1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite call/invoke instructions so as to make potential relocations 11 // performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/iterator_range.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/Utils/Local.h" 32 #include "llvm/IR/Argument.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/IR/InstIterator.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/Statepoint.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueHandle.h" 59 #include "llvm/Pass.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Compiler.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Transforms/Scalar.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <set> 75 #include <string> 76 #include <utility> 77 #include <vector> 78 79 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 80 81 using namespace llvm; 82 83 // Print the liveset found at the insert location 84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 85 cl::init(false)); 86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 87 cl::init(false)); 88 89 // Print out the base pointers for debugging 90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 91 cl::init(false)); 92 93 // Cost threshold measuring when it is profitable to rematerialize value instead 94 // of relocating it 95 static cl::opt<unsigned> 96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 97 cl::init(6)); 98 99 #ifdef EXPENSIVE_CHECKS 100 static bool ClobberNonLive = true; 101 #else 102 static bool ClobberNonLive = false; 103 #endif 104 105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 106 cl::location(ClobberNonLive), 107 cl::Hidden); 108 109 static cl::opt<bool> 110 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 111 cl::Hidden, cl::init(true)); 112 113 /// The IR fed into RewriteStatepointsForGC may have had attributes and 114 /// metadata implying dereferenceability that are no longer valid/correct after 115 /// RewriteStatepointsForGC has run. This is because semantically, after 116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 117 /// heap. stripNonValidData (conservatively) restores 118 /// correctness by erasing all attributes in the module that externally imply 119 /// dereferenceability. Similar reasoning also applies to the noalias 120 /// attributes and metadata. gc.statepoint can touch the entire heap including 121 /// noalias objects. 122 /// Apart from attributes and metadata, we also remove instructions that imply 123 /// constant physical memory: llvm.invariant.start. 124 static void stripNonValidData(Module &M); 125 126 static bool shouldRewriteStatepointsIn(Function &F); 127 128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 129 ModuleAnalysisManager &AM) { 130 bool Changed = false; 131 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 132 for (Function &F : M) { 133 // Nothing to do for declarations. 134 if (F.isDeclaration() || F.empty()) 135 continue; 136 137 // Policy choice says not to rewrite - the most common reason is that we're 138 // compiling code without a GCStrategy. 139 if (!shouldRewriteStatepointsIn(F)) 140 continue; 141 142 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 143 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 144 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 145 Changed |= runOnFunction(F, DT, TTI, TLI); 146 } 147 if (!Changed) 148 return PreservedAnalyses::all(); 149 150 // stripNonValidData asserts that shouldRewriteStatepointsIn 151 // returns true for at least one function in the module. Since at least 152 // one function changed, we know that the precondition is satisfied. 153 stripNonValidData(M); 154 155 PreservedAnalyses PA; 156 PA.preserve<TargetIRAnalysis>(); 157 PA.preserve<TargetLibraryAnalysis>(); 158 return PA; 159 } 160 161 namespace { 162 163 class RewriteStatepointsForGCLegacyPass : public ModulePass { 164 RewriteStatepointsForGC Impl; 165 166 public: 167 static char ID; // Pass identification, replacement for typeid 168 169 RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() { 170 initializeRewriteStatepointsForGCLegacyPassPass( 171 *PassRegistry::getPassRegistry()); 172 } 173 174 bool runOnModule(Module &M) override { 175 bool Changed = false; 176 const TargetLibraryInfo &TLI = 177 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 178 for (Function &F : M) { 179 // Nothing to do for declarations. 180 if (F.isDeclaration() || F.empty()) 181 continue; 182 183 // Policy choice says not to rewrite - the most common reason is that 184 // we're compiling code without a GCStrategy. 185 if (!shouldRewriteStatepointsIn(F)) 186 continue; 187 188 TargetTransformInfo &TTI = 189 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 190 auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 191 192 Changed |= Impl.runOnFunction(F, DT, TTI, TLI); 193 } 194 195 if (!Changed) 196 return false; 197 198 // stripNonValidData asserts that shouldRewriteStatepointsIn 199 // returns true for at least one function in the module. Since at least 200 // one function changed, we know that the precondition is satisfied. 201 stripNonValidData(M); 202 return true; 203 } 204 205 void getAnalysisUsage(AnalysisUsage &AU) const override { 206 // We add and rewrite a bunch of instructions, but don't really do much 207 // else. We could in theory preserve a lot more analyses here. 208 AU.addRequired<DominatorTreeWrapperPass>(); 209 AU.addRequired<TargetTransformInfoWrapperPass>(); 210 AU.addRequired<TargetLibraryInfoWrapperPass>(); 211 } 212 }; 213 214 } // end anonymous namespace 215 216 char RewriteStatepointsForGCLegacyPass::ID = 0; 217 218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() { 219 return new RewriteStatepointsForGCLegacyPass(); 220 } 221 222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass, 223 "rewrite-statepoints-for-gc", 224 "Make relocations explicit at statepoints", false, false) 225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass, 228 "rewrite-statepoints-for-gc", 229 "Make relocations explicit at statepoints", false, false) 230 231 namespace { 232 233 struct GCPtrLivenessData { 234 /// Values defined in this block. 235 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 236 237 /// Values used in this block (and thus live); does not included values 238 /// killed within this block. 239 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 240 241 /// Values live into this basic block (i.e. used by any 242 /// instruction in this basic block or ones reachable from here) 243 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 244 245 /// Values live out of this basic block (i.e. live into 246 /// any successor block) 247 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 248 }; 249 250 // The type of the internal cache used inside the findBasePointers family 251 // of functions. From the callers perspective, this is an opaque type and 252 // should not be inspected. 253 // 254 // In the actual implementation this caches two relations: 255 // - The base relation itself (i.e. this pointer is based on that one) 256 // - The base defining value relation (i.e. before base_phi insertion) 257 // Generally, after the execution of a full findBasePointer call, only the 258 // base relation will remain. Internally, we add a mixture of the two 259 // types, then update all the second type to the first type 260 using DefiningValueMapTy = MapVector<Value *, Value *>; 261 using StatepointLiveSetTy = SetVector<Value *>; 262 using RematerializedValueMapTy = 263 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 264 265 struct PartiallyConstructedSafepointRecord { 266 /// The set of values known to be live across this safepoint 267 StatepointLiveSetTy LiveSet; 268 269 /// Mapping from live pointers to a base-defining-value 270 MapVector<Value *, Value *> PointerToBase; 271 272 /// The *new* gc.statepoint instruction itself. This produces the token 273 /// that normal path gc.relocates and the gc.result are tied to. 274 Instruction *StatepointToken; 275 276 /// Instruction to which exceptional gc relocates are attached 277 /// Makes it easier to iterate through them during relocationViaAlloca. 278 Instruction *UnwindToken; 279 280 /// Record live values we are rematerialized instead of relocating. 281 /// They are not included into 'LiveSet' field. 282 /// Maps rematerialized copy to it's original value. 283 RematerializedValueMapTy RematerializedValues; 284 }; 285 286 } // end anonymous namespace 287 288 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 289 Optional<OperandBundleUse> DeoptBundle = 290 CS.getOperandBundle(LLVMContext::OB_deopt); 291 292 if (!DeoptBundle.hasValue()) { 293 assert(AllowStatepointWithNoDeoptInfo && 294 "Found non-leaf call without deopt info!"); 295 return None; 296 } 297 298 return DeoptBundle.getValue().Inputs; 299 } 300 301 /// Compute the live-in set for every basic block in the function 302 static void computeLiveInValues(DominatorTree &DT, Function &F, 303 GCPtrLivenessData &Data); 304 305 /// Given results from the dataflow liveness computation, find the set of live 306 /// Values at a particular instruction. 307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 308 StatepointLiveSetTy &out); 309 310 // TODO: Once we can get to the GCStrategy, this becomes 311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 312 313 static bool isGCPointerType(Type *T) { 314 if (auto *PT = dyn_cast<PointerType>(T)) 315 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 316 // GC managed heap. We know that a pointer into this heap needs to be 317 // updated and that no other pointer does. 318 return PT->getAddressSpace() == 1; 319 return false; 320 } 321 322 // Return true if this type is one which a) is a gc pointer or contains a GC 323 // pointer and b) is of a type this code expects to encounter as a live value. 324 // (The insertion code will assert that a type which matches (a) and not (b) 325 // is not encountered.) 326 static bool isHandledGCPointerType(Type *T) { 327 // We fully support gc pointers 328 if (isGCPointerType(T)) 329 return true; 330 // We partially support vectors of gc pointers. The code will assert if it 331 // can't handle something. 332 if (auto VT = dyn_cast<VectorType>(T)) 333 if (isGCPointerType(VT->getElementType())) 334 return true; 335 return false; 336 } 337 338 #ifndef NDEBUG 339 /// Returns true if this type contains a gc pointer whether we know how to 340 /// handle that type or not. 341 static bool containsGCPtrType(Type *Ty) { 342 if (isGCPointerType(Ty)) 343 return true; 344 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 345 return isGCPointerType(VT->getScalarType()); 346 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 347 return containsGCPtrType(AT->getElementType()); 348 if (StructType *ST = dyn_cast<StructType>(Ty)) 349 return llvm::any_of(ST->subtypes(), containsGCPtrType); 350 return false; 351 } 352 353 // Returns true if this is a type which a) is a gc pointer or contains a GC 354 // pointer and b) is of a type which the code doesn't expect (i.e. first class 355 // aggregates). Used to trip assertions. 356 static bool isUnhandledGCPointerType(Type *Ty) { 357 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 358 } 359 #endif 360 361 // Return the name of the value suffixed with the provided value, or if the 362 // value didn't have a name, the default value specified. 363 static std::string suffixed_name_or(Value *V, StringRef Suffix, 364 StringRef DefaultName) { 365 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 366 } 367 368 // Conservatively identifies any definitions which might be live at the 369 // given instruction. The analysis is performed immediately before the 370 // given instruction. Values defined by that instruction are not considered 371 // live. Values used by that instruction are considered live. 372 static void 373 analyzeParsePointLiveness(DominatorTree &DT, 374 GCPtrLivenessData &OriginalLivenessData, CallSite CS, 375 PartiallyConstructedSafepointRecord &Result) { 376 Instruction *Inst = CS.getInstruction(); 377 378 StatepointLiveSetTy LiveSet; 379 findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet); 380 381 if (PrintLiveSet) { 382 dbgs() << "Live Variables:\n"; 383 for (Value *V : LiveSet) 384 dbgs() << " " << V->getName() << " " << *V << "\n"; 385 } 386 if (PrintLiveSetSize) { 387 dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 388 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 389 } 390 Result.LiveSet = LiveSet; 391 } 392 393 static bool isKnownBaseResult(Value *V); 394 395 namespace { 396 397 /// A single base defining value - An immediate base defining value for an 398 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 399 /// For instructions which have multiple pointer [vector] inputs or that 400 /// transition between vector and scalar types, there is no immediate base 401 /// defining value. The 'base defining value' for 'Def' is the transitive 402 /// closure of this relation stopping at the first instruction which has no 403 /// immediate base defining value. The b.d.v. might itself be a base pointer, 404 /// but it can also be an arbitrary derived pointer. 405 struct BaseDefiningValueResult { 406 /// Contains the value which is the base defining value. 407 Value * const BDV; 408 409 /// True if the base defining value is also known to be an actual base 410 /// pointer. 