1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Statepoint.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 41 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 42 43 using namespace llvm; 44 45 // Print tracing output 46 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 47 cl::init(false)); 48 49 // Print the liveset found at the insert location 50 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 51 cl::init(false)); 52 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", 53 cl::Hidden, cl::init(false)); 54 // Print out the base pointers for debugging 55 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", 56 cl::Hidden, cl::init(false)); 57 58 namespace { 59 struct RewriteStatepointsForGC : public FunctionPass { 60 static char ID; // Pass identification, replacement for typeid 61 62 RewriteStatepointsForGC() : FunctionPass(ID) { 63 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 64 } 65 bool runOnFunction(Function &F) override; 66 67 void getAnalysisUsage(AnalysisUsage &AU) const override { 68 // We add and rewrite a bunch of instructions, but don't really do much 69 // else. We could in theory preserve a lot more analyses here. 70 AU.addRequired<DominatorTreeWrapperPass>(); 71 } 72 }; 73 } // namespace 74 75 char RewriteStatepointsForGC::ID = 0; 76 77 FunctionPass *llvm::createRewriteStatepointsForGCPass() { 78 return new RewriteStatepointsForGC(); 79 } 80 81 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 82 "Make relocations explicit at statepoints", false, false) 83 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 84 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 85 "Make relocations explicit at statepoints", false, false) 86 87 namespace { 88 // The type of the internal cache used inside the findBasePointers family 89 // of functions. From the callers perspective, this is an opaque type and 90 // should not be inspected. 91 // 92 // In the actual implementation this caches two relations: 93 // - The base relation itself (i.e. this pointer is based on that one) 94 // - The base defining value relation (i.e. before base_phi insertion) 95 // Generally, after the execution of a full findBasePointer call, only the 96 // base relation will remain. Internally, we add a mixture of the two 97 // types, then update all the second type to the first type 98 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 99 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 100 101 struct PartiallyConstructedSafepointRecord { 102 /// The set of values known to be live accross this safepoint 103 StatepointLiveSetTy liveset; 104 105 /// Mapping from live pointers to a base-defining-value 106 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 107 108 /// Any new values which were added to the IR during base pointer analysis 109 /// for this safepoint 110 DenseSet<llvm::Value *> NewInsertedDefs; 111 112 /// The *new* gc.statepoint instruction itself. This produces the token 113 /// that normal path gc.relocates and the gc.result are tied to. 114 Instruction *StatepointToken; 115 116 /// Instruction to which exceptional gc relocates are attached 117 /// Makes it easier to iterate through them during relocationViaAlloca. 118 Instruction *UnwindToken; 119 }; 120 } 121 122 // TODO: Once we can get to the GCStrategy, this becomes 123 // Optional<bool> isGCManagedPointer(const Value *V) const override { 124 125 static bool isGCPointerType(const Type *T) { 126 if (const PointerType *PT = dyn_cast<PointerType>(T)) 127 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 128 // GC managed heap. We know that a pointer into this heap needs to be 129 // updated and that no other pointer does. 130 return (1 == PT->getAddressSpace()); 131 return false; 132 } 133 134 /// Return true if the Value is a gc reference type which is potentially used 135 /// after the instruction 'loc'. This is only used with the edge reachability 136 /// liveness code. Note: It is assumed the V dominates loc. 137 static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT, 138 LoopInfo *LI) { 139 if (!isGCPointerType(V.getType())) 140 return false; 141 142 if (V.use_empty()) 143 return false; 144 145 // Given assumption that V dominates loc, this may be live 146 return true; 147 } 148 149 #ifndef NDEBUG 150 static bool isAggWhichContainsGCPtrType(Type *Ty) { 151 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 152 return isGCPointerType(VT->getScalarType()); 153 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 154 return isGCPointerType(AT->getElementType()) || 155 isAggWhichContainsGCPtrType(AT->getElementType()); 156 if (StructType *ST = dyn_cast<StructType>(Ty)) 157 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 158 [](Type *SubType) { 159 return isGCPointerType(SubType) || 160 isAggWhichContainsGCPtrType(SubType); 161 }); 162 return false; 163 } 164 #endif 165 166 // Conservatively identifies any definitions which might be live at the 167 // given instruction. The analysis is performed immediately before the 168 // given instruction. Values defined by that instruction are not considered 169 // live. Values used by that instruction are considered live. 170 // 171 // preconditions: valid IR graph, term is either a terminator instruction or 172 // a call instruction, pred is the basic block of term, DT, LI are valid 173 // 174 // side effects: none, does not mutate IR 175 // 176 // postconditions: populates liveValues as discussed above 177 static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred, 178 DominatorTree &DT, LoopInfo *LI, 179 StatepointLiveSetTy &liveValues) { 180 liveValues.clear(); 181 182 assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator()); 183 184 Function *F = pred->getParent(); 185 186 auto is_live_gc_reference = 187 [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); }; 188 189 // Are there any gc pointer arguments live over this point? This needs to be 190 // special cased since arguments aren't defined in basic blocks. 191 for (Argument &arg : F->args()) { 192 assert(!isAggWhichContainsGCPtrType(arg.getType()) && 193 "support for FCA unimplemented"); 194 195 if (is_live_gc_reference(arg)) { 196 liveValues.insert(&arg); 197 } 198 } 199 200 // Walk through all dominating blocks - the ones which can contain 201 // definitions used in this block - and check to see if any of the values 202 // they define are used in locations potentially reachable from the 203 // interesting instruction. 204 BasicBlock *BBI = pred; 205 while (true) { 206 if (TraceLSP) { 207 errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n"; 208 } 209 assert(DT.dominates(BBI, pred)); 210 assert(isPotentiallyReachable(BBI, pred, &DT) && 211 "dominated block must be reachable"); 212 213 // Walk through the instructions in dominating blocks and keep any 214 // that have a use potentially reachable from the block we're 215 // considering putting the safepoint in 216 for (Instruction &inst : *BBI) { 217 if (TraceLSP) { 218 errs() << "[LSP] Looking at instruction "; 219 inst.dump(); 220 } 221 222 if (pred == BBI && (&inst) == term) { 223 if (TraceLSP) { 224 errs() << "[LSP] stopped because we encountered the safepoint " 225 "instruction.\n"; 226 } 227 228 // If we're in the block which defines the interesting instruction, 229 // we don't want to include any values as live which are defined 230 // _after_ the interesting line or as part of the line itself 231 // i.e. "term" is the call instruction for a call safepoint, the 232 // results of the call should not be considered live in that stackmap 233 break; 234 } 235 236 assert(!isAggWhichContainsGCPtrType(inst.getType()) && 237 "support for FCA unimplemented"); 238 239 if (is_live_gc_reference(inst)) { 240 if (TraceLSP) { 241 errs() << "[LSP] found live value for this safepoint "; 242 inst.dump(); 243 term->dump(); 244 } 245 liveValues.insert(&inst); 246 } 247 } 248 if (!DT.getNode(BBI)->getIDom()) { 249 assert(BBI == &F->getEntryBlock() && 250 "failed to find a dominator for something other than " 251 "the entry block"); 252 break; 253 } 254 BBI = DT.getNode(BBI)->getIDom()->getBlock(); 255 } 256 } 257 258 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 259 if (a->hasName() && b->hasName()) { 260 return -1 == a->getName().compare(b->getName()); 261 } else if (a->hasName() && !b->hasName()) { 262 return true; 263 } else if (!a->hasName() && b->hasName()) { 264 return false; 265 } else { 266 // Better than nothing, but not stable 267 return a < b; 268 } 269 } 270 271 /// Find the initial live set. Note that due to base pointer 272 /// insertion, the live set may be incomplete. 