1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Rewrite call/invoke instructions so as to make potential relocations 10 // performed by the garbage collector explicit in the IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/iterator_range.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/IR/ValueHandle.h" 57 #include "llvm/InitializePasses.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <set> 75 #include <string> 76 #include <utility> 77 #include <vector> 78 79 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 80 81 using namespace llvm; 82 83 // Print the liveset found at the insert location 84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 85 cl::init(false)); 86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 87 cl::init(false)); 88 89 // Print out the base pointers for debugging 90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 91 cl::init(false)); 92 93 // Cost threshold measuring when it is profitable to rematerialize value instead 94 // of relocating it 95 static cl::opt<unsigned> 96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 97 cl::init(6)); 98 99 #ifdef EXPENSIVE_CHECKS 100 static bool ClobberNonLive = true; 101 #else 102 static bool ClobberNonLive = false; 103 #endif 104 105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 106 cl::location(ClobberNonLive), 107 cl::Hidden); 108 109 static cl::opt<bool> 110 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 111 cl::Hidden, cl::init(true)); 112 113 /// The IR fed into RewriteStatepointsForGC may have had attributes and 114 /// metadata implying dereferenceability that are no longer valid/correct after 115 /// RewriteStatepointsForGC has run. This is because semantically, after 116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 117 /// heap. stripNonValidData (conservatively) restores 118 /// correctness by erasing all attributes in the module that externally imply 119 /// dereferenceability. Similar reasoning also applies to the noalias 120 /// attributes and metadata. gc.statepoint can touch the entire heap including 121 /// noalias objects. 122 /// Apart from attributes and metadata, we also remove instructions that imply 123 /// constant physical memory: llvm.invariant.start. 124 static void stripNonValidData(Module &M); 125 126 static bool shouldRewriteStatepointsIn(Function &F); 127 128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 129 ModuleAnalysisManager &AM) { 130 bool Changed = false; 131 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 132 for (Function &F : M) { 133 // Nothing to do for declarations. 134 if (F.isDeclaration() || F.empty()) 135 continue; 136 137 // Policy choice says not to rewrite - the most common reason is that we're 138 // compiling code without a GCStrategy. 139 if (!shouldRewriteStatepointsIn(F)) 140 continue; 141 142 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 143 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 144 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 145 Changed |= runOnFunction(F, DT, TTI, TLI); 146 } 147 if (!Changed) 148 return PreservedAnalyses::all(); 149 150 // stripNonValidData asserts that shouldRewriteStatepointsIn 151 // returns true for at least one function in the module. Since at least 152 // one function changed, we know that the precondition is satisfied. 153 stripNonValidData(M); 154 155 PreservedAnalyses PA; 156 PA.preserve<TargetIRAnalysis>(); 157 PA.preserve<TargetLibraryAnalysis>(); 158 return PA; 159 } 160 161 namespace { 162 163 class RewriteStatepointsForGCLegacyPass : public ModulePass { 164 RewriteStatepointsForGC Impl; 165 166 public: 167 static char ID; // Pass identification, replacement for typeid 168 169 RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() { 170 initializeRewriteStatepointsForGCLegacyPassPass( 171 *PassRegistry::getPassRegistry()); 172 } 173 174 bool runOnModule(Module &M) override { 175 bool Changed = false; 176 for (Function &F : M) { 177 // Nothing to do for declarations. 178 if (F.isDeclaration() || F.empty()) 179 continue; 180 181 // Policy choice says not to rewrite - the most common reason is that 182 // we're compiling code without a GCStrategy. 183 if (!shouldRewriteStatepointsIn(F)) 184 continue; 185 186 TargetTransformInfo &TTI = 187 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 188 const TargetLibraryInfo &TLI = 189 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 190 auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 191 192 Changed |= Impl.runOnFunction(F, DT, TTI, TLI); 193 } 194 195 if (!Changed) 196 return false; 197 198 // stripNonValidData asserts that shouldRewriteStatepointsIn 199 // returns true for at least one function in the module. Since at least 200 // one function changed, we know that the precondition is satisfied. 201 stripNonValidData(M); 202 return true; 203 } 204 205 void getAnalysisUsage(AnalysisUsage &AU) const override { 206 // We add and rewrite a bunch of instructions, but don't really do much 207 // else. We could in theory preserve a lot more analyses here. 208 AU.addRequired<DominatorTreeWrapperPass>(); 209 AU.addRequired<TargetTransformInfoWrapperPass>(); 210 AU.addRequired<TargetLibraryInfoWrapperPass>(); 211 } 212 }; 213 214 } // end anonymous namespace 215 216 char RewriteStatepointsForGCLegacyPass::ID = 0; 217 218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() { 219 return new RewriteStatepointsForGCLegacyPass(); 220 } 221 222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass, 223 "rewrite-statepoints-for-gc", 224 "Make relocations explicit at statepoints", false, false) 225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass, 228 "rewrite-statepoints-for-gc", 229 "Make relocations explicit at statepoints", false, false) 230 231 namespace { 232 233 struct GCPtrLivenessData { 234 /// Values defined in this block. 235 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 236 237 /// Values used in this block (and thus live); does not included values 238 /// killed within this block. 239 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 240 241 /// Values live into this basic block (i.e. used by any 242 /// instruction in this basic block or ones reachable from here) 243 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 244 245 /// Values live out of this basic block (i.e. live into 246 /// any successor block) 247 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 248 }; 249 250 // The type of the internal cache used inside the findBasePointers family 251 // of functions. From the callers perspective, this is an opaque type and 252 // should not be inspected. 253 // 254 // In the actual implementation this caches two relations: 255 // - The base relation itself (i.e. this pointer is based on that one) 256 // - The base defining value relation (i.e. before base_phi insertion) 257 // Generally, after the execution of a full findBasePointer call, only the 258 // base relation will remain. Internally, we add a mixture of the two 259 // types, then update all the second type to the first type 260 using DefiningValueMapTy = MapVector<Value *, Value *>; 261 using StatepointLiveSetTy = SetVector<Value *>; 262 using RematerializedValueMapTy = 263 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 264 265 struct PartiallyConstructedSafepointRecord { 266 /// The set of values known to be live across this safepoint 267 StatepointLiveSetTy LiveSet; 268 269 /// Mapping from live pointers to a base-defining-value 270 MapVector<Value *, Value *> PointerToBase; 271 272 /// The *new* gc.statepoint instruction itself. This produces the token 273 /// that normal path gc.relocates and the gc.result are tied to. 274 GCStatepointInst *StatepointToken; 275 276 /// Instruction to which exceptional gc relocates are attached 277 /// Makes it easier to iterate through them during relocationViaAlloca. 278 Instruction *UnwindToken; 279 280 /// Record live values we are rematerialized instead of relocating. 281 /// They are not included into 'LiveSet' field. 282 /// Maps rematerialized copy to it's original value. 283 RematerializedValueMapTy RematerializedValues; 284 }; 285 286 } // end anonymous namespace 287 288 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) { 289 Optional<OperandBundleUse> DeoptBundle = 290 Call->getOperandBundle(LLVMContext::OB_deopt); 291 292 if (!DeoptBundle.hasValue()) { 293 assert(AllowStatepointWithNoDeoptInfo && 294 "Found non-leaf call without deopt info!"); 295 return None; 296 } 297 298 return DeoptBundle.getValue().Inputs; 299 } 300 301 /// Compute the live-in set for every basic block in the function 302 static void computeLiveInValues(DominatorTree &DT, Function &F, 303 GCPtrLivenessData &Data); 304 305 /// Given results from the dataflow liveness computation, find the set of live 306 /// Values at a particular instruction. 307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 308 StatepointLiveSetTy &out); 309 310 // TODO: Once we can get to the GCStrategy, this becomes 311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 312 313 static bool isGCPointerType(Type *T) { 314 if (auto *PT = dyn_cast<PointerType>(T)) 315 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 316 // GC managed heap. We know that a pointer into this heap needs to be 317 // updated and that no other pointer does. 318 return PT->getAddressSpace() == 1; 319 return false; 320 } 321 322 // Return true if this type is one which a) is a gc pointer or contains a GC 323 // pointer and b) is of a type this code expects to encounter as a live value. 324 // (The insertion code will assert that a type which matches (a) and not (b) 325 // is not encountered.) 326 static bool isHandledGCPointerType(Type *T) { 327 // We fully support gc pointers 328 if (isGCPointerType(T)) 329 return true; 330 // We partially support vectors of gc pointers. The code will assert if it 331 // can't handle something. 332 if (auto VT = dyn_cast<VectorType>(T)) 333 if (isGCPointerType(VT->getElementType())) 334 return true; 335 return false; 336 } 337 338 #ifndef NDEBUG 339 /// Returns true if this type contains a gc pointer whether we know how to 340 /// handle that type or not. 341 static bool containsGCPtrType(Type *Ty) { 342 if (isGCPointerType(Ty)) 343 return true; 344 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 345 return isGCPointerType(VT->getScalarType()); 346 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 347 return containsGCPtrType(AT->getElementType()); 348 if (StructType *ST = dyn_cast<StructType>(Ty)) 349 return llvm::any_of(ST->elements(), containsGCPtrType); 350 return false; 351 } 352 353 // Returns true if this is a type which a) is a gc pointer or contains a GC 354 // pointer and b) is of a type which the code doesn't expect (i.e. first class 355 // aggregates). Used to trip assertions. 356 static bool isUnhandledGCPointerType(Type *Ty) { 357 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 358 } 359 #endif 360 361 // Return the name of the value suffixed with the provided value, or if the 362 // value didn't have a name, the default value specified. 363 static std::string suffixed_name_or(Value *V, StringRef Suffix, 364 StringRef DefaultName) { 365 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 366 } 367 368 // Conservatively identifies any definitions which might be live at the 369 // given instruction. The analysis is performed immediately before the 370 // given instruction. Values defined by that instruction are not considered 371 // live. Values used by that instruction are considered live. 372 static void analyzeParsePointLiveness( 373 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, 374 PartiallyConstructedSafepointRecord &Result) { 375 StatepointLiveSetTy LiveSet; 376 findLiveSetAtInst(Call, OriginalLivenessData, LiveSet); 377 378 if (PrintLiveSet) { 379 dbgs() << "Live Variables:\n"; 380 for (Value *V : LiveSet) 381 dbgs() << " " << V->getName() << " " << *V << "\n"; 382 } 383 if (PrintLiveSetSize) { 384 dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n"; 385 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 386 } 387 Result.LiveSet = LiveSet; 388 } 389 390 // Returns true is V is a knownBaseResult. 391 static bool isKnownBaseResult(Value *V); 392 393 // Returns true if V is a BaseResult that already exists in the IR, i.e. it is 394 // not created by the findBasePointers algorithm. 395 static bool isOriginalBaseResult(Value *V); 396 397 namespace { 398 399 /// A single base defining value - An immediate base defining value for an 400 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 401 /// For instructions which have multiple pointer [vector] inputs or that 402 /// transition between vector and scalar types, there is no immediate base 403 /// defining value. The 'base defining value' for 'Def' is the transitive 404 /// closure of this relation stopping at the first instruction which has no 405 /// immediate base defining value. The b.d.v. might itself be a base pointer, 406 /// but it can also be an arbitrary derived pointer. 407 struct BaseDefiningValueResult { 408 /// Contains the value which is the base defining value. 409 Value * const BDV; 410 411 /// True if the base defining value is also known to be an actual base 412 /// pointer. 413 const bool IsKnownBase; 414 415 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 416 : BDV(BDV), IsKnownBase(IsKnownBase) { 417 #ifndef NDEBUG 418 // Check consistency between new and old means of checking whether a BDV is 419 // a base. 420 bool MustBeBase = isKnownBaseResult(BDV); 421 assert(!MustBeBase || MustBeBase == IsKnownBase); 422 #endif 423 } 424 }; 425 426 } // end anonymous namespace 427 428 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 429 430 /// Return a base defining value for the 'Index' element of the given vector 431 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 432 /// 'I'. As an optimization, this method will try to determine when the 433 /// element is known to already be a base pointer. If this can be established, 434 /// the second value in the returned pair will be true. Note that either a 435 /// vector or a pointer typed value can be returned. For the former, the 436 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 437 /// If the later, the return pointer is a BDV (or possibly a base) for the 438 /// particular element in 'I'. 439 static BaseDefiningValueResult 440 findBaseDefiningValueOfVector(Value *I) { 441 // Each case parallels findBaseDefiningValue below, see that code for 442 // detailed motivation. 443 444 if (isa<Argument>(I)) 445 // An incoming argument to the function is a base pointer 446 return BaseDefiningValueResult(I, true); 447 448 if (isa<Constant>(I)) 449 // Base of constant vector consists only of constant null pointers. 450 // For reasoning see similar case inside 'findBaseDefiningValue' function. 451 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 452 true); 453 454 if (isa<LoadInst>(I)) 455 return BaseDefiningValueResult(I, true); 456 457 if (isa<InsertElementInst>(I)) 458 // We don't know whether this vector contains entirely base pointers or 459 // not. To be conservatively correct, we treat it as a BDV and will 460 // duplicate code as needed to construct a parallel vector of bases. 461 return BaseDefiningValueResult(I, false); 462 463 if (isa<ShuffleVectorInst>(I)) 464 // We don't know whether this vector contains entirely base pointers or 465 // not. To be conservatively correct, we treat it as a BDV and will 466 // duplicate code as needed to construct a parallel vector of bases. 