411 const bool IsKnownBase; 412 413 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 414 : BDV(BDV), IsKnownBase(IsKnownBase) { 415 #ifndef NDEBUG 416 // Check consistency between new and old means of checking whether a BDV is 417 // a base. 418 bool MustBeBase = isKnownBaseResult(BDV); 419 assert(!MustBeBase || MustBeBase == IsKnownBase); 420 #endif 421 } 422 }; 423 424 } // end anonymous namespace 425 426 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 427 428 /// Return a base defining value for the 'Index' element of the given vector 429 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 430 /// 'I'. As an optimization, this method will try to determine when the 431 /// element is known to already be a base pointer. If this can be established, 432 /// the second value in the returned pair will be true. Note that either a 433 /// vector or a pointer typed value can be returned. For the former, the 434 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 435 /// If the later, the return pointer is a BDV (or possibly a base) for the 436 /// particular element in 'I'. 437 static BaseDefiningValueResult 438 findBaseDefiningValueOfVector(Value *I) { 439 // Each case parallels findBaseDefiningValue below, see that code for 440 // detailed motivation. 441 442 if (isa<Argument>(I)) 443 // An incoming argument to the function is a base pointer 444 return BaseDefiningValueResult(I, true); 445 446 if (isa<Constant>(I)) 447 // Base of constant vector consists only of constant null pointers. 448 // For reasoning see similar case inside 'findBaseDefiningValue' function. 449 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 450 true); 451 452 if (isa<LoadInst>(I)) 453 return BaseDefiningValueResult(I, true); 454 455 if (isa<InsertElementInst>(I)) 456 // We don't know whether this vector contains entirely base pointers or 457 // not. To be conservatively correct, we treat it as a BDV and will 458 // duplicate code as needed to construct a parallel vector of bases. 459 return BaseDefiningValueResult(I, false); 460 461 if (isa<ShuffleVectorInst>(I)) 462 // We don't know whether this vector contains entirely base pointers or 463 // not. To be conservatively correct, we treat it as a BDV and will 464 // duplicate code as needed to construct a parallel vector of bases. 465 // TODO: There a number of local optimizations which could be applied here 466 // for particular sufflevector patterns. 467 return BaseDefiningValueResult(I, false); 468 469 // The behavior of getelementptr instructions is the same for vector and 470 // non-vector data types. 471 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 472 return findBaseDefiningValue(GEP->getPointerOperand()); 473 474 // If the pointer comes through a bitcast of a vector of pointers to 475 // a vector of another type of pointer, then look through the bitcast 476 if (auto *BC = dyn_cast<BitCastInst>(I)) 477 return findBaseDefiningValue(BC->getOperand(0)); 478 479 // We assume that functions in the source language only return base 480 // pointers. This should probably be generalized via attributes to support 481 // both source language and internal functions. 482 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 483 return BaseDefiningValueResult(I, true); 484 485 // A PHI or Select is a base defining value. The outer findBasePointer 486 // algorithm is responsible for constructing a base value for this BDV. 487 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 488 "unknown vector instruction - no base found for vector element"); 489 return BaseDefiningValueResult(I, false); 490 } 491 492 /// Helper function for findBasePointer - Will return a value which either a) 493 /// defines the base pointer for the input, b) blocks the simple search 494 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 495 /// from pointer to vector type or back. 496 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 497 assert(I->getType()->isPtrOrPtrVectorTy() && 498 "Illegal to ask for the base pointer of a non-pointer type"); 499 500 if (I->getType()->isVectorTy()) 501 return findBaseDefiningValueOfVector(I); 502 503 if (isa<Argument>(I)) 504 // An incoming argument to the function is a base pointer 505 // We should have never reached here if this argument isn't an gc value 506 return BaseDefiningValueResult(I, true); 507 508 if (isa<Constant>(I)) { 509 // We assume that objects with a constant base (e.g. a global) can't move 510 // and don't need to be reported to the collector because they are always 511 // live. Besides global references, all kinds of constants (e.g. undef, 512 // constant expressions, null pointers) can be introduced by the inliner or 513 // the optimizer, especially on dynamically dead paths. 514 // Here we treat all of them as having single null base. By doing this we 515 // trying to avoid problems reporting various conflicts in a form of 516 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 517 // See constant.ll file for relevant test cases. 518 519 return BaseDefiningValueResult( 520 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 521 } 522 523 if (CastInst *CI = dyn_cast<CastInst>(I)) { 524 Value *Def = CI->stripPointerCasts(); 525 // If stripping pointer casts changes the address space there is an 526 // addrspacecast in between. 527 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 528 cast<PointerType>(CI->getType())->getAddressSpace() && 529 "unsupported addrspacecast"); 530 // If we find a cast instruction here, it means we've found a cast which is 531 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 532 // handle int->ptr conversion. 533 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 534 return findBaseDefiningValue(Def); 535 } 536 537 if (isa<LoadInst>(I)) 538 // The value loaded is an gc base itself 539 return BaseDefiningValueResult(I, true); 540 541 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 542 // The base of this GEP is the base 543 return findBaseDefiningValue(GEP->getPointerOperand()); 544 545 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 546 switch (II->getIntrinsicID()) { 547 default: 548 // fall through to general call handling 549 break; 550 case Intrinsic::experimental_gc_statepoint: 551 llvm_unreachable("statepoints don't produce pointers"); 552 case Intrinsic::experimental_gc_relocate: 553 // Rerunning safepoint insertion after safepoints are already 554 // inserted is not supported. It could probably be made to work, 555 // but why are you doing this? There's no good reason. 556 llvm_unreachable("repeat safepoint insertion is not supported"); 557 case Intrinsic::gcroot: 558 // Currently, this mechanism hasn't been extended to work with gcroot. 559 // There's no reason it couldn't be, but I haven't thought about the 560 // implications much. 561 llvm_unreachable( 562 "interaction with the gcroot mechanism is not supported"); 563 } 564 } 565 // We assume that functions in the source language only return base 566 // pointers. This should probably be generalized via attributes to support 567 // both source language and internal functions. 568 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 569 return BaseDefiningValueResult(I, true); 570 571 // TODO: I have absolutely no idea how to implement this part yet. It's not 572 // necessarily hard, I just haven't really looked at it yet. 573 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 574 575 if (isa<AtomicCmpXchgInst>(I)) 576 // A CAS is effectively a atomic store and load combined under a 577 // predicate. From the perspective of base pointers, we just treat it 578 // like a load. 579 return BaseDefiningValueResult(I, true); 580 581 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 582 "binary ops which don't apply to pointers"); 583 584 // The aggregate ops. Aggregates can either be in the heap or on the 585 // stack, but in either case, this is simply a field load. As a result, 586 // this is a defining definition of the base just like a load is. 587 if (isa<ExtractValueInst>(I)) 588 return BaseDefiningValueResult(I, true); 589 590 // We should never see an insert vector since that would require we be 591 // tracing back a struct value not a pointer value. 592 assert(!isa<InsertValueInst>(I) && 593 "Base pointer for a struct is meaningless"); 594 595 // An extractelement produces a base result exactly when it's input does. 596 // We may need to insert a parallel instruction to extract the appropriate 597 // element out of the base vector corresponding to the input. Given this, 598 // it's analogous to the phi and select case even though it's not a merge. 599 if (isa<ExtractElementInst>(I)) 600 // Note: There a lot of obvious peephole cases here. This are deliberately 601 // handled after the main base pointer inference algorithm to make writing 602 // test cases to exercise that code easier. 603 return BaseDefiningValueResult(I, false); 604 605 // The last two cases here don't return a base pointer. Instead, they 606 // return a value which dynamically selects from among several base 607 // derived pointers (each with it's own base potentially). It's the job of 608 // the caller to resolve these. 609 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 610 "missing instruction case in findBaseDefiningValing"); 611 return BaseDefiningValueResult(I, false); 612 } 613 614 /// Returns the base defining value for this value. 615 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 616 Value *&Cached = Cache[I]; 617 if (!Cached) { 618 Cached = findBaseDefiningValue(I).BDV; 619 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 620 << Cached->getName() << "\n"); 621 } 622 assert(Cache[I] != nullptr); 623 return Cached; 624 } 625 626 /// Return a base pointer for this value if known. Otherwise, return it's 627 /// base defining value. 628 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 629 Value *Def = findBaseDefiningValueCached(I, Cache); 630 auto Found = Cache.find(Def); 631 if (Found != Cache.end()) { 632 // Either a base-of relation, or a self reference. Caller must check. 633 return Found->second; 634 } 635 // Only a BDV available 636 return Def; 637 } 638 639 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 640 /// is it known to be a base pointer? Or do we need to continue searching. 641 static bool isKnownBaseResult(Value *V) { 642 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 643 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 644 !isa<ShuffleVectorInst>(V)) { 645 // no recursion possible 646 return true; 647 } 648 if (isa<Instruction>(V) && 649 cast<Instruction>(V)->getMetadata("is_base_value")) { 650 // This is a previously inserted base phi or select. We know 651 // that this is a base value. 652 return true; 653 } 654 655 // We need to keep searching 656 return false; 657 } 658 659 namespace { 660 661 /// Models the state of a single base defining value in the findBasePointer 662 /// algorithm for determining where a new instruction is needed to propagate 663 /// the base of this BDV. 664 class BDVState { 665 public: 666 enum Status { Unknown, Base, Conflict }; 667 668 BDVState() : BaseValue(nullptr) {} 669 670 explicit BDVState(Status Status, Value *BaseValue = nullptr) 671 : Status(Status), BaseValue(BaseValue) { 672 assert(Status != Base || BaseValue); 673 } 674 675 explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {} 676 677 Status getStatus() const { return Status; } 678 Value *getBaseValue() const { return BaseValue; } 679 680 bool isBase() const { return getStatus() == Base; } 681 bool isUnknown() const { return getStatus() == Unknown; } 682 bool isConflict() const { return getStatus() == Conflict; } 683 684 bool operator==(const BDVState &Other) const { 685 return BaseValue == Other.BaseValue && Status == Other.Status; 686 } 687 688 bool operator!=(const BDVState &other) const { return !(*this == other); } 689 690 LLVM_DUMP_METHOD 691 void dump() const { 692 print(dbgs()); 693 dbgs() << '\n'; 694 } 695 696 void print(raw_ostream &OS) const { 697 switch (getStatus()) { 698 case Unknown: 699 OS << "U"; 700 break; 701 case Base: 702 OS << "B"; 703 break; 704 case Conflict: 705 OS << "C"; 706 break; 707 } 708 OS << " (" << getBaseValue() << " - " 709 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): "; 710 } 711 712 private: 713 Status Status = Unknown; 714 AssertingVH<Value> BaseValue; // Non-null only if Status == Base. 715 }; 716 717 } // end anonymous namespace 718 719 #ifndef NDEBUG 720 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 721 State.print(OS); 722 return OS; 723 } 724 #endif 725 726 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) { 727 switch (LHS.getStatus()) { 728 case BDVState::Unknown: 729 return RHS; 730 731 case BDVState::Base: 732 assert(LHS.getBaseValue() && "can't be null"); 733 if (RHS.isUnknown()) 734 return LHS; 735 736 if (RHS.isBase()) { 737 if (LHS.getBaseValue() == RHS.getBaseValue()) { 738 assert(LHS == RHS && "equality broken!"); 739 return LHS; 740 } 741 return BDVState(BDVState::Conflict); 742 } 743 assert(RHS.isConflict() && "only three states!"); 744 return BDVState(BDVState::Conflict); 745 746 case BDVState::Conflict: 747 return LHS; 748 } 749 llvm_unreachable("only three states!"); 750 } 751 752 // Values of type BDVState form a lattice, and this function implements the meet 753 // operation. 754 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) { 755 BDVState Result = meetBDVStateImpl(LHS, RHS); 756 assert(Result == meetBDVStateImpl(RHS, LHS) && 757 "Math is wrong: meet does not commute!"); 758 return Result; 759 } 760 761 /// For a given value or instruction, figure out what base ptr its derived from. 762 /// For gc objects, this is simply itself. On success, returns a value which is 763 /// the base pointer. (This is reliable and can be used for relocation.) On 764 /// failure, returns nullptr. 765 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 766 Value *Def = findBaseOrBDV(I, Cache); 767 768 if (isKnownBaseResult(Def)) 769 return Def; 770 771 // Here's the rough algorithm: 772 // - For every SSA value, construct a mapping to either an actual base 773 // pointer or a PHI which obscures the base pointer. 