xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 2be3922807b36b30668206593d4ff7f458f6a939)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Rewrite call/invoke instructions so as to make potential relocations
11 // performed by the garbage collector explicit in the IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/Utils/Local.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InstIterator.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/Statepoint.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueHandle.h"
59 #include "llvm/Pass.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Transforms/Scalar.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <set>
75 #include <string>
76 #include <utility>
77 #include <vector>
78 
79 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
80 
81 using namespace llvm;
82 
83 // Print the liveset found at the insert location
84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
85                                   cl::init(false));
86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
87                                       cl::init(false));
88 
89 // Print out the base pointers for debugging
90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
91                                        cl::init(false));
92 
93 // Cost threshold measuring when it is profitable to rematerialize value instead
94 // of relocating it
95 static cl::opt<unsigned>
96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
97                            cl::init(6));
98 
99 #ifdef EXPENSIVE_CHECKS
100 static bool ClobberNonLive = true;
101 #else
102 static bool ClobberNonLive = false;
103 #endif
104 
105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
106                                                   cl::location(ClobberNonLive),
107                                                   cl::Hidden);
108 
109 static cl::opt<bool>
110     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
111                                    cl::Hidden, cl::init(true));
112 
113 /// The IR fed into RewriteStatepointsForGC may have had attributes and
114 /// metadata implying dereferenceability that are no longer valid/correct after
115 /// RewriteStatepointsForGC has run. This is because semantically, after
116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
117 /// heap. stripNonValidData (conservatively) restores
118 /// correctness by erasing all attributes in the module that externally imply
119 /// dereferenceability. Similar reasoning also applies to the noalias
120 /// attributes and metadata. gc.statepoint can touch the entire heap including
121 /// noalias objects.
122 /// Apart from attributes and metadata, we also remove instructions that imply
123 /// constant physical memory: llvm.invariant.start.
124 static void stripNonValidData(Module &M);
125 
126 static bool shouldRewriteStatepointsIn(Function &F);
127 
128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
129                                                ModuleAnalysisManager &AM) {
130   bool Changed = false;
131   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
132   for (Function &F : M) {
133     // Nothing to do for declarations.
134     if (F.isDeclaration() || F.empty())
135       continue;
136 
137     // Policy choice says not to rewrite - the most common reason is that we're
138     // compiling code without a GCStrategy.
139     if (!shouldRewriteStatepointsIn(F))
140       continue;
141 
142     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
143     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
144     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
145     Changed |= runOnFunction(F, DT, TTI, TLI);
146   }
147   if (!Changed)
148     return PreservedAnalyses::all();
149 
150   // stripNonValidData asserts that shouldRewriteStatepointsIn
151   // returns true for at least one function in the module.  Since at least
152   // one function changed, we know that the precondition is satisfied.
153   stripNonValidData(M);
154 
155   PreservedAnalyses PA;
156   PA.preserve<TargetIRAnalysis>();
157   PA.preserve<TargetLibraryAnalysis>();
158   return PA;
159 }
160 
161 namespace {
162 
163 class RewriteStatepointsForGCLegacyPass : public ModulePass {
164   RewriteStatepointsForGC Impl;
165 
166 public:
167   static char ID; // Pass identification, replacement for typeid
168 
169   RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
170     initializeRewriteStatepointsForGCLegacyPassPass(
171         *PassRegistry::getPassRegistry());
172   }
173 
174   bool runOnModule(Module &M) override {
175     bool Changed = false;
176     const TargetLibraryInfo &TLI =
177         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
178     for (Function &F : M) {
179       // Nothing to do for declarations.
180       if (F.isDeclaration() || F.empty())
181         continue;
182 
183       // Policy choice says not to rewrite - the most common reason is that
184       // we're compiling code without a GCStrategy.
185       if (!shouldRewriteStatepointsIn(F))
186         continue;
187 
188       TargetTransformInfo &TTI =
189           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
190       auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
191 
192       Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
193     }
194 
195     if (!Changed)
196       return false;
197 
198     // stripNonValidData asserts that shouldRewriteStatepointsIn
199     // returns true for at least one function in the module.  Since at least
200     // one function changed, we know that the precondition is satisfied.
201     stripNonValidData(M);
202     return true;
203   }
204 
205   void getAnalysisUsage(AnalysisUsage &AU) const override {
206     // We add and rewrite a bunch of instructions, but don't really do much
207     // else.  We could in theory preserve a lot more analyses here.
