1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstIterator.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/Cloning.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 45 46 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 47 48 using namespace llvm; 49 50 // Print the liveset found at the insert location 51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 52 cl::init(false)); 53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 54 cl::init(false)); 55 // Print out the base pointers for debugging 56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 57 cl::init(false)); 58 59 // Cost threshold measuring when it is profitable to rematerialize value instead 60 // of relocating it 61 static cl::opt<unsigned> 62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 63 cl::init(6)); 64 65 #ifdef XDEBUG 66 static bool ClobberNonLive = true; 67 #else 68 static bool ClobberNonLive = false; 69 #endif 70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 71 cl::location(ClobberNonLive), 72 cl::Hidden); 73 74 namespace { 75 struct RewriteStatepointsForGC : public ModulePass { 76 static char ID; // Pass identification, replacement for typeid 77 78 RewriteStatepointsForGC() : ModulePass(ID) { 79 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 80 } 81 bool runOnFunction(Function &F); 82 bool runOnModule(Module &M) override { 83 bool Changed = false; 84 for (Function &F : M) 85 Changed |= runOnFunction(F); 86 87 if (Changed) { 88 // stripDereferenceabilityInfo asserts that shouldRewriteStatepointsIn 89 // returns true for at least one function in the module. Since at least 90 // one function changed, we know that the precondition is satisfied. 91 stripDereferenceabilityInfo(M); 92 } 93 94 return Changed; 95 } 96 97 void getAnalysisUsage(AnalysisUsage &AU) const override { 98 // We add and rewrite a bunch of instructions, but don't really do much 99 // else. We could in theory preserve a lot more analyses here. 100 AU.addRequired<DominatorTreeWrapperPass>(); 101 AU.addRequired<TargetTransformInfoWrapperPass>(); 102 } 103 104 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 105 /// dereferenceability that are no longer valid/correct after 106 /// RewriteStatepointsForGC has run. This is because semantically, after 107 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 108 /// heap. stripDereferenceabilityInfo (conservatively) restores correctness 109 /// by erasing all attributes in the module that externally imply 110 /// dereferenceability. 111 /// 112 void stripDereferenceabilityInfo(Module &M); 113 114 // Helpers for stripDereferenceabilityInfo 115 void stripDereferenceabilityInfoFromBody(Function &F); 116 void stripDereferenceabilityInfoFromPrototype(Function &F); 117 }; 118 } // namespace 119 120 char RewriteStatepointsForGC::ID = 0; 121 122 ModulePass *llvm::createRewriteStatepointsForGCPass() { 123 return new RewriteStatepointsForGC(); 124 } 125 126 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 127 "Make relocations explicit at statepoints", false, false) 128 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 129 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 130 "Make relocations explicit at statepoints", false, false) 131 132 namespace { 133 struct GCPtrLivenessData { 134 /// Values defined in this block. 135 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 136 /// Values used in this block (and thus live); does not included values 137 /// killed within this block. 138 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 139 140 /// Values live into this basic block (i.e. used by any 141 /// instruction in this basic block or ones reachable from here) 142 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 143 144 /// Values live out of this basic block (i.e. live into 145 /// any successor block) 146 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 147 }; 148 149 // The type of the internal cache used inside the findBasePointers family 150 // of functions. From the callers perspective, this is an opaque type and 151 // should not be inspected. 152 // 153 // In the actual implementation this caches two relations: 154 // - The base relation itself (i.e. this pointer is based on that one) 155 // - The base defining value relation (i.e. before base_phi insertion) 156 // Generally, after the execution of a full findBasePointer call, only the 157 // base relation will remain. Internally, we add a mixture of the two 158 // types, then update all the second type to the first type 159 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 160 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 161 typedef DenseMap<Instruction *, Value *> RematerializedValueMapTy; 162 163 struct PartiallyConstructedSafepointRecord { 164 /// The set of values known to be live across this safepoint 165 StatepointLiveSetTy liveset; 166 167 /// Mapping from live pointers to a base-defining-value 168 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 169 170 /// The *new* gc.statepoint instruction itself. This produces the token 171 /// that normal path gc.relocates and the gc.result are tied to. 172 Instruction *StatepointToken; 173 174 /// Instruction to which exceptional gc relocates are attached 175 /// Makes it easier to iterate through them during relocationViaAlloca. 176 Instruction *UnwindToken; 177 178 /// Record live values we are rematerialized instead of relocating. 179 /// They are not included into 'liveset' field. 180 /// Maps rematerialized copy to it's original value. 181 RematerializedValueMapTy RematerializedValues; 182 }; 183 } 184 185 /// Compute the live-in set for every basic block in the function 186 static void computeLiveInValues(DominatorTree &DT, Function &F, 187 GCPtrLivenessData &Data); 188 189 /// Given results from the dataflow liveness computation, find the set of live 190 /// Values at a particular instruction. 191 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 192 StatepointLiveSetTy &out); 193 194 // TODO: Once we can get to the GCStrategy, this becomes 195 // Optional<bool> isGCManagedPointer(const Value *V) const override { 196 197 static bool isGCPointerType(Type *T) { 198 if (auto *PT = dyn_cast<PointerType>(T)) 199 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 200 // GC managed heap. We know that a pointer into this heap needs to be 201 // updated and that no other pointer does. 202 return (1 == PT->getAddressSpace()); 203 return false; 204 } 205 206 // Return true if this type is one which a) is a gc pointer or contains a GC 207 // pointer and b) is of a type this code expects to encounter as a live value. 208 // (The insertion code will assert that a type which matches (a) and not (b) 209 // is not encountered.) 210 static bool isHandledGCPointerType(Type *T) { 211 // We fully support gc pointers 212 if (isGCPointerType(T)) 213 return true; 214 // We partially support vectors of gc pointers. The code will assert if it 215 // can't handle something. 216 if (auto VT = dyn_cast<VectorType>(T)) 217 if (isGCPointerType(VT->getElementType())) 218 return true; 219 return false; 220 } 221 222 #ifndef NDEBUG 223 /// Returns true if this type contains a gc pointer whether we know how to 224 /// handle that type or not. 225 static bool containsGCPtrType(Type *Ty) { 226 if (isGCPointerType(Ty)) 227 return true; 228 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 229 return isGCPointerType(VT->getScalarType()); 230 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 231 return containsGCPtrType(AT->getElementType()); 232 if (StructType *ST = dyn_cast<StructType>(Ty)) 233 return std::any_of( 234 ST->subtypes().begin(), ST->subtypes().end(), 235 [](Type *SubType) { return containsGCPtrType(SubType); }); 236 return false; 237 } 238 239 // Returns true if this is a type which a) is a gc pointer or contains a GC 240 // pointer and b) is of a type which the code doesn't expect (i.e. first class 241 // aggregates). Used to trip assertions. 242 static bool isUnhandledGCPointerType(Type *Ty) { 243 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 244 } 245 #endif 246 247 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 248 if (a->hasName() && b->hasName()) { 249 return -1 == a->getName().compare(b->getName()); 250 } else if (a->hasName() && !b->hasName()) { 251 return true; 252 } else if (!a->hasName() && b->hasName()) { 253 return false; 254 } else { 255 // Better than nothing, but not stable 256 return a < b; 257 } 258 } 259 260 // Conservatively identifies any definitions which might be live at the 261 // given instruction. The analysis is performed immediately before the 262 // given instruction. Values defined by that instruction are not considered 263 // live. Values used by that instruction are considered live. 264 static void analyzeParsePointLiveness( 265 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 266 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 267 Instruction *inst = CS.getInstruction(); 268 269 StatepointLiveSetTy liveset; 270 findLiveSetAtInst(inst, OriginalLivenessData, liveset); 271 272 if (PrintLiveSet) { 273 // Note: This output is used by several of the test cases 274 // The order of elements in a set is not stable, put them in a vec and sort 275 // by name 276 SmallVector<Value *, 64> Temp; 277 Temp.insert(Temp.end(), liveset.begin(), liveset.end()); 278 std::sort(Temp.begin(), Temp.end(), order_by_name); 279 errs() << "Live Variables:\n"; 280 for (Value *V : Temp) 281 dbgs() << " " << V->getName() << " " << *V << "\n"; 282 } 283 if (PrintLiveSetSize) { 284 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 285 errs() << "Number live values: " << liveset.size() << "\n"; 286 } 287 result.liveset = liveset; 288 } 289 290 static bool isKnownBaseResult(Value *V); 291 namespace { 292 /// A single base defining value - An immediate base defining value for an 293 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 294 /// For instructions which have multiple pointer [vector] inputs or that 295 /// transition between vector and scalar types, there is no immediate base 296 /// defining value. The 'base defining value' for 'Def' is the transitive 297 /// closure of this relation stopping at the first instruction which has no 298 /// immediate base defining value. The b.d.v. might itself be a base pointer, 299 /// but it can also be an arbitrary derived pointer. 300 struct BaseDefiningValueResult { 301 /// Contains the value which is the base defining value. 302 Value * const BDV; 303 /// True if the base defining value is also known to be an actual base 304 /// pointer. 305 const bool IsKnownBase; 306 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 307 : BDV(BDV), IsKnownBase(IsKnownBase) { 308 #ifndef NDEBUG 309 // Check consistency between new and old means of checking whether a BDV is 310 // a base. 311 bool MustBeBase = isKnownBaseResult(BDV); 312 assert(!MustBeBase || MustBeBase == IsKnownBase); 313 #endif 314 } 315 }; 316 } 317 318 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 319 320 /// Return a base defining value for the 'Index' element of the given vector 321 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 322 /// 'I'. As an optimization, this method will try to determine when the 323 /// element is known to already be a base pointer. If this can be established, 324 /// the second value in the returned pair will be true. Note that either a 325 /// vector or a pointer typed value can be returned. For the former, the 326 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 327 /// If the later, the return pointer is a BDV (or possibly a base) for the 328 /// particular element in 'I'. 329 static BaseDefiningValueResult 330 findBaseDefiningValueOfVector(Value *I, Value *Index = nullptr) { 331 assert(I->getType()->isVectorTy() && 332 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 333 "Illegal to ask for the base pointer of a non-pointer type"); 334 335 // Each case parallels findBaseDefiningValue below, see that code for 336 // detailed motivation. 337 338 if (isa<Argument>(I)) 339 // An incoming argument to the function is a base pointer 340 return BaseDefiningValueResult(I, true); 341 342 // We shouldn't see the address of a global as a vector value? 343 assert(!isa<GlobalVariable>(I) && 344 "unexpected global variable found in base of vector"); 345 346 // inlining could possibly introduce phi node that contains 347 // undef if callee has multiple returns 348 if (isa<UndefValue>(I)) 349 // utterly meaningless, but useful for dealing with partially optimized 350 // code. 351 return BaseDefiningValueResult(I, true); 352 353 // Due to inheritance, this must be _after_ the global variable and undef 354 // checks 355 if (Constant *Con = dyn_cast<Constant>(I)) { 356 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 357 "order of checks wrong!"); 358 assert(Con->isNullValue() && "null is the only case which makes sense"); 359 return BaseDefiningValueResult(Con, true); 360 } 361 362 if (isa<LoadInst>(I)) 363 return BaseDefiningValueResult(I, true); 364 365 // For an insert element, we might be able to look through it if we know 366 // something about the indexes. 367 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(I)) { 368 if (Index) { 369 Value *InsertIndex = IEI->getOperand(2); 370 // This index is inserting the value, look for its BDV 371 if (InsertIndex == Index) 372 return findBaseDefiningValue(IEI->getOperand(1)); 373 // Both constant, and can't be equal per above. This insert is definitely 374 // not relevant, look back at the rest of the vector and keep trying. 