1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite call/invoke instructions so as to make potential relocations 11 // performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/iterator_range.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/IRBuilder.h" 43 #include "llvm/IR/InstIterator.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/Statepoint.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueHandle.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <set> 75 #include <string> 76 #include <utility> 77 #include <vector> 78 79 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 80 81 using namespace llvm; 82 83 // Print the liveset found at the insert location 84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 85 cl::init(false)); 86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 87 cl::init(false)); 88 89 // Print out the base pointers for debugging 90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 91 cl::init(false)); 92 93 // Cost threshold measuring when it is profitable to rematerialize value instead 94 // of relocating it 95 static cl::opt<unsigned> 96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 97 cl::init(6)); 98 99 #ifdef EXPENSIVE_CHECKS 100 static bool ClobberNonLive = true; 101 #else 102 static bool ClobberNonLive = false; 103 #endif 104 105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 106 cl::location(ClobberNonLive), 107 cl::Hidden); 108 109 static cl::opt<bool> 110 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 111 cl::Hidden, cl::init(true)); 112 113 /// The IR fed into RewriteStatepointsForGC may have had attributes and 114 /// metadata implying dereferenceability that are no longer valid/correct after 115 /// RewriteStatepointsForGC has run. This is because semantically, after 116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 117 /// heap. stripNonValidData (conservatively) restores 118 /// correctness by erasing all attributes in the module that externally imply 119 /// dereferenceability. Similar reasoning also applies to the noalias 120 /// attributes and metadata. gc.statepoint can touch the entire heap including 121 /// noalias objects. 122 /// Apart from attributes and metadata, we also remove instructions that imply 123 /// constant physical memory: llvm.invariant.start. 124 static void stripNonValidData(Module &M); 125 126 static bool shouldRewriteStatepointsIn(Function &F); 127 128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 129 ModuleAnalysisManager &AM) { 130 bool Changed = false; 131 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 132 for (Function &F : M) { 133 // Nothing to do for declarations. 134 if (F.isDeclaration() || F.empty()) 135 continue; 136 137 // Policy choice says not to rewrite - the most common reason is that we're 138 // compiling code without a GCStrategy. 139 if (!shouldRewriteStatepointsIn(F)) 140 continue; 141 142 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 143 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 144 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 145 Changed |= runOnFunction(F, DT, TTI, TLI); 146 } 147 if (!Changed) 148 return PreservedAnalyses::all(); 149 150 // stripNonValidData asserts that shouldRewriteStatepointsIn 151 // returns true for at least one function in the module. Since at least 152 // one function changed, we know that the precondition is satisfied. 153 stripNonValidData(M); 154 155 PreservedAnalyses PA; 156 PA.preserve<TargetIRAnalysis>(); 157 PA.preserve<TargetLibraryAnalysis>(); 158 return PA; 159 } 160 161 namespace { 162 163 class RewriteStatepointsForGCLegacyPass : public ModulePass { 164 RewriteStatepointsForGC Impl; 165 166 public: 167 static char ID; // Pass identification, replacement for typeid 168 169 RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() { 170 initializeRewriteStatepointsForGCLegacyPassPass( 171 *PassRegistry::getPassRegistry()); 172 } 173 174 bool runOnModule(Module &M) override { 175 bool Changed = false; 176 const TargetLibraryInfo &TLI = 177 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 178 for (Function &F : M) { 179 // Nothing to do for declarations. 180 if (F.isDeclaration() || F.empty()) 181 continue; 182 183 // Policy choice says not to rewrite - the most common reason is that 184 // we're compiling code without a GCStrategy. 185 if (!shouldRewriteStatepointsIn(F)) 186 continue; 187 188 TargetTransformInfo &TTI = 189 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 190 auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 191 192 Changed |= Impl.runOnFunction(F, DT, TTI, TLI); 193 } 194 195 if (!Changed) 196 return false; 197 198 // stripNonValidData asserts that shouldRewriteStatepointsIn 199 // returns true for at least one function in the module. Since at least 200 // one function changed, we know that the precondition is satisfied. 201 stripNonValidData(M); 202 return true; 203 } 204 205 void getAnalysisUsage(AnalysisUsage &AU) const override { 206 // We add and rewrite a bunch of instructions, but don't really do much 207 // else. We could in theory preserve a lot more analyses here. 208 AU.addRequired<DominatorTreeWrapperPass>(); 209 AU.addRequired<TargetTransformInfoWrapperPass>(); 210 AU.addRequired<TargetLibraryInfoWrapperPass>(); 211 } 212 }; 213 214 } // end anonymous namespace 215 216 char RewriteStatepointsForGCLegacyPass::ID = 0; 217 218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() { 219 return new RewriteStatepointsForGCLegacyPass(); 220 } 221 222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass, 223 "rewrite-statepoints-for-gc", 224 "Make relocations explicit at statepoints", false, false) 225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass, 228 "rewrite-statepoints-for-gc", 229 "Make relocations explicit at statepoints", false, false) 230 231 namespace { 232 233 struct GCPtrLivenessData { 234 /// Values defined in this block. 235 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 236 237 /// Values used in this block (and thus live); does not included values 238 /// killed within this block. 239 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 240 241 /// Values live into this basic block (i.e. used by any 242 /// instruction in this basic block or ones reachable from here) 243 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 244 245 /// Values live out of this basic block (i.e. live into 246 /// any successor block) 247 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 248 }; 249 250 // The type of the internal cache used inside the findBasePointers family 251 // of functions. From the callers perspective, this is an opaque type and 252 // should not be inspected. 253 // 254 // In the actual implementation this caches two relations: 255 // - The base relation itself (i.e. this pointer is based on that one) 256 // - The base defining value relation (i.e. before base_phi insertion) 257 // Generally, after the execution of a full findBasePointer call, only the 258 // base relation will remain. Internally, we add a mixture of the two 259 // types, then update all the second type to the first type 260 using DefiningValueMapTy = MapVector<Value *, Value *>; 261 using StatepointLiveSetTy = SetVector<Value *>; 262 using RematerializedValueMapTy = 263 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 264 265 struct PartiallyConstructedSafepointRecord { 266 /// The set of values known to be live across this safepoint 267 StatepointLiveSetTy LiveSet; 268 269 /// Mapping from live pointers to a base-defining-value 270 MapVector<Value *, Value *> PointerToBase; 271 272 /// The *new* gc.statepoint instruction itself. This produces the token 273 /// that normal path gc.relocates and the gc.result are tied to. 274 Instruction *StatepointToken; 275 276 /// Instruction to which exceptional gc relocates are attached 277 /// Makes it easier to iterate through them during relocationViaAlloca. 278 Instruction *UnwindToken; 279 280 /// Record live values we are rematerialized instead of relocating. 281 /// They are not included into 'LiveSet' field. 282 /// Maps rematerialized copy to it's original value. 283 RematerializedValueMapTy RematerializedValues; 284 }; 285 286 } // end anonymous namespace 287 288 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 289 Optional<OperandBundleUse> DeoptBundle = 290 CS.getOperandBundle(LLVMContext::OB_deopt); 291 292 if (!DeoptBundle.hasValue()) { 293 assert(AllowStatepointWithNoDeoptInfo && 294 "Found non-leaf call without deopt info!"); 295 return None; 296 } 297 298 return DeoptBundle.getValue().Inputs; 299 } 300 301 /// Compute the live-in set for every basic block in the function 302 static void computeLiveInValues(DominatorTree &DT, Function &F, 303 GCPtrLivenessData &Data); 304 305 /// Given results from the dataflow liveness computation, find the set of live 306 /// Values at a particular instruction. 307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 308 StatepointLiveSetTy &out); 309 310 // TODO: Once we can get to the GCStrategy, this becomes 311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 312 313 static bool isGCPointerType(Type *T) { 314 if (auto *PT = dyn_cast<PointerType>(T)) 315 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 316 // GC managed heap. We know that a pointer into this heap needs to be 317 // updated and that no other pointer does. 318 return PT->getAddressSpace() == 1; 319 return false; 320 } 321 322 // Return true if this type is one which a) is a gc pointer or contains a GC 323 // pointer and b) is of a type this code expects to encounter as a live value. 324 // (The insertion code will assert that a type which matches (a) and not (b) 325 // is not encountered.) 326 static bool isHandledGCPointerType(Type *T) { 327 // We fully support gc pointers 328 if (isGCPointerType(T)) 329 return true; 330 // We partially support vectors of gc pointers. The code will assert if it 331 // can't handle something. 332 if (auto VT = dyn_cast<VectorType>(T)) 333 if (isGCPointerType(VT->getElementType())) 334 return true; 335 return false; 336 } 337 338 #ifndef NDEBUG 339 /// Returns true if this type contains a gc pointer whether we know how to 340 /// handle that type or not. 341 static bool containsGCPtrType(Type *Ty) { 342 if (isGCPointerType(Ty)) 343 return true; 344 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 345 return isGCPointerType(VT->getScalarType()); 346 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 347 return containsGCPtrType(AT->getElementType()); 348 if (StructType *ST = dyn_cast<StructType>(Ty)) 349 return llvm::any_of(ST->subtypes(), containsGCPtrType); 350 return false; 351 } 352 353 // Returns true if this is a type which a) is a gc pointer or contains a GC 354 // pointer and b) is of a type which the code doesn't expect (i.e. first class 355 // aggregates). Used to trip assertions. 356 static bool isUnhandledGCPointerType(Type *Ty) { 357 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 358 } 359 #endif 360 361 // Return the name of the value suffixed with the provided value, or if the 362 // value didn't have a name, the default value specified. 363 static std::string suffixed_name_or(Value *V, StringRef Suffix, 364 StringRef DefaultName) { 365 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 366 } 367 368 // Conservatively identifies any definitions which might be live at the 369 // given instruction. The analysis is performed immediately before the 370 // given instruction. Values defined by that instruction are not considered 371 // live. Values used by that instruction are considered live. 372 static void 373 analyzeParsePointLiveness(DominatorTree &DT, 374 GCPtrLivenessData &OriginalLivenessData, CallSite CS, 375 PartiallyConstructedSafepointRecord &Result) { 376 Instruction *Inst = CS.getInstruction(); 377 378 StatepointLiveSetTy LiveSet; 379 findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet); 380 381 if (PrintLiveSet) { 382 dbgs() << "Live Variables:\n"; 383 for (Value *V : LiveSet) 384 dbgs() << " " << V->getName() << " " << *V << "\n"; 385 } 386 if (PrintLiveSetSize) { 387 dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 388 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 389 } 390 Result.LiveSet = LiveSet; 391 } 392 393 static bool isKnownBaseResult(Value *V); 394 395 namespace { 396 397 /// A single base defining value - An immediate base defining value for an 398 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 399 /// For instructions which have multiple pointer [vector] inputs or that 400 /// transition between vector and scalar types, there is no immediate base 401 /// defining value. The 'base defining value' for 'Def' is the transitive 402 /// closure of this relation stopping at the first instruction which has no 403 /// immediate base defining value. The b.d.v. might itself be a base pointer, 404 /// but it can also be an arbitrary derived pointer. 405 struct BaseDefiningValueResult { 406 /// Contains the value which is the base defining value. 407 Value * const BDV; 408 409 /// True if the base defining value is also known to be an actual base 410 /// pointer. 411 const bool IsKnownBase; 412 413 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 414 : BDV(BDV), IsKnownBase(IsKnownBase) { 415 #ifndef NDEBUG 416 // Check consistency between new and old means of checking whether a BDV is 417 // a base. 418 bool MustBeBase = isKnownBaseResult(BDV); 419 assert(!MustBeBase || MustBeBase == IsKnownBase); 420 #endif 421 } 422 }; 423 424 } // end anonymous namespace 425 426 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 427 428 /// Return a base defining value for the 'Index' element of the given vector 429 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 430 /// 'I'. As an optimization, this method will try to determine when the 431 /// element is known to already be a base pointer. If this can be established, 432 /// the second value in the returned pair will be true. Note that either a 433 /// vector or a pointer typed value can be returned. For the former, the 434 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 435 /// If the later, the return pointer is a BDV (or possibly a base) for the 436 /// particular element in 'I'. 