1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Statepoint.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 41 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 42 43 using namespace llvm; 44 45 // Print tracing output 46 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 47 cl::init(false)); 48 49 // Print the liveset found at the insert location 50 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 51 cl::init(false)); 52 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", 53 cl::Hidden, cl::init(false)); 54 // Print out the base pointers for debugging 55 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", 56 cl::Hidden, cl::init(false)); 57 58 namespace { 59 struct RewriteStatepointsForGC : public FunctionPass { 60 static char ID; // Pass identification, replacement for typeid 61 62 RewriteStatepointsForGC() : FunctionPass(ID) { 63 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 64 } 65 bool runOnFunction(Function &F) override; 66 67 void getAnalysisUsage(AnalysisUsage &AU) const override { 68 // We add and rewrite a bunch of instructions, but don't really do much 69 // else. We could in theory preserve a lot more analyses here. 70 AU.addRequired<DominatorTreeWrapperPass>(); 71 } 72 }; 73 } // namespace 74 75 char RewriteStatepointsForGC::ID = 0; 76 77 FunctionPass *llvm::createRewriteStatepointsForGCPass() { 78 return new RewriteStatepointsForGC(); 79 } 80 81 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 82 "Make relocations explicit at statepoints", false, false) 83 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 84 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 85 "Make relocations explicit at statepoints", false, false) 86 87 namespace { 88 // The type of the internal cache used inside the findBasePointers family 89 // of functions. From the callers perspective, this is an opaque type and 90 // should not be inspected. 91 // 92 // In the actual implementation this caches two relations: 93 // - The base relation itself (i.e. this pointer is based on that one) 94 // - The base defining value relation (i.e. before base_phi insertion) 95 // Generally, after the execution of a full findBasePointer call, only the 96 // base relation will remain. Internally, we add a mixture of the two 97 // types, then update all the second type to the first type 98 typedef std::map<Value *, Value *> DefiningValueMapTy; 99 100 struct PartiallyConstructedSafepointRecord { 101 /// The set of values known to be live accross this safepoint 102 std::set<llvm::Value *> liveset; 103 104 /// Mapping from live pointers to a base-defining-value 105 std::map<llvm::Value *, llvm::Value *> base_pairs; 106 107 /// Any new values which were added to the IR during base pointer analysis 108 /// for this safepoint 109 std::set<llvm::Value *> newInsertedDefs; 110 111 /// The bounds of the inserted code for the safepoint 112 std::pair<Instruction *, Instruction *> safepoint; 113 114 // Instruction to which exceptional gc relocates are attached 115 // Makes it easier to iterate through them during relocationViaAlloca. 116 Instruction *exceptional_relocates_token; 117 118 /// The result of the safepointing call (or nullptr) 119 Value *result; 120 }; 121 } 122 123 // TODO: Once we can get to the GCStrategy, this becomes 124 // Optional<bool> isGCManagedPointer(const Value *V) const override { 125 126 static bool isGCPointerType(const Type *T) { 127 if (const PointerType *PT = dyn_cast<PointerType>(T)) 128 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 129 // GC managed heap. We know that a pointer into this heap needs to be 130 // updated and that no other pointer does. 131 return (1 == PT->getAddressSpace()); 132 return false; 133 } 134 135 /// Return true if the Value is a gc reference type which is potentially used 136 /// after the instruction 'loc'. This is only used with the edge reachability 137 /// liveness code. Note: It is assumed the V dominates loc. 138 static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT, 139 LoopInfo *LI) { 140 if (!isGCPointerType(V.getType())) 141 return false; 142 143 if (V.use_empty()) 144 return false; 145 146 // Given assumption that V dominates loc, this may be live 147 return true; 148 } 149 150 #ifndef NDEBUG 151 static bool isAggWhichContainsGCPtrType(Type *Ty) { 152 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 153 return isGCPointerType(VT->getScalarType()); 154 else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 155 return isGCPointerType(AT->getElementType()) || 156 isAggWhichContainsGCPtrType(AT->getElementType()); 157 } else if (StructType *ST = dyn_cast<StructType>(Ty)) { 158 bool UnsupportedType = false; 159 for (Type *SubType : ST->subtypes()) 160 UnsupportedType |= 161 isGCPointerType(SubType) || isAggWhichContainsGCPtrType(SubType); 162 return UnsupportedType; 163 } else 164 return false; 165 } 166 #endif 167 168 // Conservatively identifies any definitions which might be live at the 169 // given instruction. The analysis is performed immediately before the 170 // given instruction. Values defined by that instruction are not considered 171 // live. Values used by that instruction are considered live. 172 // 173 // preconditions: valid IR graph, term is either a terminator instruction or 174 // a call instruction, pred is the basic block of term, DT, LI are valid 175 // 176 // side effects: none, does not mutate IR 177 // 178 // postconditions: populates liveValues as discussed above 179 static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred, 180 DominatorTree &DT, LoopInfo *LI, 181 std::set<llvm::Value *> &liveValues) { 182 liveValues.clear(); 183 184 assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator()); 185 186 Function *F = pred->getParent(); 187 188 auto is_live_gc_reference = 189 [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); }; 190 191 // Are there any gc pointer arguments live over this point? This needs to be 192 // special cased since arguments aren't defined in basic blocks. 193 for (Argument &arg : F->args()) { 194 assert(!isAggWhichContainsGCPtrType(arg.getType()) && 195 "support for FCA unimplemented"); 196 197 if (is_live_gc_reference(arg)) { 198 liveValues.insert(&arg); 199 } 200 } 201 202 // Walk through all dominating blocks - the ones which can contain 203 // definitions used in this block - and check to see if any of the values 204 // they define are used in locations potentially reachable from the 205 // interesting instruction. 206 BasicBlock *BBI = pred; 207 while (true) { 208 if (TraceLSP) { 209 errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n"; 210 } 211 assert(DT.dominates(BBI, pred)); 212 assert(isPotentiallyReachable(BBI, pred, &DT) && 213 "dominated block must be reachable"); 214 215 // Walk through the instructions in dominating blocks and keep any 216 // that have a use potentially reachable from the block we're 217 // considering putting the safepoint in 218 for (Instruction &inst : *BBI) { 219 if (TraceLSP) { 220 errs() << "[LSP] Looking at instruction "; 221 inst.dump(); 222 } 223 224 if (pred == BBI && (&inst) == term) { 225 if (TraceLSP) { 226 errs() << "[LSP] stopped because we encountered the safepoint " 227 "instruction.\n"; 228 } 229 230 // If we're in the block which defines the interesting instruction, 231 // we don't want to include any values as live which are defined 232 // _after_ the interesting line or as part of the line itself 233 // i.e. "term" is the call instruction for a call safepoint, the 234 // results of the call should not be considered live in that stackmap 235 break; 236 } 237 238 assert(!isAggWhichContainsGCPtrType(inst.getType()) && 239 "support for FCA unimplemented"); 240 241 if (is_live_gc_reference(inst)) { 242 if (TraceLSP) { 243 errs() << "[LSP] found live value for this safepoint "; 244 inst.dump(); 245 term->dump(); 246 } 247 liveValues.insert(&inst); 248 } 249 } 250 if (!DT.getNode(BBI)->getIDom()) { 251 assert(BBI == &F->getEntryBlock() && 252 "failed to find a dominator for something other than " 253 "the entry block"); 254 break; 255 } 256 BBI = DT.getNode(BBI)->getIDom()->getBlock(); 257 } 258 } 259 260 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 261 if (a->hasName() && b->hasName()) { 262 return -1 == a->getName().compare(b->getName()); 263 } else if (a->hasName() && !b->hasName()) { 264 return true; 265 } else if (!a->hasName() && b->hasName()) { 266 return false; 267 } else { 268 // Better than nothing, but not stable 269 return a < b; 270 } 271 } 272 273 /// Find the initial live set. Note that due to base pointer 274 /// insertion, the live set may be incomplete. 