1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstIterator.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/Cloning.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 45 46 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 47 48 using namespace llvm; 49 50 // Print the liveset found at the insert location 51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 52 cl::init(false)); 53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 54 cl::init(false)); 55 // Print out the base pointers for debugging 56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 57 cl::init(false)); 58 59 // Cost threshold measuring when it is profitable to rematerialize value instead 60 // of relocating it 61 static cl::opt<unsigned> 62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 63 cl::init(6)); 64 65 #ifdef EXPENSIVE_CHECKS 66 static bool ClobberNonLive = true; 67 #else 68 static bool ClobberNonLive = false; 69 #endif 70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 71 cl::location(ClobberNonLive), 72 cl::Hidden); 73 74 static cl::opt<bool> 75 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 76 cl::Hidden, cl::init(true)); 77 78 namespace { 79 struct RewriteStatepointsForGC : public ModulePass { 80 static char ID; // Pass identification, replacement for typeid 81 82 RewriteStatepointsForGC() : ModulePass(ID) { 83 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 84 } 85 bool runOnFunction(Function &F); 86 bool runOnModule(Module &M) override { 87 bool Changed = false; 88 for (Function &F : M) 89 Changed |= runOnFunction(F); 90 91 if (Changed) { 92 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 93 // returns true for at least one function in the module. Since at least 94 // one function changed, we know that the precondition is satisfied. 95 stripNonValidAttributes(M); 96 } 97 98 return Changed; 99 } 100 101 void getAnalysisUsage(AnalysisUsage &AU) const override { 102 // We add and rewrite a bunch of instructions, but don't really do much 103 // else. We could in theory preserve a lot more analyses here. 104 AU.addRequired<DominatorTreeWrapperPass>(); 105 AU.addRequired<TargetTransformInfoWrapperPass>(); 106 } 107 108 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 109 /// dereferenceability that are no longer valid/correct after 110 /// RewriteStatepointsForGC has run. This is because semantically, after 111 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 112 /// heap. stripNonValidAttributes (conservatively) restores correctness 113 /// by erasing all attributes in the module that externally imply 114 /// dereferenceability. 115 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 116 /// can touch the entire heap including noalias objects. 117 void stripNonValidAttributes(Module &M); 118 119 // Helpers for stripNonValidAttributes 120 void stripNonValidAttributesFromBody(Function &F); 121 void stripNonValidAttributesFromPrototype(Function &F); 122 }; 123 } // namespace 124 125 char RewriteStatepointsForGC::ID = 0; 126 127 ModulePass *llvm::createRewriteStatepointsForGCPass() { 128 return new RewriteStatepointsForGC(); 129 } 130 131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 132 "Make relocations explicit at statepoints", false, false) 133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 136 "Make relocations explicit at statepoints", false, false) 137 138 namespace { 139 struct GCPtrLivenessData { 140 /// Values defined in this block. 141 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 142 /// Values used in this block (and thus live); does not included values 143 /// killed within this block. 144 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 145 146 /// Values live into this basic block (i.e. used by any 147 /// instruction in this basic block or ones reachable from here) 148 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 149 150 /// Values live out of this basic block (i.e. live into 151 /// any successor block) 152 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 153 }; 154 155 // The type of the internal cache used inside the findBasePointers family 156 // of functions. From the callers perspective, this is an opaque type and 157 // should not be inspected. 158 // 159 // In the actual implementation this caches two relations: 160 // - The base relation itself (i.e. this pointer is based on that one) 161 // - The base defining value relation (i.e. before base_phi insertion) 162 // Generally, after the execution of a full findBasePointer call, only the 163 // base relation will remain. Internally, we add a mixture of the two 164 // types, then update all the second type to the first type 165 typedef MapVector<Value *, Value *> DefiningValueMapTy; 166 typedef SetVector<Value *> StatepointLiveSetTy; 167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>> 168 RematerializedValueMapTy; 169 170 struct PartiallyConstructedSafepointRecord { 171 /// The set of values known to be live across this safepoint 172 StatepointLiveSetTy LiveSet; 173 174 /// Mapping from live pointers to a base-defining-value 175 MapVector<Value *, Value *> PointerToBase; 176 177 /// The *new* gc.statepoint instruction itself. This produces the token 178 /// that normal path gc.relocates and the gc.result are tied to. 179 Instruction *StatepointToken; 180 181 /// Instruction to which exceptional gc relocates are attached 182 /// Makes it easier to iterate through them during relocationViaAlloca. 183 Instruction *UnwindToken; 184 185 /// Record live values we are rematerialized instead of relocating. 186 /// They are not included into 'LiveSet' field. 187 /// Maps rematerialized copy to it's original value. 188 RematerializedValueMapTy RematerializedValues; 189 }; 190 } 191 192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 193 Optional<OperandBundleUse> DeoptBundle = 194 CS.getOperandBundle(LLVMContext::OB_deopt); 195 196 if (!DeoptBundle.hasValue()) { 197 assert(AllowStatepointWithNoDeoptInfo && 198 "Found non-leaf call without deopt info!"); 199 return None; 200 } 201 202 return DeoptBundle.getValue().Inputs; 203 } 204 205 /// Compute the live-in set for every basic block in the function 206 static void computeLiveInValues(DominatorTree &DT, Function &F, 207 GCPtrLivenessData &Data); 208 209 /// Given results from the dataflow liveness computation, find the set of live 210 /// Values at a particular instruction. 211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 212 StatepointLiveSetTy &out); 213 214 // TODO: Once we can get to the GCStrategy, this becomes 215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 216 217 static bool isGCPointerType(Type *T) { 218 if (auto *PT = dyn_cast<PointerType>(T)) 219 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 220 // GC managed heap. We know that a pointer into this heap needs to be 221 // updated and that no other pointer does. 222 return PT->getAddressSpace() == 1; 223 return false; 224 } 225 226 // Return true if this type is one which a) is a gc pointer or contains a GC 227 // pointer and b) is of a type this code expects to encounter as a live value. 228 // (The insertion code will assert that a type which matches (a) and not (b) 229 // is not encountered.) 230 static bool isHandledGCPointerType(Type *T) { 231 // We fully support gc pointers 232 if (isGCPointerType(T)) 233 return true; 234 // We partially support vectors of gc pointers. The code will assert if it 235 // can't handle something. 236 if (auto VT = dyn_cast<VectorType>(T)) 237 if (isGCPointerType(VT->getElementType())) 238 return true; 239 return false; 240 } 241 242 #ifndef NDEBUG 243 /// Returns true if this type contains a gc pointer whether we know how to 244 /// handle that type or not. 245 static bool containsGCPtrType(Type *Ty) { 246 if (isGCPointerType(Ty)) 247 return true; 248 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 249 return isGCPointerType(VT->getScalarType()); 250 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 251 return containsGCPtrType(AT->getElementType()); 252 if (StructType *ST = dyn_cast<StructType>(Ty)) 253 return any_of(ST->subtypes(), containsGCPtrType); 254 return false; 255 } 256 257 // Returns true if this is a type which a) is a gc pointer or contains a GC 258 // pointer and b) is of a type which the code doesn't expect (i.e. first class 259 // aggregates). Used to trip assertions. 260 static bool isUnhandledGCPointerType(Type *Ty) { 261 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 262 } 263 #endif 264 265 // Return the name of the value suffixed with the provided value, or if the 266 // value didn't have a name, the default value specified. 267 static std::string suffixed_name_or(Value *V, StringRef Suffix, 268 StringRef DefaultName) { 269 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 270 } 271 272 // Conservatively identifies any definitions which might be live at the 273 // given instruction. The analysis is performed immediately before the 274 // given instruction. Values defined by that instruction are not considered 275 // live. Values used by that instruction are considered live. 276 static void 277 analyzeParsePointLiveness(DominatorTree &DT, 278 GCPtrLivenessData &OriginalLivenessData, CallSite CS, 279 PartiallyConstructedSafepointRecord &Result) { 280 Instruction *Inst = CS.getInstruction(); 281 282 StatepointLiveSetTy LiveSet; 283 findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet); 284 285 if (PrintLiveSet) { 286 dbgs() << "Live Variables:\n"; 287 for (Value *V : LiveSet) 288 dbgs() << " " << V->getName() << " " << *V << "\n"; 289 } 290 if (PrintLiveSetSize) { 291 dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 292 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 293 } 294 Result.LiveSet = LiveSet; 295 } 296 297 static bool isKnownBaseResult(Value *V); 298 namespace { 299 /// A single base defining value - An immediate base defining value for an 300 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 301 /// For instructions which have multiple pointer [vector] inputs or that 302 /// transition between vector and scalar types, there is no immediate base 303 /// defining value. The 'base defining value' for 'Def' is the transitive 304 /// closure of this relation stopping at the first instruction which has no 305 /// immediate base defining value. The b.d.v. might itself be a base pointer, 306 /// but it can also be an arbitrary derived pointer. 307 struct BaseDefiningValueResult { 308 /// Contains the value which is the base defining value. 309 Value * const BDV; 310 /// True if the base defining value is also known to be an actual base 311 /// pointer. 312 const bool IsKnownBase; 313 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 314 : BDV(BDV), IsKnownBase(IsKnownBase) { 315 #ifndef NDEBUG 316 // Check consistency between new and old means of checking whether a BDV is 317 // a base. 318 bool MustBeBase = isKnownBaseResult(BDV); 319 assert(!MustBeBase || MustBeBase == IsKnownBase); 320 #endif 321 } 322 }; 323 } 324 325 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 326 327 /// Return a base defining value for the 'Index' element of the given vector 328 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 329 /// 'I'. As an optimization, this method will try to determine when the 330 /// element is known to already be a base pointer. If this can be established, 331 /// the second value in the returned pair will be true. Note that either a 332 /// vector or a pointer typed value can be returned. For the former, the 333 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 334 /// If the later, the return pointer is a BDV (or possibly a base) for the 335 /// particular element in 'I'. 336 static BaseDefiningValueResult 337 findBaseDefiningValueOfVector(Value *I) { 338 // Each case parallels findBaseDefiningValue below, see that code for 339 // detailed motivation. 340 341 if (isa<Argument>(I)) 342 // An incoming argument to the function is a base pointer 343 return BaseDefiningValueResult(I, true); 344 345 if (isa<Constant>(I)) 346 // Base of constant vector consists only of constant null pointers. 347 // For reasoning see similar case inside 'findBaseDefiningValue' function. 348 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 349 true); 350 351 if (isa<LoadInst>(I)) 352 return BaseDefiningValueResult(I, true); 353 354 if (isa<InsertElementInst>(I)) 355 // We don't know whether this vector contains entirely base pointers or 356 // not. To be conservatively correct, we treat it as a BDV and will 357 // duplicate code as needed to construct a parallel vector of bases. 358 return BaseDefiningValueResult(I, false); 359 360 if (isa<ShuffleVectorInst>(I)) 361 // We don't know whether this vector contains entirely base pointers or 362 // not. To be conservatively correct, we treat it as a BDV and will 363 // duplicate code as needed to construct a parallel vector of bases. 364 // TODO: There a number of local optimizations which could be applied here 365 // for particular sufflevector patterns. 