437 static BaseDefiningValueResult 438 findBaseDefiningValueOfVector(Value *I) { 439 // Each case parallels findBaseDefiningValue below, see that code for 440 // detailed motivation. 441 442 if (isa<Argument>(I)) 443 // An incoming argument to the function is a base pointer 444 return BaseDefiningValueResult(I, true); 445 446 if (isa<Constant>(I)) 447 // Base of constant vector consists only of constant null pointers. 448 // For reasoning see similar case inside 'findBaseDefiningValue' function. 449 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 450 true); 451 452 if (isa<LoadInst>(I)) 453 return BaseDefiningValueResult(I, true); 454 455 if (isa<InsertElementInst>(I)) 456 // We don't know whether this vector contains entirely base pointers or 457 // not. To be conservatively correct, we treat it as a BDV and will 458 // duplicate code as needed to construct a parallel vector of bases. 459 return BaseDefiningValueResult(I, false); 460 461 if (isa<ShuffleVectorInst>(I)) 462 // We don't know whether this vector contains entirely base pointers or 463 // not. To be conservatively correct, we treat it as a BDV and will 464 // duplicate code as needed to construct a parallel vector of bases. 465 // TODO: There a number of local optimizations which could be applied here 466 // for particular sufflevector patterns. 467 return BaseDefiningValueResult(I, false); 468 469 // The behavior of getelementptr instructions is the same for vector and 470 // non-vector data types. 471 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 472 return findBaseDefiningValue(GEP->getPointerOperand()); 473 474 // If the pointer comes through a bitcast of a vector of pointers to 475 // a vector of another type of pointer, then look through the bitcast 476 if (auto *BC = dyn_cast<BitCastInst>(I)) 477 return findBaseDefiningValue(BC->getOperand(0)); 478 479 // A PHI or Select is a base defining value. The outer findBasePointer 480 // algorithm is responsible for constructing a base value for this BDV. 481 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 482 "unknown vector instruction - no base found for vector element"); 483 return BaseDefiningValueResult(I, false); 484 } 485 486 /// Helper function for findBasePointer - Will return a value which either a) 487 /// defines the base pointer for the input, b) blocks the simple search 488 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 489 /// from pointer to vector type or back. 490 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 491 assert(I->getType()->isPtrOrPtrVectorTy() && 492 "Illegal to ask for the base pointer of a non-pointer type"); 493 494 if (I->getType()->isVectorTy()) 495 return findBaseDefiningValueOfVector(I); 496 497 if (isa<Argument>(I)) 498 // An incoming argument to the function is a base pointer 499 // We should have never reached here if this argument isn't an gc value 500 return BaseDefiningValueResult(I, true); 501 502 if (isa<Constant>(I)) { 503 // We assume that objects with a constant base (e.g. a global) can't move 504 // and don't need to be reported to the collector because they are always 505 // live. Besides global references, all kinds of constants (e.g. undef, 506 // constant expressions, null pointers) can be introduced by the inliner or 507 // the optimizer, especially on dynamically dead paths. 508 // Here we treat all of them as having single null base. By doing this we 509 // trying to avoid problems reporting various conflicts in a form of 510 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 511 // See constant.ll file for relevant test cases. 512 513 return BaseDefiningValueResult( 514 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 515 } 516 517 if (CastInst *CI = dyn_cast<CastInst>(I)) { 518 Value *Def = CI->stripPointerCasts(); 519 // If stripping pointer casts changes the address space there is an 520 // addrspacecast in between. 521 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 522 cast<PointerType>(CI->getType())->getAddressSpace() && 523 "unsupported addrspacecast"); 524 // If we find a cast instruction here, it means we've found a cast which is 525 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 526 // handle int->ptr conversion. 527 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 528 return findBaseDefiningValue(Def); 529 } 530 531 if (isa<LoadInst>(I)) 532 // The value loaded is an gc base itself 533 return BaseDefiningValueResult(I, true); 534 535 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 536 // The base of this GEP is the base 537 return findBaseDefiningValue(GEP->getPointerOperand()); 538 539 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 540 switch (II->getIntrinsicID()) { 541 default: 542 // fall through to general call handling 543 break; 544 case Intrinsic::experimental_gc_statepoint: 545 llvm_unreachable("statepoints don't produce pointers"); 546 case Intrinsic::experimental_gc_relocate: 547 // Rerunning safepoint insertion after safepoints are already 548 // inserted is not supported. It could probably be made to work, 549 // but why are you doing this? There's no good reason. 550 llvm_unreachable("repeat safepoint insertion is not supported"); 551 case Intrinsic::gcroot: 552 // Currently, this mechanism hasn't been extended to work with gcroot. 553 // There's no reason it couldn't be, but I haven't thought about the 554 // implications much. 555 llvm_unreachable( 556 "interaction with the gcroot mechanism is not supported"); 557 } 558 } 559 // We assume that functions in the source language only return base 560 // pointers. This should probably be generalized via attributes to support 561 // both source language and internal functions. 562 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 563 return BaseDefiningValueResult(I, true); 564 565 // TODO: I have absolutely no idea how to implement this part yet. It's not 566 // necessarily hard, I just haven't really looked at it yet. 567 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 568 569 if (isa<AtomicCmpXchgInst>(I)) 570 // A CAS is effectively a atomic store and load combined under a 571 // predicate. From the perspective of base pointers, we just treat it 572 // like a load. 573 return BaseDefiningValueResult(I, true); 574 575 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 576 "binary ops which don't apply to pointers"); 577 578 // The aggregate ops. Aggregates can either be in the heap or on the 579 // stack, but in either case, this is simply a field load. As a result, 580 // this is a defining definition of the base just like a load is. 581 if (isa<ExtractValueInst>(I)) 582 return BaseDefiningValueResult(I, true); 583 584 // We should never see an insert vector since that would require we be 585 // tracing back a struct value not a pointer value. 586 assert(!isa<InsertValueInst>(I) && 587 "Base pointer for a struct is meaningless"); 588 589 // An extractelement produces a base result exactly when it's input does. 590 // We may need to insert a parallel instruction to extract the appropriate 591 // element out of the base vector corresponding to the input. Given this, 592 // it's analogous to the phi and select case even though it's not a merge. 593 if (isa<ExtractElementInst>(I)) 594 // Note: There a lot of obvious peephole cases here. This are deliberately 595 // handled after the main base pointer inference algorithm to make writing 596 // test cases to exercise that code easier. 597 return BaseDefiningValueResult(I, false); 598 599 // The last two cases here don't return a base pointer. Instead, they 600 // return a value which dynamically selects from among several base 601 // derived pointers (each with it's own base potentially). It's the job of 602 // the caller to resolve these. 603 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 604 "missing instruction case in findBaseDefiningValing"); 605 return BaseDefiningValueResult(I, false); 606 } 607 608 /// Returns the base defining value for this value. 609 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 610 Value *&Cached = Cache[I]; 611 if (!Cached) { 612 Cached = findBaseDefiningValue(I).BDV; 613 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 614 << Cached->getName() << "\n"); 615 } 616 assert(Cache[I] != nullptr); 617 return Cached; 618 } 619 620 /// Return a base pointer for this value if known. Otherwise, return it's 621 /// base defining value. 622 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 623 Value *Def = findBaseDefiningValueCached(I, Cache); 624 auto Found = Cache.find(Def); 625 if (Found != Cache.end()) { 626 // Either a base-of relation, or a self reference. Caller must check. 627 return Found->second; 628 } 629 // Only a BDV available 630 return Def; 631 } 632 633 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 634 /// is it known to be a base pointer? Or do we need to continue searching. 635 static bool isKnownBaseResult(Value *V) { 636 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 637 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 638 !isa<ShuffleVectorInst>(V)) { 639 // no recursion possible 640 return true; 641 } 642 if (isa<Instruction>(V) && 643 cast<Instruction>(V)->getMetadata("is_base_value")) { 644 // This is a previously inserted base phi or select. We know 645 // that this is a base value. 646 return true; 647 } 648 649 // We need to keep searching 650 return false; 651 } 652 653 namespace { 654 655 /// Models the state of a single base defining value in the findBasePointer 656 /// algorithm for determining where a new instruction is needed to propagate 657 /// the base of this BDV. 658 class BDVState { 659 public: 660 enum Status { Unknown, Base, Conflict }; 661 662 BDVState() : BaseValue(nullptr) {} 663 664 explicit BDVState(Status Status, Value *BaseValue = nullptr) 665 : Status(Status), BaseValue(BaseValue) { 666 assert(Status != Base || BaseValue); 667 } 668 669 explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {} 670 671 Status getStatus() const { return Status; } 672 Value *getBaseValue() const { return BaseValue; } 673 674 bool isBase() const { return getStatus() == Base; } 675 bool isUnknown() const { return getStatus() == Unknown; } 676 bool isConflict() const { return getStatus() == Conflict; } 677 678 bool operator==(const BDVState &Other) const { 679 return BaseValue == Other.BaseValue && Status == Other.Status; 680 } 681 682 bool operator!=(const BDVState &other) const { return !(*this == other); } 683 684 LLVM_DUMP_METHOD 685 void dump() const { 686 print(dbgs()); 687 dbgs() << '\n'; 688 } 689 690 void print(raw_ostream &OS) const { 691 switch (getStatus()) { 692 case Unknown: 693 OS << "U"; 694 break; 695 case Base: 696 OS << "B"; 697 break; 698 case Conflict: 699 OS << "C"; 700 break; 701 } 702 OS << " (" << getBaseValue() << " - " 703 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): "; 704 } 705 706 private: 707 Status Status = Unknown; 708 AssertingVH<Value> BaseValue; // Non-null only if Status == Base. 709 }; 710 711 } // end anonymous namespace 712 713 #ifndef NDEBUG 714 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 715 State.print(OS); 716 return OS; 717 } 718 #endif 719 720 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) { 721 switch (LHS.getStatus()) { 722 case BDVState::Unknown: 723 return RHS; 724 725 case BDVState::Base: 726 assert(LHS.getBaseValue() && "can't be null"); 727 if (RHS.isUnknown()) 728 return LHS; 729 730 if (RHS.isBase()) { 731 if (LHS.getBaseValue() == RHS.getBaseValue()) { 732 assert(LHS == RHS && "equality broken!"); 733 return LHS; 734 } 735 return BDVState(BDVState::Conflict); 736 } 737 assert(RHS.isConflict() && "only three states!"); 738 return BDVState(BDVState::Conflict); 739 740 case BDVState::Conflict: 741 return LHS; 742 } 743 llvm_unreachable("only three states!"); 744 } 745 746 // Values of type BDVState form a lattice, and this function implements the meet 747 // operation. 748 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) { 749 BDVState Result = meetBDVStateImpl(LHS, RHS); 750 assert(Result == meetBDVStateImpl(RHS, LHS) && 751 "Math is wrong: meet does not commute!"); 752 return Result; 753 } 754 755 /// For a given value or instruction, figure out what base ptr its derived from. 756 /// For gc objects, this is simply itself. On success, returns a value which is 757 /// the base pointer. (This is reliable and can be used for relocation.) On 758 /// failure, returns nullptr. 759 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 760 Value *Def = findBaseOrBDV(I, Cache); 761 762 if (isKnownBaseResult(Def)) 763 return Def; 764 765 // Here's the rough algorithm: 766 // - For every SSA value, construct a mapping to either an actual base 767 // pointer or a PHI which obscures the base pointer. 768 // - Construct a mapping from PHI to unknown TOP state. Use an 769 // optimistic algorithm to propagate base pointer information. Lattice 770 // looks like: 771 // UNKNOWN 772 // b1 b2 b3 b4 773 // CONFLICT 774 // When algorithm terminates, all PHIs will either have a single concrete 775 // base or be in a conflict state. 