467 // TODO: There a number of local optimizations which could be applied here 468 // for particular sufflevector patterns. 469 return BaseDefiningValueResult(I, false); 470 471 // The behavior of getelementptr instructions is the same for vector and 472 // non-vector data types. 473 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 474 return findBaseDefiningValue(GEP->getPointerOperand()); 475 476 // If the pointer comes through a bitcast of a vector of pointers to 477 // a vector of another type of pointer, then look through the bitcast 478 if (auto *BC = dyn_cast<BitCastInst>(I)) 479 return findBaseDefiningValue(BC->getOperand(0)); 480 481 // We assume that functions in the source language only return base 482 // pointers. This should probably be generalized via attributes to support 483 // both source language and internal functions. 484 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 485 return BaseDefiningValueResult(I, true); 486 487 // A PHI or Select is a base defining value. The outer findBasePointer 488 // algorithm is responsible for constructing a base value for this BDV. 489 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 490 "unknown vector instruction - no base found for vector element"); 491 return BaseDefiningValueResult(I, false); 492 } 493 494 /// Helper function for findBasePointer - Will return a value which either a) 495 /// defines the base pointer for the input, b) blocks the simple search 496 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 497 /// from pointer to vector type or back. 498 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 499 assert(I->getType()->isPtrOrPtrVectorTy() && 500 "Illegal to ask for the base pointer of a non-pointer type"); 501 502 if (I->getType()->isVectorTy()) 503 return findBaseDefiningValueOfVector(I); 504 505 if (isa<Argument>(I)) 506 // An incoming argument to the function is a base pointer 507 // We should have never reached here if this argument isn't an gc value 508 return BaseDefiningValueResult(I, true); 509 510 if (isa<Constant>(I)) { 511 // We assume that objects with a constant base (e.g. a global) can't move 512 // and don't need to be reported to the collector because they are always 513 // live. Besides global references, all kinds of constants (e.g. undef, 514 // constant expressions, null pointers) can be introduced by the inliner or 515 // the optimizer, especially on dynamically dead paths. 516 // Here we treat all of them as having single null base. By doing this we 517 // trying to avoid problems reporting various conflicts in a form of 518 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 519 // See constant.ll file for relevant test cases. 520 521 return BaseDefiningValueResult( 522 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 523 } 524 525 if (CastInst *CI = dyn_cast<CastInst>(I)) { 526 Value *Def = CI->stripPointerCasts(); 527 // If stripping pointer casts changes the address space there is an 528 // addrspacecast in between. 529 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 530 cast<PointerType>(CI->getType())->getAddressSpace() && 531 "unsupported addrspacecast"); 532 // If we find a cast instruction here, it means we've found a cast which is 533 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 534 // handle int->ptr conversion. 535 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 536 return findBaseDefiningValue(Def); 537 } 538 539 if (isa<LoadInst>(I)) 540 // The value loaded is an gc base itself 541 return BaseDefiningValueResult(I, true); 542 543 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 544 // The base of this GEP is the base 545 return findBaseDefiningValue(GEP->getPointerOperand()); 546 547 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 548 switch (II->getIntrinsicID()) { 549 default: 550 // fall through to general call handling 551 break; 552 case Intrinsic::experimental_gc_statepoint: 553 llvm_unreachable("statepoints don't produce pointers"); 554 case Intrinsic::experimental_gc_relocate: 555 // Rerunning safepoint insertion after safepoints are already 556 // inserted is not supported. It could probably be made to work, 557 // but why are you doing this? There's no good reason. 558 llvm_unreachable("repeat safepoint insertion is not supported"); 559 case Intrinsic::gcroot: 560 // Currently, this mechanism hasn't been extended to work with gcroot. 561 // There's no reason it couldn't be, but I haven't thought about the 562 // implications much. 563 llvm_unreachable( 564 "interaction with the gcroot mechanism is not supported"); 565 case Intrinsic::experimental_gc_get_pointer_base: 566 return findBaseDefiningValue(II->getOperand(0)); 567 } 568 } 569 // We assume that functions in the source language only return base 570 // pointers. This should probably be generalized via attributes to support 571 // both source language and internal functions. 572 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 573 return BaseDefiningValueResult(I, true); 574 575 // TODO: I have absolutely no idea how to implement this part yet. It's not 576 // necessarily hard, I just haven't really looked at it yet. 577 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 578 579 if (isa<AtomicCmpXchgInst>(I)) 580 // A CAS is effectively a atomic store and load combined under a 581 // predicate. From the perspective of base pointers, we just treat it 582 // like a load. 583 return BaseDefiningValueResult(I, true); 584 585 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 586 "binary ops which don't apply to pointers"); 587 588 // The aggregate ops. Aggregates can either be in the heap or on the 589 // stack, but in either case, this is simply a field load. As a result, 590 // this is a defining definition of the base just like a load is. 591 if (isa<ExtractValueInst>(I)) 592 return BaseDefiningValueResult(I, true); 593 594 // We should never see an insert vector since that would require we be 595 // tracing back a struct value not a pointer value. 596 assert(!isa<InsertValueInst>(I) && 597 "Base pointer for a struct is meaningless"); 598 599 // This value might have been generated by findBasePointer() called when 600 // substituting gc.get.pointer.base() intrinsic. 601 bool IsKnownBase = 602 isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value"); 603 604 // An extractelement produces a base result exactly when it's input does. 605 // We may need to insert a parallel instruction to extract the appropriate 606 // element out of the base vector corresponding to the input. Given this, 607 // it's analogous to the phi and select case even though it's not a merge. 608 if (isa<ExtractElementInst>(I)) 609 // Note: There a lot of obvious peephole cases here. This are deliberately 610 // handled after the main base pointer inference algorithm to make writing 611 // test cases to exercise that code easier. 612 return BaseDefiningValueResult(I, IsKnownBase); 613 614 // The last two cases here don't return a base pointer. Instead, they 615 // return a value which dynamically selects from among several base 616 // derived pointers (each with it's own base potentially). It's the job of 617 // the caller to resolve these. 618 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 619 "missing instruction case in findBaseDefiningValing"); 620 return BaseDefiningValueResult(I, IsKnownBase); 621 } 622 623 /// Returns the base defining value for this value. 624 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 625 Value *&Cached = Cache[I]; 626 if (!Cached) { 627 Cached = findBaseDefiningValue(I).BDV; 628 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 629 << Cached->getName() << "\n"); 630 } 631 assert(Cache[I] != nullptr); 632 return Cached; 633 } 634 635 /// Return a base pointer for this value if known. Otherwise, return it's 636 /// base defining value. 637 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 638 Value *Def = findBaseDefiningValueCached(I, Cache); 639 auto Found = Cache.find(Def); 640 if (Found != Cache.end()) { 641 // Either a base-of relation, or a self reference. Caller must check. 642 return Found->second; 643 } 644 // Only a BDV available 645 return Def; 646 } 647 648 /// This value is a base pointer that is not generated by RS4GC, i.e. it already 649 /// exists in the code. 650 static bool isOriginalBaseResult(Value *V) { 651 // no recursion possible 652 return !isa<PHINode>(V) && !isa<SelectInst>(V) && 653 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 654 !isa<ShuffleVectorInst>(V); 655 } 656 657 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 658 /// is it known to be a base pointer? Or do we need to continue searching. 659 static bool isKnownBaseResult(Value *V) { 660 if (isOriginalBaseResult(V)) 661 return true; 662 if (isa<Instruction>(V) && 663 cast<Instruction>(V)->getMetadata("is_base_value")) { 664 // This is a previously inserted base phi or select. We know 665 // that this is a base value. 666 return true; 667 } 668 669 // We need to keep searching 670 return false; 671 } 672 673 // Returns true if First and Second values are both scalar or both vector. 674 static bool areBothVectorOrScalar(Value *First, Value *Second) { 675 return isa<VectorType>(First->getType()) == 676 isa<VectorType>(Second->getType()); 677 } 678 679 namespace { 680 681 /// Models the state of a single base defining value in the findBasePointer 682 /// algorithm for determining where a new instruction is needed to propagate 683 /// the base of this BDV. 684 class BDVState { 685 public: 686 enum StatusTy { 687 // Starting state of lattice 688 Unknown, 689 // Some specific base value -- does *not* mean that instruction 690 // propagates the base of the object 691 // ex: gep %arg, 16 -> %arg is the base value 692 Base, 693 // Need to insert a node to represent a merge. 694 Conflict 695 }; 696 697 BDVState() { 698 llvm_unreachable("missing state in map"); 699 } 700 701 explicit BDVState(Value *OriginalValue) 702 : OriginalValue(OriginalValue) {} 703 explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr) 704 : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) { 705 assert(Status != Base || BaseValue); 706 } 707 708 StatusTy getStatus() const { return Status; } 709 Value *getOriginalValue() const { return OriginalValue; } 710 Value *getBaseValue() const { return BaseValue; } 711 712 bool isBase() const { return getStatus() == Base; } 713 bool isUnknown() const { return getStatus() == Unknown; } 714 bool isConflict() const { return getStatus() == Conflict; } 715 716 // Values of type BDVState form a lattice, and this function implements the 717 // meet 718 // operation. 719 void meet(const BDVState &Other) { 720 auto markConflict = [&]() { 721 Status = BDVState::Conflict; 722 BaseValue = nullptr; 723 }; 724 // Conflict is a final state. 725 if (isConflict()) 726 return; 727 // if we are not known - just take other state. 728 if (isUnknown()) { 729 Status = Other.getStatus(); 730 BaseValue = Other.getBaseValue(); 731 return; 732 } 733 // We are base. 734 assert(isBase() && "Unknown state"); 735 // If other is unknown - just keep our state. 736 if (Other.isUnknown()) 737 return; 738 // If other is conflict - it is a final state. 739 if (Other.isConflict()) 740 return markConflict(); 741 // Other is base as well. 742 assert(Other.isBase() && "Unknown state"); 743 // If bases are different - Conflict. 744 if (getBaseValue() != Other.getBaseValue()) 745 return markConflict(); 746 // We are identical, do nothing. 747 } 748 749 bool operator==(const BDVState &Other) const { 750 return OriginalValue == OriginalValue && BaseValue == Other.BaseValue && 751 Status == Other.Status; 752 } 753 754 bool operator!=(const BDVState &other) const { return !(*this == other); } 755 756 LLVM_DUMP_METHOD 757 void dump() const { 758 print(dbgs()); 759 dbgs() << '\n'; 760 } 761 762 void print(raw_ostream &OS) const { 763 switch (getStatus()) { 764 case Unknown: 765 OS << "U"; 766 break; 767 case Base: 768 OS << "B"; 769 break; 770 case Conflict: 771 OS << "C"; 772 break; 773 } 774 OS << " (base " << getBaseValue() << " - " 775 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")" 776 << " for " << OriginalValue->getName() << ":"; 777 } 778 779 private: 780 AssertingVH<Value> OriginalValue; // instruction this state corresponds to 781 StatusTy Status = Unknown; 782 AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base. 783 }; 784 785 } // end anonymous namespace 786 787 #ifndef NDEBUG 788 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 789 State.print(OS); 790 return OS; 791 } 792 #endif 793 794 /// For a given value or instruction, figure out what base ptr its derived from. 795 /// For gc objects, this is simply itself. On success, returns a value which is 796 /// the base pointer. (This is reliable and can be used for relocation.) On 797 /// failure, returns nullptr. 798 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 799 Value *Def = findBaseOrBDV(I, Cache); 800 801 if (isKnownBaseResult(Def) && areBothVectorOrScalar(Def, I)) 802 return Def; 803 804 // Here's the rough algorithm: 805 // - For every SSA value, construct a mapping to either an actual base 806 // pointer or a PHI which obscures the base pointer. 807 // - Construct a mapping from PHI to unknown TOP state. Use an 808 // optimistic algorithm to propagate base pointer information. Lattice 809 // looks like: 810 // UNKNOWN 811 // b1 b2 b3 b4 812 // CONFLICT 813 // When algorithm terminates, all PHIs will either have a single concrete 814 // base or be in a conflict state. 815 // - For every conflict, insert a dummy PHI node without arguments. Add 816 // these to the base[Instruction] = BasePtr mapping. For every 817 // non-conflict, add the actual base. 818 // - For every conflict, add arguments for the base[a] of each input 819 // arguments. 820 // 821 // Note: A simpler form of this would be to add the conflict form of all 822 // PHIs without running the optimistic algorithm. This would be 823 // analogous to pessimistic data flow and would likely lead to an 824 // overall worse solution. 825 826 #ifndef NDEBUG 827 auto isExpectedBDVType = [](Value *BDV) { 828 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 829 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 830 isa<ShuffleVectorInst>(BDV); 831 }; 832 #endif 833 834 // Once populated, will contain a mapping from each potentially non-base BDV 835 // to a lattice value (described above) which corresponds to that BDV. 836 // We use the order of insertion (DFS over the def/use graph) to provide a 837 // stable deterministic ordering for visiting DenseMaps (which are unordered) 838 // below. This is important for deterministic compilation. 