273 static void 274 analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS, 275 PartiallyConstructedSafepointRecord &result) { 276 Instruction *inst = CS.getInstruction(); 277 278 BasicBlock *BB = inst->getParent(); 279 StatepointLiveSetTy liveset; 280 findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset); 281 282 if (PrintLiveSet) { 283 // Note: This output is used by several of the test cases 284 // The order of elemtns in a set is not stable, put them in a vec and sort 285 // by name 286 SmallVector<Value *, 64> temp; 287 temp.insert(temp.end(), liveset.begin(), liveset.end()); 288 std::sort(temp.begin(), temp.end(), order_by_name); 289 errs() << "Live Variables:\n"; 290 for (Value *V : temp) { 291 errs() << " " << V->getName(); // no newline 292 V->dump(); 293 } 294 } 295 if (PrintLiveSetSize) { 296 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 297 errs() << "Number live values: " << liveset.size() << "\n"; 298 } 299 result.liveset = liveset; 300 } 301 302 /// True iff this value is the null pointer constant (of any pointer type) 303 static bool LLVM_ATTRIBUTE_UNUSED isNullConstant(Value *V) { 304 return isa<Constant>(V) && isa<PointerType>(V->getType()) && 305 cast<Constant>(V)->isNullValue(); 306 } 307 308 /// Helper function for findBasePointer - Will return a value which either a) 309 /// defines the base pointer for the input or b) blocks the simple search 310 /// (i.e. a PHI or Select of two derived pointers) 311 static Value *findBaseDefiningValue(Value *I) { 312 assert(I->getType()->isPointerTy() && 313 "Illegal to ask for the base pointer of a non-pointer type"); 314 315 // There are instructions which can never return gc pointer values. Sanity 316 // check 317 // that this is actually true. 318 assert(!isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) && 319 !isa<ShuffleVectorInst>(I) && "Vector types are not gc pointers"); 320 assert((!isa<Instruction>(I) || isa<InvokeInst>(I) || 321 !cast<Instruction>(I)->isTerminator()) && 322 "With the exception of invoke terminators don't define values"); 323 assert(!isa<StoreInst>(I) && !isa<FenceInst>(I) && 324 "Can't be definitions to start with"); 325 assert(!isa<ICmpInst>(I) && !isa<FCmpInst>(I) && 326 "Comparisons don't give ops"); 327 // There's a bunch of instructions which just don't make sense to apply to 328 // a pointer. The only valid reason for this would be pointer bit 329 // twiddling which we're just not going to support. 330 assert((!isa<Instruction>(I) || !cast<Instruction>(I)->isBinaryOp()) && 331 "Binary ops on pointer values are meaningless. Unless your " 332 "bit-twiddling which we don't support"); 333 334 if (Argument *Arg = dyn_cast<Argument>(I)) { 335 // An incoming argument to the function is a base pointer 336 // We should have never reached here if this argument isn't an gc value 337 assert(Arg->getType()->isPointerTy() && 338 "Base for pointer must be another pointer"); 339 return Arg; 340 } 341 342 if (GlobalVariable *global = dyn_cast<GlobalVariable>(I)) { 343 // base case 344 assert(global->getType()->isPointerTy() && 345 "Base for pointer must be another pointer"); 346 return global; 347 } 348 349 // inlining could possibly introduce phi node that contains 350 // undef if callee has multiple returns 351 if (UndefValue *undef = dyn_cast<UndefValue>(I)) { 352 assert(undef->getType()->isPointerTy() && 353 "Base for pointer must be another pointer"); 354 return undef; // utterly meaningless, but useful for dealing with 355 // partially optimized code. 356 } 357 358 // Due to inheritance, this must be _after_ the global variable and undef 359 // checks 360 if (Constant *con = dyn_cast<Constant>(I)) { 361 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 362 "order of checks wrong!"); 363 // Note: Finding a constant base for something marked for relocation 364 // doesn't really make sense. The most likely case is either a) some 365 // screwed up the address space usage or b) your validating against 366 // compiled C++ code w/o the proper separation. The only real exception 367 // is a null pointer. You could have generic code written to index of 368 // off a potentially null value and have proven it null. We also use 369 // null pointers in dead paths of relocation phis (which we might later 370 // want to find a base pointer for). 371 assert(con->getType()->isPointerTy() && 372 "Base for pointer must be another pointer"); 373 assert(con->isNullValue() && "null is the only case which makes sense"); 374 return con; 375 } 376 377 if (CastInst *CI = dyn_cast<CastInst>(I)) { 378 Value *def = CI->stripPointerCasts(); 379 assert(def->getType()->isPointerTy() && 380 "Base for pointer must be another pointer"); 381 // If we find a cast instruction here, it means we've found a cast which is 382 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 383 // handle int->ptr conversion. 384 assert(!isa<CastInst>(def) && "shouldn't find another cast here"); 385 return findBaseDefiningValue(def); 386 } 387 388 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 389 if (LI->getType()->isPointerTy()) { 390 Value *Op = LI->getOperand(0); 391 (void)Op; 392 // Has to be a pointer to an gc object, or possibly an array of such? 393 assert(Op->getType()->isPointerTy()); 394 return LI; // The value loaded is an gc base itself 395 } 396 } 397 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 398 Value *Op = GEP->getOperand(0); 399 if (Op->getType()->isPointerTy()) { 400 return findBaseDefiningValue(Op); // The base of this GEP is the base 401 } 402 } 403 404 if (AllocaInst *alloc = dyn_cast<AllocaInst>(I)) { 405 // An alloca represents a conceptual stack slot. It's the slot itself 406 // that the GC needs to know about, not the value in the slot. 407 assert(alloc->getType()->isPointerTy() && 408 "Base for pointer must be another pointer"); 409 return alloc; 410 } 411 412 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 413 switch (II->getIntrinsicID()) { 414 default: 415 // fall through to general call handling 416 break; 417 case Intrinsic::experimental_gc_statepoint: 418 case Intrinsic::experimental_gc_result_float: 419 case Intrinsic::experimental_gc_result_int: 420 llvm_unreachable("these don't produce pointers"); 421 case Intrinsic::experimental_gc_result_ptr: 422 // This is just a special case of the CallInst check below to handle a 423 // statepoint with deopt args which hasn't been rewritten for GC yet. 424 // TODO: Assert that the statepoint isn't rewritten yet. 425 return II; 426 case Intrinsic::experimental_gc_relocate: { 427 // Rerunning safepoint insertion after safepoints are already 428 // inserted is not supported. It could probably be made to work, 429 // but why are you doing this? There's no good reason. 430 llvm_unreachable("repeat safepoint insertion is not supported"); 431 } 432 case Intrinsic::gcroot: 433 // Currently, this mechanism hasn't been extended to work with gcroot. 434 // There's no reason it couldn't be, but I haven't thought about the 435 // implications much. 436 llvm_unreachable( 437 "interaction with the gcroot mechanism is not supported"); 438 } 439 } 440 // We assume that functions in the source language only return base 441 // pointers. This should probably be generalized via attributes to support 442 // both source language and internal functions. 443 if (CallInst *call = dyn_cast<CallInst>(I)) { 444 assert(call->getType()->isPointerTy() && 445 "Base for pointer must be another pointer"); 446 return call; 447 } 448 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 449 assert(invoke->getType()->isPointerTy() && 450 "Base for pointer must be another pointer"); 451 return invoke; 452 } 453 454 // I have absolutely no idea how to implement this part yet. It's not 455 // neccessarily hard, I just haven't really looked at it yet. 456 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 457 458 if (AtomicCmpXchgInst *cas = dyn_cast<AtomicCmpXchgInst>(I)) { 459 // A CAS is effectively a atomic store and load combined under a 460 // predicate. From the perspective of base pointers, we just treat it 461 // like a load. We loaded a pointer from a address in memory, that value 462 // had better be a valid base pointer. 463 return cas->getPointerOperand(); 464 } 465 if (AtomicRMWInst *atomic = dyn_cast<AtomicRMWInst>(I)) { 466 assert(AtomicRMWInst::Xchg == atomic->getOperation() && 467 "All others are binary ops which don't apply to base pointers"); 468 // semantically, a load, store pair. Treat it the same as a standard load 469 return atomic->getPointerOperand(); 470 } 471 472 // The aggregate ops. Aggregates can either be in the heap or on the 473 // stack, but in either case, this is simply a field load. As a result, 474 // this is a defining definition of the base just like a load is. 475 if (ExtractValueInst *ev = dyn_cast<ExtractValueInst>(I)) { 476 return ev; 477 } 478 479 // We should never see an insert vector since that would require we be 480 // tracing back a struct value not a pointer value. 481 assert(!isa<InsertValueInst>(I) && 482 "Base pointer for a struct is meaningless"); 483 484 // The last two cases here don't return a base pointer. Instead, they 485 // return a value which dynamically selects from amoung several base 486 // derived pointers (each with it's own base potentially). It's the job of 487 // the caller to resolve these. 488 if (SelectInst *select = dyn_cast<SelectInst>(I)) { 489 return select; 490 } 491 492 return cast<PHINode>(I); 493 } 494 495 /// Returns the base defining value for this value. 