776 // - For every conflict, insert a dummy PHI node without arguments. Add 777 // these to the base[Instruction] = BasePtr mapping. For every 778 // non-conflict, add the actual base. 779 // - For every conflict, add arguments for the base[a] of each input 780 // arguments. 781 // 782 // Note: A simpler form of this would be to add the conflict form of all 783 // PHIs without running the optimistic algorithm. This would be 784 // analogous to pessimistic data flow and would likely lead to an 785 // overall worse solution. 786 787 #ifndef NDEBUG 788 auto isExpectedBDVType = [](Value *BDV) { 789 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 790 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 791 isa<ShuffleVectorInst>(BDV); 792 }; 793 #endif 794 795 // Once populated, will contain a mapping from each potentially non-base BDV 796 // to a lattice value (described above) which corresponds to that BDV. 797 // We use the order of insertion (DFS over the def/use graph) to provide a 798 // stable deterministic ordering for visiting DenseMaps (which are unordered) 799 // below. This is important for deterministic compilation. 800 MapVector<Value *, BDVState> States; 801 802 // Recursively fill in all base defining values reachable from the initial 803 // one for which we don't already know a definite base value for 804 /* scope */ { 805 SmallVector<Value*, 16> Worklist; 806 Worklist.push_back(Def); 807 States.insert({Def, BDVState()}); 808 while (!Worklist.empty()) { 809 Value *Current = Worklist.pop_back_val(); 810 assert(!isKnownBaseResult(Current) && "why did it get added?"); 811 812 auto visitIncomingValue = [&](Value *InVal) { 813 Value *Base = findBaseOrBDV(InVal, Cache); 814 if (isKnownBaseResult(Base)) 815 // Known bases won't need new instructions introduced and can be 816 // ignored safely 817 return; 818 assert(isExpectedBDVType(Base) && "the only non-base values " 819 "we see should be base defining values"); 820 if (States.insert(std::make_pair(Base, BDVState())).second) 821 Worklist.push_back(Base); 822 }; 823 if (PHINode *PN = dyn_cast<PHINode>(Current)) { 824 for (Value *InVal : PN->incoming_values()) 825 visitIncomingValue(InVal); 826 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { 827 visitIncomingValue(SI->getTrueValue()); 828 visitIncomingValue(SI->getFalseValue()); 829 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 830 visitIncomingValue(EE->getVectorOperand()); 831 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 832 visitIncomingValue(IE->getOperand(0)); // vector operand 833 visitIncomingValue(IE->getOperand(1)); // scalar operand 834 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) { 835 visitIncomingValue(SV->getOperand(0)); 836 visitIncomingValue(SV->getOperand(1)); 837 } 838 else { 839 llvm_unreachable("Unimplemented instruction case"); 840 } 841 } 842 } 843 844 #ifndef NDEBUG 845 DEBUG(dbgs() << "States after initialization:\n"); 846 for (auto Pair : States) { 847 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 848 } 849 #endif 850 851 // Return a phi state for a base defining value. We'll generate a new 852 // base state for known bases and expect to find a cached state otherwise. 853 auto getStateForBDV = [&](Value *baseValue) { 854 if (isKnownBaseResult(baseValue)) 855 return BDVState(baseValue); 856 auto I = States.find(baseValue); 857 assert(I != States.end() && "lookup failed!"); 858 return I->second; 859 }; 860 861 bool Progress = true; 862 while (Progress) { 863 #ifndef NDEBUG 864 const size_t OldSize = States.size(); 865 #endif 866 Progress = false; 867 // We're only changing values in this loop, thus safe to keep iterators. 868 // Since this is computing a fixed point, the order of visit does not 869 // effect the result. TODO: We could use a worklist here and make this run 870 // much faster. 871 for (auto Pair : States) { 872 Value *BDV = Pair.first; 873 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 874 875 // Given an input value for the current instruction, return a BDVState 876 // instance which represents the BDV of that value. 877 auto getStateForInput = [&](Value *V) mutable { 878 Value *BDV = findBaseOrBDV(V, Cache); 879 return getStateForBDV(BDV); 880 }; 881 882 BDVState NewState; 883 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 884 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); 885 NewState = 886 meetBDVState(NewState, getStateForInput(SI->getFalseValue())); 887 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 888 for (Value *Val : PN->incoming_values()) 889 NewState = meetBDVState(NewState, getStateForInput(Val)); 890 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 891 // The 'meet' for an extractelement is slightly trivial, but it's still 892 // useful in that it drives us to conflict if our input is. 893 NewState = 894 meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); 895 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){ 896 // Given there's a inherent type mismatch between the operands, will 897 // *always* produce Conflict. 898 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); 899 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); 900 } else { 901 // The only instance this does not return a Conflict is when both the 902 // vector operands are the same vector. 903 auto *SV = cast<ShuffleVectorInst>(BDV); 904 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0))); 905 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1))); 906 } 907 908 BDVState OldState = States[BDV]; 909 if (OldState != NewState) { 910 Progress = true; 911 States[BDV] = NewState; 912 } 913 } 914 915 assert(OldSize == States.size() && 916 "fixed point shouldn't be adding any new nodes to state"); 917 } 918 919 #ifndef NDEBUG 920 DEBUG(dbgs() << "States after meet iteration:\n"); 921 for (auto Pair : States) { 922 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 923 } 924 #endif 925 926 // Insert Phis for all conflicts 927 // TODO: adjust naming patterns to avoid this order of iteration dependency 928 for (auto Pair : States) { 929 Instruction *I = cast<Instruction>(Pair.first); 930 BDVState State = Pair.second; 931 assert(!isKnownBaseResult(I) && "why did it get added?"); 932 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 933 934 // extractelement instructions are a bit special in that we may need to 935 // insert an extract even when we know an exact base for the instruction. 936 // The problem is that we need to convert from a vector base to a scalar 937 // base for the particular indice we're interested in. 938 if (State.isBase() && isa<ExtractElementInst>(I) && 939 isa<VectorType>(State.getBaseValue()->getType())) { 940 auto *EE = cast<ExtractElementInst>(I); 941 // TODO: In many cases, the new instruction is just EE itself. We should 942 // exploit this, but can't do it here since it would break the invariant 943 // about the BDV not being known to be a base. 944 auto *BaseInst = ExtractElementInst::Create( 945 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 946 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 947 States[I] = BDVState(BDVState::Base, BaseInst); 948 } 949 950 // Since we're joining a vector and scalar base, they can never be the 951 // same. As a result, we should always see insert element having reached 952 // the conflict state. 953 assert(!isa<InsertElementInst>(I) || State.isConflict()); 954 955 if (!State.isConflict()) 956 continue; 957 958 /// Create and insert a new instruction which will represent the base of 959 /// the given instruction 'I'. 960 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 961 if (isa<PHINode>(I)) { 962 BasicBlock *BB = I->getParent(); 963 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 964 assert(NumPreds > 0 && "how did we reach here"); 965 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 966 return PHINode::Create(I->getType(), NumPreds, Name, I); 967 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 968 // The undef will be replaced later 969 UndefValue *Undef = UndefValue::get(SI->getType()); 970 std::string Name = suffixed_name_or(I, ".base", "base_select"); 971 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); 972 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 973 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 974 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 975 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 976 EE); 977 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 978 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 979 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 980 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 981 return InsertElementInst::Create(VecUndef, ScalarUndef, 982 IE->getOperand(2), Name, IE); 983 } else { 984 auto *SV = cast<ShuffleVectorInst>(I); 985 UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType()); 986 std::string Name = suffixed_name_or(I, ".base", "base_sv"); 987 return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2), 988 Name, SV); 989 } 990 }; 991 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 992 // Add metadata marking this as a base value 993 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 994 States[I] = BDVState(BDVState::Conflict, BaseInst); 995 } 996 997 // Returns a instruction which produces the base pointer for a given 998 // instruction. The instruction is assumed to be an input to one of the BDVs 999 // seen in the inference algorithm above. As such, we must either already 1000 // know it's base defining value is a base, or have inserted a new 1001 // instruction to propagate the base of it's BDV and have entered that newly 1002 // introduced instruction into the state table. In either case, we are 1003 // assured to be able to determine an instruction which produces it's base 1004 // pointer. 1005 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1006 Value *BDV = findBaseOrBDV(Input, Cache); 1007 Value *Base = nullptr; 1008 if (isKnownBaseResult(BDV)) { 1009 Base = BDV; 1010 } else { 1011 // Either conflict or base. 1012 assert(States.count(BDV)); 1013 Base = States[BDV].getBaseValue(); 1014 } 1015 assert(Base && "Can't be null"); 1016 // The cast is needed since base traversal may strip away bitcasts 1017 if (Base->getType() != Input->getType() && InsertPt) 1018 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 1019 return Base; 1020 }; 1021 1022 // Fixup all the inputs of the new PHIs. Visit order needs to be 1023 // deterministic and predictable because we're naming newly created 1024 // instructions. 1025 for (auto Pair : States) { 1026 Instruction *BDV = cast<Instruction>(Pair.first); 1027 BDVState State = Pair.second; 1028 1029 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1030 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1031 if (!State.isConflict()) 1032 continue; 1033 1034 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1035 PHINode *PN = cast<PHINode>(BDV); 1036 unsigned NumPHIValues = PN->getNumIncomingValues(); 1037 for (unsigned i = 0; i < NumPHIValues; i++) { 1038 Value *InVal = PN->getIncomingValue(i); 1039 BasicBlock *InBB = PN->getIncomingBlock(i); 1040 1041 // If we've already seen InBB, add the same incoming value 1042 // we added for it earlier. The IR verifier requires phi 1043 // nodes with multiple entries from the same basic block 1044 // to have the same incoming value for each of those 1045 // entries. If we don't do this check here and basephi 1046 // has a different type than base, we'll end up adding two 1047 // bitcasts (and hence two distinct values) as incoming 1048 // values for the same basic block. 1049 1050 int BlockIndex = BasePHI->getBasicBlockIndex(InBB); 1051 if (BlockIndex != -1) { 1052 Value *OldBase = BasePHI->getIncomingValue(BlockIndex); 1053 BasePHI->addIncoming(OldBase, InBB); 1054 1055 #ifndef NDEBUG 1056 Value *Base = getBaseForInput(InVal, nullptr); 1057 // In essence this assert states: the only way two values 1058 // incoming from the same basic block may be different is by 1059 // being different bitcasts of the same value. A cleanup 1060 // that remains TODO is changing findBaseOrBDV to return an 1061 // llvm::Value of the correct type (and still remain pure). 1062 // This will remove the need to add bitcasts. 1063 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 1064 "Sanity -- findBaseOrBDV should be pure!"); 1065 #endif 1066 continue; 1067 } 1068 1069 // Find the instruction which produces the base for each input. We may 1070 // need to insert a bitcast in the incoming block. 1071 // TODO: Need to split critical edges if insertion is needed 1072 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1073 BasePHI->addIncoming(Base, InBB); 1074 } 1075 assert(BasePHI->getNumIncomingValues() == NumPHIValues); 1076 } else if (SelectInst *BaseSI = 1077 dyn_cast<SelectInst>(State.getBaseValue())) { 1078 SelectInst *SI = cast<SelectInst>(BDV); 1079 1080 // Find the instruction which produces the base for each input. 1081 // We may need to insert a bitcast. 1082 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1083 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1084 } else if (auto *BaseEE = 1085 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1086 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1087 // Find the instruction which produces the base for each input. We may 1088 // need to insert a bitcast. 