1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Rewrite call/invoke instructions so as to make potential relocations 10 // performed by the garbage collector explicit in the IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/iterator_range.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/IR/ValueHandle.h" 57 #include "llvm/InitializePasses.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <set> 75 #include <string> 76 #include <utility> 77 #include <vector> 78 79 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 80 81 using namespace llvm; 82 83 // Print the liveset found at the insert location 84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 85 cl::init(false)); 86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 87 cl::init(false)); 88 89 // Print out the base pointers for debugging 90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 91 cl::init(false)); 92 93 // Cost threshold measuring when it is profitable to rematerialize value instead 94 // of relocating it 95 static cl::opt<unsigned> 96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 97 cl::init(6)); 98 99 #ifdef EXPENSIVE_CHECKS 100 static bool ClobberNonLive = true; 101 #else 102 static bool ClobberNonLive = false; 103 #endif 104 105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 106 cl::location(ClobberNonLive), 107 cl::Hidden); 108 109 static cl::opt<bool> 110 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 111 cl::Hidden, cl::init(true)); 112 113 /// The IR fed into RewriteStatepointsForGC may have had attributes and 114 /// metadata implying dereferenceability that are no longer valid/correct after 115 /// RewriteStatepointsForGC has run. This is because semantically, after 116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 117 /// heap. stripNonValidData (conservatively) restores 118 /// correctness by erasing all attributes in the module that externally imply 119 /// dereferenceability. Similar reasoning also applies to the noalias 120 /// attributes and metadata. gc.statepoint can touch the entire heap including 121 /// noalias objects. 122 /// Apart from attributes and metadata, we also remove instructions that imply 123 /// constant physical memory: llvm.invariant.start. 124 static void stripNonValidData(Module &M); 125 126 static bool shouldRewriteStatepointsIn(Function &F); 127 128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 129 ModuleAnalysisManager &AM) { 130 bool Changed = false; 131 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 132 for (Function &F : M) { 133 // Nothing to do for declarations. 134 if (F.isDeclaration() || F.empty()) 135 continue; 136 137 // Policy choice says not to rewrite - the most common reason is that we're 138 // compiling code without a GCStrategy. 139 if (!shouldRewriteStatepointsIn(F)) 140 continue; 141 142 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 143 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 144 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 145 Changed |= runOnFunction(F, DT, TTI, TLI); 146 } 147 if (!Changed) 148 return PreservedAnalyses::all(); 149 150 // stripNonValidData asserts that shouldRewriteStatepointsIn 151 // returns true for at least one function in the module. Since at least 152 // one function changed, we know that the precondition is satisfied. 153 stripNonValidData(M); 154 155 PreservedAnalyses PA; 156 PA.preserve<TargetIRAnalysis>(); 157 PA.preserve<TargetLibraryAnalysis>(); 158 return PA; 159 } 160 161 namespace { 162 163 class RewriteStatepointsForGCLegacyPass : public ModulePass { 164 RewriteStatepointsForGC Impl; 165 166 public: 167 static char ID; // Pass identification, replacement for typeid 168 169 RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() { 170 initializeRewriteStatepointsForGCLegacyPassPass( 171 *PassRegistry::getPassRegistry()); 172 } 173 174 bool runOnModule(Module &M) override { 175 bool Changed = false; 176 for (Function &F : M) { 177 // Nothing to do for declarations. 178 if (F.isDeclaration() || F.empty()) 179 continue; 180 181 // Policy choice says not to rewrite - the most common reason is that 182 // we're compiling code without a GCStrategy. 183 if (!shouldRewriteStatepointsIn(F)) 184 continue; 185 186 TargetTransformInfo &TTI = 187 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 188 const TargetLibraryInfo &TLI = 189 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 190 auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 191 192 Changed |= Impl.runOnFunction(F, DT, TTI, TLI); 193 } 194 195 if (!Changed) 196 return false; 197 198 // stripNonValidData asserts that shouldRewriteStatepointsIn 199 // returns true for at least one function in the module. Since at least 200 // one function changed, we know that the precondition is satisfied. 201 stripNonValidData(M); 202 return true; 203 } 204 205 void getAnalysisUsage(AnalysisUsage &AU) const override { 206 // We add and rewrite a bunch of instructions, but don't really do much 207 // else. We could in theory preserve a lot more analyses here. 208 AU.addRequired<DominatorTreeWrapperPass>(); 209 AU.addRequired<TargetTransformInfoWrapperPass>(); 210 AU.addRequired<TargetLibraryInfoWrapperPass>(); 211 } 212 }; 213 214 } // end anonymous namespace 215 216 char RewriteStatepointsForGCLegacyPass::ID = 0; 217 218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() { 219 return new RewriteStatepointsForGCLegacyPass(); 220 } 221 222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass, 223 "rewrite-statepoints-for-gc", 224 "Make relocations explicit at statepoints", false, false) 225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass, 228 "rewrite-statepoints-for-gc", 229 "Make relocations explicit at statepoints", false, false) 230 231 namespace { 232 233 struct GCPtrLivenessData { 234 /// Values defined in this block. 235 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 236 237 /// Values used in this block (and thus live); does not included values 238 /// killed within this block. 239 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 240 241 /// Values live into this basic block (i.e. used by any 242 /// instruction in this basic block or ones reachable from here) 243 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 244 245 /// Values live out of this basic block (i.e. live into 246 /// any successor block) 247 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 248 }; 249 250 // The type of the internal cache used inside the findBasePointers family 251 // of functions. From the callers perspective, this is an opaque type and 252 // should not be inspected. 253 // 254 // In the actual implementation this caches two relations: 255 // - The base relation itself (i.e. this pointer is based on that one) 256 // - The base defining value relation (i.e. before base_phi insertion) 257 // Generally, after the execution of a full findBasePointer call, only the 258 // base relation will remain. Internally, we add a mixture of the two 259 // types, then update all the second type to the first type 260 using DefiningValueMapTy = MapVector<Value *, Value *>; 261 using StatepointLiveSetTy = SetVector<Value *>; 262 using RematerializedValueMapTy = 263 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 264 265 struct PartiallyConstructedSafepointRecord { 266 /// The set of values known to be live across this safepoint 267 StatepointLiveSetTy LiveSet; 268 269 /// Mapping from live pointers to a base-defining-value 270 MapVector<Value *, Value *> PointerToBase; 271 272 /// The *new* gc.statepoint instruction itself. This produces the token 273 /// that normal path gc.relocates and the gc.result are tied to. 274 Instruction *StatepointToken; 275 276 /// Instruction to which exceptional gc relocates are attached 277 /// Makes it easier to iterate through them during relocationViaAlloca. 278 Instruction *UnwindToken; 279 280 /// Record live values we are rematerialized instead of relocating. 281 /// They are not included into 'LiveSet' field. 282 /// Maps rematerialized copy to it's original value. 283 RematerializedValueMapTy RematerializedValues; 284 }; 285 286 } // end anonymous namespace 287 288 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) { 289 Optional<OperandBundleUse> DeoptBundle = 290 Call->getOperandBundle(LLVMContext::OB_deopt); 291 292 if (!DeoptBundle.hasValue()) { 293 assert(AllowStatepointWithNoDeoptInfo && 294 "Found non-leaf call without deopt info!"); 295 return None; 296 } 297 298 return DeoptBundle.getValue().Inputs; 299 } 300 301 /// Compute the live-in set for every basic block in the function 302 static void computeLiveInValues(DominatorTree &DT, Function &F, 303 GCPtrLivenessData &Data); 304 305 /// Given results from the dataflow liveness computation, find the set of live 306 /// Values at a particular instruction. 307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 308 StatepointLiveSetTy &out); 309 310 // TODO: Once we can get to the GCStrategy, this becomes 311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 312 313 static bool isGCPointerType(Type *T) { 314 if (auto *PT = dyn_cast<PointerType>(T)) 315 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 316 // GC managed heap. We know that a pointer into this heap needs to be 317 // updated and that no other pointer does. 318 return PT->getAddressSpace() == 1; 319 return false; 320 } 321 322 // Return true if this type is one which a) is a gc pointer or contains a GC 323 // pointer and b) is of a type this code expects to encounter as a live value. 324 // (The insertion code will assert that a type which matches (a) and not (b) 325 // is not encountered.) 326 static bool isHandledGCPointerType(Type *T) { 327 // We fully support gc pointers 328 if (isGCPointerType(T)) 329 return true; 330 // We partially support vectors of gc pointers. The code will assert if it 331 // can't handle something. 332 if (auto VT = dyn_cast<VectorType>(T)) 333 if (isGCPointerType(VT->getElementType())) 334 return true; 335 return false; 336 } 337 338 #ifndef NDEBUG 339 /// Returns true if this type contains a gc pointer whether we know how to 340 /// handle that type or not. 341 static bool containsGCPtrType(Type *Ty) { 342 if (isGCPointerType(Ty)) 343 return true; 344 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 345 return isGCPointerType(VT->getScalarType()); 346 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 347 return containsGCPtrType(AT->getElementType()); 348 if (StructType *ST = dyn_cast<StructType>(Ty)) 349 return llvm::any_of(ST->elements(), containsGCPtrType); 350 return false; 351 } 352 353 // Returns true if this is a type which a) is a gc pointer or contains a GC 354 // pointer and b) is of a type which the code doesn't expect (i.e. first class 355 // aggregates). Used to trip assertions. 356 static bool isUnhandledGCPointerType(Type *Ty) { 357 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 358 } 359 #endif 360 361 // Return the name of the value suffixed with the provided value, or if the 362 // value didn't have a name, the default value specified. 363 static std::string suffixed_name_or(Value *V, StringRef Suffix, 364 StringRef DefaultName) { 365 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 366 } 367 368 // Conservatively identifies any definitions which might be live at the 369 // given instruction. The analysis is performed immediately before the 370 // given instruction. Values defined by that instruction are not considered 371 // live. Values used by that instruction are considered live. 372 static void analyzeParsePointLiveness( 373 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, 374 PartiallyConstructedSafepointRecord &Result) { 375 StatepointLiveSetTy LiveSet; 376 findLiveSetAtInst(Call, OriginalLivenessData, LiveSet); 377 378 if (PrintLiveSet) { 379 dbgs() << "Live Variables:\n"; 380 for (Value *V : LiveSet) 381 dbgs() << " " << V->getName() << " " << *V << "\n"; 382 } 383 if (PrintLiveSetSize) { 384 dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n"; 385 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 386 } 387 Result.LiveSet = LiveSet; 388 } 389 390 static bool isKnownBaseResult(Value *V); 391 392 namespace { 393 394 /// A single base defining value - An immediate base defining value for an 395 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 396 /// For instructions which have multiple pointer [vector] inputs or that 397 /// transition between vector and scalar types, there is no immediate base 398 /// defining value. The 'base defining value' for 'Def' is the transitive 399 /// closure of this relation stopping at the first instruction which has no 400 /// immediate base defining value. The b.d.v. might itself be a base pointer, 401 /// but it can also be an arbitrary derived pointer. 402 struct BaseDefiningValueResult { 403 /// Contains the value which is the base defining value. 404 Value * const BDV; 405 406 /// True if the base defining value is also known to be an actual base 407 /// pointer. 408 const bool IsKnownBase; 409 410 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 411 : BDV(BDV), IsKnownBase(IsKnownBase) { 412 #ifndef NDEBUG 413 // Check consistency between new and old means of checking whether a BDV is 414 // a base. 415 bool MustBeBase = isKnownBaseResult(BDV); 416 assert(!MustBeBase || MustBeBase == IsKnownBase); 417 #endif 418 } 419 }; 420 421 } // end anonymous namespace 422 423 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 424 425 /// Return a base defining value for the 'Index' element of the given vector 426 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 427 /// 'I'. As an optimization, this method will try to determine when the 428 /// element is known to already be a base pointer. If this can be established, 429 /// the second value in the returned pair will be true. Note that either a 430 /// vector or a pointer typed value can be returned. For the former, the 431 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 432 /// If the later, the return pointer is a BDV (or possibly a base) for the 433 /// particular element in 'I'. 