366 return BaseDefiningValueResult(I, false); 367 368 // A PHI or Select is a base defining value. The outer findBasePointer 369 // algorithm is responsible for constructing a base value for this BDV. 370 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 371 "unknown vector instruction - no base found for vector element"); 372 return BaseDefiningValueResult(I, false); 373 } 374 375 /// Helper function for findBasePointer - Will return a value which either a) 376 /// defines the base pointer for the input, b) blocks the simple search 377 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 378 /// from pointer to vector type or back. 379 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 380 assert(I->getType()->isPtrOrPtrVectorTy() && 381 "Illegal to ask for the base pointer of a non-pointer type"); 382 383 if (I->getType()->isVectorTy()) 384 return findBaseDefiningValueOfVector(I); 385 386 if (isa<Argument>(I)) 387 // An incoming argument to the function is a base pointer 388 // We should have never reached here if this argument isn't an gc value 389 return BaseDefiningValueResult(I, true); 390 391 if (isa<Constant>(I)) { 392 // We assume that objects with a constant base (e.g. a global) can't move 393 // and don't need to be reported to the collector because they are always 394 // live. Besides global references, all kinds of constants (e.g. undef, 395 // constant expressions, null pointers) can be introduced by the inliner or 396 // the optimizer, especially on dynamically dead paths. 397 // Here we treat all of them as having single null base. By doing this we 398 // trying to avoid problems reporting various conflicts in a form of 399 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 400 // See constant.ll file for relevant test cases. 401 402 return BaseDefiningValueResult( 403 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 404 } 405 406 if (CastInst *CI = dyn_cast<CastInst>(I)) { 407 Value *Def = CI->stripPointerCasts(); 408 // If stripping pointer casts changes the address space there is an 409 // addrspacecast in between. 410 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 411 cast<PointerType>(CI->getType())->getAddressSpace() && 412 "unsupported addrspacecast"); 413 // If we find a cast instruction here, it means we've found a cast which is 414 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 415 // handle int->ptr conversion. 416 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 417 return findBaseDefiningValue(Def); 418 } 419 420 if (isa<LoadInst>(I)) 421 // The value loaded is an gc base itself 422 return BaseDefiningValueResult(I, true); 423 424 425 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 426 // The base of this GEP is the base 427 return findBaseDefiningValue(GEP->getPointerOperand()); 428 429 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 430 switch (II->getIntrinsicID()) { 431 default: 432 // fall through to general call handling 433 break; 434 case Intrinsic::experimental_gc_statepoint: 435 llvm_unreachable("statepoints don't produce pointers"); 436 case Intrinsic::experimental_gc_relocate: { 437 // Rerunning safepoint insertion after safepoints are already 438 // inserted is not supported. It could probably be made to work, 439 // but why are you doing this? There's no good reason. 440 llvm_unreachable("repeat safepoint insertion is not supported"); 441 } 442 case Intrinsic::gcroot: 443 // Currently, this mechanism hasn't been extended to work with gcroot. 444 // There's no reason it couldn't be, but I haven't thought about the 445 // implications much. 446 llvm_unreachable( 447 "interaction with the gcroot mechanism is not supported"); 448 } 449 } 450 // We assume that functions in the source language only return base 451 // pointers. This should probably be generalized via attributes to support 452 // both source language and internal functions. 453 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 454 return BaseDefiningValueResult(I, true); 455 456 // I have absolutely no idea how to implement this part yet. It's not 457 // necessarily hard, I just haven't really looked at it yet. 458 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 459 460 if (isa<AtomicCmpXchgInst>(I)) 461 // A CAS is effectively a atomic store and load combined under a 462 // predicate. From the perspective of base pointers, we just treat it 463 // like a load. 464 return BaseDefiningValueResult(I, true); 465 466 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 467 "binary ops which don't apply to pointers"); 468 469 // The aggregate ops. Aggregates can either be in the heap or on the 470 // stack, but in either case, this is simply a field load. As a result, 471 // this is a defining definition of the base just like a load is. 472 if (isa<ExtractValueInst>(I)) 473 return BaseDefiningValueResult(I, true); 474 475 // We should never see an insert vector since that would require we be 476 // tracing back a struct value not a pointer value. 477 assert(!isa<InsertValueInst>(I) && 478 "Base pointer for a struct is meaningless"); 479 480 // An extractelement produces a base result exactly when it's input does. 481 // We may need to insert a parallel instruction to extract the appropriate 482 // element out of the base vector corresponding to the input. Given this, 483 // it's analogous to the phi and select case even though it's not a merge. 484 if (isa<ExtractElementInst>(I)) 485 // Note: There a lot of obvious peephole cases here. This are deliberately 486 // handled after the main base pointer inference algorithm to make writing 487 // test cases to exercise that code easier. 488 return BaseDefiningValueResult(I, false); 489 490 // The last two cases here don't return a base pointer. Instead, they 491 // return a value which dynamically selects from among several base 492 // derived pointers (each with it's own base potentially). It's the job of 493 // the caller to resolve these. 494 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 495 "missing instruction case in findBaseDefiningValing"); 496 return BaseDefiningValueResult(I, false); 497 } 498 499 /// Returns the base defining value for this value. 500 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 501 Value *&Cached = Cache[I]; 502 if (!Cached) { 503 Cached = findBaseDefiningValue(I).BDV; 504 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 505 << Cached->getName() << "\n"); 506 } 507 assert(Cache[I] != nullptr); 508 return Cached; 509 } 510 511 /// Return a base pointer for this value if known. Otherwise, return it's 512 /// base defining value. 513 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 514 Value *Def = findBaseDefiningValueCached(I, Cache); 515 auto Found = Cache.find(Def); 516 if (Found != Cache.end()) { 517 // Either a base-of relation, or a self reference. Caller must check. 518 return Found->second; 519 } 520 // Only a BDV available 521 return Def; 522 } 523 524 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 525 /// is it known to be a base pointer? Or do we need to continue searching. 526 static bool isKnownBaseResult(Value *V) { 527 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 528 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 529 !isa<ShuffleVectorInst>(V)) { 530 // no recursion possible 531 return true; 532 } 533 if (isa<Instruction>(V) && 534 cast<Instruction>(V)->getMetadata("is_base_value")) { 535 // This is a previously inserted base phi or select. We know 536 // that this is a base value. 537 return true; 538 } 539 540 // We need to keep searching 541 return false; 542 } 543 544 namespace { 545 /// Models the state of a single base defining value in the findBasePointer 546 /// algorithm for determining where a new instruction is needed to propagate 547 /// the base of this BDV. 548 class BDVState { 549 public: 550 enum Status { Unknown, Base, Conflict }; 551 552 BDVState() : Status(Unknown), BaseValue(nullptr) {} 553 554 explicit BDVState(Status Status, Value *BaseValue = nullptr) 555 : Status(Status), BaseValue(BaseValue) { 556 assert(Status != Base || BaseValue); 557 } 558 559 explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {} 560 561 Status getStatus() const { return Status; } 562 Value *getBaseValue() const { return BaseValue; } 563 564 bool isBase() const { return getStatus() == Base; } 565 bool isUnknown() const { return getStatus() == Unknown; } 566 bool isConflict() const { return getStatus() == Conflict; } 567 568 bool operator==(const BDVState &Other) const { 569 return BaseValue == Other.BaseValue && Status == Other.Status; 570 } 571 572 bool operator!=(const BDVState &other) const { return !(*this == other); } 573 574 LLVM_DUMP_METHOD 575 void dump() const { 576 print(dbgs()); 577 dbgs() << '\n'; 578 } 579 580 void print(raw_ostream &OS) const { 581 switch (getStatus()) { 582 case Unknown: 583 OS << "U"; 584 break; 585 case Base: 586 OS << "B"; 587 break; 588 case Conflict: 589 OS << "C"; 590 break; 591 }; 592 OS << " (" << getBaseValue() << " - " 593 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): "; 594 } 595 596 private: 597 Status Status; 598 AssertingVH<Value> BaseValue; // Non-null only if Status == Base. 599 }; 600 } 601 602 #ifndef NDEBUG 603 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 604 State.print(OS); 605 return OS; 606 } 607 #endif 608 609 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) { 610 switch (LHS.getStatus()) { 611 case BDVState::Unknown: 612 return RHS; 613 614 case BDVState::Base: 615 assert(LHS.getBaseValue() && "can't be null"); 616 if (RHS.isUnknown()) 617 return LHS; 618 619 if (RHS.isBase()) { 620 if (LHS.getBaseValue() == RHS.getBaseValue()) { 621 assert(LHS == RHS && "equality broken!"); 622 return LHS; 623 } 624 return BDVState(BDVState::Conflict); 625 } 626 assert(RHS.isConflict() && "only three states!"); 627 return BDVState(BDVState::Conflict); 628 629 case BDVState::Conflict: 630 return LHS; 631 } 632 llvm_unreachable("only three states!"); 633 } 634 635 // Values of type BDVState form a lattice, and this function implements the meet 636 // operation. 637 static BDVState meetBDVState(BDVState LHS, BDVState RHS) { 638 BDVState Result = meetBDVStateImpl(LHS, RHS); 639 assert(Result == meetBDVStateImpl(RHS, LHS) && 640 "Math is wrong: meet does not commute!"); 641 return Result; 642 } 643 644 /// For a given value or instruction, figure out what base ptr its derived from. 645 /// For gc objects, this is simply itself. On success, returns a value which is 646 /// the base pointer. (This is reliable and can be used for relocation.) On 647 /// failure, returns nullptr. 648 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 649 Value *Def = findBaseOrBDV(I, Cache); 650 651 if (isKnownBaseResult(Def)) 652 return Def; 653 654 // Here's the rough algorithm: 655 // - For every SSA value, construct a mapping to either an actual base 656 // pointer or a PHI which obscures the base pointer. 657 // - Construct a mapping from PHI to unknown TOP state. Use an 658 // optimistic algorithm to propagate base pointer information. Lattice 659 // looks like: 660 // UNKNOWN 661 // b1 b2 b3 b4 662 // CONFLICT 663 // When algorithm terminates, all PHIs will either have a single concrete 664 // base or be in a conflict state. 665 // - For every conflict, insert a dummy PHI node without arguments. Add 666 // these to the base[Instruction] = BasePtr mapping. For every 667 // non-conflict, add the actual base. 668 // - For every conflict, add arguments for the base[a] of each input 669 // arguments. 670 // 671 // Note: A simpler form of this would be to add the conflict form of all 672 // PHIs without running the optimistic algorithm. This would be 673 // analogous to pessimistic data flow and would likely lead to an 674 // overall worse solution. 675 676 #ifndef NDEBUG 677 auto isExpectedBDVType = [](Value *BDV) { 678 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 679 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 680 isa<ShuffleVectorInst>(BDV); 681 }; 682 #endif 683 684 // Once populated, will contain a mapping from each potentially non-base BDV 685 // to a lattice value (described above) which corresponds to that BDV. 686 // We use the order of insertion (DFS over the def/use graph) to provide a 687 // stable deterministic ordering for visiting DenseMaps (which are unordered) 688 // below. This is important for deterministic compilation. 