375 if (isa<ConstantInt>(Index) && isa<ConstantInt>(InsertIndex)) 376 return findBaseDefiningValueOfVector(IEI->getOperand(0), Index); 377 } 378 379 // If both inputs to the insertelement are known bases, then so is the 380 // insertelement itself. NOTE: This should be handled within the generic 381 // base pointer inference code and after http://reviews.llvm.org/D12583, 382 // will be. However, when strengthening asserts I needed to add this to 383 // keep an existing test passing which was 'working'. FIXME 384 if (findBaseDefiningValue(IEI->getOperand(0)).IsKnownBase && 385 findBaseDefiningValue(IEI->getOperand(1)).IsKnownBase) 386 return BaseDefiningValueResult(IEI, true); 387 388 // We don't know whether this vector contains entirely base pointers or 389 // not. To be conservatively correct, we treat it as a BDV and will 390 // duplicate code as needed to construct a parallel vector of bases. 391 return BaseDefiningValueResult(IEI, false); 392 } 393 394 if (isa<ShuffleVectorInst>(I)) 395 // We don't know whether this vector contains entirely base pointers or 396 // not. To be conservatively correct, we treat it as a BDV and will 397 // duplicate code as needed to construct a parallel vector of bases. 398 // TODO: There a number of local optimizations which could be applied here 399 // for particular sufflevector patterns. 400 return BaseDefiningValueResult(I, false); 401 402 // A PHI or Select is a base defining value. The outer findBasePointer 403 // algorithm is responsible for constructing a base value for this BDV. 404 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 405 "unknown vector instruction - no base found for vector element"); 406 return BaseDefiningValueResult(I, false); 407 } 408 409 /// Helper function for findBasePointer - Will return a value which either a) 410 /// defines the base pointer for the input, b) blocks the simple search 411 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 412 /// from pointer to vector type or back. 413 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 414 if (I->getType()->isVectorTy()) 415 return findBaseDefiningValueOfVector(I); 416 417 assert(I->getType()->isPointerTy() && 418 "Illegal to ask for the base pointer of a non-pointer type"); 419 420 if (isa<Argument>(I)) 421 // An incoming argument to the function is a base pointer 422 // We should have never reached here if this argument isn't an gc value 423 return BaseDefiningValueResult(I, true); 424 425 if (isa<GlobalVariable>(I)) 426 // base case 427 return BaseDefiningValueResult(I, true); 428 429 // inlining could possibly introduce phi node that contains 430 // undef if callee has multiple returns 431 if (isa<UndefValue>(I)) 432 // utterly meaningless, but useful for dealing with 433 // partially optimized code. 434 return BaseDefiningValueResult(I, true); 435 436 // Due to inheritance, this must be _after_ the global variable and undef 437 // checks 438 if (isa<Constant>(I)) { 439 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 440 "order of checks wrong!"); 441 // Note: Finding a constant base for something marked for relocation 442 // doesn't really make sense. The most likely case is either a) some 443 // screwed up the address space usage or b) your validating against 444 // compiled C++ code w/o the proper separation. The only real exception 445 // is a null pointer. You could have generic code written to index of 446 // off a potentially null value and have proven it null. We also use 447 // null pointers in dead paths of relocation phis (which we might later 448 // want to find a base pointer for). 449 assert(isa<ConstantPointerNull>(I) && 450 "null is the only case which makes sense"); 451 return BaseDefiningValueResult(I, true); 452 } 453 454 if (CastInst *CI = dyn_cast<CastInst>(I)) { 455 Value *Def = CI->stripPointerCasts(); 456 // If we find a cast instruction here, it means we've found a cast which is 457 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 458 // handle int->ptr conversion. 459 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 460 return findBaseDefiningValue(Def); 461 } 462 463 if (isa<LoadInst>(I)) 464 // The value loaded is an gc base itself 465 return BaseDefiningValueResult(I, true); 466 467 468 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 469 // The base of this GEP is the base 470 return findBaseDefiningValue(GEP->getPointerOperand()); 471 472 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 473 switch (II->getIntrinsicID()) { 474 case Intrinsic::experimental_gc_result_ptr: 475 default: 476 // fall through to general call handling 477 break; 478 case Intrinsic::experimental_gc_statepoint: 479 case Intrinsic::experimental_gc_result_float: 480 case Intrinsic::experimental_gc_result_int: 481 llvm_unreachable("these don't produce pointers"); 482 case Intrinsic::experimental_gc_relocate: { 483 // Rerunning safepoint insertion after safepoints are already 484 // inserted is not supported. It could probably be made to work, 485 // but why are you doing this? There's no good reason. 486 llvm_unreachable("repeat safepoint insertion is not supported"); 487 } 488 case Intrinsic::gcroot: 489 // Currently, this mechanism hasn't been extended to work with gcroot. 490 // There's no reason it couldn't be, but I haven't thought about the 491 // implications much. 492 llvm_unreachable( 493 "interaction with the gcroot mechanism is not supported"); 494 } 495 } 496 // We assume that functions in the source language only return base 497 // pointers. This should probably be generalized via attributes to support 498 // both source language and internal functions. 499 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 500 return BaseDefiningValueResult(I, true); 501 502 // I have absolutely no idea how to implement this part yet. It's not 503 // necessarily hard, I just haven't really looked at it yet. 504 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 505 506 if (isa<AtomicCmpXchgInst>(I)) 507 // A CAS is effectively a atomic store and load combined under a 508 // predicate. From the perspective of base pointers, we just treat it 509 // like a load. 510 return BaseDefiningValueResult(I, true); 511 512 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 513 "binary ops which don't apply to pointers"); 514 515 // The aggregate ops. Aggregates can either be in the heap or on the 516 // stack, but in either case, this is simply a field load. As a result, 517 // this is a defining definition of the base just like a load is. 518 if (isa<ExtractValueInst>(I)) 519 return BaseDefiningValueResult(I, true); 520 521 // We should never see an insert vector since that would require we be 522 // tracing back a struct value not a pointer value. 523 assert(!isa<InsertValueInst>(I) && 524 "Base pointer for a struct is meaningless"); 525 526 // An extractelement produces a base result exactly when it's input does. 527 // We may need to insert a parallel instruction to extract the appropriate 528 // element out of the base vector corresponding to the input. Given this, 529 // it's analogous to the phi and select case even though it's not a merge. 530 if (auto *EEI = dyn_cast<ExtractElementInst>(I)) { 531 Value *VectorOperand = EEI->getVectorOperand(); 532 Value *Index = EEI->getIndexOperand(); 533 auto VecResult = findBaseDefiningValueOfVector(VectorOperand, Index); 534 Value *VectorBase = VecResult.BDV; 535 if (VectorBase->getType()->isPointerTy()) 536 // We found a BDV for this specific element with the vector. This is an 537 // optimization, but in practice it covers most of the useful cases 538 // created via scalarization. Note: The peephole optimization here is 539 // currently needed for correctness since the general algorithm doesn't 540 // yet handle insertelements. That will change shortly. 541 return BaseDefiningValueResult(VectorBase, VecResult.IsKnownBase); 542 else { 543 assert(VectorBase->getType()->isVectorTy()); 544 // Otherwise, we have an instruction which potentially produces a 545 // derived pointer and we need findBasePointers to clone code for us 546 // such that we can create an instruction which produces the 547 // accompanying base pointer. 548 return BaseDefiningValueResult(I, VecResult.IsKnownBase); 549 } 550 } 551 552 // The last two cases here don't return a base pointer. Instead, they 553 // return a value which dynamically selects from among several base 554 // derived pointers (each with it's own base potentially). It's the job of 555 // the caller to resolve these. 556 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 557 "missing instruction case in findBaseDefiningValing"); 558 return BaseDefiningValueResult(I, false); 559 } 560 561 /// Returns the base defining value for this value. 562 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 563 Value *&Cached = Cache[I]; 564 if (!Cached) { 565 Cached = findBaseDefiningValue(I).BDV; 566 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 567 << Cached->getName() << "\n"); 568 } 569 assert(Cache[I] != nullptr); 570 return Cached; 571 } 572 573 /// Return a base pointer for this value if known. Otherwise, return it's 574 /// base defining value. 575 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 576 Value *Def = findBaseDefiningValueCached(I, Cache); 577 auto Found = Cache.find(Def); 578 if (Found != Cache.end()) { 579 // Either a base-of relation, or a self reference. Caller must check. 580 return Found->second; 581 } 582 // Only a BDV available 583 return Def; 584 } 585 586 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 587 /// is it known to be a base pointer? Or do we need to continue searching. 588 static bool isKnownBaseResult(Value *V) { 589 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && !isa<ExtractElementInst>(V)) { 590 // no recursion possible 591 return true; 592 } 593 if (isa<Instruction>(V) && 594 cast<Instruction>(V)->getMetadata("is_base_value")) { 595 // This is a previously inserted base phi or select. We know 596 // that this is a base value. 597 return true; 598 } 599 600 // We need to keep searching 601 return false; 602 } 603 604 namespace { 605 /// Models the state of a single base defining value in the findBasePointer 606 /// algorithm for determining where a new instruction is needed to propagate 607 /// the base of this BDV. 608 class BDVState { 609 public: 610 enum Status { Unknown, Base, Conflict }; 611 612 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 613 assert(status != Base || b); 614 } 615 explicit BDVState(Value *b) : status(Base), base(b) {} 616 BDVState() : status(Unknown), base(nullptr) {} 617 618 Status getStatus() const { return status; } 619 Value *getBase() const { return base; } 620 621 bool isBase() const { return getStatus() == Base; } 622 bool isUnknown() const { return getStatus() == Unknown; } 623 bool isConflict() const { return getStatus() == Conflict; } 624 625 bool operator==(const BDVState &other) const { 626 return base == other.base && status == other.status; 627 } 628 629 bool operator!=(const BDVState &other) const { return !(*this == other); } 630 631 LLVM_DUMP_METHOD 632 void dump() const { print(dbgs()); dbgs() << '\n'; } 633 634 void print(raw_ostream &OS) const { 635 switch (status) { 636 case Unknown: 637 OS << "U"; 638 break; 639 case Base: 640 OS << "B"; 641 break; 642 case Conflict: 643 OS << "C"; 644 break; 645 }; 646 OS << " (" << base << " - " 647 << (base ? base->getName() : "nullptr") << "): "; 648 } 649 650 private: 651 Status status; 652 Value *base; // non null only if status == base 653 }; 654 } 655 656 #ifndef NDEBUG 657 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 658 State.print(OS); 659 return OS; 660 } 661 #endif 662 663 namespace { 664 typedef DenseMap<Value *, BDVState> ConflictStateMapTy; 665 // Values of type BDVState form a lattice, and this is a helper 666 // class that implementes the meet operation. The meat of the meet 667 // operation is implemented in MeetBDVStates::pureMeet 668 class MeetBDVStates { 669 public: 670 /// Initializes the currentResult to the TOP state so that if can be met with 671 /// any other state to produce that state. 672 MeetBDVStates() {} 673 674 // Destructively meet the current result with the given BDVState 675 void meetWith(BDVState otherState) { 676 currentResult = meet(otherState, currentResult); 677 } 678 679 BDVState getResult() const { return currentResult; } 680 681 private: 682 BDVState currentResult; 683 684 /// Perform a meet operation on two elements of the BDVState lattice. 685 static BDVState meet(BDVState LHS, BDVState RHS) { 686 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 687 "math is wrong: meet does not commute!"); 688 BDVState Result = pureMeet(LHS, RHS); 689 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 690 << " produced " << Result << "\n"); 691 return Result; 692 } 693 694 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 695 switch (stateA.getStatus()) { 696 case BDVState::Unknown: 697 return stateB; 698 699 case BDVState::Base: 700 assert(stateA.getBase() && "can't be null"); 701 if (stateB.isUnknown()) 702 return stateA; 703 704 if (stateB.isBase()) { 705 if (stateA.getBase() == stateB.getBase()) { 706 assert(stateA == stateB && "equality broken!"); 707 return stateA; 708 } 709 return BDVState(BDVState::Conflict); 710 } 711 assert(stateB.isConflict() && "only three states!"); 712 return BDVState(BDVState::Conflict); 713 714 case BDVState::Conflict: 715 return stateA; 716 } 717 llvm_unreachable("only three states!"); 718 } 719 }; 720 } 721 722 723 /// For a given value or instruction, figure out what base ptr it's derived 724 /// from. For gc objects, this is simply itself. On success, returns a value 725 /// which is the base pointer. (This is reliable and can be used for 726 /// relocation.) On failure, returns nullptr. 