774 // - Construct a mapping from PHI to unknown TOP state. Use an 775 // optimistic algorithm to propagate base pointer information. Lattice 776 // looks like: 777 // UNKNOWN 778 // b1 b2 b3 b4 779 // CONFLICT 780 // When algorithm terminates, all PHIs will either have a single concrete 781 // base or be in a conflict state. 782 // - For every conflict, insert a dummy PHI node without arguments. Add 783 // these to the base[Instruction] = BasePtr mapping. For every 784 // non-conflict, add the actual base. 785 // - For every conflict, add arguments for the base[a] of each input 786 // arguments. 787 // 788 // Note: A simpler form of this would be to add the conflict form of all 789 // PHIs without running the optimistic algorithm. This would be 790 // analogous to pessimistic data flow and would likely lead to an 791 // overall worse solution. 792 793 #ifndef NDEBUG 794 auto isExpectedBDVType = [](Value *BDV) { 795 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 796 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 797 isa<ShuffleVectorInst>(BDV); 798 }; 799 #endif 800 801 // Once populated, will contain a mapping from each potentially non-base BDV 802 // to a lattice value (described above) which corresponds to that BDV. 803 // We use the order of insertion (DFS over the def/use graph) to provide a 804 // stable deterministic ordering for visiting DenseMaps (which are unordered) 805 // below. This is important for deterministic compilation. 806 MapVector<Value *, BDVState> States; 807 808 // Recursively fill in all base defining values reachable from the initial 809 // one for which we don't already know a definite base value for 810 /* scope */ { 811 SmallVector<Value*, 16> Worklist; 812 Worklist.push_back(Def); 813 States.insert({Def, BDVState()}); 814 while (!Worklist.empty()) { 815 Value *Current = Worklist.pop_back_val(); 816 assert(!isKnownBaseResult(Current) && "why did it get added?"); 817 818 auto visitIncomingValue = [&](Value *InVal) { 819 Value *Base = findBaseOrBDV(InVal, Cache); 820 if (isKnownBaseResult(Base)) 821 // Known bases won't need new instructions introduced and can be 822 // ignored safely 823 return; 824 assert(isExpectedBDVType(Base) && "the only non-base values " 825 "we see should be base defining values"); 826 if (States.insert(std::make_pair(Base, BDVState())).second) 827 Worklist.push_back(Base); 828 }; 829 if (PHINode *PN = dyn_cast<PHINode>(Current)) { 830 for (Value *InVal : PN->incoming_values()) 831 visitIncomingValue(InVal); 832 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { 833 visitIncomingValue(SI->getTrueValue()); 834 visitIncomingValue(SI->getFalseValue()); 835 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 836 visitIncomingValue(EE->getVectorOperand()); 837 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 838 visitIncomingValue(IE->getOperand(0)); // vector operand 839 visitIncomingValue(IE->getOperand(1)); // scalar operand 840 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) { 841 visitIncomingValue(SV->getOperand(0)); 842 visitIncomingValue(SV->getOperand(1)); 843 } 844 else { 845 llvm_unreachable("Unimplemented instruction case"); 846 } 847 } 848 } 849 850 #ifndef NDEBUG 851 DEBUG(dbgs() << "States after initialization:\n"); 852 for (auto Pair : States) { 853 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 854 } 855 #endif 856 857 // Return a phi state for a base defining value. We'll generate a new 858 // base state for known bases and expect to find a cached state otherwise. 859 auto getStateForBDV = [&](Value *baseValue) { 860 if (isKnownBaseResult(baseValue)) 861 return BDVState(baseValue); 862 auto I = States.find(baseValue); 863 assert(I != States.end() && "lookup failed!"); 864 return I->second; 865 }; 866 867 bool Progress = true; 868 while (Progress) { 869 #ifndef NDEBUG 870 const size_t OldSize = States.size(); 871 #endif 872 Progress = false; 873 // We're only changing values in this loop, thus safe to keep iterators. 874 // Since this is computing a fixed point, the order of visit does not 875 // effect the result. TODO: We could use a worklist here and make this run 876 // much faster. 877 for (auto Pair : States) { 878 Value *BDV = Pair.first; 879 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 880 881 // Given an input value for the current instruction, return a BDVState 882 // instance which represents the BDV of that value. 883 auto getStateForInput = [&](Value *V) mutable { 884 Value *BDV = findBaseOrBDV(V, Cache); 885 return getStateForBDV(BDV); 886 }; 887 888 BDVState NewState; 889 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 890 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); 891 NewState = 892 meetBDVState(NewState, getStateForInput(SI->getFalseValue())); 893 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 894 for (Value *Val : PN->incoming_values()) 895 NewState = meetBDVState(NewState, getStateForInput(Val)); 896 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 897 // The 'meet' for an extractelement is slightly trivial, but it's still 898 // useful in that it drives us to conflict if our input is. 899 NewState = 900 meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); 901 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){ 902 // Given there's a inherent type mismatch between the operands, will 903 // *always* produce Conflict. 904 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); 905 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); 906 } else { 907 // The only instance this does not return a Conflict is when both the 908 // vector operands are the same vector. 909 auto *SV = cast<ShuffleVectorInst>(BDV); 910 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0))); 911 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1))); 912 } 913 914 BDVState OldState = States[BDV]; 915 if (OldState != NewState) { 916 Progress = true; 917 States[BDV] = NewState; 918 } 919 } 920 921 assert(OldSize == States.size() && 922 "fixed point shouldn't be adding any new nodes to state"); 923 } 924 925 #ifndef NDEBUG 926 DEBUG(dbgs() << "States after meet iteration:\n"); 927 for (auto Pair : States) { 928 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 929 } 930 #endif 931 932 // Insert Phis for all conflicts 933 // TODO: adjust naming patterns to avoid this order of iteration dependency 934 for (auto Pair : States) { 935 Instruction *I = cast<Instruction>(Pair.first); 936 BDVState State = Pair.second; 937 assert(!isKnownBaseResult(I) && "why did it get added?"); 938 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 939 940 // extractelement instructions are a bit special in that we may need to 941 // insert an extract even when we know an exact base for the instruction. 942 // The problem is that we need to convert from a vector base to a scalar 943 // base for the particular indice we're interested in. 944 if (State.isBase() && isa<ExtractElementInst>(I) && 945 isa<VectorType>(State.getBaseValue()->getType())) { 946 auto *EE = cast<ExtractElementInst>(I); 947 // TODO: In many cases, the new instruction is just EE itself. We should 948 // exploit this, but can't do it here since it would break the invariant 949 // about the BDV not being known to be a base. 950 auto *BaseInst = ExtractElementInst::Create( 951 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 952 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 953 States[I] = BDVState(BDVState::Base, BaseInst); 954 } 955 956 // Since we're joining a vector and scalar base, they can never be the 957 // same. As a result, we should always see insert element having reached 958 // the conflict state. 959 assert(!isa<InsertElementInst>(I) || State.isConflict()); 960 961 if (!State.isConflict()) 962 continue; 963 964 /// Create and insert a new instruction which will represent the base of 965 /// the given instruction 'I'. 966 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 967 if (isa<PHINode>(I)) { 968 BasicBlock *BB = I->getParent(); 969 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 970 assert(NumPreds > 0 && "how did we reach here"); 971 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 972 return PHINode::Create(I->getType(), NumPreds, Name, I); 973 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 974 // The undef will be replaced later 975 UndefValue *Undef = UndefValue::get(SI->getType()); 976 std::string Name = suffixed_name_or(I, ".base", "base_select"); 977 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); 978 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 979 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 980 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 981 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 982 EE); 983 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 984 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 985 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 986 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 987 return InsertElementInst::Create(VecUndef, ScalarUndef, 988 IE->getOperand(2), Name, IE); 989 } else { 990 auto *SV = cast<ShuffleVectorInst>(I); 991 UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType()); 992 std::string Name = suffixed_name_or(I, ".base", "base_sv"); 993 return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2), 994 Name, SV); 995 } 996 }; 997 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 998 // Add metadata marking this as a base value 999 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1000 States[I] = BDVState(BDVState::Conflict, BaseInst); 1001 } 1002 1003 // Returns a instruction which produces the base pointer for a given 1004 // instruction. The instruction is assumed to be an input to one of the BDVs 1005 // seen in the inference algorithm above. As such, we must either already 1006 // know it's base defining value is a base, or have inserted a new 1007 // instruction to propagate the base of it's BDV and have entered that newly 1008 // introduced instruction into the state table. In either case, we are 1009 // assured to be able to determine an instruction which produces it's base 1010 // pointer. 1011 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1012 Value *BDV = findBaseOrBDV(Input, Cache); 1013 Value *Base = nullptr; 1014 if (isKnownBaseResult(BDV)) { 1015 Base = BDV; 1016 } else { 1017 // Either conflict or base. 1018 assert(States.count(BDV)); 1019 Base = States[BDV].getBaseValue(); 1020 } 1021 assert(Base && "Can't be null"); 1022 // The cast is needed since base traversal may strip away bitcasts 1023 if (Base->getType() != Input->getType() && InsertPt) 1024 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 1025 return Base; 1026 }; 1027 1028 // Fixup all the inputs of the new PHIs. Visit order needs to be 1029 // deterministic and predictable because we're naming newly created 1030 // instructions. 1031 for (auto Pair : States) { 1032 Instruction *BDV = cast<Instruction>(Pair.first); 1033 BDVState State = Pair.second; 1034 1035 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1036 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1037 if (!State.isConflict()) 1038 continue; 1039 1040 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1041 PHINode *PN = cast<PHINode>(BDV); 1042 unsigned NumPHIValues = PN->getNumIncomingValues(); 1043 for (unsigned i = 0; i < NumPHIValues; i++) { 1044 Value *InVal = PN->getIncomingValue(i); 1045 BasicBlock *InBB = PN->getIncomingBlock(i); 1046 1047 // If we've already seen InBB, add the same incoming value 1048 // we added for it earlier. The IR verifier requires phi 1049 // nodes with multiple entries from the same basic block 1050 // to have the same incoming value for each of those 1051 // entries. If we don't do this check here and basephi 1052 // has a different type than base, we'll end up adding two 1053 // bitcasts (and hence two distinct values) as incoming 1054 // values for the same basic block. 1055 1056 int BlockIndex = BasePHI->getBasicBlockIndex(InBB); 1057 if (BlockIndex != -1) { 1058 Value *OldBase = BasePHI->getIncomingValue(BlockIndex); 1059 BasePHI->addIncoming(OldBase, InBB); 1060 1061 #ifndef NDEBUG 1062 Value *Base = getBaseForInput(InVal, nullptr); 1063 // In essence this assert states: the only way two values 1064 // incoming from the same basic block may be different is by 1065 // being different bitcasts of the same value. A cleanup 1066 // that remains TODO is changing findBaseOrBDV to return an 1067 // llvm::Value of the correct type (and still remain pure). 1068 // This will remove the need to add bitcasts. 1069 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 1070 "Sanity -- findBaseOrBDV should be pure!"); 1071 #endif 1072 continue; 1073 } 1074 1075 // Find the instruction which produces the base for each input. We may 1076 // need to insert a bitcast in the incoming block. 1077 // TODO: Need to split critical edges if insertion is needed 1078 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1079 BasePHI->addIncoming(Base, InBB); 1080 } 1081 assert(BasePHI->getNumIncomingValues() == NumPHIValues); 1082 } else if (SelectInst *BaseSI = 1083 dyn_cast<SelectInst>(State.getBaseValue())) { 1084 SelectInst *SI = cast<SelectInst>(BDV); 1085 1086 // Find the instruction which produces the base for each input. 1087 // We may need to insert a bitcast. 1088 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1089 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1090 } else if (auto *BaseEE = 1091 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1092 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1093 // Find the instruction which produces the base for each input. We may 1094 // need to insert a bitcast. 