689 MapVector<Value *, BDVState> States; 690 691 // Recursively fill in all base defining values reachable from the initial 692 // one for which we don't already know a definite base value for 693 /* scope */ { 694 SmallVector<Value*, 16> Worklist; 695 Worklist.push_back(Def); 696 States.insert({Def, BDVState()}); 697 while (!Worklist.empty()) { 698 Value *Current = Worklist.pop_back_val(); 699 assert(!isKnownBaseResult(Current) && "why did it get added?"); 700 701 auto visitIncomingValue = [&](Value *InVal) { 702 Value *Base = findBaseOrBDV(InVal, Cache); 703 if (isKnownBaseResult(Base)) 704 // Known bases won't need new instructions introduced and can be 705 // ignored safely 706 return; 707 assert(isExpectedBDVType(Base) && "the only non-base values " 708 "we see should be base defining values"); 709 if (States.insert(std::make_pair(Base, BDVState())).second) 710 Worklist.push_back(Base); 711 }; 712 if (PHINode *PN = dyn_cast<PHINode>(Current)) { 713 for (Value *InVal : PN->incoming_values()) 714 visitIncomingValue(InVal); 715 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { 716 visitIncomingValue(SI->getTrueValue()); 717 visitIncomingValue(SI->getFalseValue()); 718 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 719 visitIncomingValue(EE->getVectorOperand()); 720 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 721 visitIncomingValue(IE->getOperand(0)); // vector operand 722 visitIncomingValue(IE->getOperand(1)); // scalar operand 723 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) { 724 visitIncomingValue(SV->getOperand(0)); 725 visitIncomingValue(SV->getOperand(1)); 726 } 727 else { 728 llvm_unreachable("Unimplemented instruction case"); 729 } 730 } 731 } 732 733 #ifndef NDEBUG 734 DEBUG(dbgs() << "States after initialization:\n"); 735 for (auto Pair : States) { 736 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 737 } 738 #endif 739 740 // Return a phi state for a base defining value. We'll generate a new 741 // base state for known bases and expect to find a cached state otherwise. 742 auto getStateForBDV = [&](Value *baseValue) { 743 if (isKnownBaseResult(baseValue)) 744 return BDVState(baseValue); 745 auto I = States.find(baseValue); 746 assert(I != States.end() && "lookup failed!"); 747 return I->second; 748 }; 749 750 bool Progress = true; 751 while (Progress) { 752 #ifndef NDEBUG 753 const size_t OldSize = States.size(); 754 #endif 755 Progress = false; 756 // We're only changing values in this loop, thus safe to keep iterators. 757 // Since this is computing a fixed point, the order of visit does not 758 // effect the result. TODO: We could use a worklist here and make this run 759 // much faster. 760 for (auto Pair : States) { 761 Value *BDV = Pair.first; 762 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 763 764 // Given an input value for the current instruction, return a BDVState 765 // instance which represents the BDV of that value. 766 auto getStateForInput = [&](Value *V) mutable { 767 Value *BDV = findBaseOrBDV(V, Cache); 768 return getStateForBDV(BDV); 769 }; 770 771 BDVState NewState; 772 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 773 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); 774 NewState = 775 meetBDVState(NewState, getStateForInput(SI->getFalseValue())); 776 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 777 for (Value *Val : PN->incoming_values()) 778 NewState = meetBDVState(NewState, getStateForInput(Val)); 779 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 780 // The 'meet' for an extractelement is slightly trivial, but it's still 781 // useful in that it drives us to conflict if our input is. 782 NewState = 783 meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); 784 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){ 785 // Given there's a inherent type mismatch between the operands, will 786 // *always* produce Conflict. 787 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); 788 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); 789 } else { 790 // The only instance this does not return a Conflict is when both the 791 // vector operands are the same vector. 792 auto *SV = cast<ShuffleVectorInst>(BDV); 793 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0))); 794 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1))); 795 } 796 797 BDVState OldState = States[BDV]; 798 if (OldState != NewState) { 799 Progress = true; 800 States[BDV] = NewState; 801 } 802 } 803 804 assert(OldSize == States.size() && 805 "fixed point shouldn't be adding any new nodes to state"); 806 } 807 808 #ifndef NDEBUG 809 DEBUG(dbgs() << "States after meet iteration:\n"); 810 for (auto Pair : States) { 811 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 812 } 813 #endif 814 815 // Insert Phis for all conflicts 816 // TODO: adjust naming patterns to avoid this order of iteration dependency 817 for (auto Pair : States) { 818 Instruction *I = cast<Instruction>(Pair.first); 819 BDVState State = Pair.second; 820 assert(!isKnownBaseResult(I) && "why did it get added?"); 821 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 822 823 // extractelement instructions are a bit special in that we may need to 824 // insert an extract even when we know an exact base for the instruction. 825 // The problem is that we need to convert from a vector base to a scalar 826 // base for the particular indice we're interested in. 827 if (State.isBase() && isa<ExtractElementInst>(I) && 828 isa<VectorType>(State.getBaseValue()->getType())) { 829 auto *EE = cast<ExtractElementInst>(I); 830 // TODO: In many cases, the new instruction is just EE itself. We should 831 // exploit this, but can't do it here since it would break the invariant 832 // about the BDV not being known to be a base. 833 auto *BaseInst = ExtractElementInst::Create( 834 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 835 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 836 States[I] = BDVState(BDVState::Base, BaseInst); 837 } 838 839 // Since we're joining a vector and scalar base, they can never be the 840 // same. As a result, we should always see insert element having reached 841 // the conflict state. 842 assert(!isa<InsertElementInst>(I) || State.isConflict()); 843 844 if (!State.isConflict()) 845 continue; 846 847 /// Create and insert a new instruction which will represent the base of 848 /// the given instruction 'I'. 849 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 850 if (isa<PHINode>(I)) { 851 BasicBlock *BB = I->getParent(); 852 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 853 assert(NumPreds > 0 && "how did we reach here"); 854 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 855 return PHINode::Create(I->getType(), NumPreds, Name, I); 856 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 857 // The undef will be replaced later 858 UndefValue *Undef = UndefValue::get(SI->getType()); 859 std::string Name = suffixed_name_or(I, ".base", "base_select"); 860 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); 861 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 862 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 863 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 864 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 865 EE); 866 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 867 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 868 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 869 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 870 return InsertElementInst::Create(VecUndef, ScalarUndef, 871 IE->getOperand(2), Name, IE); 872 } else { 873 auto *SV = cast<ShuffleVectorInst>(I); 874 UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType()); 875 std::string Name = suffixed_name_or(I, ".base", "base_sv"); 876 return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2), 877 Name, SV); 878 } 879 }; 880 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 881 // Add metadata marking this as a base value 882 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 883 States[I] = BDVState(BDVState::Conflict, BaseInst); 884 } 885 886 // Returns a instruction which produces the base pointer for a given 887 // instruction. The instruction is assumed to be an input to one of the BDVs 888 // seen in the inference algorithm above. As such, we must either already 889 // know it's base defining value is a base, or have inserted a new 890 // instruction to propagate the base of it's BDV and have entered that newly 891 // introduced instruction into the state table. In either case, we are 892 // assured to be able to determine an instruction which produces it's base 893 // pointer. 894 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 895 Value *BDV = findBaseOrBDV(Input, Cache); 896 Value *Base = nullptr; 897 if (isKnownBaseResult(BDV)) { 898 Base = BDV; 899 } else { 900 // Either conflict or base. 901 assert(States.count(BDV)); 902 Base = States[BDV].getBaseValue(); 903 } 904 assert(Base && "Can't be null"); 905 // The cast is needed since base traversal may strip away bitcasts 906 if (Base->getType() != Input->getType() && InsertPt) 907 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 908 return Base; 909 }; 910 911 // Fixup all the inputs of the new PHIs. Visit order needs to be 912 // deterministic and predictable because we're naming newly created 913 // instructions. 914 for (auto Pair : States) { 915 Instruction *BDV = cast<Instruction>(Pair.first); 916 BDVState State = Pair.second; 917 918 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 919 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 920 if (!State.isConflict()) 921 continue; 922 923 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 924 PHINode *PN = cast<PHINode>(BDV); 925 unsigned NumPHIValues = PN->getNumIncomingValues(); 926 for (unsigned i = 0; i < NumPHIValues; i++) { 927 Value *InVal = PN->getIncomingValue(i); 928 BasicBlock *InBB = PN->getIncomingBlock(i); 929 930 // If we've already seen InBB, add the same incoming value 931 // we added for it earlier. The IR verifier requires phi 932 // nodes with multiple entries from the same basic block 933 // to have the same incoming value for each of those 934 // entries. If we don't do this check here and basephi 935 // has a different type than base, we'll end up adding two 936 // bitcasts (and hence two distinct values) as incoming 937 // values for the same basic block. 938 939 int BlockIndex = BasePHI->getBasicBlockIndex(InBB); 940 if (BlockIndex != -1) { 941 Value *OldBase = BasePHI->getIncomingValue(BlockIndex); 942 BasePHI->addIncoming(OldBase, InBB); 943 944 #ifndef NDEBUG 945 Value *Base = getBaseForInput(InVal, nullptr); 946 // In essence this assert states: the only way two values 947 // incoming from the same basic block may be different is by 948 // being different bitcasts of the same value. A cleanup 949 // that remains TODO is changing findBaseOrBDV to return an 950 // llvm::Value of the correct type (and still remain pure). 951 // This will remove the need to add bitcasts. 952 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 953 "Sanity -- findBaseOrBDV should be pure!"); 954 #endif 955 continue; 956 } 957 958 // Find the instruction which produces the base for each input. We may 959 // need to insert a bitcast in the incoming block. 960 // TODO: Need to split critical edges if insertion is needed 961 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 962 BasePHI->addIncoming(Base, InBB); 963 } 964 assert(BasePHI->getNumIncomingValues() == NumPHIValues); 965 } else if (SelectInst *BaseSI = 966 dyn_cast<SelectInst>(State.getBaseValue())) { 967 SelectInst *SI = cast<SelectInst>(BDV); 968 969 // Find the instruction which produces the base for each input. 970 // We may need to insert a bitcast. 971 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 972 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 973 } else if (auto *BaseEE = 974 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 975 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 976 // Find the instruction which produces the base for each input. We may 977 // need to insert a bitcast. 978 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 979 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 980 auto *BdvIE = cast<InsertElementInst>(BDV); 981 auto UpdateOperand = [&](int OperandIdx) { 982 Value *InVal = BdvIE->getOperand(OperandIdx); 983 Value *Base = getBaseForInput(InVal, BaseIE); 984 BaseIE->setOperand(OperandIdx, Base); 985 }; 986 UpdateOperand(0); // vector operand 987 UpdateOperand(1); // scalar operand 988 } else { 989 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 990 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 991 auto UpdateOperand = [&](int OperandIdx) { 992 Value *InVal = BdvSV->getOperand(OperandIdx); 993 Value *Base = getBaseForInput(InVal, BaseSV); 994 BaseSV->setOperand(OperandIdx, Base); 995 }; 996 UpdateOperand(0); // vector operand 997 UpdateOperand(1); // vector operand 998 } 999 } 1000 1001 // Cache all of our results so we can cheaply reuse them 1002 // NOTE: This is actually two caches: one of the base defining value 1003 // relation and one of the base pointer relation! FIXME 1004 for (auto Pair : States) { 1005 auto *BDV = Pair.first; 1006 Value *Base = Pair.second.getBaseValue(); 1007 assert(BDV && Base); 1008 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1009 1010 DEBUG(dbgs() << "Updating base value cache" 1011 << " for: " << BDV->getName() << " from: " 1012 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1013 << " to: " << Base->getName() << "\n"); 1014 1015 if (Cache.count(BDV)) { 1016 assert(isKnownBaseResult(Base) && 1017 "must be something we 'know' is a base pointer"); 1018 // Once we transition from the BDV relation being store in the Cache to 1019 // the base relation being stored, it must be stable 1020 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && 1021 "base relation should be stable"); 1022 } 1023 Cache[BDV] = Base; 1024 } 1025 assert(Cache.count(Def)); 1026 return Cache[Def]; 1027 } 1028 1029 // For a set of live pointers (base and/or derived), identify the base 1030 // pointer of the object which they are derived from. This routine will 1031 // mutate the IR graph as needed to make the 'base' pointer live at the 1032 // definition site of 'derived'. This ensures that any use of 'derived' can 1033 // also use 'base'. This may involve the insertion of a number of 1034 // additional PHI nodes. 