727 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 728 Value *def = findBaseOrBDV(I, cache); 729 730 if (isKnownBaseResult(def)) { 731 return def; 732 } 733 734 // Here's the rough algorithm: 735 // - For every SSA value, construct a mapping to either an actual base 736 // pointer or a PHI which obscures the base pointer. 737 // - Construct a mapping from PHI to unknown TOP state. Use an 738 // optimistic algorithm to propagate base pointer information. Lattice 739 // looks like: 740 // UNKNOWN 741 // b1 b2 b3 b4 742 // CONFLICT 743 // When algorithm terminates, all PHIs will either have a single concrete 744 // base or be in a conflict state. 745 // - For every conflict, insert a dummy PHI node without arguments. Add 746 // these to the base[Instruction] = BasePtr mapping. For every 747 // non-conflict, add the actual base. 748 // - For every conflict, add arguments for the base[a] of each input 749 // arguments. 750 // 751 // Note: A simpler form of this would be to add the conflict form of all 752 // PHIs without running the optimistic algorithm. This would be 753 // analogous to pessimistic data flow and would likely lead to an 754 // overall worse solution. 755 756 #ifndef NDEBUG 757 auto isExpectedBDVType = [](Value *BDV) { 758 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || isa<ExtractElementInst>(BDV); 759 }; 760 #endif 761 762 // Once populated, will contain a mapping from each potentially non-base BDV 763 // to a lattice value (described above) which corresponds to that BDV. 764 ConflictStateMapTy states; 765 // Recursively fill in all phis & selects reachable from the initial one 766 // for which we don't already know a definite base value for 767 /* scope */ { 768 DenseSet<Value *> Visited; 769 SmallVector<Value*, 16> Worklist; 770 Worklist.push_back(def); 771 Visited.insert(def); 772 while (!Worklist.empty()) { 773 Value *Current = Worklist.pop_back_val(); 774 assert(!isKnownBaseResult(Current) && "why did it get added?"); 775 776 auto visitIncomingValue = [&](Value *InVal) { 777 Value *Base = findBaseOrBDV(InVal, cache); 778 if (isKnownBaseResult(Base)) 779 // Known bases won't need new instructions introduced and can be 780 // ignored safely 781 return; 782 assert(isExpectedBDVType(Base) && "the only non-base values " 783 "we see should be base defining values"); 784 if (Visited.insert(Base).second) 785 Worklist.push_back(Base); 786 }; 787 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 788 for (Value *InVal : Phi->incoming_values()) 789 visitIncomingValue(InVal); 790 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 791 visitIncomingValue(Sel->getTrueValue()); 792 visitIncomingValue(Sel->getFalseValue()); 793 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 794 visitIncomingValue(EE->getVectorOperand()); 795 } else { 796 // There are two classes of instructions we know we don't handle. 797 assert(isa<ShuffleVectorInst>(Current) || 798 isa<InsertElementInst>(Current)); 799 llvm_unreachable("unimplemented instruction case"); 800 } 801 } 802 // The frontier of visited instructions are the ones we might need to 803 // duplicate, so fill in the starting state for the optimistic algorithm 804 // that follows. 805 for (Value *BDV : Visited) { 806 states[BDV] = BDVState(); 807 } 808 } 809 810 #ifndef NDEBUG 811 DEBUG(dbgs() << "States after initialization:\n"); 812 for (auto Pair : states) { 813 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 814 } 815 #endif 816 817 // Return a phi state for a base defining value. We'll generate a new 818 // base state for known bases and expect to find a cached state otherwise. 819 auto getStateForBDV = [&](Value *baseValue) { 820 if (isKnownBaseResult(baseValue)) 821 return BDVState(baseValue); 822 auto I = states.find(baseValue); 823 assert(I != states.end() && "lookup failed!"); 824 return I->second; 825 }; 826 827 bool progress = true; 828 while (progress) { 829 #ifndef NDEBUG 830 size_t oldSize = states.size(); 831 #endif 832 progress = false; 833 // We're only changing keys in this loop, thus safe to keep iterators 834 for (auto Pair : states) { 835 Value *v = Pair.first; 836 assert(!isKnownBaseResult(v) && "why did it get added?"); 837 838 // Given an input value for the current instruction, return a BDVState 839 // instance which represents the BDV of that value. 840 auto getStateForInput = [&](Value *V) mutable { 841 Value *BDV = findBaseOrBDV(V, cache); 842 return getStateForBDV(BDV); 843 }; 844 845 MeetBDVStates calculateMeet; 846 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 847 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 848 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 849 } else if (PHINode *Phi = dyn_cast<PHINode>(v)) { 850 for (Value *Val : Phi->incoming_values()) 851 calculateMeet.meetWith(getStateForInput(Val)); 852 } else { 853 // The 'meet' for an extractelement is slightly trivial, but it's still 854 // useful in that it drives us to conflict if our input is. 855 auto *EE = cast<ExtractElementInst>(v); 856 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 857 } 858 859 860 BDVState oldState = states[v]; 861 BDVState newState = calculateMeet.getResult(); 862 if (oldState != newState) { 863 progress = true; 864 states[v] = newState; 865 } 866 } 867 868 assert(oldSize <= states.size()); 869 assert(oldSize == states.size() || progress); 870 } 871 872 #ifndef NDEBUG 873 DEBUG(dbgs() << "States after meet iteration:\n"); 874 for (auto Pair : states) { 875 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 876 } 877 #endif 878 879 // Insert Phis for all conflicts 880 // We want to keep naming deterministic in the loop that follows, so 881 // sort the keys before iteration. This is useful in allowing us to 882 // write stable tests. Note that there is no invalidation issue here. 883 SmallVector<Value *, 16> Keys; 884 Keys.reserve(states.size()); 885 for (auto Pair : states) { 886 Value *V = Pair.first; 887 Keys.push_back(V); 888 } 889 std::sort(Keys.begin(), Keys.end(), order_by_name); 890 // TODO: adjust naming patterns to avoid this order of iteration dependency 891 for (Value *V : Keys) { 892 Instruction *I = cast<Instruction>(V); 893 BDVState State = states[I]; 894 assert(!isKnownBaseResult(I) && "why did it get added?"); 895 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 896 897 // extractelement instructions are a bit special in that we may need to 898 // insert an extract even when we know an exact base for the instruction. 899 // The problem is that we need to convert from a vector base to a scalar 900 // base for the particular indice we're interested in. 901 if (State.isBase() && isa<ExtractElementInst>(I) && 902 isa<VectorType>(State.getBase()->getType())) { 903 auto *EE = cast<ExtractElementInst>(I); 904 // TODO: In many cases, the new instruction is just EE itself. We should 905 // exploit this, but can't do it here since it would break the invariant 906 // about the BDV not being known to be a base. 907 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 908 EE->getIndexOperand(), 909 "base_ee", EE); 910 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 911 states[I] = BDVState(BDVState::Base, BaseInst); 912 } 913 914 if (!State.isConflict()) 915 continue; 916 917 /// Create and insert a new instruction which will represent the base of 918 /// the given instruction 'I'. 919 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 920 if (isa<PHINode>(I)) { 921 BasicBlock *BB = I->getParent(); 922 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 923 assert(NumPreds > 0 && "how did we reach here"); 924 std::string Name = I->hasName() ? 925 (I->getName() + ".base").str() : "base_phi"; 926 return PHINode::Create(I->getType(), NumPreds, Name, I); 927 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 928 // The undef will be replaced later 929 UndefValue *Undef = UndefValue::get(Sel->getType()); 930 std::string Name = I->hasName() ? 931 (I->getName() + ".base").str() : "base_select"; 932 return SelectInst::Create(Sel->getCondition(), Undef, 933 Undef, Name, Sel); 934 } else { 935 auto *EE = cast<ExtractElementInst>(I); 936 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 937 std::string Name = I->hasName() ? 938 (I->getName() + ".base").str() : "base_ee"; 939 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 940 EE); 941 } 942 }; 943 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 944 // Add metadata marking this as a base value 945 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 946 states[I] = BDVState(BDVState::Conflict, BaseInst); 947 } 948 949 // Returns a instruction which produces the base pointer for a given 950 // instruction. The instruction is assumed to be an input to one of the BDVs 951 // seen in the inference algorithm above. As such, we must either already 952 // know it's base defining value is a base, or have inserted a new 953 // instruction to propagate the base of it's BDV and have entered that newly 954 // introduced instruction into the state table. In either case, we are 955 // assured to be able to determine an instruction which produces it's base 956 // pointer. 957 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 958 Value *BDV = findBaseOrBDV(Input, cache); 959 Value *Base = nullptr; 960 if (isKnownBaseResult(BDV)) { 961 Base = BDV; 962 } else { 963 // Either conflict or base. 964 assert(states.count(BDV)); 965 Base = states[BDV].getBase(); 966 } 967 assert(Base && "can't be null"); 968 // The cast is needed since base traversal may strip away bitcasts 969 if (Base->getType() != Input->getType() && 970 InsertPt) { 971 Base = new BitCastInst(Base, Input->getType(), "cast", 972 InsertPt); 973 } 974 return Base; 975 }; 976 977 // Fixup all the inputs of the new PHIs 978 for (auto Pair : states) { 979 Instruction *v = cast<Instruction>(Pair.first); 980 BDVState state = Pair.second; 981 982 assert(!isKnownBaseResult(v) && "why did it get added?"); 983 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 984 if (!state.isConflict()) 985 continue; 986 987 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 988 PHINode *phi = cast<PHINode>(v); 989 unsigned NumPHIValues = phi->getNumIncomingValues(); 990 for (unsigned i = 0; i < NumPHIValues; i++) { 991 Value *InVal = phi->getIncomingValue(i); 992 BasicBlock *InBB = phi->getIncomingBlock(i); 993 994 // If we've already seen InBB, add the same incoming value 995 // we added for it earlier. The IR verifier requires phi 996 // nodes with multiple entries from the same basic block 997 // to have the same incoming value for each of those 998 // entries. If we don't do this check here and basephi 999 // has a different type than base, we'll end up adding two 1000 // bitcasts (and hence two distinct values) as incoming 1001 // values for the same basic block. 1002 1003 int blockIndex = basephi->getBasicBlockIndex(InBB); 1004 if (blockIndex != -1) { 1005 Value *oldBase = basephi->getIncomingValue(blockIndex); 1006 basephi->addIncoming(oldBase, InBB); 1007 1008 #ifndef NDEBUG 1009 Value *Base = getBaseForInput(InVal, nullptr); 1010 // In essence this assert states: the only way two 1011 // values incoming from the same basic block may be 1012 // different is by being different bitcasts of the same 1013 // value. A cleanup that remains TODO is changing 1014 // findBaseOrBDV to return an llvm::Value of the correct 1015 // type (and still remain pure). This will remove the 1016 // need to add bitcasts. 1017 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() && 1018 "sanity -- findBaseOrBDV should be pure!"); 1019 #endif 1020 continue; 1021 } 1022 1023 // Find the instruction which produces the base for each input. We may 1024 // need to insert a bitcast in the incoming block. 1025 // TODO: Need to split critical edges if insertion is needed 1026 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1027 basephi->addIncoming(Base, InBB); 1028 } 1029 assert(basephi->getNumIncomingValues() == NumPHIValues); 1030 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(state.getBase())) { 1031 SelectInst *Sel = cast<SelectInst>(v); 1032 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 1033 // something more safe and less hacky. 1034 for (int i = 1; i <= 2; i++) { 1035 Value *InVal = Sel->getOperand(i); 1036 // Find the instruction which produces the base for each input. We may 1037 // need to insert a bitcast. 1038 Value *Base = getBaseForInput(InVal, BaseSel); 1039 BaseSel->setOperand(i, Base); 1040 } 1041 } else { 1042 auto *BaseEE = cast<ExtractElementInst>(state.getBase()); 1043 Value *InVal = cast<ExtractElementInst>(v)->getVectorOperand(); 1044 // Find the instruction which produces the base for each input. We may 1045 // need to insert a bitcast. 1046 Value *Base = getBaseForInput(InVal, BaseEE); 1047 BaseEE->setOperand(0, Base); 1048 } 1049 } 1050 1051 // Now that we're done with the algorithm, see if we can optimize the 1052 // results slightly by reducing the number of new instructions needed. 1053 // Arguably, this should be integrated into the algorithm above, but 1054 // doing as a post process step is easier to reason about for the moment. 