275 static void 276 analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS, 277 PartiallyConstructedSafepointRecord &result) { 278 Instruction *inst = CS.getInstruction(); 279 280 BasicBlock *BB = inst->getParent(); 281 std::set<Value *> liveset; 282 findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset); 283 284 if (PrintLiveSet) { 285 // Note: This output is used by several of the test cases 286 // The order of elemtns in a set is not stable, put them in a vec and sort 287 // by name 288 std::vector<Value *> temp; 289 temp.insert(temp.end(), liveset.begin(), liveset.end()); 290 std::sort(temp.begin(), temp.end(), order_by_name); 291 errs() << "Live Variables:\n"; 292 for (Value *V : temp) { 293 errs() << " " << V->getName(); // no newline 294 V->dump(); 295 } 296 } 297 if (PrintLiveSetSize) { 298 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 299 errs() << "Number live values: " << liveset.size() << "\n"; 300 } 301 result.liveset = liveset; 302 } 303 304 /// True iff this value is the null pointer constant (of any pointer type) 305 static bool isNullConstant(Value *V) { 306 return isa<Constant>(V) && isa<PointerType>(V->getType()) && 307 cast<Constant>(V)->isNullValue(); 308 } 309 310 /// Helper function for findBasePointer - Will return a value which either a) 311 /// defines the base pointer for the input or b) blocks the simple search 312 /// (i.e. a PHI or Select of two derived pointers) 313 static Value *findBaseDefiningValue(Value *I) { 314 assert(I->getType()->isPointerTy() && 315 "Illegal to ask for the base pointer of a non-pointer type"); 316 317 // There are instructions which can never return gc pointer values. Sanity 318 // check 319 // that this is actually true. 320 assert(!isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) && 321 !isa<ShuffleVectorInst>(I) && "Vector types are not gc pointers"); 322 assert((!isa<Instruction>(I) || isa<InvokeInst>(I) || 323 !cast<Instruction>(I)->isTerminator()) && 324 "With the exception of invoke terminators don't define values"); 325 assert(!isa<StoreInst>(I) && !isa<FenceInst>(I) && 326 "Can't be definitions to start with"); 327 assert(!isa<ICmpInst>(I) && !isa<FCmpInst>(I) && 328 "Comparisons don't give ops"); 329 // There's a bunch of instructions which just don't make sense to apply to 330 // a pointer. The only valid reason for this would be pointer bit 331 // twiddling which we're just not going to support. 332 assert((!isa<Instruction>(I) || !cast<Instruction>(I)->isBinaryOp()) && 333 "Binary ops on pointer values are meaningless. Unless your " 334 "bit-twiddling which we don't support"); 335 336 if (Argument *Arg = dyn_cast<Argument>(I)) { 337 // An incoming argument to the function is a base pointer 338 // We should have never reached here if this argument isn't an gc value 339 assert(Arg->getType()->isPointerTy() && 340 "Base for pointer must be another pointer"); 341 return Arg; 342 } 343 344 if (GlobalVariable *global = dyn_cast<GlobalVariable>(I)) { 345 // base case 346 assert(global->getType()->isPointerTy() && 347 "Base for pointer must be another pointer"); 348 return global; 349 } 350 351 // inlining could possibly introduce phi node that contains 352 // undef if callee has multiple returns 353 if (UndefValue *undef = dyn_cast<UndefValue>(I)) { 354 assert(undef->getType()->isPointerTy() && 355 "Base for pointer must be another pointer"); 356 return undef; // utterly meaningless, but useful for dealing with 357 // partially optimized code. 358 } 359 360 // Due to inheritance, this must be _after_ the global variable and undef 361 // checks 362 if (Constant *con = dyn_cast<Constant>(I)) { 363 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 364 "order of checks wrong!"); 365 // Note: Finding a constant base for something marked for relocation 366 // doesn't really make sense. The most likely case is either a) some 367 // screwed up the address space usage or b) your validating against 368 // compiled C++ code w/o the proper separation. The only real exception 369 // is a null pointer. You could have generic code written to index of 370 // off a potentially null value and have proven it null. We also use 371 // null pointers in dead paths of relocation phis (which we might later 372 // want to find a base pointer for). 373 assert(con->getType()->isPointerTy() && 374 "Base for pointer must be another pointer"); 375 assert(con->isNullValue() && "null is the only case which makes sense"); 376 return con; 377 } 378 379 if (CastInst *CI = dyn_cast<CastInst>(I)) { 380 Value *def = CI->stripPointerCasts(); 381 assert(def->getType()->isPointerTy() && 382 "Base for pointer must be another pointer"); 383 if (isa<CastInst>(def)) { 384 // If we find a cast instruction here, it means we've found a cast 385 // which is not simply a pointer cast (i.e. an inttoptr). We don't 386 // know how to handle int->ptr conversion. 387 llvm_unreachable("Can not find the base pointers for an inttoptr cast"); 388 } 389 assert(!isa<CastInst>(def) && "shouldn't find another cast here"); 390 return findBaseDefiningValue(def); 391 } 392 393 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 394 if (LI->getType()->isPointerTy()) { 395 Value *Op = LI->getOperand(0); 396 (void)Op; 397 // Has to be a pointer to an gc object, or possibly an array of such? 398 assert(Op->getType()->isPointerTy()); 399 return LI; // The value loaded is an gc base itself 400 } 401 } 402 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 403 Value *Op = GEP->getOperand(0); 404 if (Op->getType()->isPointerTy()) { 405 return findBaseDefiningValue(Op); // The base of this GEP is the base 406 } 407 } 408 409 if (AllocaInst *alloc = dyn_cast<AllocaInst>(I)) { 410 // An alloca represents a conceptual stack slot. It's the slot itself 411 // that the GC needs to know about, not the value in the slot. 412 assert(alloc->getType()->isPointerTy() && 413 "Base for pointer must be another pointer"); 414 return alloc; 415 } 416 417 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 418 switch (II->getIntrinsicID()) { 419 default: 420 // fall through to general call handling 421 break; 422 case Intrinsic::experimental_gc_statepoint: 423 case Intrinsic::experimental_gc_result_float: 424 case Intrinsic::experimental_gc_result_int: 425 llvm_unreachable("these don't produce pointers"); 426 case Intrinsic::experimental_gc_result_ptr: 427 // This is just a special case of the CallInst check below to handle a 428 // statepoint with deopt args which hasn't been rewritten for GC yet. 429 // TODO: Assert that the statepoint isn't rewritten yet. 430 return II; 431 case Intrinsic::experimental_gc_relocate: { 432 // Rerunning safepoint insertion after safepoints are already 433 // inserted is not supported. It could probably be made to work, 434 // but why are you doing this? There's no good reason. 435 llvm_unreachable("repeat safepoint insertion is not supported"); 436 } 437 case Intrinsic::gcroot: 438 // Currently, this mechanism hasn't been extended to work with gcroot. 439 // There's no reason it couldn't be, but I haven't thought about the 440 // implications much. 441 llvm_unreachable( 442 "interaction with the gcroot mechanism is not supported"); 443 } 444 } 445 // We assume that functions in the source language only return base 446 // pointers. This should probably be generalized via attributes to support 447 // both source language and internal functions. 448 if (CallInst *call = dyn_cast<CallInst>(I)) { 449 assert(call->getType()->isPointerTy() && 450 "Base for pointer must be another pointer"); 451 return call; 452 } 453 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 454 assert(invoke->getType()->isPointerTy() && 455 "Base for pointer must be another pointer"); 456 return invoke; 457 } 458 459 // I have absolutely no idea how to implement this part yet. It's not 460 // neccessarily hard, I just haven't really looked at it yet. 461 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 462 463 if (AtomicCmpXchgInst *cas = dyn_cast<AtomicCmpXchgInst>(I)) { 464 // A CAS is effectively a atomic store and load combined under a 465 // predicate. From the perspective of base pointers, we just treat it 466 // like a load. We loaded a pointer from a address in memory, that value 467 // had better be a valid base pointer. 468 return cas->getPointerOperand(); 469 } 470 if (AtomicRMWInst *atomic = dyn_cast<AtomicRMWInst>(I)) { 471 assert(AtomicRMWInst::Xchg == atomic->getOperation() && 472 "All others are binary ops which don't apply to base pointers"); 473 // semantically, a load, store pair. Treat it the same as a standard load 474 return atomic->getPointerOperand(); 475 } 476 477 // The aggregate ops. Aggregates can either be in the heap or on the 478 // stack, but in either case, this is simply a field load. As a result, 479 // this is a defining definition of the base just like a load is. 480 if (ExtractValueInst *ev = dyn_cast<ExtractValueInst>(I)) { 481 return ev; 482 } 483 484 // We should never see an insert vector since that would require we be 485 // tracing back a struct value not a pointer value. 486 assert(!isa<InsertValueInst>(I) && 487 "Base pointer for a struct is meaningless"); 488 489 // The last two cases here don't return a base pointer. Instead, they 490 // return a value which dynamically selects from amoung several base 491 // derived pointers (each with it's own base potentially). It's the job of 492 // the caller to resolve these. 493 if (SelectInst *select = dyn_cast<SelectInst>(I)) { 494 return select; 495 } 496 if (PHINode *phi = dyn_cast<PHINode>(I)) { 497 return phi; 498 } 499 500 errs() << "unknown type: " << *I << "\n"; 501 llvm_unreachable("unknown type"); 502 return nullptr; 503 } 504 505 /// Returns the base defining value for this value. 