1035 // 1036 // preconditions: live is a set of pointer type Values 1037 // 1038 // side effects: may insert PHI nodes into the existing CFG, will preserve 1039 // CFG, will not remove or mutate any existing nodes 1040 // 1041 // post condition: PointerToBase contains one (derived, base) pair for every 1042 // pointer in live. Note that derived can be equal to base if the original 1043 // pointer was a base pointer. 1044 static void 1045 findBasePointers(const StatepointLiveSetTy &live, 1046 MapVector<Value *, Value *> &PointerToBase, 1047 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1048 for (Value *ptr : live) { 1049 Value *base = findBasePointer(ptr, DVCache); 1050 assert(base && "failed to find base pointer"); 1051 PointerToBase[ptr] = base; 1052 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1053 DT->dominates(cast<Instruction>(base)->getParent(), 1054 cast<Instruction>(ptr)->getParent())) && 1055 "The base we found better dominate the derived pointer"); 1056 } 1057 } 1058 1059 /// Find the required based pointers (and adjust the live set) for the given 1060 /// parse point. 1061 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1062 CallSite CS, 1063 PartiallyConstructedSafepointRecord &result) { 1064 MapVector<Value *, Value *> PointerToBase; 1065 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1066 1067 if (PrintBasePointers) { 1068 errs() << "Base Pairs (w/o Relocation):\n"; 1069 for (auto &Pair : PointerToBase) { 1070 errs() << " derived "; 1071 Pair.first->printAsOperand(errs(), false); 1072 errs() << " base "; 1073 Pair.second->printAsOperand(errs(), false); 1074 errs() << "\n";; 1075 } 1076 } 1077 1078 result.PointerToBase = PointerToBase; 1079 } 1080 1081 /// Given an updated version of the dataflow liveness results, update the 1082 /// liveset and base pointer maps for the call site CS. 1083 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1084 CallSite CS, 1085 PartiallyConstructedSafepointRecord &result); 1086 1087 static void recomputeLiveInValues( 1088 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1089 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1090 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1091 // again. The old values are still live and will help it stabilize quickly. 1092 GCPtrLivenessData RevisedLivenessData; 1093 computeLiveInValues(DT, F, RevisedLivenessData); 1094 for (size_t i = 0; i < records.size(); i++) { 1095 struct PartiallyConstructedSafepointRecord &info = records[i]; 1096 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1097 } 1098 } 1099 1100 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1101 // no uses of the original value / return value between the gc.statepoint and 1102 // the gc.relocate / gc.result call. One case which can arise is a phi node 1103 // starting one of the successor blocks. We also need to be able to insert the 1104 // gc.relocates only on the path which goes through the statepoint. We might 1105 // need to split an edge to make this possible. 1106 static BasicBlock * 1107 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1108 DominatorTree &DT) { 1109 BasicBlock *Ret = BB; 1110 if (!BB->getUniquePredecessor()) 1111 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1112 1113 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1114 // from it 1115 FoldSingleEntryPHINodes(Ret); 1116 assert(!isa<PHINode>(Ret->begin()) && 1117 "All PHI nodes should have been removed!"); 1118 1119 // At this point, we can safely insert a gc.relocate or gc.result as the first 1120 // instruction in Ret if needed. 1121 return Ret; 1122 } 1123 1124 // Create new attribute set containing only attributes which can be transferred 1125 // from original call to the safepoint. 1126 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1127 AttributeSet Ret; 1128 1129 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1130 unsigned Index = AS.getSlotIndex(Slot); 1131 1132 if (Index == AttributeSet::ReturnIndex || 1133 Index == AttributeSet::FunctionIndex) { 1134 1135 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { 1136 1137 // Do not allow certain attributes - just skip them 1138 // Safepoint can not be read only or read none. 1139 if (Attr.hasAttribute(Attribute::ReadNone) || 1140 Attr.hasAttribute(Attribute::ReadOnly)) 1141 continue; 1142 1143 // These attributes control the generation of the gc.statepoint call / 1144 // invoke itself; and once the gc.statepoint is in place, they're of no 1145 // use. 1146 if (isStatepointDirectiveAttr(Attr)) 1147 continue; 1148 1149 Ret = Ret.addAttributes( 1150 AS.getContext(), Index, 1151 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); 1152 } 1153 } 1154 1155 // Just skip parameter attributes for now 1156 } 1157 1158 return Ret; 1159 } 1160 1161 /// Helper function to place all gc relocates necessary for the given 1162 /// statepoint. 1163 /// Inputs: 1164 /// liveVariables - list of variables to be relocated. 1165 /// liveStart - index of the first live variable. 1166 /// basePtrs - base pointers. 1167 /// statepointToken - statepoint instruction to which relocates should be 1168 /// bound. 1169 /// Builder - Llvm IR builder to be used to construct new calls. 1170 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1171 const int LiveStart, 1172 ArrayRef<Value *> BasePtrs, 1173 Instruction *StatepointToken, 1174 IRBuilder<> Builder) { 1175 if (LiveVariables.empty()) 1176 return; 1177 1178 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1179 auto ValIt = find(LiveVec, Val); 1180 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1181 size_t Index = std::distance(LiveVec.begin(), ValIt); 1182 assert(Index < LiveVec.size() && "Bug in std::find?"); 1183 return Index; 1184 }; 1185 Module *M = StatepointToken->getModule(); 1186 1187 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1188 // element type is i8 addrspace(1)*). We originally generated unique 1189 // declarations for each pointer type, but this proved problematic because 1190 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1191 // towards a single unified pointer type anyways, we can just cast everything 1192 // to an i8* of the right address space. A bitcast is added later to convert 1193 // gc_relocate to the actual value's type. 1194 auto getGCRelocateDecl = [&] (Type *Ty) { 1195 assert(isHandledGCPointerType(Ty)); 1196 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1197 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1198 if (auto *VT = dyn_cast<VectorType>(Ty)) 1199 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1200 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1201 {NewTy}); 1202 }; 1203 1204 // Lazily populated map from input types to the canonicalized form mentioned 1205 // in the comment above. This should probably be cached somewhere more 1206 // broadly. 1207 DenseMap<Type*, Value*> TypeToDeclMap; 1208 1209 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1210 // Generate the gc.relocate call and save the result 1211 Value *BaseIdx = 1212 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1213 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1214 1215 Type *Ty = LiveVariables[i]->getType(); 1216 if (!TypeToDeclMap.count(Ty)) 1217 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1218 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1219 1220 // only specify a debug name if we can give a useful one 1221 CallInst *Reloc = Builder.CreateCall( 1222 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1223 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1224 // Trick CodeGen into thinking there are lots of free registers at this 1225 // fake call. 1226 Reloc->setCallingConv(CallingConv::Cold); 1227 } 1228 } 1229 1230 namespace { 1231 1232 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1233 /// avoids having to worry about keeping around dangling pointers to Values. 1234 class DeferredReplacement { 1235 AssertingVH<Instruction> Old; 1236 AssertingVH<Instruction> New; 1237 bool IsDeoptimize = false; 1238 1239 DeferredReplacement() {} 1240 1241 public: 1242 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1243 assert(Old != New && Old && New && 1244 "Cannot RAUW equal values or to / from null!"); 1245 1246 DeferredReplacement D; 1247 D.Old = Old; 1248 D.New = New; 1249 return D; 1250 } 1251 1252 static DeferredReplacement createDelete(Instruction *ToErase) { 1253 DeferredReplacement D; 1254 D.Old = ToErase; 1255 return D; 1256 } 1257 1258 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1259 #ifndef NDEBUG 1260 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1261 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1262 "Only way to construct a deoptimize deferred replacement"); 1263 #endif 1264 DeferredReplacement D; 1265 D.Old = Old; 1266 D.IsDeoptimize = true; 1267 return D; 1268 } 1269 1270 /// Does the task represented by this instance. 1271 void doReplacement() { 1272 Instruction *OldI = Old; 1273 Instruction *NewI = New; 1274 1275 assert(OldI != NewI && "Disallowed at construction?!"); 1276 assert((!IsDeoptimize || !New) && 1277 "Deoptimize instrinsics are not replaced!"); 1278 1279 Old = nullptr; 1280 New = nullptr; 1281 1282 if (NewI) 1283 OldI->replaceAllUsesWith(NewI); 1284 1285 if (IsDeoptimize) { 1286 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1287 // not necessarilly be followed by the matching return. 1288 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1289 new UnreachableInst(RI->getContext(), RI); 1290 RI->eraseFromParent(); 1291 } 1292 1293 OldI->eraseFromParent(); 1294 } 1295 }; 1296 } 1297 1298 static StringRef getDeoptLowering(CallSite CS) { 1299 const char *DeoptLowering = "deopt-lowering"; 1300 if (CS.hasFnAttr(DeoptLowering)) { 1301 // FIXME: CallSite has a *really* confusing interface around attributes 1302 // with values. 1303 const AttributeSet &CSAS = CS.getAttributes(); 1304 if (CSAS.hasAttribute(AttributeSet::FunctionIndex, 1305 DeoptLowering)) 1306 return CSAS.getAttribute(AttributeSet::FunctionIndex, 1307 DeoptLowering).getValueAsString(); 1308 Function *F = CS.getCalledFunction(); 1309 assert(F && F->hasFnAttribute(DeoptLowering)); 1310 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1311 } 1312 return "live-through"; 1313 } 1314 1315 1316 static void 1317 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1318 const SmallVectorImpl<Value *> &BasePtrs, 1319 const SmallVectorImpl<Value *> &LiveVariables, 1320 PartiallyConstructedSafepointRecord &Result, 1321 std::vector<DeferredReplacement> &Replacements) { 1322 assert(BasePtrs.size() == LiveVariables.size()); 1323 1324 // Then go ahead and use the builder do actually do the inserts. We insert 1325 // immediately before the previous instruction under the assumption that all 1326 // arguments will be available here. We can't insert afterwards since we may 1327 // be replacing a terminator. 1328 Instruction *InsertBefore = CS.getInstruction(); 1329 IRBuilder<> Builder(InsertBefore); 1330 1331 ArrayRef<Value *> GCArgs(LiveVariables); 1332 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1333 uint32_t NumPatchBytes = 0; 1334 uint32_t Flags = uint32_t(StatepointFlags::None); 1335 1336 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1337 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1338 ArrayRef<Use> TransitionArgs; 1339 if (auto TransitionBundle = 1340 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1341 Flags |= uint32_t(StatepointFlags::GCTransition); 1342 TransitionArgs = TransitionBundle->Inputs; 1343 } 1344 1345 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1346 // with a return value, we lower then as never returning calls to 1347 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1348 bool IsDeoptimize = false; 1349 1350 StatepointDirectives SD = 1351 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1352 if (SD.NumPatchBytes) 1353 NumPatchBytes = *SD.NumPatchBytes; 1354 if (SD.StatepointID) 1355 StatepointID = *SD.StatepointID; 1356 1357 // Pass through the requested lowering if any. The default is live-through. 1358 StringRef DeoptLowering = getDeoptLowering(CS); 1359 if (DeoptLowering.equals("live-in")) 1360 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1361 else { 1362 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1363 } 1364 1365 Value *CallTarget = CS.getCalledValue(); 1366 if (Function *F = dyn_cast<Function>(CallTarget)) { 1367 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1368 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1369 // __llvm_deoptimize symbol. We want to resolve this now, since the 1370 // verifier does not allow taking the address of an intrinsic function. 