496 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &cache) { 497 Value *&Cached = cache[I]; 498 if (!Cached) { 499 Cached = findBaseDefiningValue(I); 500 } 501 assert(cache[I] != nullptr); 502 503 if (TraceLSP) { 504 errs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() 505 << "\n"; 506 } 507 return Cached; 508 } 509 510 /// Return a base pointer for this value if known. Otherwise, return it's 511 /// base defining value. 512 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &cache) { 513 Value *def = findBaseDefiningValueCached(I, cache); 514 auto Found = cache.find(def); 515 if (Found != cache.end()) { 516 // Either a base-of relation, or a self reference. Caller must check. 517 return Found->second; 518 } 519 // Only a BDV available 520 return def; 521 } 522 523 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 524 /// is it known to be a base pointer? Or do we need to continue searching. 525 static bool isKnownBaseResult(Value *v) { 526 if (!isa<PHINode>(v) && !isa<SelectInst>(v)) { 527 // no recursion possible 528 return true; 529 } 530 if (cast<Instruction>(v)->getMetadata("is_base_value")) { 531 // This is a previously inserted base phi or select. We know 532 // that this is a base value. 533 return true; 534 } 535 536 // We need to keep searching 537 return false; 538 } 539 540 // TODO: find a better name for this 541 namespace { 542 class PhiState { 543 public: 544 enum Status { Unknown, Base, Conflict }; 545 546 PhiState(Status s, Value *b = nullptr) : status(s), base(b) { 547 assert(status != Base || b); 548 } 549 PhiState(Value *b) : status(Base), base(b) {} 550 PhiState() : status(Unknown), base(nullptr) {} 551 PhiState(const PhiState &other) : status(other.status), base(other.base) { 552 assert(status != Base || base); 553 } 554 555 Status getStatus() const { return status; } 556 Value *getBase() const { return base; } 557 558 bool isBase() const { return getStatus() == Base; } 559 bool isUnknown() const { return getStatus() == Unknown; } 560 bool isConflict() const { return getStatus() == Conflict; } 561 562 bool operator==(const PhiState &other) const { 563 return base == other.base && status == other.status; 564 } 565 566 bool operator!=(const PhiState &other) const { return !(*this == other); } 567 568 void dump() { 569 errs() << status << " (" << base << " - " 570 << (base ? base->getName() : "nullptr") << "): "; 571 } 572 573 private: 574 Status status; 575 Value *base; // non null only if status == base 576 }; 577 578 typedef DenseMap<Value *, PhiState> ConflictStateMapTy; 579 // Values of type PhiState form a lattice, and this is a helper 580 // class that implementes the meet operation. The meat of the meet 581 // operation is implemented in MeetPhiStates::pureMeet 582 class MeetPhiStates { 583 public: 584 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. 585 explicit MeetPhiStates(const ConflictStateMapTy &phiStates) 586 : phiStates(phiStates) {} 587 588 // Destructively meet the current result with the base V. V can 589 // either be a merge instruction (SelectInst / PHINode), in which 590 // case its status is looked up in the phiStates map; or a regular 591 // SSA value, in which case it is assumed to be a base. 592 void meetWith(Value *V) { 593 PhiState otherState = getStateForBDV(V); 594 assert((MeetPhiStates::pureMeet(otherState, currentResult) == 595 MeetPhiStates::pureMeet(currentResult, otherState)) && 596 "math is wrong: meet does not commute!"); 597 currentResult = MeetPhiStates::pureMeet(otherState, currentResult); 598 } 599 600 PhiState getResult() const { return currentResult; } 601 602 private: 603 const ConflictStateMapTy &phiStates; 604 PhiState currentResult; 605 606 /// Return a phi state for a base defining value. We'll generate a new 607 /// base state for known bases and expect to find a cached state otherwise 608 PhiState getStateForBDV(Value *baseValue) { 609 if (isKnownBaseResult(baseValue)) { 610 return PhiState(baseValue); 611 } else { 612 return lookupFromMap(baseValue); 613 } 614 } 615 616 PhiState lookupFromMap(Value *V) { 617 auto I = phiStates.find(V); 618 assert(I != phiStates.end() && "lookup failed!"); 619 return I->second; 620 } 621 622 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { 623 switch (stateA.getStatus()) { 624 case PhiState::Unknown: 625 return stateB; 626 627 case PhiState::Base: 628 assert(stateA.getBase() && "can't be null"); 629 if (stateB.isUnknown()) 630 return stateA; 631 632 if (stateB.isBase()) { 633 if (stateA.getBase() == stateB.getBase()) { 634 assert(stateA == stateB && "equality broken!"); 635 return stateA; 636 } 637 return PhiState(PhiState::Conflict); 638 } 639 assert(stateB.isConflict() && "only three states!"); 640 return PhiState(PhiState::Conflict); 641 642 case PhiState::Conflict: 643 return stateA; 644 } 645 llvm_unreachable("only three states!"); 646 } 647 }; 648 } 649 /// For a given value or instruction, figure out what base ptr it's derived 650 /// from. For gc objects, this is simply itself. On success, returns a value 651 /// which is the base pointer. (This is reliable and can be used for 652 /// relocation.) On failure, returns nullptr. 653 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache, 654 DenseSet<llvm::Value *> &NewInsertedDefs) { 655 Value *def = findBaseOrBDV(I, cache); 656 657 if (isKnownBaseResult(def)) { 658 return def; 659 } 660 661 // Here's the rough algorithm: 662 // - For every SSA value, construct a mapping to either an actual base 663 // pointer or a PHI which obscures the base pointer. 664 // - Construct a mapping from PHI to unknown TOP state. Use an 665 // optimistic algorithm to propagate base pointer information. Lattice 666 // looks like: 667 // UNKNOWN 668 // b1 b2 b3 b4 669 // CONFLICT 670 // When algorithm terminates, all PHIs will either have a single concrete 671 // base or be in a conflict state. 672 // - For every conflict, insert a dummy PHI node without arguments. Add 673 // these to the base[Instruction] = BasePtr mapping. For every 674 // non-conflict, add the actual base. 675 // - For every conflict, add arguments for the base[a] of each input 676 // arguments. 677 // 678 // Note: A simpler form of this would be to add the conflict form of all 679 // PHIs without running the optimistic algorithm. This would be 680 // analougous to pessimistic data flow and would likely lead to an 681 // overall worse solution. 682 683 ConflictStateMapTy states; 684 states[def] = PhiState(); 685 // Recursively fill in all phis & selects reachable from the initial one 686 // for which we don't already know a definite base value for 687 // TODO: This should be rewritten with a worklist 688 bool done = false; 689 while (!done) { 690 done = true; 691 // Since we're adding elements to 'states' as we run, we can't keep 692 // iterators into the set. 693 SmallVector<Value*, 16> Keys; 694 Keys.reserve(states.size()); 695 for (auto Pair : states) { 696 Value *V = Pair.first; 697 Keys.push_back(V); 698 } 699 for (Value *v : Keys) { 700 assert(!isKnownBaseResult(v) && "why did it get added?"); 701 if (PHINode *phi = dyn_cast<PHINode>(v)) { 702 assert(phi->getNumIncomingValues() > 0 && 703 "zero input phis are illegal"); 704 for (Value *InVal : phi->incoming_values()) { 705 Value *local = findBaseOrBDV(InVal, cache); 706 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 707 states[local] = PhiState(); 708 done = false; 709 } 710 } 711 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 712 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 713 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 714 states[local] = PhiState(); 715 done = false; 716 } 717 local = findBaseOrBDV(sel->getFalseValue(), cache); 718 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 719 states[local] = PhiState(); 720 done = false; 721 } 722 } 723 } 724 } 725 726 if (TraceLSP) { 727 errs() << "States after initialization:\n"; 728 for (auto Pair : states) { 729 Instruction *v = cast<Instruction>(Pair.first); 730 PhiState state = Pair.second; 731 state.dump(); 732 v->dump(); 733 } 734 } 735 736 // TODO: come back and revisit the state transitions around inputs which 737 // have reached conflict state. The current version seems too conservative. 