506 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &cache) { 507 Value *&Cached = cache[I]; 508 if (!Cached) { 509 Cached = findBaseDefiningValue(I); 510 } 511 assert(cache[I] != nullptr); 512 513 if (TraceLSP) { 514 errs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() 515 << "\n"; 516 } 517 return Cached; 518 } 519 520 /// Return a base pointer for this value if known. Otherwise, return it's 521 /// base defining value. 522 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &cache) { 523 Value *def = findBaseDefiningValueCached(I, cache); 524 auto Found = cache.find(def); 525 if (Found != cache.end()) { 526 // Either a base-of relation, or a self reference. Caller must check. 527 return Found->second; 528 } 529 // Only a BDV available 530 return def; 531 } 532 533 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 534 /// is it known to be a base pointer? Or do we need to continue searching. 535 static bool isKnownBaseResult(Value *v) { 536 if (!isa<PHINode>(v) && !isa<SelectInst>(v)) { 537 // no recursion possible 538 return true; 539 } 540 if (cast<Instruction>(v)->getMetadata("is_base_value")) { 541 // This is a previously inserted base phi or select. We know 542 // that this is a base value. 543 return true; 544 } 545 546 // We need to keep searching 547 return false; 548 } 549 550 // TODO: find a better name for this 551 namespace { 552 class PhiState { 553 public: 554 enum Status { Unknown, Base, Conflict }; 555 556 PhiState(Status s, Value *b = nullptr) : status(s), base(b) { 557 assert(status != Base || b); 558 } 559 PhiState(Value *b) : status(Base), base(b) {} 560 PhiState() : status(Unknown), base(nullptr) {} 561 PhiState(const PhiState &other) : status(other.status), base(other.base) { 562 assert(status != Base || base); 563 } 564 565 Status getStatus() const { return status; } 566 Value *getBase() const { return base; } 567 568 bool isBase() const { return getStatus() == Base; } 569 bool isUnknown() const { return getStatus() == Unknown; } 570 bool isConflict() const { return getStatus() == Conflict; } 571 572 bool operator==(const PhiState &other) const { 573 return base == other.base && status == other.status; 574 } 575 576 bool operator!=(const PhiState &other) const { return !(*this == other); } 577 578 void dump() { 579 errs() << status << " (" << base << " - " 580 << (base ? base->getName() : "nullptr") << "): "; 581 } 582 583 private: 584 Status status; 585 Value *base; // non null only if status == base 586 }; 587 588 // Values of type PhiState form a lattice, and this is a helper 589 // class that implementes the meet operation. The meat of the meet 590 // operation is implemented in MeetPhiStates::pureMeet 591 class MeetPhiStates { 592 public: 593 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. 594 explicit MeetPhiStates(const std::map<Value *, PhiState> &phiStates) 595 : phiStates(phiStates) {} 596 597 // Destructively meet the current result with the base V. V can 598 // either be a merge instruction (SelectInst / PHINode), in which 599 // case its status is looked up in the phiStates map; or a regular 600 // SSA value, in which case it is assumed to be a base. 601 void meetWith(Value *V) { 602 PhiState otherState = getStateForBDV(V); 603 assert((MeetPhiStates::pureMeet(otherState, currentResult) == 604 MeetPhiStates::pureMeet(currentResult, otherState)) && 605 "math is wrong: meet does not commute!"); 606 currentResult = MeetPhiStates::pureMeet(otherState, currentResult); 607 } 608 609 PhiState getResult() const { return currentResult; } 610 611 private: 612 const std::map<Value *, PhiState> &phiStates; 613 PhiState currentResult; 614 615 /// Return a phi state for a base defining value. We'll generate a new 616 /// base state for known bases and expect to find a cached state otherwise 617 PhiState getStateForBDV(Value *baseValue) { 618 if (isKnownBaseResult(baseValue)) { 619 return PhiState(baseValue); 620 } else { 621 return lookupFromMap(baseValue); 622 } 623 } 624 625 PhiState lookupFromMap(Value *V) { 626 auto I = phiStates.find(V); 627 assert(I != phiStates.end() && "lookup failed!"); 628 return I->second; 629 } 630 631 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { 632 switch (stateA.getStatus()) { 633 case PhiState::Unknown: 634 return stateB; 635 636 case PhiState::Base: 637 assert(stateA.getBase() && "can't be null"); 638 if (stateB.isUnknown()) { 639 return stateA; 640 } else if (stateB.isBase()) { 641 if (stateA.getBase() == stateB.getBase()) { 642 assert(stateA == stateB && "equality broken!"); 643 return stateA; 644 } 645 return PhiState(PhiState::Conflict); 646 } else { 647 assert(stateB.isConflict() && "only three states!"); 648 return PhiState(PhiState::Conflict); 649 } 650 651 case PhiState::Conflict: 652 return stateA; 653 } 654 assert(false && "only three states!"); 655 } 656 }; 657 } 658 /// For a given value or instruction, figure out what base ptr it's derived 659 /// from. For gc objects, this is simply itself. On success, returns a value 660 /// which is the base pointer. (This is reliable and can be used for 661 /// relocation.) On failure, returns nullptr. 662 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache, 663 std::set<llvm::Value *> &newInsertedDefs) { 664 Value *def = findBaseOrBDV(I, cache); 665 666 if (isKnownBaseResult(def)) { 667 return def; 668 } 669 670 // Here's the rough algorithm: 671 // - For every SSA value, construct a mapping to either an actual base 672 // pointer or a PHI which obscures the base pointer. 673 // - Construct a mapping from PHI to unknown TOP state. Use an 674 // optimistic algorithm to propagate base pointer information. Lattice 675 // looks like: 676 // UNKNOWN 677 // b1 b2 b3 b4 678 // CONFLICT 679 // When algorithm terminates, all PHIs will either have a single concrete 680 // base or be in a conflict state. 681 // - For every conflict, insert a dummy PHI node without arguments. Add 682 // these to the base[Instruction] = BasePtr mapping. For every 683 // non-conflict, add the actual base. 684 // - For every conflict, add arguments for the base[a] of each input 685 // arguments. 686 // 687 // Note: A simpler form of this would be to add the conflict form of all 688 // PHIs without running the optimistic algorithm. This would be 689 // analougous to pessimistic data flow and would likely lead to an 690 // overall worse solution. 691 692 std::map<Value *, PhiState> states; 693 states[def] = PhiState(); 694 // Recursively fill in all phis & selects reachable from the initial one 695 // for which we don't already know a definite base value for 696 // PERF: Yes, this is as horribly inefficient as it looks. 697 bool done = false; 698 while (!done) { 699 done = true; 700 for (auto Pair : states) { 701 Value *v = Pair.first; 702 assert(!isKnownBaseResult(v) && "why did it get added?"); 703 if (PHINode *phi = dyn_cast<PHINode>(v)) { 704 unsigned NumPHIValues = phi->getNumIncomingValues(); 705 assert(NumPHIValues > 0 && "zero input phis are illegal"); 706 for (unsigned i = 0; i != NumPHIValues; ++i) { 707 Value *InVal = phi->getIncomingValue(i); 708 Value *local = findBaseOrBDV(InVal, cache); 709 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 710 states[local] = PhiState(); 711 done = false; 712 } 713 } 714 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 715 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 716 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 717 states[local] = PhiState(); 718 done = false; 719 } 720 local = findBaseOrBDV(sel->getFalseValue(), cache); 721 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 722 states[local] = PhiState(); 723 done = false; 724 } 725 } 726 } 727 } 728 729 if (TraceLSP) { 730 errs() << "States after initialization:\n"; 731 for (auto Pair : states) { 732 Instruction *v = cast<Instruction>(Pair.first); 733 PhiState state = Pair.second; 734 state.dump(); 735 v->dump(); 736 } 737 } 738 739 // TODO: come back and revisit the state transitions around inputs which 740 // have reached conflict state. The current version seems too conservative. 