1055 DenseMap<Value *, Value *> ReverseMap; 1056 SmallPtrSet<Instruction *, 16> NewInsts; 1057 SmallSetVector<AssertingVH<Instruction>, 16> Worklist; 1058 // Note: We need to visit the states in a deterministic order. We uses the 1059 // Keys we sorted above for this purpose. Note that we are papering over a 1060 // bigger problem with the algorithm above - it's visit order is not 1061 // deterministic. A larger change is needed to fix this. 1062 for (auto Key : Keys) { 1063 Value *V = Key; 1064 auto State = states[Key]; 1065 Value *Base = State.getBase(); 1066 assert(V && Base); 1067 assert(!isKnownBaseResult(V) && "why did it get added?"); 1068 assert(isKnownBaseResult(Base) && 1069 "must be something we 'know' is a base pointer"); 1070 if (!State.isConflict()) 1071 continue; 1072 1073 ReverseMap[Base] = V; 1074 if (auto *BaseI = dyn_cast<Instruction>(Base)) { 1075 NewInsts.insert(BaseI); 1076 Worklist.insert(BaseI); 1077 } 1078 } 1079 auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI, 1080 Value *Replacement) { 1081 // Add users which are new instructions (excluding self references) 1082 for (User *U : BaseI->users()) 1083 if (auto *UI = dyn_cast<Instruction>(U)) 1084 if (NewInsts.count(UI) && UI != BaseI) 1085 Worklist.insert(UI); 1086 // Then do the actual replacement 1087 NewInsts.erase(BaseI); 1088 ReverseMap.erase(BaseI); 1089 BaseI->replaceAllUsesWith(Replacement); 1090 BaseI->eraseFromParent(); 1091 assert(states.count(BDV)); 1092 assert(states[BDV].isConflict() && states[BDV].getBase() == BaseI); 1093 states[BDV] = BDVState(BDVState::Conflict, Replacement); 1094 }; 1095 const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout(); 1096 while (!Worklist.empty()) { 1097 Instruction *BaseI = Worklist.pop_back_val(); 1098 assert(NewInsts.count(BaseI)); 1099 Value *Bdv = ReverseMap[BaseI]; 1100 if (auto *BdvI = dyn_cast<Instruction>(Bdv)) 1101 if (BaseI->isIdenticalTo(BdvI)) { 1102 DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n"); 1103 ReplaceBaseInstWith(Bdv, BaseI, Bdv); 1104 continue; 1105 } 1106 if (Value *V = SimplifyInstruction(BaseI, DL)) { 1107 DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n"); 1108 ReplaceBaseInstWith(Bdv, BaseI, V); 1109 continue; 1110 } 1111 } 1112 1113 // Cache all of our results so we can cheaply reuse them 1114 // NOTE: This is actually two caches: one of the base defining value 1115 // relation and one of the base pointer relation! FIXME 1116 for (auto item : states) { 1117 Value *v = item.first; 1118 Value *base = item.second.getBase(); 1119 assert(v && base); 1120 1121 std::string fromstr = 1122 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 1123 : "none"; 1124 DEBUG(dbgs() << "Updating base value cache" 1125 << " for: " << (v->hasName() ? v->getName() : "") 1126 << " from: " << fromstr 1127 << " to: " << (base->hasName() ? base->getName() : "") << "\n"); 1128 1129 if (cache.count(v)) { 1130 // Once we transition from the BDV relation being store in the cache to 1131 // the base relation being stored, it must be stable 1132 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 1133 "base relation should be stable"); 1134 } 1135 cache[v] = base; 1136 } 1137 assert(cache.find(def) != cache.end()); 1138 return cache[def]; 1139 } 1140 1141 // For a set of live pointers (base and/or derived), identify the base 1142 // pointer of the object which they are derived from. This routine will 1143 // mutate the IR graph as needed to make the 'base' pointer live at the 1144 // definition site of 'derived'. This ensures that any use of 'derived' can 1145 // also use 'base'. This may involve the insertion of a number of 1146 // additional PHI nodes. 1147 // 1148 // preconditions: live is a set of pointer type Values 1149 // 1150 // side effects: may insert PHI nodes into the existing CFG, will preserve 1151 // CFG, will not remove or mutate any existing nodes 1152 // 1153 // post condition: PointerToBase contains one (derived, base) pair for every 1154 // pointer in live. Note that derived can be equal to base if the original 1155 // pointer was a base pointer. 1156 static void 1157 findBasePointers(const StatepointLiveSetTy &live, 1158 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 1159 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1160 // For the naming of values inserted to be deterministic - which makes for 1161 // much cleaner and more stable tests - we need to assign an order to the 1162 // live values. DenseSets do not provide a deterministic order across runs. 1163 SmallVector<Value *, 64> Temp; 1164 Temp.insert(Temp.end(), live.begin(), live.end()); 1165 std::sort(Temp.begin(), Temp.end(), order_by_name); 1166 for (Value *ptr : Temp) { 1167 Value *base = findBasePointer(ptr, DVCache); 1168 assert(base && "failed to find base pointer"); 1169 PointerToBase[ptr] = base; 1170 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1171 DT->dominates(cast<Instruction>(base)->getParent(), 1172 cast<Instruction>(ptr)->getParent())) && 1173 "The base we found better dominate the derived pointer"); 1174 1175 // If you see this trip and like to live really dangerously, the code should 1176 // be correct, just with idioms the verifier can't handle. You can try 1177 // disabling the verifier at your own substantial risk. 1178 assert(!isa<ConstantPointerNull>(base) && 1179 "the relocation code needs adjustment to handle the relocation of " 1180 "a null pointer constant without causing false positives in the " 1181 "safepoint ir verifier."); 1182 } 1183 } 1184 1185 /// Find the required based pointers (and adjust the live set) for the given 1186 /// parse point. 1187 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1188 const CallSite &CS, 1189 PartiallyConstructedSafepointRecord &result) { 1190 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 1191 findBasePointers(result.liveset, PointerToBase, &DT, DVCache); 1192 1193 if (PrintBasePointers) { 1194 // Note: Need to print these in a stable order since this is checked in 1195 // some tests. 1196 errs() << "Base Pairs (w/o Relocation):\n"; 1197 SmallVector<Value *, 64> Temp; 1198 Temp.reserve(PointerToBase.size()); 1199 for (auto Pair : PointerToBase) { 1200 Temp.push_back(Pair.first); 1201 } 1202 std::sort(Temp.begin(), Temp.end(), order_by_name); 1203 for (Value *Ptr : Temp) { 1204 Value *Base = PointerToBase[Ptr]; 1205 errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() 1206 << "\n"; 1207 } 1208 } 1209 1210 result.PointerToBase = PointerToBase; 1211 } 1212 1213 /// Given an updated version of the dataflow liveness results, update the 1214 /// liveset and base pointer maps for the call site CS. 1215 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1216 const CallSite &CS, 1217 PartiallyConstructedSafepointRecord &result); 1218 1219 static void recomputeLiveInValues( 1220 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1221 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1222 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1223 // again. The old values are still live and will help it stabilize quickly. 1224 GCPtrLivenessData RevisedLivenessData; 1225 computeLiveInValues(DT, F, RevisedLivenessData); 1226 for (size_t i = 0; i < records.size(); i++) { 1227 struct PartiallyConstructedSafepointRecord &info = records[i]; 1228 const CallSite &CS = toUpdate[i]; 1229 recomputeLiveInValues(RevisedLivenessData, CS, info); 1230 } 1231 } 1232 1233 // When inserting gc.relocate calls, we need to ensure there are no uses 1234 // of the original value between the gc.statepoint and the gc.relocate call. 1235 // One case which can arise is a phi node starting one of the successor blocks. 1236 // We also need to be able to insert the gc.relocates only on the path which 1237 // goes through the statepoint. We might need to split an edge to make this 1238 // possible. 1239 static BasicBlock * 1240 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1241 DominatorTree &DT) { 1242 BasicBlock *Ret = BB; 1243 if (!BB->getUniquePredecessor()) { 1244 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1245 } 1246 1247 // Now that 'ret' has unique predecessor we can safely remove all phi nodes 1248 // from it 1249 FoldSingleEntryPHINodes(Ret); 1250 assert(!isa<PHINode>(Ret->begin())); 1251 1252 // At this point, we can safely insert a gc.relocate as the first instruction 1253 // in Ret if needed. 1254 return Ret; 1255 } 1256 1257 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1258 auto itr = std::find(livevec.begin(), livevec.end(), val); 1259 assert(livevec.end() != itr); 1260 size_t index = std::distance(livevec.begin(), itr); 1261 assert(index < livevec.size()); 1262 return index; 1263 } 1264 1265 // Create new attribute set containing only attributes which can be transferred 1266 // from original call to the safepoint. 1267 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1268 AttributeSet ret; 1269 1270 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1271 unsigned index = AS.getSlotIndex(Slot); 1272 1273 if (index == AttributeSet::ReturnIndex || 1274 index == AttributeSet::FunctionIndex) { 1275 1276 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1277 ++it) { 1278 Attribute attr = *it; 1279 1280 // Do not allow certain attributes - just skip them 1281 // Safepoint can not be read only or read none. 1282 if (attr.hasAttribute(Attribute::ReadNone) || 1283 attr.hasAttribute(Attribute::ReadOnly)) 1284 continue; 1285 1286 ret = ret.addAttributes( 1287 AS.getContext(), index, 1288 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1289 } 1290 } 1291 1292 // Just skip parameter attributes for now 1293 } 1294 1295 return ret; 1296 } 1297 1298 /// Helper function to place all gc relocates necessary for the given 1299 /// statepoint. 1300 /// Inputs: 1301 /// liveVariables - list of variables to be relocated. 1302 /// liveStart - index of the first live variable. 1303 /// basePtrs - base pointers. 1304 /// statepointToken - statepoint instruction to which relocates should be 1305 /// bound. 1306 /// Builder - Llvm IR builder to be used to construct new calls. 1307 static void CreateGCRelocates(ArrayRef<llvm::Value *> LiveVariables, 1308 const int LiveStart, 1309 ArrayRef<llvm::Value *> BasePtrs, 1310 Instruction *StatepointToken, 1311 IRBuilder<> Builder) { 1312 if (LiveVariables.empty()) 1313 return; 1314 1315 // All gc_relocate are set to i8 addrspace(1)* type. We originally generated 1316 // unique declarations for each pointer type, but this proved problematic 1317 // because the intrinsic mangling code is incomplete and fragile. Since 1318 // we're moving towards a single unified pointer type anyways, we can just 1319 // cast everything to an i8* of the right address space. A bitcast is added 1320 // later to convert gc_relocate to the actual value's type. 1321 Module *M = StatepointToken->getModule(); 1322 auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace(); 1323 Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)}; 1324 Value *GCRelocateDecl = 1325 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); 1326 1327 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1328 // Generate the gc.relocate call and save the result 1329 Value *BaseIdx = 1330 Builder.getInt32(LiveStart + find_index(LiveVariables, BasePtrs[i])); 1331 Value *LiveIdx = 1332 Builder.getInt32(LiveStart + find_index(LiveVariables, LiveVariables[i])); 1333 1334 // only specify a debug name if we can give a useful one 1335 CallInst *Reloc = Builder.CreateCall( 1336 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1337 LiveVariables[i]->hasName() ? LiveVariables[i]->getName() + ".relocated" 1338 : ""); 1339 // Trick CodeGen into thinking there are lots of free registers at this 1340 // fake call. 1341 Reloc->setCallingConv(CallingConv::Cold); 1342 } 1343 } 1344 1345 static void 1346 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1347 const SmallVectorImpl<llvm::Value *> &basePtrs, 1348 const SmallVectorImpl<llvm::Value *> &liveVariables, 1349 Pass *P, 1350 PartiallyConstructedSafepointRecord &result) { 1351 assert(basePtrs.size() == liveVariables.size()); 1352 assert(isStatepoint(CS) && 1353 "This method expects to be rewriting a statepoint"); 1354 1355 BasicBlock *BB = CS.getInstruction()->getParent(); 1356 assert(BB); 1357 Function *F = BB->getParent(); 1358 assert(F && "must be set"); 1359 Module *M = F->getParent(); 1360 (void)M; 1361 assert(M && "must be set"); 1362 1363 // We're not changing the function signature of the statepoint since the gc 1364 // arguments go into the var args section. 1365 Function *gc_statepoint_decl = CS.getCalledFunction(); 1366 1367 // Then go ahead and use the builder do actually do the inserts. We insert 1368 // immediately before the previous instruction under the assumption that all 1369 // arguments will be available here. We can't insert afterwards since we may 1370 // be replacing a terminator. 1371 Instruction *insertBefore = CS.getInstruction(); 1372 IRBuilder<> Builder(insertBefore); 1373 // Copy all of the arguments from the original statepoint - this includes the 1374 // target, call args, and deopt args 1375 SmallVector<llvm::Value *, 64> args; 1376 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1377 // TODO: Clear the 'needs rewrite' flag 1378 1379 // add all the pointers to be relocated (gc arguments) 1380 // Capture the start of the live variable list for use in the gc_relocates 1381 const int live_start = args.size(); 1382 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1383 1384 // Create the statepoint given all the arguments 1385 Instruction *token = nullptr; 1386 AttributeSet return_attributes; 1387 if (CS.isCall()) { 1388 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1389 CallInst *call = 1390 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1391 call->setTailCall(toReplace->isTailCall()); 1392 call->setCallingConv(toReplace->getCallingConv()); 1393 1394 // Currently we will fail on parameter attributes and on certain 1395 // function attributes. 1396 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1397 // In case if we can handle this set of attributes - set up function attrs 1398 // directly on statepoint and return attrs later for gc_result intrinsic. 