434 static BaseDefiningValueResult 435 findBaseDefiningValueOfVector(Value *I) { 436 // Each case parallels findBaseDefiningValue below, see that code for 437 // detailed motivation. 438 439 if (isa<Argument>(I)) 440 // An incoming argument to the function is a base pointer 441 return BaseDefiningValueResult(I, true); 442 443 if (isa<Constant>(I)) 444 // Base of constant vector consists only of constant null pointers. 445 // For reasoning see similar case inside 'findBaseDefiningValue' function. 446 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 447 true); 448 449 if (isa<LoadInst>(I)) 450 return BaseDefiningValueResult(I, true); 451 452 if (isa<InsertElementInst>(I)) 453 // We don't know whether this vector contains entirely base pointers or 454 // not. To be conservatively correct, we treat it as a BDV and will 455 // duplicate code as needed to construct a parallel vector of bases. 456 return BaseDefiningValueResult(I, false); 457 458 if (isa<ShuffleVectorInst>(I)) 459 // We don't know whether this vector contains entirely base pointers or 460 // not. To be conservatively correct, we treat it as a BDV and will 461 // duplicate code as needed to construct a parallel vector of bases. 462 // TODO: There a number of local optimizations which could be applied here 463 // for particular sufflevector patterns. 464 return BaseDefiningValueResult(I, false); 465 466 // The behavior of getelementptr instructions is the same for vector and 467 // non-vector data types. 468 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 469 return findBaseDefiningValue(GEP->getPointerOperand()); 470 471 // If the pointer comes through a bitcast of a vector of pointers to 472 // a vector of another type of pointer, then look through the bitcast 473 if (auto *BC = dyn_cast<BitCastInst>(I)) 474 return findBaseDefiningValue(BC->getOperand(0)); 475 476 // We assume that functions in the source language only return base 477 // pointers. This should probably be generalized via attributes to support 478 // both source language and internal functions. 479 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 480 return BaseDefiningValueResult(I, true); 481 482 // A PHI or Select is a base defining value. The outer findBasePointer 483 // algorithm is responsible for constructing a base value for this BDV. 484 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 485 "unknown vector instruction - no base found for vector element"); 486 return BaseDefiningValueResult(I, false); 487 } 488 489 /// Helper function for findBasePointer - Will return a value which either a) 490 /// defines the base pointer for the input, b) blocks the simple search 491 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 492 /// from pointer to vector type or back. 493 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 494 assert(I->getType()->isPtrOrPtrVectorTy() && 495 "Illegal to ask for the base pointer of a non-pointer type"); 496 497 if (I->getType()->isVectorTy()) 498 return findBaseDefiningValueOfVector(I); 499 500 if (isa<Argument>(I)) 501 // An incoming argument to the function is a base pointer 502 // We should have never reached here if this argument isn't an gc value 503 return BaseDefiningValueResult(I, true); 504 505 if (isa<Constant>(I)) { 506 // We assume that objects with a constant base (e.g. a global) can't move 507 // and don't need to be reported to the collector because they are always 508 // live. Besides global references, all kinds of constants (e.g. undef, 509 // constant expressions, null pointers) can be introduced by the inliner or 510 // the optimizer, especially on dynamically dead paths. 511 // Here we treat all of them as having single null base. By doing this we 512 // trying to avoid problems reporting various conflicts in a form of 513 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 514 // See constant.ll file for relevant test cases. 515 516 return BaseDefiningValueResult( 517 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 518 } 519 520 if (CastInst *CI = dyn_cast<CastInst>(I)) { 521 Value *Def = CI->stripPointerCasts(); 522 // If stripping pointer casts changes the address space there is an 523 // addrspacecast in between. 524 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 525 cast<PointerType>(CI->getType())->getAddressSpace() && 526 "unsupported addrspacecast"); 527 // If we find a cast instruction here, it means we've found a cast which is 528 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 529 // handle int->ptr conversion. 530 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 531 return findBaseDefiningValue(Def); 532 } 533 534 if (isa<LoadInst>(I)) 535 // The value loaded is an gc base itself 536 return BaseDefiningValueResult(I, true); 537 538 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 539 // The base of this GEP is the base 540 return findBaseDefiningValue(GEP->getPointerOperand()); 541 542 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 543 switch (II->getIntrinsicID()) { 544 default: 545 // fall through to general call handling 546 break; 547 case Intrinsic::experimental_gc_statepoint: 548 llvm_unreachable("statepoints don't produce pointers"); 549 case Intrinsic::experimental_gc_relocate: 550 // Rerunning safepoint insertion after safepoints are already 551 // inserted is not supported. It could probably be made to work, 552 // but why are you doing this? There's no good reason. 553 llvm_unreachable("repeat safepoint insertion is not supported"); 554 case Intrinsic::gcroot: 555 // Currently, this mechanism hasn't been extended to work with gcroot. 556 // There's no reason it couldn't be, but I haven't thought about the 557 // implications much. 558 llvm_unreachable( 559 "interaction with the gcroot mechanism is not supported"); 560 } 561 } 562 // We assume that functions in the source language only return base 563 // pointers. This should probably be generalized via attributes to support 564 // both source language and internal functions. 565 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 566 return BaseDefiningValueResult(I, true); 567 568 // TODO: I have absolutely no idea how to implement this part yet. It's not 569 // necessarily hard, I just haven't really looked at it yet. 570 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 571 572 if (isa<AtomicCmpXchgInst>(I)) 573 // A CAS is effectively a atomic store and load combined under a 574 // predicate. From the perspective of base pointers, we just treat it 575 // like a load. 576 return BaseDefiningValueResult(I, true); 577 578 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 579 "binary ops which don't apply to pointers"); 580 581 // The aggregate ops. Aggregates can either be in the heap or on the 582 // stack, but in either case, this is simply a field load. As a result, 583 // this is a defining definition of the base just like a load is. 584 if (isa<ExtractValueInst>(I)) 585 return BaseDefiningValueResult(I, true); 586 587 // We should never see an insert vector since that would require we be 588 // tracing back a struct value not a pointer value. 589 assert(!isa<InsertValueInst>(I) && 590 "Base pointer for a struct is meaningless"); 591 592 // An extractelement produces a base result exactly when it's input does. 593 // We may need to insert a parallel instruction to extract the appropriate 594 // element out of the base vector corresponding to the input. Given this, 595 // it's analogous to the phi and select case even though it's not a merge. 596 if (isa<ExtractElementInst>(I)) 597 // Note: There a lot of obvious peephole cases here. This are deliberately 598 // handled after the main base pointer inference algorithm to make writing 599 // test cases to exercise that code easier. 600 return BaseDefiningValueResult(I, false); 601 602 // The last two cases here don't return a base pointer. Instead, they 603 // return a value which dynamically selects from among several base 604 // derived pointers (each with it's own base potentially). It's the job of 605 // the caller to resolve these. 606 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 607 "missing instruction case in findBaseDefiningValing"); 608 return BaseDefiningValueResult(I, false); 609 } 610 611 /// Returns the base defining value for this value. 612 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 613 Value *&Cached = Cache[I]; 614 if (!Cached) { 615 Cached = findBaseDefiningValue(I).BDV; 616 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 617 << Cached->getName() << "\n"); 618 } 619 assert(Cache[I] != nullptr); 620 return Cached; 621 } 622 623 /// Return a base pointer for this value if known. Otherwise, return it's 624 /// base defining value. 625 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 626 Value *Def = findBaseDefiningValueCached(I, Cache); 627 auto Found = Cache.find(Def); 628 if (Found != Cache.end()) { 629 // Either a base-of relation, or a self reference. Caller must check. 630 return Found->second; 631 } 632 // Only a BDV available 633 return Def; 634 } 635 636 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 637 /// is it known to be a base pointer? Or do we need to continue searching. 638 static bool isKnownBaseResult(Value *V) { 639 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 640 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 641 !isa<ShuffleVectorInst>(V)) { 642 // no recursion possible 643 return true; 644 } 645 if (isa<Instruction>(V) && 646 cast<Instruction>(V)->getMetadata("is_base_value")) { 647 // This is a previously inserted base phi or select. We know 648 // that this is a base value. 649 return true; 650 } 651 652 // We need to keep searching 653 return false; 654 } 655 656 namespace { 657 658 /// Models the state of a single base defining value in the findBasePointer 659 /// algorithm for determining where a new instruction is needed to propagate 660 /// the base of this BDV. 661 class BDVState { 662 public: 663 enum Status { Unknown, Base, Conflict }; 664 665 BDVState() : BaseValue(nullptr) {} 666 667 explicit BDVState(Status Status, Value *BaseValue = nullptr) 668 : Status(Status), BaseValue(BaseValue) { 669 assert(Status != Base || BaseValue); 670 } 671 672 explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {} 673 674 Status getStatus() const { return Status; } 675 Value *getBaseValue() const { return BaseValue; } 676 677 bool isBase() const { return getStatus() == Base; } 678 bool isUnknown() const { return getStatus() == Unknown; } 679 bool isConflict() const { return getStatus() == Conflict; } 680 681 bool operator==(const BDVState &Other) const { 682 return BaseValue == Other.BaseValue && Status == Other.Status; 683 } 684 685 bool operator!=(const BDVState &other) const { return !(*this == other); } 686 687 LLVM_DUMP_METHOD 688 void dump() const { 689 print(dbgs()); 690 dbgs() << '\n'; 691 } 692 693 void print(raw_ostream &OS) const { 694 switch (getStatus()) { 695 case Unknown: 696 OS << "U"; 697 break; 698 case Base: 699 OS << "B"; 700 break; 701 case Conflict: 702 OS << "C"; 703 break; 704 } 705 OS << " (" << getBaseValue() << " - " 706 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): "; 707 } 708 709 private: 710 Status Status = Unknown; 711 AssertingVH<Value> BaseValue; // Non-null only if Status == Base. 712 }; 713 714 } // end anonymous namespace 715 716 #ifndef NDEBUG 717 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 718 State.print(OS); 719 return OS; 720 } 721 #endif 722 723 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) { 724 switch (LHS.getStatus()) { 725 case BDVState::Unknown: 726 return RHS; 727 728 case BDVState::Base: 729 assert(LHS.getBaseValue() && "can't be null"); 730 if (RHS.isUnknown()) 731 return LHS; 732 733 if (RHS.isBase()) { 734 if (LHS.getBaseValue() == RHS.getBaseValue()) { 735 assert(LHS == RHS && "equality broken!"); 736 return LHS; 737 } 738 return BDVState(BDVState::Conflict); 739 } 740 assert(RHS.isConflict() && "only three states!"); 741 return BDVState(BDVState::Conflict); 742 743 case BDVState::Conflict: 744 return LHS; 745 } 746 llvm_unreachable("only three states!"); 747 } 748 749 // Values of type BDVState form a lattice, and this function implements the meet 750 // operation. 751 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) { 752 BDVState Result = meetBDVStateImpl(LHS, RHS); 753 assert(Result == meetBDVStateImpl(RHS, LHS) && 754 "Math is wrong: meet does not commute!"); 755 return Result; 756 } 757 758 /// For a given value or instruction, figure out what base ptr its derived from. 759 /// For gc objects, this is simply itself. On success, returns a value which is 760 /// the base pointer. (This is reliable and can be used for relocation.) On 761 /// failure, returns nullptr. 762 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 763 Value *Def = findBaseOrBDV(I, Cache); 764 765 if (isKnownBaseResult(Def)) 766 return Def; 767 768 // Here's the rough algorithm: 769 // - For every SSA value, construct a mapping to either an actual base 770 // pointer or a PHI which obscures the base pointer. 771 // - Construct a mapping from PHI to unknown TOP state. Use an 772 // optimistic algorithm to propagate base pointer information. Lattice 773 // looks like: 774 // UNKNOWN 775 // b1 b2 b3 b4 776 // CONFLICT 777 // When algorithm terminates, all PHIs will either have a single concrete 778 // base or be in a conflict state. 779 // - For every conflict, insert a dummy PHI node without arguments. Add 780 // these to the base[Instruction] = BasePtr mapping. For every 781 // non-conflict, add the actual base. 782 // - For every conflict, add arguments for the base[a] of each input 783 // arguments. 784 // 785 // Note: A simpler form of this would be to add the conflict form of all 786 // PHIs without running the optimistic algorithm. This would be 787 // analogous to pessimistic data flow and would likely lead to an 788 // overall worse solution. 