741 742 bool progress = true; 743 size_t oldSize = 0; 744 while (progress) { 745 oldSize = states.size(); 746 progress = false; 747 for (auto Pair : states) { 748 MeetPhiStates calculateMeet(states); 749 Value *v = Pair.first; 750 assert(!isKnownBaseResult(v) && "why did it get added?"); 751 assert(isa<SelectInst>(v) || isa<PHINode>(v)); 752 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 753 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); 754 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); 755 } else if (PHINode *phi = dyn_cast<PHINode>(v)) { 756 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 757 calculateMeet.meetWith( 758 findBaseOrBDV(phi->getIncomingValue(i), cache)); 759 } 760 } else { 761 llvm_unreachable("no such state expected"); 762 } 763 764 PhiState oldState = states[v]; 765 PhiState newState = calculateMeet.getResult(); 766 if (oldState != newState) { 767 progress = true; 768 states[v] = newState; 769 } 770 } 771 772 assert(oldSize <= states.size()); 773 assert(oldSize == states.size() || progress); 774 } 775 776 if (TraceLSP) { 777 errs() << "States after meet iteration:\n"; 778 for (auto Pair : states) { 779 Instruction *v = cast<Instruction>(Pair.first); 780 PhiState state = Pair.second; 781 state.dump(); 782 v->dump(); 783 } 784 } 785 786 // Insert Phis for all conflicts 787 for (auto Pair : states) { 788 Instruction *v = cast<Instruction>(Pair.first); 789 PhiState state = Pair.second; 790 assert(!isKnownBaseResult(v) && "why did it get added?"); 791 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 792 if (state.isConflict()) { 793 if (isa<PHINode>(v)) { 794 int num_preds = 795 std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); 796 assert(num_preds > 0 && "how did we reach here"); 797 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); 798 newInsertedDefs.insert(phi); 799 // Add metadata marking this as a base value 800 auto *const_1 = ConstantInt::get( 801 Type::getInt32Ty( 802 v->getParent()->getParent()->getParent()->getContext()), 803 1); 804 auto MDConst = ConstantAsMetadata::get(const_1); 805 MDNode *md = MDNode::get( 806 v->getParent()->getParent()->getParent()->getContext(), MDConst); 807 phi->setMetadata("is_base_value", md); 808 states[v] = PhiState(PhiState::Conflict, phi); 809 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 810 // The undef will be replaced later 811 UndefValue *undef = UndefValue::get(sel->getType()); 812 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, 813 undef, "base_select", sel); 814 newInsertedDefs.insert(basesel); 815 // Add metadata marking this as a base value 816 auto *const_1 = ConstantInt::get( 817 Type::getInt32Ty( 818 v->getParent()->getParent()->getParent()->getContext()), 819 1); 820 auto MDConst = ConstantAsMetadata::get(const_1); 821 MDNode *md = MDNode::get( 822 v->getParent()->getParent()->getParent()->getContext(), MDConst); 823 basesel->setMetadata("is_base_value", md); 824 states[v] = PhiState(PhiState::Conflict, basesel); 825 } else { 826 assert(false); 827 } 828 } 829 } 830 831 // Fixup all the inputs of the new PHIs 832 for (auto Pair : states) { 833 Instruction *v = cast<Instruction>(Pair.first); 834 PhiState state = Pair.second; 835 836 assert(!isKnownBaseResult(v) && "why did it get added?"); 837 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 838 if (state.isConflict()) { 839 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 840 PHINode *phi = cast<PHINode>(v); 841 unsigned NumPHIValues = phi->getNumIncomingValues(); 842 for (unsigned i = 0; i < NumPHIValues; i++) { 843 Value *InVal = phi->getIncomingValue(i); 844 BasicBlock *InBB = phi->getIncomingBlock(i); 845 846 // If we've already seen InBB, add the same incoming value 847 // we added for it earlier. The IR verifier requires phi 848 // nodes with multiple entries from the same basic block 849 // to have the same incoming value for each of those 850 // entries. If we don't do this check here and basephi 851 // has a different type than base, we'll end up adding two 852 // bitcasts (and hence two distinct values) as incoming 853 // values for the same basic block. 854 855 int blockIndex = basephi->getBasicBlockIndex(InBB); 856 if (blockIndex != -1) { 857 Value *oldBase = basephi->getIncomingValue(blockIndex); 858 basephi->addIncoming(oldBase, InBB); 859 #ifndef NDEBUG 860 Value *base = findBaseOrBDV(InVal, cache); 861 if (!isKnownBaseResult(base)) { 862 // Either conflict or base. 863 assert(states.count(base)); 864 base = states[base].getBase(); 865 assert(base != nullptr && "unknown PhiState!"); 866 assert(newInsertedDefs.count(base) && 867 "should have already added this in a prev. iteration!"); 868 } 869 870 // In essense this assert states: the only way two 871 // values incoming from the same basic block may be 872 // different is by being different bitcasts of the same 873 // value. A cleanup that remains TODO is changing 874 // findBaseOrBDV to return an llvm::Value of the correct 875 // type (and still remain pure). This will remove the 876 // need to add bitcasts. 877 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 878 "sanity -- findBaseOrBDV should be pure!"); 879 #endif 880 continue; 881 } 882 883 // Find either the defining value for the PHI or the normal base for 884 // a non-phi node 885 Value *base = findBaseOrBDV(InVal, cache); 886 if (!isKnownBaseResult(base)) { 887 // Either conflict or base. 888 assert(states.count(base)); 889 base = states[base].getBase(); 890 assert(base != nullptr && "unknown PhiState!"); 891 } 892 assert(base && "can't be null"); 893 // Must use original input BB since base may not be Instruction 894 // The cast is needed since base traversal may strip away bitcasts 895 if (base->getType() != basephi->getType()) { 896 base = new BitCastInst(base, basephi->getType(), "cast", 897 InBB->getTerminator()); 898 newInsertedDefs.insert(base); 899 } 900 basephi->addIncoming(base, InBB); 901 } 902 assert(basephi->getNumIncomingValues() == NumPHIValues); 903 } else if (SelectInst *basesel = dyn_cast<SelectInst>(state.getBase())) { 904 SelectInst *sel = cast<SelectInst>(v); 905 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 906 // something more safe and less hacky. 907 for (int i = 1; i <= 2; i++) { 908 Value *InVal = sel->getOperand(i); 909 // Find either the defining value for the PHI or the normal base for 910 // a non-phi node 911 Value *base = findBaseOrBDV(InVal, cache); 912 if (!isKnownBaseResult(base)) { 913 // Either conflict or base. 914 assert(states.count(base)); 915 base = states[base].getBase(); 916 assert(base != nullptr && "unknown PhiState!"); 917 } 918 assert(base && "can't be null"); 919 // Must use original input BB since base may not be Instruction 920 // The cast is needed since base traversal may strip away bitcasts 921 if (base->getType() != basesel->getType()) { 922 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 923 newInsertedDefs.insert(base); 924 } 925 basesel->setOperand(i, base); 926 } 927 } else { 928 assert(false && "unexpected type"); 929 } 930 } 931 } 932 933 // Cache all of our results so we can cheaply reuse them 934 // NOTE: This is actually two caches: one of the base defining value 935 // relation and one of the base pointer relation! FIXME 936 for (auto item : states) { 937 Value *v = item.first; 938 Value *base = item.second.getBase(); 939 assert(v && base); 940 assert(!isKnownBaseResult(v) && "why did it get added?"); 941 942 if (TraceLSP) { 943 std::string fromstr = 944 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 945 : "none"; 946 errs() << "Updating base value cache" 947 << " for: " << (v->hasName() ? v->getName() : "") 948 << " from: " << fromstr 949 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 950 } 951 952 assert(isKnownBaseResult(base) && 953 "must be something we 'know' is a base pointer"); 954 if (cache.count(v)) { 955 // Once we transition from the BDV relation being store in the cache to 956 // the base relation being stored, it must be stable 957 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 958 "base relation should be stable"); 959 } 960 cache[v] = base; 961 } 962 assert(cache.find(def) != cache.end()); 963 return cache[def]; 964 } 965 966 // For a set of live pointers (base and/or derived), identify the base 967 // pointer of the object which they are derived from. This routine will 968 // mutate the IR graph as needed to make the 'base' pointer live at the 969 // definition site of 'derived'. This ensures that any use of 'derived' can 970 // also use 'base'. This may involve the insertion of a number of 971 // additional PHI nodes. 972 // 973 // preconditions: live is a set of pointer type Values 974 // 975 // side effects: may insert PHI nodes into the existing CFG, will preserve 976 // CFG, will not remove or mutate any existing nodes 977 // 978 // post condition: base_pairs contains one (derived, base) pair for every 979 // pointer in live. Note that derived can be equal to base if the original 980 // pointer was a base pointer. 981 static void findBasePointers(const std::set<llvm::Value *> &live, 982 std::map<llvm::Value *, llvm::Value *> &base_pairs, 983 DominatorTree *DT, DefiningValueMapTy &DVCache, 984 std::set<llvm::Value *> &newInsertedDefs) { 985 for (Value *ptr : live) { 986 Value *base = findBasePointer(ptr, DVCache, newInsertedDefs); 987 assert(base && "failed to find base pointer"); 988 base_pairs[ptr] = base; 989 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 990 DT->dominates(cast<Instruction>(base)->getParent(), 991 cast<Instruction>(ptr)->getParent())) && 992 "The base we found better dominate the derived pointer"); 993 994 if (isNullConstant(base)) 995 // If you see this trip and like to live really dangerously, the code 996 // should be correct, just with idioms the verifier can't handle. You 997 // can try disabling the verifier at your own substaintial risk. 998 llvm_unreachable("the relocation code needs adjustment to handle the" 999 "relocation of a null pointer constant without causing" 1000 "false positives in the safepoint ir verifier."); 1001 } 1002 } 1003 1004 /// Find the required based pointers (and adjust the live set) for the given 1005 /// parse point. 