1399 call->setAttributes(new_attrs.getFnAttributes()); 1400 return_attributes = new_attrs.getRetAttributes(); 1401 1402 token = call; 1403 1404 // Put the following gc_result and gc_relocate calls immediately after the 1405 // the old call (which we're about to delete) 1406 BasicBlock::iterator next(toReplace); 1407 assert(BB->end() != next && "not a terminator, must have next"); 1408 next++; 1409 Instruction *IP = &*(next); 1410 Builder.SetInsertPoint(IP); 1411 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1412 1413 } else { 1414 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1415 1416 // Insert the new invoke into the old block. We'll remove the old one in a 1417 // moment at which point this will become the new terminator for the 1418 // original block. 1419 InvokeInst *invoke = InvokeInst::Create( 1420 gc_statepoint_decl, toReplace->getNormalDest(), 1421 toReplace->getUnwindDest(), args, "statepoint_token", toReplace->getParent()); 1422 invoke->setCallingConv(toReplace->getCallingConv()); 1423 1424 // Currently we will fail on parameter attributes and on certain 1425 // function attributes. 1426 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1427 // In case if we can handle this set of attributes - set up function attrs 1428 // directly on statepoint and return attrs later for gc_result intrinsic. 1429 invoke->setAttributes(new_attrs.getFnAttributes()); 1430 return_attributes = new_attrs.getRetAttributes(); 1431 1432 token = invoke; 1433 1434 // Generate gc relocates in exceptional path 1435 BasicBlock *unwindBlock = toReplace->getUnwindDest(); 1436 assert(!isa<PHINode>(unwindBlock->begin()) && 1437 unwindBlock->getUniquePredecessor() && 1438 "can't safely insert in this block!"); 1439 1440 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1441 Builder.SetInsertPoint(IP); 1442 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1443 1444 // Extract second element from landingpad return value. We will attach 1445 // exceptional gc relocates to it. 1446 const unsigned idx = 1; 1447 Instruction *exceptional_token = 1448 cast<Instruction>(Builder.CreateExtractValue( 1449 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1450 result.UnwindToken = exceptional_token; 1451 1452 CreateGCRelocates(liveVariables, live_start, basePtrs, 1453 exceptional_token, Builder); 1454 1455 // Generate gc relocates and returns for normal block 1456 BasicBlock *normalDest = toReplace->getNormalDest(); 1457 assert(!isa<PHINode>(normalDest->begin()) && 1458 normalDest->getUniquePredecessor() && 1459 "can't safely insert in this block!"); 1460 1461 IP = &*(normalDest->getFirstInsertionPt()); 1462 Builder.SetInsertPoint(IP); 1463 1464 // gc relocates will be generated later as if it were regular call 1465 // statepoint 1466 } 1467 assert(token); 1468 1469 // Take the name of the original value call if it had one. 1470 token->takeName(CS.getInstruction()); 1471 1472 // The GCResult is already inserted, we just need to find it 1473 #ifndef NDEBUG 1474 Instruction *toReplace = CS.getInstruction(); 1475 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1476 "only valid use before rewrite is gc.result"); 1477 assert(!toReplace->hasOneUse() || 1478 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1479 #endif 1480 1481 // Update the gc.result of the original statepoint (if any) to use the newly 1482 // inserted statepoint. This is safe to do here since the token can't be 1483 // considered a live reference. 1484 CS.getInstruction()->replaceAllUsesWith(token); 1485 1486 result.StatepointToken = token; 1487 1488 // Second, create a gc.relocate for every live variable 1489 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1490 } 1491 1492 namespace { 1493 struct name_ordering { 1494 Value *base; 1495 Value *derived; 1496 bool operator()(name_ordering const &a, name_ordering const &b) { 1497 return -1 == a.derived->getName().compare(b.derived->getName()); 1498 } 1499 }; 1500 } 1501 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1502 SmallVectorImpl<Value *> &livevec) { 1503 assert(basevec.size() == livevec.size()); 1504 1505 SmallVector<name_ordering, 64> temp; 1506 for (size_t i = 0; i < basevec.size(); i++) { 1507 name_ordering v; 1508 v.base = basevec[i]; 1509 v.derived = livevec[i]; 1510 temp.push_back(v); 1511 } 1512 std::sort(temp.begin(), temp.end(), name_ordering()); 1513 for (size_t i = 0; i < basevec.size(); i++) { 1514 basevec[i] = temp[i].base; 1515 livevec[i] = temp[i].derived; 1516 } 1517 } 1518 1519 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1520 // which make the relocations happening at this safepoint explicit. 1521 // 1522 // WARNING: Does not do any fixup to adjust users of the original live 1523 // values. That's the callers responsibility. 1524 static void 1525 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1526 PartiallyConstructedSafepointRecord &result) { 1527 auto liveset = result.liveset; 1528 auto PointerToBase = result.PointerToBase; 1529 1530 // Convert to vector for efficient cross referencing. 1531 SmallVector<Value *, 64> basevec, livevec; 1532 livevec.reserve(liveset.size()); 1533 basevec.reserve(liveset.size()); 1534 for (Value *L : liveset) { 1535 livevec.push_back(L); 1536 assert(PointerToBase.count(L)); 1537 Value *base = PointerToBase[L]; 1538 basevec.push_back(base); 1539 } 1540 assert(livevec.size() == basevec.size()); 1541 1542 // To make the output IR slightly more stable (for use in diffs), ensure a 1543 // fixed order of the values in the safepoint (by sorting the value name). 1544 // The order is otherwise meaningless. 1545 stablize_order(basevec, livevec); 1546 1547 // Do the actual rewriting and delete the old statepoint 1548 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1549 CS.getInstruction()->eraseFromParent(); 1550 } 1551 1552 // Helper function for the relocationViaAlloca. 1553 // It receives iterator to the statepoint gc relocates and emits store to the 1554 // assigned 1555 // location (via allocaMap) for the each one of them. 1556 // Add visited values into the visitedLiveValues set we will later use them 1557 // for sanity check. 1558 static void 1559 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1560 DenseMap<Value *, Value *> &AllocaMap, 1561 DenseSet<Value *> &VisitedLiveValues) { 1562 1563 for (User *U : GCRelocs) { 1564 if (!isa<IntrinsicInst>(U)) 1565 continue; 1566 1567 IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U); 1568 1569 // We only care about relocates 1570 if (RelocatedValue->getIntrinsicID() != 1571 Intrinsic::experimental_gc_relocate) { 1572 continue; 1573 } 1574 1575 GCRelocateOperands RelocateOperands(RelocatedValue); 1576 Value *OriginalValue = 1577 const_cast<Value *>(RelocateOperands.getDerivedPtr()); 1578 assert(AllocaMap.count(OriginalValue)); 1579 Value *Alloca = AllocaMap[OriginalValue]; 1580 1581 // Emit store into the related alloca 1582 // All gc_relocate are i8 addrspace(1)* typed, and it must be bitcasted to 1583 // the correct type according to alloca. 1584 assert(RelocatedValue->getNextNode() && "Should always have one since it's not a terminator"); 1585 IRBuilder<> Builder(RelocatedValue->getNextNode()); 1586 Value *CastedRelocatedValue = 1587 Builder.CreateBitCast(RelocatedValue, cast<AllocaInst>(Alloca)->getAllocatedType(), 1588 RelocatedValue->hasName() ? RelocatedValue->getName() + ".casted" : ""); 1589 1590 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1591 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1592 1593 #ifndef NDEBUG 1594 VisitedLiveValues.insert(OriginalValue); 1595 #endif 1596 } 1597 } 1598 1599 // Helper function for the "relocationViaAlloca". Similar to the 1600 // "insertRelocationStores" but works for rematerialized values. 1601 static void 1602 insertRematerializationStores( 1603 RematerializedValueMapTy RematerializedValues, 1604 DenseMap<Value *, Value *> &AllocaMap, 1605 DenseSet<Value *> &VisitedLiveValues) { 1606 1607 for (auto RematerializedValuePair: RematerializedValues) { 1608 Instruction *RematerializedValue = RematerializedValuePair.first; 1609 Value *OriginalValue = RematerializedValuePair.second; 1610 1611 assert(AllocaMap.count(OriginalValue) && 1612 "Can not find alloca for rematerialized value"); 1613 Value *Alloca = AllocaMap[OriginalValue]; 1614 1615 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1616 Store->insertAfter(RematerializedValue); 1617 1618 #ifndef NDEBUG 1619 VisitedLiveValues.insert(OriginalValue); 1620 #endif 1621 } 1622 } 1623 1624 /// do all the relocation update via allocas and mem2reg 1625 static void relocationViaAlloca( 1626 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1627 ArrayRef<struct PartiallyConstructedSafepointRecord> Records) { 1628 #ifndef NDEBUG 1629 // record initial number of (static) allocas; we'll check we have the same 1630 // number when we get done. 1631 int InitialAllocaNum = 0; 1632 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1633 I++) 1634 if (isa<AllocaInst>(*I)) 1635 InitialAllocaNum++; 1636 #endif 1637 1638 // TODO-PERF: change data structures, reserve 1639 DenseMap<Value *, Value *> AllocaMap; 1640 SmallVector<AllocaInst *, 200> PromotableAllocas; 1641 // Used later to chack that we have enough allocas to store all values 1642 std::size_t NumRematerializedValues = 0; 1643 PromotableAllocas.reserve(Live.size()); 1644 1645 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1646 // "PromotableAllocas" 1647 auto emitAllocaFor = [&](Value *LiveValue) { 1648 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1649 F.getEntryBlock().getFirstNonPHI()); 1650 AllocaMap[LiveValue] = Alloca; 1651 PromotableAllocas.push_back(Alloca); 1652 }; 1653 1654 // emit alloca for each live gc pointer 1655 for (unsigned i = 0; i < Live.size(); i++) { 1656 emitAllocaFor(Live[i]); 1657 } 1658 1659 // emit allocas for rematerialized values 1660 for (size_t i = 0; i < Records.size(); i++) { 1661 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1662 1663 for (auto RematerializedValuePair : Info.RematerializedValues) { 1664 Value *OriginalValue = RematerializedValuePair.second; 1665 if (AllocaMap.count(OriginalValue) != 0) 1666 continue; 1667 1668 emitAllocaFor(OriginalValue); 1669 ++NumRematerializedValues; 1670 } 1671 } 1672 1673 // The next two loops are part of the same conceptual operation. We need to 1674 // insert a store to the alloca after the original def and at each 1675 // redefinition. We need to insert a load before each use. These are split 1676 // into distinct loops for performance reasons. 1677 1678 // update gc pointer after each statepoint 1679 // either store a relocated value or null (if no relocated value found for 1680 // this gc pointer and it is not a gc_result) 1681 // this must happen before we update the statepoint with load of alloca 1682 // otherwise we lose the link between statepoint and old def 1683 for (size_t i = 0; i < Records.size(); i++) { 1684 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1685 Value *Statepoint = Info.StatepointToken; 1686 1687 // This will be used for consistency check 1688 DenseSet<Value *> VisitedLiveValues; 1689 1690 // Insert stores for normal statepoint gc relocates 1691 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1692 1693 // In case if it was invoke statepoint 1694 // we will insert stores for exceptional path gc relocates. 1695 if (isa<InvokeInst>(Statepoint)) { 1696 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1697 VisitedLiveValues); 1698 } 1699 1700 // Do similar thing with rematerialized values 1701 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1702 VisitedLiveValues); 1703 1704 if (ClobberNonLive) { 1705 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1706 // the gc.statepoint. This will turn some subtle GC problems into 1707 // slightly easier to debug SEGVs. Note that on large IR files with 1708 // lots of gc.statepoints this is extremely costly both memory and time 1709 // wise. 1710 SmallVector<AllocaInst *, 64> ToClobber; 1711 for (auto Pair : AllocaMap) { 1712 Value *Def = Pair.first; 1713 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1714 1715 // This value was relocated 1716 if (VisitedLiveValues.count(Def)) { 1717 continue; 1718 } 1719 ToClobber.push_back(Alloca); 1720 } 1721 1722 auto InsertClobbersAt = [&](Instruction *IP) { 1723 for (auto *AI : ToClobber) { 1724 auto AIType = cast<PointerType>(AI->getType()); 1725 auto PT = cast<PointerType>(AIType->getElementType()); 1726 Constant *CPN = ConstantPointerNull::get(PT); 1727 StoreInst *Store = new StoreInst(CPN, AI); 1728 Store->insertBefore(IP); 1729 } 1730 }; 1731 1732 // Insert the clobbering stores. These may get intermixed with the 1733 // gc.results and gc.relocates, but that's fine. 1734 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1735 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1736 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1737 } else { 1738 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1739 Next++; 1740 InsertClobbersAt(Next); 1741 } 1742 } 1743 } 1744 // update use with load allocas and add store for gc_relocated 1745 for (auto Pair : AllocaMap) { 1746 Value *Def = Pair.first; 1747 Value *Alloca = Pair.second; 1748 1749 // we pre-record the uses of allocas so that we dont have to worry about 1750 // later update 1751 // that change the user information. 