1371 1372 SmallVector<Type *, 8> DomainTy; 1373 for (Value *Arg : CallArgs) 1374 DomainTy.push_back(Arg->getType()); 1375 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1376 /* isVarArg = */ false); 1377 1378 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1379 // calls to @llvm.experimental.deoptimize with different argument types in 1380 // the same module. This is fine -- we assume the frontend knew what it 1381 // was doing when generating this kind of IR. 1382 CallTarget = 1383 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1384 1385 IsDeoptimize = true; 1386 } 1387 } 1388 1389 // Create the statepoint given all the arguments 1390 Instruction *Token = nullptr; 1391 AttributeSet ReturnAttrs; 1392 if (CS.isCall()) { 1393 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1394 CallInst *Call = Builder.CreateGCStatepointCall( 1395 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1396 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1397 1398 Call->setTailCall(ToReplace->isTailCall()); 1399 Call->setCallingConv(ToReplace->getCallingConv()); 1400 1401 // Currently we will fail on parameter attributes and on certain 1402 // function attributes. 1403 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1404 // In case if we can handle this set of attributes - set up function attrs 1405 // directly on statepoint and return attrs later for gc_result intrinsic. 1406 Call->setAttributes(NewAttrs.getFnAttributes()); 1407 ReturnAttrs = NewAttrs.getRetAttributes(); 1408 1409 Token = Call; 1410 1411 // Put the following gc_result and gc_relocate calls immediately after the 1412 // the old call (which we're about to delete) 1413 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1414 Builder.SetInsertPoint(ToReplace->getNextNode()); 1415 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1416 } else { 1417 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1418 1419 // Insert the new invoke into the old block. We'll remove the old one in a 1420 // moment at which point this will become the new terminator for the 1421 // original block. 1422 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1423 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1424 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1425 GCArgs, "statepoint_token"); 1426 1427 Invoke->setCallingConv(ToReplace->getCallingConv()); 1428 1429 // Currently we will fail on parameter attributes and on certain 1430 // function attributes. 1431 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1432 // In case if we can handle this set of attributes - set up function attrs 1433 // directly on statepoint and return attrs later for gc_result intrinsic. 1434 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1435 ReturnAttrs = NewAttrs.getRetAttributes(); 1436 1437 Token = Invoke; 1438 1439 // Generate gc relocates in exceptional path 1440 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1441 assert(!isa<PHINode>(UnwindBlock->begin()) && 1442 UnwindBlock->getUniquePredecessor() && 1443 "can't safely insert in this block!"); 1444 1445 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1446 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1447 1448 // Attach exceptional gc relocates to the landingpad. 1449 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1450 Result.UnwindToken = ExceptionalToken; 1451 1452 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1453 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1454 Builder); 1455 1456 // Generate gc relocates and returns for normal block 1457 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1458 assert(!isa<PHINode>(NormalDest->begin()) && 1459 NormalDest->getUniquePredecessor() && 1460 "can't safely insert in this block!"); 1461 1462 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1463 1464 // gc relocates will be generated later as if it were regular call 1465 // statepoint 1466 } 1467 assert(Token && "Should be set in one of the above branches!"); 1468 1469 if (IsDeoptimize) { 1470 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1471 // transform the tail-call like structure to a call to a void function 1472 // followed by unreachable to get better codegen. 1473 Replacements.push_back( 1474 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1475 } else { 1476 Token->setName("statepoint_token"); 1477 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1478 StringRef Name = 1479 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1480 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1481 GCResult->setAttributes(CS.getAttributes().getRetAttributes()); 1482 1483 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1484 // live set of some other safepoint, in which case that safepoint's 1485 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1486 // llvm::Instruction. Instead, we defer the replacement and deletion to 1487 // after the live sets have been made explicit in the IR, and we no longer 1488 // have raw pointers to worry about. 1489 Replacements.emplace_back( 1490 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1491 } else { 1492 Replacements.emplace_back( 1493 DeferredReplacement::createDelete(CS.getInstruction())); 1494 } 1495 } 1496 1497 Result.StatepointToken = Token; 1498 1499 // Second, create a gc.relocate for every live variable 1500 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1501 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1502 } 1503 1504 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1505 // which make the relocations happening at this safepoint explicit. 1506 // 1507 // WARNING: Does not do any fixup to adjust users of the original live 1508 // values. That's the callers responsibility. 1509 static void 1510 makeStatepointExplicit(DominatorTree &DT, CallSite CS, 1511 PartiallyConstructedSafepointRecord &Result, 1512 std::vector<DeferredReplacement> &Replacements) { 1513 const auto &LiveSet = Result.LiveSet; 1514 const auto &PointerToBase = Result.PointerToBase; 1515 1516 // Convert to vector for efficient cross referencing. 1517 SmallVector<Value *, 64> BaseVec, LiveVec; 1518 LiveVec.reserve(LiveSet.size()); 1519 BaseVec.reserve(LiveSet.size()); 1520 for (Value *L : LiveSet) { 1521 LiveVec.push_back(L); 1522 assert(PointerToBase.count(L)); 1523 Value *Base = PointerToBase.find(L)->second; 1524 BaseVec.push_back(Base); 1525 } 1526 assert(LiveVec.size() == BaseVec.size()); 1527 1528 // Do the actual rewriting and delete the old statepoint 1529 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1530 } 1531 1532 // Helper function for the relocationViaAlloca. 1533 // 1534 // It receives iterator to the statepoint gc relocates and emits a store to the 1535 // assigned location (via allocaMap) for the each one of them. It adds the 1536 // visited values into the visitedLiveValues set, which we will later use them 1537 // for sanity checking. 1538 static void 1539 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1540 DenseMap<Value *, Value *> &AllocaMap, 1541 DenseSet<Value *> &VisitedLiveValues) { 1542 1543 for (User *U : GCRelocs) { 1544 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1545 if (!Relocate) 1546 continue; 1547 1548 Value *OriginalValue = Relocate->getDerivedPtr(); 1549 assert(AllocaMap.count(OriginalValue)); 1550 Value *Alloca = AllocaMap[OriginalValue]; 1551 1552 // Emit store into the related alloca 1553 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1554 // the correct type according to alloca. 1555 assert(Relocate->getNextNode() && 1556 "Should always have one since it's not a terminator"); 1557 IRBuilder<> Builder(Relocate->getNextNode()); 1558 Value *CastedRelocatedValue = 1559 Builder.CreateBitCast(Relocate, 1560 cast<AllocaInst>(Alloca)->getAllocatedType(), 1561 suffixed_name_or(Relocate, ".casted", "")); 1562 1563 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1564 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1565 1566 #ifndef NDEBUG 1567 VisitedLiveValues.insert(OriginalValue); 1568 #endif 1569 } 1570 } 1571 1572 // Helper function for the "relocationViaAlloca". Similar to the 1573 // "insertRelocationStores" but works for rematerialized values. 1574 static void insertRematerializationStores( 1575 const RematerializedValueMapTy &RematerializedValues, 1576 DenseMap<Value *, Value *> &AllocaMap, 1577 DenseSet<Value *> &VisitedLiveValues) { 1578 1579 for (auto RematerializedValuePair: RematerializedValues) { 1580 Instruction *RematerializedValue = RematerializedValuePair.first; 1581 Value *OriginalValue = RematerializedValuePair.second; 1582 1583 assert(AllocaMap.count(OriginalValue) && 1584 "Can not find alloca for rematerialized value"); 1585 Value *Alloca = AllocaMap[OriginalValue]; 1586 1587 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1588 Store->insertAfter(RematerializedValue); 1589 1590 #ifndef NDEBUG 1591 VisitedLiveValues.insert(OriginalValue); 1592 #endif 1593 } 1594 } 1595 1596 /// Do all the relocation update via allocas and mem2reg 1597 static void relocationViaAlloca( 1598 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1599 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1600 #ifndef NDEBUG 1601 // record initial number of (static) allocas; we'll check we have the same 1602 // number when we get done. 1603 int InitialAllocaNum = 0; 1604 for (Instruction &I : F.getEntryBlock()) 1605 if (isa<AllocaInst>(I)) 1606 InitialAllocaNum++; 1607 #endif 1608 1609 // TODO-PERF: change data structures, reserve 1610 DenseMap<Value *, Value *> AllocaMap; 1611 SmallVector<AllocaInst *, 200> PromotableAllocas; 1612 // Used later to chack that we have enough allocas to store all values 1613 std::size_t NumRematerializedValues = 0; 1614 PromotableAllocas.reserve(Live.size()); 1615 1616 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1617 // "PromotableAllocas" 1618 auto emitAllocaFor = [&](Value *LiveValue) { 1619 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1620 F.getEntryBlock().getFirstNonPHI()); 1621 AllocaMap[LiveValue] = Alloca; 1622 PromotableAllocas.push_back(Alloca); 1623 }; 1624 1625 // Emit alloca for each live gc pointer 1626 for (Value *V : Live) 1627 emitAllocaFor(V); 1628 1629 // Emit allocas for rematerialized values 1630 for (const auto &Info : Records) 1631 for (auto RematerializedValuePair : Info.RematerializedValues) { 1632 Value *OriginalValue = RematerializedValuePair.second; 1633 if (AllocaMap.count(OriginalValue) != 0) 1634 continue; 1635 1636 emitAllocaFor(OriginalValue); 1637 ++NumRematerializedValues; 1638 } 1639 1640 // The next two loops are part of the same conceptual operation. We need to 1641 // insert a store to the alloca after the original def and at each 1642 // redefinition. We need to insert a load before each use. These are split 1643 // into distinct loops for performance reasons. 1644 1645 // Update gc pointer after each statepoint: either store a relocated value or 1646 // null (if no relocated value was found for this gc pointer and it is not a 1647 // gc_result). This must happen before we update the statepoint with load of 1648 // alloca otherwise we lose the link between statepoint and old def. 1649 for (const auto &Info : Records) { 1650 Value *Statepoint = Info.StatepointToken; 1651 1652 // This will be used for consistency check 1653 DenseSet<Value *> VisitedLiveValues; 1654 1655 // Insert stores for normal statepoint gc relocates 1656 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1657 1658 // In case if it was invoke statepoint 1659 // we will insert stores for exceptional path gc relocates. 1660 if (isa<InvokeInst>(Statepoint)) { 1661 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1662 VisitedLiveValues); 1663 } 1664 1665 // Do similar thing with rematerialized values 1666 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1667 VisitedLiveValues); 1668 1669 if (ClobberNonLive) { 1670 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1671 // the gc.statepoint. This will turn some subtle GC problems into 1672 // slightly easier to debug SEGVs. Note that on large IR files with 1673 // lots of gc.statepoints this is extremely costly both memory and time 1674 // wise. 1675 SmallVector<AllocaInst *, 64> ToClobber; 1676 for (auto Pair : AllocaMap) { 1677 Value *Def = Pair.first; 1678 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1679 1680 // This value was relocated 1681 if (VisitedLiveValues.count(Def)) { 1682 continue; 1683 } 1684 ToClobber.push_back(Alloca); 1685 } 1686 1687 auto InsertClobbersAt = [&](Instruction *IP) { 1688 for (auto *AI : ToClobber) { 1689 auto PT = cast<PointerType>(AI->getAllocatedType()); 1690 Constant *CPN = ConstantPointerNull::get(PT); 1691 StoreInst *Store = new StoreInst(CPN, AI); 1692 Store->insertBefore(IP); 1693 } 1694 }; 1695 1696 // Insert the clobbering stores. These may get intermixed with the 1697 // gc.results and gc.relocates, but that's fine. 1698 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1699 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1700 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1701 } else { 1702 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1703 } 1704 } 1705 } 1706 1707 // Update use with load allocas and add store for gc_relocated. 