839 MapVector<Value *, BDVState> States; 840 841 #ifndef NDEBUG 842 auto VerifyStates = [&]() { 843 for (auto &Entry : States) { 844 assert(Entry.first == Entry.second.getOriginalValue()); 845 } 846 }; 847 #endif 848 849 auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) { 850 if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 851 for (Value *InVal : PN->incoming_values()) 852 F(InVal); 853 } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 854 F(SI->getTrueValue()); 855 F(SI->getFalseValue()); 856 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 857 F(EE->getVectorOperand()); 858 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) { 859 F(IE->getOperand(0)); 860 F(IE->getOperand(1)); 861 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) { 862 // For a canonical broadcast, ignore the undef argument 863 // (without this, we insert a parallel base shuffle for every broadcast) 864 F(SV->getOperand(0)); 865 if (!SV->isZeroEltSplat()) 866 F(SV->getOperand(1)); 867 } else { 868 llvm_unreachable("unexpected BDV type"); 869 } 870 }; 871 872 873 // Recursively fill in all base defining values reachable from the initial 874 // one for which we don't already know a definite base value for 875 /* scope */ { 876 SmallVector<Value*, 16> Worklist; 877 Worklist.push_back(Def); 878 States.insert({Def, BDVState(Def)}); 879 while (!Worklist.empty()) { 880 Value *Current = Worklist.pop_back_val(); 881 assert(!isOriginalBaseResult(Current) && "why did it get added?"); 882 883 auto visitIncomingValue = [&](Value *InVal) { 884 Value *Base = findBaseOrBDV(InVal, Cache); 885 if (isKnownBaseResult(Base) && areBothVectorOrScalar(Base, InVal)) 886 // Known bases won't need new instructions introduced and can be 887 // ignored safely. However, this can only be done when InVal and Base 888 // are both scalar or both vector. Otherwise, we need to find a 889 // correct BDV for InVal, by creating an entry in the lattice 890 // (States). 891 return; 892 assert(isExpectedBDVType(Base) && "the only non-base values " 893 "we see should be base defining values"); 894 if (States.insert(std::make_pair(Base, BDVState(Base))).second) 895 Worklist.push_back(Base); 896 }; 897 898 visitBDVOperands(Current, visitIncomingValue); 899 } 900 } 901 902 #ifndef NDEBUG 903 VerifyStates(); 904 LLVM_DEBUG(dbgs() << "States after initialization:\n"); 905 for (auto Pair : States) { 906 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 907 } 908 #endif 909 910 // Iterate forward through the value graph pruning any node from the state 911 // list where all of the inputs are base pointers. The purpose of this is to 912 // reuse existing values when the derived pointer we were asked to materialize 913 // a base pointer for happens to be a base pointer itself. (Or a sub-graph 914 // feeding it does.) 915 SmallVector<Value *> ToRemove; 916 do { 917 ToRemove.clear(); 918 for (auto Pair : States) { 919 Value *BDV = Pair.first; 920 auto canPruneInput = [&](Value *V) { 921 Value *BDV = findBaseOrBDV(V, Cache); 922 if (V->stripPointerCasts() != BDV) 923 return false; 924 // The assumption is that anything not in the state list is 925 // propagates a base pointer. 926 return States.count(BDV) == 0; 927 }; 928 929 bool CanPrune = true; 930 visitBDVOperands(BDV, [&](Value *Op) { 931 CanPrune = CanPrune && canPruneInput(Op); 932 }); 933 if (CanPrune) 934 ToRemove.push_back(BDV); 935 } 936 for (Value *V : ToRemove) { 937 States.erase(V); 938 // Cache the fact V is it's own base for later usage. 939 Cache[V] = V; 940 } 941 } while (!ToRemove.empty()); 942 943 // Did we manage to prove that Def itself must be a base pointer? 944 if (!States.count(Def)) 945 return Def; 946 947 // Return a phi state for a base defining value. We'll generate a new 948 // base state for known bases and expect to find a cached state otherwise. 949 auto GetStateForBDV = [&](Value *BaseValue, Value *Input) { 950 auto I = States.find(BaseValue); 951 if (I != States.end()) 952 return I->second; 953 assert(areBothVectorOrScalar(BaseValue, Input)); 954 return BDVState(BaseValue, BDVState::Base, BaseValue); 955 }; 956 957 bool Progress = true; 958 while (Progress) { 959 #ifndef NDEBUG 960 const size_t OldSize = States.size(); 961 #endif 962 Progress = false; 963 // We're only changing values in this loop, thus safe to keep iterators. 964 // Since this is computing a fixed point, the order of visit does not 965 // effect the result. TODO: We could use a worklist here and make this run 966 // much faster. 967 for (auto Pair : States) { 968 Value *BDV = Pair.first; 969 // Only values that do not have known bases or those that have differing 970 // type (scalar versus vector) from a possible known base should be in the 971 // lattice. 972 assert((!isKnownBaseResult(BDV) || 973 !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) && 974 "why did it get added?"); 975 976 BDVState NewState(BDV); 977 visitBDVOperands(BDV, [&](Value *Op) { 978 Value *BDV = findBaseOrBDV(Op, Cache); 979 auto OpState = GetStateForBDV(BDV, Op); 980 NewState.meet(OpState); 981 }); 982 983 BDVState OldState = States[BDV]; 984 if (OldState != NewState) { 985 Progress = true; 986 States[BDV] = NewState; 987 } 988 } 989 990 assert(OldSize == States.size() && 991 "fixed point shouldn't be adding any new nodes to state"); 992 } 993 994 #ifndef NDEBUG 995 VerifyStates(); 996 LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); 997 for (auto Pair : States) { 998 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 999 } 1000 #endif 1001 1002 // Handle all instructions that have a vector BDV, but the instruction itself 1003 // is of scalar type. 1004 for (auto Pair : States) { 1005 Instruction *I = cast<Instruction>(Pair.first); 1006 BDVState State = Pair.second; 1007 auto *BaseValue = State.getBaseValue(); 1008 // Only values that do not have known bases or those that have differing 1009 // type (scalar versus vector) from a possible known base should be in the 1010 // lattice. 1011 assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, BaseValue)) && 1012 "why did it get added?"); 1013 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1014 1015 if (!State.isBase() || !isa<VectorType>(BaseValue->getType())) 1016 continue; 1017 // extractelement instructions are a bit special in that we may need to 1018 // insert an extract even when we know an exact base for the instruction. 1019 // The problem is that we need to convert from a vector base to a scalar 1020 // base for the particular indice we're interested in. 1021 if (isa<ExtractElementInst>(I)) { 1022 auto *EE = cast<ExtractElementInst>(I); 1023 // TODO: In many cases, the new instruction is just EE itself. We should 1024 // exploit this, but can't do it here since it would break the invariant 1025 // about the BDV not being known to be a base. 1026 auto *BaseInst = ExtractElementInst::Create( 1027 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 1028 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1029 States[I] = BDVState(I, BDVState::Base, BaseInst); 1030 } else if (!isa<VectorType>(I->getType())) { 1031 // We need to handle cases that have a vector base but the instruction is 1032 // a scalar type (these could be phis or selects or any instruction that 1033 // are of scalar type, but the base can be a vector type). We 1034 // conservatively set this as conflict. Setting the base value for these 1035 // conflicts is handled in the next loop which traverses States. 1036 States[I] = BDVState(I, BDVState::Conflict); 1037 } 1038 } 1039 1040 #ifndef NDEBUG 1041 VerifyStates(); 1042 #endif 1043 1044 // Insert Phis for all conflicts 1045 // TODO: adjust naming patterns to avoid this order of iteration dependency 1046 for (auto Pair : States) { 1047 Instruction *I = cast<Instruction>(Pair.first); 1048 BDVState State = Pair.second; 1049 // Only values that do not have known bases or those that have differing 1050 // type (scalar versus vector) from a possible known base should be in the 1051 // lattice. 1052 assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, State.getBaseValue())) && 1053 "why did it get added?"); 1054 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1055 1056 // Since we're joining a vector and scalar base, they can never be the 1057 // same. As a result, we should always see insert element having reached 1058 // the conflict state. 1059 assert(!isa<InsertElementInst>(I) || State.isConflict()); 1060 1061 if (!State.isConflict()) 1062 continue; 1063 1064 auto getMangledName = [](Instruction *I) -> std::string { 1065 if (isa<PHINode>(I)) { 1066 return suffixed_name_or(I, ".base", "base_phi"); 1067 } else if (isa<SelectInst>(I)) { 1068 return suffixed_name_or(I, ".base", "base_select"); 1069 } else if (isa<ExtractElementInst>(I)) { 1070 return suffixed_name_or(I, ".base", "base_ee"); 1071 } else if (isa<InsertElementInst>(I)) { 1072 return suffixed_name_or(I, ".base", "base_ie"); 1073 } else { 1074 return suffixed_name_or(I, ".base", "base_sv"); 1075 } 1076 }; 1077 1078 Instruction *BaseInst = I->clone(); 1079 BaseInst->insertBefore(I); 1080 BaseInst->setName(getMangledName(I)); 1081 // Add metadata marking this as a base value 1082 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1083 States[I] = BDVState(I, BDVState::Conflict, BaseInst); 1084 } 1085 1086 #ifndef NDEBUG 1087 VerifyStates(); 1088 #endif 1089 1090 // Returns a instruction which produces the base pointer for a given 1091 // instruction. The instruction is assumed to be an input to one of the BDVs 1092 // seen in the inference algorithm above. As such, we must either already 1093 // know it's base defining value is a base, or have inserted a new 1094 // instruction to propagate the base of it's BDV and have entered that newly 1095 // introduced instruction into the state table. In either case, we are 1096 // assured to be able to determine an instruction which produces it's base 1097 // pointer. 1098 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1099 Value *BDV = findBaseOrBDV(Input, Cache); 1100 Value *Base = nullptr; 1101 if (!States.count(BDV)) { 1102 assert(areBothVectorOrScalar(BDV, Input)); 1103 Base = BDV; 1104 } else { 1105 // Either conflict or base. 1106 assert(States.count(BDV)); 1107 Base = States[BDV].getBaseValue(); 1108 } 1109 assert(Base && "Can't be null"); 1110 // The cast is needed since base traversal may strip away bitcasts 1111 if (Base->getType() != Input->getType() && InsertPt) 1112 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 1113 return Base; 1114 }; 1115 1116 // Fixup all the inputs of the new PHIs. Visit order needs to be 1117 // deterministic and predictable because we're naming newly created 1118 // instructions. 1119 for (auto Pair : States) { 1120 Instruction *BDV = cast<Instruction>(Pair.first); 1121 BDVState State = Pair.second; 1122 1123 // Only values that do not have known bases or those that have differing 1124 // type (scalar versus vector) from a possible known base should be in the 1125 // lattice. 1126 assert((!isKnownBaseResult(BDV) || 1127 !areBothVectorOrScalar(BDV, State.getBaseValue())) && 1128 "why did it get added?"); 1129 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1130 if (!State.isConflict()) 1131 continue; 1132 1133 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1134 PHINode *PN = cast<PHINode>(BDV); 1135 const unsigned NumPHIValues = PN->getNumIncomingValues(); 1136 1137 // The IR verifier requires phi nodes with multiple entries from the 1138 // same basic block to have the same incoming value for each of those 1139 // entries. Since we're inserting bitcasts in the loop, make sure we 1140 // do so at least once per incoming block. 1141 DenseMap<BasicBlock *, Value*> BlockToValue; 1142 for (unsigned i = 0; i < NumPHIValues; i++) { 1143 Value *InVal = PN->getIncomingValue(i); 1144 BasicBlock *InBB = PN->getIncomingBlock(i); 1145 if (!BlockToValue.count(InBB)) 1146 BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator()); 1147 else { 1148 #ifndef NDEBUG 1149 Value *OldBase = BlockToValue[InBB]; 1150 Value *Base = getBaseForInput(InVal, nullptr); 1151 // In essence this assert states: the only way two values 1152 // incoming from the same basic block may be different is by 1153 // being different bitcasts of the same value. A cleanup 1154 // that remains TODO is changing findBaseOrBDV to return an 1155 // llvm::Value of the correct type (and still remain pure). 1156 // This will remove the need to add bitcasts. 1157 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 1158 "Sanity -- findBaseOrBDV should be pure!"); 1159 #endif 1160 } 1161 Value *Base = BlockToValue[InBB]; 1162 BasePHI->setIncomingValue(i, Base); 1163 } 1164 } else if (SelectInst *BaseSI = 1165 dyn_cast<SelectInst>(State.getBaseValue())) { 1166 SelectInst *SI = cast<SelectInst>(BDV); 1167 1168 // Find the instruction which produces the base for each input. 1169 // We may need to insert a bitcast. 1170 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1171 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1172 } else if (auto *BaseEE = 1173 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1174 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1175 // Find the instruction which produces the base for each input. We may 1176 // need to insert a bitcast. 1177 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1178 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1179 auto *BdvIE = cast<InsertElementInst>(BDV); 1180 auto UpdateOperand = [&](int OperandIdx) { 1181 Value *InVal = BdvIE->getOperand(OperandIdx); 1182 Value *Base = getBaseForInput(InVal, BaseIE); 1183 BaseIE->setOperand(OperandIdx, Base); 1184 }; 1185 UpdateOperand(0); // vector operand 1186 UpdateOperand(1); // scalar operand 1187 } else { 1188 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1189 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1190 auto UpdateOperand = [&](int OperandIdx) { 1191 Value *InVal = BdvSV->getOperand(OperandIdx); 1192 Value *Base = getBaseForInput(InVal, BaseSV); 1193 BaseSV->setOperand(OperandIdx, Base); 1194 }; 1195 UpdateOperand(0); // vector operand 1196 if (!BdvSV->isZeroEltSplat()) 1197 UpdateOperand(1); // vector operand 1198 else { 1199 // Never read, so just use undef 1200 Value *InVal = BdvSV->getOperand(1); 1201 BaseSV->setOperand(1, UndefValue::get(InVal->getType())); 1202 } 1203 } 1204 } 1205 1206 #ifndef NDEBUG 1207 VerifyStates(); 1208 #endif 1209 1210 // Cache all of our results so we can cheaply reuse them 1211 // NOTE: This is actually two caches: one of the base defining value 1212 // relation and one of the base pointer relation! FIXME 1213 for (auto Pair : States) { 1214 auto *BDV = Pair.first; 1215 Value *Base = Pair.second.getBaseValue(); 1216 assert(BDV && Base); 1217 // Only values that do not have known bases or those that have differing 1218 // type (scalar versus vector) from a possible known base should be in the 1219 // lattice. 1220 assert((!isKnownBaseResult(BDV) || !areBothVectorOrScalar(BDV, Base)) && 1221 "why did it get added?"); 1222 1223 LLVM_DEBUG( 1224 dbgs() << "Updating base value cache" 1225 << " for: " << BDV->getName() << " from: " 1226 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1227 << " to: " << Base->getName() << "\n"); 1228 1229 Cache[BDV] = Base; 1230 } 1231 assert(Cache.count(Def)); 1232 return Cache[Def]; 1233 } 1234 1235 // For a set of live pointers (base and/or derived), identify the base 1236 // pointer of the object which they are derived from. This routine will 1237 // mutate the IR graph as needed to make the 'base' pointer live at the 1238 // definition site of 'derived'. This ensures that any use of 'derived' can 1239 // also use 'base'. This may involve the insertion of a number of 1240 // additional PHI nodes. 1241 // 1242 // preconditions: live is a set of pointer type Values 1243 // 1244 // side effects: may insert PHI nodes into the existing CFG, will preserve 1245 // CFG, will not remove or mutate any existing nodes 1246 // 1247 // post condition: PointerToBase contains one (derived, base) pair for every 1248 // pointer in live. Note that derived can be equal to base if the original 1249 // pointer was a base pointer. 