1006 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1007 const CallSite &CS, 1008 PartiallyConstructedSafepointRecord &result) { 1009 std::map<llvm::Value *, llvm::Value *> base_pairs; 1010 std::set<llvm::Value *> newInsertedDefs; 1011 findBasePointers(result.liveset, base_pairs, &DT, DVCache, newInsertedDefs); 1012 1013 if (PrintBasePointers) { 1014 errs() << "Base Pairs (w/o Relocation):\n"; 1015 for (auto Pair : base_pairs) { 1016 errs() << " derived %" << Pair.first->getName() << " base %" 1017 << Pair.second->getName() << "\n"; 1018 } 1019 } 1020 1021 result.base_pairs = base_pairs; 1022 result.newInsertedDefs = newInsertedDefs; 1023 } 1024 1025 /// Check for liveness of items in the insert defs and add them to the live 1026 /// and base pointer sets 1027 static void fixupLiveness(DominatorTree &DT, const CallSite &CS, 1028 const std::set<Value *> &allInsertedDefs, 1029 PartiallyConstructedSafepointRecord &result) { 1030 Instruction *inst = CS.getInstruction(); 1031 1032 std::set<llvm::Value *> liveset = result.liveset; 1033 std::map<llvm::Value *, llvm::Value *> base_pairs = result.base_pairs; 1034 1035 auto is_live_gc_reference = 1036 [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); }; 1037 1038 // For each new definition, check to see if a) the definition dominates the 1039 // instruction we're interested in, and b) one of the uses of that definition 1040 // is edge-reachable from the instruction we're interested in. This is the 1041 // same definition of liveness we used in the intial liveness analysis 1042 for (Value *newDef : allInsertedDefs) { 1043 if (liveset.count(newDef)) { 1044 // already live, no action needed 1045 continue; 1046 } 1047 1048 // PERF: Use DT to check instruction domination might not be good for 1049 // compilation time, and we could change to optimal solution if this 1050 // turn to be a issue 1051 if (!DT.dominates(cast<Instruction>(newDef), inst)) { 1052 // can't possibly be live at inst 1053 continue; 1054 } 1055 1056 if (is_live_gc_reference(*newDef)) { 1057 // Add the live new defs into liveset and base_pairs 1058 liveset.insert(newDef); 1059 base_pairs[newDef] = newDef; 1060 } 1061 } 1062 1063 result.liveset = liveset; 1064 result.base_pairs = base_pairs; 1065 } 1066 1067 static void fixupLiveReferences( 1068 Function &F, DominatorTree &DT, Pass *P, 1069 const std::set<llvm::Value *> &allInsertedDefs, 1070 std::vector<CallSite> &toUpdate, 1071 std::vector<struct PartiallyConstructedSafepointRecord> &records) { 1072 for (size_t i = 0; i < records.size(); i++) { 1073 struct PartiallyConstructedSafepointRecord &info = records[i]; 1074 CallSite &CS = toUpdate[i]; 1075 fixupLiveness(DT, CS, allInsertedDefs, info); 1076 } 1077 } 1078 1079 // Normalize basic block to make it ready to be target of invoke statepoint. 1080 // It means spliting it to have single predecessor. Return newly created BB 1081 // ready to be successor of invoke statepoint. 1082 static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB, 1083 BasicBlock *InvokeParent, 1084 Pass *P) { 1085 BasicBlock *ret = BB; 1086 1087 if (!BB->getUniquePredecessor()) { 1088 ret = SplitBlockPredecessors(BB, InvokeParent, ""); 1089 } 1090 1091 // Another requirement for such basic blocks is to not have any phi nodes. 1092 // Since we just ensured that new BB will have single predecessor, 1093 // all phi nodes in it will have one value. Here it would be naturall place 1094 // to 1095 // remove them all. But we can not do this because we are risking to remove 1096 // one of the values stored in liveset of another statepoint. We will do it 1097 // later after placing all safepoints. 1098 1099 return ret; 1100 } 1101 1102 static void 1103 VerifySafepointBounds(const std::pair<Instruction *, Instruction *> &bounds) { 1104 assert(bounds.first->getParent() && bounds.second->getParent() && 1105 "both must belong to basic blocks"); 1106 if (bounds.first->getParent() == bounds.second->getParent()) { 1107 // This is a call safepoint 1108 // TODO: scan the range to find the statepoint 1109 // TODO: check that the following instruction is not a gc_relocate or 1110 // gc_result 1111 } else { 1112 // This is an invoke safepoint 1113 InvokeInst *invoke = dyn_cast<InvokeInst>(bounds.first); 1114 (void)invoke; 1115 assert(invoke && "only continues over invokes!"); 1116 assert(invoke->getNormalDest() == bounds.second->getParent() && 1117 "safepoint should continue into normal exit block"); 1118 } 1119 } 1120 1121 static int find_index(const SmallVectorImpl<Value *> &livevec, Value *val) { 1122 auto itr = std::find(livevec.begin(), livevec.end(), val); 1123 assert(livevec.end() != itr); 1124 size_t index = std::distance(livevec.begin(), itr); 1125 assert(index < livevec.size()); 1126 return index; 1127 } 1128 1129 // Create new attribute set containing only attributes which can be transfered 1130 // from original call to the safepoint. 1131 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1132 AttributeSet ret; 1133 1134 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1135 unsigned index = AS.getSlotIndex(Slot); 1136 1137 if (index == AttributeSet::ReturnIndex || 1138 index == AttributeSet::FunctionIndex) { 1139 1140 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1141 ++it) { 1142 Attribute attr = *it; 1143 1144 // Do not allow certain attributes - just skip them 1145 // Safepoint can not be read only or read none. 1146 if (attr.hasAttribute(Attribute::ReadNone) || 1147 attr.hasAttribute(Attribute::ReadOnly)) 1148 continue; 1149 1150 ret = ret.addAttributes( 1151 AS.getContext(), index, 1152 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1153 } 1154 } 1155 1156 // Just skip parameter attributes for now 1157 } 1158 1159 return ret; 1160 } 1161 1162 /// Helper function to place all gc relocates necessary for the given 1163 /// statepoint. 1164 /// Inputs: 1165 /// liveVariables - list of variables to be relocated. 1166 /// liveStart - index of the first live variable. 1167 /// basePtrs - base pointers. 1168 /// statepointToken - statepoint instruction to which relocates should be 1169 /// bound. 1170 /// Builder - Llvm IR builder to be used to construct new calls. 1171 /// Returns array with newly created relocates. 1172 static std::vector<llvm::Instruction *> 1173 CreateGCRelocates(const SmallVectorImpl<llvm::Value *> &liveVariables, 1174 const int liveStart, 1175 const SmallVectorImpl<llvm::Value *> &basePtrs, 1176 Instruction *statepointToken, IRBuilder<> Builder) { 1177 1178 std::vector<llvm::Instruction *> newDefs; 1179 1180 Module *M = statepointToken->getParent()->getParent()->getParent(); 1181 1182 for (unsigned i = 0; i < liveVariables.size(); i++) { 1183 // We generate a (potentially) unique declaration for every pointer type 1184 // combination. This results is some blow up the function declarations in 1185 // the IR, but removes the need for argument bitcasts which shrinks the IR 1186 // greatly and makes it much more readable. 1187 std::vector<Type *> types; // one per 'any' type 1188 types.push_back(liveVariables[i]->getType()); // result type 1189 Value *gc_relocate_decl = Intrinsic::getDeclaration( 1190 M, Intrinsic::experimental_gc_relocate, types); 1191 1192 // Generate the gc.relocate call and save the result 1193 Value *baseIdx = 1194 ConstantInt::get(Type::getInt32Ty(M->getContext()), 1195 liveStart + find_index(liveVariables, basePtrs[i])); 1196 Value *liveIdx = ConstantInt::get( 1197 Type::getInt32Ty(M->getContext()), 1198 liveStart + find_index(liveVariables, liveVariables[i])); 1199 1200 // only specify a debug name if we can give a useful one 1201 Value *reloc = Builder.CreateCall3( 1202 gc_relocate_decl, statepointToken, baseIdx, liveIdx, 1203 liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" 1204 : ""); 1205 // Trick CodeGen into thinking there are lots of free registers at this 1206 // fake call. 1207 cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold); 1208 1209 newDefs.push_back(cast<Instruction>(reloc)); 1210 } 1211 assert(newDefs.size() == liveVariables.size() && 1212 "missing or extra redefinition at safepoint"); 1213 1214 return newDefs; 1215 } 1216 1217 static void 1218 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1219 const SmallVectorImpl<llvm::Value *> &basePtrs, 1220 const SmallVectorImpl<llvm::Value *> &liveVariables, 1221 Pass *P, 1222 PartiallyConstructedSafepointRecord &result) { 1223 assert(basePtrs.size() == liveVariables.size()); 1224 assert(isStatepoint(CS) && 1225 "This method expects to be rewriting a statepoint"); 1226 1227 BasicBlock *BB = CS.getInstruction()->getParent(); 1228 assert(BB); 1229 Function *F = BB->getParent(); 1230 assert(F && "must be set"); 1231 Module *M = F->getParent(); 1232 (void)M; 1233 assert(M && "must be set"); 1234 1235 // We're not changing the function signature of the statepoint since the gc 1236 // arguments go into the var args section. 