738 739 bool progress = true; 740 while (progress) { 741 #ifndef NDEBUG 742 size_t oldSize = states.size(); 743 #endif 744 progress = false; 745 // We're only changing keys in this loop, thus safe to keep iterators 746 for (auto Pair : states) { 747 MeetPhiStates calculateMeet(states); 748 Value *v = Pair.first; 749 assert(!isKnownBaseResult(v) && "why did it get added?"); 750 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 751 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); 752 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); 753 } else 754 for (Value *Val : cast<PHINode>(v)->incoming_values()) 755 calculateMeet.meetWith(findBaseOrBDV(Val, cache)); 756 757 PhiState oldState = states[v]; 758 PhiState newState = calculateMeet.getResult(); 759 if (oldState != newState) { 760 progress = true; 761 states[v] = newState; 762 } 763 } 764 765 assert(oldSize <= states.size()); 766 assert(oldSize == states.size() || progress); 767 } 768 769 if (TraceLSP) { 770 errs() << "States after meet iteration:\n"; 771 for (auto Pair : states) { 772 Instruction *v = cast<Instruction>(Pair.first); 773 PhiState state = Pair.second; 774 state.dump(); 775 v->dump(); 776 } 777 } 778 779 // Insert Phis for all conflicts 780 // We want to keep naming deterministic in the loop that follows, so 781 // sort the keys before iteration. This is useful in allowing us to 782 // write stable tests. Note that there is no invalidation issue here. 783 SmallVector<Value*, 16> Keys; 784 Keys.reserve(states.size()); 785 for (auto Pair : states) { 786 Value *V = Pair.first; 787 Keys.push_back(V); 788 } 789 std::sort(Keys.begin(), Keys.end(), order_by_name); 790 // TODO: adjust naming patterns to avoid this order of iteration dependency 791 for (Value *V : Keys) { 792 Instruction *v = cast<Instruction>(V); 793 PhiState state = states[V]; 794 assert(!isKnownBaseResult(v) && "why did it get added?"); 795 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 796 if (!state.isConflict()) 797 continue; 798 799 if (isa<PHINode>(v)) { 800 int num_preds = 801 std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); 802 assert(num_preds > 0 && "how did we reach here"); 803 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); 804 NewInsertedDefs.insert(phi); 805 // Add metadata marking this as a base value 806 auto *const_1 = ConstantInt::get( 807 Type::getInt32Ty( 808 v->getParent()->getParent()->getParent()->getContext()), 809 1); 810 auto MDConst = ConstantAsMetadata::get(const_1); 811 MDNode *md = MDNode::get( 812 v->getParent()->getParent()->getParent()->getContext(), MDConst); 813 phi->setMetadata("is_base_value", md); 814 states[v] = PhiState(PhiState::Conflict, phi); 815 } else { 816 SelectInst *sel = cast<SelectInst>(v); 817 // The undef will be replaced later 818 UndefValue *undef = UndefValue::get(sel->getType()); 819 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, 820 undef, "base_select", sel); 821 NewInsertedDefs.insert(basesel); 822 // Add metadata marking this as a base value 823 auto *const_1 = ConstantInt::get( 824 Type::getInt32Ty( 825 v->getParent()->getParent()->getParent()->getContext()), 826 1); 827 auto MDConst = ConstantAsMetadata::get(const_1); 828 MDNode *md = MDNode::get( 829 v->getParent()->getParent()->getParent()->getContext(), MDConst); 830 basesel->setMetadata("is_base_value", md); 831 states[v] = PhiState(PhiState::Conflict, basesel); 832 } 833 } 834 835 // Fixup all the inputs of the new PHIs 836 for (auto Pair : states) { 837 Instruction *v = cast<Instruction>(Pair.first); 838 PhiState state = Pair.second; 839 840 assert(!isKnownBaseResult(v) && "why did it get added?"); 841 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 842 if (!state.isConflict()) 843 continue; 844 845 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 846 PHINode *phi = cast<PHINode>(v); 847 unsigned NumPHIValues = phi->getNumIncomingValues(); 848 for (unsigned i = 0; i < NumPHIValues; i++) { 849 Value *InVal = phi->getIncomingValue(i); 850 BasicBlock *InBB = phi->getIncomingBlock(i); 851 852 // If we've already seen InBB, add the same incoming value 853 // we added for it earlier. The IR verifier requires phi 854 // nodes with multiple entries from the same basic block 855 // to have the same incoming value for each of those 856 // entries. If we don't do this check here and basephi 857 // has a different type than base, we'll end up adding two 858 // bitcasts (and hence two distinct values) as incoming 859 // values for the same basic block. 860 861 int blockIndex = basephi->getBasicBlockIndex(InBB); 862 if (blockIndex != -1) { 863 Value *oldBase = basephi->getIncomingValue(blockIndex); 864 basephi->addIncoming(oldBase, InBB); 865 #ifndef NDEBUG 866 Value *base = findBaseOrBDV(InVal, cache); 867 if (!isKnownBaseResult(base)) { 868 // Either conflict or base. 869 assert(states.count(base)); 870 base = states[base].getBase(); 871 assert(base != nullptr && "unknown PhiState!"); 872 assert(NewInsertedDefs.count(base) && 873 "should have already added this in a prev. iteration!"); 874 } 875 876 // In essense this assert states: the only way two 877 // values incoming from the same basic block may be 878 // different is by being different bitcasts of the same 879 // value. A cleanup that remains TODO is changing 880 // findBaseOrBDV to return an llvm::Value of the correct 881 // type (and still remain pure). This will remove the 882 // need to add bitcasts. 883 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 884 "sanity -- findBaseOrBDV should be pure!"); 885 #endif 886 continue; 887 } 888 889 // Find either the defining value for the PHI or the normal base for 890 // a non-phi node 891 Value *base = findBaseOrBDV(InVal, cache); 892 if (!isKnownBaseResult(base)) { 893 // Either conflict or base. 894 assert(states.count(base)); 895 base = states[base].getBase(); 896 assert(base != nullptr && "unknown PhiState!"); 897 } 898 assert(base && "can't be null"); 899 // Must use original input BB since base may not be Instruction 900 // The cast is needed since base traversal may strip away bitcasts 901 if (base->getType() != basephi->getType()) { 902 base = new BitCastInst(base, basephi->getType(), "cast", 903 InBB->getTerminator()); 904 NewInsertedDefs.insert(base); 905 } 906 basephi->addIncoming(base, InBB); 907 } 908 assert(basephi->getNumIncomingValues() == NumPHIValues); 909 } else { 910 SelectInst *basesel = cast<SelectInst>(state.getBase()); 911 SelectInst *sel = cast<SelectInst>(v); 912 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 913 // something more safe and less hacky. 914 for (int i = 1; i <= 2; i++) { 915 Value *InVal = sel->getOperand(i); 916 // Find either the defining value for the PHI or the normal base for 917 // a non-phi node 918 Value *base = findBaseOrBDV(InVal, cache); 919 if (!isKnownBaseResult(base)) { 920 // Either conflict or base. 921 assert(states.count(base)); 922 base = states[base].getBase(); 923 assert(base != nullptr && "unknown PhiState!"); 924 } 925 assert(base && "can't be null"); 926 // Must use original input BB since base may not be Instruction 927 // The cast is needed since base traversal may strip away bitcasts 928 if (base->getType() != basesel->getType()) { 929 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 930 NewInsertedDefs.insert(base); 931 } 932 basesel->setOperand(i, base); 933 } 934 } 935 } 936 937 // Cache all of our results so we can cheaply reuse them 938 // NOTE: This is actually two caches: one of the base defining value 939 // relation and one of the base pointer relation! FIXME 940 for (auto item : states) { 941 Value *v = item.first; 942 Value *base = item.second.getBase(); 943 assert(v && base); 944 assert(!isKnownBaseResult(v) && "why did it get added?"); 945 946 if (TraceLSP) { 947 std::string fromstr = 948 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 949 : "none"; 950 errs() << "Updating base value cache" 951 << " for: " << (v->hasName() ? v->getName() : "") 952 << " from: " << fromstr 953 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 954 } 955 956 assert(isKnownBaseResult(base) && 957 "must be something we 'know' is a base pointer"); 958 if (cache.count(v)) { 959 // Once we transition from the BDV relation being store in the cache to 960 // the base relation being stored, it must be stable 961 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 962 "base relation should be stable"); 963 } 964 cache[v] = base; 965 } 966 assert(cache.find(def) != cache.end()); 967 return cache[def]; 968 } 969 970 // For a set of live pointers (base and/or derived), identify the base 971 // pointer of the object which they are derived from. This routine will 972 // mutate the IR graph as needed to make the 'base' pointer live at the 973 // definition site of 'derived'. This ensures that any use of 'derived' can 974 // also use 'base'. This may involve the insertion of a number of 975 // additional PHI nodes. 976 // 977 // preconditions: live is a set of pointer type Values 978 // 979 // side effects: may insert PHI nodes into the existing CFG, will preserve 980 // CFG, will not remove or mutate any existing nodes 981 // 982 // post condition: PointerToBase contains one (derived, base) pair for every 983 // pointer in live. Note that derived can be equal to base if the original 984 // pointer was a base pointer. 