1250 static void 1251 findBasePointers(const StatepointLiveSetTy &live, 1252 MapVector<Value *, Value *> &PointerToBase, 1253 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1254 for (Value *ptr : live) { 1255 Value *base = findBasePointer(ptr, DVCache); 1256 assert(base && "failed to find base pointer"); 1257 PointerToBase[ptr] = base; 1258 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1259 DT->dominates(cast<Instruction>(base)->getParent(), 1260 cast<Instruction>(ptr)->getParent())) && 1261 "The base we found better dominate the derived pointer"); 1262 } 1263 } 1264 1265 /// Find the required based pointers (and adjust the live set) for the given 1266 /// parse point. 1267 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1268 CallBase *Call, 1269 PartiallyConstructedSafepointRecord &result) { 1270 MapVector<Value *, Value *> PointerToBase; 1271 StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet; 1272 // We assume that all pointers passed to deopt are base pointers; as an 1273 // optimization, we can use this to avoid seperately materializing the base 1274 // pointer graph. This is only relevant since we're very conservative about 1275 // generating new conflict nodes during base pointer insertion. If we were 1276 // smarter there, this would be irrelevant. 1277 if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt)) 1278 for (Value *V : Opt->Inputs) { 1279 if (!PotentiallyDerivedPointers.count(V)) 1280 continue; 1281 PotentiallyDerivedPointers.remove(V); 1282 PointerToBase[V] = V; 1283 } 1284 findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache); 1285 1286 if (PrintBasePointers) { 1287 errs() << "Base Pairs (w/o Relocation):\n"; 1288 for (auto &Pair : PointerToBase) { 1289 errs() << " derived "; 1290 Pair.first->printAsOperand(errs(), false); 1291 errs() << " base "; 1292 Pair.second->printAsOperand(errs(), false); 1293 errs() << "\n";; 1294 } 1295 } 1296 1297 result.PointerToBase = PointerToBase; 1298 } 1299 1300 /// Given an updated version of the dataflow liveness results, update the 1301 /// liveset and base pointer maps for the call site CS. 1302 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1303 CallBase *Call, 1304 PartiallyConstructedSafepointRecord &result); 1305 1306 static void recomputeLiveInValues( 1307 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 1308 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1309 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1310 // again. The old values are still live and will help it stabilize quickly. 1311 GCPtrLivenessData RevisedLivenessData; 1312 computeLiveInValues(DT, F, RevisedLivenessData); 1313 for (size_t i = 0; i < records.size(); i++) { 1314 struct PartiallyConstructedSafepointRecord &info = records[i]; 1315 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1316 } 1317 } 1318 1319 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1320 // no uses of the original value / return value between the gc.statepoint and 1321 // the gc.relocate / gc.result call. One case which can arise is a phi node 1322 // starting one of the successor blocks. We also need to be able to insert the 1323 // gc.relocates only on the path which goes through the statepoint. We might 1324 // need to split an edge to make this possible. 1325 static BasicBlock * 1326 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1327 DominatorTree &DT) { 1328 BasicBlock *Ret = BB; 1329 if (!BB->getUniquePredecessor()) 1330 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1331 1332 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1333 // from it 1334 FoldSingleEntryPHINodes(Ret); 1335 assert(!isa<PHINode>(Ret->begin()) && 1336 "All PHI nodes should have been removed!"); 1337 1338 // At this point, we can safely insert a gc.relocate or gc.result as the first 1339 // instruction in Ret if needed. 1340 return Ret; 1341 } 1342 1343 // List of all function attributes which must be stripped when lowering from 1344 // abstract machine model to physical machine model. Essentially, these are 1345 // all the effects a safepoint might have which we ignored in the abstract 1346 // machine model for purposes of optimization. We have to strip these on 1347 // both function declarations and call sites. 1348 static constexpr Attribute::AttrKind FnAttrsToStrip[] = 1349 {Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly, 1350 Attribute::ArgMemOnly, Attribute::InaccessibleMemOnly, 1351 Attribute::InaccessibleMemOrArgMemOnly, 1352 Attribute::NoSync, Attribute::NoFree}; 1353 1354 // List of all parameter and return attributes which must be stripped when 1355 // lowering from the abstract machine model. Note that we list attributes 1356 // here which aren't valid as return attributes, that is okay. There are 1357 // also some additional attributes with arguments which are handled 1358 // explicitly and are not in this list. 1359 static constexpr Attribute::AttrKind ParamAttrsToStrip[] = 1360 {Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly, 1361 Attribute::NoAlias, Attribute::NoFree}; 1362 1363 1364 // Create new attribute set containing only attributes which can be transferred 1365 // from original call to the safepoint. 1366 static AttributeList legalizeCallAttributes(LLVMContext &Ctx, 1367 AttributeList AL) { 1368 if (AL.isEmpty()) 1369 return AL; 1370 1371 // Remove the readonly, readnone, and statepoint function attributes. 1372 AttrBuilder FnAttrs = AL.getFnAttributes(); 1373 for (auto Attr : FnAttrsToStrip) 1374 FnAttrs.removeAttribute(Attr); 1375 1376 for (Attribute A : AL.getFnAttributes()) { 1377 if (isStatepointDirectiveAttr(A)) 1378 FnAttrs.remove(A); 1379 } 1380 1381 // Just skip parameter and return attributes for now 1382 return AttributeList::get(Ctx, AttributeList::FunctionIndex, 1383 AttributeSet::get(Ctx, FnAttrs)); 1384 } 1385 1386 /// Helper function to place all gc relocates necessary for the given 1387 /// statepoint. 1388 /// Inputs: 1389 /// liveVariables - list of variables to be relocated. 1390 /// basePtrs - base pointers. 1391 /// statepointToken - statepoint instruction to which relocates should be 1392 /// bound. 1393 /// Builder - Llvm IR builder to be used to construct new calls. 1394 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1395 ArrayRef<Value *> BasePtrs, 1396 Instruction *StatepointToken, 1397 IRBuilder<> &Builder) { 1398 if (LiveVariables.empty()) 1399 return; 1400 1401 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1402 auto ValIt = llvm::find(LiveVec, Val); 1403 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1404 size_t Index = std::distance(LiveVec.begin(), ValIt); 1405 assert(Index < LiveVec.size() && "Bug in std::find?"); 1406 return Index; 1407 }; 1408 Module *M = StatepointToken->getModule(); 1409 1410 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1411 // element type is i8 addrspace(1)*). We originally generated unique 1412 // declarations for each pointer type, but this proved problematic because 1413 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1414 // towards a single unified pointer type anyways, we can just cast everything 1415 // to an i8* of the right address space. A bitcast is added later to convert 1416 // gc_relocate to the actual value's type. 1417 auto getGCRelocateDecl = [&] (Type *Ty) { 1418 assert(isHandledGCPointerType(Ty)); 1419 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1420 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1421 if (auto *VT = dyn_cast<VectorType>(Ty)) 1422 NewTy = FixedVectorType::get(NewTy, 1423 cast<FixedVectorType>(VT)->getNumElements()); 1424 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1425 {NewTy}); 1426 }; 1427 1428 // Lazily populated map from input types to the canonicalized form mentioned 1429 // in the comment above. This should probably be cached somewhere more 1430 // broadly. 1431 DenseMap<Type *, Function *> TypeToDeclMap; 1432 1433 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1434 // Generate the gc.relocate call and save the result 1435 Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i])); 1436 Value *LiveIdx = Builder.getInt32(i); 1437 1438 Type *Ty = LiveVariables[i]->getType(); 1439 if (!TypeToDeclMap.count(Ty)) 1440 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1441 Function *GCRelocateDecl = TypeToDeclMap[Ty]; 1442 1443 // only specify a debug name if we can give a useful one 1444 CallInst *Reloc = Builder.CreateCall( 1445 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1446 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1447 // Trick CodeGen into thinking there are lots of free registers at this 1448 // fake call. 1449 Reloc->setCallingConv(CallingConv::Cold); 1450 } 1451 } 1452 1453 namespace { 1454 1455 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1456 /// avoids having to worry about keeping around dangling pointers to Values. 1457 class DeferredReplacement { 1458 AssertingVH<Instruction> Old; 1459 AssertingVH<Instruction> New; 1460 bool IsDeoptimize = false; 1461 1462 DeferredReplacement() = default; 1463 1464 public: 1465 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1466 assert(Old != New && Old && New && 1467 "Cannot RAUW equal values or to / from null!"); 1468 1469 DeferredReplacement D; 1470 D.Old = Old; 1471 D.New = New; 1472 return D; 1473 } 1474 1475 static DeferredReplacement createDelete(Instruction *ToErase) { 1476 DeferredReplacement D; 1477 D.Old = ToErase; 1478 return D; 1479 } 1480 1481 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1482 #ifndef NDEBUG 1483 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1484 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1485 "Only way to construct a deoptimize deferred replacement"); 1486 #endif 1487 DeferredReplacement D; 1488 D.Old = Old; 1489 D.IsDeoptimize = true; 1490 return D; 1491 } 1492 1493 /// Does the task represented by this instance. 1494 void doReplacement() { 1495 Instruction *OldI = Old; 1496 Instruction *NewI = New; 1497 1498 assert(OldI != NewI && "Disallowed at construction?!"); 1499 assert((!IsDeoptimize || !New) && 1500 "Deoptimize intrinsics are not replaced!"); 1501 1502 Old = nullptr; 1503 New = nullptr; 1504 1505 if (NewI) 1506 OldI->replaceAllUsesWith(NewI); 1507 1508 if (IsDeoptimize) { 1509 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1510 // not necessarily be followed by the matching return. 1511 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1512 new UnreachableInst(RI->getContext(), RI); 1513 RI->eraseFromParent(); 1514 } 1515 1516 OldI->eraseFromParent(); 1517 } 1518 }; 1519 1520 } // end anonymous namespace 1521 1522 static StringRef getDeoptLowering(CallBase *Call) { 1523 const char *DeoptLowering = "deopt-lowering"; 1524 if (Call->hasFnAttr(DeoptLowering)) { 1525 // FIXME: Calls have a *really* confusing interface around attributes 1526 // with values. 1527 const AttributeList &CSAS = Call->getAttributes(); 1528 if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering)) 1529 return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering) 1530 .getValueAsString(); 1531 Function *F = Call->getCalledFunction(); 1532 assert(F && F->hasFnAttribute(DeoptLowering)); 1533 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1534 } 1535 return "live-through"; 1536 } 1537 1538 static void 1539 makeStatepointExplicitImpl(CallBase *Call, /* to replace */ 1540 const SmallVectorImpl<Value *> &BasePtrs, 1541 const SmallVectorImpl<Value *> &LiveVariables, 1542 PartiallyConstructedSafepointRecord &Result, 1543 std::vector<DeferredReplacement> &Replacements) { 1544 assert(BasePtrs.size() == LiveVariables.size()); 1545 1546 // Then go ahead and use the builder do actually do the inserts. We insert 1547 // immediately before the previous instruction under the assumption that all 1548 // arguments will be available here. We can't insert afterwards since we may 1549 // be replacing a terminator. 1550 IRBuilder<> Builder(Call); 1551 1552 ArrayRef<Value *> GCArgs(LiveVariables); 1553 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1554 uint32_t NumPatchBytes = 0; 1555 uint32_t Flags = uint32_t(StatepointFlags::None); 1556 1557 SmallVector<Value *, 8> CallArgs(Call->args()); 1558 Optional<ArrayRef<Use>> DeoptArgs; 1559 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt)) 1560 DeoptArgs = Bundle->Inputs; 1561 Optional<ArrayRef<Use>> TransitionArgs; 1562 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) { 1563 TransitionArgs = Bundle->Inputs; 1564 // TODO: This flag no longer serves a purpose and can be removed later 1565 Flags |= uint32_t(StatepointFlags::GCTransition); 1566 } 1567 1568 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1569 // with a return value, we lower then as never returning calls to 1570 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1571 bool IsDeoptimize = false; 1572 1573 StatepointDirectives SD = 1574 parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1575 if (SD.NumPatchBytes) 1576 NumPatchBytes = *SD.NumPatchBytes; 1577 if (SD.StatepointID) 1578 StatepointID = *SD.StatepointID; 1579 1580 // Pass through the requested lowering if any. The default is live-through. 1581 StringRef DeoptLowering = getDeoptLowering(Call); 1582 if (DeoptLowering.equals("live-in")) 1583 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1584 else { 1585 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1586 } 1587 1588 Value *CallTarget = Call->getCalledOperand(); 1589 if (Function *F = dyn_cast<Function>(CallTarget)) { 1590 auto IID = F->getIntrinsicID(); 1591 if (IID == Intrinsic::experimental_deoptimize) { 1592 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1593 // __llvm_deoptimize symbol. We want to resolve this now, since the 1594 // verifier does not allow taking the address of an intrinsic function. 1595 1596 SmallVector<Type *, 8> DomainTy; 1597 for (Value *Arg : CallArgs) 1598 DomainTy.push_back(Arg->getType()); 1599 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1600 /* isVarArg = */ false); 1601 1602 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1603 // calls to @llvm.experimental.deoptimize with different argument types in 1604 // the same module. This is fine -- we assume the frontend knew what it 1605 // was doing when generating this kind of IR. 1606 CallTarget = F->getParent() 1607 ->getOrInsertFunction("__llvm_deoptimize", FTy) 1608 .getCallee(); 1609 1610 IsDeoptimize = true; 1611 } else if (IID == Intrinsic::memcpy_element_unordered_atomic || 1612 IID == Intrinsic::memmove_element_unordered_atomic) { 1613 // Unordered atomic memcpy and memmove intrinsics which are not explicitly 1614 // marked as "gc-leaf-function" should be lowered in a GC parseable way. 1615 // Specifically, these calls should be lowered to the 1616 // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols. 1617 // Similarly to __llvm_deoptimize we want to resolve this now, since the 1618 // verifier does not allow taking the address of an intrinsic function. 1619 // 1620 // Moreover we need to shuffle the arguments for the call in order to 1621 // accommodate GC. The underlying source and destination objects might be 1622 // relocated during copy operation should the GC occur. To relocate the 1623 // derived source and destination pointers the implementation of the 1624 // intrinsic should know the corresponding base pointers. 