1095 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1096 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1097 auto *BdvIE = cast<InsertElementInst>(BDV); 1098 auto UpdateOperand = [&](int OperandIdx) { 1099 Value *InVal = BdvIE->getOperand(OperandIdx); 1100 Value *Base = getBaseForInput(InVal, BaseIE); 1101 BaseIE->setOperand(OperandIdx, Base); 1102 }; 1103 UpdateOperand(0); // vector operand 1104 UpdateOperand(1); // scalar operand 1105 } else { 1106 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1107 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1108 auto UpdateOperand = [&](int OperandIdx) { 1109 Value *InVal = BdvSV->getOperand(OperandIdx); 1110 Value *Base = getBaseForInput(InVal, BaseSV); 1111 BaseSV->setOperand(OperandIdx, Base); 1112 }; 1113 UpdateOperand(0); // vector operand 1114 UpdateOperand(1); // vector operand 1115 } 1116 } 1117 1118 // Cache all of our results so we can cheaply reuse them 1119 // NOTE: This is actually two caches: one of the base defining value 1120 // relation and one of the base pointer relation! FIXME 1121 for (auto Pair : States) { 1122 auto *BDV = Pair.first; 1123 Value *Base = Pair.second.getBaseValue(); 1124 assert(BDV && Base); 1125 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1126 1127 DEBUG(dbgs() << "Updating base value cache" 1128 << " for: " << BDV->getName() << " from: " 1129 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1130 << " to: " << Base->getName() << "\n"); 1131 1132 if (Cache.count(BDV)) { 1133 assert(isKnownBaseResult(Base) && 1134 "must be something we 'know' is a base pointer"); 1135 // Once we transition from the BDV relation being store in the Cache to 1136 // the base relation being stored, it must be stable 1137 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && 1138 "base relation should be stable"); 1139 } 1140 Cache[BDV] = Base; 1141 } 1142 assert(Cache.count(Def)); 1143 return Cache[Def]; 1144 } 1145 1146 // For a set of live pointers (base and/or derived), identify the base 1147 // pointer of the object which they are derived from. This routine will 1148 // mutate the IR graph as needed to make the 'base' pointer live at the 1149 // definition site of 'derived'. This ensures that any use of 'derived' can 1150 // also use 'base'. This may involve the insertion of a number of 1151 // additional PHI nodes. 1152 // 1153 // preconditions: live is a set of pointer type Values 1154 // 1155 // side effects: may insert PHI nodes into the existing CFG, will preserve 1156 // CFG, will not remove or mutate any existing nodes 1157 // 1158 // post condition: PointerToBase contains one (derived, base) pair for every 1159 // pointer in live. Note that derived can be equal to base if the original 1160 // pointer was a base pointer. 1161 static void 1162 findBasePointers(const StatepointLiveSetTy &live, 1163 MapVector<Value *, Value *> &PointerToBase, 1164 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1165 for (Value *ptr : live) { 1166 Value *base = findBasePointer(ptr, DVCache); 1167 assert(base && "failed to find base pointer"); 1168 PointerToBase[ptr] = base; 1169 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1170 DT->dominates(cast<Instruction>(base)->getParent(), 1171 cast<Instruction>(ptr)->getParent())) && 1172 "The base we found better dominate the derived pointer"); 1173 } 1174 } 1175 1176 /// Find the required based pointers (and adjust the live set) for the given 1177 /// parse point. 1178 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1179 CallSite CS, 1180 PartiallyConstructedSafepointRecord &result) { 1181 MapVector<Value *, Value *> PointerToBase; 1182 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1183 1184 if (PrintBasePointers) { 1185 errs() << "Base Pairs (w/o Relocation):\n"; 1186 for (auto &Pair : PointerToBase) { 1187 errs() << " derived "; 1188 Pair.first->printAsOperand(errs(), false); 1189 errs() << " base "; 1190 Pair.second->printAsOperand(errs(), false); 1191 errs() << "\n";; 1192 } 1193 } 1194 1195 result.PointerToBase = PointerToBase; 1196 } 1197 1198 /// Given an updated version of the dataflow liveness results, update the 1199 /// liveset and base pointer maps for the call site CS. 1200 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1201 CallSite CS, 1202 PartiallyConstructedSafepointRecord &result); 1203 1204 static void recomputeLiveInValues( 1205 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1206 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1207 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1208 // again. The old values are still live and will help it stabilize quickly. 1209 GCPtrLivenessData RevisedLivenessData; 1210 computeLiveInValues(DT, F, RevisedLivenessData); 1211 for (size_t i = 0; i < records.size(); i++) { 1212 struct PartiallyConstructedSafepointRecord &info = records[i]; 1213 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1214 } 1215 } 1216 1217 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1218 // no uses of the original value / return value between the gc.statepoint and 1219 // the gc.relocate / gc.result call. One case which can arise is a phi node 1220 // starting one of the successor blocks. We also need to be able to insert the 1221 // gc.relocates only on the path which goes through the statepoint. We might 1222 // need to split an edge to make this possible. 1223 static BasicBlock * 1224 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1225 DominatorTree &DT) { 1226 BasicBlock *Ret = BB; 1227 if (!BB->getUniquePredecessor()) 1228 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1229 1230 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1231 // from it 1232 FoldSingleEntryPHINodes(Ret); 1233 assert(!isa<PHINode>(Ret->begin()) && 1234 "All PHI nodes should have been removed!"); 1235 1236 // At this point, we can safely insert a gc.relocate or gc.result as the first 1237 // instruction in Ret if needed. 1238 return Ret; 1239 } 1240 1241 // Create new attribute set containing only attributes which can be transferred 1242 // from original call to the safepoint. 1243 static AttributeList legalizeCallAttributes(AttributeList AL) { 1244 if (AL.isEmpty()) 1245 return AL; 1246 1247 // Remove the readonly, readnone, and statepoint function attributes. 1248 AttrBuilder FnAttrs = AL.getFnAttributes(); 1249 FnAttrs.removeAttribute(Attribute::ReadNone); 1250 FnAttrs.removeAttribute(Attribute::ReadOnly); 1251 for (Attribute A : AL.getFnAttributes()) { 1252 if (isStatepointDirectiveAttr(A)) 1253 FnAttrs.remove(A); 1254 } 1255 1256 // Just skip parameter and return attributes for now 1257 LLVMContext &Ctx = AL.getContext(); 1258 return AttributeList::get(Ctx, AttributeList::FunctionIndex, 1259 AttributeSet::get(Ctx, FnAttrs)); 1260 } 1261 1262 /// Helper function to place all gc relocates necessary for the given 1263 /// statepoint. 1264 /// Inputs: 1265 /// liveVariables - list of variables to be relocated. 1266 /// liveStart - index of the first live variable. 1267 /// basePtrs - base pointers. 1268 /// statepointToken - statepoint instruction to which relocates should be 1269 /// bound. 1270 /// Builder - Llvm IR builder to be used to construct new calls. 1271 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1272 const int LiveStart, 1273 ArrayRef<Value *> BasePtrs, 1274 Instruction *StatepointToken, 1275 IRBuilder<> Builder) { 1276 if (LiveVariables.empty()) 1277 return; 1278 1279 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1280 auto ValIt = llvm::find(LiveVec, Val); 1281 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1282 size_t Index = std::distance(LiveVec.begin(), ValIt); 1283 assert(Index < LiveVec.size() && "Bug in std::find?"); 1284 return Index; 1285 }; 1286 Module *M = StatepointToken->getModule(); 1287 1288 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1289 // element type is i8 addrspace(1)*). We originally generated unique 1290 // declarations for each pointer type, but this proved problematic because 1291 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1292 // towards a single unified pointer type anyways, we can just cast everything 1293 // to an i8* of the right address space. A bitcast is added later to convert 1294 // gc_relocate to the actual value's type. 1295 auto getGCRelocateDecl = [&] (Type *Ty) { 1296 assert(isHandledGCPointerType(Ty)); 1297 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1298 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1299 if (auto *VT = dyn_cast<VectorType>(Ty)) 1300 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1301 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1302 {NewTy}); 1303 }; 1304 1305 // Lazily populated map from input types to the canonicalized form mentioned 1306 // in the comment above. This should probably be cached somewhere more 1307 // broadly. 1308 DenseMap<Type*, Value*> TypeToDeclMap; 1309 1310 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1311 // Generate the gc.relocate call and save the result 1312 Value *BaseIdx = 1313 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1314 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1315 1316 Type *Ty = LiveVariables[i]->getType(); 1317 if (!TypeToDeclMap.count(Ty)) 1318 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1319 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1320 1321 // only specify a debug name if we can give a useful one 1322 CallInst *Reloc = Builder.CreateCall( 1323 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1324 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1325 // Trick CodeGen into thinking there are lots of free registers at this 1326 // fake call. 1327 Reloc->setCallingConv(CallingConv::Cold); 1328 } 1329 } 1330 1331 namespace { 1332 1333 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1334 /// avoids having to worry about keeping around dangling pointers to Values. 1335 class DeferredReplacement { 1336 AssertingVH<Instruction> Old; 1337 AssertingVH<Instruction> New; 1338 bool IsDeoptimize = false; 1339 1340 DeferredReplacement() = default; 1341 1342 public: 1343 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1344 assert(Old != New && Old && New && 1345 "Cannot RAUW equal values or to / from null!"); 1346 1347 DeferredReplacement D; 1348 D.Old = Old; 1349 D.New = New; 1350 return D; 1351 } 1352 1353 static DeferredReplacement createDelete(Instruction *ToErase) { 1354 DeferredReplacement D; 1355 D.Old = ToErase; 1356 return D; 1357 } 1358 1359 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1360 #ifndef NDEBUG 1361 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1362 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1363 "Only way to construct a deoptimize deferred replacement"); 1364 #endif 1365 DeferredReplacement D; 1366 D.Old = Old; 1367 D.IsDeoptimize = true; 1368 return D; 1369 } 1370 1371 /// Does the task represented by this instance. 1372 void doReplacement() { 1373 Instruction *OldI = Old; 1374 Instruction *NewI = New; 1375 1376 assert(OldI != NewI && "Disallowed at construction?!"); 1377 assert((!IsDeoptimize || !New) && 1378 "Deoptimize instrinsics are not replaced!"); 1379 1380 Old = nullptr; 1381 New = nullptr; 1382 1383 if (NewI) 1384 OldI->replaceAllUsesWith(NewI); 1385 1386 if (IsDeoptimize) { 1387 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1388 // not necessarilly be followed by the matching return. 1389 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1390 new UnreachableInst(RI->getContext(), RI); 1391 RI->eraseFromParent(); 1392 } 1393 1394 OldI->eraseFromParent(); 1395 } 1396 }; 1397 1398 } // end anonymous namespace 1399 1400 static StringRef getDeoptLowering(CallSite CS) { 1401 const char *DeoptLowering = "deopt-lowering"; 1402 if (CS.hasFnAttr(DeoptLowering)) { 1403 // FIXME: CallSite has a *really* confusing interface around attributes 1404 // with values. 1405 const AttributeList &CSAS = CS.getAttributes(); 1406 if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering)) 1407 return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering) 1408 .getValueAsString(); 1409 Function *F = CS.getCalledFunction(); 1410 assert(F && F->hasFnAttribute(DeoptLowering)); 1411 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1412 } 1413 return "live-through"; 1414 } 1415 1416 static void 1417 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1418 const SmallVectorImpl<Value *> &BasePtrs, 1419 const SmallVectorImpl<Value *> &LiveVariables, 1420 PartiallyConstructedSafepointRecord &Result, 1421 std::vector<DeferredReplacement> &Replacements) { 1422 assert(BasePtrs.size() == LiveVariables.size()); 1423 1424 // Then go ahead and use the builder do actually do the inserts. We insert 1425 // immediately before the previous instruction under the assumption that all 1426 // arguments will be available here. We can't insert afterwards since we may 1427 // be replacing a terminator. 1428 Instruction *InsertBefore = CS.getInstruction(); 1429 IRBuilder<> Builder(InsertBefore); 1430 1431 ArrayRef<Value *> GCArgs(LiveVariables); 1432 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1433 uint32_t NumPatchBytes = 0; 1434 uint32_t Flags = uint32_t(StatepointFlags::None); 1435 1436 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1437 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1438 ArrayRef<Use> TransitionArgs; 1439 if (auto TransitionBundle = 1440 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1441 Flags |= uint32_t(StatepointFlags::GCTransition); 1442 TransitionArgs = TransitionBundle->Inputs; 1443 } 1444 1445 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1446 // with a return value, we lower then as never returning calls to 1447 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1448 bool IsDeoptimize = false; 1449 1450 StatepointDirectives SD = 1451 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1452 if (SD.NumPatchBytes) 1453 NumPatchBytes = *SD.NumPatchBytes; 1454 if (SD.StatepointID) 1455 StatepointID = *SD.StatepointID; 1456 1457 // Pass through the requested lowering if any. The default is live-through. 