1089 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1090 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1091 auto *BdvIE = cast<InsertElementInst>(BDV); 1092 auto UpdateOperand = [&](int OperandIdx) { 1093 Value *InVal = BdvIE->getOperand(OperandIdx); 1094 Value *Base = getBaseForInput(InVal, BaseIE); 1095 BaseIE->setOperand(OperandIdx, Base); 1096 }; 1097 UpdateOperand(0); // vector operand 1098 UpdateOperand(1); // scalar operand 1099 } else { 1100 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1101 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1102 auto UpdateOperand = [&](int OperandIdx) { 1103 Value *InVal = BdvSV->getOperand(OperandIdx); 1104 Value *Base = getBaseForInput(InVal, BaseSV); 1105 BaseSV->setOperand(OperandIdx, Base); 1106 }; 1107 UpdateOperand(0); // vector operand 1108 UpdateOperand(1); // vector operand 1109 } 1110 } 1111 1112 // Cache all of our results so we can cheaply reuse them 1113 // NOTE: This is actually two caches: one of the base defining value 1114 // relation and one of the base pointer relation! FIXME 1115 for (auto Pair : States) { 1116 auto *BDV = Pair.first; 1117 Value *Base = Pair.second.getBaseValue(); 1118 assert(BDV && Base); 1119 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1120 1121 DEBUG(dbgs() << "Updating base value cache" 1122 << " for: " << BDV->getName() << " from: " 1123 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1124 << " to: " << Base->getName() << "\n"); 1125 1126 if (Cache.count(BDV)) { 1127 assert(isKnownBaseResult(Base) && 1128 "must be something we 'know' is a base pointer"); 1129 // Once we transition from the BDV relation being store in the Cache to 1130 // the base relation being stored, it must be stable 1131 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && 1132 "base relation should be stable"); 1133 } 1134 Cache[BDV] = Base; 1135 } 1136 assert(Cache.count(Def)); 1137 return Cache[Def]; 1138 } 1139 1140 // For a set of live pointers (base and/or derived), identify the base 1141 // pointer of the object which they are derived from. This routine will 1142 // mutate the IR graph as needed to make the 'base' pointer live at the 1143 // definition site of 'derived'. This ensures that any use of 'derived' can 1144 // also use 'base'. This may involve the insertion of a number of 1145 // additional PHI nodes. 1146 // 1147 // preconditions: live is a set of pointer type Values 1148 // 1149 // side effects: may insert PHI nodes into the existing CFG, will preserve 1150 // CFG, will not remove or mutate any existing nodes 1151 // 1152 // post condition: PointerToBase contains one (derived, base) pair for every 1153 // pointer in live. Note that derived can be equal to base if the original 1154 // pointer was a base pointer. 1155 static void 1156 findBasePointers(const StatepointLiveSetTy &live, 1157 MapVector<Value *, Value *> &PointerToBase, 1158 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1159 for (Value *ptr : live) { 1160 Value *base = findBasePointer(ptr, DVCache); 1161 assert(base && "failed to find base pointer"); 1162 PointerToBase[ptr] = base; 1163 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1164 DT->dominates(cast<Instruction>(base)->getParent(), 1165 cast<Instruction>(ptr)->getParent())) && 1166 "The base we found better dominate the derived pointer"); 1167 } 1168 } 1169 1170 /// Find the required based pointers (and adjust the live set) for the given 1171 /// parse point. 1172 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1173 CallSite CS, 1174 PartiallyConstructedSafepointRecord &result) { 1175 MapVector<Value *, Value *> PointerToBase; 1176 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1177 1178 if (PrintBasePointers) { 1179 errs() << "Base Pairs (w/o Relocation):\n"; 1180 for (auto &Pair : PointerToBase) { 1181 errs() << " derived "; 1182 Pair.first->printAsOperand(errs(), false); 1183 errs() << " base "; 1184 Pair.second->printAsOperand(errs(), false); 1185 errs() << "\n";; 1186 } 1187 } 1188 1189 result.PointerToBase = PointerToBase; 1190 } 1191 1192 /// Given an updated version of the dataflow liveness results, update the 1193 /// liveset and base pointer maps for the call site CS. 1194 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1195 CallSite CS, 1196 PartiallyConstructedSafepointRecord &result); 1197 1198 static void recomputeLiveInValues( 1199 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1200 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1201 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1202 // again. The old values are still live and will help it stabilize quickly. 1203 GCPtrLivenessData RevisedLivenessData; 1204 computeLiveInValues(DT, F, RevisedLivenessData); 1205 for (size_t i = 0; i < records.size(); i++) { 1206 struct PartiallyConstructedSafepointRecord &info = records[i]; 1207 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1208 } 1209 } 1210 1211 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1212 // no uses of the original value / return value between the gc.statepoint and 1213 // the gc.relocate / gc.result call. One case which can arise is a phi node 1214 // starting one of the successor blocks. We also need to be able to insert the 1215 // gc.relocates only on the path which goes through the statepoint. We might 1216 // need to split an edge to make this possible. 1217 static BasicBlock * 1218 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1219 DominatorTree &DT) { 1220 BasicBlock *Ret = BB; 1221 if (!BB->getUniquePredecessor()) 1222 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1223 1224 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1225 // from it 1226 FoldSingleEntryPHINodes(Ret); 1227 assert(!isa<PHINode>(Ret->begin()) && 1228 "All PHI nodes should have been removed!"); 1229 1230 // At this point, we can safely insert a gc.relocate or gc.result as the first 1231 // instruction in Ret if needed. 1232 return Ret; 1233 } 1234 1235 // Create new attribute set containing only attributes which can be transferred 1236 // from original call to the safepoint. 1237 static AttributeList legalizeCallAttributes(AttributeList AL) { 1238 if (AL.isEmpty()) 1239 return AL; 1240 1241 // Remove the readonly, readnone, and statepoint function attributes. 1242 AttrBuilder FnAttrs = AL.getFnAttributes(); 1243 FnAttrs.removeAttribute(Attribute::ReadNone); 1244 FnAttrs.removeAttribute(Attribute::ReadOnly); 1245 for (Attribute A : AL.getFnAttributes()) { 1246 if (isStatepointDirectiveAttr(A)) 1247 FnAttrs.remove(A); 1248 } 1249 1250 // Just skip parameter and return attributes for now 1251 LLVMContext &Ctx = AL.getContext(); 1252 return AttributeList::get(Ctx, AttributeList::FunctionIndex, 1253 AttributeSet::get(Ctx, FnAttrs)); 1254 } 1255 1256 /// Helper function to place all gc relocates necessary for the given 1257 /// statepoint. 1258 /// Inputs: 1259 /// liveVariables - list of variables to be relocated. 1260 /// liveStart - index of the first live variable. 1261 /// basePtrs - base pointers. 1262 /// statepointToken - statepoint instruction to which relocates should be 1263 /// bound. 1264 /// Builder - Llvm IR builder to be used to construct new calls. 1265 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1266 const int LiveStart, 1267 ArrayRef<Value *> BasePtrs, 1268 Instruction *StatepointToken, 1269 IRBuilder<> Builder) { 1270 if (LiveVariables.empty()) 1271 return; 1272 1273 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1274 auto ValIt = llvm::find(LiveVec, Val); 1275 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1276 size_t Index = std::distance(LiveVec.begin(), ValIt); 1277 assert(Index < LiveVec.size() && "Bug in std::find?"); 1278 return Index; 1279 }; 1280 Module *M = StatepointToken->getModule(); 1281 1282 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1283 // element type is i8 addrspace(1)*). We originally generated unique 1284 // declarations for each pointer type, but this proved problematic because 1285 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1286 // towards a single unified pointer type anyways, we can just cast everything 1287 // to an i8* of the right address space. A bitcast is added later to convert 1288 // gc_relocate to the actual value's type. 1289 auto getGCRelocateDecl = [&] (Type *Ty) { 1290 assert(isHandledGCPointerType(Ty)); 1291 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1292 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1293 if (auto *VT = dyn_cast<VectorType>(Ty)) 1294 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1295 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1296 {NewTy}); 1297 }; 1298 1299 // Lazily populated map from input types to the canonicalized form mentioned 1300 // in the comment above. This should probably be cached somewhere more 1301 // broadly. 1302 DenseMap<Type*, Value*> TypeToDeclMap; 1303 1304 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1305 // Generate the gc.relocate call and save the result 1306 Value *BaseIdx = 1307 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1308 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1309 1310 Type *Ty = LiveVariables[i]->getType(); 1311 if (!TypeToDeclMap.count(Ty)) 1312 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1313 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1314 1315 // only specify a debug name if we can give a useful one 1316 CallInst *Reloc = Builder.CreateCall( 1317 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1318 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1319 // Trick CodeGen into thinking there are lots of free registers at this 1320 // fake call. 1321 Reloc->setCallingConv(CallingConv::Cold); 1322 } 1323 } 1324 1325 namespace { 1326 1327 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1328 /// avoids having to worry about keeping around dangling pointers to Values. 1329 class DeferredReplacement { 1330 AssertingVH<Instruction> Old; 1331 AssertingVH<Instruction> New; 1332 bool IsDeoptimize = false; 1333 1334 DeferredReplacement() = default; 1335 1336 public: 1337 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1338 assert(Old != New && Old && New && 1339 "Cannot RAUW equal values or to / from null!"); 1340 1341 DeferredReplacement D; 1342 D.Old = Old; 1343 D.New = New; 1344 return D; 1345 } 1346 1347 static DeferredReplacement createDelete(Instruction *ToErase) { 1348 DeferredReplacement D; 1349 D.Old = ToErase; 1350 return D; 1351 } 1352 1353 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1354 #ifndef NDEBUG 1355 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1356 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1357 "Only way to construct a deoptimize deferred replacement"); 1358 #endif 1359 DeferredReplacement D; 1360 D.Old = Old; 1361 D.IsDeoptimize = true; 1362 return D; 1363 } 1364 1365 /// Does the task represented by this instance. 1366 void doReplacement() { 1367 Instruction *OldI = Old; 1368 Instruction *NewI = New; 1369 1370 assert(OldI != NewI && "Disallowed at construction?!"); 1371 assert((!IsDeoptimize || !New) && 1372 "Deoptimize instrinsics are not replaced!"); 1373 1374 Old = nullptr; 1375 New = nullptr; 1376 1377 if (NewI) 1378 OldI->replaceAllUsesWith(NewI); 1379 1380 if (IsDeoptimize) { 1381 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1382 // not necessarilly be followed by the matching return. 1383 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1384 new UnreachableInst(RI->getContext(), RI); 1385 RI->eraseFromParent(); 1386 } 1387 1388 OldI->eraseFromParent(); 1389 } 1390 }; 1391 1392 } // end anonymous namespace 1393 1394 static StringRef getDeoptLowering(CallSite CS) { 1395 const char *DeoptLowering = "deopt-lowering"; 1396 if (CS.hasFnAttr(DeoptLowering)) { 1397 // FIXME: CallSite has a *really* confusing interface around attributes 1398 // with values. 1399 const AttributeList &CSAS = CS.getAttributes(); 1400 if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering)) 1401 return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering) 1402 .getValueAsString(); 1403 Function *F = CS.getCalledFunction(); 1404 assert(F && F->hasFnAttribute(DeoptLowering)); 1405 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1406 } 1407 return "live-through"; 1408 } 1409 1410 static void 1411 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1412 const SmallVectorImpl<Value *> &BasePtrs, 1413 const SmallVectorImpl<Value *> &LiveVariables, 1414 PartiallyConstructedSafepointRecord &Result, 1415 std::vector<DeferredReplacement> &Replacements) { 1416 assert(BasePtrs.size() == LiveVariables.size()); 1417 1418 // Then go ahead and use the builder do actually do the inserts. We insert 1419 // immediately before the previous instruction under the assumption that all 1420 // arguments will be available here. We can't insert afterwards since we may 1421 // be replacing a terminator. 1422 Instruction *InsertBefore = CS.getInstruction(); 1423 IRBuilder<> Builder(InsertBefore); 1424 1425 ArrayRef<Value *> GCArgs(LiveVariables); 1426 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1427 uint32_t NumPatchBytes = 0; 1428 uint32_t Flags = uint32_t(StatepointFlags::None); 1429 1430 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1431 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1432 ArrayRef<Use> TransitionArgs; 1433 if (auto TransitionBundle = 1434 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1435 Flags |= uint32_t(StatepointFlags::GCTransition); 1436 TransitionArgs = TransitionBundle->Inputs; 1437 } 1438 1439 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1440 // with a return value, we lower then as never returning calls to 1441 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1442 bool IsDeoptimize = false; 1443 1444 StatepointDirectives SD = 1445 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1446 if (SD.NumPatchBytes) 1447 NumPatchBytes = *SD.NumPatchBytes; 1448 if (SD.StatepointID) 1449 StatepointID = *SD.StatepointID; 1450 1451 // Pass through the requested lowering if any. The default is live-through. 