1708 for (auto Pair : AllocaMap) { 1709 Value *Def = Pair.first; 1710 Value *Alloca = Pair.second; 1711 1712 // We pre-record the uses of allocas so that we dont have to worry about 1713 // later update that changes the user information.. 1714 1715 SmallVector<Instruction *, 20> Uses; 1716 // PERF: trade a linear scan for repeated reallocation 1717 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1718 for (User *U : Def->users()) { 1719 if (!isa<ConstantExpr>(U)) { 1720 // If the def has a ConstantExpr use, then the def is either a 1721 // ConstantExpr use itself or null. In either case 1722 // (recursively in the first, directly in the second), the oop 1723 // it is ultimately dependent on is null and this particular 1724 // use does not need to be fixed up. 1725 Uses.push_back(cast<Instruction>(U)); 1726 } 1727 } 1728 1729 std::sort(Uses.begin(), Uses.end()); 1730 auto Last = std::unique(Uses.begin(), Uses.end()); 1731 Uses.erase(Last, Uses.end()); 1732 1733 for (Instruction *Use : Uses) { 1734 if (isa<PHINode>(Use)) { 1735 PHINode *Phi = cast<PHINode>(Use); 1736 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1737 if (Def == Phi->getIncomingValue(i)) { 1738 LoadInst *Load = new LoadInst( 1739 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1740 Phi->setIncomingValue(i, Load); 1741 } 1742 } 1743 } else { 1744 LoadInst *Load = new LoadInst(Alloca, "", Use); 1745 Use->replaceUsesOfWith(Def, Load); 1746 } 1747 } 1748 1749 // Emit store for the initial gc value. Store must be inserted after load, 1750 // otherwise store will be in alloca's use list and an extra load will be 1751 // inserted before it. 1752 StoreInst *Store = new StoreInst(Def, Alloca); 1753 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1754 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1755 // InvokeInst is a TerminatorInst so the store need to be inserted 1756 // into its normal destination block. 1757 BasicBlock *NormalDest = Invoke->getNormalDest(); 1758 Store->insertBefore(NormalDest->getFirstNonPHI()); 1759 } else { 1760 assert(!Inst->isTerminator() && 1761 "The only TerminatorInst that can produce a value is " 1762 "InvokeInst which is handled above."); 1763 Store->insertAfter(Inst); 1764 } 1765 } else { 1766 assert(isa<Argument>(Def)); 1767 Store->insertAfter(cast<Instruction>(Alloca)); 1768 } 1769 } 1770 1771 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1772 "we must have the same allocas with lives"); 1773 if (!PromotableAllocas.empty()) { 1774 // Apply mem2reg to promote alloca to SSA 1775 PromoteMemToReg(PromotableAllocas, DT); 1776 } 1777 1778 #ifndef NDEBUG 1779 for (auto &I : F.getEntryBlock()) 1780 if (isa<AllocaInst>(I)) 1781 InitialAllocaNum--; 1782 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1783 #endif 1784 } 1785 1786 /// Implement a unique function which doesn't require we sort the input 1787 /// vector. Doing so has the effect of changing the output of a couple of 1788 /// tests in ways which make them less useful in testing fused safepoints. 1789 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1790 SmallSet<T, 8> Seen; 1791 Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }), 1792 Vec.end()); 1793 } 1794 1795 /// Insert holders so that each Value is obviously live through the entire 1796 /// lifetime of the call. 1797 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1798 SmallVectorImpl<CallInst *> &Holders) { 1799 if (Values.empty()) 1800 // No values to hold live, might as well not insert the empty holder 1801 return; 1802 1803 Module *M = CS.getInstruction()->getModule(); 1804 // Use a dummy vararg function to actually hold the values live 1805 Function *Func = cast<Function>(M->getOrInsertFunction( 1806 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1807 if (CS.isCall()) { 1808 // For call safepoints insert dummy calls right after safepoint 1809 Holders.push_back(CallInst::Create(Func, Values, "", 1810 &*++CS.getInstruction()->getIterator())); 1811 return; 1812 } 1813 // For invoke safepooints insert dummy calls both in normal and 1814 // exceptional destination blocks 1815 auto *II = cast<InvokeInst>(CS.getInstruction()); 1816 Holders.push_back(CallInst::Create( 1817 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1818 Holders.push_back(CallInst::Create( 1819 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1820 } 1821 1822 static void findLiveReferences( 1823 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1824 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1825 GCPtrLivenessData OriginalLivenessData; 1826 computeLiveInValues(DT, F, OriginalLivenessData); 1827 for (size_t i = 0; i < records.size(); i++) { 1828 struct PartiallyConstructedSafepointRecord &info = records[i]; 1829 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1830 } 1831 } 1832 1833 // Helper function for the "rematerializeLiveValues". It walks use chain 1834 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 1835 // the base or a value it cannot process. Only "simple" values are processed 1836 // (currently it is GEP's and casts). The returned root is examined by the 1837 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 1838 // with all visited values. 1839 static Value* findRematerializableChainToBasePointer( 1840 SmallVectorImpl<Instruction*> &ChainToBase, 1841 Value *CurrentValue) { 1842 1843 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1844 ChainToBase.push_back(GEP); 1845 return findRematerializableChainToBasePointer(ChainToBase, 1846 GEP->getPointerOperand()); 1847 } 1848 1849 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1850 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1851 return CI; 1852 1853 ChainToBase.push_back(CI); 1854 return findRematerializableChainToBasePointer(ChainToBase, 1855 CI->getOperand(0)); 1856 } 1857 1858 // We have reached the root of the chain, which is either equal to the base or 1859 // is the first unsupported value along the use chain. 1860 return CurrentValue; 1861 } 1862 1863 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1864 // chain we are going to rematerialize. 1865 static unsigned 1866 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1867 TargetTransformInfo &TTI) { 1868 unsigned Cost = 0; 1869 1870 for (Instruction *Instr : Chain) { 1871 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1872 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1873 "non noop cast is found during rematerialization"); 1874 1875 Type *SrcTy = CI->getOperand(0)->getType(); 1876 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 1877 1878 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1879 // Cost of the address calculation 1880 Type *ValTy = GEP->getSourceElementType(); 1881 Cost += TTI.getAddressComputationCost(ValTy); 1882 1883 // And cost of the GEP itself 1884 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1885 // allowed for the external usage) 1886 if (!GEP->hasAllConstantIndices()) 1887 Cost += 2; 1888 1889 } else { 1890 llvm_unreachable("unsupported instruciton type during rematerialization"); 1891 } 1892 } 1893 1894 return Cost; 1895 } 1896 1897 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 1898 1899 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 1900 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 1901 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 1902 return false; 1903 // Map of incoming values and their corresponding basic blocks of 1904 // OrigRootPhi. 1905 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 1906 for (unsigned i = 0; i < PhiNum; i++) 1907 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 1908 OrigRootPhi.getIncomingBlock(i); 1909 1910 // Both current and base PHIs should have same incoming values and 1911 // the same basic blocks corresponding to the incoming values. 1912 for (unsigned i = 0; i < PhiNum; i++) { 1913 auto CIVI = 1914 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 1915 if (CIVI == CurrentIncomingValues.end()) 1916 return false; 1917 BasicBlock *CurrentIncomingBB = CIVI->second; 1918 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 1919 return false; 1920 } 1921 return true; 1922 1923 } 1924 1925 // From the statepoint live set pick values that are cheaper to recompute then 1926 // to relocate. Remove this values from the live set, rematerialize them after 1927 // statepoint and record them in "Info" structure. Note that similar to 1928 // relocated values we don't do any user adjustments here. 1929 static void rematerializeLiveValues(CallSite CS, 1930 PartiallyConstructedSafepointRecord &Info, 1931 TargetTransformInfo &TTI) { 1932 const unsigned int ChainLengthThreshold = 10; 1933 1934 // Record values we are going to delete from this statepoint live set. 1935 // We can not di this in following loop due to iterator invalidation. 1936 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1937 1938 for (Value *LiveValue: Info.LiveSet) { 1939 // For each live pointer find it's defining chain 1940 SmallVector<Instruction *, 3> ChainToBase; 1941 assert(Info.PointerToBase.count(LiveValue)); 1942 Value *RootOfChain = 1943 findRematerializableChainToBasePointer(ChainToBase, 1944 LiveValue); 1945 1946 // Nothing to do, or chain is too long 1947 if ( ChainToBase.size() == 0 || 1948 ChainToBase.size() > ChainLengthThreshold) 1949 continue; 1950 1951 // Handle the scenario where the RootOfChain is not equal to the 1952 // Base Value, but they are essentially the same phi values. 1953 if (RootOfChain != Info.PointerToBase[LiveValue]) { 1954 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 1955 PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]); 1956 if (!OrigRootPhi || !AlternateRootPhi) 1957 continue; 1958 // PHI nodes that have the same incoming values, and belonging to the same 1959 // basic blocks are essentially the same SSA value. When the original phi 1960 // has incoming values with different base pointers, the original phi is 1961 // marked as conflict, and an additional `AlternateRootPhi` with the same 1962 // incoming values get generated by the findBasePointer function. We need 1963 // to identify the newly generated AlternateRootPhi (.base version of phi) 1964 // and RootOfChain (the original phi node itself) are the same, so that we 1965 // can rematerialize the gep and casts. This is a workaround for the 1966 // deficieny in the findBasePointer algorithm. 1967 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 1968 continue; 1969 // Now that the phi nodes are proved to be the same, assert that 1970 // findBasePointer's newly generated AlternateRootPhi is present in the 1971 // liveset of the call. 1972 assert(Info.LiveSet.count(AlternateRootPhi)); 1973 } 1974 // Compute cost of this chain 1975 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1976 // TODO: We can also account for cases when we will be able to remove some 1977 // of the rematerialized values by later optimization passes. I.e if 1978 // we rematerialized several intersecting chains. Or if original values 1979 // don't have any uses besides this statepoint. 1980 1981 // For invokes we need to rematerialize each chain twice - for normal and 1982 // for unwind basic blocks. Model this by multiplying cost by two. 1983 if (CS.isInvoke()) { 1984 Cost *= 2; 1985 } 1986 // If it's too expensive - skip it 1987 if (Cost >= RematerializationThreshold) 1988 continue; 1989 1990 // Remove value from the live set 1991 LiveValuesToBeDeleted.push_back(LiveValue); 1992 1993 // Clone instructions and record them inside "Info" structure 1994 1995 // Walk backwards to visit top-most instructions first 1996 std::reverse(ChainToBase.begin(), ChainToBase.end()); 1997 1998 // Utility function which clones all instructions from "ChainToBase" 1999 // and inserts them before "InsertBefore". Returns rematerialized value 2000 // which should be used after statepoint. 2001 auto rematerializeChain = [&ChainToBase]( 2002 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 2003 Instruction *LastClonedValue = nullptr; 2004 Instruction *LastValue = nullptr; 2005 for (Instruction *Instr: ChainToBase) { 2006 // Only GEP's and casts are suported as we need to be careful to not 2007 // introduce any new uses of pointers not in the liveset. 2008 // Note that it's fine to introduce new uses of pointers which were 2009 // otherwise not used after this statepoint. 2010 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2011 2012 Instruction *ClonedValue = Instr->clone(); 2013 ClonedValue->insertBefore(InsertBefore); 2014 ClonedValue->setName(Instr->getName() + ".remat"); 2015 2016 // If it is not first instruction in the chain then it uses previously 2017 // cloned value. We should update it to use cloned value. 2018 if (LastClonedValue) { 2019 assert(LastValue); 2020 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2021 #ifndef NDEBUG 2022 for (auto OpValue : ClonedValue->operand_values()) { 2023 // Assert that cloned instruction does not use any instructions from 2024 // this chain other than LastClonedValue 2025 assert(!is_contained(ChainToBase, OpValue) && 2026 "incorrect use in rematerialization chain"); 2027 // Assert that the cloned instruction does not use the RootOfChain 2028 // or the AlternateLiveBase. 