208     AU.addRequired<DominatorTreeWrapperPass>();
209     AU.addRequired<TargetTransformInfoWrapperPass>();
210     AU.addRequired<TargetLibraryInfoWrapperPass>();
211   }
212 };
213 
214 } // end anonymous namespace
215 
216 char RewriteStatepointsForGCLegacyPass::ID = 0;
217 
218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
219   return new RewriteStatepointsForGCLegacyPass();
220 }
221 
222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
223                       "rewrite-statepoints-for-gc",
224                       "Make relocations explicit at statepoints", false, false)
225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
228                     "rewrite-statepoints-for-gc",
229                     "Make relocations explicit at statepoints", false, false)
230 
231 namespace {
232 
233 struct GCPtrLivenessData {
234   /// Values defined in this block.
235   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
236 
237   /// Values used in this block (and thus live); does not included values
238   /// killed within this block.
239   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
240 
241   /// Values live into this basic block (i.e. used by any
242   /// instruction in this basic block or ones reachable from here)
243   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
244 
245   /// Values live out of this basic block (i.e. live into
246   /// any successor block)
247   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
248 };
249 
250 // The type of the internal cache used inside the findBasePointers family
251 // of functions.  From the callers perspective, this is an opaque type and
252 // should not be inspected.
253 //
254 // In the actual implementation this caches two relations:
255 // - The base relation itself (i.e. this pointer is based on that one)
256 // - The base defining value relation (i.e. before base_phi insertion)
257 // Generally, after the execution of a full findBasePointer call, only the
258 // base relation will remain.  Internally, we add a mixture of the two
259 // types, then update all the second type to the first type
260 using DefiningValueMapTy = MapVector<Value *, Value *>;
261 using StatepointLiveSetTy = SetVector<Value *>;
262 using RematerializedValueMapTy =
263     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
264 
265 struct PartiallyConstructedSafepointRecord {
266   /// The set of values known to be live across this safepoint
267   StatepointLiveSetTy LiveSet;
268 
269   /// Mapping from live pointers to a base-defining-value
270   MapVector<Value *, Value *> PointerToBase;
271 
272   /// The *new* gc.statepoint instruction itself.  This produces the token
273   /// that normal path gc.relocates and the gc.result are tied to.
274   Instruction *StatepointToken;
275 
276   /// Instruction to which exceptional gc relocates are attached
277   /// Makes it easier to iterate through them during relocationViaAlloca.
278   Instruction *UnwindToken;
279 
280   /// Record live values we are rematerialized instead of relocating.
281   /// They are not included into 'LiveSet' field.
282   /// Maps rematerialized copy to it's original value.
283   RematerializedValueMapTy RematerializedValues;
284 };
285 
286 } // end anonymous namespace
287 
288 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
289   Optional<OperandBundleUse> DeoptBundle =
290       CS.getOperandBundle(LLVMContext::OB_deopt);
291 
292   if (!DeoptBundle.hasValue()) {
293     assert(AllowStatepointWithNoDeoptInfo &&
294            "Found non-leaf call without deopt info!");
295     return None;
296   }
297 
298   return DeoptBundle.getValue().Inputs;
299 }
300 
301 /// Compute the live-in set for every basic block in the function
302 static void computeLiveInValues(DominatorTree &DT, Function &F,
303                                 GCPtrLivenessData &Data);
304 
305 /// Given results from the dataflow liveness computation, find the set of live
306 /// Values at a particular instruction.
307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
308                               StatepointLiveSetTy &out);
309 
310 // TODO: Once we can get to the GCStrategy, this becomes
311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
312 
313 static bool isGCPointerType(Type *T) {
314   if (auto *PT = dyn_cast<PointerType>(T))
315     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
316     // GC managed heap.  We know that a pointer into this heap needs to be
317     // updated and that no other pointer does.
318     return PT->getAddressSpace() == 1;
319   return false;
320 }
321 
322 // Return true if this type is one which a) is a gc pointer or contains a GC
323 // pointer and b) is of a type this code expects to encounter as a live value.
324 // (The insertion code will assert that a type which matches (a) and not (b)
325 // is not encountered.)
326 static bool isHandledGCPointerType(Type *T) {
327   // We fully support gc pointers
328   if (isGCPointerType(T))
329     return true;
330   // We partially support vectors of gc pointers. The code will assert if it
331   // can't handle something.
332   if (auto VT = dyn_cast<VectorType>(T))
333     if (isGCPointerType(VT->getElementType()))
334       return true;
335   return false;
336 }
337 
338 #ifndef NDEBUG
339 /// Returns true if this type contains a gc pointer whether we know how to
340 /// handle that type or not.
