 
3103 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
3104                               StatepointLiveSetTy &Out) {
3105   BasicBlock *BB = Inst->getParent();
3106 
3107   // Note: The copy is intentional and required
3108   assert(Data.LiveOut.count(BB));
3109   SetVector<Value *> LiveOut = Data.LiveOut[BB];
3110 
3111   // We want to handle the statepoint itself oddly.  It's
3112   // call result is not live (normal), nor are it's arguments
3113   // (unless they're used again later).  This adjustment is
3114   // specifically what we need to relocate
3115   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
3116                       LiveOut);
3117   LiveOut.remove(Inst);
3118   Out.insert(LiveOut.begin(), LiveOut.end());
3119 }
3120 
3121 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
3122                                   CallBase *Call,
3123                                   PartiallyConstructedSafepointRecord &Info) {
3124   StatepointLiveSetTy Updated;
3125   findLiveSetAtInst(Call, RevisedLivenessData, Updated);
3126 
3127   // We may have base pointers which are now live that weren't before.  We need
3128   // to update the PointerToBase structure to reflect this.
3129   for (auto V : Updated)
3130     Info.PointerToBase.insert({V, V});
3131 
3132 #ifndef NDEBUG
3133   for (auto V : Updated)
3134     assert(Info.PointerToBase.count(V) &&
3135            "Must be able to find base for live value!");
3136 #endif
3137 
3138   // Remove any stale base mappings - this can happen since our liveness is
3139   // more precise then the one inherent in the base pointer analysis.
3140   DenseSet<Value *> ToErase;
3141   for (auto KVPair : Info.PointerToBase)
3142     if (!Updated.count(KVPair.first))
3143       ToErase.insert(KVPair.first);
3144 
3145   for (auto *V : ToErase)
3146     Info.PointerToBase.erase(V);
3147 
3148 #ifndef NDEBUG
3149   for (auto KVPair : Info.PointerToBase)
3150     assert(Updated.count(KVPair.first) && "record for non-live value");
3151 #endif
3152 
3153   Info.LiveSet = Updated;
3154 }
3155