2029 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2030 } 2031 #endif 2032 } else { 2033 // For the first instruction, replace the use of unrelocated base i.e. 2034 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2035 // live set. They have been proved to be the same PHI nodes. Note 2036 // that the *only* use of the RootOfChain in the ChainToBase list is 2037 // the first Value in the list. 2038 if (RootOfChain != AlternateLiveBase) 2039 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2040 } 2041 2042 LastClonedValue = ClonedValue; 2043 LastValue = Instr; 2044 } 2045 assert(LastClonedValue); 2046 return LastClonedValue; 2047 }; 2048 2049 // Different cases for calls and invokes. For invokes we need to clone 2050 // instructions both on normal and unwind path. 2051 if (CS.isCall()) { 2052 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2053 assert(InsertBefore); 2054 Instruction *RematerializedValue = rematerializeChain( 2055 InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2056 Info.RematerializedValues[RematerializedValue] = LiveValue; 2057 } else { 2058 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2059 2060 Instruction *NormalInsertBefore = 2061 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2062 Instruction *UnwindInsertBefore = 2063 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2064 2065 Instruction *NormalRematerializedValue = rematerializeChain( 2066 NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2067 Instruction *UnwindRematerializedValue = rematerializeChain( 2068 UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2069 2070 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2071 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2072 } 2073 } 2074 2075 // Remove rematerializaed values from the live set 2076 for (auto LiveValue: LiveValuesToBeDeleted) { 2077 Info.LiveSet.remove(LiveValue); 2078 } 2079 } 2080 2081 static bool insertParsePoints(Function &F, DominatorTree &DT, 2082 TargetTransformInfo &TTI, 2083 SmallVectorImpl<CallSite> &ToUpdate) { 2084 #ifndef NDEBUG 2085 // sanity check the input 2086 std::set<CallSite> Uniqued; 2087 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2088 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2089 2090 for (CallSite CS : ToUpdate) 2091 assert(CS.getInstruction()->getFunction() == &F); 2092 #endif 2093 2094 // When inserting gc.relocates for invokes, we need to be able to insert at 2095 // the top of the successor blocks. See the comment on 2096 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2097 // may restructure the CFG. 2098 for (CallSite CS : ToUpdate) { 2099 if (!CS.isInvoke()) 2100 continue; 2101 auto *II = cast<InvokeInst>(CS.getInstruction()); 2102 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2103 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2104 } 2105 2106 // A list of dummy calls added to the IR to keep various values obviously 2107 // live in the IR. We'll remove all of these when done. 2108 SmallVector<CallInst *, 64> Holders; 2109 2110 // Insert a dummy call with all of the arguments to the vm_state we'll need 2111 // for the actual safepoint insertion. This ensures reference arguments in 2112 // the deopt argument list are considered live through the safepoint (and 2113 // thus makes sure they get relocated.) 2114 for (CallSite CS : ToUpdate) { 2115 SmallVector<Value *, 64> DeoptValues; 2116 2117 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2118 assert(!isUnhandledGCPointerType(Arg->getType()) && 2119 "support for FCA unimplemented"); 2120 if (isHandledGCPointerType(Arg->getType())) 2121 DeoptValues.push_back(Arg); 2122 } 2123 2124 insertUseHolderAfter(CS, DeoptValues, Holders); 2125 } 2126 2127 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2128 2129 // A) Identify all gc pointers which are statically live at the given call 2130 // site. 2131 findLiveReferences(F, DT, ToUpdate, Records); 2132 2133 // B) Find the base pointers for each live pointer 2134 /* scope for caching */ { 2135 // Cache the 'defining value' relation used in the computation and 2136 // insertion of base phis and selects. This ensures that we don't insert 2137 // large numbers of duplicate base_phis. 2138 DefiningValueMapTy DVCache; 2139 2140 for (size_t i = 0; i < Records.size(); i++) { 2141 PartiallyConstructedSafepointRecord &info = Records[i]; 2142 findBasePointers(DT, DVCache, ToUpdate[i], info); 2143 } 2144 } // end of cache scope 2145 2146 // The base phi insertion logic (for any safepoint) may have inserted new 2147 // instructions which are now live at some safepoint. The simplest such 2148 // example is: 2149 // loop: 2150 // phi a <-- will be a new base_phi here 2151 // safepoint 1 <-- that needs to be live here 2152 // gep a + 1 2153 // safepoint 2 2154 // br loop 2155 // We insert some dummy calls after each safepoint to definitely hold live 2156 // the base pointers which were identified for that safepoint. We'll then 2157 // ask liveness for _every_ base inserted to see what is now live. Then we 2158 // remove the dummy calls. 2159 Holders.reserve(Holders.size() + Records.size()); 2160 for (size_t i = 0; i < Records.size(); i++) { 2161 PartiallyConstructedSafepointRecord &Info = Records[i]; 2162 2163 SmallVector<Value *, 128> Bases; 2164 for (auto Pair : Info.PointerToBase) 2165 Bases.push_back(Pair.second); 2166 2167 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2168 } 2169 2170 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2171 // need to rerun liveness. We may *also* have inserted new defs, but that's 2172 // not the key issue. 2173 recomputeLiveInValues(F, DT, ToUpdate, Records); 2174 2175 if (PrintBasePointers) { 2176 for (auto &Info : Records) { 2177 errs() << "Base Pairs: (w/Relocation)\n"; 2178 for (auto Pair : Info.PointerToBase) { 2179 errs() << " derived "; 2180 Pair.first->printAsOperand(errs(), false); 2181 errs() << " base "; 2182 Pair.second->printAsOperand(errs(), false); 2183 errs() << "\n"; 2184 } 2185 } 2186 } 2187 2188 // It is possible that non-constant live variables have a constant base. For 2189 // example, a GEP with a variable offset from a global. In this case we can 2190 // remove it from the liveset. We already don't add constants to the liveset 2191 // because we assume they won't move at runtime and the GC doesn't need to be 2192 // informed about them. The same reasoning applies if the base is constant. 2193 // Note that the relocation placement code relies on this filtering for 2194 // correctness as it expects the base to be in the liveset, which isn't true 2195 // if the base is constant. 2196 for (auto &Info : Records) 2197 for (auto &BasePair : Info.PointerToBase) 2198 if (isa<Constant>(BasePair.second)) 2199 Info.LiveSet.remove(BasePair.first); 2200 2201 for (CallInst *CI : Holders) 2202 CI->eraseFromParent(); 2203 2204 Holders.clear(); 2205 2206 // In order to reduce live set of statepoint we might choose to rematerialize 2207 // some values instead of relocating them. This is purely an optimization and 2208 // does not influence correctness. 2209 for (size_t i = 0; i < Records.size(); i++) 2210 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2211 2212 // We need this to safely RAUW and delete call or invoke return values that 2213 // may themselves be live over a statepoint. For details, please see usage in 2214 // makeStatepointExplicitImpl. 2215 std::vector<DeferredReplacement> Replacements; 2216 2217 // Now run through and replace the existing statepoints with new ones with 2218 // the live variables listed. We do not yet update uses of the values being 2219 // relocated. We have references to live variables that need to 2220 // survive to the last iteration of this loop. (By construction, the 2221 // previous statepoint can not be a live variable, thus we can and remove 2222 // the old statepoint calls as we go.) 2223 for (size_t i = 0; i < Records.size(); i++) 2224 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2225 2226 ToUpdate.clear(); // prevent accident use of invalid CallSites 2227 2228 for (auto &PR : Replacements) 2229 PR.doReplacement(); 2230 2231 Replacements.clear(); 2232 2233 for (auto &Info : Records) { 2234 // These live sets may contain state Value pointers, since we replaced calls 2235 // with operand bundles with calls wrapped in gc.statepoint, and some of 2236 // those calls may have been def'ing live gc pointers. Clear these out to 2237 // avoid accidentally using them. 2238 // 2239 // TODO: We should create a separate data structure that does not contain 2240 // these live sets, and migrate to using that data structure from this point 2241 // onward. 2242 Info.LiveSet.clear(); 2243 Info.PointerToBase.clear(); 2244 } 2245 2246 // Do all the fixups of the original live variables to their relocated selves 2247 SmallVector<Value *, 128> Live; 2248 for (size_t i = 0; i < Records.size(); i++) { 2249 PartiallyConstructedSafepointRecord &Info = Records[i]; 2250 2251 // We can't simply save the live set from the original insertion. One of 2252 // the live values might be the result of a call which needs a safepoint. 2253 // That Value* no longer exists and we need to use the new gc_result. 2254 // Thankfully, the live set is embedded in the statepoint (and updated), so 2255 // we just grab that. 2256 Statepoint Statepoint(Info.StatepointToken); 2257 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2258 Statepoint.gc_args_end()); 2259 #ifndef NDEBUG 2260 // Do some basic sanity checks on our liveness results before performing 2261 // relocation. Relocation can and will turn mistakes in liveness results 2262 // into non-sensical code which is must harder to debug. 2263 // TODO: It would be nice to test consistency as well 2264 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2265 "statepoint must be reachable or liveness is meaningless"); 2266 for (Value *V : Statepoint.gc_args()) { 2267 if (!isa<Instruction>(V)) 2268 // Non-instruction values trivial dominate all possible uses 2269 continue; 2270 auto *LiveInst = cast<Instruction>(V); 2271 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2272 "unreachable values should never be live"); 2273 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2274 "basic SSA liveness expectation violated by liveness analysis"); 2275 } 2276 #endif 2277 } 2278 unique_unsorted(Live); 2279 2280 #ifndef NDEBUG 2281 // sanity check 2282 for (auto *Ptr : Live) 2283 assert(isHandledGCPointerType(Ptr->getType()) && 2284 "must be a gc pointer type"); 2285 #endif 2286 2287 relocationViaAlloca(F, DT, Live, Records); 2288 return !Records.empty(); 2289 } 2290 2291 // Handles both return values and arguments for Functions and CallSites. 2292 template <typename AttrHolder> 2293 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2294 unsigned Index) { 2295 AttrBuilder R; 2296 if (AH.getDereferenceableBytes(Index)) 2297 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2298 AH.getDereferenceableBytes(Index))); 2299 if (AH.getDereferenceableOrNullBytes(Index)) 2300 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2301 AH.getDereferenceableOrNullBytes(Index))); 2302 if (AH.doesNotAlias(Index)) 2303 R.addAttribute(Attribute::NoAlias); 2304 2305 if (!R.empty()) 2306 AH.setAttributes(AH.getAttributes().removeAttributes( 2307 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2308 } 2309 2310 void 2311 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2312 LLVMContext &Ctx = F.getContext(); 2313 2314 for (Argument &A : F.args()) 2315 if (isa<PointerType>(A.getType())) 2316 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2317 2318 if (isa<PointerType>(F.getReturnType())) 2319 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2320 } 2321 2322 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2323 if (F.empty()) 2324 return; 2325 2326 LLVMContext &Ctx = F.getContext(); 2327 MDBuilder Builder(Ctx); 2328 2329 for (Instruction &I : instructions(F)) { 2330 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2331 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2332 bool IsImmutableTBAA = 2333 MD->getNumOperands() == 4 && 2334 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2335 2336 if (!IsImmutableTBAA) 2337 continue; // no work to do, MD_tbaa is already marked mutable 2338 2339 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2340 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2341 uint64_t Offset = 2342 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2343 2344 MDNode *MutableTBAA = 2345 Builder.createTBAAStructTagNode(Base, Access, Offset); 2346 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2347 } 2348 2349 if (CallSite CS = CallSite(&I)) { 2350 for (int i = 0, e = CS.arg_size(); i != e; i++) 2351 if (isa<PointerType>(CS.getArgument(i)->getType())) 2352 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); 2353 if (isa<PointerType>(CS.getType())) 2354 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2355 } 2356 } 2357 } 2358 2359 /// Returns true if this function should be rewritten by this pass. The main 2360 /// point of this function is as an extension point for custom logic. 