1452 StringRef DeoptLowering = getDeoptLowering(CS); 1453 if (DeoptLowering.equals("live-in")) 1454 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1455 else { 1456 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1457 } 1458 1459 Value *CallTarget = CS.getCalledValue(); 1460 if (Function *F = dyn_cast<Function>(CallTarget)) { 1461 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1462 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1463 // __llvm_deoptimize symbol. We want to resolve this now, since the 1464 // verifier does not allow taking the address of an intrinsic function. 1465 1466 SmallVector<Type *, 8> DomainTy; 1467 for (Value *Arg : CallArgs) 1468 DomainTy.push_back(Arg->getType()); 1469 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1470 /* isVarArg = */ false); 1471 1472 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1473 // calls to @llvm.experimental.deoptimize with different argument types in 1474 // the same module. This is fine -- we assume the frontend knew what it 1475 // was doing when generating this kind of IR. 1476 CallTarget = 1477 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1478 1479 IsDeoptimize = true; 1480 } 1481 } 1482 1483 // Create the statepoint given all the arguments 1484 Instruction *Token = nullptr; 1485 if (CS.isCall()) { 1486 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1487 CallInst *Call = Builder.CreateGCStatepointCall( 1488 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1489 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1490 1491 Call->setTailCallKind(ToReplace->getTailCallKind()); 1492 Call->setCallingConv(ToReplace->getCallingConv()); 1493 1494 // Currently we will fail on parameter attributes and on certain 1495 // function attributes. In case if we can handle this set of attributes - 1496 // set up function attrs directly on statepoint and return attrs later for 1497 // gc_result intrinsic. 1498 Call->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1499 1500 Token = Call; 1501 1502 // Put the following gc_result and gc_relocate calls immediately after the 1503 // the old call (which we're about to delete) 1504 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1505 Builder.SetInsertPoint(ToReplace->getNextNode()); 1506 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1507 } else { 1508 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1509 1510 // Insert the new invoke into the old block. We'll remove the old one in a 1511 // moment at which point this will become the new terminator for the 1512 // original block. 1513 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1514 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1515 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1516 GCArgs, "statepoint_token"); 1517 1518 Invoke->setCallingConv(ToReplace->getCallingConv()); 1519 1520 // Currently we will fail on parameter attributes and on certain 1521 // function attributes. In case if we can handle this set of attributes - 1522 // set up function attrs directly on statepoint and return attrs later for 1523 // gc_result intrinsic. 1524 Invoke->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1525 1526 Token = Invoke; 1527 1528 // Generate gc relocates in exceptional path 1529 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1530 assert(!isa<PHINode>(UnwindBlock->begin()) && 1531 UnwindBlock->getUniquePredecessor() && 1532 "can't safely insert in this block!"); 1533 1534 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1535 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1536 1537 // Attach exceptional gc relocates to the landingpad. 1538 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1539 Result.UnwindToken = ExceptionalToken; 1540 1541 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1542 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1543 Builder); 1544 1545 // Generate gc relocates and returns for normal block 1546 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1547 assert(!isa<PHINode>(NormalDest->begin()) && 1548 NormalDest->getUniquePredecessor() && 1549 "can't safely insert in this block!"); 1550 1551 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1552 1553 // gc relocates will be generated later as if it were regular call 1554 // statepoint 1555 } 1556 assert(Token && "Should be set in one of the above branches!"); 1557 1558 if (IsDeoptimize) { 1559 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1560 // transform the tail-call like structure to a call to a void function 1561 // followed by unreachable to get better codegen. 1562 Replacements.push_back( 1563 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1564 } else { 1565 Token->setName("statepoint_token"); 1566 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1567 StringRef Name = 1568 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1569 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1570 GCResult->setAttributes( 1571 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1572 CS.getAttributes().getRetAttributes())); 1573 1574 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1575 // live set of some other safepoint, in which case that safepoint's 1576 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1577 // llvm::Instruction. Instead, we defer the replacement and deletion to 1578 // after the live sets have been made explicit in the IR, and we no longer 1579 // have raw pointers to worry about. 1580 Replacements.emplace_back( 1581 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1582 } else { 1583 Replacements.emplace_back( 1584 DeferredReplacement::createDelete(CS.getInstruction())); 1585 } 1586 } 1587 1588 Result.StatepointToken = Token; 1589 1590 // Second, create a gc.relocate for every live variable 1591 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1592 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1593 } 1594 1595 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1596 // which make the relocations happening at this safepoint explicit. 1597 // 1598 // WARNING: Does not do any fixup to adjust users of the original live 1599 // values. That's the callers responsibility. 1600 static void 1601 makeStatepointExplicit(DominatorTree &DT, CallSite CS, 1602 PartiallyConstructedSafepointRecord &Result, 1603 std::vector<DeferredReplacement> &Replacements) { 1604 const auto &LiveSet = Result.LiveSet; 1605 const auto &PointerToBase = Result.PointerToBase; 1606 1607 // Convert to vector for efficient cross referencing. 1608 SmallVector<Value *, 64> BaseVec, LiveVec; 1609 LiveVec.reserve(LiveSet.size()); 1610 BaseVec.reserve(LiveSet.size()); 1611 for (Value *L : LiveSet) { 1612 LiveVec.push_back(L); 1613 assert(PointerToBase.count(L)); 1614 Value *Base = PointerToBase.find(L)->second; 1615 BaseVec.push_back(Base); 1616 } 1617 assert(LiveVec.size() == BaseVec.size()); 1618 1619 // Do the actual rewriting and delete the old statepoint 1620 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1621 } 1622 1623 // Helper function for the relocationViaAlloca. 1624 // 1625 // It receives iterator to the statepoint gc relocates and emits a store to the 1626 // assigned location (via allocaMap) for the each one of them. It adds the 1627 // visited values into the visitedLiveValues set, which we will later use them 1628 // for sanity checking. 1629 static void 1630 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1631 DenseMap<Value *, Value *> &AllocaMap, 1632 DenseSet<Value *> &VisitedLiveValues) { 1633 for (User *U : GCRelocs) { 1634 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1635 if (!Relocate) 1636 continue; 1637 1638 Value *OriginalValue = Relocate->getDerivedPtr(); 1639 assert(AllocaMap.count(OriginalValue)); 1640 Value *Alloca = AllocaMap[OriginalValue]; 1641 1642 // Emit store into the related alloca 1643 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1644 // the correct type according to alloca. 1645 assert(Relocate->getNextNode() && 1646 "Should always have one since it's not a terminator"); 1647 IRBuilder<> Builder(Relocate->getNextNode()); 1648 Value *CastedRelocatedValue = 1649 Builder.CreateBitCast(Relocate, 1650 cast<AllocaInst>(Alloca)->getAllocatedType(), 1651 suffixed_name_or(Relocate, ".casted", "")); 1652 1653 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1654 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1655 1656 #ifndef NDEBUG 1657 VisitedLiveValues.insert(OriginalValue); 1658 #endif 1659 } 1660 } 1661 1662 // Helper function for the "relocationViaAlloca". Similar to the 1663 // "insertRelocationStores" but works for rematerialized values. 1664 static void insertRematerializationStores( 1665 const RematerializedValueMapTy &RematerializedValues, 1666 DenseMap<Value *, Value *> &AllocaMap, 1667 DenseSet<Value *> &VisitedLiveValues) { 1668 for (auto RematerializedValuePair: RematerializedValues) { 1669 Instruction *RematerializedValue = RematerializedValuePair.first; 1670 Value *OriginalValue = RematerializedValuePair.second; 1671 1672 assert(AllocaMap.count(OriginalValue) && 1673 "Can not find alloca for rematerialized value"); 1674 Value *Alloca = AllocaMap[OriginalValue]; 1675 1676 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1677 Store->insertAfter(RematerializedValue); 1678 1679 #ifndef NDEBUG 1680 VisitedLiveValues.insert(OriginalValue); 1681 #endif 1682 } 1683 } 1684 1685 /// Do all the relocation update via allocas and mem2reg 1686 static void relocationViaAlloca( 1687 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1688 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1689 #ifndef NDEBUG 1690 // record initial number of (static) allocas; we'll check we have the same 1691 // number when we get done. 1692 int InitialAllocaNum = 0; 1693 for (Instruction &I : F.getEntryBlock()) 1694 if (isa<AllocaInst>(I)) 1695 InitialAllocaNum++; 1696 #endif 1697 1698 // TODO-PERF: change data structures, reserve 1699 DenseMap<Value *, Value *> AllocaMap; 1700 SmallVector<AllocaInst *, 200> PromotableAllocas; 1701 // Used later to chack that we have enough allocas to store all values 1702 std::size_t NumRematerializedValues = 0; 1703 PromotableAllocas.reserve(Live.size()); 1704 1705 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1706 // "PromotableAllocas" 1707 const DataLayout &DL = F.getParent()->getDataLayout(); 1708 auto emitAllocaFor = [&](Value *LiveValue) { 1709 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 1710 DL.getAllocaAddrSpace(), "", 1711 F.getEntryBlock().getFirstNonPHI()); 1712 AllocaMap[LiveValue] = Alloca; 1713 PromotableAllocas.push_back(Alloca); 1714 }; 1715 1716 // Emit alloca for each live gc pointer 1717 for (Value *V : Live) 1718 emitAllocaFor(V); 1719 1720 // Emit allocas for rematerialized values 1721 for (const auto &Info : Records) 1722 for (auto RematerializedValuePair : Info.RematerializedValues) { 1723 Value *OriginalValue = RematerializedValuePair.second; 1724 if (AllocaMap.count(OriginalValue) != 0) 1725 continue; 1726 1727 emitAllocaFor(OriginalValue); 1728 ++NumRematerializedValues; 1729 } 1730 1731 // The next two loops are part of the same conceptual operation. We need to 1732 // insert a store to the alloca after the original def and at each 1733 // redefinition. We need to insert a load before each use. These are split 1734 // into distinct loops for performance reasons. 1735 1736 // Update gc pointer after each statepoint: either store a relocated value or 1737 // null (if no relocated value was found for this gc pointer and it is not a 1738 // gc_result). This must happen before we update the statepoint with load of 1739 // alloca otherwise we lose the link between statepoint and old def. 1740 for (const auto &Info : Records) { 1741 Value *Statepoint = Info.StatepointToken; 1742 1743 // This will be used for consistency check 1744 DenseSet<Value *> VisitedLiveValues; 1745 1746 // Insert stores for normal statepoint gc relocates 1747 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1748 1749 // In case if it was invoke statepoint 1750 // we will insert stores for exceptional path gc relocates. 1751 if (isa<InvokeInst>(Statepoint)) { 1752 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1753 VisitedLiveValues); 1754 } 1755 1756 // Do similar thing with rematerialized values 1757 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1758 VisitedLiveValues); 1759 1760 if (ClobberNonLive) { 1761 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1762 // the gc.statepoint. This will turn some subtle GC problems into 1763 // slightly easier to debug SEGVs. Note that on large IR files with 1764 // lots of gc.statepoints this is extremely costly both memory and time 1765 // wise. 1766 SmallVector<AllocaInst *, 64> ToClobber; 1767 for (auto Pair : AllocaMap) { 1768 Value *Def = Pair.first; 1769 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1770 1771 // This value was relocated 1772 if (VisitedLiveValues.count(Def)) { 1773 continue; 1774 } 1775 ToClobber.push_back(Alloca); 1776 } 1777 1778 auto InsertClobbersAt = [&](Instruction *IP) { 1779 for (auto *AI : ToClobber) { 1780 auto PT = cast<PointerType>(AI->getAllocatedType()); 1781 Constant *CPN = ConstantPointerNull::get(PT); 1782 StoreInst *Store = new StoreInst(CPN, AI); 1783 Store->insertBefore(IP); 1784 } 1785 }; 1786 1787 // Insert the clobbering stores. These may get intermixed with the 1788 // gc.results and gc.relocates, but that's fine. 1789 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1790 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1791 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1792 } else { 1793 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1794 } 1795 } 1796 } 1797 1798 // Update use with load allocas and add store for gc_relocated. 