789 790 #ifndef NDEBUG 791 auto isExpectedBDVType = [](Value *BDV) { 792 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 793 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 794 isa<ShuffleVectorInst>(BDV); 795 }; 796 #endif 797 798 // Once populated, will contain a mapping from each potentially non-base BDV 799 // to a lattice value (described above) which corresponds to that BDV. 800 // We use the order of insertion (DFS over the def/use graph) to provide a 801 // stable deterministic ordering for visiting DenseMaps (which are unordered) 802 // below. This is important for deterministic compilation. 803 MapVector<Value *, BDVState> States; 804 805 // Recursively fill in all base defining values reachable from the initial 806 // one for which we don't already know a definite base value for 807 /* scope */ { 808 SmallVector<Value*, 16> Worklist; 809 Worklist.push_back(Def); 810 States.insert({Def, BDVState()}); 811 while (!Worklist.empty()) { 812 Value *Current = Worklist.pop_back_val(); 813 assert(!isKnownBaseResult(Current) && "why did it get added?"); 814 815 auto visitIncomingValue = [&](Value *InVal) { 816 Value *Base = findBaseOrBDV(InVal, Cache); 817 if (isKnownBaseResult(Base)) 818 // Known bases won't need new instructions introduced and can be 819 // ignored safely 820 return; 821 assert(isExpectedBDVType(Base) && "the only non-base values " 822 "we see should be base defining values"); 823 if (States.insert(std::make_pair(Base, BDVState())).second) 824 Worklist.push_back(Base); 825 }; 826 if (PHINode *PN = dyn_cast<PHINode>(Current)) { 827 for (Value *InVal : PN->incoming_values()) 828 visitIncomingValue(InVal); 829 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { 830 visitIncomingValue(SI->getTrueValue()); 831 visitIncomingValue(SI->getFalseValue()); 832 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 833 visitIncomingValue(EE->getVectorOperand()); 834 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 835 visitIncomingValue(IE->getOperand(0)); // vector operand 836 visitIncomingValue(IE->getOperand(1)); // scalar operand 837 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) { 838 visitIncomingValue(SV->getOperand(0)); 839 visitIncomingValue(SV->getOperand(1)); 840 } 841 else { 842 llvm_unreachable("Unimplemented instruction case"); 843 } 844 } 845 } 846 847 #ifndef NDEBUG 848 LLVM_DEBUG(dbgs() << "States after initialization:\n"); 849 for (auto Pair : States) { 850 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 851 } 852 #endif 853 854 // Return a phi state for a base defining value. We'll generate a new 855 // base state for known bases and expect to find a cached state otherwise. 856 auto getStateForBDV = [&](Value *baseValue) { 857 if (isKnownBaseResult(baseValue)) 858 return BDVState(baseValue); 859 auto I = States.find(baseValue); 860 assert(I != States.end() && "lookup failed!"); 861 return I->second; 862 }; 863 864 bool Progress = true; 865 while (Progress) { 866 #ifndef NDEBUG 867 const size_t OldSize = States.size(); 868 #endif 869 Progress = false; 870 // We're only changing values in this loop, thus safe to keep iterators. 871 // Since this is computing a fixed point, the order of visit does not 872 // effect the result. TODO: We could use a worklist here and make this run 873 // much faster. 874 for (auto Pair : States) { 875 Value *BDV = Pair.first; 876 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 877 878 // Given an input value for the current instruction, return a BDVState 879 // instance which represents the BDV of that value. 880 auto getStateForInput = [&](Value *V) mutable { 881 Value *BDV = findBaseOrBDV(V, Cache); 882 return getStateForBDV(BDV); 883 }; 884 885 BDVState NewState; 886 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 887 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); 888 NewState = 889 meetBDVState(NewState, getStateForInput(SI->getFalseValue())); 890 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 891 for (Value *Val : PN->incoming_values()) 892 NewState = meetBDVState(NewState, getStateForInput(Val)); 893 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 894 // The 'meet' for an extractelement is slightly trivial, but it's still 895 // useful in that it drives us to conflict if our input is. 896 NewState = 897 meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); 898 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){ 899 // Given there's a inherent type mismatch between the operands, will 900 // *always* produce Conflict. 901 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); 902 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); 903 } else { 904 // The only instance this does not return a Conflict is when both the 905 // vector operands are the same vector. 906 auto *SV = cast<ShuffleVectorInst>(BDV); 907 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0))); 908 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1))); 909 } 910 911 BDVState OldState = States[BDV]; 912 if (OldState != NewState) { 913 Progress = true; 914 States[BDV] = NewState; 915 } 916 } 917 918 assert(OldSize == States.size() && 919 "fixed point shouldn't be adding any new nodes to state"); 920 } 921 922 #ifndef NDEBUG 923 LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); 924 for (auto Pair : States) { 925 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 926 } 927 #endif 928 929 // Handle extractelement instructions and their uses. 930 for (auto Pair : States) { 931 Instruction *I = cast<Instruction>(Pair.first); 932 BDVState State = Pair.second; 933 assert(!isKnownBaseResult(I) && "why did it get added?"); 934 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 935 936 // extractelement instructions are a bit special in that we may need to 937 // insert an extract even when we know an exact base for the instruction. 938 // The problem is that we need to convert from a vector base to a scalar 939 // base for the particular indice we're interested in. 940 if (!State.isBase() || !isa<ExtractElementInst>(I) || 941 !isa<VectorType>(State.getBaseValue()->getType())) 942 continue; 943 auto *EE = cast<ExtractElementInst>(I); 944 // TODO: In many cases, the new instruction is just EE itself. We should 945 // exploit this, but can't do it here since it would break the invariant 946 // about the BDV not being known to be a base. 947 auto *BaseInst = ExtractElementInst::Create( 948 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 949 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 950 States[I] = BDVState(BDVState::Base, BaseInst); 951 952 // We need to handle uses of the extractelement that have the same vector 953 // base as well but the use is a scalar type. Since we cannot reuse the 954 // same BaseInst above (may not satisfy property that base pointer should 955 // always dominate derived pointer), we conservatively set this as conflict. 956 // Setting the base value for these conflicts is handled in the next loop 957 // which traverses States. 958 for (User *U : I->users()) { 959 auto *UseI = dyn_cast<Instruction>(U); 960 if (!UseI || !States.count(UseI)) 961 continue; 962 if (!isa<VectorType>(UseI->getType()) && States[UseI] == State) 963 States[UseI] = BDVState(BDVState::Conflict); 964 } 965 } 966 967 // Insert Phis for all conflicts 968 // TODO: adjust naming patterns to avoid this order of iteration dependency 969 for (auto Pair : States) { 970 Instruction *I = cast<Instruction>(Pair.first); 971 BDVState State = Pair.second; 972 assert(!isKnownBaseResult(I) && "why did it get added?"); 973 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 974 975 // Since we're joining a vector and scalar base, they can never be the 976 // same. As a result, we should always see insert element having reached 977 // the conflict state. 978 assert(!isa<InsertElementInst>(I) || State.isConflict()); 979 980 if (!State.isConflict()) 981 continue; 982 983 /// Create and insert a new instruction which will represent the base of 984 /// the given instruction 'I'. 985 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 986 if (isa<PHINode>(I)) { 987 BasicBlock *BB = I->getParent(); 988 int NumPreds = pred_size(BB); 989 assert(NumPreds > 0 && "how did we reach here"); 990 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 991 return PHINode::Create(I->getType(), NumPreds, Name, I); 992 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 993 // The undef will be replaced later 994 UndefValue *Undef = UndefValue::get(SI->getType()); 995 std::string Name = suffixed_name_or(I, ".base", "base_select"); 996 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); 997 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 998 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 999 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 1000 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 1001 EE); 1002 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 1003 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 1004 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 1005 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 1006 return InsertElementInst::Create(VecUndef, ScalarUndef, 1007 IE->getOperand(2), Name, IE); 1008 } else { 1009 auto *SV = cast<ShuffleVectorInst>(I); 1010 UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType()); 1011 std::string Name = suffixed_name_or(I, ".base", "base_sv"); 1012 return new ShuffleVectorInst(VecUndef, VecUndef, SV->getShuffleMask(), 1013 Name, SV); 1014 } 1015 }; 1016 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 1017 // Add metadata marking this as a base value 1018 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1019 States[I] = BDVState(BDVState::Conflict, BaseInst); 1020 } 1021 1022 // Returns a instruction which produces the base pointer for a given 1023 // instruction. The instruction is assumed to be an input to one of the BDVs 1024 // seen in the inference algorithm above. As such, we must either already 1025 // know it's base defining value is a base, or have inserted a new 1026 // instruction to propagate the base of it's BDV and have entered that newly 1027 // introduced instruction into the state table. In either case, we are 1028 // assured to be able to determine an instruction which produces it's base 1029 // pointer. 1030 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1031 Value *BDV = findBaseOrBDV(Input, Cache); 1032 Value *Base = nullptr; 1033 if (isKnownBaseResult(BDV)) { 1034 Base = BDV; 1035 } else { 1036 // Either conflict or base. 1037 assert(States.count(BDV)); 1038 Base = States[BDV].getBaseValue(); 1039 } 1040 assert(Base && "Can't be null"); 1041 // The cast is needed since base traversal may strip away bitcasts 1042 if (Base->getType() != Input->getType() && InsertPt) 1043 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 1044 return Base; 1045 }; 1046 1047 // Fixup all the inputs of the new PHIs. Visit order needs to be 1048 // deterministic and predictable because we're naming newly created 1049 // instructions. 1050 for (auto Pair : States) { 1051 Instruction *BDV = cast<Instruction>(Pair.first); 1052 BDVState State = Pair.second; 1053 1054 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1055 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1056 if (!State.isConflict()) 1057 continue; 1058 1059 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1060 PHINode *PN = cast<PHINode>(BDV); 1061 unsigned NumPHIValues = PN->getNumIncomingValues(); 1062 for (unsigned i = 0; i < NumPHIValues; i++) { 1063 Value *InVal = PN->getIncomingValue(i); 1064 BasicBlock *InBB = PN->getIncomingBlock(i); 1065 1066 // If we've already seen InBB, add the same incoming value 1067 // we added for it earlier. The IR verifier requires phi 1068 // nodes with multiple entries from the same basic block 1069 // to have the same incoming value for each of those 1070 // entries. If we don't do this check here and basephi 1071 // has a different type than base, we'll end up adding two 1072 // bitcasts (and hence two distinct values) as incoming 1073 // values for the same basic block. 1074 1075 int BlockIndex = BasePHI->getBasicBlockIndex(InBB); 1076 if (BlockIndex != -1) { 1077 Value *OldBase = BasePHI->getIncomingValue(BlockIndex); 1078 BasePHI->addIncoming(OldBase, InBB); 1079 1080 #ifndef NDEBUG 1081 Value *Base = getBaseForInput(InVal, nullptr); 1082 // In essence this assert states: the only way two values 1083 // incoming from the same basic block may be different is by 1084 // being different bitcasts of the same value. A cleanup 1085 // that remains TODO is changing findBaseOrBDV to return an 1086 // llvm::Value of the correct type (and still remain pure). 1087 // This will remove the need to add bitcasts. 1088 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 1089 "Sanity -- findBaseOrBDV should be pure!"); 1090 #endif 1091 continue; 1092 } 1093 1094 // Find the instruction which produces the base for each input. We may 1095 // need to insert a bitcast in the incoming block. 1096 // TODO: Need to split critical edges if insertion is needed 1097 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1098 BasePHI->addIncoming(Base, InBB); 1099 } 1100 assert(BasePHI->getNumIncomingValues() == NumPHIValues); 1101 } else if (SelectInst *BaseSI = 1102 dyn_cast<SelectInst>(State.getBaseValue())) { 1103 SelectInst *SI = cast<SelectInst>(BDV); 1104 1105 // Find the instruction which produces the base for each input. 1106 // We may need to insert a bitcast. 1107 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1108 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1109 } else if (auto *BaseEE = 1110 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1111 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1112 // Find the instruction which produces the base for each input. We may 1113 // need to insert a bitcast. 