1625 // 1626 // To make the base pointers available pass them explicitly as arguments: 1627 // memcpy(dest_derived, source_derived, ...) => 1628 // memcpy(dest_base, dest_offset, source_base, source_offset, ...) 1629 auto &Context = Call->getContext(); 1630 auto &DL = Call->getModule()->getDataLayout(); 1631 auto GetBaseAndOffset = [&](Value *Derived) { 1632 assert(Result.PointerToBase.count(Derived)); 1633 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 1634 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 1635 Value *Base = Result.PointerToBase.find(Derived)->second; 1636 Value *Base_int = Builder.CreatePtrToInt( 1637 Base, Type::getIntNTy(Context, IntPtrSize)); 1638 Value *Derived_int = Builder.CreatePtrToInt( 1639 Derived, Type::getIntNTy(Context, IntPtrSize)); 1640 return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int)); 1641 }; 1642 1643 auto *Dest = CallArgs[0]; 1644 Value *DestBase, *DestOffset; 1645 std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest); 1646 1647 auto *Source = CallArgs[1]; 1648 Value *SourceBase, *SourceOffset; 1649 std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source); 1650 1651 auto *LengthInBytes = CallArgs[2]; 1652 auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]); 1653 1654 CallArgs.clear(); 1655 CallArgs.push_back(DestBase); 1656 CallArgs.push_back(DestOffset); 1657 CallArgs.push_back(SourceBase); 1658 CallArgs.push_back(SourceOffset); 1659 CallArgs.push_back(LengthInBytes); 1660 1661 SmallVector<Type *, 8> DomainTy; 1662 for (Value *Arg : CallArgs) 1663 DomainTy.push_back(Arg->getType()); 1664 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1665 /* isVarArg = */ false); 1666 1667 auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) { 1668 uint64_t ElementSize = ElementSizeCI->getZExtValue(); 1669 if (IID == Intrinsic::memcpy_element_unordered_atomic) { 1670 switch (ElementSize) { 1671 case 1: 1672 return "__llvm_memcpy_element_unordered_atomic_safepoint_1"; 1673 case 2: 1674 return "__llvm_memcpy_element_unordered_atomic_safepoint_2"; 1675 case 4: 1676 return "__llvm_memcpy_element_unordered_atomic_safepoint_4"; 1677 case 8: 1678 return "__llvm_memcpy_element_unordered_atomic_safepoint_8"; 1679 case 16: 1680 return "__llvm_memcpy_element_unordered_atomic_safepoint_16"; 1681 default: 1682 llvm_unreachable("unexpected element size!"); 1683 } 1684 } 1685 assert(IID == Intrinsic::memmove_element_unordered_atomic); 1686 switch (ElementSize) { 1687 case 1: 1688 return "__llvm_memmove_element_unordered_atomic_safepoint_1"; 1689 case 2: 1690 return "__llvm_memmove_element_unordered_atomic_safepoint_2"; 1691 case 4: 1692 return "__llvm_memmove_element_unordered_atomic_safepoint_4"; 1693 case 8: 1694 return "__llvm_memmove_element_unordered_atomic_safepoint_8"; 1695 case 16: 1696 return "__llvm_memmove_element_unordered_atomic_safepoint_16"; 1697 default: 1698 llvm_unreachable("unexpected element size!"); 1699 } 1700 }; 1701 1702 CallTarget = 1703 F->getParent() 1704 ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy) 1705 .getCallee(); 1706 } 1707 } 1708 1709 // Create the statepoint given all the arguments 1710 GCStatepointInst *Token = nullptr; 1711 if (auto *CI = dyn_cast<CallInst>(Call)) { 1712 CallInst *SPCall = Builder.CreateGCStatepointCall( 1713 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1714 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1715 1716 SPCall->setTailCallKind(CI->getTailCallKind()); 1717 SPCall->setCallingConv(CI->getCallingConv()); 1718 1719 // Currently we will fail on parameter attributes and on certain 1720 // function attributes. In case if we can handle this set of attributes - 1721 // set up function attrs directly on statepoint and return attrs later for 1722 // gc_result intrinsic. 1723 SPCall->setAttributes( 1724 legalizeCallAttributes(CI->getContext(), CI->getAttributes())); 1725 1726 Token = cast<GCStatepointInst>(SPCall); 1727 1728 // Put the following gc_result and gc_relocate calls immediately after the 1729 // the old call (which we're about to delete) 1730 assert(CI->getNextNode() && "Not a terminator, must have next!"); 1731 Builder.SetInsertPoint(CI->getNextNode()); 1732 Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); 1733 } else { 1734 auto *II = cast<InvokeInst>(Call); 1735 1736 // Insert the new invoke into the old block. We'll remove the old one in a 1737 // moment at which point this will become the new terminator for the 1738 // original block. 1739 InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( 1740 StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(), 1741 II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, 1742 "statepoint_token"); 1743 1744 SPInvoke->setCallingConv(II->getCallingConv()); 1745 1746 // Currently we will fail on parameter attributes and on certain 1747 // function attributes. In case if we can handle this set of attributes - 1748 // set up function attrs directly on statepoint and return attrs later for 1749 // gc_result intrinsic. 1750 SPInvoke->setAttributes( 1751 legalizeCallAttributes(II->getContext(), II->getAttributes())); 1752 1753 Token = cast<GCStatepointInst>(SPInvoke); 1754 1755 // Generate gc relocates in exceptional path 1756 BasicBlock *UnwindBlock = II->getUnwindDest(); 1757 assert(!isa<PHINode>(UnwindBlock->begin()) && 1758 UnwindBlock->getUniquePredecessor() && 1759 "can't safely insert in this block!"); 1760 1761 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1762 Builder.SetCurrentDebugLocation(II->getDebugLoc()); 1763 1764 // Attach exceptional gc relocates to the landingpad. 1765 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1766 Result.UnwindToken = ExceptionalToken; 1767 1768 CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder); 1769 1770 // Generate gc relocates and returns for normal block 1771 BasicBlock *NormalDest = II->getNormalDest(); 1772 assert(!isa<PHINode>(NormalDest->begin()) && 1773 NormalDest->getUniquePredecessor() && 1774 "can't safely insert in this block!"); 1775 1776 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1777 1778 // gc relocates will be generated later as if it were regular call 1779 // statepoint 1780 } 1781 assert(Token && "Should be set in one of the above branches!"); 1782 1783 if (IsDeoptimize) { 1784 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1785 // transform the tail-call like structure to a call to a void function 1786 // followed by unreachable to get better codegen. 1787 Replacements.push_back( 1788 DeferredReplacement::createDeoptimizeReplacement(Call)); 1789 } else { 1790 Token->setName("statepoint_token"); 1791 if (!Call->getType()->isVoidTy() && !Call->use_empty()) { 1792 StringRef Name = Call->hasName() ? Call->getName() : ""; 1793 CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name); 1794 GCResult->setAttributes( 1795 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1796 Call->getAttributes().getRetAttributes())); 1797 1798 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1799 // live set of some other safepoint, in which case that safepoint's 1800 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1801 // llvm::Instruction. Instead, we defer the replacement and deletion to 1802 // after the live sets have been made explicit in the IR, and we no longer 1803 // have raw pointers to worry about. 1804 Replacements.emplace_back( 1805 DeferredReplacement::createRAUW(Call, GCResult)); 1806 } else { 1807 Replacements.emplace_back(DeferredReplacement::createDelete(Call)); 1808 } 1809 } 1810 1811 Result.StatepointToken = Token; 1812 1813 // Second, create a gc.relocate for every live variable 1814 CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder); 1815 } 1816 1817 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1818 // which make the relocations happening at this safepoint explicit. 1819 // 1820 // WARNING: Does not do any fixup to adjust users of the original live 1821 // values. That's the callers responsibility. 1822 static void 1823 makeStatepointExplicit(DominatorTree &DT, CallBase *Call, 1824 PartiallyConstructedSafepointRecord &Result, 1825 std::vector<DeferredReplacement> &Replacements) { 1826 const auto &LiveSet = Result.LiveSet; 1827 const auto &PointerToBase = Result.PointerToBase; 1828 1829 // Convert to vector for efficient cross referencing. 1830 SmallVector<Value *, 64> BaseVec, LiveVec; 1831 LiveVec.reserve(LiveSet.size()); 1832 BaseVec.reserve(LiveSet.size()); 1833 for (Value *L : LiveSet) { 1834 LiveVec.push_back(L); 1835 assert(PointerToBase.count(L)); 1836 Value *Base = PointerToBase.find(L)->second; 1837 BaseVec.push_back(Base); 1838 } 1839 assert(LiveVec.size() == BaseVec.size()); 1840 1841 // Do the actual rewriting and delete the old statepoint 1842 makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements); 1843 } 1844 1845 // Helper function for the relocationViaAlloca. 1846 // 1847 // It receives iterator to the statepoint gc relocates and emits a store to the 1848 // assigned location (via allocaMap) for the each one of them. It adds the 1849 // visited values into the visitedLiveValues set, which we will later use them 1850 // for sanity checking. 1851 static void 1852 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1853 DenseMap<Value *, AllocaInst *> &AllocaMap, 1854 DenseSet<Value *> &VisitedLiveValues) { 1855 for (User *U : GCRelocs) { 1856 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1857 if (!Relocate) 1858 continue; 1859 1860 Value *OriginalValue = Relocate->getDerivedPtr(); 1861 assert(AllocaMap.count(OriginalValue)); 1862 Value *Alloca = AllocaMap[OriginalValue]; 1863 1864 // Emit store into the related alloca 1865 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1866 // the correct type according to alloca. 1867 assert(Relocate->getNextNode() && 1868 "Should always have one since it's not a terminator"); 1869 IRBuilder<> Builder(Relocate->getNextNode()); 1870 Value *CastedRelocatedValue = 1871 Builder.CreateBitCast(Relocate, 1872 cast<AllocaInst>(Alloca)->getAllocatedType(), 1873 suffixed_name_or(Relocate, ".casted", "")); 1874 1875 new StoreInst(CastedRelocatedValue, Alloca, 1876 cast<Instruction>(CastedRelocatedValue)->getNextNode()); 1877 1878 #ifndef NDEBUG 1879 VisitedLiveValues.insert(OriginalValue); 1880 #endif 1881 } 1882 } 1883 1884 // Helper function for the "relocationViaAlloca". Similar to the 1885 // "insertRelocationStores" but works for rematerialized values. 1886 static void insertRematerializationStores( 1887 const RematerializedValueMapTy &RematerializedValues, 1888 DenseMap<Value *, AllocaInst *> &AllocaMap, 1889 DenseSet<Value *> &VisitedLiveValues) { 1890 for (auto RematerializedValuePair: RematerializedValues) { 1891 Instruction *RematerializedValue = RematerializedValuePair.first; 1892 Value *OriginalValue = RematerializedValuePair.second; 1893 1894 assert(AllocaMap.count(OriginalValue) && 1895 "Can not find alloca for rematerialized value"); 1896 Value *Alloca = AllocaMap[OriginalValue]; 1897 1898 new StoreInst(RematerializedValue, Alloca, 1899 RematerializedValue->getNextNode()); 1900 1901 #ifndef NDEBUG 1902 VisitedLiveValues.insert(OriginalValue); 1903 #endif 1904 } 1905 } 1906 1907 /// Do all the relocation update via allocas and mem2reg 1908 static void relocationViaAlloca( 1909 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1910 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1911 #ifndef NDEBUG 1912 // record initial number of (static) allocas; we'll check we have the same 1913 // number when we get done. 1914 int InitialAllocaNum = 0; 1915 for (Instruction &I : F.getEntryBlock()) 1916 if (isa<AllocaInst>(I)) 1917 InitialAllocaNum++; 1918 #endif 1919 1920 // TODO-PERF: change data structures, reserve 1921 DenseMap<Value *, AllocaInst *> AllocaMap; 1922 SmallVector<AllocaInst *, 200> PromotableAllocas; 1923 // Used later to chack that we have enough allocas to store all values 1924 std::size_t NumRematerializedValues = 0; 1925 PromotableAllocas.reserve(Live.size()); 1926 1927 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1928 // "PromotableAllocas" 1929 const DataLayout &DL = F.getParent()->getDataLayout(); 1930 auto emitAllocaFor = [&](Value *LiveValue) { 1931 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 1932 DL.getAllocaAddrSpace(), "", 1933 F.getEntryBlock().getFirstNonPHI()); 1934 AllocaMap[LiveValue] = Alloca; 1935 PromotableAllocas.push_back(Alloca); 1936 }; 1937 1938 // Emit alloca for each live gc pointer 1939 for (Value *V : Live) 1940 emitAllocaFor(V); 1941 1942 // Emit allocas for rematerialized values 1943 for (const auto &Info : Records) 1944 for (auto RematerializedValuePair : Info.RematerializedValues) { 1945 Value *OriginalValue = RematerializedValuePair.second; 1946 if (AllocaMap.count(OriginalValue) != 0) 1947 continue; 1948 1949 emitAllocaFor(OriginalValue); 1950 ++NumRematerializedValues; 1951 } 1952 1953 // The next two loops are part of the same conceptual operation. We need to 1954 // insert a store to the alloca after the original def and at each 1955 // redefinition. We need to insert a load before each use. These are split 1956 // into distinct loops for performance reasons. 1957 1958 // Update gc pointer after each statepoint: either store a relocated value or 1959 // null (if no relocated value was found for this gc pointer and it is not a 1960 // gc_result). This must happen before we update the statepoint with load of 1961 // alloca otherwise we lose the link between statepoint and old def. 1962 for (const auto &Info : Records) { 1963 Value *Statepoint = Info.StatepointToken; 1964 1965 // This will be used for consistency check 1966 DenseSet<Value *> VisitedLiveValues; 1967 1968 // Insert stores for normal statepoint gc relocates 1969 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1970 1971 // In case if it was invoke statepoint 1972 // we will insert stores for exceptional path gc relocates. 1973 if (isa<InvokeInst>(Statepoint)) { 1974 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1975 VisitedLiveValues); 1976 } 1977 1978 // Do similar thing with rematerialized values 1979 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1980 VisitedLiveValues); 1981 1982 if (ClobberNonLive) { 1983 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1984 // the gc.statepoint. This will turn some subtle GC problems into 1985 // slightly easier to debug SEGVs. Note that on large IR files with 1986 // lots of gc.statepoints this is extremely costly both memory and time 1987 // wise. 1988 SmallVector<AllocaInst *, 64> ToClobber; 1989 for (auto Pair : AllocaMap) { 1990 Value *Def = Pair.first; 1991 AllocaInst *Alloca = Pair.second; 1992 1993 // This value was relocated 1994 if (VisitedLiveValues.count(Def)) { 1995 continue; 1996 } 1997 ToClobber.push_back(Alloca); 1998 } 1999 2000 auto InsertClobbersAt = [&](Instruction *IP) { 2001 for (auto *AI : ToClobber) { 2002 auto PT = cast<PointerType>(AI->getAllocatedType()); 2003 Constant *CPN = ConstantPointerNull::get(PT); 2004 new StoreInst(CPN, AI, IP); 2005 } 2006 }; 2007 2008 // Insert the clobbering stores. These may get intermixed with the 2009 // gc.results and gc.relocates, but that's fine. 2010 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 2011 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 2012 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 2013 } else { 2014 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 2015 } 2016 } 2017 } 2018 2019 // Update use with load allocas and add store for gc_relocated. 