1799 for (auto Pair : AllocaMap) { 1800 Value *Def = Pair.first; 1801 Value *Alloca = Pair.second; 1802 1803 // We pre-record the uses of allocas so that we dont have to worry about 1804 // later update that changes the user information.. 1805 1806 SmallVector<Instruction *, 20> Uses; 1807 // PERF: trade a linear scan for repeated reallocation 1808 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1809 for (User *U : Def->users()) { 1810 if (!isa<ConstantExpr>(U)) { 1811 // If the def has a ConstantExpr use, then the def is either a 1812 // ConstantExpr use itself or null. In either case 1813 // (recursively in the first, directly in the second), the oop 1814 // it is ultimately dependent on is null and this particular 1815 // use does not need to be fixed up. 1816 Uses.push_back(cast<Instruction>(U)); 1817 } 1818 } 1819 1820 std::sort(Uses.begin(), Uses.end()); 1821 auto Last = std::unique(Uses.begin(), Uses.end()); 1822 Uses.erase(Last, Uses.end()); 1823 1824 for (Instruction *Use : Uses) { 1825 if (isa<PHINode>(Use)) { 1826 PHINode *Phi = cast<PHINode>(Use); 1827 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1828 if (Def == Phi->getIncomingValue(i)) { 1829 LoadInst *Load = new LoadInst( 1830 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1831 Phi->setIncomingValue(i, Load); 1832 } 1833 } 1834 } else { 1835 LoadInst *Load = new LoadInst(Alloca, "", Use); 1836 Use->replaceUsesOfWith(Def, Load); 1837 } 1838 } 1839 1840 // Emit store for the initial gc value. Store must be inserted after load, 1841 // otherwise store will be in alloca's use list and an extra load will be 1842 // inserted before it. 1843 StoreInst *Store = new StoreInst(Def, Alloca); 1844 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1845 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1846 // InvokeInst is a TerminatorInst so the store need to be inserted 1847 // into its normal destination block. 1848 BasicBlock *NormalDest = Invoke->getNormalDest(); 1849 Store->insertBefore(NormalDest->getFirstNonPHI()); 1850 } else { 1851 assert(!Inst->isTerminator() && 1852 "The only TerminatorInst that can produce a value is " 1853 "InvokeInst which is handled above."); 1854 Store->insertAfter(Inst); 1855 } 1856 } else { 1857 assert(isa<Argument>(Def)); 1858 Store->insertAfter(cast<Instruction>(Alloca)); 1859 } 1860 } 1861 1862 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1863 "we must have the same allocas with lives"); 1864 if (!PromotableAllocas.empty()) { 1865 // Apply mem2reg to promote alloca to SSA 1866 PromoteMemToReg(PromotableAllocas, DT); 1867 } 1868 1869 #ifndef NDEBUG 1870 for (auto &I : F.getEntryBlock()) 1871 if (isa<AllocaInst>(I)) 1872 InitialAllocaNum--; 1873 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1874 #endif 1875 } 1876 1877 /// Implement a unique function which doesn't require we sort the input 1878 /// vector. Doing so has the effect of changing the output of a couple of 1879 /// tests in ways which make them less useful in testing fused safepoints. 1880 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1881 SmallSet<T, 8> Seen; 1882 Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }), 1883 Vec.end()); 1884 } 1885 1886 /// Insert holders so that each Value is obviously live through the entire 1887 /// lifetime of the call. 1888 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1889 SmallVectorImpl<CallInst *> &Holders) { 1890 if (Values.empty()) 1891 // No values to hold live, might as well not insert the empty holder 1892 return; 1893 1894 Module *M = CS.getInstruction()->getModule(); 1895 // Use a dummy vararg function to actually hold the values live 1896 Function *Func = cast<Function>(M->getOrInsertFunction( 1897 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1898 if (CS.isCall()) { 1899 // For call safepoints insert dummy calls right after safepoint 1900 Holders.push_back(CallInst::Create(Func, Values, "", 1901 &*++CS.getInstruction()->getIterator())); 1902 return; 1903 } 1904 // For invoke safepooints insert dummy calls both in normal and 1905 // exceptional destination blocks 1906 auto *II = cast<InvokeInst>(CS.getInstruction()); 1907 Holders.push_back(CallInst::Create( 1908 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1909 Holders.push_back(CallInst::Create( 1910 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1911 } 1912 1913 static void findLiveReferences( 1914 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1915 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1916 GCPtrLivenessData OriginalLivenessData; 1917 computeLiveInValues(DT, F, OriginalLivenessData); 1918 for (size_t i = 0; i < records.size(); i++) { 1919 struct PartiallyConstructedSafepointRecord &info = records[i]; 1920 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1921 } 1922 } 1923 1924 // Helper function for the "rematerializeLiveValues". It walks use chain 1925 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 1926 // the base or a value it cannot process. Only "simple" values are processed 1927 // (currently it is GEP's and casts). The returned root is examined by the 1928 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 1929 // with all visited values. 1930 static Value* findRematerializableChainToBasePointer( 1931 SmallVectorImpl<Instruction*> &ChainToBase, 1932 Value *CurrentValue) { 1933 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1934 ChainToBase.push_back(GEP); 1935 return findRematerializableChainToBasePointer(ChainToBase, 1936 GEP->getPointerOperand()); 1937 } 1938 1939 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1940 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1941 return CI; 1942 1943 ChainToBase.push_back(CI); 1944 return findRematerializableChainToBasePointer(ChainToBase, 1945 CI->getOperand(0)); 1946 } 1947 1948 // We have reached the root of the chain, which is either equal to the base or 1949 // is the first unsupported value along the use chain. 1950 return CurrentValue; 1951 } 1952 1953 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1954 // chain we are going to rematerialize. 1955 static unsigned 1956 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1957 TargetTransformInfo &TTI) { 1958 unsigned Cost = 0; 1959 1960 for (Instruction *Instr : Chain) { 1961 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1962 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1963 "non noop cast is found during rematerialization"); 1964 1965 Type *SrcTy = CI->getOperand(0)->getType(); 1966 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI); 1967 1968 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1969 // Cost of the address calculation 1970 Type *ValTy = GEP->getSourceElementType(); 1971 Cost += TTI.getAddressComputationCost(ValTy); 1972 1973 // And cost of the GEP itself 1974 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1975 // allowed for the external usage) 1976 if (!GEP->hasAllConstantIndices()) 1977 Cost += 2; 1978 1979 } else { 1980 llvm_unreachable("unsupported instruciton type during rematerialization"); 1981 } 1982 } 1983 1984 return Cost; 1985 } 1986 1987 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 1988 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 1989 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 1990 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 1991 return false; 1992 // Map of incoming values and their corresponding basic blocks of 1993 // OrigRootPhi. 1994 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 1995 for (unsigned i = 0; i < PhiNum; i++) 1996 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 1997 OrigRootPhi.getIncomingBlock(i); 1998 1999 // Both current and base PHIs should have same incoming values and 2000 // the same basic blocks corresponding to the incoming values. 2001 for (unsigned i = 0; i < PhiNum; i++) { 2002 auto CIVI = 2003 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2004 if (CIVI == CurrentIncomingValues.end()) 2005 return false; 2006 BasicBlock *CurrentIncomingBB = CIVI->second; 2007 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2008 return false; 2009 } 2010 return true; 2011 } 2012 2013 // From the statepoint live set pick values that are cheaper to recompute then 2014 // to relocate. Remove this values from the live set, rematerialize them after 2015 // statepoint and record them in "Info" structure. Note that similar to 2016 // relocated values we don't do any user adjustments here. 2017 static void rematerializeLiveValues(CallSite CS, 2018 PartiallyConstructedSafepointRecord &Info, 2019 TargetTransformInfo &TTI) { 2020 const unsigned int ChainLengthThreshold = 10; 2021 2022 // Record values we are going to delete from this statepoint live set. 2023 // We can not di this in following loop due to iterator invalidation. 2024 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2025 2026 for (Value *LiveValue: Info.LiveSet) { 2027 // For each live pointer find it's defining chain 2028 SmallVector<Instruction *, 3> ChainToBase; 2029 assert(Info.PointerToBase.count(LiveValue)); 2030 Value *RootOfChain = 2031 findRematerializableChainToBasePointer(ChainToBase, 2032 LiveValue); 2033 2034 // Nothing to do, or chain is too long 2035 if ( ChainToBase.size() == 0 || 2036 ChainToBase.size() > ChainLengthThreshold) 2037 continue; 2038 2039 // Handle the scenario where the RootOfChain is not equal to the 2040 // Base Value, but they are essentially the same phi values. 2041 if (RootOfChain != Info.PointerToBase[LiveValue]) { 2042 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2043 PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]); 2044 if (!OrigRootPhi || !AlternateRootPhi) 2045 continue; 2046 // PHI nodes that have the same incoming values, and belonging to the same 2047 // basic blocks are essentially the same SSA value. When the original phi 2048 // has incoming values with different base pointers, the original phi is 2049 // marked as conflict, and an additional `AlternateRootPhi` with the same 2050 // incoming values get generated by the findBasePointer function. We need 2051 // to identify the newly generated AlternateRootPhi (.base version of phi) 2052 // and RootOfChain (the original phi node itself) are the same, so that we 2053 // can rematerialize the gep and casts. This is a workaround for the 2054 // deficiency in the findBasePointer algorithm. 2055 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2056 continue; 2057 // Now that the phi nodes are proved to be the same, assert that 2058 // findBasePointer's newly generated AlternateRootPhi is present in the 2059 // liveset of the call. 2060 assert(Info.LiveSet.count(AlternateRootPhi)); 2061 } 2062 // Compute cost of this chain 2063 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2064 // TODO: We can also account for cases when we will be able to remove some 2065 // of the rematerialized values by later optimization passes. I.e if 2066 // we rematerialized several intersecting chains. Or if original values 2067 // don't have any uses besides this statepoint. 2068 2069 // For invokes we need to rematerialize each chain twice - for normal and 2070 // for unwind basic blocks. Model this by multiplying cost by two. 2071 if (CS.isInvoke()) { 2072 Cost *= 2; 2073 } 2074 // If it's too expensive - skip it 2075 if (Cost >= RematerializationThreshold) 2076 continue; 2077 2078 // Remove value from the live set 2079 LiveValuesToBeDeleted.push_back(LiveValue); 2080 2081 // Clone instructions and record them inside "Info" structure 2082 2083 // Walk backwards to visit top-most instructions first 2084 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2085 2086 // Utility function which clones all instructions from "ChainToBase" 2087 // and inserts them before "InsertBefore". Returns rematerialized value 2088 // which should be used after statepoint. 2089 auto rematerializeChain = [&ChainToBase]( 2090 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 2091 Instruction *LastClonedValue = nullptr; 2092 Instruction *LastValue = nullptr; 2093 for (Instruction *Instr: ChainToBase) { 2094 // Only GEP's and casts are supported as we need to be careful to not 2095 // introduce any new uses of pointers not in the liveset. 2096 // Note that it's fine to introduce new uses of pointers which were 2097 // otherwise not used after this statepoint. 2098 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2099 2100 Instruction *ClonedValue = Instr->clone(); 2101 ClonedValue->insertBefore(InsertBefore); 2102 ClonedValue->setName(Instr->getName() + ".remat"); 2103 2104 // If it is not first instruction in the chain then it uses previously 2105 // cloned value. We should update it to use cloned value. 2106 if (LastClonedValue) { 2107 assert(LastValue); 2108 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2109 #ifndef NDEBUG 2110 for (auto OpValue : ClonedValue->operand_values()) { 2111 // Assert that cloned instruction does not use any instructions from 2112 // this chain other than LastClonedValue 2113 assert(!is_contained(ChainToBase, OpValue) && 2114 "incorrect use in rematerialization chain"); 2115 // Assert that the cloned instruction does not use the RootOfChain 2116 // or the AlternateLiveBase. 