1114 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1115 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1116 auto *BdvIE = cast<InsertElementInst>(BDV); 1117 auto UpdateOperand = [&](int OperandIdx) { 1118 Value *InVal = BdvIE->getOperand(OperandIdx); 1119 Value *Base = getBaseForInput(InVal, BaseIE); 1120 BaseIE->setOperand(OperandIdx, Base); 1121 }; 1122 UpdateOperand(0); // vector operand 1123 UpdateOperand(1); // scalar operand 1124 } else { 1125 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1126 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1127 auto UpdateOperand = [&](int OperandIdx) { 1128 Value *InVal = BdvSV->getOperand(OperandIdx); 1129 Value *Base = getBaseForInput(InVal, BaseSV); 1130 BaseSV->setOperand(OperandIdx, Base); 1131 }; 1132 UpdateOperand(0); // vector operand 1133 UpdateOperand(1); // vector operand 1134 } 1135 } 1136 1137 // Cache all of our results so we can cheaply reuse them 1138 // NOTE: This is actually two caches: one of the base defining value 1139 // relation and one of the base pointer relation! FIXME 1140 for (auto Pair : States) { 1141 auto *BDV = Pair.first; 1142 Value *Base = Pair.second.getBaseValue(); 1143 assert(BDV && Base); 1144 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1145 1146 LLVM_DEBUG( 1147 dbgs() << "Updating base value cache" 1148 << " for: " << BDV->getName() << " from: " 1149 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1150 << " to: " << Base->getName() << "\n"); 1151 1152 if (Cache.count(BDV)) { 1153 assert(isKnownBaseResult(Base) && 1154 "must be something we 'know' is a base pointer"); 1155 // Once we transition from the BDV relation being store in the Cache to 1156 // the base relation being stored, it must be stable 1157 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && 1158 "base relation should be stable"); 1159 } 1160 Cache[BDV] = Base; 1161 } 1162 assert(Cache.count(Def)); 1163 return Cache[Def]; 1164 } 1165 1166 // For a set of live pointers (base and/or derived), identify the base 1167 // pointer of the object which they are derived from. This routine will 1168 // mutate the IR graph as needed to make the 'base' pointer live at the 1169 // definition site of 'derived'. This ensures that any use of 'derived' can 1170 // also use 'base'. This may involve the insertion of a number of 1171 // additional PHI nodes. 1172 // 1173 // preconditions: live is a set of pointer type Values 1174 // 1175 // side effects: may insert PHI nodes into the existing CFG, will preserve 1176 // CFG, will not remove or mutate any existing nodes 1177 // 1178 // post condition: PointerToBase contains one (derived, base) pair for every 1179 // pointer in live. Note that derived can be equal to base if the original 1180 // pointer was a base pointer. 1181 static void 1182 findBasePointers(const StatepointLiveSetTy &live, 1183 MapVector<Value *, Value *> &PointerToBase, 1184 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1185 for (Value *ptr : live) { 1186 Value *base = findBasePointer(ptr, DVCache); 1187 assert(base && "failed to find base pointer"); 1188 PointerToBase[ptr] = base; 1189 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1190 DT->dominates(cast<Instruction>(base)->getParent(), 1191 cast<Instruction>(ptr)->getParent())) && 1192 "The base we found better dominate the derived pointer"); 1193 } 1194 } 1195 1196 /// Find the required based pointers (and adjust the live set) for the given 1197 /// parse point. 1198 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1199 CallBase *Call, 1200 PartiallyConstructedSafepointRecord &result) { 1201 MapVector<Value *, Value *> PointerToBase; 1202 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1203 1204 if (PrintBasePointers) { 1205 errs() << "Base Pairs (w/o Relocation):\n"; 1206 for (auto &Pair : PointerToBase) { 1207 errs() << " derived "; 1208 Pair.first->printAsOperand(errs(), false); 1209 errs() << " base "; 1210 Pair.second->printAsOperand(errs(), false); 1211 errs() << "\n";; 1212 } 1213 } 1214 1215 result.PointerToBase = PointerToBase; 1216 } 1217 1218 /// Given an updated version of the dataflow liveness results, update the 1219 /// liveset and base pointer maps for the call site CS. 1220 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1221 CallBase *Call, 1222 PartiallyConstructedSafepointRecord &result); 1223 1224 static void recomputeLiveInValues( 1225 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 1226 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1227 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1228 // again. The old values are still live and will help it stabilize quickly. 1229 GCPtrLivenessData RevisedLivenessData; 1230 computeLiveInValues(DT, F, RevisedLivenessData); 1231 for (size_t i = 0; i < records.size(); i++) { 1232 struct PartiallyConstructedSafepointRecord &info = records[i]; 1233 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1234 } 1235 } 1236 1237 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1238 // no uses of the original value / return value between the gc.statepoint and 1239 // the gc.relocate / gc.result call. One case which can arise is a phi node 1240 // starting one of the successor blocks. We also need to be able to insert the 1241 // gc.relocates only on the path which goes through the statepoint. We might 1242 // need to split an edge to make this possible. 1243 static BasicBlock * 1244 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1245 DominatorTree &DT) { 1246 BasicBlock *Ret = BB; 1247 if (!BB->getUniquePredecessor()) 1248 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1249 1250 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1251 // from it 1252 FoldSingleEntryPHINodes(Ret); 1253 assert(!isa<PHINode>(Ret->begin()) && 1254 "All PHI nodes should have been removed!"); 1255 1256 // At this point, we can safely insert a gc.relocate or gc.result as the first 1257 // instruction in Ret if needed. 1258 return Ret; 1259 } 1260 1261 // Create new attribute set containing only attributes which can be transferred 1262 // from original call to the safepoint. 1263 static AttributeList legalizeCallAttributes(LLVMContext &Ctx, 1264 AttributeList AL) { 1265 if (AL.isEmpty()) 1266 return AL; 1267 1268 // Remove the readonly, readnone, and statepoint function attributes. 1269 AttrBuilder FnAttrs = AL.getFnAttributes(); 1270 FnAttrs.removeAttribute(Attribute::ReadNone); 1271 FnAttrs.removeAttribute(Attribute::ReadOnly); 1272 for (Attribute A : AL.getFnAttributes()) { 1273 if (isStatepointDirectiveAttr(A)) 1274 FnAttrs.remove(A); 1275 } 1276 1277 // Just skip parameter and return attributes for now 1278 return AttributeList::get(Ctx, AttributeList::FunctionIndex, 1279 AttributeSet::get(Ctx, FnAttrs)); 1280 } 1281 1282 /// Helper function to place all gc relocates necessary for the given 1283 /// statepoint. 1284 /// Inputs: 1285 /// liveVariables - list of variables to be relocated. 1286 /// liveStart - index of the first live variable. 1287 /// basePtrs - base pointers. 1288 /// statepointToken - statepoint instruction to which relocates should be 1289 /// bound. 1290 /// Builder - Llvm IR builder to be used to construct new calls. 1291 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1292 const int LiveStart, 1293 ArrayRef<Value *> BasePtrs, 1294 Instruction *StatepointToken, 1295 IRBuilder<> &Builder) { 1296 if (LiveVariables.empty()) 1297 return; 1298 1299 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1300 auto ValIt = llvm::find(LiveVec, Val); 1301 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1302 size_t Index = std::distance(LiveVec.begin(), ValIt); 1303 assert(Index < LiveVec.size() && "Bug in std::find?"); 1304 return Index; 1305 }; 1306 Module *M = StatepointToken->getModule(); 1307 1308 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1309 // element type is i8 addrspace(1)*). We originally generated unique 1310 // declarations for each pointer type, but this proved problematic because 1311 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1312 // towards a single unified pointer type anyways, we can just cast everything 1313 // to an i8* of the right address space. A bitcast is added later to convert 1314 // gc_relocate to the actual value's type. 1315 auto getGCRelocateDecl = [&] (Type *Ty) { 1316 assert(isHandledGCPointerType(Ty)); 1317 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1318 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1319 if (auto *VT = dyn_cast<VectorType>(Ty)) 1320 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1321 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1322 {NewTy}); 1323 }; 1324 1325 // Lazily populated map from input types to the canonicalized form mentioned 1326 // in the comment above. This should probably be cached somewhere more 1327 // broadly. 1328 DenseMap<Type *, Function *> TypeToDeclMap; 1329 1330 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1331 // Generate the gc.relocate call and save the result 1332 Value *BaseIdx = 1333 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1334 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1335 1336 Type *Ty = LiveVariables[i]->getType(); 1337 if (!TypeToDeclMap.count(Ty)) 1338 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1339 Function *GCRelocateDecl = TypeToDeclMap[Ty]; 1340 1341 // only specify a debug name if we can give a useful one 1342 CallInst *Reloc = Builder.CreateCall( 1343 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1344 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1345 // Trick CodeGen into thinking there are lots of free registers at this 1346 // fake call. 1347 Reloc->setCallingConv(CallingConv::Cold); 1348 } 1349 } 1350 1351 namespace { 1352 1353 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1354 /// avoids having to worry about keeping around dangling pointers to Values. 1355 class DeferredReplacement { 1356 AssertingVH<Instruction> Old; 1357 AssertingVH<Instruction> New; 1358 bool IsDeoptimize = false; 1359 1360 DeferredReplacement() = default; 1361 1362 public: 1363 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1364 assert(Old != New && Old && New && 1365 "Cannot RAUW equal values or to / from null!"); 1366 1367 DeferredReplacement D; 1368 D.Old = Old; 1369 D.New = New; 1370 return D; 1371 } 1372 1373 static DeferredReplacement createDelete(Instruction *ToErase) { 1374 DeferredReplacement D; 1375 D.Old = ToErase; 1376 return D; 1377 } 1378 1379 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1380 #ifndef NDEBUG 1381 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1382 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1383 "Only way to construct a deoptimize deferred replacement"); 1384 #endif 1385 DeferredReplacement D; 1386 D.Old = Old; 1387 D.IsDeoptimize = true; 1388 return D; 1389 } 1390 1391 /// Does the task represented by this instance. 1392 void doReplacement() { 1393 Instruction *OldI = Old; 1394 Instruction *NewI = New; 1395 1396 assert(OldI != NewI && "Disallowed at construction?!"); 1397 assert((!IsDeoptimize || !New) && 1398 "Deoptimize intrinsics are not replaced!"); 1399 1400 Old = nullptr; 1401 New = nullptr; 1402 1403 if (NewI) 1404 OldI->replaceAllUsesWith(NewI); 1405 1406 if (IsDeoptimize) { 1407 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1408 // not necessarily be followed by the matching return. 1409 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1410 new UnreachableInst(RI->getContext(), RI); 1411 RI->eraseFromParent(); 1412 } 1413 1414 OldI->eraseFromParent(); 1415 } 1416 }; 1417 1418 } // end anonymous namespace 1419 1420 static StringRef getDeoptLowering(CallBase *Call) { 1421 const char *DeoptLowering = "deopt-lowering"; 1422 if (Call->hasFnAttr(DeoptLowering)) { 1423 // FIXME: Calls have a *really* confusing interface around attributes 1424 // with values. 1425 const AttributeList &CSAS = Call->getAttributes(); 1426 if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering)) 1427 return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering) 1428 .getValueAsString(); 1429 Function *F = Call->getCalledFunction(); 1430 assert(F && F->hasFnAttribute(DeoptLowering)); 1431 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1432 } 1433 return "live-through"; 1434 } 1435 1436 static void 1437 makeStatepointExplicitImpl(CallBase *Call, /* to replace */ 1438 const SmallVectorImpl<Value *> &BasePtrs, 1439 const SmallVectorImpl<Value *> &LiveVariables, 1440 PartiallyConstructedSafepointRecord &Result, 1441 std::vector<DeferredReplacement> &Replacements) { 1442 assert(BasePtrs.size() == LiveVariables.size()); 1443 1444 // Then go ahead and use the builder do actually do the inserts. We insert 1445 // immediately before the previous instruction under the assumption that all 1446 // arguments will be available here. We can't insert afterwards since we may 1447 // be replacing a terminator. 1448 IRBuilder<> Builder(Call); 1449 1450 ArrayRef<Value *> GCArgs(LiveVariables); 1451 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1452 uint32_t NumPatchBytes = 0; 1453 uint32_t Flags = uint32_t(StatepointFlags::None); 1454 1455 ArrayRef<Use> CallArgs(Call->arg_begin(), Call->arg_end()); 1456 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(Call); 1457 ArrayRef<Use> TransitionArgs; 1458 if (auto TransitionBundle = 1459 Call->getOperandBundle(LLVMContext::OB_gc_transition)) { 1460 Flags |= uint32_t(StatepointFlags::GCTransition); 1461 TransitionArgs = TransitionBundle->Inputs; 1462 } 1463 1464 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1465 // with a return value, we lower then as never returning calls to 1466 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1467 bool IsDeoptimize = false; 1468 1469 StatepointDirectives SD = 1470 parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1471 if (SD.NumPatchBytes) 1472 NumPatchBytes = *SD.NumPatchBytes; 1473 if (SD.StatepointID) 1474 StatepointID = *SD.StatepointID; 1475 1476 // Pass through the requested lowering if any. The default is live-through. 