1458 StringRef DeoptLowering = getDeoptLowering(CS); 1459 if (DeoptLowering.equals("live-in")) 1460 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1461 else { 1462 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1463 } 1464 1465 Value *CallTarget = CS.getCalledValue(); 1466 if (Function *F = dyn_cast<Function>(CallTarget)) { 1467 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1468 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1469 // __llvm_deoptimize symbol. We want to resolve this now, since the 1470 // verifier does not allow taking the address of an intrinsic function. 1471 1472 SmallVector<Type *, 8> DomainTy; 1473 for (Value *Arg : CallArgs) 1474 DomainTy.push_back(Arg->getType()); 1475 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1476 /* isVarArg = */ false); 1477 1478 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1479 // calls to @llvm.experimental.deoptimize with different argument types in 1480 // the same module. This is fine -- we assume the frontend knew what it 1481 // was doing when generating this kind of IR. 1482 CallTarget = 1483 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1484 1485 IsDeoptimize = true; 1486 } 1487 } 1488 1489 // Create the statepoint given all the arguments 1490 Instruction *Token = nullptr; 1491 if (CS.isCall()) { 1492 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1493 CallInst *Call = Builder.CreateGCStatepointCall( 1494 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1495 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1496 1497 Call->setTailCallKind(ToReplace->getTailCallKind()); 1498 Call->setCallingConv(ToReplace->getCallingConv()); 1499 1500 // Currently we will fail on parameter attributes and on certain 1501 // function attributes. In case if we can handle this set of attributes - 1502 // set up function attrs directly on statepoint and return attrs later for 1503 // gc_result intrinsic. 1504 Call->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1505 1506 Token = Call; 1507 1508 // Put the following gc_result and gc_relocate calls immediately after the 1509 // the old call (which we're about to delete) 1510 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1511 Builder.SetInsertPoint(ToReplace->getNextNode()); 1512 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1513 } else { 1514 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1515 1516 // Insert the new invoke into the old block. We'll remove the old one in a 1517 // moment at which point this will become the new terminator for the 1518 // original block. 1519 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1520 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1521 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1522 GCArgs, "statepoint_token"); 1523 1524 Invoke->setCallingConv(ToReplace->getCallingConv()); 1525 1526 // Currently we will fail on parameter attributes and on certain 1527 // function attributes. In case if we can handle this set of attributes - 1528 // set up function attrs directly on statepoint and return attrs later for 1529 // gc_result intrinsic. 1530 Invoke->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1531 1532 Token = Invoke; 1533 1534 // Generate gc relocates in exceptional path 1535 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1536 assert(!isa<PHINode>(UnwindBlock->begin()) && 1537 UnwindBlock->getUniquePredecessor() && 1538 "can't safely insert in this block!"); 1539 1540 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1541 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1542 1543 // Attach exceptional gc relocates to the landingpad. 1544 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1545 Result.UnwindToken = ExceptionalToken; 1546 1547 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1548 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1549 Builder); 1550 1551 // Generate gc relocates and returns for normal block 1552 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1553 assert(!isa<PHINode>(NormalDest->begin()) && 1554 NormalDest->getUniquePredecessor() && 1555 "can't safely insert in this block!"); 1556 1557 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1558 1559 // gc relocates will be generated later as if it were regular call 1560 // statepoint 1561 } 1562 assert(Token && "Should be set in one of the above branches!"); 1563 1564 if (IsDeoptimize) { 1565 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1566 // transform the tail-call like structure to a call to a void function 1567 // followed by unreachable to get better codegen. 1568 Replacements.push_back( 1569 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1570 } else { 1571 Token->setName("statepoint_token"); 1572 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1573 StringRef Name = 1574 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1575 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1576 GCResult->setAttributes( 1577 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1578 CS.getAttributes().getRetAttributes())); 1579 1580 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1581 // live set of some other safepoint, in which case that safepoint's 1582 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1583 // llvm::Instruction. Instead, we defer the replacement and deletion to 1584 // after the live sets have been made explicit in the IR, and we no longer 1585 // have raw pointers to worry about. 1586 Replacements.emplace_back( 1587 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1588 } else { 1589 Replacements.emplace_back( 1590 DeferredReplacement::createDelete(CS.getInstruction())); 1591 } 1592 } 1593 1594 Result.StatepointToken = Token; 1595 1596 // Second, create a gc.relocate for every live variable 1597 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1598 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1599 } 1600 1601 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1602 // which make the relocations happening at this safepoint explicit. 1603 // 1604 // WARNING: Does not do any fixup to adjust users of the original live 1605 // values. That's the callers responsibility. 1606 static void 1607 makeStatepointExplicit(DominatorTree &DT, CallSite CS, 1608 PartiallyConstructedSafepointRecord &Result, 1609 std::vector<DeferredReplacement> &Replacements) { 1610 const auto &LiveSet = Result.LiveSet; 1611 const auto &PointerToBase = Result.PointerToBase; 1612 1613 // Convert to vector for efficient cross referencing. 1614 SmallVector<Value *, 64> BaseVec, LiveVec; 1615 LiveVec.reserve(LiveSet.size()); 1616 BaseVec.reserve(LiveSet.size()); 1617 for (Value *L : LiveSet) { 1618 LiveVec.push_back(L); 1619 assert(PointerToBase.count(L)); 1620 Value *Base = PointerToBase.find(L)->second; 1621 BaseVec.push_back(Base); 1622 } 1623 assert(LiveVec.size() == BaseVec.size()); 1624 1625 // Do the actual rewriting and delete the old statepoint 1626 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1627 } 1628 1629 // Helper function for the relocationViaAlloca. 1630 // 1631 // It receives iterator to the statepoint gc relocates and emits a store to the 1632 // assigned location (via allocaMap) for the each one of them. It adds the 1633 // visited values into the visitedLiveValues set, which we will later use them 1634 // for sanity checking. 1635 static void 1636 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1637 DenseMap<Value *, Value *> &AllocaMap, 1638 DenseSet<Value *> &VisitedLiveValues) { 1639 for (User *U : GCRelocs) { 1640 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1641 if (!Relocate) 1642 continue; 1643 1644 Value *OriginalValue = Relocate->getDerivedPtr(); 1645 assert(AllocaMap.count(OriginalValue)); 1646 Value *Alloca = AllocaMap[OriginalValue]; 1647 1648 // Emit store into the related alloca 1649 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1650 // the correct type according to alloca. 1651 assert(Relocate->getNextNode() && 1652 "Should always have one since it's not a terminator"); 1653 IRBuilder<> Builder(Relocate->getNextNode()); 1654 Value *CastedRelocatedValue = 1655 Builder.CreateBitCast(Relocate, 1656 cast<AllocaInst>(Alloca)->getAllocatedType(), 1657 suffixed_name_or(Relocate, ".casted", "")); 1658 1659 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1660 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1661 1662 #ifndef NDEBUG 1663 VisitedLiveValues.insert(OriginalValue); 1664 #endif 1665 } 1666 } 1667 1668 // Helper function for the "relocationViaAlloca". Similar to the 1669 // "insertRelocationStores" but works for rematerialized values. 1670 static void insertRematerializationStores( 1671 const RematerializedValueMapTy &RematerializedValues, 1672 DenseMap<Value *, Value *> &AllocaMap, 1673 DenseSet<Value *> &VisitedLiveValues) { 1674 for (auto RematerializedValuePair: RematerializedValues) { 1675 Instruction *RematerializedValue = RematerializedValuePair.first; 1676 Value *OriginalValue = RematerializedValuePair.second; 1677 1678 assert(AllocaMap.count(OriginalValue) && 1679 "Can not find alloca for rematerialized value"); 1680 Value *Alloca = AllocaMap[OriginalValue]; 1681 1682 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1683 Store->insertAfter(RematerializedValue); 1684 1685 #ifndef NDEBUG 1686 VisitedLiveValues.insert(OriginalValue); 1687 #endif 1688 } 1689 } 1690 1691 /// Do all the relocation update via allocas and mem2reg 1692 static void relocationViaAlloca( 1693 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1694 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1695 #ifndef NDEBUG 1696 // record initial number of (static) allocas; we'll check we have the same 1697 // number when we get done. 1698 int InitialAllocaNum = 0; 1699 for (Instruction &I : F.getEntryBlock()) 1700 if (isa<AllocaInst>(I)) 1701 InitialAllocaNum++; 1702 #endif 1703 1704 // TODO-PERF: change data structures, reserve 1705 DenseMap<Value *, Value *> AllocaMap; 1706 SmallVector<AllocaInst *, 200> PromotableAllocas; 1707 // Used later to chack that we have enough allocas to store all values 1708 std::size_t NumRematerializedValues = 0; 1709 PromotableAllocas.reserve(Live.size()); 1710 1711 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1712 // "PromotableAllocas" 1713 const DataLayout &DL = F.getParent()->getDataLayout(); 1714 auto emitAllocaFor = [&](Value *LiveValue) { 1715 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 1716 DL.getAllocaAddrSpace(), "", 1717 F.getEntryBlock().getFirstNonPHI()); 1718 AllocaMap[LiveValue] = Alloca; 1719 PromotableAllocas.push_back(Alloca); 1720 }; 1721 1722 // Emit alloca for each live gc pointer 1723 for (Value *V : Live) 1724 emitAllocaFor(V); 1725 1726 // Emit allocas for rematerialized values 1727 for (const auto &Info : Records) 1728 for (auto RematerializedValuePair : Info.RematerializedValues) { 1729 Value *OriginalValue = RematerializedValuePair.second; 1730 if (AllocaMap.count(OriginalValue) != 0) 1731 continue; 1732 1733 emitAllocaFor(OriginalValue); 1734 ++NumRematerializedValues; 1735 } 1736 1737 // The next two loops are part of the same conceptual operation. We need to 1738 // insert a store to the alloca after the original def and at each 1739 // redefinition. We need to insert a load before each use. These are split 1740 // into distinct loops for performance reasons. 1741 1742 // Update gc pointer after each statepoint: either store a relocated value or 1743 // null (if no relocated value was found for this gc pointer and it is not a 1744 // gc_result). This must happen before we update the statepoint with load of 1745 // alloca otherwise we lose the link between statepoint and old def. 1746 for (const auto &Info : Records) { 1747 Value *Statepoint = Info.StatepointToken; 1748 1749 // This will be used for consistency check 1750 DenseSet<Value *> VisitedLiveValues; 1751 1752 // Insert stores for normal statepoint gc relocates 1753 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1754 1755 // In case if it was invoke statepoint 1756 // we will insert stores for exceptional path gc relocates. 1757 if (isa<InvokeInst>(Statepoint)) { 1758 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1759 VisitedLiveValues); 1760 } 1761 1762 // Do similar thing with rematerialized values 1763 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1764 VisitedLiveValues); 1765 1766 if (ClobberNonLive) { 1767 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1768 // the gc.statepoint. This will turn some subtle GC problems into 1769 // slightly easier to debug SEGVs. Note that on large IR files with 1770 // lots of gc.statepoints this is extremely costly both memory and time 1771 // wise. 1772 SmallVector<AllocaInst *, 64> ToClobber; 1773 for (auto Pair : AllocaMap) { 1774 Value *Def = Pair.first; 1775 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1776 1777 // This value was relocated 1778 if (VisitedLiveValues.count(Def)) { 1779 continue; 1780 } 1781 ToClobber.push_back(Alloca); 1782 } 1783 1784 auto InsertClobbersAt = [&](Instruction *IP) { 1785 for (auto *AI : ToClobber) { 1786 auto PT = cast<PointerType>(AI->getAllocatedType()); 1787 Constant *CPN = ConstantPointerNull::get(PT); 1788 StoreInst *Store = new StoreInst(CPN, AI); 1789 Store->insertBefore(IP); 1790 } 1791 }; 1792 1793 // Insert the clobbering stores. These may get intermixed with the 1794 // gc.results and gc.relocates, but that's fine. 1795 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1796 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1797 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1798 } else { 1799 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1800 } 1801 } 1802 } 1803 1804 // Update use with load allocas and add store for gc_relocated. 