985 static void findBasePointers(const StatepointLiveSetTy &live, 986 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 987 DominatorTree *DT, DefiningValueMapTy &DVCache, 988 DenseSet<llvm::Value *> &NewInsertedDefs) { 989 // For the naming of values inserted to be deterministic - which makes for 990 // much cleaner and more stable tests - we need to assign an order to the 991 // live values. DenseSets do not provide a deterministic order across runs. 992 SmallVector<Value*, 64> Temp; 993 Temp.insert(Temp.end(), live.begin(), live.end()); 994 std::sort(Temp.begin(), Temp.end(), order_by_name); 995 for (Value *ptr : Temp) { 996 Value *base = findBasePointer(ptr, DVCache, NewInsertedDefs); 997 assert(base && "failed to find base pointer"); 998 PointerToBase[ptr] = base; 999 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1000 DT->dominates(cast<Instruction>(base)->getParent(), 1001 cast<Instruction>(ptr)->getParent())) && 1002 "The base we found better dominate the derived pointer"); 1003 1004 // If you see this trip and like to live really dangerously, the code should 1005 // be correct, just with idioms the verifier can't handle. You can try 1006 // disabling the verifier at your own substaintial risk. 1007 assert(!isNullConstant(base) && "the relocation code needs adjustment to " 1008 "handle the relocation of a null pointer " 1009 "constant without causing false positives " 1010 "in the safepoint ir verifier."); 1011 } 1012 } 1013 1014 /// Find the required based pointers (and adjust the live set) for the given 1015 /// parse point. 1016 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1017 const CallSite &CS, 1018 PartiallyConstructedSafepointRecord &result) { 1019 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 1020 DenseSet<llvm::Value *> NewInsertedDefs; 1021 findBasePointers(result.liveset, PointerToBase, &DT, DVCache, NewInsertedDefs); 1022 1023 if (PrintBasePointers) { 1024 // Note: Need to print these in a stable order since this is checked in 1025 // some tests. 1026 errs() << "Base Pairs (w/o Relocation):\n"; 1027 SmallVector<Value*, 64> Temp; 1028 Temp.reserve(PointerToBase.size()); 1029 for (auto Pair : PointerToBase) { 1030 Temp.push_back(Pair.first); 1031 } 1032 std::sort(Temp.begin(), Temp.end(), order_by_name); 1033 for (Value *Ptr : Temp) { 1034 Value *Base = PointerToBase[Ptr]; 1035 errs() << " derived %" << Ptr->getName() << " base %" 1036 << Base->getName() << "\n"; 1037 } 1038 } 1039 1040 result.PointerToBase = PointerToBase; 1041 result.NewInsertedDefs = NewInsertedDefs; 1042 } 1043 1044 /// Check for liveness of items in the insert defs and add them to the live 1045 /// and base pointer sets 1046 static void fixupLiveness(DominatorTree &DT, const CallSite &CS, 1047 const DenseSet<Value *> &allInsertedDefs, 1048 PartiallyConstructedSafepointRecord &result) { 1049 Instruction *inst = CS.getInstruction(); 1050 1051 auto liveset = result.liveset; 1052 auto PointerToBase = result.PointerToBase; 1053 1054 auto is_live_gc_reference = 1055 [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); }; 1056 1057 // For each new definition, check to see if a) the definition dominates the 1058 // instruction we're interested in, and b) one of the uses of that definition 1059 // is edge-reachable from the instruction we're interested in. This is the 1060 // same definition of liveness we used in the intial liveness analysis 1061 for (Value *newDef : allInsertedDefs) { 1062 if (liveset.count(newDef)) { 1063 // already live, no action needed 1064 continue; 1065 } 1066 1067 // PERF: Use DT to check instruction domination might not be good for 1068 // compilation time, and we could change to optimal solution if this 1069 // turn to be a issue 1070 if (!DT.dominates(cast<Instruction>(newDef), inst)) { 1071 // can't possibly be live at inst 1072 continue; 1073 } 1074 1075 if (is_live_gc_reference(*newDef)) { 1076 // Add the live new defs into liveset and PointerToBase 1077 liveset.insert(newDef); 1078 PointerToBase[newDef] = newDef; 1079 } 1080 } 1081 1082 result.liveset = liveset; 1083 result.PointerToBase = PointerToBase; 1084 } 1085 1086 static void fixupLiveReferences( 1087 Function &F, DominatorTree &DT, Pass *P, 1088 const DenseSet<llvm::Value *> &allInsertedDefs, 1089 ArrayRef<CallSite> toUpdate, 1090 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1091 for (size_t i = 0; i < records.size(); i++) { 1092 struct PartiallyConstructedSafepointRecord &info = records[i]; 1093 const CallSite &CS = toUpdate[i]; 1094 fixupLiveness(DT, CS, allInsertedDefs, info); 1095 } 1096 } 1097 1098 // Normalize basic block to make it ready to be target of invoke statepoint. 1099 // It means spliting it to have single predecessor. Return newly created BB 1100 // ready to be successor of invoke statepoint. 1101 static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB, 1102 BasicBlock *InvokeParent, 1103 Pass *P) { 1104 BasicBlock *ret = BB; 1105 1106 if (!BB->getUniquePredecessor()) { 1107 ret = SplitBlockPredecessors(BB, InvokeParent, ""); 1108 } 1109 1110 // Another requirement for such basic blocks is to not have any phi nodes. 1111 // Since we just ensured that new BB will have single predecessor, 1112 // all phi nodes in it will have one value. Here it would be naturall place 1113 // to 1114 // remove them all. But we can not do this because we are risking to remove 1115 // one of the values stored in liveset of another statepoint. We will do it 1116 // later after placing all safepoints. 1117 1118 return ret; 1119 } 1120 1121 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1122 auto itr = std::find(livevec.begin(), livevec.end(), val); 1123 assert(livevec.end() != itr); 1124 size_t index = std::distance(livevec.begin(), itr); 1125 assert(index < livevec.size()); 1126 return index; 1127 } 1128 1129 // Create new attribute set containing only attributes which can be transfered 1130 // from original call to the safepoint. 1131 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1132 AttributeSet ret; 1133 1134 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1135 unsigned index = AS.getSlotIndex(Slot); 1136 1137 if (index == AttributeSet::ReturnIndex || 1138 index == AttributeSet::FunctionIndex) { 1139 1140 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1141 ++it) { 1142 Attribute attr = *it; 1143 1144 // Do not allow certain attributes - just skip them 1145 // Safepoint can not be read only or read none. 1146 if (attr.hasAttribute(Attribute::ReadNone) || 1147 attr.hasAttribute(Attribute::ReadOnly)) 1148 continue; 1149 1150 ret = ret.addAttributes( 1151 AS.getContext(), index, 1152 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1153 } 1154 } 1155 1156 // Just skip parameter attributes for now 1157 } 1158 1159 return ret; 1160 } 1161 1162 /// Helper function to place all gc relocates necessary for the given 1163 /// statepoint. 1164 /// Inputs: 1165 /// liveVariables - list of variables to be relocated. 1166 /// liveStart - index of the first live variable. 1167 /// basePtrs - base pointers. 1168 /// statepointToken - statepoint instruction to which relocates should be 1169 /// bound. 1170 /// Builder - Llvm IR builder to be used to construct new calls. 1171 void CreateGCRelocates(ArrayRef<llvm::Value *> liveVariables, 1172 const int liveStart, 1173 ArrayRef<llvm::Value *> basePtrs, 1174 Instruction *statepointToken, IRBuilder<> Builder) { 1175 1176 SmallVector<Instruction *, 64> NewDefs; 1177 NewDefs.reserve(liveVariables.size()); 1178 1179 Module *M = statepointToken->getParent()->getParent()->getParent(); 1180 1181 for (unsigned i = 0; i < liveVariables.size(); i++) { 1182 // We generate a (potentially) unique declaration for every pointer type 1183 // combination. This results is some blow up the function declarations in 1184 // the IR, but removes the need for argument bitcasts which shrinks the IR 1185 // greatly and makes it much more readable. 1186 SmallVector<Type *, 1> types; // one per 'any' type 1187 types.push_back(liveVariables[i]->getType()); // result type 1188 Value *gc_relocate_decl = Intrinsic::getDeclaration( 1189 M, Intrinsic::experimental_gc_relocate, types); 1190 1191 // Generate the gc.relocate call and save the result 1192 Value *baseIdx = 1193 ConstantInt::get(Type::getInt32Ty(M->getContext()), 1194 liveStart + find_index(liveVariables, basePtrs[i])); 1195 Value *liveIdx = ConstantInt::get( 1196 Type::getInt32Ty(M->getContext()), 1197 liveStart + find_index(liveVariables, liveVariables[i])); 1198 1199 // only specify a debug name if we can give a useful one 1200 Value *reloc = Builder.CreateCall3( 1201 gc_relocate_decl, statepointToken, baseIdx, liveIdx, 1202 liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" 1203 : ""); 1204 // Trick CodeGen into thinking there are lots of free registers at this 1205 // fake call. 1206 cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold); 1207 1208 NewDefs.push_back(cast<Instruction>(reloc)); 1209 } 1210 assert(NewDefs.size() == liveVariables.size() && 1211 "missing or extra redefinition at safepoint"); 1212 } 1213 1214 static void 1215 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1216 const SmallVectorImpl<llvm::Value *> &basePtrs, 1217 const SmallVectorImpl<llvm::Value *> &liveVariables, 1218 Pass *P, 1219 PartiallyConstructedSafepointRecord &result) { 1220 assert(basePtrs.size() == liveVariables.size()); 1221 assert(isStatepoint(CS) && 1222 "This method expects to be rewriting a statepoint"); 1223 1224 BasicBlock *BB = CS.getInstruction()->getParent(); 1225 assert(BB); 1226 Function *F = BB->getParent(); 1227 assert(F && "must be set"); 1228 Module *M = F->getParent(); 1229 (void)M; 1230 assert(M && "must be set"); 1231 1232 // We're not changing the function signature of the statepoint since the gc 1233 // arguments go into the var args section. 