1752 SmallVector<Instruction *, 20> Uses; 1753 // PERF: trade a linear scan for repeated reallocation 1754 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1755 for (User *U : Def->users()) { 1756 if (!isa<ConstantExpr>(U)) { 1757 // If the def has a ConstantExpr use, then the def is either a 1758 // ConstantExpr use itself or null. In either case 1759 // (recursively in the first, directly in the second), the oop 1760 // it is ultimately dependent on is null and this particular 1761 // use does not need to be fixed up. 1762 Uses.push_back(cast<Instruction>(U)); 1763 } 1764 } 1765 1766 std::sort(Uses.begin(), Uses.end()); 1767 auto Last = std::unique(Uses.begin(), Uses.end()); 1768 Uses.erase(Last, Uses.end()); 1769 1770 for (Instruction *Use : Uses) { 1771 if (isa<PHINode>(Use)) { 1772 PHINode *Phi = cast<PHINode>(Use); 1773 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1774 if (Def == Phi->getIncomingValue(i)) { 1775 LoadInst *Load = new LoadInst( 1776 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1777 Phi->setIncomingValue(i, Load); 1778 } 1779 } 1780 } else { 1781 LoadInst *Load = new LoadInst(Alloca, "", Use); 1782 Use->replaceUsesOfWith(Def, Load); 1783 } 1784 } 1785 1786 // emit store for the initial gc value 1787 // store must be inserted after load, otherwise store will be in alloca's 1788 // use list and an extra load will be inserted before it 1789 StoreInst *Store = new StoreInst(Def, Alloca); 1790 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1791 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1792 // InvokeInst is a TerminatorInst so the store need to be inserted 1793 // into its normal destination block. 1794 BasicBlock *NormalDest = Invoke->getNormalDest(); 1795 Store->insertBefore(NormalDest->getFirstNonPHI()); 1796 } else { 1797 assert(!Inst->isTerminator() && 1798 "The only TerminatorInst that can produce a value is " 1799 "InvokeInst which is handled above."); 1800 Store->insertAfter(Inst); 1801 } 1802 } else { 1803 assert(isa<Argument>(Def)); 1804 Store->insertAfter(cast<Instruction>(Alloca)); 1805 } 1806 } 1807 1808 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1809 "we must have the same allocas with lives"); 1810 if (!PromotableAllocas.empty()) { 1811 // apply mem2reg to promote alloca to SSA 1812 PromoteMemToReg(PromotableAllocas, DT); 1813 } 1814 1815 #ifndef NDEBUG 1816 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1817 I++) 1818 if (isa<AllocaInst>(*I)) 1819 InitialAllocaNum--; 1820 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1821 #endif 1822 } 1823 1824 /// Implement a unique function which doesn't require we sort the input 1825 /// vector. Doing so has the effect of changing the output of a couple of 1826 /// tests in ways which make them less useful in testing fused safepoints. 1827 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1828 SmallSet<T, 8> Seen; 1829 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1830 return !Seen.insert(V).second; 1831 }), Vec.end()); 1832 } 1833 1834 /// Insert holders so that each Value is obviously live through the entire 1835 /// lifetime of the call. 1836 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1837 SmallVectorImpl<CallInst *> &Holders) { 1838 if (Values.empty()) 1839 // No values to hold live, might as well not insert the empty holder 1840 return; 1841 1842 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1843 // Use a dummy vararg function to actually hold the values live 1844 Function *Func = cast<Function>(M->getOrInsertFunction( 1845 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1846 if (CS.isCall()) { 1847 // For call safepoints insert dummy calls right after safepoint 1848 BasicBlock::iterator Next(CS.getInstruction()); 1849 Next++; 1850 Holders.push_back(CallInst::Create(Func, Values, "", Next)); 1851 return; 1852 } 1853 // For invoke safepooints insert dummy calls both in normal and 1854 // exceptional destination blocks 1855 auto *II = cast<InvokeInst>(CS.getInstruction()); 1856 Holders.push_back(CallInst::Create( 1857 Func, Values, "", II->getNormalDest()->getFirstInsertionPt())); 1858 Holders.push_back(CallInst::Create( 1859 Func, Values, "", II->getUnwindDest()->getFirstInsertionPt())); 1860 } 1861 1862 static void findLiveReferences( 1863 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1864 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1865 GCPtrLivenessData OriginalLivenessData; 1866 computeLiveInValues(DT, F, OriginalLivenessData); 1867 for (size_t i = 0; i < records.size(); i++) { 1868 struct PartiallyConstructedSafepointRecord &info = records[i]; 1869 const CallSite &CS = toUpdate[i]; 1870 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1871 } 1872 } 1873 1874 /// Remove any vector of pointers from the liveset by scalarizing them over the 1875 /// statepoint instruction. Adds the scalarized pieces to the liveset. It 1876 /// would be preferable to include the vector in the statepoint itself, but 1877 /// the lowering code currently does not handle that. Extending it would be 1878 /// slightly non-trivial since it requires a format change. Given how rare 1879 /// such cases are (for the moment?) scalarizing is an acceptable compromise. 1880 static void splitVectorValues(Instruction *StatepointInst, 1881 StatepointLiveSetTy &LiveSet, 1882 DenseMap<Value *, Value *>& PointerToBase, 1883 DominatorTree &DT) { 1884 SmallVector<Value *, 16> ToSplit; 1885 for (Value *V : LiveSet) 1886 if (isa<VectorType>(V->getType())) 1887 ToSplit.push_back(V); 1888 1889 if (ToSplit.empty()) 1890 return; 1891 1892 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1893 1894 Function &F = *(StatepointInst->getParent()->getParent()); 1895 1896 DenseMap<Value *, AllocaInst *> AllocaMap; 1897 // First is normal return, second is exceptional return (invoke only) 1898 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1899 for (Value *V : ToSplit) { 1900 AllocaInst *Alloca = 1901 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1902 AllocaMap[V] = Alloca; 1903 1904 VectorType *VT = cast<VectorType>(V->getType()); 1905 IRBuilder<> Builder(StatepointInst); 1906 SmallVector<Value *, 16> Elements; 1907 for (unsigned i = 0; i < VT->getNumElements(); i++) 1908 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1909 ElementMapping[V] = Elements; 1910 1911 auto InsertVectorReform = [&](Instruction *IP) { 1912 Builder.SetInsertPoint(IP); 1913 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1914 Value *ResultVec = UndefValue::get(VT); 1915 for (unsigned i = 0; i < VT->getNumElements(); i++) 1916 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1917 Builder.getInt32(i)); 1918 return ResultVec; 1919 }; 1920 1921 if (isa<CallInst>(StatepointInst)) { 1922 BasicBlock::iterator Next(StatepointInst); 1923 Next++; 1924 Instruction *IP = &*(Next); 1925 Replacements[V].first = InsertVectorReform(IP); 1926 Replacements[V].second = nullptr; 1927 } else { 1928 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 1929 // We've already normalized - check that we don't have shared destination 1930 // blocks 1931 BasicBlock *NormalDest = Invoke->getNormalDest(); 1932 assert(!isa<PHINode>(NormalDest->begin())); 1933 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 1934 assert(!isa<PHINode>(UnwindDest->begin())); 1935 // Insert insert element sequences in both successors 1936 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 1937 Replacements[V].first = InsertVectorReform(IP); 1938 IP = &*(UnwindDest->getFirstInsertionPt()); 1939 Replacements[V].second = InsertVectorReform(IP); 1940 } 1941 } 1942 1943 for (Value *V : ToSplit) { 1944 AllocaInst *Alloca = AllocaMap[V]; 1945 1946 // Capture all users before we start mutating use lists 1947 SmallVector<Instruction *, 16> Users; 1948 for (User *U : V->users()) 1949 Users.push_back(cast<Instruction>(U)); 1950 1951 for (Instruction *I : Users) { 1952 if (auto Phi = dyn_cast<PHINode>(I)) { 1953 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 1954 if (V == Phi->getIncomingValue(i)) { 1955 LoadInst *Load = new LoadInst( 1956 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1957 Phi->setIncomingValue(i, Load); 1958 } 1959 } else { 1960 LoadInst *Load = new LoadInst(Alloca, "", I); 1961 I->replaceUsesOfWith(V, Load); 1962 } 1963 } 1964 1965 // Store the original value and the replacement value into the alloca 1966 StoreInst *Store = new StoreInst(V, Alloca); 1967 if (auto I = dyn_cast<Instruction>(V)) 1968 Store->insertAfter(I); 1969 else 1970 Store->insertAfter(Alloca); 1971 1972 // Normal return for invoke, or call return 1973 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 1974 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1975 // Unwind return for invoke only 1976 Replacement = cast_or_null<Instruction>(Replacements[V].second); 1977 if (Replacement) 1978 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1979 } 1980 1981 // apply mem2reg to promote alloca to SSA 1982 SmallVector<AllocaInst *, 16> Allocas; 1983 for (Value *V : ToSplit) 1984 Allocas.push_back(AllocaMap[V]); 1985 PromoteMemToReg(Allocas, DT); 1986 1987 // Update our tracking of live pointers and base mappings to account for the 1988 // changes we just made. 1989 for (Value *V : ToSplit) { 1990 auto &Elements = ElementMapping[V]; 1991 1992 LiveSet.erase(V); 1993 LiveSet.insert(Elements.begin(), Elements.end()); 1994 // We need to update the base mapping as well. 1995 assert(PointerToBase.count(V)); 1996 Value *OldBase = PointerToBase[V]; 1997 auto &BaseElements = ElementMapping[OldBase]; 1998 PointerToBase.erase(V); 1999 assert(Elements.size() == BaseElements.size()); 2000 for (unsigned i = 0; i < Elements.size(); i++) { 2001 Value *Elem = Elements[i]; 2002 PointerToBase[Elem] = BaseElements[i]; 2003 } 2004 } 2005 } 2006 2007 // Helper function for the "rematerializeLiveValues". It walks use chain 2008 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 2009 // values are visited (currently it is GEP's and casts). Returns true if it 2010 // successfully reached "BaseValue" and false otherwise. 2011 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 2012 // recorded. 2013 static bool findRematerializableChainToBasePointer( 2014 SmallVectorImpl<Instruction*> &ChainToBase, 2015 Value *CurrentValue, Value *BaseValue) { 2016 2017 // We have found a base value 2018 if (CurrentValue == BaseValue) { 2019 return true; 2020 } 2021 2022 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2023 ChainToBase.push_back(GEP); 2024 return findRematerializableChainToBasePointer(ChainToBase, 2025 GEP->getPointerOperand(), 2026 BaseValue); 2027 } 2028 2029 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2030 Value *Def = CI->stripPointerCasts(); 2031 2032 // This two checks are basically similar. First one is here for the 2033 // consistency with findBasePointers logic. 2034 assert(!isa<CastInst>(Def) && "not a pointer cast found"); 2035 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2036 return false; 2037 2038 ChainToBase.push_back(CI); 2039 return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue); 2040 } 2041 2042 // Not supported instruction in the chain 2043 return false; 2044 } 2045 2046 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2047 // chain we are going to rematerialize. 2048 static unsigned 2049 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 2050 TargetTransformInfo &TTI) { 2051 unsigned Cost = 0; 2052 2053 for (Instruction *Instr : Chain) { 2054 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2055 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2056 "non noop cast is found during rematerialization"); 2057 2058 Type *SrcTy = CI->getOperand(0)->getType(); 2059 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 2060 2061 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2062 // Cost of the address calculation 2063 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); 2064 Cost += TTI.getAddressComputationCost(ValTy); 2065 2066 // And cost of the GEP itself 2067 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2068 // allowed for the external usage) 2069 if (!GEP->hasAllConstantIndices()) 2070 Cost += 2; 2071 2072 } else { 2073 llvm_unreachable("unsupported instruciton type during rematerialization"); 2074 } 2075 } 2076 2077 return Cost; 2078 } 2079 2080 // From the statepoint liveset pick values that are cheaper to recompute then to 2081 // relocate. Remove this values from the liveset, rematerialize them after 2082 // statepoint and record them in "Info" structure. Note that similar to 2083 // relocated values we don't do any user adjustments here. 2084 static void rematerializeLiveValues(CallSite CS, 2085 PartiallyConstructedSafepointRecord &Info, 2086 TargetTransformInfo &TTI) { 2087 const unsigned int ChainLengthThreshold = 10; 2088 2089 // Record values we are going to delete from this statepoint live set. 2090 // We can not di this in following loop due to iterator invalidation. 2091 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2092 2093 for (Value *LiveValue: Info.liveset) { 2094 // For each live pointer find it's defining chain 2095 SmallVector<Instruction *, 3> ChainToBase; 2096 assert(Info.PointerToBase.count(LiveValue)); 2097 bool FoundChain = 2098 findRematerializableChainToBasePointer(ChainToBase, 2099 LiveValue, 2100 Info.PointerToBase[LiveValue]); 2101 // Nothing to do, or chain is too long 2102 if (!FoundChain || 2103 ChainToBase.size() == 0 || 2104 ChainToBase.size() > ChainLengthThreshold) 2105 continue; 2106 2107 // Compute cost of this chain 2108 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2109 // TODO: We can also account for cases when we will be able to remove some 2110 // of the rematerialized values by later optimization passes. I.e if 2111 // we rematerialized several intersecting chains. Or if original values 2112 // don't have any uses besides this statepoint. 