1477 StringRef DeoptLowering = getDeoptLowering(Call); 1478 if (DeoptLowering.equals("live-in")) 1479 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1480 else { 1481 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1482 } 1483 1484 Value *CallTarget = Call->getCalledOperand(); 1485 if (Function *F = dyn_cast<Function>(CallTarget)) { 1486 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1487 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1488 // __llvm_deoptimize symbol. We want to resolve this now, since the 1489 // verifier does not allow taking the address of an intrinsic function. 1490 1491 SmallVector<Type *, 8> DomainTy; 1492 for (Value *Arg : CallArgs) 1493 DomainTy.push_back(Arg->getType()); 1494 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1495 /* isVarArg = */ false); 1496 1497 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1498 // calls to @llvm.experimental.deoptimize with different argument types in 1499 // the same module. This is fine -- we assume the frontend knew what it 1500 // was doing when generating this kind of IR. 1501 CallTarget = F->getParent() 1502 ->getOrInsertFunction("__llvm_deoptimize", FTy) 1503 .getCallee(); 1504 1505 IsDeoptimize = true; 1506 } 1507 } 1508 1509 // Create the statepoint given all the arguments 1510 Instruction *Token = nullptr; 1511 if (auto *CI = dyn_cast<CallInst>(Call)) { 1512 CallInst *SPCall = Builder.CreateGCStatepointCall( 1513 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1514 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1515 1516 SPCall->setTailCallKind(CI->getTailCallKind()); 1517 SPCall->setCallingConv(CI->getCallingConv()); 1518 1519 // Currently we will fail on parameter attributes and on certain 1520 // function attributes. In case if we can handle this set of attributes - 1521 // set up function attrs directly on statepoint and return attrs later for 1522 // gc_result intrinsic. 1523 SPCall->setAttributes( 1524 legalizeCallAttributes(CI->getContext(), CI->getAttributes())); 1525 1526 Token = SPCall; 1527 1528 // Put the following gc_result and gc_relocate calls immediately after the 1529 // the old call (which we're about to delete) 1530 assert(CI->getNextNode() && "Not a terminator, must have next!"); 1531 Builder.SetInsertPoint(CI->getNextNode()); 1532 Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); 1533 } else { 1534 auto *II = cast<InvokeInst>(Call); 1535 1536 // Insert the new invoke into the old block. We'll remove the old one in a 1537 // moment at which point this will become the new terminator for the 1538 // original block. 1539 InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( 1540 StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(), 1541 II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, 1542 "statepoint_token"); 1543 1544 SPInvoke->setCallingConv(II->getCallingConv()); 1545 1546 // Currently we will fail on parameter attributes and on certain 1547 // function attributes. In case if we can handle this set of attributes - 1548 // set up function attrs directly on statepoint and return attrs later for 1549 // gc_result intrinsic. 1550 SPInvoke->setAttributes( 1551 legalizeCallAttributes(II->getContext(), II->getAttributes())); 1552 1553 Token = SPInvoke; 1554 1555 // Generate gc relocates in exceptional path 1556 BasicBlock *UnwindBlock = II->getUnwindDest(); 1557 assert(!isa<PHINode>(UnwindBlock->begin()) && 1558 UnwindBlock->getUniquePredecessor() && 1559 "can't safely insert in this block!"); 1560 1561 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1562 Builder.SetCurrentDebugLocation(II->getDebugLoc()); 1563 1564 // Attach exceptional gc relocates to the landingpad. 1565 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1566 Result.UnwindToken = ExceptionalToken; 1567 1568 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1569 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1570 Builder); 1571 1572 // Generate gc relocates and returns for normal block 1573 BasicBlock *NormalDest = II->getNormalDest(); 1574 assert(!isa<PHINode>(NormalDest->begin()) && 1575 NormalDest->getUniquePredecessor() && 1576 "can't safely insert in this block!"); 1577 1578 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1579 1580 // gc relocates will be generated later as if it were regular call 1581 // statepoint 1582 } 1583 assert(Token && "Should be set in one of the above branches!"); 1584 1585 if (IsDeoptimize) { 1586 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1587 // transform the tail-call like structure to a call to a void function 1588 // followed by unreachable to get better codegen. 1589 Replacements.push_back( 1590 DeferredReplacement::createDeoptimizeReplacement(Call)); 1591 } else { 1592 Token->setName("statepoint_token"); 1593 if (!Call->getType()->isVoidTy() && !Call->use_empty()) { 1594 StringRef Name = Call->hasName() ? Call->getName() : ""; 1595 CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name); 1596 GCResult->setAttributes( 1597 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1598 Call->getAttributes().getRetAttributes())); 1599 1600 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1601 // live set of some other safepoint, in which case that safepoint's 1602 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1603 // llvm::Instruction. Instead, we defer the replacement and deletion to 1604 // after the live sets have been made explicit in the IR, and we no longer 1605 // have raw pointers to worry about. 1606 Replacements.emplace_back( 1607 DeferredReplacement::createRAUW(Call, GCResult)); 1608 } else { 1609 Replacements.emplace_back(DeferredReplacement::createDelete(Call)); 1610 } 1611 } 1612 1613 Result.StatepointToken = Token; 1614 1615 // Second, create a gc.relocate for every live variable 1616 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1617 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1618 } 1619 1620 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1621 // which make the relocations happening at this safepoint explicit. 1622 // 1623 // WARNING: Does not do any fixup to adjust users of the original live 1624 // values. That's the callers responsibility. 1625 static void 1626 makeStatepointExplicit(DominatorTree &DT, CallBase *Call, 1627 PartiallyConstructedSafepointRecord &Result, 1628 std::vector<DeferredReplacement> &Replacements) { 1629 const auto &LiveSet = Result.LiveSet; 1630 const auto &PointerToBase = Result.PointerToBase; 1631 1632 // Convert to vector for efficient cross referencing. 1633 SmallVector<Value *, 64> BaseVec, LiveVec; 1634 LiveVec.reserve(LiveSet.size()); 1635 BaseVec.reserve(LiveSet.size()); 1636 for (Value *L : LiveSet) { 1637 LiveVec.push_back(L); 1638 assert(PointerToBase.count(L)); 1639 Value *Base = PointerToBase.find(L)->second; 1640 BaseVec.push_back(Base); 1641 } 1642 assert(LiveVec.size() == BaseVec.size()); 1643 1644 // Do the actual rewriting and delete the old statepoint 1645 makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements); 1646 } 1647 1648 // Helper function for the relocationViaAlloca. 1649 // 1650 // It receives iterator to the statepoint gc relocates and emits a store to the 1651 // assigned location (via allocaMap) for the each one of them. It adds the 1652 // visited values into the visitedLiveValues set, which we will later use them 1653 // for sanity checking. 1654 static void 1655 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1656 DenseMap<Value *, AllocaInst *> &AllocaMap, 1657 DenseSet<Value *> &VisitedLiveValues) { 1658 for (User *U : GCRelocs) { 1659 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1660 if (!Relocate) 1661 continue; 1662 1663 Value *OriginalValue = Relocate->getDerivedPtr(); 1664 assert(AllocaMap.count(OriginalValue)); 1665 Value *Alloca = AllocaMap[OriginalValue]; 1666 1667 // Emit store into the related alloca 1668 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1669 // the correct type according to alloca. 1670 assert(Relocate->getNextNode() && 1671 "Should always have one since it's not a terminator"); 1672 IRBuilder<> Builder(Relocate->getNextNode()); 1673 Value *CastedRelocatedValue = 1674 Builder.CreateBitCast(Relocate, 1675 cast<AllocaInst>(Alloca)->getAllocatedType(), 1676 suffixed_name_or(Relocate, ".casted", "")); 1677 1678 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1679 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1680 1681 #ifndef NDEBUG 1682 VisitedLiveValues.insert(OriginalValue); 1683 #endif 1684 } 1685 } 1686 1687 // Helper function for the "relocationViaAlloca". Similar to the 1688 // "insertRelocationStores" but works for rematerialized values. 1689 static void insertRematerializationStores( 1690 const RematerializedValueMapTy &RematerializedValues, 1691 DenseMap<Value *, AllocaInst *> &AllocaMap, 1692 DenseSet<Value *> &VisitedLiveValues) { 1693 for (auto RematerializedValuePair: RematerializedValues) { 1694 Instruction *RematerializedValue = RematerializedValuePair.first; 1695 Value *OriginalValue = RematerializedValuePair.second; 1696 1697 assert(AllocaMap.count(OriginalValue) && 1698 "Can not find alloca for rematerialized value"); 1699 Value *Alloca = AllocaMap[OriginalValue]; 1700 1701 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1702 Store->insertAfter(RematerializedValue); 1703 1704 #ifndef NDEBUG 1705 VisitedLiveValues.insert(OriginalValue); 1706 #endif 1707 } 1708 } 1709 1710 /// Do all the relocation update via allocas and mem2reg 1711 static void relocationViaAlloca( 1712 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1713 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1714 #ifndef NDEBUG 1715 // record initial number of (static) allocas; we'll check we have the same 1716 // number when we get done. 1717 int InitialAllocaNum = 0; 1718 for (Instruction &I : F.getEntryBlock()) 1719 if (isa<AllocaInst>(I)) 1720 InitialAllocaNum++; 1721 #endif 1722 1723 // TODO-PERF: change data structures, reserve 1724 DenseMap<Value *, AllocaInst *> AllocaMap; 1725 SmallVector<AllocaInst *, 200> PromotableAllocas; 1726 // Used later to chack that we have enough allocas to store all values 1727 std::size_t NumRematerializedValues = 0; 1728 PromotableAllocas.reserve(Live.size()); 1729 1730 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1731 // "PromotableAllocas" 1732 const DataLayout &DL = F.getParent()->getDataLayout(); 1733 auto emitAllocaFor = [&](Value *LiveValue) { 1734 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 1735 DL.getAllocaAddrSpace(), "", 1736 F.getEntryBlock().getFirstNonPHI()); 1737 AllocaMap[LiveValue] = Alloca; 1738 PromotableAllocas.push_back(Alloca); 1739 }; 1740 1741 // Emit alloca for each live gc pointer 1742 for (Value *V : Live) 1743 emitAllocaFor(V); 1744 1745 // Emit allocas for rematerialized values 1746 for (const auto &Info : Records) 1747 for (auto RematerializedValuePair : Info.RematerializedValues) { 1748 Value *OriginalValue = RematerializedValuePair.second; 1749 if (AllocaMap.count(OriginalValue) != 0) 1750 continue; 1751 1752 emitAllocaFor(OriginalValue); 1753 ++NumRematerializedValues; 1754 } 1755 1756 // The next two loops are part of the same conceptual operation. We need to 1757 // insert a store to the alloca after the original def and at each 1758 // redefinition. We need to insert a load before each use. These are split 1759 // into distinct loops for performance reasons. 1760 1761 // Update gc pointer after each statepoint: either store a relocated value or 1762 // null (if no relocated value was found for this gc pointer and it is not a 1763 // gc_result). This must happen before we update the statepoint with load of 1764 // alloca otherwise we lose the link between statepoint and old def. 1765 for (const auto &Info : Records) { 1766 Value *Statepoint = Info.StatepointToken; 1767 1768 // This will be used for consistency check 1769 DenseSet<Value *> VisitedLiveValues; 1770 1771 // Insert stores for normal statepoint gc relocates 1772 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1773 1774 // In case if it was invoke statepoint 1775 // we will insert stores for exceptional path gc relocates. 1776 if (isa<InvokeInst>(Statepoint)) { 1777 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1778 VisitedLiveValues); 1779 } 1780 1781 // Do similar thing with rematerialized values 1782 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1783 VisitedLiveValues); 1784 1785 if (ClobberNonLive) { 1786 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1787 // the gc.statepoint. This will turn some subtle GC problems into 1788 // slightly easier to debug SEGVs. Note that on large IR files with 1789 // lots of gc.statepoints this is extremely costly both memory and time 1790 // wise. 1791 SmallVector<AllocaInst *, 64> ToClobber; 1792 for (auto Pair : AllocaMap) { 1793 Value *Def = Pair.first; 1794 AllocaInst *Alloca = Pair.second; 1795 1796 // This value was relocated 1797 if (VisitedLiveValues.count(Def)) { 1798 continue; 1799 } 1800 ToClobber.push_back(Alloca); 1801 } 1802 1803 auto InsertClobbersAt = [&](Instruction *IP) { 1804 for (auto *AI : ToClobber) { 1805 auto PT = cast<PointerType>(AI->getAllocatedType()); 1806 Constant *CPN = ConstantPointerNull::get(PT); 1807 StoreInst *Store = new StoreInst(CPN, AI); 1808 Store->insertBefore(IP); 1809 } 1810 }; 1811 1812 // Insert the clobbering stores. These may get intermixed with the 1813 // gc.results and gc.relocates, but that's fine. 1814 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1815 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1816 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1817 } else { 1818 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1819 } 1820 } 1821 } 1822 1823 // Update use with load allocas and add store for gc_relocated. 1824 for (auto Pair : AllocaMap) { 1825 Value *Def = Pair.first; 1826 AllocaInst *Alloca = Pair.second; 1827 1828 // We pre-record the uses of allocas so that we dont have to worry about 1829 // later update that changes the user information.. 