1234 Function *gc_statepoint_decl = CS.getCalledFunction(); 1235 1236 // Then go ahead and use the builder do actually do the inserts. We insert 1237 // immediately before the previous instruction under the assumption that all 1238 // arguments will be available here. We can't insert afterwards since we may 1239 // be replacing a terminator. 1240 Instruction *insertBefore = CS.getInstruction(); 1241 IRBuilder<> Builder(insertBefore); 1242 // Copy all of the arguments from the original statepoint - this includes the 1243 // target, call args, and deopt args 1244 SmallVector<llvm::Value *, 64> args; 1245 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1246 // TODO: Clear the 'needs rewrite' flag 1247 1248 // add all the pointers to be relocated (gc arguments) 1249 // Capture the start of the live variable list for use in the gc_relocates 1250 const int live_start = args.size(); 1251 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1252 1253 // Create the statepoint given all the arguments 1254 Instruction *token = nullptr; 1255 AttributeSet return_attributes; 1256 if (CS.isCall()) { 1257 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1258 CallInst *call = 1259 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1260 call->setTailCall(toReplace->isTailCall()); 1261 call->setCallingConv(toReplace->getCallingConv()); 1262 1263 // Currently we will fail on parameter attributes and on certain 1264 // function attributes. 1265 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1266 // In case if we can handle this set of sttributes - set up function attrs 1267 // directly on statepoint and return attrs later for gc_result intrinsic. 1268 call->setAttributes(new_attrs.getFnAttributes()); 1269 return_attributes = new_attrs.getRetAttributes(); 1270 1271 token = call; 1272 1273 // Put the following gc_result and gc_relocate calls immediately after the 1274 // the old call (which we're about to delete) 1275 BasicBlock::iterator next(toReplace); 1276 assert(BB->end() != next && "not a terminator, must have next"); 1277 next++; 1278 Instruction *IP = &*(next); 1279 Builder.SetInsertPoint(IP); 1280 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1281 1282 } else { 1283 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1284 1285 // Insert the new invoke into the old block. We'll remove the old one in a 1286 // moment at which point this will become the new terminator for the 1287 // original block. 1288 InvokeInst *invoke = InvokeInst::Create( 1289 gc_statepoint_decl, toReplace->getNormalDest(), 1290 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1291 invoke->setCallingConv(toReplace->getCallingConv()); 1292 1293 // Currently we will fail on parameter attributes and on certain 1294 // function attributes. 1295 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1296 // In case if we can handle this set of sttributes - set up function attrs 1297 // directly on statepoint and return attrs later for gc_result intrinsic. 1298 invoke->setAttributes(new_attrs.getFnAttributes()); 1299 return_attributes = new_attrs.getRetAttributes(); 1300 1301 token = invoke; 1302 1303 // Generate gc relocates in exceptional path 1304 BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint( 1305 toReplace->getUnwindDest(), invoke->getParent(), P); 1306 1307 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1308 Builder.SetInsertPoint(IP); 1309 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1310 1311 // Extract second element from landingpad return value. We will attach 1312 // exceptional gc relocates to it. 1313 const unsigned idx = 1; 1314 Instruction *exceptional_token = 1315 cast<Instruction>(Builder.CreateExtractValue( 1316 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1317 result.UnwindToken = exceptional_token; 1318 1319 // Just throw away return value. We will use the one we got for normal 1320 // block. 1321 (void)CreateGCRelocates(liveVariables, live_start, basePtrs, 1322 exceptional_token, Builder); 1323 1324 // Generate gc relocates and returns for normal block 1325 BasicBlock *normalDest = normalizeBBForInvokeSafepoint( 1326 toReplace->getNormalDest(), invoke->getParent(), P); 1327 1328 IP = &*(normalDest->getFirstInsertionPt()); 1329 Builder.SetInsertPoint(IP); 1330 1331 // gc relocates will be generated later as if it were regular call 1332 // statepoint 1333 } 1334 assert(token); 1335 1336 // Take the name of the original value call if it had one. 1337 token->takeName(CS.getInstruction()); 1338 1339 // The GCResult is already inserted, we just need to find it 1340 #ifndef NDEBUG 1341 Instruction *toReplace = CS.getInstruction(); 1342 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1343 "only valid use before rewrite is gc.result"); 1344 assert(!toReplace->hasOneUse() || 1345 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1346 #endif 1347 1348 // Update the gc.result of the original statepoint (if any) to use the newly 1349 // inserted statepoint. This is safe to do here since the token can't be 1350 // considered a live reference. 1351 CS.getInstruction()->replaceAllUsesWith(token); 1352 1353 result.StatepointToken = token; 1354 1355 // Second, create a gc.relocate for every live variable 1356 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1357 1358 } 1359 1360 namespace { 1361 struct name_ordering { 1362 Value *base; 1363 Value *derived; 1364 bool operator()(name_ordering const &a, name_ordering const &b) { 1365 return -1 == a.derived->getName().compare(b.derived->getName()); 1366 } 1367 }; 1368 } 1369 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1370 SmallVectorImpl<Value *> &livevec) { 1371 assert(basevec.size() == livevec.size()); 1372 1373 SmallVector<name_ordering, 64> temp; 1374 for (size_t i = 0; i < basevec.size(); i++) { 1375 name_ordering v; 1376 v.base = basevec[i]; 1377 v.derived = livevec[i]; 1378 temp.push_back(v); 1379 } 1380 std::sort(temp.begin(), temp.end(), name_ordering()); 1381 for (size_t i = 0; i < basevec.size(); i++) { 1382 basevec[i] = temp[i].base; 1383 livevec[i] = temp[i].derived; 1384 } 1385 } 1386 1387 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1388 // which make the relocations happening at this safepoint explicit. 1389 // 1390 // WARNING: Does not do any fixup to adjust users of the original live 1391 // values. That's the callers responsibility. 1392 static void 1393 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1394 PartiallyConstructedSafepointRecord &result) { 1395 auto liveset = result.liveset; 1396 auto PointerToBase = result.PointerToBase; 1397 1398 // Convert to vector for efficient cross referencing. 1399 SmallVector<Value *, 64> basevec, livevec; 1400 livevec.reserve(liveset.size()); 1401 basevec.reserve(liveset.size()); 1402 for (Value *L : liveset) { 1403 livevec.push_back(L); 1404 1405 assert(PointerToBase.find(L) != PointerToBase.end()); 1406 Value *base = PointerToBase[L]; 1407 basevec.push_back(base); 1408 } 1409 assert(livevec.size() == basevec.size()); 1410 1411 // To make the output IR slightly more stable (for use in diffs), ensure a 1412 // fixed order of the values in the safepoint (by sorting the value name). 1413 // The order is otherwise meaningless. 1414 stablize_order(basevec, livevec); 1415 1416 // Do the actual rewriting and delete the old statepoint 1417 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1418 CS.getInstruction()->eraseFromParent(); 1419 } 1420 1421 // Helper function for the relocationViaAlloca. 1422 // It receives iterator to the statepoint gc relocates and emits store to the 1423 // assigned 1424 // location (via allocaMap) for the each one of them. 1425 // Add visited values into the visitedLiveValues set we will later use them 1426 // for sanity check. 1427 static void 1428 insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs, 1429 DenseMap<Value *, Value *> &allocaMap, 1430 DenseSet<Value *> &visitedLiveValues) { 1431 1432 for (User *U : gcRelocs) { 1433 if (!isa<IntrinsicInst>(U)) 1434 continue; 1435 1436 IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U); 1437 1438 // We only care about relocates 1439 if (relocatedValue->getIntrinsicID() != 1440 Intrinsic::experimental_gc_relocate) { 1441 continue; 1442 } 1443 1444 GCRelocateOperands relocateOperands(relocatedValue); 1445 Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr()); 1446 assert(allocaMap.count(originalValue)); 1447 Value *alloca = allocaMap[originalValue]; 1448 1449 // Emit store into the related alloca 1450 StoreInst *store = new StoreInst(relocatedValue, alloca); 1451 store->insertAfter(relocatedValue); 1452 1453 #ifndef NDEBUG 1454 visitedLiveValues.insert(originalValue); 1455 #endif 1456 } 1457 } 1458 1459 /// do all the relocation update via allocas and mem2reg 1460 static void relocationViaAlloca( 1461 Function &F, DominatorTree &DT, ArrayRef<Value *> live, 1462 ArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1463 #ifndef NDEBUG 1464 int initialAllocaNum = 0; 1465 1466 // record initial number of allocas 1467 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1468 itr++) { 1469 if (isa<AllocaInst>(*itr)) 1470 initialAllocaNum++; 1471 } 1472 #endif 1473 1474 // TODO-PERF: change data structures, reserve 1475 DenseMap<Value *, Value *> allocaMap; 1476 SmallVector<AllocaInst *, 200> PromotableAllocas; 1477 PromotableAllocas.reserve(live.size()); 1478 1479 // emit alloca for each live gc pointer 1480 for (unsigned i = 0; i < live.size(); i++) { 1481 Value *liveValue = live[i]; 1482 AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", 1483 F.getEntryBlock().getFirstNonPHI()); 1484 allocaMap[liveValue] = alloca; 1485 PromotableAllocas.push_back(alloca); 1486 } 1487 1488 // The next two loops are part of the same conceptual operation. We need to 1489 // insert a store to the alloca after the original def and at each 1490 // redefinition. We need to insert a load before each use. These are split 1491 // into distinct loops for performance reasons. 