2113 2114 // For invokes we need to rematerialize each chain twice - for normal and 2115 // for unwind basic blocks. Model this by multiplying cost by two. 2116 if (CS.isInvoke()) { 2117 Cost *= 2; 2118 } 2119 // If it's too expensive - skip it 2120 if (Cost >= RematerializationThreshold) 2121 continue; 2122 2123 // Remove value from the live set 2124 LiveValuesToBeDeleted.push_back(LiveValue); 2125 2126 // Clone instructions and record them inside "Info" structure 2127 2128 // Walk backwards to visit top-most instructions first 2129 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2130 2131 // Utility function which clones all instructions from "ChainToBase" 2132 // and inserts them before "InsertBefore". Returns rematerialized value 2133 // which should be used after statepoint. 2134 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 2135 Instruction *LastClonedValue = nullptr; 2136 Instruction *LastValue = nullptr; 2137 for (Instruction *Instr: ChainToBase) { 2138 // Only GEP's and casts are suported as we need to be careful to not 2139 // introduce any new uses of pointers not in the liveset. 2140 // Note that it's fine to introduce new uses of pointers which were 2141 // otherwise not used after this statepoint. 2142 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2143 2144 Instruction *ClonedValue = Instr->clone(); 2145 ClonedValue->insertBefore(InsertBefore); 2146 ClonedValue->setName(Instr->getName() + ".remat"); 2147 2148 // If it is not first instruction in the chain then it uses previously 2149 // cloned value. We should update it to use cloned value. 2150 if (LastClonedValue) { 2151 assert(LastValue); 2152 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2153 #ifndef NDEBUG 2154 // Assert that cloned instruction does not use any instructions from 2155 // this chain other than LastClonedValue 2156 for (auto OpValue : ClonedValue->operand_values()) { 2157 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2158 ChainToBase.end() && 2159 "incorrect use in rematerialization chain"); 2160 } 2161 #endif 2162 } 2163 2164 LastClonedValue = ClonedValue; 2165 LastValue = Instr; 2166 } 2167 assert(LastClonedValue); 2168 return LastClonedValue; 2169 }; 2170 2171 // Different cases for calls and invokes. For invokes we need to clone 2172 // instructions both on normal and unwind path. 2173 if (CS.isCall()) { 2174 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2175 assert(InsertBefore); 2176 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2177 Info.RematerializedValues[RematerializedValue] = LiveValue; 2178 } else { 2179 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2180 2181 Instruction *NormalInsertBefore = 2182 Invoke->getNormalDest()->getFirstInsertionPt(); 2183 Instruction *UnwindInsertBefore = 2184 Invoke->getUnwindDest()->getFirstInsertionPt(); 2185 2186 Instruction *NormalRematerializedValue = 2187 rematerializeChain(NormalInsertBefore); 2188 Instruction *UnwindRematerializedValue = 2189 rematerializeChain(UnwindInsertBefore); 2190 2191 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2192 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2193 } 2194 } 2195 2196 // Remove rematerializaed values from the live set 2197 for (auto LiveValue: LiveValuesToBeDeleted) { 2198 Info.liveset.erase(LiveValue); 2199 } 2200 } 2201 2202 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 2203 SmallVectorImpl<CallSite> &toUpdate) { 2204 #ifndef NDEBUG 2205 // sanity check the input 2206 std::set<CallSite> uniqued; 2207 uniqued.insert(toUpdate.begin(), toUpdate.end()); 2208 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 2209 2210 for (size_t i = 0; i < toUpdate.size(); i++) { 2211 CallSite &CS = toUpdate[i]; 2212 assert(CS.getInstruction()->getParent()->getParent() == &F); 2213 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 2214 } 2215 #endif 2216 2217 // When inserting gc.relocates for invokes, we need to be able to insert at 2218 // the top of the successor blocks. See the comment on 2219 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2220 // may restructure the CFG. 2221 for (CallSite CS : toUpdate) { 2222 if (!CS.isInvoke()) 2223 continue; 2224 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 2225 normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(), 2226 DT); 2227 normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(), 2228 DT); 2229 } 2230 2231 // A list of dummy calls added to the IR to keep various values obviously 2232 // live in the IR. We'll remove all of these when done. 2233 SmallVector<CallInst *, 64> holders; 2234 2235 // Insert a dummy call with all of the arguments to the vm_state we'll need 2236 // for the actual safepoint insertion. This ensures reference arguments in 2237 // the deopt argument list are considered live through the safepoint (and 2238 // thus makes sure they get relocated.) 2239 for (size_t i = 0; i < toUpdate.size(); i++) { 2240 CallSite &CS = toUpdate[i]; 2241 Statepoint StatepointCS(CS); 2242 2243 SmallVector<Value *, 64> DeoptValues; 2244 for (Use &U : StatepointCS.vm_state_args()) { 2245 Value *Arg = cast<Value>(&U); 2246 assert(!isUnhandledGCPointerType(Arg->getType()) && 2247 "support for FCA unimplemented"); 2248 if (isHandledGCPointerType(Arg->getType())) 2249 DeoptValues.push_back(Arg); 2250 } 2251 insertUseHolderAfter(CS, DeoptValues, holders); 2252 } 2253 2254 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 2255 records.reserve(toUpdate.size()); 2256 for (size_t i = 0; i < toUpdate.size(); i++) { 2257 struct PartiallyConstructedSafepointRecord info; 2258 records.push_back(info); 2259 } 2260 assert(records.size() == toUpdate.size()); 2261 2262 // A) Identify all gc pointers which are statically live at the given call 2263 // site. 2264 findLiveReferences(F, DT, P, toUpdate, records); 2265 2266 // B) Find the base pointers for each live pointer 2267 /* scope for caching */ { 2268 // Cache the 'defining value' relation used in the computation and 2269 // insertion of base phis and selects. This ensures that we don't insert 2270 // large numbers of duplicate base_phis. 2271 DefiningValueMapTy DVCache; 2272 2273 for (size_t i = 0; i < records.size(); i++) { 2274 struct PartiallyConstructedSafepointRecord &info = records[i]; 2275 CallSite &CS = toUpdate[i]; 2276 findBasePointers(DT, DVCache, CS, info); 2277 } 2278 } // end of cache scope 2279 2280 // The base phi insertion logic (for any safepoint) may have inserted new 2281 // instructions which are now live at some safepoint. The simplest such 2282 // example is: 2283 // loop: 2284 // phi a <-- will be a new base_phi here 2285 // safepoint 1 <-- that needs to be live here 2286 // gep a + 1 2287 // safepoint 2 2288 // br loop 2289 // We insert some dummy calls after each safepoint to definitely hold live 2290 // the base pointers which were identified for that safepoint. We'll then 2291 // ask liveness for _every_ base inserted to see what is now live. Then we 2292 // remove the dummy calls. 2293 holders.reserve(holders.size() + records.size()); 2294 for (size_t i = 0; i < records.size(); i++) { 2295 struct PartiallyConstructedSafepointRecord &info = records[i]; 2296 CallSite &CS = toUpdate[i]; 2297 2298 SmallVector<Value *, 128> Bases; 2299 for (auto Pair : info.PointerToBase) { 2300 Bases.push_back(Pair.second); 2301 } 2302 insertUseHolderAfter(CS, Bases, holders); 2303 } 2304 2305 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2306 // need to rerun liveness. We may *also* have inserted new defs, but that's 2307 // not the key issue. 2308 recomputeLiveInValues(F, DT, P, toUpdate, records); 2309 2310 if (PrintBasePointers) { 2311 for (size_t i = 0; i < records.size(); i++) { 2312 struct PartiallyConstructedSafepointRecord &info = records[i]; 2313 errs() << "Base Pairs: (w/Relocation)\n"; 2314 for (auto Pair : info.PointerToBase) { 2315 errs() << " derived %" << Pair.first->getName() << " base %" 2316 << Pair.second->getName() << "\n"; 2317 } 2318 } 2319 } 2320 for (size_t i = 0; i < holders.size(); i++) { 2321 holders[i]->eraseFromParent(); 2322 holders[i] = nullptr; 2323 } 2324 holders.clear(); 2325 2326 // Do a limited scalarization of any live at safepoint vector values which 2327 // contain pointers. This enables this pass to run after vectorization at 2328 // the cost of some possible performance loss. TODO: it would be nice to 2329 // natively support vectors all the way through the backend so we don't need 2330 // to scalarize here. 2331 for (size_t i = 0; i < records.size(); i++) { 2332 struct PartiallyConstructedSafepointRecord &info = records[i]; 2333 Instruction *statepoint = toUpdate[i].getInstruction(); 2334 splitVectorValues(cast<Instruction>(statepoint), info.liveset, 2335 info.PointerToBase, DT); 2336 } 2337 2338 // In order to reduce live set of statepoint we might choose to rematerialize 2339 // some values instead of relocating them. This is purely an optimization and 2340 // does not influence correctness. 2341 TargetTransformInfo &TTI = 2342 P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2343 2344 for (size_t i = 0; i < records.size(); i++) { 2345 struct PartiallyConstructedSafepointRecord &info = records[i]; 2346 CallSite &CS = toUpdate[i]; 2347 2348 rematerializeLiveValues(CS, info, TTI); 2349 } 2350 2351 // Now run through and replace the existing statepoints with new ones with 2352 // the live variables listed. We do not yet update uses of the values being 2353 // relocated. We have references to live variables that need to 2354 // survive to the last iteration of this loop. (By construction, the 2355 // previous statepoint can not be a live variable, thus we can and remove 2356 // the old statepoint calls as we go.) 2357 for (size_t i = 0; i < records.size(); i++) { 2358 struct PartiallyConstructedSafepointRecord &info = records[i]; 2359 CallSite &CS = toUpdate[i]; 2360 makeStatepointExplicit(DT, CS, P, info); 2361 } 2362 toUpdate.clear(); // prevent accident use of invalid CallSites 2363 2364 // Do all the fixups of the original live variables to their relocated selves 2365 SmallVector<Value *, 128> live; 2366 for (size_t i = 0; i < records.size(); i++) { 2367 struct PartiallyConstructedSafepointRecord &info = records[i]; 2368 // We can't simply save the live set from the original insertion. One of 2369 // the live values might be the result of a call which needs a safepoint. 2370 // That Value* no longer exists and we need to use the new gc_result. 2371 // Thankfully, the liveset is embedded in the statepoint (and updated), so 2372 // we just grab that. 2373 Statepoint statepoint(info.StatepointToken); 2374 live.insert(live.end(), statepoint.gc_args_begin(), 2375 statepoint.gc_args_end()); 2376 #ifndef NDEBUG 2377 // Do some basic sanity checks on our liveness results before performing 2378 // relocation. Relocation can and will turn mistakes in liveness results 2379 // into non-sensical code which is must harder to debug. 2380 // TODO: It would be nice to test consistency as well 2381 assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) && 2382 "statepoint must be reachable or liveness is meaningless"); 2383 for (Value *V : statepoint.gc_args()) { 2384 if (!isa<Instruction>(V)) 2385 // Non-instruction values trivial dominate all possible uses 2386 continue; 2387 auto LiveInst = cast<Instruction>(V); 2388 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2389 "unreachable values should never be live"); 2390 assert(DT.dominates(LiveInst, info.StatepointToken) && 2391 "basic SSA liveness expectation violated by liveness analysis"); 2392 } 2393 #endif 2394 } 2395 unique_unsorted(live); 2396 2397 #ifndef NDEBUG 2398 // sanity check 2399 for (auto ptr : live) { 2400 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 2401 } 2402 #endif 2403 2404 relocationViaAlloca(F, DT, live, records); 2405 return !records.empty(); 2406 } 2407 2408 // Handles both return values and arguments for Functions and CallSites. 2409 template <typename AttrHolder> 2410 static void RemoveDerefAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2411 unsigned Index) { 2412 AttrBuilder R; 2413 if (AH.getDereferenceableBytes(Index)) 2414 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2415 AH.getDereferenceableBytes(Index))); 2416 if (AH.getDereferenceableOrNullBytes(Index)) 2417 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2418 AH.getDereferenceableOrNullBytes(Index))); 2419 2420 if (!R.empty()) 2421 AH.setAttributes(AH.getAttributes().removeAttributes( 2422 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2423 } 2424 2425 void 2426 RewriteStatepointsForGC::stripDereferenceabilityInfoFromPrototype(Function &F) { 2427 LLVMContext &Ctx = F.getContext(); 2428 2429 for (Argument &A : F.args()) 2430 if (isa<PointerType>(A.getType())) 2431 RemoveDerefAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2432 2433 if (isa<PointerType>(F.getReturnType())) 2434 RemoveDerefAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2435 } 2436 2437 void RewriteStatepointsForGC::stripDereferenceabilityInfoFromBody(Function &F) { 2438 if (F.empty()) 2439 return; 2440 2441 LLVMContext &Ctx = F.getContext(); 2442 MDBuilder Builder(Ctx); 2443 2444 for (Instruction &I : instructions(F)) { 2445 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2446 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2447 bool IsImmutableTBAA = 2448 MD->getNumOperands() == 4 && 2449 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2450 2451 if (!IsImmutableTBAA) 2452 continue; // no work to do, MD_tbaa is already marked mutable 2453 2454 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2455 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2456 uint64_t Offset = 2457 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2458 2459 MDNode *MutableTBAA = 2460 Builder.createTBAAStructTagNode(Base, Access, Offset); 2461 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2462 } 2463 2464 if (CallSite CS = CallSite(&I)) { 2465 for (int i = 0, e = CS.arg_size(); i != e; i++) 2466 if (isa<PointerType>(CS.getArgument(i)->getType())) 2467 RemoveDerefAttrAtIndex(Ctx, CS, i + 1); 2468 if (isa<PointerType>(CS.getType())) 2469 RemoveDerefAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2470 } 2471 } 2472 } 2473 2474 /// Returns true if this function should be rewritten by this pass. The main 2475 /// point of this function is as an extension point for custom logic. 