2117 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2118 } 2119 #endif 2120 } else { 2121 // For the first instruction, replace the use of unrelocated base i.e. 2122 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2123 // live set. They have been proved to be the same PHI nodes. Note 2124 // that the *only* use of the RootOfChain in the ChainToBase list is 2125 // the first Value in the list. 2126 if (RootOfChain != AlternateLiveBase) 2127 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2128 } 2129 2130 LastClonedValue = ClonedValue; 2131 LastValue = Instr; 2132 } 2133 assert(LastClonedValue); 2134 return LastClonedValue; 2135 }; 2136 2137 // Different cases for calls and invokes. For invokes we need to clone 2138 // instructions both on normal and unwind path. 2139 if (CS.isCall()) { 2140 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2141 assert(InsertBefore); 2142 Instruction *RematerializedValue = rematerializeChain( 2143 InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2144 Info.RematerializedValues[RematerializedValue] = LiveValue; 2145 } else { 2146 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2147 2148 Instruction *NormalInsertBefore = 2149 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2150 Instruction *UnwindInsertBefore = 2151 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2152 2153 Instruction *NormalRematerializedValue = rematerializeChain( 2154 NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2155 Instruction *UnwindRematerializedValue = rematerializeChain( 2156 UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2157 2158 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2159 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2160 } 2161 } 2162 2163 // Remove rematerializaed values from the live set 2164 for (auto LiveValue: LiveValuesToBeDeleted) { 2165 Info.LiveSet.remove(LiveValue); 2166 } 2167 } 2168 2169 static bool insertParsePoints(Function &F, DominatorTree &DT, 2170 TargetTransformInfo &TTI, 2171 SmallVectorImpl<CallSite> &ToUpdate) { 2172 #ifndef NDEBUG 2173 // sanity check the input 2174 std::set<CallSite> Uniqued; 2175 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2176 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2177 2178 for (CallSite CS : ToUpdate) 2179 assert(CS.getInstruction()->getFunction() == &F); 2180 #endif 2181 2182 // When inserting gc.relocates for invokes, we need to be able to insert at 2183 // the top of the successor blocks. See the comment on 2184 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2185 // may restructure the CFG. 2186 for (CallSite CS : ToUpdate) { 2187 if (!CS.isInvoke()) 2188 continue; 2189 auto *II = cast<InvokeInst>(CS.getInstruction()); 2190 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2191 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2192 } 2193 2194 // A list of dummy calls added to the IR to keep various values obviously 2195 // live in the IR. We'll remove all of these when done. 2196 SmallVector<CallInst *, 64> Holders; 2197 2198 // Insert a dummy call with all of the deopt operands we'll need for the 2199 // actual safepoint insertion as arguments. This ensures reference operands 2200 // in the deopt argument list are considered live through the safepoint (and 2201 // thus makes sure they get relocated.) 2202 for (CallSite CS : ToUpdate) { 2203 SmallVector<Value *, 64> DeoptValues; 2204 2205 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2206 assert(!isUnhandledGCPointerType(Arg->getType()) && 2207 "support for FCA unimplemented"); 2208 if (isHandledGCPointerType(Arg->getType())) 2209 DeoptValues.push_back(Arg); 2210 } 2211 2212 insertUseHolderAfter(CS, DeoptValues, Holders); 2213 } 2214 2215 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2216 2217 // A) Identify all gc pointers which are statically live at the given call 2218 // site. 2219 findLiveReferences(F, DT, ToUpdate, Records); 2220 2221 // B) Find the base pointers for each live pointer 2222 /* scope for caching */ { 2223 // Cache the 'defining value' relation used in the computation and 2224 // insertion of base phis and selects. This ensures that we don't insert 2225 // large numbers of duplicate base_phis. 2226 DefiningValueMapTy DVCache; 2227 2228 for (size_t i = 0; i < Records.size(); i++) { 2229 PartiallyConstructedSafepointRecord &info = Records[i]; 2230 findBasePointers(DT, DVCache, ToUpdate[i], info); 2231 } 2232 } // end of cache scope 2233 2234 // The base phi insertion logic (for any safepoint) may have inserted new 2235 // instructions which are now live at some safepoint. The simplest such 2236 // example is: 2237 // loop: 2238 // phi a <-- will be a new base_phi here 2239 // safepoint 1 <-- that needs to be live here 2240 // gep a + 1 2241 // safepoint 2 2242 // br loop 2243 // We insert some dummy calls after each safepoint to definitely hold live 2244 // the base pointers which were identified for that safepoint. We'll then 2245 // ask liveness for _every_ base inserted to see what is now live. Then we 2246 // remove the dummy calls. 2247 Holders.reserve(Holders.size() + Records.size()); 2248 for (size_t i = 0; i < Records.size(); i++) { 2249 PartiallyConstructedSafepointRecord &Info = Records[i]; 2250 2251 SmallVector<Value *, 128> Bases; 2252 for (auto Pair : Info.PointerToBase) 2253 Bases.push_back(Pair.second); 2254 2255 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2256 } 2257 2258 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2259 // need to rerun liveness. We may *also* have inserted new defs, but that's 2260 // not the key issue. 2261 recomputeLiveInValues(F, DT, ToUpdate, Records); 2262 2263 if (PrintBasePointers) { 2264 for (auto &Info : Records) { 2265 errs() << "Base Pairs: (w/Relocation)\n"; 2266 for (auto Pair : Info.PointerToBase) { 2267 errs() << " derived "; 2268 Pair.first->printAsOperand(errs(), false); 2269 errs() << " base "; 2270 Pair.second->printAsOperand(errs(), false); 2271 errs() << "\n"; 2272 } 2273 } 2274 } 2275 2276 // It is possible that non-constant live variables have a constant base. For 2277 // example, a GEP with a variable offset from a global. In this case we can 2278 // remove it from the liveset. We already don't add constants to the liveset 2279 // because we assume they won't move at runtime and the GC doesn't need to be 2280 // informed about them. The same reasoning applies if the base is constant. 2281 // Note that the relocation placement code relies on this filtering for 2282 // correctness as it expects the base to be in the liveset, which isn't true 2283 // if the base is constant. 2284 for (auto &Info : Records) 2285 for (auto &BasePair : Info.PointerToBase) 2286 if (isa<Constant>(BasePair.second)) 2287 Info.LiveSet.remove(BasePair.first); 2288 2289 for (CallInst *CI : Holders) 2290 CI->eraseFromParent(); 2291 2292 Holders.clear(); 2293 2294 // In order to reduce live set of statepoint we might choose to rematerialize 2295 // some values instead of relocating them. This is purely an optimization and 2296 // does not influence correctness. 2297 for (size_t i = 0; i < Records.size(); i++) 2298 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2299 2300 // We need this to safely RAUW and delete call or invoke return values that 2301 // may themselves be live over a statepoint. For details, please see usage in 2302 // makeStatepointExplicitImpl. 2303 std::vector<DeferredReplacement> Replacements; 2304 2305 // Now run through and replace the existing statepoints with new ones with 2306 // the live variables listed. We do not yet update uses of the values being 2307 // relocated. We have references to live variables that need to 2308 // survive to the last iteration of this loop. (By construction, the 2309 // previous statepoint can not be a live variable, thus we can and remove 2310 // the old statepoint calls as we go.) 2311 for (size_t i = 0; i < Records.size(); i++) 2312 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2313 2314 ToUpdate.clear(); // prevent accident use of invalid CallSites 2315 2316 for (auto &PR : Replacements) 2317 PR.doReplacement(); 2318 2319 Replacements.clear(); 2320 2321 for (auto &Info : Records) { 2322 // These live sets may contain state Value pointers, since we replaced calls 2323 // with operand bundles with calls wrapped in gc.statepoint, and some of 2324 // those calls may have been def'ing live gc pointers. Clear these out to 2325 // avoid accidentally using them. 2326 // 2327 // TODO: We should create a separate data structure that does not contain 2328 // these live sets, and migrate to using that data structure from this point 2329 // onward. 2330 Info.LiveSet.clear(); 2331 Info.PointerToBase.clear(); 2332 } 2333 2334 // Do all the fixups of the original live variables to their relocated selves 2335 SmallVector<Value *, 128> Live; 2336 for (size_t i = 0; i < Records.size(); i++) { 2337 PartiallyConstructedSafepointRecord &Info = Records[i]; 2338 2339 // We can't simply save the live set from the original insertion. One of 2340 // the live values might be the result of a call which needs a safepoint. 2341 // That Value* no longer exists and we need to use the new gc_result. 2342 // Thankfully, the live set is embedded in the statepoint (and updated), so 2343 // we just grab that. 2344 Statepoint Statepoint(Info.StatepointToken); 2345 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2346 Statepoint.gc_args_end()); 2347 #ifndef NDEBUG 2348 // Do some basic sanity checks on our liveness results before performing 2349 // relocation. Relocation can and will turn mistakes in liveness results 2350 // into non-sensical code which is must harder to debug. 2351 // TODO: It would be nice to test consistency as well 2352 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2353 "statepoint must be reachable or liveness is meaningless"); 2354 for (Value *V : Statepoint.gc_args()) { 2355 if (!isa<Instruction>(V)) 2356 // Non-instruction values trivial dominate all possible uses 2357 continue; 2358 auto *LiveInst = cast<Instruction>(V); 2359 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2360 "unreachable values should never be live"); 2361 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2362 "basic SSA liveness expectation violated by liveness analysis"); 2363 } 2364 #endif 2365 } 2366 unique_unsorted(Live); 2367 2368 #ifndef NDEBUG 2369 // sanity check 2370 for (auto *Ptr : Live) 2371 assert(isHandledGCPointerType(Ptr->getType()) && 2372 "must be a gc pointer type"); 2373 #endif 2374 2375 relocationViaAlloca(F, DT, Live, Records); 2376 return !Records.empty(); 2377 } 2378 2379 // Handles both return values and arguments for Functions and CallSites. 2380 template <typename AttrHolder> 2381 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2382 unsigned Index) { 2383 AttrBuilder R; 2384 if (AH.getDereferenceableBytes(Index)) 2385 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2386 AH.getDereferenceableBytes(Index))); 2387 if (AH.getDereferenceableOrNullBytes(Index)) 2388 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2389 AH.getDereferenceableOrNullBytes(Index))); 2390 if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias)) 2391 R.addAttribute(Attribute::NoAlias); 2392 2393 if (!R.empty()) 2394 AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R)); 2395 } 2396 2397 static void stripNonValidAttributesFromPrototype(Function &F) { 2398 LLVMContext &Ctx = F.getContext(); 2399 2400 for (Argument &A : F.args()) 2401 if (isa<PointerType>(A.getType())) 2402 RemoveNonValidAttrAtIndex(Ctx, F, 2403 A.getArgNo() + AttributeList::FirstArgIndex); 2404 2405 if (isa<PointerType>(F.getReturnType())) 2406 RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex); 2407 } 2408 2409 /// Certain metadata on instructions are invalid after running RS4GC. 2410 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2411 /// optimize functions. We drop such metadata on the instruction. 2412 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2413 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2414 return; 2415 // These are the attributes that are still valid on loads and stores after 2416 // RS4GC. 2417 // The metadata implying dereferenceability and noalias are (conservatively) 2418 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2419 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2420 // touch the entire heap including noalias objects. Note: The reasoning is 2421 // same as stripping the dereferenceability and noalias attributes that are 2422 // analogous to the metadata counterparts. 2423 // We also drop the invariant.load metadata on the load because that metadata 2424 // implies the address operand to the load points to memory that is never 2425 // changed once it became dereferenceable. This is no longer true after RS4GC. 2426 // Similar reasoning applies to invariant.group metadata, which applies to 2427 // loads within a group. 2428 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2429 LLVMContext::MD_range, 2430 LLVMContext::MD_alias_scope, 2431 LLVMContext::MD_nontemporal, 2432 LLVMContext::MD_nonnull, 2433 LLVMContext::MD_align, 2434 LLVMContext::MD_type}; 2435 2436 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2437 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2438 } 2439 2440 static void stripNonValidDataFromBody(Function &F) { 2441 if (F.empty()) 2442 return; 2443 2444 LLVMContext &Ctx = F.getContext(); 2445 MDBuilder Builder(Ctx); 2446 2447 // Set of invariantstart instructions that we need to remove. 2448 // Use this to avoid invalidating the instruction iterator. 2449 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2450 2451 for (Instruction &I : instructions(F)) { 2452 // invariant.start on memory location implies that the referenced memory 2453 // location is constant and unchanging. This is no longer true after 2454 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2455 // which frees the entire heap and the presence of invariant.start allows 2456 // the optimizer to sink the load of a memory location past a statepoint, 2457 // which is incorrect. 