1830 1831 SmallVector<Instruction *, 20> Uses; 1832 // PERF: trade a linear scan for repeated reallocation 1833 Uses.reserve(Def->getNumUses()); 1834 for (User *U : Def->users()) { 1835 if (!isa<ConstantExpr>(U)) { 1836 // If the def has a ConstantExpr use, then the def is either a 1837 // ConstantExpr use itself or null. In either case 1838 // (recursively in the first, directly in the second), the oop 1839 // it is ultimately dependent on is null and this particular 1840 // use does not need to be fixed up. 1841 Uses.push_back(cast<Instruction>(U)); 1842 } 1843 } 1844 1845 llvm::sort(Uses); 1846 auto Last = std::unique(Uses.begin(), Uses.end()); 1847 Uses.erase(Last, Uses.end()); 1848 1849 for (Instruction *Use : Uses) { 1850 if (isa<PHINode>(Use)) { 1851 PHINode *Phi = cast<PHINode>(Use); 1852 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1853 if (Def == Phi->getIncomingValue(i)) { 1854 LoadInst *Load = 1855 new LoadInst(Alloca->getAllocatedType(), Alloca, "", 1856 Phi->getIncomingBlock(i)->getTerminator()); 1857 Phi->setIncomingValue(i, Load); 1858 } 1859 } 1860 } else { 1861 LoadInst *Load = 1862 new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use); 1863 Use->replaceUsesOfWith(Def, Load); 1864 } 1865 } 1866 1867 // Emit store for the initial gc value. Store must be inserted after load, 1868 // otherwise store will be in alloca's use list and an extra load will be 1869 // inserted before it. 1870 StoreInst *Store = new StoreInst(Def, Alloca); 1871 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1872 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1873 // InvokeInst is a terminator so the store need to be inserted into its 1874 // normal destination block. 1875 BasicBlock *NormalDest = Invoke->getNormalDest(); 1876 Store->insertBefore(NormalDest->getFirstNonPHI()); 1877 } else { 1878 assert(!Inst->isTerminator() && 1879 "The only terminator that can produce a value is " 1880 "InvokeInst which is handled above."); 1881 Store->insertAfter(Inst); 1882 } 1883 } else { 1884 assert(isa<Argument>(Def)); 1885 Store->insertAfter(cast<Instruction>(Alloca)); 1886 } 1887 } 1888 1889 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1890 "we must have the same allocas with lives"); 1891 if (!PromotableAllocas.empty()) { 1892 // Apply mem2reg to promote alloca to SSA 1893 PromoteMemToReg(PromotableAllocas, DT); 1894 } 1895 1896 #ifndef NDEBUG 1897 for (auto &I : F.getEntryBlock()) 1898 if (isa<AllocaInst>(I)) 1899 InitialAllocaNum--; 1900 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1901 #endif 1902 } 1903 1904 /// Implement a unique function which doesn't require we sort the input 1905 /// vector. Doing so has the effect of changing the output of a couple of 1906 /// tests in ways which make them less useful in testing fused safepoints. 1907 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1908 SmallSet<T, 8> Seen; 1909 Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }), 1910 Vec.end()); 1911 } 1912 1913 /// Insert holders so that each Value is obviously live through the entire 1914 /// lifetime of the call. 1915 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values, 1916 SmallVectorImpl<CallInst *> &Holders) { 1917 if (Values.empty()) 1918 // No values to hold live, might as well not insert the empty holder 1919 return; 1920 1921 Module *M = Call->getModule(); 1922 // Use a dummy vararg function to actually hold the values live 1923 FunctionCallee Func = M->getOrInsertFunction( 1924 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); 1925 if (isa<CallInst>(Call)) { 1926 // For call safepoints insert dummy calls right after safepoint 1927 Holders.push_back( 1928 CallInst::Create(Func, Values, "", &*++Call->getIterator())); 1929 return; 1930 } 1931 // For invoke safepooints insert dummy calls both in normal and 1932 // exceptional destination blocks 1933 auto *II = cast<InvokeInst>(Call); 1934 Holders.push_back(CallInst::Create( 1935 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1936 Holders.push_back(CallInst::Create( 1937 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1938 } 1939 1940 static void findLiveReferences( 1941 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 1942 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1943 GCPtrLivenessData OriginalLivenessData; 1944 computeLiveInValues(DT, F, OriginalLivenessData); 1945 for (size_t i = 0; i < records.size(); i++) { 1946 struct PartiallyConstructedSafepointRecord &info = records[i]; 1947 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1948 } 1949 } 1950 1951 // Helper function for the "rematerializeLiveValues". It walks use chain 1952 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 1953 // the base or a value it cannot process. Only "simple" values are processed 1954 // (currently it is GEP's and casts). The returned root is examined by the 1955 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 1956 // with all visited values. 1957 static Value* findRematerializableChainToBasePointer( 1958 SmallVectorImpl<Instruction*> &ChainToBase, 1959 Value *CurrentValue) { 1960 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1961 ChainToBase.push_back(GEP); 1962 return findRematerializableChainToBasePointer(ChainToBase, 1963 GEP->getPointerOperand()); 1964 } 1965 1966 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1967 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1968 return CI; 1969 1970 ChainToBase.push_back(CI); 1971 return findRematerializableChainToBasePointer(ChainToBase, 1972 CI->getOperand(0)); 1973 } 1974 1975 // We have reached the root of the chain, which is either equal to the base or 1976 // is the first unsupported value along the use chain. 1977 return CurrentValue; 1978 } 1979 1980 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1981 // chain we are going to rematerialize. 1982 static unsigned 1983 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1984 TargetTransformInfo &TTI) { 1985 unsigned Cost = 0; 1986 1987 for (Instruction *Instr : Chain) { 1988 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1989 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1990 "non noop cast is found during rematerialization"); 1991 1992 Type *SrcTy = CI->getOperand(0)->getType(); 1993 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, 1994 TargetTransformInfo::TCK_SizeAndLatency, 1995 CI); 1996 1997 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1998 // Cost of the address calculation 1999 Type *ValTy = GEP->getSourceElementType(); 2000 Cost += TTI.getAddressComputationCost(ValTy); 2001 2002 // And cost of the GEP itself 2003 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2004 // allowed for the external usage) 2005 if (!GEP->hasAllConstantIndices()) 2006 Cost += 2; 2007 2008 } else { 2009 llvm_unreachable("unsupported instruction type during rematerialization"); 2010 } 2011 } 2012 2013 return Cost; 2014 } 2015 2016 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 2017 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 2018 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 2019 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 2020 return false; 2021 // Map of incoming values and their corresponding basic blocks of 2022 // OrigRootPhi. 2023 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 2024 for (unsigned i = 0; i < PhiNum; i++) 2025 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 2026 OrigRootPhi.getIncomingBlock(i); 2027 2028 // Both current and base PHIs should have same incoming values and 2029 // the same basic blocks corresponding to the incoming values. 2030 for (unsigned i = 0; i < PhiNum; i++) { 2031 auto CIVI = 2032 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2033 if (CIVI == CurrentIncomingValues.end()) 2034 return false; 2035 BasicBlock *CurrentIncomingBB = CIVI->second; 2036 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2037 return false; 2038 } 2039 return true; 2040 } 2041 2042 // From the statepoint live set pick values that are cheaper to recompute then 2043 // to relocate. Remove this values from the live set, rematerialize them after 2044 // statepoint and record them in "Info" structure. Note that similar to 2045 // relocated values we don't do any user adjustments here. 2046 static void rematerializeLiveValues(CallBase *Call, 2047 PartiallyConstructedSafepointRecord &Info, 2048 TargetTransformInfo &TTI) { 2049 const unsigned int ChainLengthThreshold = 10; 2050 2051 // Record values we are going to delete from this statepoint live set. 2052 // We can not di this in following loop due to iterator invalidation. 2053 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2054 2055 for (Value *LiveValue: Info.LiveSet) { 2056 // For each live pointer find its defining chain 2057 SmallVector<Instruction *, 3> ChainToBase; 2058 assert(Info.PointerToBase.count(LiveValue)); 2059 Value *RootOfChain = 2060 findRematerializableChainToBasePointer(ChainToBase, 2061 LiveValue); 2062 2063 // Nothing to do, or chain is too long 2064 if ( ChainToBase.size() == 0 || 2065 ChainToBase.size() > ChainLengthThreshold) 2066 continue; 2067 2068 // Handle the scenario where the RootOfChain is not equal to the 2069 // Base Value, but they are essentially the same phi values. 2070 if (RootOfChain != Info.PointerToBase[LiveValue]) { 2071 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2072 PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]); 2073 if (!OrigRootPhi || !AlternateRootPhi) 2074 continue; 2075 // PHI nodes that have the same incoming values, and belonging to the same 2076 // basic blocks are essentially the same SSA value. When the original phi 2077 // has incoming values with different base pointers, the original phi is 2078 // marked as conflict, and an additional `AlternateRootPhi` with the same 2079 // incoming values get generated by the findBasePointer function. We need 2080 // to identify the newly generated AlternateRootPhi (.base version of phi) 2081 // and RootOfChain (the original phi node itself) are the same, so that we 2082 // can rematerialize the gep and casts. This is a workaround for the 2083 // deficiency in the findBasePointer algorithm. 2084 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2085 continue; 2086 // Now that the phi nodes are proved to be the same, assert that 2087 // findBasePointer's newly generated AlternateRootPhi is present in the 2088 // liveset of the call. 2089 assert(Info.LiveSet.count(AlternateRootPhi)); 2090 } 2091 // Compute cost of this chain 2092 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2093 // TODO: We can also account for cases when we will be able to remove some 2094 // of the rematerialized values by later optimization passes. I.e if 2095 // we rematerialized several intersecting chains. Or if original values 2096 // don't have any uses besides this statepoint. 2097 2098 // For invokes we need to rematerialize each chain twice - for normal and 2099 // for unwind basic blocks. Model this by multiplying cost by two. 2100 if (isa<InvokeInst>(Call)) { 2101 Cost *= 2; 2102 } 2103 // If it's too expensive - skip it 2104 if (Cost >= RematerializationThreshold) 2105 continue; 2106 2107 // Remove value from the live set 2108 LiveValuesToBeDeleted.push_back(LiveValue); 2109 2110 // Clone instructions and record them inside "Info" structure 2111 2112 // Walk backwards to visit top-most instructions first 2113 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2114 2115 // Utility function which clones all instructions from "ChainToBase" 2116 // and inserts them before "InsertBefore". Returns rematerialized value 2117 // which should be used after statepoint. 2118 auto rematerializeChain = [&ChainToBase]( 2119 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 2120 Instruction *LastClonedValue = nullptr; 2121 Instruction *LastValue = nullptr; 2122 for (Instruction *Instr: ChainToBase) { 2123 // Only GEP's and casts are supported as we need to be careful to not 2124 // introduce any new uses of pointers not in the liveset. 2125 // Note that it's fine to introduce new uses of pointers which were 2126 // otherwise not used after this statepoint. 2127 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2128 2129 Instruction *ClonedValue = Instr->clone(); 2130 ClonedValue->insertBefore(InsertBefore); 2131 ClonedValue->setName(Instr->getName() + ".remat"); 2132 2133 // If it is not first instruction in the chain then it uses previously 2134 // cloned value. We should update it to use cloned value. 2135 if (LastClonedValue) { 2136 assert(LastValue); 2137 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2138 #ifndef NDEBUG 2139 for (auto OpValue : ClonedValue->operand_values()) { 2140 // Assert that cloned instruction does not use any instructions from 2141 // this chain other than LastClonedValue 2142 assert(!is_contained(ChainToBase, OpValue) && 2143 "incorrect use in rematerialization chain"); 2144 // Assert that the cloned instruction does not use the RootOfChain 2145 // or the AlternateLiveBase. 