2476 static bool shouldRewriteStatepointsIn(Function &F) { 2477 // TODO: This should check the GCStrategy 2478 if (F.hasGC()) { 2479 const char *FunctionGCName = F.getGC(); 2480 const StringRef StatepointExampleName("statepoint-example"); 2481 const StringRef CoreCLRName("coreclr"); 2482 return (StatepointExampleName == FunctionGCName) || 2483 (CoreCLRName == FunctionGCName); 2484 } else 2485 return false; 2486 } 2487 2488 void RewriteStatepointsForGC::stripDereferenceabilityInfo(Module &M) { 2489 #ifndef NDEBUG 2490 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2491 "precondition!"); 2492 #endif 2493 2494 for (Function &F : M) 2495 stripDereferenceabilityInfoFromPrototype(F); 2496 2497 for (Function &F : M) 2498 stripDereferenceabilityInfoFromBody(F); 2499 } 2500 2501 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2502 // Nothing to do for declarations. 2503 if (F.isDeclaration() || F.empty()) 2504 return false; 2505 2506 // Policy choice says not to rewrite - the most common reason is that we're 2507 // compiling code without a GCStrategy. 2508 if (!shouldRewriteStatepointsIn(F)) 2509 return false; 2510 2511 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2512 2513 // Gather all the statepoints which need rewritten. Be careful to only 2514 // consider those in reachable code since we need to ask dominance queries 2515 // when rewriting. We'll delete the unreachable ones in a moment. 2516 SmallVector<CallSite, 64> ParsePointNeeded; 2517 bool HasUnreachableStatepoint = false; 2518 for (Instruction &I : instructions(F)) { 2519 // TODO: only the ones with the flag set! 2520 if (isStatepoint(I)) { 2521 if (DT.isReachableFromEntry(I.getParent())) 2522 ParsePointNeeded.push_back(CallSite(&I)); 2523 else 2524 HasUnreachableStatepoint = true; 2525 } 2526 } 2527 2528 bool MadeChange = false; 2529 2530 // Delete any unreachable statepoints so that we don't have unrewritten 2531 // statepoints surviving this pass. This makes testing easier and the 2532 // resulting IR less confusing to human readers. Rather than be fancy, we 2533 // just reuse a utility function which removes the unreachable blocks. 2534 if (HasUnreachableStatepoint) 2535 MadeChange |= removeUnreachableBlocks(F); 2536 2537 // Return early if no work to do. 2538 if (ParsePointNeeded.empty()) 2539 return MadeChange; 2540 2541 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2542 // These are created by LCSSA. They have the effect of increasing the size 2543 // of liveness sets for no good reason. It may be harder to do this post 2544 // insertion since relocations and base phis can confuse things. 2545 for (BasicBlock &BB : F) 2546 if (BB.getUniquePredecessor()) { 2547 MadeChange = true; 2548 FoldSingleEntryPHINodes(&BB); 2549 } 2550 2551 // Before we start introducing relocations, we want to tweak the IR a bit to 2552 // avoid unfortunate code generation effects. The main example is that we 2553 // want to try to make sure the comparison feeding a branch is after any 2554 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2555 // values feeding a branch after relocation. This is semantically correct, 2556 // but results in extra register pressure since both the pre-relocation and 2557 // post-relocation copies must be available in registers. For code without 2558 // relocations this is handled elsewhere, but teaching the scheduler to 2559 // reverse the transform we're about to do would be slightly complex. 2560 // Note: This may extend the live range of the inputs to the icmp and thus 2561 // increase the liveset of any statepoint we move over. This is profitable 2562 // as long as all statepoints are in rare blocks. If we had in-register 2563 // lowering for live values this would be a much safer transform. 2564 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2565 if (auto *BI = dyn_cast<BranchInst>(TI)) 2566 if (BI->isConditional()) 2567 return dyn_cast<Instruction>(BI->getCondition()); 2568 // TODO: Extend this to handle switches 2569 return nullptr; 2570 }; 2571 for (BasicBlock &BB : F) { 2572 TerminatorInst *TI = BB.getTerminator(); 2573 if (auto *Cond = getConditionInst(TI)) 2574 // TODO: Handle more than just ICmps here. We should be able to move 2575 // most instructions without side effects or memory access. 2576 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2577 MadeChange = true; 2578 Cond->moveBefore(TI); 2579 } 2580 } 2581 2582 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); 2583 return MadeChange; 2584 } 2585 2586 // liveness computation via standard dataflow 2587 // ------------------------------------------------------------------- 2588 2589 // TODO: Consider using bitvectors for liveness, the set of potentially 2590 // interesting values should be small and easy to pre-compute. 2591 2592 /// Compute the live-in set for the location rbegin starting from 2593 /// the live-out set of the basic block 2594 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2595 BasicBlock::reverse_iterator rend, 2596 DenseSet<Value *> &LiveTmp) { 2597 2598 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2599 Instruction *I = &*ritr; 2600 2601 // KILL/Def - Remove this definition from LiveIn 2602 LiveTmp.erase(I); 2603 2604 // Don't consider *uses* in PHI nodes, we handle their contribution to 2605 // predecessor blocks when we seed the LiveOut sets 2606 if (isa<PHINode>(I)) 2607 continue; 2608 2609 // USE - Add to the LiveIn set for this instruction 2610 for (Value *V : I->operands()) { 2611 assert(!isUnhandledGCPointerType(V->getType()) && 2612 "support for FCA unimplemented"); 2613 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2614 // The choice to exclude all things constant here is slightly subtle. 2615 // There are two independent reasons: 2616 // - We assume that things which are constant (from LLVM's definition) 2617 // do not move at runtime. For example, the address of a global 2618 // variable is fixed, even though it's contents may not be. 2619 // - Second, we can't disallow arbitrary inttoptr constants even 2620 // if the language frontend does. Optimization passes are free to 2621 // locally exploit facts without respect to global reachability. This 2622 // can create sections of code which are dynamically unreachable and 2623 // contain just about anything. (see constants.ll in tests) 2624 LiveTmp.insert(V); 2625 } 2626 } 2627 } 2628 } 2629 2630 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2631 2632 for (BasicBlock *Succ : successors(BB)) { 2633 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2634 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2635 PHINode *Phi = cast<PHINode>(&*I); 2636 Value *V = Phi->getIncomingValueForBlock(BB); 2637 assert(!isUnhandledGCPointerType(V->getType()) && 2638 "support for FCA unimplemented"); 2639 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2640 LiveTmp.insert(V); 2641 } 2642 } 2643 } 2644 } 2645 2646 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2647 DenseSet<Value *> KillSet; 2648 for (Instruction &I : *BB) 2649 if (isHandledGCPointerType(I.getType())) 2650 KillSet.insert(&I); 2651 return KillSet; 2652 } 2653 2654 #ifndef NDEBUG 2655 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2656 /// sanity check for the liveness computation. 2657 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2658 TerminatorInst *TI, bool TermOkay = false) { 2659 for (Value *V : Live) { 2660 if (auto *I = dyn_cast<Instruction>(V)) { 2661 // The terminator can be a member of the LiveOut set. LLVM's definition 2662 // of instruction dominance states that V does not dominate itself. As 2663 // such, we need to special case this to allow it. 2664 if (TermOkay && TI == I) 2665 continue; 2666 assert(DT.dominates(I, TI) && 2667 "basic SSA liveness expectation violated by liveness analysis"); 2668 } 2669 } 2670 } 2671 2672 /// Check that all the liveness sets used during the computation of liveness 2673 /// obey basic SSA properties. This is useful for finding cases where we miss 2674 /// a def. 2675 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2676 BasicBlock &BB) { 2677 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2678 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2679 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2680 } 2681 #endif 2682 2683 static void computeLiveInValues(DominatorTree &DT, Function &F, 2684 GCPtrLivenessData &Data) { 2685 2686 SmallSetVector<BasicBlock *, 200> Worklist; 2687 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2688 // We use a SetVector so that we don't have duplicates in the worklist. 2689 Worklist.insert(pred_begin(BB), pred_end(BB)); 2690 }; 2691 auto NextItem = [&]() { 2692 BasicBlock *BB = Worklist.back(); 2693 Worklist.pop_back(); 2694 return BB; 2695 }; 2696 2697 // Seed the liveness for each individual block 2698 for (BasicBlock &BB : F) { 2699 Data.KillSet[&BB] = computeKillSet(&BB); 2700 Data.LiveSet[&BB].clear(); 2701 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2702 2703 #ifndef NDEBUG 2704 for (Value *Kill : Data.KillSet[&BB]) 2705 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2706 #endif 2707 2708 Data.LiveOut[&BB] = DenseSet<Value *>(); 2709 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2710 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2711 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2712 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2713 if (!Data.LiveIn[&BB].empty()) 2714 AddPredsToWorklist(&BB); 2715 } 2716 2717 // Propagate that liveness until stable 2718 while (!Worklist.empty()) { 2719 BasicBlock *BB = NextItem(); 2720 2721 // Compute our new liveout set, then exit early if it hasn't changed 2722 // despite the contribution of our successor. 2723 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2724 const auto OldLiveOutSize = LiveOut.size(); 2725 for (BasicBlock *Succ : successors(BB)) { 2726 assert(Data.LiveIn.count(Succ)); 2727 set_union(LiveOut, Data.LiveIn[Succ]); 2728 } 2729 // assert OutLiveOut is a subset of LiveOut 2730 if (OldLiveOutSize == LiveOut.size()) { 2731 // If the sets are the same size, then we didn't actually add anything 2732 // when unioning our successors LiveIn Thus, the LiveIn of this block 2733 // hasn't changed. 2734 continue; 2735 } 2736 Data.LiveOut[BB] = LiveOut; 2737 2738 // Apply the effects of this basic block 2739 DenseSet<Value *> LiveTmp = LiveOut; 2740 set_union(LiveTmp, Data.LiveSet[BB]); 2741 set_subtract(LiveTmp, Data.KillSet[BB]); 2742 2743 assert(Data.LiveIn.count(BB)); 2744 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2745 // assert: OldLiveIn is a subset of LiveTmp 2746 if (OldLiveIn.size() != LiveTmp.size()) { 2747 Data.LiveIn[BB] = LiveTmp; 2748 AddPredsToWorklist(BB); 2749 } 2750 } // while( !worklist.empty() ) 2751 2752 #ifndef NDEBUG 2753 // Sanity check our output against SSA properties. This helps catch any 2754 // missing kills during the above iteration. 2755 for (BasicBlock &BB : F) { 2756 checkBasicSSA(DT, Data, BB); 2757 } 2758 #endif 2759 } 2760 2761 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2762 StatepointLiveSetTy &Out) { 2763 2764 BasicBlock *BB = Inst->getParent(); 2765 2766 // Note: The copy is intentional and required 2767 assert(Data.LiveOut.count(BB)); 2768 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2769 2770 // We want to handle the statepoint itself oddly. It's 2771 // call result is not live (normal), nor are it's arguments 2772 // (unless they're used again later). This adjustment is 2773 // specifically what we need to relocate 2774 BasicBlock::reverse_iterator rend(Inst); 2775 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2776 LiveOut.erase(Inst); 2777 Out.insert(LiveOut.begin(), LiveOut.end()); 2778 } 2779 2780 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2781 const CallSite &CS, 2782 PartiallyConstructedSafepointRecord &Info) { 2783 Instruction *Inst = CS.getInstruction(); 2784 StatepointLiveSetTy Updated; 2785 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2786 2787 #ifndef NDEBUG 2788 DenseSet<Value *> Bases; 2789 for (auto KVPair : Info.PointerToBase) { 2790 Bases.insert(KVPair.second); 2791 } 2792 #endif 2793 // We may have base pointers which are now live that weren't before. We need 2794 // to update the PointerToBase structure to reflect this. 2795 for (auto V : Updated) 2796 if (!Info.PointerToBase.count(V)) { 2797 assert(Bases.count(V) && "can't find base for unexpected live value"); 2798 Info.PointerToBase[V] = V; 2799 continue; 2800 } 2801 2802 #ifndef NDEBUG 2803 for (auto V : Updated) { 2804 assert(Info.PointerToBase.count(V) && 2805 "must be able to find base for live value"); 2806 } 2807 #endif 2808 2809 // Remove any stale base mappings - this can happen since our liveness is 2810 // more precise then the one inherent in the base pointer analysis 2811 DenseSet<Value *> ToErase; 2812 for (auto KVPair : Info.PointerToBase) 2813 if (!Updated.count(KVPair.first)) 2814 ToErase.insert(KVPair.first); 2815 for (auto V : ToErase) 2816 Info.PointerToBase.erase(V); 2817 2818 #ifndef NDEBUG 2819 for (auto KVPair : Info.PointerToBase) 2820 assert(Updated.count(KVPair.first) && "record for non-live value"); 2821 #endif 2822 2823 Info.liveset = Updated; 2824 } 2825