1805 for (auto Pair : AllocaMap) { 1806 Value *Def = Pair.first; 1807 Value *Alloca = Pair.second; 1808 1809 // We pre-record the uses of allocas so that we dont have to worry about 1810 // later update that changes the user information.. 1811 1812 SmallVector<Instruction *, 20> Uses; 1813 // PERF: trade a linear scan for repeated reallocation 1814 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1815 for (User *U : Def->users()) { 1816 if (!isa<ConstantExpr>(U)) { 1817 // If the def has a ConstantExpr use, then the def is either a 1818 // ConstantExpr use itself or null. In either case 1819 // (recursively in the first, directly in the second), the oop 1820 // it is ultimately dependent on is null and this particular 1821 // use does not need to be fixed up. 1822 Uses.push_back(cast<Instruction>(U)); 1823 } 1824 } 1825 1826 std::sort(Uses.begin(), Uses.end()); 1827 auto Last = std::unique(Uses.begin(), Uses.end()); 1828 Uses.erase(Last, Uses.end()); 1829 1830 for (Instruction *Use : Uses) { 1831 if (isa<PHINode>(Use)) { 1832 PHINode *Phi = cast<PHINode>(Use); 1833 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1834 if (Def == Phi->getIncomingValue(i)) { 1835 LoadInst *Load = new LoadInst( 1836 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1837 Phi->setIncomingValue(i, Load); 1838 } 1839 } 1840 } else { 1841 LoadInst *Load = new LoadInst(Alloca, "", Use); 1842 Use->replaceUsesOfWith(Def, Load); 1843 } 1844 } 1845 1846 // Emit store for the initial gc value. Store must be inserted after load, 1847 // otherwise store will be in alloca's use list and an extra load will be 1848 // inserted before it. 1849 StoreInst *Store = new StoreInst(Def, Alloca); 1850 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1851 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1852 // InvokeInst is a TerminatorInst so the store need to be inserted 1853 // into its normal destination block. 1854 BasicBlock *NormalDest = Invoke->getNormalDest(); 1855 Store->insertBefore(NormalDest->getFirstNonPHI()); 1856 } else { 1857 assert(!Inst->isTerminator() && 1858 "The only TerminatorInst that can produce a value is " 1859 "InvokeInst which is handled above."); 1860 Store->insertAfter(Inst); 1861 } 1862 } else { 1863 assert(isa<Argument>(Def)); 1864 Store->insertAfter(cast<Instruction>(Alloca)); 1865 } 1866 } 1867 1868 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1869 "we must have the same allocas with lives"); 1870 if (!PromotableAllocas.empty()) { 1871 // Apply mem2reg to promote alloca to SSA 1872 PromoteMemToReg(PromotableAllocas, DT); 1873 } 1874 1875 #ifndef NDEBUG 1876 for (auto &I : F.getEntryBlock()) 1877 if (isa<AllocaInst>(I)) 1878 InitialAllocaNum--; 1879 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1880 #endif 1881 } 1882 1883 /// Implement a unique function which doesn't require we sort the input 1884 /// vector. Doing so has the effect of changing the output of a couple of 1885 /// tests in ways which make them less useful in testing fused safepoints. 1886 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1887 SmallSet<T, 8> Seen; 1888 Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }), 1889 Vec.end()); 1890 } 1891 1892 /// Insert holders so that each Value is obviously live through the entire 1893 /// lifetime of the call. 1894 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1895 SmallVectorImpl<CallInst *> &Holders) { 1896 if (Values.empty()) 1897 // No values to hold live, might as well not insert the empty holder 1898 return; 1899 1900 Module *M = CS.getInstruction()->getModule(); 1901 // Use a dummy vararg function to actually hold the values live 1902 Function *Func = cast<Function>(M->getOrInsertFunction( 1903 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1904 if (CS.isCall()) { 1905 // For call safepoints insert dummy calls right after safepoint 1906 Holders.push_back(CallInst::Create(Func, Values, "", 1907 &*++CS.getInstruction()->getIterator())); 1908 return; 1909 } 1910 // For invoke safepooints insert dummy calls both in normal and 1911 // exceptional destination blocks 1912 auto *II = cast<InvokeInst>(CS.getInstruction()); 1913 Holders.push_back(CallInst::Create( 1914 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1915 Holders.push_back(CallInst::Create( 1916 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1917 } 1918 1919 static void findLiveReferences( 1920 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1921 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1922 GCPtrLivenessData OriginalLivenessData; 1923 computeLiveInValues(DT, F, OriginalLivenessData); 1924 for (size_t i = 0; i < records.size(); i++) { 1925 struct PartiallyConstructedSafepointRecord &info = records[i]; 1926 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1927 } 1928 } 1929 1930 // Helper function for the "rematerializeLiveValues". It walks use chain 1931 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 1932 // the base or a value it cannot process. Only "simple" values are processed 1933 // (currently it is GEP's and casts). The returned root is examined by the 1934 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 1935 // with all visited values. 1936 static Value* findRematerializableChainToBasePointer( 1937 SmallVectorImpl<Instruction*> &ChainToBase, 1938 Value *CurrentValue) { 1939 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1940 ChainToBase.push_back(GEP); 1941 return findRematerializableChainToBasePointer(ChainToBase, 1942 GEP->getPointerOperand()); 1943 } 1944 1945 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1946 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1947 return CI; 1948 1949 ChainToBase.push_back(CI); 1950 return findRematerializableChainToBasePointer(ChainToBase, 1951 CI->getOperand(0)); 1952 } 1953 1954 // We have reached the root of the chain, which is either equal to the base or 1955 // is the first unsupported value along the use chain. 1956 return CurrentValue; 1957 } 1958 1959 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1960 // chain we are going to rematerialize. 1961 static unsigned 1962 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1963 TargetTransformInfo &TTI) { 1964 unsigned Cost = 0; 1965 1966 for (Instruction *Instr : Chain) { 1967 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1968 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1969 "non noop cast is found during rematerialization"); 1970 1971 Type *SrcTy = CI->getOperand(0)->getType(); 1972 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI); 1973 1974 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1975 // Cost of the address calculation 1976 Type *ValTy = GEP->getSourceElementType(); 1977 Cost += TTI.getAddressComputationCost(ValTy); 1978 1979 // And cost of the GEP itself 1980 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1981 // allowed for the external usage) 1982 if (!GEP->hasAllConstantIndices()) 1983 Cost += 2; 1984 1985 } else { 1986 llvm_unreachable("unsupported instruciton type during rematerialization"); 1987 } 1988 } 1989 1990 return Cost; 1991 } 1992 1993 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 1994 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 1995 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 1996 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 1997 return false; 1998 // Map of incoming values and their corresponding basic blocks of 1999 // OrigRootPhi. 2000 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 2001 for (unsigned i = 0; i < PhiNum; i++) 2002 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 2003 OrigRootPhi.getIncomingBlock(i); 2004 2005 // Both current and base PHIs should have same incoming values and 2006 // the same basic blocks corresponding to the incoming values. 2007 for (unsigned i = 0; i < PhiNum; i++) { 2008 auto CIVI = 2009 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2010 if (CIVI == CurrentIncomingValues.end()) 2011 return false; 2012 BasicBlock *CurrentIncomingBB = CIVI->second; 2013 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2014 return false; 2015 } 2016 return true; 2017 } 2018 2019 // From the statepoint live set pick values that are cheaper to recompute then 2020 // to relocate. Remove this values from the live set, rematerialize them after 2021 // statepoint and record them in "Info" structure. Note that similar to 2022 // relocated values we don't do any user adjustments here. 2023 static void rematerializeLiveValues(CallSite CS, 2024 PartiallyConstructedSafepointRecord &Info, 2025 TargetTransformInfo &TTI) { 2026 const unsigned int ChainLengthThreshold = 10; 2027 2028 // Record values we are going to delete from this statepoint live set. 2029 // We can not di this in following loop due to iterator invalidation. 2030 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2031 2032 for (Value *LiveValue: Info.LiveSet) { 2033 // For each live pointer find it's defining chain 2034 SmallVector<Instruction *, 3> ChainToBase; 2035 assert(Info.PointerToBase.count(LiveValue)); 2036 Value *RootOfChain = 2037 findRematerializableChainToBasePointer(ChainToBase, 2038 LiveValue); 2039 2040 // Nothing to do, or chain is too long 2041 if ( ChainToBase.size() == 0 || 2042 ChainToBase.size() > ChainLengthThreshold) 2043 continue; 2044 2045 // Handle the scenario where the RootOfChain is not equal to the 2046 // Base Value, but they are essentially the same phi values. 2047 if (RootOfChain != Info.PointerToBase[LiveValue]) { 2048 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2049 PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]); 2050 if (!OrigRootPhi || !AlternateRootPhi) 2051 continue; 2052 // PHI nodes that have the same incoming values, and belonging to the same 2053 // basic blocks are essentially the same SSA value. When the original phi 2054 // has incoming values with different base pointers, the original phi is 2055 // marked as conflict, and an additional `AlternateRootPhi` with the same 2056 // incoming values get generated by the findBasePointer function. We need 2057 // to identify the newly generated AlternateRootPhi (.base version of phi) 2058 // and RootOfChain (the original phi node itself) are the same, so that we 2059 // can rematerialize the gep and casts. This is a workaround for the 2060 // deficiency in the findBasePointer algorithm. 2061 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2062 continue; 2063 // Now that the phi nodes are proved to be the same, assert that 2064 // findBasePointer's newly generated AlternateRootPhi is present in the 2065 // liveset of the call. 2066 assert(Info.LiveSet.count(AlternateRootPhi)); 2067 } 2068 // Compute cost of this chain 2069 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2070 // TODO: We can also account for cases when we will be able to remove some 2071 // of the rematerialized values by later optimization passes. I.e if 2072 // we rematerialized several intersecting chains. Or if original values 2073 // don't have any uses besides this statepoint. 2074 2075 // For invokes we need to rematerialize each chain twice - for normal and 2076 // for unwind basic blocks. Model this by multiplying cost by two. 2077 if (CS.isInvoke()) { 2078 Cost *= 2; 2079 } 2080 // If it's too expensive - skip it 2081 if (Cost >= RematerializationThreshold) 2082 continue; 2083 2084 // Remove value from the live set 2085 LiveValuesToBeDeleted.push_back(LiveValue); 2086 2087 // Clone instructions and record them inside "Info" structure 2088 2089 // Walk backwards to visit top-most instructions first 2090 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2091 2092 // Utility function which clones all instructions from "ChainToBase" 2093 // and inserts them before "InsertBefore". Returns rematerialized value 2094 // which should be used after statepoint. 2095 auto rematerializeChain = [&ChainToBase]( 2096 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 2097 Instruction *LastClonedValue = nullptr; 2098 Instruction *LastValue = nullptr; 2099 for (Instruction *Instr: ChainToBase) { 2100 // Only GEP's and casts are supported as we need to be careful to not 2101 // introduce any new uses of pointers not in the liveset. 2102 // Note that it's fine to introduce new uses of pointers which were 2103 // otherwise not used after this statepoint. 2104 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2105 2106 Instruction *ClonedValue = Instr->clone(); 2107 ClonedValue->insertBefore(InsertBefore); 2108 ClonedValue->setName(Instr->getName() + ".remat"); 2109 2110 // If it is not first instruction in the chain then it uses previously 2111 // cloned value. We should update it to use cloned value. 2112 if (LastClonedValue) { 2113 assert(LastValue); 2114 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2115 #ifndef NDEBUG 2116 for (auto OpValue : ClonedValue->operand_values()) { 2117 // Assert that cloned instruction does not use any instructions from 2118 // this chain other than LastClonedValue 2119 assert(!is_contained(ChainToBase, OpValue) && 2120 "incorrect use in rematerialization chain"); 2121 // Assert that the cloned instruction does not use the RootOfChain 2122 // or the AlternateLiveBase. 