2146 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2147 } 2148 #endif 2149 } else { 2150 // For the first instruction, replace the use of unrelocated base i.e. 2151 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2152 // live set. They have been proved to be the same PHI nodes. Note 2153 // that the *only* use of the RootOfChain in the ChainToBase list is 2154 // the first Value in the list. 2155 if (RootOfChain != AlternateLiveBase) 2156 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2157 } 2158 2159 LastClonedValue = ClonedValue; 2160 LastValue = Instr; 2161 } 2162 assert(LastClonedValue); 2163 return LastClonedValue; 2164 }; 2165 2166 // Different cases for calls and invokes. For invokes we need to clone 2167 // instructions both on normal and unwind path. 2168 if (isa<CallInst>(Call)) { 2169 Instruction *InsertBefore = Call->getNextNode(); 2170 assert(InsertBefore); 2171 Instruction *RematerializedValue = rematerializeChain( 2172 InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2173 Info.RematerializedValues[RematerializedValue] = LiveValue; 2174 } else { 2175 auto *Invoke = cast<InvokeInst>(Call); 2176 2177 Instruction *NormalInsertBefore = 2178 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2179 Instruction *UnwindInsertBefore = 2180 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2181 2182 Instruction *NormalRematerializedValue = rematerializeChain( 2183 NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2184 Instruction *UnwindRematerializedValue = rematerializeChain( 2185 UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2186 2187 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2188 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2189 } 2190 } 2191 2192 // Remove rematerializaed values from the live set 2193 for (auto LiveValue: LiveValuesToBeDeleted) { 2194 Info.LiveSet.remove(LiveValue); 2195 } 2196 } 2197 2198 static bool insertParsePoints(Function &F, DominatorTree &DT, 2199 TargetTransformInfo &TTI, 2200 SmallVectorImpl<CallBase *> &ToUpdate) { 2201 #ifndef NDEBUG 2202 // sanity check the input 2203 std::set<CallBase *> Uniqued; 2204 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2205 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2206 2207 for (CallBase *Call : ToUpdate) 2208 assert(Call->getFunction() == &F); 2209 #endif 2210 2211 // When inserting gc.relocates for invokes, we need to be able to insert at 2212 // the top of the successor blocks. See the comment on 2213 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2214 // may restructure the CFG. 2215 for (CallBase *Call : ToUpdate) { 2216 auto *II = dyn_cast<InvokeInst>(Call); 2217 if (!II) 2218 continue; 2219 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2220 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2221 } 2222 2223 // A list of dummy calls added to the IR to keep various values obviously 2224 // live in the IR. We'll remove all of these when done. 2225 SmallVector<CallInst *, 64> Holders; 2226 2227 // Insert a dummy call with all of the deopt operands we'll need for the 2228 // actual safepoint insertion as arguments. This ensures reference operands 2229 // in the deopt argument list are considered live through the safepoint (and 2230 // thus makes sure they get relocated.) 2231 for (CallBase *Call : ToUpdate) { 2232 SmallVector<Value *, 64> DeoptValues; 2233 2234 for (Value *Arg : GetDeoptBundleOperands(Call)) { 2235 assert(!isUnhandledGCPointerType(Arg->getType()) && 2236 "support for FCA unimplemented"); 2237 if (isHandledGCPointerType(Arg->getType())) 2238 DeoptValues.push_back(Arg); 2239 } 2240 2241 insertUseHolderAfter(Call, DeoptValues, Holders); 2242 } 2243 2244 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2245 2246 // A) Identify all gc pointers which are statically live at the given call 2247 // site. 2248 findLiveReferences(F, DT, ToUpdate, Records); 2249 2250 // B) Find the base pointers for each live pointer 2251 /* scope for caching */ { 2252 // Cache the 'defining value' relation used in the computation and 2253 // insertion of base phis and selects. This ensures that we don't insert 2254 // large numbers of duplicate base_phis. 2255 DefiningValueMapTy DVCache; 2256 2257 for (size_t i = 0; i < Records.size(); i++) { 2258 PartiallyConstructedSafepointRecord &info = Records[i]; 2259 findBasePointers(DT, DVCache, ToUpdate[i], info); 2260 } 2261 } // end of cache scope 2262 2263 // The base phi insertion logic (for any safepoint) may have inserted new 2264 // instructions which are now live at some safepoint. The simplest such 2265 // example is: 2266 // loop: 2267 // phi a <-- will be a new base_phi here 2268 // safepoint 1 <-- that needs to be live here 2269 // gep a + 1 2270 // safepoint 2 2271 // br loop 2272 // We insert some dummy calls after each safepoint to definitely hold live 2273 // the base pointers which were identified for that safepoint. We'll then 2274 // ask liveness for _every_ base inserted to see what is now live. Then we 2275 // remove the dummy calls. 2276 Holders.reserve(Holders.size() + Records.size()); 2277 for (size_t i = 0; i < Records.size(); i++) { 2278 PartiallyConstructedSafepointRecord &Info = Records[i]; 2279 2280 SmallVector<Value *, 128> Bases; 2281 for (auto Pair : Info.PointerToBase) 2282 Bases.push_back(Pair.second); 2283 2284 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2285 } 2286 2287 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2288 // need to rerun liveness. We may *also* have inserted new defs, but that's 2289 // not the key issue. 2290 recomputeLiveInValues(F, DT, ToUpdate, Records); 2291 2292 if (PrintBasePointers) { 2293 for (auto &Info : Records) { 2294 errs() << "Base Pairs: (w/Relocation)\n"; 2295 for (auto Pair : Info.PointerToBase) { 2296 errs() << " derived "; 2297 Pair.first->printAsOperand(errs(), false); 2298 errs() << " base "; 2299 Pair.second->printAsOperand(errs(), false); 2300 errs() << "\n"; 2301 } 2302 } 2303 } 2304 2305 // It is possible that non-constant live variables have a constant base. For 2306 // example, a GEP with a variable offset from a global. In this case we can 2307 // remove it from the liveset. We already don't add constants to the liveset 2308 // because we assume they won't move at runtime and the GC doesn't need to be 2309 // informed about them. The same reasoning applies if the base is constant. 2310 // Note that the relocation placement code relies on this filtering for 2311 // correctness as it expects the base to be in the liveset, which isn't true 2312 // if the base is constant. 2313 for (auto &Info : Records) 2314 for (auto &BasePair : Info.PointerToBase) 2315 if (isa<Constant>(BasePair.second)) 2316 Info.LiveSet.remove(BasePair.first); 2317 2318 for (CallInst *CI : Holders) 2319 CI->eraseFromParent(); 2320 2321 Holders.clear(); 2322 2323 // In order to reduce live set of statepoint we might choose to rematerialize 2324 // some values instead of relocating them. This is purely an optimization and 2325 // does not influence correctness. 2326 for (size_t i = 0; i < Records.size(); i++) 2327 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2328 2329 // We need this to safely RAUW and delete call or invoke return values that 2330 // may themselves be live over a statepoint. For details, please see usage in 2331 // makeStatepointExplicitImpl. 2332 std::vector<DeferredReplacement> Replacements; 2333 2334 // Now run through and replace the existing statepoints with new ones with 2335 // the live variables listed. We do not yet update uses of the values being 2336 // relocated. We have references to live variables that need to 2337 // survive to the last iteration of this loop. (By construction, the 2338 // previous statepoint can not be a live variable, thus we can and remove 2339 // the old statepoint calls as we go.) 2340 for (size_t i = 0; i < Records.size(); i++) 2341 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2342 2343 ToUpdate.clear(); // prevent accident use of invalid calls. 2344 2345 for (auto &PR : Replacements) 2346 PR.doReplacement(); 2347 2348 Replacements.clear(); 2349 2350 for (auto &Info : Records) { 2351 // These live sets may contain state Value pointers, since we replaced calls 2352 // with operand bundles with calls wrapped in gc.statepoint, and some of 2353 // those calls may have been def'ing live gc pointers. Clear these out to 2354 // avoid accidentally using them. 2355 // 2356 // TODO: We should create a separate data structure that does not contain 2357 // these live sets, and migrate to using that data structure from this point 2358 // onward. 2359 Info.LiveSet.clear(); 2360 Info.PointerToBase.clear(); 2361 } 2362 2363 // Do all the fixups of the original live variables to their relocated selves 2364 SmallVector<Value *, 128> Live; 2365 for (size_t i = 0; i < Records.size(); i++) { 2366 PartiallyConstructedSafepointRecord &Info = Records[i]; 2367 2368 // We can't simply save the live set from the original insertion. One of 2369 // the live values might be the result of a call which needs a safepoint. 2370 // That Value* no longer exists and we need to use the new gc_result. 2371 // Thankfully, the live set is embedded in the statepoint (and updated), so 2372 // we just grab that. 2373 Statepoint Statepoint(Info.StatepointToken); 2374 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2375 Statepoint.gc_args_end()); 2376 #ifndef NDEBUG 2377 // Do some basic sanity checks on our liveness results before performing 2378 // relocation. Relocation can and will turn mistakes in liveness results 2379 // into non-sensical code which is must harder to debug. 2380 // TODO: It would be nice to test consistency as well 2381 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2382 "statepoint must be reachable or liveness is meaningless"); 2383 for (Value *V : Statepoint.gc_args()) { 2384 if (!isa<Instruction>(V)) 2385 // Non-instruction values trivial dominate all possible uses 2386 continue; 2387 auto *LiveInst = cast<Instruction>(V); 2388 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2389 "unreachable values should never be live"); 2390 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2391 "basic SSA liveness expectation violated by liveness analysis"); 2392 } 2393 #endif 2394 } 2395 unique_unsorted(Live); 2396 2397 #ifndef NDEBUG 2398 // sanity check 2399 for (auto *Ptr : Live) 2400 assert(isHandledGCPointerType(Ptr->getType()) && 2401 "must be a gc pointer type"); 2402 #endif 2403 2404 relocationViaAlloca(F, DT, Live, Records); 2405 return !Records.empty(); 2406 } 2407 2408 // Handles both return values and arguments for Functions and calls. 2409 template <typename AttrHolder> 2410 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2411 unsigned Index) { 2412 AttrBuilder R; 2413 if (AH.getDereferenceableBytes(Index)) 2414 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2415 AH.getDereferenceableBytes(Index))); 2416 if (AH.getDereferenceableOrNullBytes(Index)) 2417 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2418 AH.getDereferenceableOrNullBytes(Index))); 2419 if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias)) 2420 R.addAttribute(Attribute::NoAlias); 2421 2422 if (!R.empty()) 2423 AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R)); 2424 } 2425 2426 static void stripNonValidAttributesFromPrototype(Function &F) { 2427 LLVMContext &Ctx = F.getContext(); 2428 2429 for (Argument &A : F.args()) 2430 if (isa<PointerType>(A.getType())) 2431 RemoveNonValidAttrAtIndex(Ctx, F, 2432 A.getArgNo() + AttributeList::FirstArgIndex); 2433 2434 if (isa<PointerType>(F.getReturnType())) 2435 RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex); 2436 } 2437 2438 /// Certain metadata on instructions are invalid after running RS4GC. 2439 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2440 /// optimize functions. We drop such metadata on the instruction. 2441 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2442 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2443 return; 2444 // These are the attributes that are still valid on loads and stores after 2445 // RS4GC. 2446 // The metadata implying dereferenceability and noalias are (conservatively) 2447 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2448 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2449 // touch the entire heap including noalias objects. Note: The reasoning is 2450 // same as stripping the dereferenceability and noalias attributes that are 2451 // analogous to the metadata counterparts. 2452 // We also drop the invariant.load metadata on the load because that metadata 2453 // implies the address operand to the load points to memory that is never 2454 // changed once it became dereferenceable. This is no longer true after RS4GC. 2455 // Similar reasoning applies to invariant.group metadata, which applies to 2456 // loads within a group. 2457 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2458 LLVMContext::MD_range, 2459 LLVMContext::MD_alias_scope, 2460 LLVMContext::MD_nontemporal, 2461 LLVMContext::MD_nonnull, 2462 LLVMContext::MD_align, 2463 LLVMContext::MD_type}; 2464 2465 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2466 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2467 } 2468 2469 static void stripNonValidDataFromBody(Function &F) { 2470 if (F.empty()) 2471 return; 2472 2473 LLVMContext &Ctx = F.getContext(); 2474 MDBuilder Builder(Ctx); 2475 2476 // Set of invariantstart instructions that we need to remove. 2477 // Use this to avoid invalidating the instruction iterator. 2478 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2479 2480 for (Instruction &I : instructions(F)) { 2481 // invariant.start on memory location implies that the referenced memory 2482 // location is constant and unchanging. This is no longer true after 2483 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2484 // which frees the entire heap and the presence of invariant.start allows 2485 // the optimizer to sink the load of a memory location past a statepoint, 2486 // which is incorrect. 2487 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2488 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2489 InvariantStartInstructions.push_back(II); 2490 continue; 2491 } 2492 2493 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2494 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2495 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2496 } 2497 2498 stripInvalidMetadataFromInstruction(I); 2499 2500 if (auto *Call = dyn_cast<CallBase>(&I)) { 2501 for (int i = 0, e = Call->arg_size(); i != e; i++) 2502 if (isa<PointerType>(Call->getArgOperand(i)->getType())) 2503 RemoveNonValidAttrAtIndex(Ctx, *Call, 2504 i + AttributeList::FirstArgIndex); 2505 if (isa<PointerType>(Call->getType())) 2506 RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex); 2507 } 2508 } 2509 2510 // Delete the invariant.start instructions and RAUW undef. 2511 for (auto *II : InvariantStartInstructions) { 2512 II->replaceAllUsesWith(UndefValue::get(II->getType())); 2513 II->eraseFromParent(); 2514 } 2515 } 2516 2517 /// Returns true if this function should be rewritten by this pass. The main 2518 /// point of this function is as an extension point for custom logic. 