1237 Function *gc_statepoint_decl = CS.getCalledFunction(); 1238 1239 // Then go ahead and use the builder do actually do the inserts. We insert 1240 // immediately before the previous instruction under the assumption that all 1241 // arguments will be available here. We can't insert afterwards since we may 1242 // be replacing a terminator. 1243 Instruction *insertBefore = CS.getInstruction(); 1244 IRBuilder<> Builder(insertBefore); 1245 // Copy all of the arguments from the original statepoint - this includes the 1246 // target, call args, and deopt args 1247 std::vector<llvm::Value *> args; 1248 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1249 // TODO: Clear the 'needs rewrite' flag 1250 1251 // add all the pointers to be relocated (gc arguments) 1252 // Capture the start of the live variable list for use in the gc_relocates 1253 const int live_start = args.size(); 1254 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1255 1256 // Create the statepoint given all the arguments 1257 Instruction *token = nullptr; 1258 AttributeSet return_attributes; 1259 if (CS.isCall()) { 1260 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1261 CallInst *call = 1262 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1263 call->setTailCall(toReplace->isTailCall()); 1264 call->setCallingConv(toReplace->getCallingConv()); 1265 1266 // Currently we will fail on parameter attributes and on certain 1267 // function attributes. 1268 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1269 // In case if we can handle this set of sttributes - set up function attrs 1270 // directly on statepoint and return attrs later for gc_result intrinsic. 1271 call->setAttributes(new_attrs.getFnAttributes()); 1272 return_attributes = new_attrs.getRetAttributes(); 1273 1274 token = call; 1275 1276 // Put the following gc_result and gc_relocate calls immediately after the 1277 // the old call (which we're about to delete) 1278 BasicBlock::iterator next(toReplace); 1279 assert(BB->end() != next && "not a terminator, must have next"); 1280 next++; 1281 Instruction *IP = &*(next); 1282 Builder.SetInsertPoint(IP); 1283 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1284 1285 } else if (CS.isInvoke()) { 1286 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1287 1288 // Insert the new invoke into the old block. We'll remove the old one in a 1289 // moment at which point this will become the new terminator for the 1290 // original block. 1291 InvokeInst *invoke = InvokeInst::Create( 1292 gc_statepoint_decl, toReplace->getNormalDest(), 1293 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1294 invoke->setCallingConv(toReplace->getCallingConv()); 1295 1296 // Currently we will fail on parameter attributes and on certain 1297 // function attributes. 1298 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1299 // In case if we can handle this set of sttributes - set up function attrs 1300 // directly on statepoint and return attrs later for gc_result intrinsic. 1301 invoke->setAttributes(new_attrs.getFnAttributes()); 1302 return_attributes = new_attrs.getRetAttributes(); 1303 1304 token = invoke; 1305 1306 // Generate gc relocates in exceptional path 1307 BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint( 1308 toReplace->getUnwindDest(), invoke->getParent(), P); 1309 1310 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1311 Builder.SetInsertPoint(IP); 1312 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1313 1314 // Extract second element from landingpad return value. We will attach 1315 // exceptional gc relocates to it. 1316 const unsigned idx = 1; 1317 Instruction *exceptional_token = 1318 cast<Instruction>(Builder.CreateExtractValue( 1319 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1320 result.exceptional_relocates_token = exceptional_token; 1321 1322 // Just throw away return value. We will use the one we got for normal 1323 // block. 1324 (void)CreateGCRelocates(liveVariables, live_start, basePtrs, 1325 exceptional_token, Builder); 1326 1327 // Generate gc relocates and returns for normal block 1328 BasicBlock *normalDest = normalizeBBForInvokeSafepoint( 1329 toReplace->getNormalDest(), invoke->getParent(), P); 1330 1331 IP = &*(normalDest->getFirstInsertionPt()); 1332 Builder.SetInsertPoint(IP); 1333 1334 // gc relocates will be generated later as if it were regular call 1335 // statepoint 1336 } else { 1337 llvm_unreachable("unexpect type of CallSite"); 1338 } 1339 assert(token); 1340 1341 // Take the name of the original value call if it had one. 1342 token->takeName(CS.getInstruction()); 1343 1344 // The GCResult is already inserted, we just need to find it 1345 Instruction *gc_result = nullptr; 1346 /* scope */ { 1347 Instruction *toReplace = CS.getInstruction(); 1348 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1349 "only valid use before rewrite is gc.result"); 1350 if (toReplace->hasOneUse()) { 1351 Instruction *GCResult = cast<Instruction>(*toReplace->user_begin()); 1352 assert(isGCResult(GCResult)); 1353 gc_result = GCResult; 1354 } 1355 } 1356 1357 // Update the gc.result of the original statepoint (if any) to use the newly 1358 // inserted statepoint. This is safe to do here since the token can't be 1359 // considered a live reference. 1360 CS.getInstruction()->replaceAllUsesWith(token); 1361 1362 // Second, create a gc.relocate for every live variable 1363 std::vector<llvm::Instruction *> newDefs = 1364 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1365 1366 // Need to pass through the last part of the safepoint block so that we 1367 // don't accidentally update uses in a following gc.relocate which is 1368 // still conceptually part of the same safepoint. Gah. 1369 Instruction *last = nullptr; 1370 if (!newDefs.empty()) { 1371 last = newDefs.back(); 1372 } else if (gc_result) { 1373 last = gc_result; 1374 } else { 1375 last = token; 1376 } 1377 assert(last && "can't be null"); 1378 const auto bounds = std::make_pair(token, last); 1379 1380 // Sanity check our results - this is slightly non-trivial due to invokes 1381 VerifySafepointBounds(bounds); 1382 1383 result.safepoint = bounds; 1384 } 1385 1386 namespace { 1387 struct name_ordering { 1388 Value *base; 1389 Value *derived; 1390 bool operator()(name_ordering const &a, name_ordering const &b) { 1391 return -1 == a.derived->getName().compare(b.derived->getName()); 1392 } 1393 }; 1394 } 1395 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1396 SmallVectorImpl<Value *> &livevec) { 1397 assert(basevec.size() == livevec.size()); 1398 1399 std::vector<name_ordering> temp; 1400 for (size_t i = 0; i < basevec.size(); i++) { 1401 name_ordering v; 1402 v.base = basevec[i]; 1403 v.derived = livevec[i]; 1404 temp.push_back(v); 1405 } 1406 std::sort(temp.begin(), temp.end(), name_ordering()); 1407 for (size_t i = 0; i < basevec.size(); i++) { 1408 basevec[i] = temp[i].base; 1409 livevec[i] = temp[i].derived; 1410 } 1411 } 1412 1413 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1414 // which make the relocations happening at this safepoint explicit. 1415 // 1416 // WARNING: Does not do any fixup to adjust users of the original live 1417 // values. That's the callers responsibility. 1418 static void 1419 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1420 PartiallyConstructedSafepointRecord &result) { 1421 std::set<llvm::Value *> liveset = result.liveset; 1422 std::map<llvm::Value *, llvm::Value *> base_pairs = result.base_pairs; 1423 1424 // Convert to vector for efficient cross referencing. 1425 SmallVector<Value *, 64> basevec, livevec; 1426 livevec.reserve(liveset.size()); 1427 basevec.reserve(liveset.size()); 1428 for (Value *L : liveset) { 1429 livevec.push_back(L); 1430 1431 assert(base_pairs.find(L) != base_pairs.end()); 1432 Value *base = base_pairs[L]; 1433 basevec.push_back(base); 1434 } 1435 assert(livevec.size() == basevec.size()); 1436 1437 // To make the output IR slightly more stable (for use in diffs), ensure a 1438 // fixed order of the values in the safepoint (by sorting the value name). 1439 // The order is otherwise meaningless. 1440 stablize_order(basevec, livevec); 1441 1442 // Do the actual rewriting and delete the old statepoint 1443 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1444 CS.getInstruction()->eraseFromParent(); 1445 } 1446 1447 // Helper function for the relocationViaAlloca. 1448 // It receives iterator to the statepoint gc relocates and emits store to the 1449 // assigned 1450 // location (via allocaMap) for the each one of them. 1451 // Add visited values into the visitedLiveValues set we will later use them 1452 // for sanity check. 