2123 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2124 } 2125 #endif 2126 } else { 2127 // For the first instruction, replace the use of unrelocated base i.e. 2128 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2129 // live set. They have been proved to be the same PHI nodes. Note 2130 // that the *only* use of the RootOfChain in the ChainToBase list is 2131 // the first Value in the list. 2132 if (RootOfChain != AlternateLiveBase) 2133 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2134 } 2135 2136 LastClonedValue = ClonedValue; 2137 LastValue = Instr; 2138 } 2139 assert(LastClonedValue); 2140 return LastClonedValue; 2141 }; 2142 2143 // Different cases for calls and invokes. For invokes we need to clone 2144 // instructions both on normal and unwind path. 2145 if (CS.isCall()) { 2146 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2147 assert(InsertBefore); 2148 Instruction *RematerializedValue = rematerializeChain( 2149 InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2150 Info.RematerializedValues[RematerializedValue] = LiveValue; 2151 } else { 2152 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2153 2154 Instruction *NormalInsertBefore = 2155 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2156 Instruction *UnwindInsertBefore = 2157 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2158 2159 Instruction *NormalRematerializedValue = rematerializeChain( 2160 NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2161 Instruction *UnwindRematerializedValue = rematerializeChain( 2162 UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2163 2164 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2165 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2166 } 2167 } 2168 2169 // Remove rematerializaed values from the live set 2170 for (auto LiveValue: LiveValuesToBeDeleted) { 2171 Info.LiveSet.remove(LiveValue); 2172 } 2173 } 2174 2175 static bool insertParsePoints(Function &F, DominatorTree &DT, 2176 TargetTransformInfo &TTI, 2177 SmallVectorImpl<CallSite> &ToUpdate) { 2178 #ifndef NDEBUG 2179 // sanity check the input 2180 std::set<CallSite> Uniqued; 2181 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2182 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2183 2184 for (CallSite CS : ToUpdate) 2185 assert(CS.getInstruction()->getFunction() == &F); 2186 #endif 2187 2188 // When inserting gc.relocates for invokes, we need to be able to insert at 2189 // the top of the successor blocks. See the comment on 2190 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2191 // may restructure the CFG. 2192 for (CallSite CS : ToUpdate) { 2193 if (!CS.isInvoke()) 2194 continue; 2195 auto *II = cast<InvokeInst>(CS.getInstruction()); 2196 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2197 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2198 } 2199 2200 // A list of dummy calls added to the IR to keep various values obviously 2201 // live in the IR. We'll remove all of these when done. 2202 SmallVector<CallInst *, 64> Holders; 2203 2204 // Insert a dummy call with all of the deopt operands we'll need for the 2205 // actual safepoint insertion as arguments. This ensures reference operands 2206 // in the deopt argument list are considered live through the safepoint (and 2207 // thus makes sure they get relocated.) 2208 for (CallSite CS : ToUpdate) { 2209 SmallVector<Value *, 64> DeoptValues; 2210 2211 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2212 assert(!isUnhandledGCPointerType(Arg->getType()) && 2213 "support for FCA unimplemented"); 2214 if (isHandledGCPointerType(Arg->getType())) 2215 DeoptValues.push_back(Arg); 2216 } 2217 2218 insertUseHolderAfter(CS, DeoptValues, Holders); 2219 } 2220 2221 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2222 2223 // A) Identify all gc pointers which are statically live at the given call 2224 // site. 2225 findLiveReferences(F, DT, ToUpdate, Records); 2226 2227 // B) Find the base pointers for each live pointer 2228 /* scope for caching */ { 2229 // Cache the 'defining value' relation used in the computation and 2230 // insertion of base phis and selects. This ensures that we don't insert 2231 // large numbers of duplicate base_phis. 2232 DefiningValueMapTy DVCache; 2233 2234 for (size_t i = 0; i < Records.size(); i++) { 2235 PartiallyConstructedSafepointRecord &info = Records[i]; 2236 findBasePointers(DT, DVCache, ToUpdate[i], info); 2237 } 2238 } // end of cache scope 2239 2240 // The base phi insertion logic (for any safepoint) may have inserted new 2241 // instructions which are now live at some safepoint. The simplest such 2242 // example is: 2243 // loop: 2244 // phi a <-- will be a new base_phi here 2245 // safepoint 1 <-- that needs to be live here 2246 // gep a + 1 2247 // safepoint 2 2248 // br loop 2249 // We insert some dummy calls after each safepoint to definitely hold live 2250 // the base pointers which were identified for that safepoint. We'll then 2251 // ask liveness for _every_ base inserted to see what is now live. Then we 2252 // remove the dummy calls. 2253 Holders.reserve(Holders.size() + Records.size()); 2254 for (size_t i = 0; i < Records.size(); i++) { 2255 PartiallyConstructedSafepointRecord &Info = Records[i]; 2256 2257 SmallVector<Value *, 128> Bases; 2258 for (auto Pair : Info.PointerToBase) 2259 Bases.push_back(Pair.second); 2260 2261 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2262 } 2263 2264 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2265 // need to rerun liveness. We may *also* have inserted new defs, but that's 2266 // not the key issue. 2267 recomputeLiveInValues(F, DT, ToUpdate, Records); 2268 2269 if (PrintBasePointers) { 2270 for (auto &Info : Records) { 2271 errs() << "Base Pairs: (w/Relocation)\n"; 2272 for (auto Pair : Info.PointerToBase) { 2273 errs() << " derived "; 2274 Pair.first->printAsOperand(errs(), false); 2275 errs() << " base "; 2276 Pair.second->printAsOperand(errs(), false); 2277 errs() << "\n"; 2278 } 2279 } 2280 } 2281 2282 // It is possible that non-constant live variables have a constant base. For 2283 // example, a GEP with a variable offset from a global. In this case we can 2284 // remove it from the liveset. We already don't add constants to the liveset 2285 // because we assume they won't move at runtime and the GC doesn't need to be 2286 // informed about them. The same reasoning applies if the base is constant. 2287 // Note that the relocation placement code relies on this filtering for 2288 // correctness as it expects the base to be in the liveset, which isn't true 2289 // if the base is constant. 2290 for (auto &Info : Records) 2291 for (auto &BasePair : Info.PointerToBase) 2292 if (isa<Constant>(BasePair.second)) 2293 Info.LiveSet.remove(BasePair.first); 2294 2295 for (CallInst *CI : Holders) 2296 CI->eraseFromParent(); 2297 2298 Holders.clear(); 2299 2300 // In order to reduce live set of statepoint we might choose to rematerialize 2301 // some values instead of relocating them. This is purely an optimization and 2302 // does not influence correctness. 2303 for (size_t i = 0; i < Records.size(); i++) 2304 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2305 2306 // We need this to safely RAUW and delete call or invoke return values that 2307 // may themselves be live over a statepoint. For details, please see usage in 2308 // makeStatepointExplicitImpl. 2309 std::vector<DeferredReplacement> Replacements; 2310 2311 // Now run through and replace the existing statepoints with new ones with 2312 // the live variables listed. We do not yet update uses of the values being 2313 // relocated. We have references to live variables that need to 2314 // survive to the last iteration of this loop. (By construction, the 2315 // previous statepoint can not be a live variable, thus we can and remove 2316 // the old statepoint calls as we go.) 2317 for (size_t i = 0; i < Records.size(); i++) 2318 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2319 2320 ToUpdate.clear(); // prevent accident use of invalid CallSites 2321 2322 for (auto &PR : Replacements) 2323 PR.doReplacement(); 2324 2325 Replacements.clear(); 2326 2327 for (auto &Info : Records) { 2328 // These live sets may contain state Value pointers, since we replaced calls 2329 // with operand bundles with calls wrapped in gc.statepoint, and some of 2330 // those calls may have been def'ing live gc pointers. Clear these out to 2331 // avoid accidentally using them. 2332 // 2333 // TODO: We should create a separate data structure that does not contain 2334 // these live sets, and migrate to using that data structure from this point 2335 // onward. 2336 Info.LiveSet.clear(); 2337 Info.PointerToBase.clear(); 2338 } 2339 2340 // Do all the fixups of the original live variables to their relocated selves 2341 SmallVector<Value *, 128> Live; 2342 for (size_t i = 0; i < Records.size(); i++) { 2343 PartiallyConstructedSafepointRecord &Info = Records[i]; 2344 2345 // We can't simply save the live set from the original insertion. One of 2346 // the live values might be the result of a call which needs a safepoint. 2347 // That Value* no longer exists and we need to use the new gc_result. 2348 // Thankfully, the live set is embedded in the statepoint (and updated), so 2349 // we just grab that. 2350 Statepoint Statepoint(Info.StatepointToken); 2351 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2352 Statepoint.gc_args_end()); 2353 #ifndef NDEBUG 2354 // Do some basic sanity checks on our liveness results before performing 2355 // relocation. Relocation can and will turn mistakes in liveness results 2356 // into non-sensical code which is must harder to debug. 2357 // TODO: It would be nice to test consistency as well 2358 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2359 "statepoint must be reachable or liveness is meaningless"); 2360 for (Value *V : Statepoint.gc_args()) { 2361 if (!isa<Instruction>(V)) 2362 // Non-instruction values trivial dominate all possible uses 2363 continue; 2364 auto *LiveInst = cast<Instruction>(V); 2365 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2366 "unreachable values should never be live"); 2367 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2368 "basic SSA liveness expectation violated by liveness analysis"); 2369 } 2370 #endif 2371 } 2372 unique_unsorted(Live); 2373 2374 #ifndef NDEBUG 2375 // sanity check 2376 for (auto *Ptr : Live) 2377 assert(isHandledGCPointerType(Ptr->getType()) && 2378 "must be a gc pointer type"); 2379 #endif 2380 2381 relocationViaAlloca(F, DT, Live, Records); 2382 return !Records.empty(); 2383 } 2384 2385 // Handles both return values and arguments for Functions and CallSites. 2386 template <typename AttrHolder> 2387 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2388 unsigned Index) { 2389 AttrBuilder R; 2390 if (AH.getDereferenceableBytes(Index)) 2391 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2392 AH.getDereferenceableBytes(Index))); 2393 if (AH.getDereferenceableOrNullBytes(Index)) 2394 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2395 AH.getDereferenceableOrNullBytes(Index))); 2396 if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias)) 2397 R.addAttribute(Attribute::NoAlias); 2398 2399 if (!R.empty()) 2400 AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R)); 2401 } 2402 2403 static void stripNonValidAttributesFromPrototype(Function &F) { 2404 LLVMContext &Ctx = F.getContext(); 2405 2406 for (Argument &A : F.args()) 2407 if (isa<PointerType>(A.getType())) 2408 RemoveNonValidAttrAtIndex(Ctx, F, 2409 A.getArgNo() + AttributeList::FirstArgIndex); 2410 2411 if (isa<PointerType>(F.getReturnType())) 2412 RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex); 2413 } 2414 2415 /// Certain metadata on instructions are invalid after running RS4GC. 2416 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2417 /// optimize functions. We drop such metadata on the instruction. 2418 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2419 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2420 return; 2421 // These are the attributes that are still valid on loads and stores after 2422 // RS4GC. 2423 // The metadata implying dereferenceability and noalias are (conservatively) 2424 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2425 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2426 // touch the entire heap including noalias objects. Note: The reasoning is 2427 // same as stripping the dereferenceability and noalias attributes that are 2428 // analogous to the metadata counterparts. 2429 // We also drop the invariant.load metadata on the load because that metadata 2430 // implies the address operand to the load points to memory that is never 2431 // changed once it became dereferenceable. This is no longer true after RS4GC. 2432 // Similar reasoning applies to invariant.group metadata, which applies to 2433 // loads within a group. 2434 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2435 LLVMContext::MD_range, 2436 LLVMContext::MD_alias_scope, 2437 LLVMContext::MD_nontemporal, 2438 LLVMContext::MD_nonnull, 2439 LLVMContext::MD_align, 2440 LLVMContext::MD_type}; 2441 2442 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2443 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2444 } 2445 2446 static void stripNonValidDataFromBody(Function &F) { 2447 if (F.empty()) 2448 return; 2449 2450 LLVMContext &Ctx = F.getContext(); 2451 MDBuilder Builder(Ctx); 2452 2453 // Set of invariantstart instructions that we need to remove. 2454 // Use this to avoid invalidating the instruction iterator. 2455 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2456 2457 for (Instruction &I : instructions(F)) { 2458 // invariant.start on memory location implies that the referenced memory 2459 // location is constant and unchanging. This is no longer true after 2460 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2461 // which frees the entire heap and the presence of invariant.start allows 2462 // the optimizer to sink the load of a memory location past a statepoint, 2463 // which is incorrect. 