1492 1493 // update gc pointer after each statepoint 1494 // either store a relocated value or null (if no relocated value found for 1495 // this gc pointer and it is not a gc_result) 1496 // this must happen before we update the statepoint with load of alloca 1497 // otherwise we lose the link between statepoint and old def 1498 for (size_t i = 0; i < records.size(); i++) { 1499 const struct PartiallyConstructedSafepointRecord &info = records[i]; 1500 Value *Statepoint = info.StatepointToken; 1501 1502 // This will be used for consistency check 1503 DenseSet<Value *> visitedLiveValues; 1504 1505 // Insert stores for normal statepoint gc relocates 1506 insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues); 1507 1508 // In case if it was invoke statepoint 1509 // we will insert stores for exceptional path gc relocates. 1510 if (isa<InvokeInst>(Statepoint)) { 1511 insertRelocationStores(info.UnwindToken->users(), 1512 allocaMap, visitedLiveValues); 1513 } 1514 1515 #ifndef NDEBUG 1516 // As a debuging aid, pretend that an unrelocated pointer becomes null at 1517 // the gc.statepoint. This will turn some subtle GC problems into slightly 1518 // easier to debug SEGVs 1519 SmallVector<AllocaInst *, 64> ToClobber; 1520 for (auto Pair : allocaMap) { 1521 Value *Def = Pair.first; 1522 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1523 1524 // This value was relocated 1525 if (visitedLiveValues.count(Def)) { 1526 continue; 1527 } 1528 ToClobber.push_back(Alloca); 1529 } 1530 1531 auto InsertClobbersAt = [&](Instruction *IP) { 1532 for (auto *AI : ToClobber) { 1533 auto AIType = cast<PointerType>(AI->getType()); 1534 auto PT = cast<PointerType>(AIType->getElementType()); 1535 Constant *CPN = ConstantPointerNull::get(PT); 1536 StoreInst *store = new StoreInst(CPN, AI); 1537 store->insertBefore(IP); 1538 } 1539 }; 1540 1541 // Insert the clobbering stores. These may get intermixed with the 1542 // gc.results and gc.relocates, but that's fine. 1543 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1544 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1545 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1546 } else { 1547 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1548 Next++; 1549 InsertClobbersAt(Next); 1550 } 1551 #endif 1552 } 1553 // update use with load allocas and add store for gc_relocated 1554 for (auto Pair : allocaMap) { 1555 Value *def = Pair.first; 1556 Value *alloca = Pair.second; 1557 1558 // we pre-record the uses of allocas so that we dont have to worry about 1559 // later update 1560 // that change the user information. 1561 SmallVector<Instruction *, 20> uses; 1562 // PERF: trade a linear scan for repeated reallocation 1563 uses.reserve(std::distance(def->user_begin(), def->user_end())); 1564 for (User *U : def->users()) { 1565 if (!isa<ConstantExpr>(U)) { 1566 // If the def has a ConstantExpr use, then the def is either a 1567 // ConstantExpr use itself or null. In either case 1568 // (recursively in the first, directly in the second), the oop 1569 // it is ultimately dependent on is null and this particular 1570 // use does not need to be fixed up. 1571 uses.push_back(cast<Instruction>(U)); 1572 } 1573 } 1574 1575 std::sort(uses.begin(), uses.end()); 1576 auto last = std::unique(uses.begin(), uses.end()); 1577 uses.erase(last, uses.end()); 1578 1579 for (Instruction *use : uses) { 1580 if (isa<PHINode>(use)) { 1581 PHINode *phi = cast<PHINode>(use); 1582 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 1583 if (def == phi->getIncomingValue(i)) { 1584 LoadInst *load = new LoadInst( 1585 alloca, "", phi->getIncomingBlock(i)->getTerminator()); 1586 phi->setIncomingValue(i, load); 1587 } 1588 } 1589 } else { 1590 LoadInst *load = new LoadInst(alloca, "", use); 1591 use->replaceUsesOfWith(def, load); 1592 } 1593 } 1594 1595 // emit store for the initial gc value 1596 // store must be inserted after load, otherwise store will be in alloca's 1597 // use list and an extra load will be inserted before it 1598 StoreInst *store = new StoreInst(def, alloca); 1599 if (isa<Instruction>(def)) { 1600 store->insertAfter(cast<Instruction>(def)); 1601 } else { 1602 assert((isa<Argument>(def) || isa<GlobalVariable>(def) || 1603 (isa<Constant>(def) && cast<Constant>(def)->isNullValue())) && 1604 "Must be argument or global"); 1605 store->insertAfter(cast<Instruction>(alloca)); 1606 } 1607 } 1608 1609 assert(PromotableAllocas.size() == live.size() && 1610 "we must have the same allocas with lives"); 1611 if (!PromotableAllocas.empty()) { 1612 // apply mem2reg to promote alloca to SSA 1613 PromoteMemToReg(PromotableAllocas, DT); 1614 } 1615 1616 #ifndef NDEBUG 1617 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1618 itr++) { 1619 if (isa<AllocaInst>(*itr)) 1620 initialAllocaNum--; 1621 } 1622 assert(initialAllocaNum == 0 && "We must not introduce any extra allocas"); 1623 #endif 1624 } 1625 1626 /// Implement a unique function which doesn't require we sort the input 1627 /// vector. Doing so has the effect of changing the output of a couple of 1628 /// tests in ways which make them less useful in testing fused safepoints. 1629 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1630 DenseSet<T> Seen; 1631 SmallVector<T, 128> TempVec; 1632 TempVec.reserve(Vec.size()); 1633 for (auto Element : Vec) 1634 TempVec.push_back(Element); 1635 Vec.clear(); 1636 for (auto V : TempVec) { 1637 if (Seen.insert(V).second) { 1638 Vec.push_back(V); 1639 } 1640 } 1641 } 1642 1643 static Function *getUseHolder(Module &M) { 1644 FunctionType *ftype = 1645 FunctionType::get(Type::getVoidTy(M.getContext()), true); 1646 Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype)); 1647 return Func; 1648 } 1649 1650 /// Insert holders so that each Value is obviously live through the entire 1651 /// liftetime of the call. 1652 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1653 SmallVectorImpl<CallInst *> &holders) { 1654 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1655 Function *Func = getUseHolder(*M); 1656 if (CS.isCall()) { 1657 // For call safepoints insert dummy calls right after safepoint 1658 BasicBlock::iterator next(CS.getInstruction()); 1659 next++; 1660 CallInst *base_holder = CallInst::Create(Func, Values, "", next); 1661 holders.push_back(base_holder); 1662 } else if (CS.isInvoke()) { 1663 // For invoke safepooints insert dummy calls both in normal and 1664 // exceptional destination blocks 1665 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 1666 CallInst *normal_holder = CallInst::Create( 1667 Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt()); 1668 CallInst *unwind_holder = CallInst::Create( 1669 Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt()); 1670 holders.push_back(normal_holder); 1671 holders.push_back(unwind_holder); 1672 } else 1673 llvm_unreachable("unsupported call type"); 1674 } 1675 1676 static void findLiveReferences( 1677 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1678 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1679 for (size_t i = 0; i < records.size(); i++) { 1680 struct PartiallyConstructedSafepointRecord &info = records[i]; 1681 const CallSite &CS = toUpdate[i]; 1682 analyzeParsePointLiveness(DT, CS, info); 1683 } 1684 } 1685 1686 static void addBasesAsLiveValues(StatepointLiveSetTy &liveset, 1687 DenseMap<Value *, Value *> &PointerToBase) { 1688 // Identify any base pointers which are used in this safepoint, but not 1689 // themselves relocated. We need to relocate them so that later inserted 1690 // safepoints can get the properly relocated base register. 