1453 static void 1454 insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs, 1455 DenseMap<Value *, Value *> &allocaMap, 1456 DenseSet<Value *> &visitedLiveValues) { 1457 1458 for (User *U : gcRelocs) { 1459 if (!isa<IntrinsicInst>(U)) 1460 continue; 1461 1462 IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U); 1463 1464 // We only care about relocates 1465 if (relocatedValue->getIntrinsicID() != 1466 Intrinsic::experimental_gc_relocate) { 1467 continue; 1468 } 1469 1470 GCRelocateOperands relocateOperands(relocatedValue); 1471 Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr()); 1472 assert(allocaMap.count(originalValue)); 1473 Value *alloca = allocaMap[originalValue]; 1474 1475 // Emit store into the related alloca 1476 StoreInst *store = new StoreInst(relocatedValue, alloca); 1477 store->insertAfter(relocatedValue); 1478 1479 #ifndef NDEBUG 1480 visitedLiveValues.insert(originalValue); 1481 #endif 1482 } 1483 } 1484 1485 /// do all the relocation update via allocas and mem2reg 1486 static void relocationViaAlloca( 1487 Function &F, DominatorTree &DT, const std::vector<Value *> &live, 1488 const std::vector<struct PartiallyConstructedSafepointRecord> &records) { 1489 #ifndef NDEBUG 1490 int initialAllocaNum = 0; 1491 1492 // record initial number of allocas 1493 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1494 itr++) { 1495 if (isa<AllocaInst>(*itr)) 1496 initialAllocaNum++; 1497 } 1498 #endif 1499 1500 // TODO-PERF: change data structures, reserve 1501 DenseMap<Value *, Value *> allocaMap; 1502 SmallVector<AllocaInst *, 200> PromotableAllocas; 1503 PromotableAllocas.reserve(live.size()); 1504 1505 // emit alloca for each live gc pointer 1506 for (unsigned i = 0; i < live.size(); i++) { 1507 Value *liveValue = live[i]; 1508 AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", 1509 F.getEntryBlock().getFirstNonPHI()); 1510 allocaMap[liveValue] = alloca; 1511 PromotableAllocas.push_back(alloca); 1512 } 1513 1514 // The next two loops are part of the same conceptual operation. We need to 1515 // insert a store to the alloca after the original def and at each 1516 // redefinition. We need to insert a load before each use. These are split 1517 // into distinct loops for performance reasons. 1518 1519 // update gc pointer after each statepoint 1520 // either store a relocated value or null (if no relocated value found for 1521 // this gc pointer and it is not a gc_result) 1522 // this must happen before we update the statepoint with load of alloca 1523 // otherwise we lose the link between statepoint and old def 1524 for (size_t i = 0; i < records.size(); i++) { 1525 const struct PartiallyConstructedSafepointRecord &info = records[i]; 1526 Value *statepoint = info.safepoint.first; 1527 1528 // This will be used for consistency check 1529 DenseSet<Value *> visitedLiveValues; 1530 1531 // Insert stores for normal statepoint gc relocates 1532 insertRelocationStores(statepoint->users(), allocaMap, visitedLiveValues); 1533 1534 // In case if it was invoke statepoint 1535 // we will insert stores for exceptional path gc relocates. 1536 if (isa<InvokeInst>(statepoint)) { 1537 insertRelocationStores(info.exceptional_relocates_token->users(), 1538 allocaMap, visitedLiveValues); 1539 } 1540 1541 #ifndef NDEBUG 1542 // For consistency check store null's into allocas for values that are not 1543 // relocated 1544 // by this statepoint. 1545 for (auto Pair : allocaMap) { 1546 Value *def = Pair.first; 1547 Value *alloca = Pair.second; 1548 1549 // This value was relocated 1550 if (visitedLiveValues.count(def)) { 1551 continue; 1552 } 1553 // Result should not be relocated 1554 if (def == info.result) { 1555 continue; 1556 } 1557 1558 Constant *CPN = 1559 ConstantPointerNull::get(cast<PointerType>(def->getType())); 1560 StoreInst *store = new StoreInst(CPN, alloca); 1561 store->insertBefore(info.safepoint.second); 1562 } 1563 #endif 1564 } 1565 // update use with load allocas and add store for gc_relocated 1566 for (auto Pair : allocaMap) { 1567 Value *def = Pair.first; 1568 Value *alloca = Pair.second; 1569 1570 // we pre-record the uses of allocas so that we dont have to worry about 1571 // later update 1572 // that change the user information. 1573 SmallVector<Instruction *, 20> uses; 1574 // PERF: trade a linear scan for repeated reallocation 1575 uses.reserve(std::distance(def->user_begin(), def->user_end())); 1576 for (User *U : def->users()) { 1577 if (!isa<ConstantExpr>(U)) { 1578 // If the def has a ConstantExpr use, then the def is either a 1579 // ConstantExpr use itself or null. In either case 1580 // (recursively in the first, directly in the second), the oop 1581 // it is ultimately dependent on is null and this particular 1582 // use does not need to be fixed up. 1583 uses.push_back(cast<Instruction>(U)); 1584 } 1585 } 1586 1587 std::sort(uses.begin(), uses.end()); 1588 auto last = std::unique(uses.begin(), uses.end()); 1589 uses.erase(last, uses.end()); 1590 1591 for (Instruction *use : uses) { 1592 if (isa<PHINode>(use)) { 1593 PHINode *phi = cast<PHINode>(use); 1594 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 1595 if (def == phi->getIncomingValue(i)) { 1596 LoadInst *load = new LoadInst( 1597 alloca, "", phi->getIncomingBlock(i)->getTerminator()); 1598 phi->setIncomingValue(i, load); 1599 } 1600 } 1601 } else { 1602 LoadInst *load = new LoadInst(alloca, "", use); 1603 use->replaceUsesOfWith(def, load); 1604 } 1605 } 1606 1607 // emit store for the initial gc value 1608 // store must be inserted after load, otherwise store will be in alloca's 1609 // use list and an extra load will be inserted before it 1610 StoreInst *store = new StoreInst(def, alloca); 1611 if (isa<Instruction>(def)) { 1612 store->insertAfter(cast<Instruction>(def)); 1613 } else { 1614 assert((isa<Argument>(def) || isa<GlobalVariable>(def) || 1615 (isa<Constant>(def) && cast<Constant>(def)->isNullValue())) && 1616 "Must be argument or global"); 1617 store->insertAfter(cast<Instruction>(alloca)); 1618 } 1619 } 1620 1621 assert(PromotableAllocas.size() == live.size() && 1622 "we must have the same allocas with lives"); 1623 if (!PromotableAllocas.empty()) { 1624 // apply mem2reg to promote alloca to SSA 1625 PromoteMemToReg(PromotableAllocas, DT); 1626 } 1627 1628 #ifndef NDEBUG 1629 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1630 itr++) { 1631 if (isa<AllocaInst>(*itr)) 1632 initialAllocaNum--; 1633 } 1634 assert(initialAllocaNum == 0 && "We must not introduce any extra allocas"); 1635 #endif 1636 } 1637 1638 /// Implement a unique function which doesn't require we sort the input 1639 /// vector. Doing so has the effect of changing the output of a couple of 1640 /// tests in ways which make them less useful in testing fused safepoints. 1641 template <typename T> static void unique_unsorted(std::vector<T> &vec) { 1642 DenseSet<T> seen; 1643 std::vector<T> tmp; 1644 vec.reserve(vec.size()); 1645 std::swap(tmp, vec); 1646 for (auto V : tmp) { 1647 if (seen.insert(V).second) { 1648 vec.push_back(V); 1649 } 1650 } 1651 } 1652 1653 static Function *getUseHolder(Module &M) { 1654 FunctionType *ftype = 1655 FunctionType::get(Type::getVoidTy(M.getContext()), true); 1656 Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype)); 1657 return Func; 1658 } 1659 1660 /// Insert holders so that each Value is obviously live through the entire 1661 /// liftetime of the call. 1662 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1663 std::vector<CallInst *> &holders) { 1664 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1665 Function *Func = getUseHolder(*M); 1666 if (CS.isCall()) { 1667 // For call safepoints insert dummy calls right after safepoint 1668 BasicBlock::iterator next(CS.getInstruction()); 1669 next++; 1670 CallInst *base_holder = CallInst::Create(Func, Values, "", next); 1671 holders.push_back(base_holder); 1672 } else if (CS.isInvoke()) { 1673 // For invoke safepooints insert dummy calls both in normal and 1674 // exceptional destination blocks 1675 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 1676 CallInst *normal_holder = CallInst::Create( 1677 Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt()); 1678 CallInst *unwind_holder = CallInst::Create( 1679 Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt()); 1680 holders.push_back(normal_holder); 1681 holders.push_back(unwind_holder); 1682 } else { 1683 assert(false && "Unsupported"); 1684 } 1685 } 1686 1687 static void findLiveReferences( 1688 Function &F, DominatorTree &DT, Pass *P, std::vector<CallSite> &toUpdate, 1689 std::vector<struct PartiallyConstructedSafepointRecord> &records) { 1690 for (size_t i = 0; i < records.size(); i++) { 1691 struct PartiallyConstructedSafepointRecord &info = records[i]; 1692 CallSite &CS = toUpdate[i]; 1693 analyzeParsePointLiveness(DT, CS, info); 1694 } 1695 } 1696 1697 static void addBasesAsLiveValues(std::set<Value *> &liveset, 1698 std::map<Value *, Value *> &base_pairs) { 1699 // Identify any base pointers which are used in this safepoint, but not 1700 // themselves relocated. We need to relocate them so that later inserted 1701 // safepoints can get the properly relocated base register. 