2464 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2465 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2466 InvariantStartInstructions.push_back(II); 2467 continue; 2468 } 2469 2470 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2471 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2472 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2473 } 2474 2475 stripInvalidMetadataFromInstruction(I); 2476 2477 if (CallSite CS = CallSite(&I)) { 2478 for (int i = 0, e = CS.arg_size(); i != e; i++) 2479 if (isa<PointerType>(CS.getArgument(i)->getType())) 2480 RemoveNonValidAttrAtIndex(Ctx, CS, i + AttributeList::FirstArgIndex); 2481 if (isa<PointerType>(CS.getType())) 2482 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeList::ReturnIndex); 2483 } 2484 } 2485 2486 // Delete the invariant.start instructions and RAUW undef. 2487 for (auto *II : InvariantStartInstructions) { 2488 II->replaceAllUsesWith(UndefValue::get(II->getType())); 2489 II->eraseFromParent(); 2490 } 2491 } 2492 2493 /// Returns true if this function should be rewritten by this pass. The main 2494 /// point of this function is as an extension point for custom logic. 2495 static bool shouldRewriteStatepointsIn(Function &F) { 2496 // TODO: This should check the GCStrategy 2497 if (F.hasGC()) { 2498 const auto &FunctionGCName = F.getGC(); 2499 const StringRef StatepointExampleName("statepoint-example"); 2500 const StringRef CoreCLRName("coreclr"); 2501 return (StatepointExampleName == FunctionGCName) || 2502 (CoreCLRName == FunctionGCName); 2503 } else 2504 return false; 2505 } 2506 2507 static void stripNonValidData(Module &M) { 2508 #ifndef NDEBUG 2509 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2510 #endif 2511 2512 for (Function &F : M) 2513 stripNonValidAttributesFromPrototype(F); 2514 2515 for (Function &F : M) 2516 stripNonValidDataFromBody(F); 2517 } 2518 2519 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 2520 TargetTransformInfo &TTI, 2521 const TargetLibraryInfo &TLI) { 2522 assert(!F.isDeclaration() && !F.empty() && 2523 "need function body to rewrite statepoints in"); 2524 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 2525 2526 auto NeedsRewrite = [&TLI](Instruction &I) { 2527 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2528 return !callsGCLeafFunction(CS, TLI) && !isStatepoint(CS); 2529 return false; 2530 }; 2531 2532 2533 // Delete any unreachable statepoints so that we don't have unrewritten 2534 // statepoints surviving this pass. This makes testing easier and the 2535 // resulting IR less confusing to human readers. 2536 DeferredDominance DD(DT); 2537 bool MadeChange = removeUnreachableBlocks(F, nullptr, &DD); 2538 DD.flush(); 2539 2540 // Gather all the statepoints which need rewritten. Be careful to only 2541 // consider those in reachable code since we need to ask dominance queries 2542 // when rewriting. We'll delete the unreachable ones in a moment. 2543 SmallVector<CallSite, 64> ParsePointNeeded; 2544 for (Instruction &I : instructions(F)) { 2545 // TODO: only the ones with the flag set! 2546 if (NeedsRewrite(I)) { 2547 // NOTE removeUnreachableBlocks() is stronger than 2548 // DominatorTree::isReachableFromEntry(). In other words 2549 // removeUnreachableBlocks can remove some blocks for which 2550 // isReachableFromEntry() returns true. 2551 assert(DT.isReachableFromEntry(I.getParent()) && 2552 "no unreachable blocks expected"); 2553 ParsePointNeeded.push_back(CallSite(&I)); 2554 } 2555 } 2556 2557 // Return early if no work to do. 2558 if (ParsePointNeeded.empty()) 2559 return MadeChange; 2560 2561 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2562 // These are created by LCSSA. They have the effect of increasing the size 2563 // of liveness sets for no good reason. It may be harder to do this post 2564 // insertion since relocations and base phis can confuse things. 2565 for (BasicBlock &BB : F) 2566 if (BB.getUniquePredecessor()) { 2567 MadeChange = true; 2568 FoldSingleEntryPHINodes(&BB); 2569 } 2570 2571 // Before we start introducing relocations, we want to tweak the IR a bit to 2572 // avoid unfortunate code generation effects. The main example is that we 2573 // want to try to make sure the comparison feeding a branch is after any 2574 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2575 // values feeding a branch after relocation. This is semantically correct, 2576 // but results in extra register pressure since both the pre-relocation and 2577 // post-relocation copies must be available in registers. For code without 2578 // relocations this is handled elsewhere, but teaching the scheduler to 2579 // reverse the transform we're about to do would be slightly complex. 2580 // Note: This may extend the live range of the inputs to the icmp and thus 2581 // increase the liveset of any statepoint we move over. This is profitable 2582 // as long as all statepoints are in rare blocks. If we had in-register 2583 // lowering for live values this would be a much safer transform. 2584 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2585 if (auto *BI = dyn_cast<BranchInst>(TI)) 2586 if (BI->isConditional()) 2587 return dyn_cast<Instruction>(BI->getCondition()); 2588 // TODO: Extend this to handle switches 2589 return nullptr; 2590 }; 2591 for (BasicBlock &BB : F) { 2592 TerminatorInst *TI = BB.getTerminator(); 2593 if (auto *Cond = getConditionInst(TI)) 2594 // TODO: Handle more than just ICmps here. We should be able to move 2595 // most instructions without side effects or memory access. 2596 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2597 MadeChange = true; 2598 Cond->moveBefore(TI); 2599 } 2600 } 2601 2602 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2603 return MadeChange; 2604 } 2605 2606 // liveness computation via standard dataflow 2607 // ------------------------------------------------------------------- 2608 2609 // TODO: Consider using bitvectors for liveness, the set of potentially 2610 // interesting values should be small and easy to pre-compute. 2611 2612 /// Compute the live-in set for the location rbegin starting from 2613 /// the live-out set of the basic block 2614 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 2615 BasicBlock::reverse_iterator End, 2616 SetVector<Value *> &LiveTmp) { 2617 for (auto &I : make_range(Begin, End)) { 2618 // KILL/Def - Remove this definition from LiveIn 2619 LiveTmp.remove(&I); 2620 2621 // Don't consider *uses* in PHI nodes, we handle their contribution to 2622 // predecessor blocks when we seed the LiveOut sets 2623 if (isa<PHINode>(I)) 2624 continue; 2625 2626 // USE - Add to the LiveIn set for this instruction 2627 for (Value *V : I.operands()) { 2628 assert(!isUnhandledGCPointerType(V->getType()) && 2629 "support for FCA unimplemented"); 2630 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2631 // The choice to exclude all things constant here is slightly subtle. 2632 // There are two independent reasons: 2633 // - We assume that things which are constant (from LLVM's definition) 2634 // do not move at runtime. For example, the address of a global 2635 // variable is fixed, even though it's contents may not be. 2636 // - Second, we can't disallow arbitrary inttoptr constants even 2637 // if the language frontend does. Optimization passes are free to 2638 // locally exploit facts without respect to global reachability. This 2639 // can create sections of code which are dynamically unreachable and 2640 // contain just about anything. (see constants.ll in tests) 2641 LiveTmp.insert(V); 2642 } 2643 } 2644 } 2645 } 2646 2647 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2648 for (BasicBlock *Succ : successors(BB)) { 2649 for (auto &I : *Succ) { 2650 PHINode *PN = dyn_cast<PHINode>(&I); 2651 if (!PN) 2652 break; 2653 2654 Value *V = PN->getIncomingValueForBlock(BB); 2655 assert(!isUnhandledGCPointerType(V->getType()) && 2656 "support for FCA unimplemented"); 2657 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 2658 LiveTmp.insert(V); 2659 } 2660 } 2661 } 2662 2663 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2664 SetVector<Value *> KillSet; 2665 for (Instruction &I : *BB) 2666 if (isHandledGCPointerType(I.getType())) 2667 KillSet.insert(&I); 2668 return KillSet; 2669 } 2670 2671 #ifndef NDEBUG 2672 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2673 /// sanity check for the liveness computation. 2674 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2675 TerminatorInst *TI, bool TermOkay = false) { 2676 for (Value *V : Live) { 2677 if (auto *I = dyn_cast<Instruction>(V)) { 2678 // The terminator can be a member of the LiveOut set. LLVM's definition 2679 // of instruction dominance states that V does not dominate itself. As 2680 // such, we need to special case this to allow it. 2681 if (TermOkay && TI == I) 2682 continue; 2683 assert(DT.dominates(I, TI) && 2684 "basic SSA liveness expectation violated by liveness analysis"); 2685 } 2686 } 2687 } 2688 2689 /// Check that all the liveness sets used during the computation of liveness 2690 /// obey basic SSA properties. This is useful for finding cases where we miss 2691 /// a def. 2692 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2693 BasicBlock &BB) { 2694 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2695 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2696 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2697 } 2698 #endif 2699 2700 static void computeLiveInValues(DominatorTree &DT, Function &F, 2701 GCPtrLivenessData &Data) { 2702 SmallSetVector<BasicBlock *, 32> Worklist; 2703 2704 // Seed the liveness for each individual block 2705 for (BasicBlock &BB : F) { 2706 Data.KillSet[&BB] = computeKillSet(&BB); 2707 Data.LiveSet[&BB].clear(); 2708 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2709 2710 #ifndef NDEBUG 2711 for (Value *Kill : Data.KillSet[&BB]) 2712 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2713 #endif 2714 2715 Data.LiveOut[&BB] = SetVector<Value *>(); 2716 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2717 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2718 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2719 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2720 if (!Data.LiveIn[&BB].empty()) 2721 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 2722 } 2723 2724 // Propagate that liveness until stable 2725 while (!Worklist.empty()) { 2726 BasicBlock *BB = Worklist.pop_back_val(); 2727 2728 // Compute our new liveout set, then exit early if it hasn't changed despite 2729 // the contribution of our successor. 2730 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2731 const auto OldLiveOutSize = LiveOut.size(); 2732 for (BasicBlock *Succ : successors(BB)) { 2733 assert(Data.LiveIn.count(Succ)); 2734 LiveOut.set_union(Data.LiveIn[Succ]); 2735 } 2736 // assert OutLiveOut is a subset of LiveOut 2737 if (OldLiveOutSize == LiveOut.size()) { 2738 // If the sets are the same size, then we didn't actually add anything 2739 // when unioning our successors LiveIn. Thus, the LiveIn of this block 2740 // hasn't changed. 2741 continue; 2742 } 2743 Data.LiveOut[BB] = LiveOut; 2744 2745 // Apply the effects of this basic block 2746 SetVector<Value *> LiveTmp = LiveOut; 2747 LiveTmp.set_union(Data.LiveSet[BB]); 2748 LiveTmp.set_subtract(Data.KillSet[BB]); 2749 2750 assert(Data.LiveIn.count(BB)); 2751 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2752 // assert: OldLiveIn is a subset of LiveTmp 2753 if (OldLiveIn.size() != LiveTmp.size()) { 2754 Data.LiveIn[BB] = LiveTmp; 2755 Worklist.insert(pred_begin(BB), pred_end(BB)); 2756 } 2757 } // while (!Worklist.empty()) 2758 2759 #ifndef NDEBUG 2760 // Sanity check our output against SSA properties. This helps catch any 2761 // missing kills during the above iteration. 2762 for (BasicBlock &BB : F) 2763 checkBasicSSA(DT, Data, BB); 2764 #endif 2765 } 2766 2767 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2768 StatepointLiveSetTy &Out) { 2769 BasicBlock *BB = Inst->getParent(); 2770 2771 // Note: The copy is intentional and required 2772 assert(Data.LiveOut.count(BB)); 2773 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2774 2775 // We want to handle the statepoint itself oddly. It's 2776 // call result is not live (normal), nor are it's arguments 2777 // (unless they're used again later). This adjustment is 2778 // specifically what we need to relocate 2779 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 2780 LiveOut); 2781 LiveOut.remove(Inst); 2782 Out.insert(LiveOut.begin(), LiveOut.end()); 2783 } 2784 2785 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2786 CallSite CS, 2787 PartiallyConstructedSafepointRecord &Info) { 2788 Instruction *Inst = CS.getInstruction(); 2789 StatepointLiveSetTy Updated; 2790 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2791 2792 // We may have base pointers which are now live that weren't before. We need 2793 // to update the PointerToBase structure to reflect this. 2794 for (auto V : Updated) 2795 if (Info.PointerToBase.insert({V, V}).second) { 2796 assert(isKnownBaseResult(V) && 2797 "Can't find base for unexpected live value!"); 2798 continue; 2799 } 2800 2801 #ifndef NDEBUG 2802 for (auto V : Updated) 2803 assert(Info.PointerToBase.count(V) && 2804 "Must be able to find base for live value!"); 2805 #endif 2806 2807 // Remove any stale base mappings - this can happen since our liveness is 2808 // more precise then the one inherent in the base pointer analysis. 2809 DenseSet<Value *> ToErase; 2810 for (auto KVPair : Info.PointerToBase) 2811 if (!Updated.count(KVPair.first)) 2812 ToErase.insert(KVPair.first); 2813 2814 for (auto *V : ToErase) 2815 Info.PointerToBase.erase(V); 2816 2817 #ifndef NDEBUG 2818 for (auto KVPair : Info.PointerToBase) 2819 assert(Updated.count(KVPair.first) && "record for non-live value"); 2820 #endif 2821 2822 Info.LiveSet = Updated; 2823 } 2824