2458 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2459 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2460 InvariantStartInstructions.push_back(II); 2461 continue; 2462 } 2463 2464 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2465 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2466 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2467 } 2468 2469 stripInvalidMetadataFromInstruction(I); 2470 2471 if (CallSite CS = CallSite(&I)) { 2472 for (int i = 0, e = CS.arg_size(); i != e; i++) 2473 if (isa<PointerType>(CS.getArgument(i)->getType())) 2474 RemoveNonValidAttrAtIndex(Ctx, CS, i + AttributeList::FirstArgIndex); 2475 if (isa<PointerType>(CS.getType())) 2476 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeList::ReturnIndex); 2477 } 2478 } 2479 2480 // Delete the invariant.start instructions and RAUW undef. 2481 for (auto *II : InvariantStartInstructions) { 2482 II->replaceAllUsesWith(UndefValue::get(II->getType())); 2483 II->eraseFromParent(); 2484 } 2485 } 2486 2487 /// Returns true if this function should be rewritten by this pass. The main 2488 /// point of this function is as an extension point for custom logic. 2489 static bool shouldRewriteStatepointsIn(Function &F) { 2490 // TODO: This should check the GCStrategy 2491 if (F.hasGC()) { 2492 const auto &FunctionGCName = F.getGC(); 2493 const StringRef StatepointExampleName("statepoint-example"); 2494 const StringRef CoreCLRName("coreclr"); 2495 return (StatepointExampleName == FunctionGCName) || 2496 (CoreCLRName == FunctionGCName); 2497 } else 2498 return false; 2499 } 2500 2501 static void stripNonValidData(Module &M) { 2502 #ifndef NDEBUG 2503 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2504 #endif 2505 2506 for (Function &F : M) 2507 stripNonValidAttributesFromPrototype(F); 2508 2509 for (Function &F : M) 2510 stripNonValidDataFromBody(F); 2511 } 2512 2513 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 2514 TargetTransformInfo &TTI, 2515 const TargetLibraryInfo &TLI) { 2516 assert(!F.isDeclaration() && !F.empty() && 2517 "need function body to rewrite statepoints in"); 2518 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 2519 2520 auto NeedsRewrite = [&TLI](Instruction &I) { 2521 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2522 return !callsGCLeafFunction(CS, TLI) && !isStatepoint(CS); 2523 return false; 2524 }; 2525 2526 // Gather all the statepoints which need rewritten. Be careful to only 2527 // consider those in reachable code since we need to ask dominance queries 2528 // when rewriting. We'll delete the unreachable ones in a moment. 2529 SmallVector<CallSite, 64> ParsePointNeeded; 2530 bool HasUnreachableStatepoint = false; 2531 for (Instruction &I : instructions(F)) { 2532 // TODO: only the ones with the flag set! 2533 if (NeedsRewrite(I)) { 2534 if (DT.isReachableFromEntry(I.getParent())) 2535 ParsePointNeeded.push_back(CallSite(&I)); 2536 else 2537 HasUnreachableStatepoint = true; 2538 } 2539 } 2540 2541 bool MadeChange = false; 2542 2543 // Delete any unreachable statepoints so that we don't have unrewritten 2544 // statepoints surviving this pass. This makes testing easier and the 2545 // resulting IR less confusing to human readers. Rather than be fancy, we 2546 // just reuse a utility function which removes the unreachable blocks. 2547 if (HasUnreachableStatepoint) 2548 MadeChange |= removeUnreachableBlocks(F); 2549 2550 // Return early if no work to do. 2551 if (ParsePointNeeded.empty()) 2552 return MadeChange; 2553 2554 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2555 // These are created by LCSSA. They have the effect of increasing the size 2556 // of liveness sets for no good reason. It may be harder to do this post 2557 // insertion since relocations and base phis can confuse things. 2558 for (BasicBlock &BB : F) 2559 if (BB.getUniquePredecessor()) { 2560 MadeChange = true; 2561 FoldSingleEntryPHINodes(&BB); 2562 } 2563 2564 // Before we start introducing relocations, we want to tweak the IR a bit to 2565 // avoid unfortunate code generation effects. The main example is that we 2566 // want to try to make sure the comparison feeding a branch is after any 2567 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2568 // values feeding a branch after relocation. This is semantically correct, 2569 // but results in extra register pressure since both the pre-relocation and 2570 // post-relocation copies must be available in registers. For code without 2571 // relocations this is handled elsewhere, but teaching the scheduler to 2572 // reverse the transform we're about to do would be slightly complex. 2573 // Note: This may extend the live range of the inputs to the icmp and thus 2574 // increase the liveset of any statepoint we move over. This is profitable 2575 // as long as all statepoints are in rare blocks. If we had in-register 2576 // lowering for live values this would be a much safer transform. 2577 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2578 if (auto *BI = dyn_cast<BranchInst>(TI)) 2579 if (BI->isConditional()) 2580 return dyn_cast<Instruction>(BI->getCondition()); 2581 // TODO: Extend this to handle switches 2582 return nullptr; 2583 }; 2584 for (BasicBlock &BB : F) { 2585 TerminatorInst *TI = BB.getTerminator(); 2586 if (auto *Cond = getConditionInst(TI)) 2587 // TODO: Handle more than just ICmps here. We should be able to move 2588 // most instructions without side effects or memory access. 2589 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2590 MadeChange = true; 2591 Cond->moveBefore(TI); 2592 } 2593 } 2594 2595 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2596 return MadeChange; 2597 } 2598 2599 // liveness computation via standard dataflow 2600 // ------------------------------------------------------------------- 2601 2602 // TODO: Consider using bitvectors for liveness, the set of potentially 2603 // interesting values should be small and easy to pre-compute. 2604 2605 /// Compute the live-in set for the location rbegin starting from 2606 /// the live-out set of the basic block 2607 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 2608 BasicBlock::reverse_iterator End, 2609 SetVector<Value *> &LiveTmp) { 2610 for (auto &I : make_range(Begin, End)) { 2611 // KILL/Def - Remove this definition from LiveIn 2612 LiveTmp.remove(&I); 2613 2614 // Don't consider *uses* in PHI nodes, we handle their contribution to 2615 // predecessor blocks when we seed the LiveOut sets 2616 if (isa<PHINode>(I)) 2617 continue; 2618 2619 // USE - Add to the LiveIn set for this instruction 2620 for (Value *V : I.operands()) { 2621 assert(!isUnhandledGCPointerType(V->getType()) && 2622 "support for FCA unimplemented"); 2623 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2624 // The choice to exclude all things constant here is slightly subtle. 2625 // There are two independent reasons: 2626 // - We assume that things which are constant (from LLVM's definition) 2627 // do not move at runtime. For example, the address of a global 2628 // variable is fixed, even though it's contents may not be. 2629 // - Second, we can't disallow arbitrary inttoptr constants even 2630 // if the language frontend does. Optimization passes are free to 2631 // locally exploit facts without respect to global reachability. This 2632 // can create sections of code which are dynamically unreachable and 2633 // contain just about anything. (see constants.ll in tests) 2634 LiveTmp.insert(V); 2635 } 2636 } 2637 } 2638 } 2639 2640 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2641 for (BasicBlock *Succ : successors(BB)) { 2642 for (auto &I : *Succ) { 2643 PHINode *PN = dyn_cast<PHINode>(&I); 2644 if (!PN) 2645 break; 2646 2647 Value *V = PN->getIncomingValueForBlock(BB); 2648 assert(!isUnhandledGCPointerType(V->getType()) && 2649 "support for FCA unimplemented"); 2650 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 2651 LiveTmp.insert(V); 2652 } 2653 } 2654 } 2655 2656 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2657 SetVector<Value *> KillSet; 2658 for (Instruction &I : *BB) 2659 if (isHandledGCPointerType(I.getType())) 2660 KillSet.insert(&I); 2661 return KillSet; 2662 } 2663 2664 #ifndef NDEBUG 2665 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2666 /// sanity check for the liveness computation. 2667 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2668 TerminatorInst *TI, bool TermOkay = false) { 2669 for (Value *V : Live) { 2670 if (auto *I = dyn_cast<Instruction>(V)) { 2671 // The terminator can be a member of the LiveOut set. LLVM's definition 2672 // of instruction dominance states that V does not dominate itself. As 2673 // such, we need to special case this to allow it. 2674 if (TermOkay && TI == I) 2675 continue; 2676 assert(DT.dominates(I, TI) && 2677 "basic SSA liveness expectation violated by liveness analysis"); 2678 } 2679 } 2680 } 2681 2682 /// Check that all the liveness sets used during the computation of liveness 2683 /// obey basic SSA properties. This is useful for finding cases where we miss 2684 /// a def. 2685 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2686 BasicBlock &BB) { 2687 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2688 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2689 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2690 } 2691 #endif 2692 2693 static void computeLiveInValues(DominatorTree &DT, Function &F, 2694 GCPtrLivenessData &Data) { 2695 SmallSetVector<BasicBlock *, 32> Worklist; 2696 2697 // Seed the liveness for each individual block 2698 for (BasicBlock &BB : F) { 2699 Data.KillSet[&BB] = computeKillSet(&BB); 2700 Data.LiveSet[&BB].clear(); 2701 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2702 2703 #ifndef NDEBUG 2704 for (Value *Kill : Data.KillSet[&BB]) 2705 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2706 #endif 2707 2708 Data.LiveOut[&BB] = SetVector<Value *>(); 2709 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2710 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2711 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2712 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2713 if (!Data.LiveIn[&BB].empty()) 2714 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 2715 } 2716 2717 // Propagate that liveness until stable 2718 while (!Worklist.empty()) { 2719 BasicBlock *BB = Worklist.pop_back_val(); 2720 2721 // Compute our new liveout set, then exit early if it hasn't changed despite 2722 // the contribution of our successor. 2723 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2724 const auto OldLiveOutSize = LiveOut.size(); 2725 for (BasicBlock *Succ : successors(BB)) { 2726 assert(Data.LiveIn.count(Succ)); 2727 LiveOut.set_union(Data.LiveIn[Succ]); 2728 } 2729 // assert OutLiveOut is a subset of LiveOut 2730 if (OldLiveOutSize == LiveOut.size()) { 2731 // If the sets are the same size, then we didn't actually add anything 2732 // when unioning our successors LiveIn. Thus, the LiveIn of this block 2733 // hasn't changed. 2734 continue; 2735 } 2736 Data.LiveOut[BB] = LiveOut; 2737 2738 // Apply the effects of this basic block 2739 SetVector<Value *> LiveTmp = LiveOut; 2740 LiveTmp.set_union(Data.LiveSet[BB]); 2741 LiveTmp.set_subtract(Data.KillSet[BB]); 2742 2743 assert(Data.LiveIn.count(BB)); 2744 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2745 // assert: OldLiveIn is a subset of LiveTmp 2746 if (OldLiveIn.size() != LiveTmp.size()) { 2747 Data.LiveIn[BB] = LiveTmp; 2748 Worklist.insert(pred_begin(BB), pred_end(BB)); 2749 } 2750 } // while (!Worklist.empty()) 2751 2752 #ifndef NDEBUG 2753 // Sanity check our output against SSA properties. This helps catch any 2754 // missing kills during the above iteration. 2755 for (BasicBlock &BB : F) 2756 checkBasicSSA(DT, Data, BB); 2757 #endif 2758 } 2759 2760 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2761 StatepointLiveSetTy &Out) { 2762 BasicBlock *BB = Inst->getParent(); 2763 2764 // Note: The copy is intentional and required 2765 assert(Data.LiveOut.count(BB)); 2766 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2767 2768 // We want to handle the statepoint itself oddly. It's 2769 // call result is not live (normal), nor are it's arguments 2770 // (unless they're used again later). This adjustment is 2771 // specifically what we need to relocate 2772 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 2773 LiveOut); 2774 LiveOut.remove(Inst); 2775 Out.insert(LiveOut.begin(), LiveOut.end()); 2776 } 2777 2778 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2779 CallSite CS, 2780 PartiallyConstructedSafepointRecord &Info) { 2781 Instruction *Inst = CS.getInstruction(); 2782 StatepointLiveSetTy Updated; 2783 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2784 2785 // We may have base pointers which are now live that weren't before. We need 2786 // to update the PointerToBase structure to reflect this. 2787 for (auto V : Updated) 2788 if (Info.PointerToBase.insert({V, V}).second) { 2789 assert(isKnownBaseResult(V) && 2790 "Can't find base for unexpected live value!"); 2791 continue; 2792 } 2793 2794 #ifndef NDEBUG 2795 for (auto V : Updated) 2796 assert(Info.PointerToBase.count(V) && 2797 "Must be able to find base for live value!"); 2798 #endif 2799 2800 // Remove any stale base mappings - this can happen since our liveness is 2801 // more precise then the one inherent in the base pointer analysis. 2802 DenseSet<Value *> ToErase; 2803 for (auto KVPair : Info.PointerToBase) 2804 if (!Updated.count(KVPair.first)) 2805 ToErase.insert(KVPair.first); 2806 2807 for (auto *V : ToErase) 2808 Info.PointerToBase.erase(V); 2809 2810 #ifndef NDEBUG 2811 for (auto KVPair : Info.PointerToBase) 2812 assert(Updated.count(KVPair.first) && "record for non-live value"); 2813 #endif 2814 2815 Info.LiveSet = Updated; 2816 } 2817