2361 static bool shouldRewriteStatepointsIn(Function &F) { 2362 // TODO: This should check the GCStrategy 2363 if (F.hasGC()) { 2364 const auto &FunctionGCName = F.getGC(); 2365 const StringRef StatepointExampleName("statepoint-example"); 2366 const StringRef CoreCLRName("coreclr"); 2367 return (StatepointExampleName == FunctionGCName) || 2368 (CoreCLRName == FunctionGCName); 2369 } else 2370 return false; 2371 } 2372 2373 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2374 #ifndef NDEBUG 2375 assert(any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2376 #endif 2377 2378 for (Function &F : M) 2379 stripNonValidAttributesFromPrototype(F); 2380 2381 for (Function &F : M) 2382 stripNonValidAttributesFromBody(F); 2383 } 2384 2385 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2386 // Nothing to do for declarations. 2387 if (F.isDeclaration() || F.empty()) 2388 return false; 2389 2390 // Policy choice says not to rewrite - the most common reason is that we're 2391 // compiling code without a GCStrategy. 2392 if (!shouldRewriteStatepointsIn(F)) 2393 return false; 2394 2395 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2396 TargetTransformInfo &TTI = 2397 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2398 2399 auto NeedsRewrite = [](Instruction &I) { 2400 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2401 return !callsGCLeafFunction(CS) && !isStatepoint(CS); 2402 return false; 2403 }; 2404 2405 // Gather all the statepoints which need rewritten. Be careful to only 2406 // consider those in reachable code since we need to ask dominance queries 2407 // when rewriting. We'll delete the unreachable ones in a moment. 2408 SmallVector<CallSite, 64> ParsePointNeeded; 2409 bool HasUnreachableStatepoint = false; 2410 for (Instruction &I : instructions(F)) { 2411 // TODO: only the ones with the flag set! 2412 if (NeedsRewrite(I)) { 2413 if (DT.isReachableFromEntry(I.getParent())) 2414 ParsePointNeeded.push_back(CallSite(&I)); 2415 else 2416 HasUnreachableStatepoint = true; 2417 } 2418 } 2419 2420 bool MadeChange = false; 2421 2422 // Delete any unreachable statepoints so that we don't have unrewritten 2423 // statepoints surviving this pass. This makes testing easier and the 2424 // resulting IR less confusing to human readers. Rather than be fancy, we 2425 // just reuse a utility function which removes the unreachable blocks. 2426 if (HasUnreachableStatepoint) 2427 MadeChange |= removeUnreachableBlocks(F); 2428 2429 // Return early if no work to do. 2430 if (ParsePointNeeded.empty()) 2431 return MadeChange; 2432 2433 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2434 // These are created by LCSSA. They have the effect of increasing the size 2435 // of liveness sets for no good reason. It may be harder to do this post 2436 // insertion since relocations and base phis can confuse things. 2437 for (BasicBlock &BB : F) 2438 if (BB.getUniquePredecessor()) { 2439 MadeChange = true; 2440 FoldSingleEntryPHINodes(&BB); 2441 } 2442 2443 // Before we start introducing relocations, we want to tweak the IR a bit to 2444 // avoid unfortunate code generation effects. The main example is that we 2445 // want to try to make sure the comparison feeding a branch is after any 2446 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2447 // values feeding a branch after relocation. This is semantically correct, 2448 // but results in extra register pressure since both the pre-relocation and 2449 // post-relocation copies must be available in registers. For code without 2450 // relocations this is handled elsewhere, but teaching the scheduler to 2451 // reverse the transform we're about to do would be slightly complex. 2452 // Note: This may extend the live range of the inputs to the icmp and thus 2453 // increase the liveset of any statepoint we move over. This is profitable 2454 // as long as all statepoints are in rare blocks. If we had in-register 2455 // lowering for live values this would be a much safer transform. 2456 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2457 if (auto *BI = dyn_cast<BranchInst>(TI)) 2458 if (BI->isConditional()) 2459 return dyn_cast<Instruction>(BI->getCondition()); 2460 // TODO: Extend this to handle switches 2461 return nullptr; 2462 }; 2463 for (BasicBlock &BB : F) { 2464 TerminatorInst *TI = BB.getTerminator(); 2465 if (auto *Cond = getConditionInst(TI)) 2466 // TODO: Handle more than just ICmps here. We should be able to move 2467 // most instructions without side effects or memory access. 2468 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2469 MadeChange = true; 2470 Cond->moveBefore(TI); 2471 } 2472 } 2473 2474 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2475 return MadeChange; 2476 } 2477 2478 // liveness computation via standard dataflow 2479 // ------------------------------------------------------------------- 2480 2481 // TODO: Consider using bitvectors for liveness, the set of potentially 2482 // interesting values should be small and easy to pre-compute. 2483 2484 /// Compute the live-in set for the location rbegin starting from 2485 /// the live-out set of the basic block 2486 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 2487 BasicBlock::reverse_iterator End, 2488 SetVector<Value *> &LiveTmp) { 2489 for (auto &I : make_range(Begin, End)) { 2490 // KILL/Def - Remove this definition from LiveIn 2491 LiveTmp.remove(&I); 2492 2493 // Don't consider *uses* in PHI nodes, we handle their contribution to 2494 // predecessor blocks when we seed the LiveOut sets 2495 if (isa<PHINode>(I)) 2496 continue; 2497 2498 // USE - Add to the LiveIn set for this instruction 2499 for (Value *V : I.operands()) { 2500 assert(!isUnhandledGCPointerType(V->getType()) && 2501 "support for FCA unimplemented"); 2502 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2503 // The choice to exclude all things constant here is slightly subtle. 2504 // There are two independent reasons: 2505 // - We assume that things which are constant (from LLVM's definition) 2506 // do not move at runtime. For example, the address of a global 2507 // variable is fixed, even though it's contents may not be. 2508 // - Second, we can't disallow arbitrary inttoptr constants even 2509 // if the language frontend does. Optimization passes are free to 2510 // locally exploit facts without respect to global reachability. This 2511 // can create sections of code which are dynamically unreachable and 2512 // contain just about anything. (see constants.ll in tests) 2513 LiveTmp.insert(V); 2514 } 2515 } 2516 } 2517 } 2518 2519 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2520 for (BasicBlock *Succ : successors(BB)) { 2521 for (auto &I : *Succ) { 2522 PHINode *PN = dyn_cast<PHINode>(&I); 2523 if (!PN) 2524 break; 2525 2526 Value *V = PN->getIncomingValueForBlock(BB); 2527 assert(!isUnhandledGCPointerType(V->getType()) && 2528 "support for FCA unimplemented"); 2529 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 2530 LiveTmp.insert(V); 2531 } 2532 } 2533 } 2534 2535 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2536 SetVector<Value *> KillSet; 2537 for (Instruction &I : *BB) 2538 if (isHandledGCPointerType(I.getType())) 2539 KillSet.insert(&I); 2540 return KillSet; 2541 } 2542 2543 #ifndef NDEBUG 2544 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2545 /// sanity check for the liveness computation. 2546 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2547 TerminatorInst *TI, bool TermOkay = false) { 2548 for (Value *V : Live) { 2549 if (auto *I = dyn_cast<Instruction>(V)) { 2550 // The terminator can be a member of the LiveOut set. LLVM's definition 2551 // of instruction dominance states that V does not dominate itself. As 2552 // such, we need to special case this to allow it. 2553 if (TermOkay && TI == I) 2554 continue; 2555 assert(DT.dominates(I, TI) && 2556 "basic SSA liveness expectation violated by liveness analysis"); 2557 } 2558 } 2559 } 2560 2561 /// Check that all the liveness sets used during the computation of liveness 2562 /// obey basic SSA properties. This is useful for finding cases where we miss 2563 /// a def. 2564 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2565 BasicBlock &BB) { 2566 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2567 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2568 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2569 } 2570 #endif 2571 2572 static void computeLiveInValues(DominatorTree &DT, Function &F, 2573 GCPtrLivenessData &Data) { 2574 SmallSetVector<BasicBlock *, 32> Worklist; 2575 2576 // Seed the liveness for each individual block 2577 for (BasicBlock &BB : F) { 2578 Data.KillSet[&BB] = computeKillSet(&BB); 2579 Data.LiveSet[&BB].clear(); 2580 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2581 2582 #ifndef NDEBUG 2583 for (Value *Kill : Data.KillSet[&BB]) 2584 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2585 #endif 2586 2587 Data.LiveOut[&BB] = SetVector<Value *>(); 2588 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2589 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2590 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2591 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2592 if (!Data.LiveIn[&BB].empty()) 2593 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 2594 } 2595 2596 // Propagate that liveness until stable 2597 while (!Worklist.empty()) { 2598 BasicBlock *BB = Worklist.pop_back_val(); 2599 2600 // Compute our new liveout set, then exit early if it hasn't changed despite 2601 // the contribution of our successor. 2602 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2603 const auto OldLiveOutSize = LiveOut.size(); 2604 for (BasicBlock *Succ : successors(BB)) { 2605 assert(Data.LiveIn.count(Succ)); 2606 LiveOut.set_union(Data.LiveIn[Succ]); 2607 } 2608 // assert OutLiveOut is a subset of LiveOut 2609 if (OldLiveOutSize == LiveOut.size()) { 2610 // If the sets are the same size, then we didn't actually add anything 2611 // when unioning our successors LiveIn. Thus, the LiveIn of this block 2612 // hasn't changed. 2613 continue; 2614 } 2615 Data.LiveOut[BB] = LiveOut; 2616 2617 // Apply the effects of this basic block 2618 SetVector<Value *> LiveTmp = LiveOut; 2619 LiveTmp.set_union(Data.LiveSet[BB]); 2620 LiveTmp.set_subtract(Data.KillSet[BB]); 2621 2622 assert(Data.LiveIn.count(BB)); 2623 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2624 // assert: OldLiveIn is a subset of LiveTmp 2625 if (OldLiveIn.size() != LiveTmp.size()) { 2626 Data.LiveIn[BB] = LiveTmp; 2627 Worklist.insert(pred_begin(BB), pred_end(BB)); 2628 } 2629 } // while (!Worklist.empty()) 2630 2631 #ifndef NDEBUG 2632 // Sanity check our output against SSA properties. This helps catch any 2633 // missing kills during the above iteration. 2634 for (BasicBlock &BB : F) 2635 checkBasicSSA(DT, Data, BB); 2636 #endif 2637 } 2638 2639 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2640 StatepointLiveSetTy &Out) { 2641 2642 BasicBlock *BB = Inst->getParent(); 2643 2644 // Note: The copy is intentional and required 2645 assert(Data.LiveOut.count(BB)); 2646 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2647 2648 // We want to handle the statepoint itself oddly. It's 2649 // call result is not live (normal), nor are it's arguments 2650 // (unless they're used again later). This adjustment is 2651 // specifically what we need to relocate 2652 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 2653 LiveOut); 2654 LiveOut.remove(Inst); 2655 Out.insert(LiveOut.begin(), LiveOut.end()); 2656 } 2657 2658 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2659 CallSite CS, 2660 PartiallyConstructedSafepointRecord &Info) { 2661 Instruction *Inst = CS.getInstruction(); 2662 StatepointLiveSetTy Updated; 2663 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2664 2665 #ifndef NDEBUG 2666 DenseSet<Value *> Bases; 2667 for (auto KVPair : Info.PointerToBase) 2668 Bases.insert(KVPair.second); 2669 #endif 2670 2671 // We may have base pointers which are now live that weren't before. We need 2672 // to update the PointerToBase structure to reflect this. 2673 for (auto V : Updated) 2674 if (Info.PointerToBase.insert({V, V}).second) { 2675 assert(Bases.count(V) && "Can't find base for unexpected live value!"); 2676 continue; 2677 } 2678 2679 #ifndef NDEBUG 2680 for (auto V : Updated) 2681 assert(Info.PointerToBase.count(V) && 2682 "Must be able to find base for live value!"); 2683 #endif 2684 2685 // Remove any stale base mappings - this can happen since our liveness is 2686 // more precise then the one inherent in the base pointer analysis. 2687 DenseSet<Value *> ToErase; 2688 for (auto KVPair : Info.PointerToBase) 2689 if (!Updated.count(KVPair.first)) 2690 ToErase.insert(KVPair.first); 2691 2692 for (auto *V : ToErase) 2693 Info.PointerToBase.erase(V); 2694 2695 #ifndef NDEBUG 2696 for (auto KVPair : Info.PointerToBase) 2697 assert(Updated.count(KVPair.first) && "record for non-live value"); 2698 #endif 2699 2700 Info.LiveSet = Updated; 2701 } 2702