1691 DenseSet<Value *> missing; 1692 for (Value *L : liveset) { 1693 assert(PointerToBase.find(L) != PointerToBase.end()); 1694 Value *base = PointerToBase[L]; 1695 assert(base); 1696 if (liveset.find(base) == liveset.end()) { 1697 assert(PointerToBase.find(base) == PointerToBase.end()); 1698 // uniqued by set insert 1699 missing.insert(base); 1700 } 1701 } 1702 1703 // Note that we want these at the end of the list, otherwise 1704 // register placement gets screwed up once we lower to STATEPOINT 1705 // instructions. This is an utter hack, but there doesn't seem to be a 1706 // better one. 1707 for (Value *base : missing) { 1708 assert(base); 1709 liveset.insert(base); 1710 PointerToBase[base] = base; 1711 } 1712 assert(liveset.size() == PointerToBase.size()); 1713 } 1714 1715 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 1716 SmallVectorImpl<CallSite> &toUpdate) { 1717 #ifndef NDEBUG 1718 // sanity check the input 1719 std::set<CallSite> uniqued; 1720 uniqued.insert(toUpdate.begin(), toUpdate.end()); 1721 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 1722 1723 for (size_t i = 0; i < toUpdate.size(); i++) { 1724 CallSite &CS = toUpdate[i]; 1725 assert(CS.getInstruction()->getParent()->getParent() == &F); 1726 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 1727 } 1728 #endif 1729 1730 // A list of dummy calls added to the IR to keep various values obviously 1731 // live in the IR. We'll remove all of these when done. 1732 SmallVector<CallInst *, 64> holders; 1733 1734 // Insert a dummy call with all of the arguments to the vm_state we'll need 1735 // for the actual safepoint insertion. This ensures reference arguments in 1736 // the deopt argument list are considered live through the safepoint (and 1737 // thus makes sure they get relocated.) 1738 for (size_t i = 0; i < toUpdate.size(); i++) { 1739 CallSite &CS = toUpdate[i]; 1740 Statepoint StatepointCS(CS); 1741 1742 SmallVector<Value *, 64> DeoptValues; 1743 for (Use &U : StatepointCS.vm_state_args()) { 1744 Value *Arg = cast<Value>(&U); 1745 if (isGCPointerType(Arg->getType())) 1746 DeoptValues.push_back(Arg); 1747 } 1748 insertUseHolderAfter(CS, DeoptValues, holders); 1749 } 1750 1751 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 1752 records.reserve(toUpdate.size()); 1753 for (size_t i = 0; i < toUpdate.size(); i++) { 1754 struct PartiallyConstructedSafepointRecord info; 1755 records.push_back(info); 1756 } 1757 assert(records.size() == toUpdate.size()); 1758 1759 // A) Identify all gc pointers which are staticly live at the given call 1760 // site. 1761 findLiveReferences(F, DT, P, toUpdate, records); 1762 1763 // B) Find the base pointers for each live pointer 1764 /* scope for caching */ { 1765 // Cache the 'defining value' relation used in the computation and 1766 // insertion of base phis and selects. This ensures that we don't insert 1767 // large numbers of duplicate base_phis. 1768 DefiningValueMapTy DVCache; 1769 1770 for (size_t i = 0; i < records.size(); i++) { 1771 struct PartiallyConstructedSafepointRecord &info = records[i]; 1772 CallSite &CS = toUpdate[i]; 1773 findBasePointers(DT, DVCache, CS, info); 1774 } 1775 } // end of cache scope 1776 1777 // The base phi insertion logic (for any safepoint) may have inserted new 1778 // instructions which are now live at some safepoint. The simplest such 1779 // example is: 1780 // loop: 1781 // phi a <-- will be a new base_phi here 1782 // safepoint 1 <-- that needs to be live here 1783 // gep a + 1 1784 // safepoint 2 1785 // br loop 1786 DenseSet<llvm::Value *> allInsertedDefs; 1787 for (size_t i = 0; i < records.size(); i++) { 1788 struct PartiallyConstructedSafepointRecord &info = records[i]; 1789 allInsertedDefs.insert(info.NewInsertedDefs.begin(), 1790 info.NewInsertedDefs.end()); 1791 } 1792 1793 // We insert some dummy calls after each safepoint to definitely hold live 1794 // the base pointers which were identified for that safepoint. We'll then 1795 // ask liveness for _every_ base inserted to see what is now live. Then we 1796 // remove the dummy calls. 1797 holders.reserve(holders.size() + records.size()); 1798 for (size_t i = 0; i < records.size(); i++) { 1799 struct PartiallyConstructedSafepointRecord &info = records[i]; 1800 CallSite &CS = toUpdate[i]; 1801 1802 SmallVector<Value *, 128> Bases; 1803 for (auto Pair : info.PointerToBase) { 1804 Bases.push_back(Pair.second); 1805 } 1806 insertUseHolderAfter(CS, Bases, holders); 1807 } 1808 1809 // Add the bases explicitly to the live vector set. This may result in a few 1810 // extra relocations, but the base has to be available whenever a pointer 1811 // derived from it is used. Thus, we need it to be part of the statepoint's 1812 // gc arguments list. TODO: Introduce an explicit notion (in the following 1813 // code) of the GC argument list as seperate from the live Values at a 1814 // given statepoint. 1815 for (size_t i = 0; i < records.size(); i++) { 1816 struct PartiallyConstructedSafepointRecord &info = records[i]; 1817 addBasesAsLiveValues(info.liveset, info.PointerToBase); 1818 } 1819 1820 // If we inserted any new values, we need to adjust our notion of what is 1821 // live at a particular safepoint. 1822 if (!allInsertedDefs.empty()) { 1823 fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records); 1824 } 1825 if (PrintBasePointers) { 1826 for (size_t i = 0; i < records.size(); i++) { 1827 struct PartiallyConstructedSafepointRecord &info = records[i]; 1828 errs() << "Base Pairs: (w/Relocation)\n"; 1829 for (auto Pair : info.PointerToBase) { 1830 errs() << " derived %" << Pair.first->getName() << " base %" 1831 << Pair.second->getName() << "\n"; 1832 } 1833 } 1834 } 1835 for (size_t i = 0; i < holders.size(); i++) { 1836 holders[i]->eraseFromParent(); 1837 holders[i] = nullptr; 1838 } 1839 holders.clear(); 1840 1841 // Now run through and replace the existing statepoints with new ones with 1842 // the live variables listed. We do not yet update uses of the values being 1843 // relocated. We have references to live variables that need to 1844 // survive to the last iteration of this loop. (By construction, the 1845 // previous statepoint can not be a live variable, thus we can and remove 1846 // the old statepoint calls as we go.) 1847 for (size_t i = 0; i < records.size(); i++) { 1848 struct PartiallyConstructedSafepointRecord &info = records[i]; 1849 CallSite &CS = toUpdate[i]; 1850 makeStatepointExplicit(DT, CS, P, info); 1851 } 1852 toUpdate.clear(); // prevent accident use of invalid CallSites 1853 1854 // In case if we inserted relocates in a different basic block than the 1855 // original safepoint (this can happen for invokes). We need to be sure that 1856 // original values were not used in any of the phi nodes at the 1857 // beginning of basic block containing them. Because we know that all such 1858 // blocks will have single predecessor we can safely assume that all phi 1859 // nodes have single entry (because of normalizeBBForInvokeSafepoint). 1860 // Just remove them all here. 1861 for (size_t i = 0; i < records.size(); i++) { 1862 Instruction *I = records[i].StatepointToken; 1863 1864 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 1865 FoldSingleEntryPHINodes(invoke->getNormalDest()); 1866 assert(!isa<PHINode>(invoke->getNormalDest()->begin())); 1867 1868 FoldSingleEntryPHINodes(invoke->getUnwindDest()); 1869 assert(!isa<PHINode>(invoke->getUnwindDest()->begin())); 1870 } 1871 } 1872 1873 // Do all the fixups of the original live variables to their relocated selves 1874 SmallVector<Value *, 128> live; 1875 for (size_t i = 0; i < records.size(); i++) { 1876 struct PartiallyConstructedSafepointRecord &info = records[i]; 1877 // We can't simply save the live set from the original insertion. One of 1878 // the live values might be the result of a call which needs a safepoint. 1879 // That Value* no longer exists and we need to use the new gc_result. 1880 // Thankfully, the liveset is embedded in the statepoint (and updated), so 1881 // we just grab that. 1882 Statepoint statepoint(info.StatepointToken); 1883 live.insert(live.end(), statepoint.gc_args_begin(), 1884 statepoint.gc_args_end()); 1885 } 1886 unique_unsorted(live); 1887 1888 #ifndef NDEBUG 1889 // sanity check 1890 for (auto ptr : live) { 1891 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 1892 } 1893 #endif 1894 1895 relocationViaAlloca(F, DT, live, records); 1896 return !records.empty(); 1897 } 1898 1899 /// Returns true if this function should be rewritten by this pass. The main 1900 /// point of this function is as an extension point for custom logic. 1901 static bool shouldRewriteStatepointsIn(Function &F) { 1902 // TODO: This should check the GCStrategy 1903 if (F.hasGC()) { 1904 const std::string StatepointExampleName("statepoint-example"); 1905 return StatepointExampleName == F.getGC(); 1906 } else 1907 return false; 1908 } 1909 1910 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 1911 // Nothing to do for declarations. 1912 if (F.isDeclaration() || F.empty()) 1913 return false; 1914 1915 // Policy choice says not to rewrite - the most common reason is that we're 1916 // compiling code without a GCStrategy. 1917 if (!shouldRewriteStatepointsIn(F)) 1918 return false; 1919 1920 // Gather all the statepoints which need rewritten. 1921 SmallVector<CallSite, 64> ParsePointNeeded; 1922 for (Instruction &I : inst_range(F)) { 1923 // TODO: only the ones with the flag set! 1924 if (isStatepoint(I)) 1925 ParsePointNeeded.push_back(CallSite(&I)); 1926 } 1927 1928 // Return early if no work to do. 1929 if (ParsePointNeeded.empty()) 1930 return false; 1931 1932 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1933 return insertParsePoints(F, DT, this, ParsePointNeeded); 1934 } 1935