1702 DenseSet<Value *> missing; 1703 for (Value *L : liveset) { 1704 assert(base_pairs.find(L) != base_pairs.end()); 1705 Value *base = base_pairs[L]; 1706 assert(base); 1707 if (liveset.find(base) == liveset.end()) { 1708 assert(base_pairs.find(base) == base_pairs.end()); 1709 // uniqued by set insert 1710 missing.insert(base); 1711 } 1712 } 1713 1714 // Note that we want these at the end of the list, otherwise 1715 // register placement gets screwed up once we lower to STATEPOINT 1716 // instructions. This is an utter hack, but there doesn't seem to be a 1717 // better one. 1718 for (Value *base : missing) { 1719 assert(base); 1720 liveset.insert(base); 1721 base_pairs[base] = base; 1722 } 1723 assert(liveset.size() == base_pairs.size()); 1724 } 1725 1726 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 1727 std::vector<CallSite> &toUpdate) { 1728 #ifndef NDEBUG 1729 // sanity check the input 1730 std::set<CallSite> uniqued; 1731 uniqued.insert(toUpdate.begin(), toUpdate.end()); 1732 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 1733 1734 for (size_t i = 0; i < toUpdate.size(); i++) { 1735 CallSite &CS = toUpdate[i]; 1736 assert(CS.getInstruction()->getParent()->getParent() == &F); 1737 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 1738 } 1739 #endif 1740 1741 // A list of dummy calls added to the IR to keep various values obviously 1742 // live in the IR. We'll remove all of these when done. 1743 std::vector<CallInst *> holders; 1744 1745 // Insert a dummy call with all of the arguments to the vm_state we'll need 1746 // for the actual safepoint insertion. This ensures reference arguments in 1747 // the deopt argument list are considered live through the safepoint (and 1748 // thus makes sure they get relocated.) 1749 for (size_t i = 0; i < toUpdate.size(); i++) { 1750 CallSite &CS = toUpdate[i]; 1751 Statepoint StatepointCS(CS); 1752 1753 SmallVector<Value *, 64> DeoptValues; 1754 for (Use &U : StatepointCS.vm_state_args()) { 1755 Value *Arg = cast<Value>(&U); 1756 if (isGCPointerType(Arg->getType())) 1757 DeoptValues.push_back(Arg); 1758 } 1759 insertUseHolderAfter(CS, DeoptValues, holders); 1760 } 1761 1762 std::vector<struct PartiallyConstructedSafepointRecord> records; 1763 records.reserve(toUpdate.size()); 1764 for (size_t i = 0; i < toUpdate.size(); i++) { 1765 struct PartiallyConstructedSafepointRecord info; 1766 records.push_back(info); 1767 } 1768 assert(records.size() == toUpdate.size()); 1769 1770 // A) Identify all gc pointers which are staticly live at the given call 1771 // site. 1772 findLiveReferences(F, DT, P, toUpdate, records); 1773 1774 // B) Find the base pointers for each live pointer 1775 /* scope for caching */ { 1776 // Cache the 'defining value' relation used in the computation and 1777 // insertion of base phis and selects. This ensures that we don't insert 1778 // large numbers of duplicate base_phis. 1779 DefiningValueMapTy DVCache; 1780 1781 for (size_t i = 0; i < records.size(); i++) { 1782 struct PartiallyConstructedSafepointRecord &info = records[i]; 1783 CallSite &CS = toUpdate[i]; 1784 findBasePointers(DT, DVCache, CS, info); 1785 } 1786 } // end of cache scope 1787 1788 // The base phi insertion logic (for any safepoint) may have inserted new 1789 // instructions which are now live at some safepoint. The simplest such 1790 // example is: 1791 // loop: 1792 // phi a <-- will be a new base_phi here 1793 // safepoint 1 <-- that needs to be live here 1794 // gep a + 1 1795 // safepoint 2 1796 // br loop 1797 std::set<llvm::Value *> allInsertedDefs; 1798 for (size_t i = 0; i < records.size(); i++) { 1799 struct PartiallyConstructedSafepointRecord &info = records[i]; 1800 allInsertedDefs.insert(info.newInsertedDefs.begin(), 1801 info.newInsertedDefs.end()); 1802 } 1803 1804 // We insert some dummy calls after each safepoint to definitely hold live 1805 // the base pointers which were identified for that safepoint. We'll then 1806 // ask liveness for _every_ base inserted to see what is now live. Then we 1807 // remove the dummy calls. 1808 holders.reserve(holders.size() + records.size()); 1809 for (size_t i = 0; i < records.size(); i++) { 1810 struct PartiallyConstructedSafepointRecord &info = records[i]; 1811 CallSite &CS = toUpdate[i]; 1812 1813 SmallVector<Value *, 128> Bases; 1814 for (auto Pair : info.base_pairs) { 1815 Bases.push_back(Pair.second); 1816 } 1817 insertUseHolderAfter(CS, Bases, holders); 1818 } 1819 1820 // Add the bases explicitly to the live vector set. This may result in a few 1821 // extra relocations, but the base has to be available whenever a pointer 1822 // derived from it is used. Thus, we need it to be part of the statepoint's 1823 // gc arguments list. TODO: Introduce an explicit notion (in the following 1824 // code) of the GC argument list as seperate from the live Values at a 1825 // given statepoint. 1826 for (size_t i = 0; i < records.size(); i++) { 1827 struct PartiallyConstructedSafepointRecord &info = records[i]; 1828 addBasesAsLiveValues(info.liveset, info.base_pairs); 1829 } 1830 1831 // If we inserted any new values, we need to adjust our notion of what is 1832 // live at a particular safepoint. 1833 if (!allInsertedDefs.empty()) { 1834 fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records); 1835 } 1836 if (PrintBasePointers) { 1837 for (size_t i = 0; i < records.size(); i++) { 1838 struct PartiallyConstructedSafepointRecord &info = records[i]; 1839 errs() << "Base Pairs: (w/Relocation)\n"; 1840 for (auto Pair : info.base_pairs) { 1841 errs() << " derived %" << Pair.first->getName() << " base %" 1842 << Pair.second->getName() << "\n"; 1843 } 1844 } 1845 } 1846 for (size_t i = 0; i < holders.size(); i++) { 1847 holders[i]->eraseFromParent(); 1848 holders[i] = nullptr; 1849 } 1850 holders.clear(); 1851 1852 // Now run through and replace the existing statepoints with new ones with 1853 // the live variables listed. We do not yet update uses of the values being 1854 // relocated. We have references to live variables that need to 1855 // survive to the last iteration of this loop. (By construction, the 1856 // previous statepoint can not be a live variable, thus we can and remove 1857 // the old statepoint calls as we go.) 1858 for (size_t i = 0; i < records.size(); i++) { 1859 struct PartiallyConstructedSafepointRecord &info = records[i]; 1860 CallSite &CS = toUpdate[i]; 1861 makeStatepointExplicit(DT, CS, P, info); 1862 } 1863 toUpdate.clear(); // prevent accident use of invalid CallSites 1864 1865 // In case if we inserted relocates in a different basic block than the 1866 // original safepoint (this can happen for invokes). We need to be sure that 1867 // original values were not used in any of the phi nodes at the 1868 // beginning of basic block containing them. Because we know that all such 1869 // blocks will have single predecessor we can safely assume that all phi 1870 // nodes have single entry (because of normalizeBBForInvokeSafepoint). 1871 // Just remove them all here. 1872 for (size_t i = 0; i < records.size(); i++) { 1873 Instruction *I = records[i].safepoint.first; 1874 1875 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 1876 FoldSingleEntryPHINodes(invoke->getNormalDest()); 1877 assert(!isa<PHINode>(invoke->getNormalDest()->begin())); 1878 1879 FoldSingleEntryPHINodes(invoke->getUnwindDest()); 1880 assert(!isa<PHINode>(invoke->getUnwindDest()->begin())); 1881 } 1882 } 1883 1884 // Do all the fixups of the original live variables to their relocated selves 1885 std::vector<Value *> live; 1886 for (size_t i = 0; i < records.size(); i++) { 1887 struct PartiallyConstructedSafepointRecord &info = records[i]; 1888 // We can't simply save the live set from the original insertion. One of 1889 // the live values might be the result of a call which needs a safepoint. 1890 // That Value* no longer exists and we need to use the new gc_result. 1891 // Thankfully, the liveset is embedded in the statepoint (and updated), so 1892 // we just grab that. 1893 Statepoint statepoint(info.safepoint.first); 1894 live.insert(live.end(), statepoint.gc_args_begin(), 1895 statepoint.gc_args_end()); 1896 } 1897 unique_unsorted(live); 1898 1899 #ifndef NDEBUG 1900 // sanity check 1901 for (auto ptr : live) { 1902 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 1903 } 1904 #endif 1905 1906 relocationViaAlloca(F, DT, live, records); 1907 return !records.empty(); 1908 } 1909 1910 /// Returns true if this function should be rewritten by this pass. The main 1911 /// point of this function is as an extension point for custom logic. 1912 static bool shouldRewriteStatepointsIn(Function &F) { 1913 // TODO: This should check the GCStrategy 1914 if (F.hasGC()) { 1915 const std::string StatepointExampleName("statepoint-example"); 1916 return StatepointExampleName == F.getGC(); 1917 } else 1918 return false; 1919 } 1920 1921 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 1922 // Nothing to do for declarations. 1923 if (F.isDeclaration() || F.empty()) 1924 return false; 1925 1926 // Policy choice says not to rewrite - the most common reason is that we're 1927 // compiling code without a GCStrategy. 1928 if (!shouldRewriteStatepointsIn(F)) 1929 return false; 1930 1931 // Gather all the statepoints which need rewritten. 1932 std::vector<CallSite> ParsePointNeeded; 1933 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1934 itr++) { 1935 // TODO: only the ones with the flag set! 1936 if (isStatepoint(*itr)) 1937 ParsePointNeeded.push_back(CallSite(&*itr)); 1938 } 1939 1940 // Return early if no work to do. 1941 if (ParsePointNeeded.empty()) 1942 return false; 1943 1944 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1945 return insertParsePoints(F, DT, this, ParsePointNeeded); 1946 } 1947