2020 for (auto Pair : AllocaMap) { 2021 Value *Def = Pair.first; 2022 AllocaInst *Alloca = Pair.second; 2023 2024 // We pre-record the uses of allocas so that we dont have to worry about 2025 // later update that changes the user information.. 2026 2027 SmallVector<Instruction *, 20> Uses; 2028 // PERF: trade a linear scan for repeated reallocation 2029 Uses.reserve(Def->getNumUses()); 2030 for (User *U : Def->users()) { 2031 if (!isa<ConstantExpr>(U)) { 2032 // If the def has a ConstantExpr use, then the def is either a 2033 // ConstantExpr use itself or null. In either case 2034 // (recursively in the first, directly in the second), the oop 2035 // it is ultimately dependent on is null and this particular 2036 // use does not need to be fixed up. 2037 Uses.push_back(cast<Instruction>(U)); 2038 } 2039 } 2040 2041 llvm::sort(Uses); 2042 auto Last = std::unique(Uses.begin(), Uses.end()); 2043 Uses.erase(Last, Uses.end()); 2044 2045 for (Instruction *Use : Uses) { 2046 if (isa<PHINode>(Use)) { 2047 PHINode *Phi = cast<PHINode>(Use); 2048 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 2049 if (Def == Phi->getIncomingValue(i)) { 2050 LoadInst *Load = 2051 new LoadInst(Alloca->getAllocatedType(), Alloca, "", 2052 Phi->getIncomingBlock(i)->getTerminator()); 2053 Phi->setIncomingValue(i, Load); 2054 } 2055 } 2056 } else { 2057 LoadInst *Load = 2058 new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use); 2059 Use->replaceUsesOfWith(Def, Load); 2060 } 2061 } 2062 2063 // Emit store for the initial gc value. Store must be inserted after load, 2064 // otherwise store will be in alloca's use list and an extra load will be 2065 // inserted before it. 2066 StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false, 2067 DL.getABITypeAlign(Def->getType())); 2068 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 2069 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 2070 // InvokeInst is a terminator so the store need to be inserted into its 2071 // normal destination block. 2072 BasicBlock *NormalDest = Invoke->getNormalDest(); 2073 Store->insertBefore(NormalDest->getFirstNonPHI()); 2074 } else { 2075 assert(!Inst->isTerminator() && 2076 "The only terminator that can produce a value is " 2077 "InvokeInst which is handled above."); 2078 Store->insertAfter(Inst); 2079 } 2080 } else { 2081 assert(isa<Argument>(Def)); 2082 Store->insertAfter(cast<Instruction>(Alloca)); 2083 } 2084 } 2085 2086 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 2087 "we must have the same allocas with lives"); 2088 if (!PromotableAllocas.empty()) { 2089 // Apply mem2reg to promote alloca to SSA 2090 PromoteMemToReg(PromotableAllocas, DT); 2091 } 2092 2093 #ifndef NDEBUG 2094 for (auto &I : F.getEntryBlock()) 2095 if (isa<AllocaInst>(I)) 2096 InitialAllocaNum--; 2097 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 2098 #endif 2099 } 2100 2101 /// Implement a unique function which doesn't require we sort the input 2102 /// vector. Doing so has the effect of changing the output of a couple of 2103 /// tests in ways which make them less useful in testing fused safepoints. 2104 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 2105 SmallSet<T, 8> Seen; 2106 erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }); 2107 } 2108 2109 /// Insert holders so that each Value is obviously live through the entire 2110 /// lifetime of the call. 2111 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values, 2112 SmallVectorImpl<CallInst *> &Holders) { 2113 if (Values.empty()) 2114 // No values to hold live, might as well not insert the empty holder 2115 return; 2116 2117 Module *M = Call->getModule(); 2118 // Use a dummy vararg function to actually hold the values live 2119 FunctionCallee Func = M->getOrInsertFunction( 2120 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); 2121 if (isa<CallInst>(Call)) { 2122 // For call safepoints insert dummy calls right after safepoint 2123 Holders.push_back( 2124 CallInst::Create(Func, Values, "", &*++Call->getIterator())); 2125 return; 2126 } 2127 // For invoke safepooints insert dummy calls both in normal and 2128 // exceptional destination blocks 2129 auto *II = cast<InvokeInst>(Call); 2130 Holders.push_back(CallInst::Create( 2131 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 2132 Holders.push_back(CallInst::Create( 2133 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 2134 } 2135 2136 static void findLiveReferences( 2137 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 2138 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 2139 GCPtrLivenessData OriginalLivenessData; 2140 computeLiveInValues(DT, F, OriginalLivenessData); 2141 for (size_t i = 0; i < records.size(); i++) { 2142 struct PartiallyConstructedSafepointRecord &info = records[i]; 2143 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 2144 } 2145 } 2146 2147 // Helper function for the "rematerializeLiveValues". It walks use chain 2148 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 2149 // the base or a value it cannot process. Only "simple" values are processed 2150 // (currently it is GEP's and casts). The returned root is examined by the 2151 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 2152 // with all visited values. 2153 static Value* findRematerializableChainToBasePointer( 2154 SmallVectorImpl<Instruction*> &ChainToBase, 2155 Value *CurrentValue) { 2156 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2157 ChainToBase.push_back(GEP); 2158 return findRematerializableChainToBasePointer(ChainToBase, 2159 GEP->getPointerOperand()); 2160 } 2161 2162 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2163 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2164 return CI; 2165 2166 ChainToBase.push_back(CI); 2167 return findRematerializableChainToBasePointer(ChainToBase, 2168 CI->getOperand(0)); 2169 } 2170 2171 // We have reached the root of the chain, which is either equal to the base or 2172 // is the first unsupported value along the use chain. 2173 return CurrentValue; 2174 } 2175 2176 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2177 // chain we are going to rematerialize. 2178 static InstructionCost 2179 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain, 2180 TargetTransformInfo &TTI) { 2181 InstructionCost Cost = 0; 2182 2183 for (Instruction *Instr : Chain) { 2184 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2185 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2186 "non noop cast is found during rematerialization"); 2187 2188 Type *SrcTy = CI->getOperand(0)->getType(); 2189 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, 2190 TTI::getCastContextHint(CI), 2191 TargetTransformInfo::TCK_SizeAndLatency, CI); 2192 2193 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2194 // Cost of the address calculation 2195 Type *ValTy = GEP->getSourceElementType(); 2196 Cost += TTI.getAddressComputationCost(ValTy); 2197 2198 // And cost of the GEP itself 2199 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2200 // allowed for the external usage) 2201 if (!GEP->hasAllConstantIndices()) 2202 Cost += 2; 2203 2204 } else { 2205 llvm_unreachable("unsupported instruction type during rematerialization"); 2206 } 2207 } 2208 2209 return Cost; 2210 } 2211 2212 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 2213 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 2214 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 2215 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 2216 return false; 2217 // Map of incoming values and their corresponding basic blocks of 2218 // OrigRootPhi. 2219 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 2220 for (unsigned i = 0; i < PhiNum; i++) 2221 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 2222 OrigRootPhi.getIncomingBlock(i); 2223 2224 // Both current and base PHIs should have same incoming values and 2225 // the same basic blocks corresponding to the incoming values. 2226 for (unsigned i = 0; i < PhiNum; i++) { 2227 auto CIVI = 2228 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2229 if (CIVI == CurrentIncomingValues.end()) 2230 return false; 2231 BasicBlock *CurrentIncomingBB = CIVI->second; 2232 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2233 return false; 2234 } 2235 return true; 2236 } 2237 2238 // From the statepoint live set pick values that are cheaper to recompute then 2239 // to relocate. Remove this values from the live set, rematerialize them after 2240 // statepoint and record them in "Info" structure. Note that similar to 2241 // relocated values we don't do any user adjustments here. 2242 static void rematerializeLiveValues(CallBase *Call, 2243 PartiallyConstructedSafepointRecord &Info, 2244 TargetTransformInfo &TTI) { 2245 const unsigned int ChainLengthThreshold = 10; 2246 2247 // Record values we are going to delete from this statepoint live set. 2248 // We can not di this in following loop due to iterator invalidation. 2249 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2250 2251 for (Value *LiveValue: Info.LiveSet) { 2252 // For each live pointer find its defining chain 2253 SmallVector<Instruction *, 3> ChainToBase; 2254 assert(Info.PointerToBase.count(LiveValue)); 2255 Value *RootOfChain = 2256 findRematerializableChainToBasePointer(ChainToBase, 2257 LiveValue); 2258 2259 // Nothing to do, or chain is too long 2260 if ( ChainToBase.size() == 0 || 2261 ChainToBase.size() > ChainLengthThreshold) 2262 continue; 2263 2264 // Handle the scenario where the RootOfChain is not equal to the 2265 // Base Value, but they are essentially the same phi values. 2266 if (RootOfChain != Info.PointerToBase[LiveValue]) { 2267 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2268 PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]); 2269 if (!OrigRootPhi || !AlternateRootPhi) 2270 continue; 2271 // PHI nodes that have the same incoming values, and belonging to the same 2272 // basic blocks are essentially the same SSA value. When the original phi 2273 // has incoming values with different base pointers, the original phi is 2274 // marked as conflict, and an additional `AlternateRootPhi` with the same 2275 // incoming values get generated by the findBasePointer function. We need 2276 // to identify the newly generated AlternateRootPhi (.base version of phi) 2277 // and RootOfChain (the original phi node itself) are the same, so that we 2278 // can rematerialize the gep and casts. This is a workaround for the 2279 // deficiency in the findBasePointer algorithm. 2280 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2281 continue; 2282 // Now that the phi nodes are proved to be the same, assert that 2283 // findBasePointer's newly generated AlternateRootPhi is present in the 2284 // liveset of the call. 2285 assert(Info.LiveSet.count(AlternateRootPhi)); 2286 } 2287 // Compute cost of this chain 2288 InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI); 2289 // TODO: We can also account for cases when we will be able to remove some 2290 // of the rematerialized values by later optimization passes. I.e if 2291 // we rematerialized several intersecting chains. Or if original values 2292 // don't have any uses besides this statepoint. 2293 2294 // For invokes we need to rematerialize each chain twice - for normal and 2295 // for unwind basic blocks. Model this by multiplying cost by two. 2296 if (isa<InvokeInst>(Call)) { 2297 Cost *= 2; 2298 } 2299 // If it's too expensive - skip it 2300 if (Cost >= RematerializationThreshold) 2301 continue; 2302 2303 // Remove value from the live set 2304 LiveValuesToBeDeleted.push_back(LiveValue); 2305 2306 // Clone instructions and record them inside "Info" structure 2307 2308 // Walk backwards to visit top-most instructions first 2309 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2310 2311 // Utility function which clones all instructions from "ChainToBase" 2312 // and inserts them before "InsertBefore". Returns rematerialized value 2313 // which should be used after statepoint. 2314 auto rematerializeChain = [&ChainToBase]( 2315 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 2316 Instruction *LastClonedValue = nullptr; 2317 Instruction *LastValue = nullptr; 2318 for (Instruction *Instr: ChainToBase) { 2319 // Only GEP's and casts are supported as we need to be careful to not 2320 // introduce any new uses of pointers not in the liveset. 2321 // Note that it's fine to introduce new uses of pointers which were 2322 // otherwise not used after this statepoint. 2323 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2324 2325 Instruction *ClonedValue = Instr->clone(); 2326 ClonedValue->insertBefore(InsertBefore); 2327 ClonedValue->setName(Instr->getName() + ".remat"); 2328 2329 // If it is not first instruction in the chain then it uses previously 2330 // cloned value. We should update it to use cloned value. 2331 if (LastClonedValue) { 2332 assert(LastValue); 2333 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2334 #ifndef NDEBUG 2335 for (auto OpValue : ClonedValue->operand_values()) { 2336 // Assert that cloned instruction does not use any instructions from 2337 // this chain other than LastClonedValue 2338 assert(!is_contained(ChainToBase, OpValue) && 2339 "incorrect use in rematerialization chain"); 2340 // Assert that the cloned instruction does not use the RootOfChain 2341 // or the AlternateLiveBase. 