2519 static bool shouldRewriteStatepointsIn(Function &F) { 2520 // TODO: This should check the GCStrategy 2521 if (F.hasGC()) { 2522 const auto &FunctionGCName = F.getGC(); 2523 const StringRef StatepointExampleName("statepoint-example"); 2524 const StringRef CoreCLRName("coreclr"); 2525 return (StatepointExampleName == FunctionGCName) || 2526 (CoreCLRName == FunctionGCName); 2527 } else 2528 return false; 2529 } 2530 2531 static void stripNonValidData(Module &M) { 2532 #ifndef NDEBUG 2533 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2534 #endif 2535 2536 for (Function &F : M) 2537 stripNonValidAttributesFromPrototype(F); 2538 2539 for (Function &F : M) 2540 stripNonValidDataFromBody(F); 2541 } 2542 2543 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 2544 TargetTransformInfo &TTI, 2545 const TargetLibraryInfo &TLI) { 2546 assert(!F.isDeclaration() && !F.empty() && 2547 "need function body to rewrite statepoints in"); 2548 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 2549 2550 auto NeedsRewrite = [&TLI](Instruction &I) { 2551 if (const auto *Call = dyn_cast<CallBase>(&I)) 2552 return !callsGCLeafFunction(Call, TLI) && !isStatepoint(Call); 2553 return false; 2554 }; 2555 2556 // Delete any unreachable statepoints so that we don't have unrewritten 2557 // statepoints surviving this pass. This makes testing easier and the 2558 // resulting IR less confusing to human readers. 2559 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 2560 bool MadeChange = removeUnreachableBlocks(F, &DTU); 2561 // Flush the Dominator Tree. 2562 DTU.getDomTree(); 2563 2564 // Gather all the statepoints which need rewritten. Be careful to only 2565 // consider those in reachable code since we need to ask dominance queries 2566 // when rewriting. We'll delete the unreachable ones in a moment. 2567 SmallVector<CallBase *, 64> ParsePointNeeded; 2568 for (Instruction &I : instructions(F)) { 2569 // TODO: only the ones with the flag set! 2570 if (NeedsRewrite(I)) { 2571 // NOTE removeUnreachableBlocks() is stronger than 2572 // DominatorTree::isReachableFromEntry(). In other words 2573 // removeUnreachableBlocks can remove some blocks for which 2574 // isReachableFromEntry() returns true. 2575 assert(DT.isReachableFromEntry(I.getParent()) && 2576 "no unreachable blocks expected"); 2577 ParsePointNeeded.push_back(cast<CallBase>(&I)); 2578 } 2579 } 2580 2581 // Return early if no work to do. 2582 if (ParsePointNeeded.empty()) 2583 return MadeChange; 2584 2585 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2586 // These are created by LCSSA. They have the effect of increasing the size 2587 // of liveness sets for no good reason. It may be harder to do this post 2588 // insertion since relocations and base phis can confuse things. 2589 for (BasicBlock &BB : F) 2590 if (BB.getUniquePredecessor()) { 2591 MadeChange = true; 2592 FoldSingleEntryPHINodes(&BB); 2593 } 2594 2595 // Before we start introducing relocations, we want to tweak the IR a bit to 2596 // avoid unfortunate code generation effects. The main example is that we 2597 // want to try to make sure the comparison feeding a branch is after any 2598 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2599 // values feeding a branch after relocation. This is semantically correct, 2600 // but results in extra register pressure since both the pre-relocation and 2601 // post-relocation copies must be available in registers. For code without 2602 // relocations this is handled elsewhere, but teaching the scheduler to 2603 // reverse the transform we're about to do would be slightly complex. 2604 // Note: This may extend the live range of the inputs to the icmp and thus 2605 // increase the liveset of any statepoint we move over. This is profitable 2606 // as long as all statepoints are in rare blocks. If we had in-register 2607 // lowering for live values this would be a much safer transform. 2608 auto getConditionInst = [](Instruction *TI) -> Instruction * { 2609 if (auto *BI = dyn_cast<BranchInst>(TI)) 2610 if (BI->isConditional()) 2611 return dyn_cast<Instruction>(BI->getCondition()); 2612 // TODO: Extend this to handle switches 2613 return nullptr; 2614 }; 2615 for (BasicBlock &BB : F) { 2616 Instruction *TI = BB.getTerminator(); 2617 if (auto *Cond = getConditionInst(TI)) 2618 // TODO: Handle more than just ICmps here. We should be able to move 2619 // most instructions without side effects or memory access. 2620 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2621 MadeChange = true; 2622 Cond->moveBefore(TI); 2623 } 2624 } 2625 2626 // Nasty workaround - The base computation code in the main algorithm doesn't 2627 // consider the fact that a GEP can be used to convert a scalar to a vector. 2628 // The right fix for this is to integrate GEPs into the base rewriting 2629 // algorithm properly, this is just a short term workaround to prevent 2630 // crashes by canonicalizing such GEPs into fully vector GEPs. 2631 for (Instruction &I : instructions(F)) { 2632 if (!isa<GetElementPtrInst>(I)) 2633 continue; 2634 2635 unsigned VF = 0; 2636 for (unsigned i = 0; i < I.getNumOperands(); i++) 2637 if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) { 2638 assert(VF == 0 || VF == OpndVTy->getNumElements()); 2639 VF = OpndVTy->getNumElements(); 2640 } 2641 2642 // It's the vector to scalar traversal through the pointer operand which 2643 // confuses base pointer rewriting, so limit ourselves to that case. 2644 if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { 2645 IRBuilder<> B(&I); 2646 auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); 2647 I.setOperand(0, Splat); 2648 MadeChange = true; 2649 } 2650 } 2651 2652 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2653 return MadeChange; 2654 } 2655 2656 // liveness computation via standard dataflow 2657 // ------------------------------------------------------------------- 2658 2659 // TODO: Consider using bitvectors for liveness, the set of potentially 2660 // interesting values should be small and easy to pre-compute. 2661 2662 /// Compute the live-in set for the location rbegin starting from 2663 /// the live-out set of the basic block 2664 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 2665 BasicBlock::reverse_iterator End, 2666 SetVector<Value *> &LiveTmp) { 2667 for (auto &I : make_range(Begin, End)) { 2668 // KILL/Def - Remove this definition from LiveIn 2669 LiveTmp.remove(&I); 2670 2671 // Don't consider *uses* in PHI nodes, we handle their contribution to 2672 // predecessor blocks when we seed the LiveOut sets 2673 if (isa<PHINode>(I)) 2674 continue; 2675 2676 // USE - Add to the LiveIn set for this instruction 2677 for (Value *V : I.operands()) { 2678 assert(!isUnhandledGCPointerType(V->getType()) && 2679 "support for FCA unimplemented"); 2680 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2681 // The choice to exclude all things constant here is slightly subtle. 2682 // There are two independent reasons: 2683 // - We assume that things which are constant (from LLVM's definition) 2684 // do not move at runtime. For example, the address of a global 2685 // variable is fixed, even though it's contents may not be. 2686 // - Second, we can't disallow arbitrary inttoptr constants even 2687 // if the language frontend does. Optimization passes are free to 2688 // locally exploit facts without respect to global reachability. This 2689 // can create sections of code which are dynamically unreachable and 2690 // contain just about anything. (see constants.ll in tests) 2691 LiveTmp.insert(V); 2692 } 2693 } 2694 } 2695 } 2696 2697 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2698 for (BasicBlock *Succ : successors(BB)) { 2699 for (auto &I : *Succ) { 2700 PHINode *PN = dyn_cast<PHINode>(&I); 2701 if (!PN) 2702 break; 2703 2704 Value *V = PN->getIncomingValueForBlock(BB); 2705 assert(!isUnhandledGCPointerType(V->getType()) && 2706 "support for FCA unimplemented"); 2707 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 2708 LiveTmp.insert(V); 2709 } 2710 } 2711 } 2712 2713 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2714 SetVector<Value *> KillSet; 2715 for (Instruction &I : *BB) 2716 if (isHandledGCPointerType(I.getType())) 2717 KillSet.insert(&I); 2718 return KillSet; 2719 } 2720 2721 #ifndef NDEBUG 2722 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2723 /// sanity check for the liveness computation. 2724 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2725 Instruction *TI, bool TermOkay = false) { 2726 for (Value *V : Live) { 2727 if (auto *I = dyn_cast<Instruction>(V)) { 2728 // The terminator can be a member of the LiveOut set. LLVM's definition 2729 // of instruction dominance states that V does not dominate itself. As 2730 // such, we need to special case this to allow it. 2731 if (TermOkay && TI == I) 2732 continue; 2733 assert(DT.dominates(I, TI) && 2734 "basic SSA liveness expectation violated by liveness analysis"); 2735 } 2736 } 2737 } 2738 2739 /// Check that all the liveness sets used during the computation of liveness 2740 /// obey basic SSA properties. This is useful for finding cases where we miss 2741 /// a def. 2742 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2743 BasicBlock &BB) { 2744 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2745 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2746 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2747 } 2748 #endif 2749 2750 static void computeLiveInValues(DominatorTree &DT, Function &F, 2751 GCPtrLivenessData &Data) { 2752 SmallSetVector<BasicBlock *, 32> Worklist; 2753 2754 // Seed the liveness for each individual block 2755 for (BasicBlock &BB : F) { 2756 Data.KillSet[&BB] = computeKillSet(&BB); 2757 Data.LiveSet[&BB].clear(); 2758 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2759 2760 #ifndef NDEBUG 2761 for (Value *Kill : Data.KillSet[&BB]) 2762 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2763 #endif 2764 2765 Data.LiveOut[&BB] = SetVector<Value *>(); 2766 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2767 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2768 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2769 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2770 if (!Data.LiveIn[&BB].empty()) 2771 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 2772 } 2773 2774 // Propagate that liveness until stable 2775 while (!Worklist.empty()) { 2776 BasicBlock *BB = Worklist.pop_back_val(); 2777 2778 // Compute our new liveout set, then exit early if it hasn't changed despite 2779 // the contribution of our successor. 2780 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2781 const auto OldLiveOutSize = LiveOut.size(); 2782 for (BasicBlock *Succ : successors(BB)) { 2783 assert(Data.LiveIn.count(Succ)); 2784 LiveOut.set_union(Data.LiveIn[Succ]); 2785 } 2786 // assert OutLiveOut is a subset of LiveOut 2787 if (OldLiveOutSize == LiveOut.size()) { 2788 // If the sets are the same size, then we didn't actually add anything 2789 // when unioning our successors LiveIn. Thus, the LiveIn of this block 2790 // hasn't changed. 2791 continue; 2792 } 2793 Data.LiveOut[BB] = LiveOut; 2794 2795 // Apply the effects of this basic block 2796 SetVector<Value *> LiveTmp = LiveOut; 2797 LiveTmp.set_union(Data.LiveSet[BB]); 2798 LiveTmp.set_subtract(Data.KillSet[BB]); 2799 2800 assert(Data.LiveIn.count(BB)); 2801 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2802 // assert: OldLiveIn is a subset of LiveTmp 2803 if (OldLiveIn.size() != LiveTmp.size()) { 2804 Data.LiveIn[BB] = LiveTmp; 2805 Worklist.insert(pred_begin(BB), pred_end(BB)); 2806 } 2807 } // while (!Worklist.empty()) 2808 2809 #ifndef NDEBUG 2810 // Sanity check our output against SSA properties. This helps catch any 2811 // missing kills during the above iteration. 2812 for (BasicBlock &BB : F) 2813 checkBasicSSA(DT, Data, BB); 2814 #endif 2815 } 2816 2817 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2818 StatepointLiveSetTy &Out) { 2819 BasicBlock *BB = Inst->getParent(); 2820 2821 // Note: The copy is intentional and required 2822 assert(Data.LiveOut.count(BB)); 2823 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2824 2825 // We want to handle the statepoint itself oddly. It's 2826 // call result is not live (normal), nor are it's arguments 2827 // (unless they're used again later). This adjustment is 2828 // specifically what we need to relocate 2829 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 2830 LiveOut); 2831 LiveOut.remove(Inst); 2832 Out.insert(LiveOut.begin(), LiveOut.end()); 2833 } 2834 2835 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2836 CallBase *Call, 2837 PartiallyConstructedSafepointRecord &Info) { 2838 StatepointLiveSetTy Updated; 2839 findLiveSetAtInst(Call, RevisedLivenessData, Updated); 2840 2841 // We may have base pointers which are now live that weren't before. We need 2842 // to update the PointerToBase structure to reflect this. 2843 for (auto V : Updated) 2844 if (Info.PointerToBase.insert({V, V}).second) { 2845 assert(isKnownBaseResult(V) && 2846 "Can't find base for unexpected live value!"); 2847 continue; 2848 } 2849 2850 #ifndef NDEBUG 2851 for (auto V : Updated) 2852 assert(Info.PointerToBase.count(V) && 2853 "Must be able to find base for live value!"); 2854 #endif 2855 2856 // Remove any stale base mappings - this can happen since our liveness is 2857 // more precise then the one inherent in the base pointer analysis. 2858 DenseSet<Value *> ToErase; 2859 for (auto KVPair : Info.PointerToBase) 2860 if (!Updated.count(KVPair.first)) 2861 ToErase.insert(KVPair.first); 2862 2863 for (auto *V : ToErase) 2864 Info.PointerToBase.erase(V); 2865 2866 #ifndef NDEBUG 2867 for (auto KVPair : Info.PointerToBase) 2868 assert(Updated.count(KVPair.first) && "record for non-live value"); 2869 #endif 2870 2871 Info.LiveSet = Updated; 2872 } 2873