2342 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2343 } 2344 #endif 2345 } else { 2346 // For the first instruction, replace the use of unrelocated base i.e. 2347 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2348 // live set. They have been proved to be the same PHI nodes. Note 2349 // that the *only* use of the RootOfChain in the ChainToBase list is 2350 // the first Value in the list. 2351 if (RootOfChain != AlternateLiveBase) 2352 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2353 } 2354 2355 LastClonedValue = ClonedValue; 2356 LastValue = Instr; 2357 } 2358 assert(LastClonedValue); 2359 return LastClonedValue; 2360 }; 2361 2362 // Different cases for calls and invokes. For invokes we need to clone 2363 // instructions both on normal and unwind path. 2364 if (isa<CallInst>(Call)) { 2365 Instruction *InsertBefore = Call->getNextNode(); 2366 assert(InsertBefore); 2367 Instruction *RematerializedValue = rematerializeChain( 2368 InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2369 Info.RematerializedValues[RematerializedValue] = LiveValue; 2370 } else { 2371 auto *Invoke = cast<InvokeInst>(Call); 2372 2373 Instruction *NormalInsertBefore = 2374 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2375 Instruction *UnwindInsertBefore = 2376 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2377 2378 Instruction *NormalRematerializedValue = rematerializeChain( 2379 NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2380 Instruction *UnwindRematerializedValue = rematerializeChain( 2381 UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2382 2383 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2384 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2385 } 2386 } 2387 2388 // Remove rematerializaed values from the live set 2389 for (auto LiveValue: LiveValuesToBeDeleted) { 2390 Info.LiveSet.remove(LiveValue); 2391 } 2392 } 2393 2394 static bool inlineGetBaseAndOffset(Function &F, 2395 SmallVectorImpl<CallInst *> &Intrinsics) { 2396 DefiningValueMapTy DVCache; 2397 auto &Context = F.getContext(); 2398 auto &DL = F.getParent()->getDataLayout(); 2399 bool Changed = false; 2400 2401 for (auto *Callsite : Intrinsics) 2402 switch (Callsite->getIntrinsicID()) { 2403 case Intrinsic::experimental_gc_get_pointer_base: { 2404 Changed = true; 2405 Value *Base = findBasePointer(Callsite->getOperand(0), DVCache); 2406 assert(!DVCache.count(Callsite)); 2407 auto *BaseBC = IRBuilder<>(Callsite).CreateBitCast( 2408 Base, Callsite->getType(), suffixed_name_or(Base, ".cast", "")); 2409 if (BaseBC != Base) 2410 DVCache[BaseBC] = Base; 2411 Callsite->replaceAllUsesWith(BaseBC); 2412 if (!BaseBC->hasName()) 2413 BaseBC->takeName(Callsite); 2414 Callsite->eraseFromParent(); 2415 break; 2416 } 2417 case Intrinsic::experimental_gc_get_pointer_offset: { 2418 Changed = true; 2419 Value *Derived = Callsite->getOperand(0); 2420 Value *Base = findBasePointer(Derived, DVCache); 2421 assert(!DVCache.count(Callsite)); 2422 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 2423 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 2424 IRBuilder<> Builder(Callsite); 2425 Value *BaseInt = 2426 Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize), 2427 suffixed_name_or(Base, ".int", "")); 2428 Value *DerivedInt = 2429 Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize), 2430 suffixed_name_or(Derived, ".int", "")); 2431 Value *Offset = Builder.CreateSub(DerivedInt, BaseInt); 2432 Callsite->replaceAllUsesWith(Offset); 2433 Offset->takeName(Callsite); 2434 Callsite->eraseFromParent(); 2435 break; 2436 } 2437 default: 2438 llvm_unreachable("Unknown intrinsic"); 2439 } 2440 2441 return Changed; 2442 } 2443 2444 static bool insertParsePoints(Function &F, DominatorTree &DT, 2445 TargetTransformInfo &TTI, 2446 SmallVectorImpl<CallBase *> &ToUpdate) { 2447 #ifndef NDEBUG 2448 // sanity check the input 2449 std::set<CallBase *> Uniqued; 2450 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2451 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2452 2453 for (CallBase *Call : ToUpdate) 2454 assert(Call->getFunction() == &F); 2455 #endif 2456 2457 // When inserting gc.relocates for invokes, we need to be able to insert at 2458 // the top of the successor blocks. See the comment on 2459 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2460 // may restructure the CFG. 2461 for (CallBase *Call : ToUpdate) { 2462 auto *II = dyn_cast<InvokeInst>(Call); 2463 if (!II) 2464 continue; 2465 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2466 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2467 } 2468 2469 // A list of dummy calls added to the IR to keep various values obviously 2470 // live in the IR. We'll remove all of these when done. 2471 SmallVector<CallInst *, 64> Holders; 2472 2473 // Insert a dummy call with all of the deopt operands we'll need for the 2474 // actual safepoint insertion as arguments. This ensures reference operands 2475 // in the deopt argument list are considered live through the safepoint (and 2476 // thus makes sure they get relocated.) 2477 for (CallBase *Call : ToUpdate) { 2478 SmallVector<Value *, 64> DeoptValues; 2479 2480 for (Value *Arg : GetDeoptBundleOperands(Call)) { 2481 assert(!isUnhandledGCPointerType(Arg->getType()) && 2482 "support for FCA unimplemented"); 2483 if (isHandledGCPointerType(Arg->getType())) 2484 DeoptValues.push_back(Arg); 2485 } 2486 2487 insertUseHolderAfter(Call, DeoptValues, Holders); 2488 } 2489 2490 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2491 2492 // A) Identify all gc pointers which are statically live at the given call 2493 // site. 2494 findLiveReferences(F, DT, ToUpdate, Records); 2495 2496 // B) Find the base pointers for each live pointer 2497 /* scope for caching */ { 2498 // Cache the 'defining value' relation used in the computation and 2499 // insertion of base phis and selects. This ensures that we don't insert 2500 // large numbers of duplicate base_phis. 2501 DefiningValueMapTy DVCache; 2502 for (size_t i = 0; i < Records.size(); i++) { 2503 PartiallyConstructedSafepointRecord &info = Records[i]; 2504 findBasePointers(DT, DVCache, ToUpdate[i], info); 2505 } 2506 } // end of cache scope 2507 2508 // The base phi insertion logic (for any safepoint) may have inserted new 2509 // instructions which are now live at some safepoint. The simplest such 2510 // example is: 2511 // loop: 2512 // phi a <-- will be a new base_phi here 2513 // safepoint 1 <-- that needs to be live here 2514 // gep a + 1 2515 // safepoint 2 2516 // br loop 2517 // We insert some dummy calls after each safepoint to definitely hold live 2518 // the base pointers which were identified for that safepoint. We'll then 2519 // ask liveness for _every_ base inserted to see what is now live. Then we 2520 // remove the dummy calls. 2521 Holders.reserve(Holders.size() + Records.size()); 2522 for (size_t i = 0; i < Records.size(); i++) { 2523 PartiallyConstructedSafepointRecord &Info = Records[i]; 2524 2525 SmallVector<Value *, 128> Bases; 2526 for (auto Pair : Info.PointerToBase) 2527 Bases.push_back(Pair.second); 2528 2529 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2530 } 2531 2532 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2533 // need to rerun liveness. We may *also* have inserted new defs, but that's 2534 // not the key issue. 2535 recomputeLiveInValues(F, DT, ToUpdate, Records); 2536 2537 if (PrintBasePointers) { 2538 for (auto &Info : Records) { 2539 errs() << "Base Pairs: (w/Relocation)\n"; 2540 for (auto Pair : Info.PointerToBase) { 2541 errs() << " derived "; 2542 Pair.first->printAsOperand(errs(), false); 2543 errs() << " base "; 2544 Pair.second->printAsOperand(errs(), false); 2545 errs() << "\n"; 2546 } 2547 } 2548 } 2549 2550 // It is possible that non-constant live variables have a constant base. For 2551 // example, a GEP with a variable offset from a global. In this case we can 2552 // remove it from the liveset. We already don't add constants to the liveset 2553 // because we assume they won't move at runtime and the GC doesn't need to be 2554 // informed about them. The same reasoning applies if the base is constant. 2555 // Note that the relocation placement code relies on this filtering for 2556 // correctness as it expects the base to be in the liveset, which isn't true 2557 // if the base is constant. 2558 for (auto &Info : Records) 2559 for (auto &BasePair : Info.PointerToBase) 2560 if (isa<Constant>(BasePair.second)) 2561 Info.LiveSet.remove(BasePair.first); 2562 2563 for (CallInst *CI : Holders) 2564 CI->eraseFromParent(); 2565 2566 Holders.clear(); 2567 2568 // In order to reduce live set of statepoint we might choose to rematerialize 2569 // some values instead of relocating them. This is purely an optimization and 2570 // does not influence correctness. 2571 for (size_t i = 0; i < Records.size(); i++) 2572 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2573 2574 // We need this to safely RAUW and delete call or invoke return values that 2575 // may themselves be live over a statepoint. For details, please see usage in 2576 // makeStatepointExplicitImpl. 2577 std::vector<DeferredReplacement> Replacements; 2578 2579 // Now run through and replace the existing statepoints with new ones with 2580 // the live variables listed. We do not yet update uses of the values being 2581 // relocated. We have references to live variables that need to 2582 // survive to the last iteration of this loop. (By construction, the 2583 // previous statepoint can not be a live variable, thus we can and remove 2584 // the old statepoint calls as we go.) 2585 for (size_t i = 0; i < Records.size(); i++) 2586 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2587 2588 ToUpdate.clear(); // prevent accident use of invalid calls. 2589 2590 for (auto &PR : Replacements) 2591 PR.doReplacement(); 2592 2593 Replacements.clear(); 2594 2595 for (auto &Info : Records) { 2596 // These live sets may contain state Value pointers, since we replaced calls 2597 // with operand bundles with calls wrapped in gc.statepoint, and some of 2598 // those calls may have been def'ing live gc pointers. Clear these out to 2599 // avoid accidentally using them. 2600 // 2601 // TODO: We should create a separate data structure that does not contain 2602 // these live sets, and migrate to using that data structure from this point 2603 // onward. 2604 Info.LiveSet.clear(); 2605 Info.PointerToBase.clear(); 2606 } 2607 2608 // Do all the fixups of the original live variables to their relocated selves 2609 SmallVector<Value *, 128> Live; 2610 for (size_t i = 0; i < Records.size(); i++) { 2611 PartiallyConstructedSafepointRecord &Info = Records[i]; 2612 2613 // We can't simply save the live set from the original insertion. One of 2614 // the live values might be the result of a call which needs a safepoint. 2615 // That Value* no longer exists and we need to use the new gc_result. 2616 // Thankfully, the live set is embedded in the statepoint (and updated), so 2617 // we just grab that. 2618 llvm::append_range(Live, Info.StatepointToken->gc_args()); 2619 #ifndef NDEBUG 2620 // Do some basic sanity checks on our liveness results before performing 2621 // relocation. Relocation can and will turn mistakes in liveness results 2622 // into non-sensical code which is must harder to debug. 2623 // TODO: It would be nice to test consistency as well 2624 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2625 "statepoint must be reachable or liveness is meaningless"); 2626 for (Value *V : Info.StatepointToken->gc_args()) { 2627 if (!isa<Instruction>(V)) 2628 // Non-instruction values trivial dominate all possible uses 2629 continue; 2630 auto *LiveInst = cast<Instruction>(V); 2631 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2632 "unreachable values should never be live"); 2633 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2634 "basic SSA liveness expectation violated by liveness analysis"); 2635 } 2636 #endif 2637 } 2638 unique_unsorted(Live); 2639 2640 #ifndef NDEBUG 2641 // sanity check 2642 for (auto *Ptr : Live) 2643 assert(isHandledGCPointerType(Ptr->getType()) && 2644 "must be a gc pointer type"); 2645 #endif 2646 2647 relocationViaAlloca(F, DT, Live, Records); 2648 return !Records.empty(); 2649 } 2650 2651 // Handles both return values and arguments for Functions and calls. 2652 template <typename AttrHolder> 2653 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2654 unsigned Index) { 2655 AttrBuilder R; 2656 if (AH.getDereferenceableBytes(Index)) 2657 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2658 AH.getDereferenceableBytes(Index))); 2659 if (AH.getDereferenceableOrNullBytes(Index)) 2660 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2661 AH.getDereferenceableOrNullBytes(Index))); 2662 for (auto Attr : ParamAttrsToStrip) 2663 if (AH.getAttributes().hasAttribute(Index, Attr)) 2664 R.addAttribute(Attr); 2665 2666 if (!R.empty()) 2667 AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R)); 2668 } 2669 2670 static void stripNonValidAttributesFromPrototype(Function &F) { 2671 LLVMContext &Ctx = F.getContext(); 2672 2673 // Intrinsics are very delicate. Lowering sometimes depends the presence 2674 // of certain attributes for correctness, but we may have also inferred 2675 // additional ones in the abstract machine model which need stripped. This 2676 // assumes that the attributes defined in Intrinsic.td are conservatively 2677 // correct for both physical and abstract model. 2678 if (Intrinsic::ID id = F.getIntrinsicID()) { 2679 F.setAttributes(Intrinsic::getAttributes(Ctx, id)); 2680 return; 2681 } 2682 2683 for (Argument &A : F.args()) 2684 if (isa<PointerType>(A.getType())) 2685 RemoveNonValidAttrAtIndex(Ctx, F, 2686 A.getArgNo() + AttributeList::FirstArgIndex); 2687 2688 if (isa<PointerType>(F.getReturnType())) 2689 RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex); 2690 2691 for (auto Attr : FnAttrsToStrip) 2692 F.removeFnAttr(Attr); 2693 } 2694 2695 /// Certain metadata on instructions are invalid after running RS4GC. 2696 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2697 /// optimize functions. We drop such metadata on the instruction. 2698 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2699 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2700 return; 2701 // These are the attributes that are still valid on loads and stores after 2702 // RS4GC. 2703 // The metadata implying dereferenceability and noalias are (conservatively) 2704 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2705 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2706 // touch the entire heap including noalias objects. Note: The reasoning is 2707 // same as stripping the dereferenceability and noalias attributes that are 2708 // analogous to the metadata counterparts. 2709 // We also drop the invariant.load metadata on the load because that metadata 2710 // implies the address operand to the load points to memory that is never 2711 // changed once it became dereferenceable. This is no longer true after RS4GC. 2712 // Similar reasoning applies to invariant.group metadata, which applies to 2713 // loads within a group. 2714 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2715 LLVMContext::MD_range, 2716 LLVMContext::MD_alias_scope, 2717 LLVMContext::MD_nontemporal, 2718 LLVMContext::MD_nonnull, 2719 LLVMContext::MD_align, 2720 LLVMContext::MD_type}; 2721 2722 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2723 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2724 } 2725 2726 static void stripNonValidDataFromBody(Function &F) { 2727 if (F.empty()) 2728 return; 2729 2730 LLVMContext &Ctx = F.getContext(); 2731 MDBuilder Builder(Ctx); 2732 2733 // Set of invariantstart instructions that we need to remove. 2734 // Use this to avoid invalidating the instruction iterator. 2735 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2736 2737 for (Instruction &I : instructions(F)) { 2738 // invariant.start on memory location implies that the referenced memory 2739 // location is constant and unchanging. This is no longer true after 2740 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2741 // which frees the entire heap and the presence of invariant.start allows 2742 // the optimizer to sink the load of a memory location past a statepoint, 2743 // which is incorrect. 2744 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2745 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2746 InvariantStartInstructions.push_back(II); 2747 continue; 2748 } 2749 2750 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2751 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2752 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2753 } 2754 2755 stripInvalidMetadataFromInstruction(I); 2756 2757 if (auto *Call = dyn_cast<CallBase>(&I)) { 2758 for (int i = 0, e = Call->arg_size(); i != e; i++) 2759 if (isa<PointerType>(Call->getArgOperand(i)->getType())) 2760 RemoveNonValidAttrAtIndex(Ctx, *Call, 2761 i + AttributeList::FirstArgIndex); 2762 if (isa<PointerType>(Call->getType())) 2763 RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex); 2764 } 2765 } 2766 2767 // Delete the invariant.start instructions and RAUW undef. 2768 for (auto *II : InvariantStartInstructions) { 2769 II->replaceAllUsesWith(UndefValue::get(II->getType())); 2770 II->eraseFromParent(); 2771 } 2772 } 2773 2774 /// Returns true if this function should be rewritten by this pass. The main 2775 /// point of this function is as an extension point for custom logic. 2776 static bool shouldRewriteStatepointsIn(Function &F) { 2777 // TODO: This should check the GCStrategy 2778 if (F.hasGC()) { 2779 const auto &FunctionGCName = F.getGC(); 2780 const StringRef StatepointExampleName("statepoint-example"); 2781 const StringRef CoreCLRName("coreclr"); 2782 return (StatepointExampleName == FunctionGCName) || 2783 (CoreCLRName == FunctionGCName); 2784 } else 2785 return false; 2786 } 2787 2788 static void stripNonValidData(Module &M) { 2789 #ifndef NDEBUG 2790 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2791 #endif 2792 2793 for (Function &F : M) 2794 stripNonValidAttributesFromPrototype(F); 2795 2796 for (Function &F : M) 2797 stripNonValidDataFromBody(F); 2798 } 2799 2800 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 2801 TargetTransformInfo &TTI, 2802 const TargetLibraryInfo &TLI) { 2803 assert(!F.isDeclaration() && !F.empty() && 2804 "need function body to rewrite statepoints in"); 2805 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 2806 2807 auto NeedsRewrite = [&TLI](Instruction &I) { 2808 if (const auto *Call = dyn_cast<CallBase>(&I)) { 2809 if (isa<GCStatepointInst>(Call)) 2810 return false; 2811 if (callsGCLeafFunction(Call, TLI)) 2812 return false; 2813 2814 // Normally it's up to the frontend to make sure that non-leaf calls also 2815 // have proper deopt state if it is required. We make an exception for 2816 // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics 2817 // these are non-leaf by default. They might be generated by the optimizer 2818 // which doesn't know how to produce a proper deopt state. So if we see a 2819 // non-leaf memcpy/memmove without deopt state just treat it as a leaf 2820 // copy and don't produce a statepoint. 2821 if (!AllowStatepointWithNoDeoptInfo && 2822 !Call->getOperandBundle(LLVMContext::OB_deopt)) { 2823 assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) && 2824 "Don't expect any other calls here!"); 2825 return false; 2826 } 2827 return true; 2828 } 2829 return false; 2830 }; 2831 2832 // Delete any unreachable statepoints so that we don't have unrewritten 2833 // statepoints surviving this pass. This makes testing easier and the 2834 // resulting IR less confusing to human readers. 2835 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 2836 bool MadeChange = removeUnreachableBlocks(F, &DTU); 2837 // Flush the Dominator Tree. 2838 DTU.getDomTree(); 2839 2840 // Gather all the statepoints which need rewritten. Be careful to only 2841 // consider those in reachable code since we need to ask dominance queries 2842 // when rewriting. We'll delete the unreachable ones in a moment. 2843 SmallVector<CallBase *, 64> ParsePointNeeded; 2844 SmallVector<CallInst *, 64> Intrinsics; 2845 for (Instruction &I : instructions(F)) { 2846 // TODO: only the ones with the flag set! 2847 if (NeedsRewrite(I)) { 2848 // NOTE removeUnreachableBlocks() is stronger than 2849 // DominatorTree::isReachableFromEntry(). In other words 2850 // removeUnreachableBlocks can remove some blocks for which 2851 // isReachableFromEntry() returns true. 2852 assert(DT.isReachableFromEntry(I.getParent()) && 2853 "no unreachable blocks expected"); 2854 ParsePointNeeded.push_back(cast<CallBase>(&I)); 2855 } 2856 if (auto *CI = dyn_cast<CallInst>(&I)) 2857 if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base || 2858 CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset) 2859 Intrinsics.emplace_back(CI); 2860 } 2861 2862 // Return early if no work to do. 2863 if (ParsePointNeeded.empty() && Intrinsics.empty()) 2864 return MadeChange; 2865 2866 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2867 // These are created by LCSSA. They have the effect of increasing the size 2868 // of liveness sets for no good reason. It may be harder to do this post 2869 // insertion since relocations and base phis can confuse things. 2870 for (BasicBlock &BB : F) 2871 if (BB.getUniquePredecessor()) 2872 MadeChange |= FoldSingleEntryPHINodes(&BB); 2873 2874 // Before we start introducing relocations, we want to tweak the IR a bit to 2875 // avoid unfortunate code generation effects. The main example is that we 2876 // want to try to make sure the comparison feeding a branch is after any 2877 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2878 // values feeding a branch after relocation. This is semantically correct, 2879 // but results in extra register pressure since both the pre-relocation and 2880 // post-relocation copies must be available in registers. For code without 2881 // relocations this is handled elsewhere, but teaching the scheduler to 2882 // reverse the transform we're about to do would be slightly complex. 2883 // Note: This may extend the live range of the inputs to the icmp and thus 2884 // increase the liveset of any statepoint we move over. This is profitable 2885 // as long as all statepoints are in rare blocks. If we had in-register 2886 // lowering for live values this would be a much safer transform. 2887 auto getConditionInst = [](Instruction *TI) -> Instruction * { 2888 if (auto *BI = dyn_cast<BranchInst>(TI)) 2889 if (BI->isConditional()) 2890 return dyn_cast<Instruction>(BI->getCondition()); 2891 // TODO: Extend this to handle switches 2892 return nullptr; 2893 }; 2894 for (BasicBlock &BB : F) { 2895 Instruction *TI = BB.getTerminator(); 2896 if (auto *Cond = getConditionInst(TI)) 2897 // TODO: Handle more than just ICmps here. We should be able to move 2898 // most instructions without side effects or memory access. 2899 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2900 MadeChange = true; 2901 Cond->moveBefore(TI); 2902 } 2903 } 2904 2905 // Nasty workaround - The base computation code in the main algorithm doesn't 2906 // consider the fact that a GEP can be used to convert a scalar to a vector. 2907 // The right fix for this is to integrate GEPs into the base rewriting 2908 // algorithm properly, this is just a short term workaround to prevent 2909 // crashes by canonicalizing such GEPs into fully vector GEPs. 2910 for (Instruction &I : instructions(F)) { 2911 if (!isa<GetElementPtrInst>(I)) 2912 continue; 2913 2914 unsigned VF = 0; 2915 for (unsigned i = 0; i < I.getNumOperands(); i++) 2916 if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) { 2917 assert(VF == 0 || 2918 VF == cast<FixedVectorType>(OpndVTy)->getNumElements()); 2919 VF = cast<FixedVectorType>(OpndVTy)->getNumElements(); 2920 } 2921 2922 // It's the vector to scalar traversal through the pointer operand which 2923 // confuses base pointer rewriting, so limit ourselves to that case. 2924 if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { 2925 IRBuilder<> B(&I); 2926 auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); 2927 I.setOperand(0, Splat); 2928 MadeChange = true; 2929 } 2930 } 2931 2932 if (!Intrinsics.empty()) 2933 // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding 2934 // live references. 2935 MadeChange |= inlineGetBaseAndOffset(F, Intrinsics); 2936 2937 if (!ParsePointNeeded.empty()) 2938 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2939 return MadeChange; 2940 } 2941 2942 // liveness computation via standard dataflow 2943 // ------------------------------------------------------------------- 2944 2945 // TODO: Consider using bitvectors for liveness, the set of potentially 2946 // interesting values should be small and easy to pre-compute. 2947 2948 /// Compute the live-in set for the location rbegin starting from 2949 /// the live-out set of the basic block 2950 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 2951 BasicBlock::reverse_iterator End, 2952 SetVector<Value *> &LiveTmp) { 2953 for (auto &I : make_range(Begin, End)) { 2954 // KILL/Def - Remove this definition from LiveIn 2955 LiveTmp.remove(&I); 2956 2957 // Don't consider *uses* in PHI nodes, we handle their contribution to 2958 // predecessor blocks when we seed the LiveOut sets 2959 if (isa<PHINode>(I)) 2960 continue; 2961 2962 // USE - Add to the LiveIn set for this instruction 2963 for (Value *V : I.operands()) { 2964 assert(!isUnhandledGCPointerType(V->getType()) && 2965 "support for FCA unimplemented"); 2966 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2967 // The choice to exclude all things constant here is slightly subtle. 2968 // There are two independent reasons: 2969 // - We assume that things which are constant (from LLVM's definition) 2970 // do not move at runtime. For example, the address of a global 2971 // variable is fixed, even though it's contents may not be. 2972 // - Second, we can't disallow arbitrary inttoptr constants even 2973 // if the language frontend does. Optimization passes are free to 2974 // locally exploit facts without respect to global reachability. This 2975 // can create sections of code which are dynamically unreachable and 2976 // contain just about anything. (see constants.ll in tests) 2977 LiveTmp.insert(V); 2978 } 2979 } 2980 } 2981 } 2982 2983 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2984 for (BasicBlock *Succ : successors(BB)) { 2985 for (auto &I : *Succ) { 2986 PHINode *PN = dyn_cast<PHINode>(&I); 2987 if (!PN) 2988 break; 2989 2990 Value *V = PN->getIncomingValueForBlock(BB); 2991 assert(!isUnhandledGCPointerType(V->getType()) && 2992 "support for FCA unimplemented"); 2993 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 2994 LiveTmp.insert(V); 2995 } 2996 } 2997 } 2998 2999 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 3000 SetVector<Value *> KillSet; 3001 for (Instruction &I : *BB) 3002 if (isHandledGCPointerType(I.getType())) 3003 KillSet.insert(&I); 3004 return KillSet; 3005 } 3006 3007 #ifndef NDEBUG 3008 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 3009 /// sanity check for the liveness computation. 3010 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 3011 Instruction *TI, bool TermOkay = false) { 3012 for (Value *V : Live) { 3013 if (auto *I = dyn_cast<Instruction>(V)) { 3014 // The terminator can be a member of the LiveOut set. LLVM's definition 3015 // of instruction dominance states that V does not dominate itself. As 3016 // such, we need to special case this to allow it. 3017 if (TermOkay && TI == I) 3018 continue; 3019 assert(DT.dominates(I, TI) && 3020 "basic SSA liveness expectation violated by liveness analysis"); 3021 } 3022 } 3023 } 3024 3025 /// Check that all the liveness sets used during the computation of liveness 3026 /// obey basic SSA properties. This is useful for finding cases where we miss 3027 /// a def. 3028 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 3029 BasicBlock &BB) { 3030 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 3031 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 3032 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 3033 } 3034 #endif 3035 3036 static void computeLiveInValues(DominatorTree &DT, Function &F, 3037 GCPtrLivenessData &Data) { 3038 SmallSetVector<BasicBlock *, 32> Worklist; 3039 3040 // Seed the liveness for each individual block 3041 for (BasicBlock &BB : F) { 3042 Data.KillSet[&BB] = computeKillSet(&BB); 3043 Data.LiveSet[&BB].clear(); 3044 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 3045 3046 #ifndef NDEBUG 3047 for (Value *Kill : Data.KillSet[&BB]) 3048 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 3049 #endif 3050 3051 Data.LiveOut[&BB] = SetVector<Value *>(); 3052 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 3053 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 3054 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 3055 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 3056 if (!Data.LiveIn[&BB].empty()) 3057 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 3058 } 3059 3060 // Propagate that liveness until stable 3061 while (!Worklist.empty()) { 3062 BasicBlock *BB = Worklist.pop_back_val(); 3063 3064 // Compute our new liveout set, then exit early if it hasn't changed despite 3065 // the contribution of our successor. 3066 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3067 const auto OldLiveOutSize = LiveOut.size(); 3068 for (BasicBlock *Succ : successors(BB)) { 3069 assert(Data.LiveIn.count(Succ)); 3070 LiveOut.set_union(Data.LiveIn[Succ]); 3071 } 3072 // assert OutLiveOut is a subset of LiveOut 3073 if (OldLiveOutSize == LiveOut.size()) { 3074 // If the sets are the same size, then we didn't actually add anything 3075 // when unioning our successors LiveIn. Thus, the LiveIn of this block 3076 // hasn't changed. 3077 continue; 3078 } 3079 Data.LiveOut[BB] = LiveOut; 3080 3081 // Apply the effects of this basic block 3082 SetVector<Value *> LiveTmp = LiveOut; 3083 LiveTmp.set_union(Data.LiveSet[BB]); 3084 LiveTmp.set_subtract(Data.KillSet[BB]); 3085 3086 assert(Data.LiveIn.count(BB)); 3087 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 3088 // assert: OldLiveIn is a subset of LiveTmp 3089 if (OldLiveIn.size() != LiveTmp.size()) { 3090 Data.LiveIn[BB] = LiveTmp; 3091 Worklist.insert(pred_begin(BB), pred_end(BB)); 3092 } 3093 } // while (!Worklist.empty()) 3094 3095 #ifndef NDEBUG 3096 // Sanity check our output against SSA properties. This helps catch any 3097 // missing kills during the above iteration. 3098 for (BasicBlock &BB : F) 3099 checkBasicSSA(DT, Data, BB); 3100 #endif 3101 } 3102 3103 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 3104 StatepointLiveSetTy &Out) { 3105 BasicBlock *BB = Inst->getParent(); 3106 3107 // Note: The copy is intentional and required 3108 assert(Data.LiveOut.count(BB)); 3109 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3110 3111 // We want to handle the statepoint itself oddly. It's 3112 // call result is not live (normal), nor are it's arguments 3113 // (unless they're used again later). This adjustment is 3114 // specifically what we need to relocate 3115 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 3116 LiveOut); 3117 LiveOut.remove(Inst); 3118 Out.insert(LiveOut.begin(), LiveOut.end()); 3119 } 3120 3121 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 3122 CallBase *Call, 3123 PartiallyConstructedSafepointRecord &Info) { 3124 StatepointLiveSetTy Updated; 3125 findLiveSetAtInst(Call, RevisedLivenessData, Updated); 3126 3127 // We may have base pointers which are now live that weren't before. We need 3128 // to update the PointerToBase structure to reflect this. 3129 for (auto V : Updated) 3130 Info.PointerToBase.insert({V, V}); 3131 3132 #ifndef NDEBUG 3133 for (auto V : Updated) 3134 assert(Info.PointerToBase.count(V) && 3135 "Must be able to find base for live value!"); 3136 #endif 3137 3138 // Remove any stale base mappings - this can happen since our liveness is 3139 // more precise then the one inherent in the base pointer analysis. 3140 DenseSet<Value *> ToErase; 3141 for (auto KVPair : Info.PointerToBase) 3142 if (!Updated.count(KVPair.first)) 3143 ToErase.insert(KVPair.first); 3144 3145 for (auto *V : ToErase) 3146 Info.PointerToBase.erase(V); 3147 3148 #ifndef NDEBUG 3149 for (auto KVPair : Info.PointerToBase) 3150 assert(Updated.count(KVPair.first) && "record for non-live value"); 3151 #endif 3152 3153 Info.LiveSet = Updated; 3154 } 3155