341 static bool containsGCPtrType(Type *Ty) {
342   if (isGCPointerType(Ty))
343     return true;
344   if (VectorType *VT = dyn_cast<VectorType>(Ty))
345     return isGCPointerType(VT->getScalarType());
346   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
347     return containsGCPtrType(AT->getElementType());
348   if (StructType *ST = dyn_cast<StructType>(Ty))
349     return llvm::any_of(ST->subtypes(), containsGCPtrType);
350   return false;
351 }
352 
353 // Returns true if this is a type which a) is a gc pointer or contains a GC
354 // pointer and b) is of a type which the code doesn't expect (i.e. first class
355 // aggregates).  Used to trip assertions.
356 static bool isUnhandledGCPointerType(Type *Ty) {
357   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
358 }
359 #endif
360 
361 // Return the name of the value suffixed with the provided value, or if the
362 // value didn't have a name, the default value specified.
363 static std::string suffixed_name_or(Value *V, StringRef Suffix,
364                                     StringRef DefaultName) {
365   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
366 }
367 
368 // Conservatively identifies any definitions which might be live at the
369 // given instruction. The  analysis is performed immediately before the
370 // given instruction. Values defined by that instruction are not considered
371 // live.  Values used by that instruction are considered live.
372 static void
373 analyzeParsePointLiveness(DominatorTree &DT,
374                           GCPtrLivenessData &OriginalLivenessData, CallSite CS,
375                           PartiallyConstructedSafepointRecord &Result) {
376   Instruction *Inst = CS.getInstruction();
377 
378   StatepointLiveSetTy LiveSet;
379   findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet);
380 
381   if (PrintLiveSet) {
382     dbgs() << "Live Variables:\n";
383     for (Value *V : LiveSet)
384       dbgs() << " " << V->getName() << " " << *V << "\n";
385   }
386   if (PrintLiveSetSize) {
387     dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
388     dbgs() << "Number live values: " << LiveSet.size() << "\n";
389   }
390   Result.LiveSet = LiveSet;
391 }
392 
393 static bool isKnownBaseResult(Value *V);
394 
395 namespace {
396 
397 /// A single base defining value - An immediate base defining value for an
398 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
399 /// For instructions which have multiple pointer [vector] inputs or that
400 /// transition between vector and scalar types, there is no immediate base
401 /// defining value.  The 'base defining value' for 'Def' is the transitive
402 /// closure of this relation stopping at the first instruction which has no
403 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
404 /// but it can also be an arbitrary derived pointer.
405 struct BaseDefiningValueResult {
406   /// Contains the value which is the base defining value.
407   Value * const BDV;
408 
409   /// True if the base defining value is also known to be an actual base
410   /// pointer.
411   const bool IsKnownBase;
412 
413   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
414     : BDV(BDV), IsKnownBase(IsKnownBase) {
415 #ifndef NDEBUG
416     // Check consistency between new and old means of checking whether a BDV is
417     // a base.
418     bool MustBeBase = isKnownBaseResult(BDV);
419     assert(!MustBeBase || MustBeBase == IsKnownBase);
420 #endif
421   }
422 };
423 
424 } // end anonymous namespace
425 
426 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
427 
428 /// Return a base defining value for the 'Index' element of the given vector
429 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
430 /// 'I'.  As an optimization, this method will try to determine when the
431 /// element is known to already be a base pointer.  If this can be established,
432 /// the second value in the returned pair will be true.  Note that either a
433 /// vector or a pointer typed value can be returned.  For the former, the
434 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
435 /// If the later, the return pointer is a BDV (or possibly a base) for the
436 /// particular element in 'I'.
437 static BaseDefiningValueResult
438 findBaseDefiningValueOfVector(Value *I) {
439   // Each case parallels findBaseDefiningValue below, see that code for
440   // detailed motivation.
441 
442   if (isa<Argument>(I))
443     // An incoming argument to the function is a base pointer
444     return BaseDefiningValueResult(I, true);
445 
446   if (isa<Constant>(I))
447     // Base of constant vector consists only of constant null pointers.
448     // For reasoning see similar case inside 'findBaseDefiningValue' function.
449     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
450                                    true);
451 
452   if (isa<LoadInst>(I))
453     return BaseDefiningValueResult(I, true);
454 
455   if (isa<InsertElementInst>(I))
456     // We don't know whether this vector contains entirely base pointers or
457     // not.  To be conservatively correct, we treat it as a BDV and will
458     // duplicate code as needed to construct a parallel vector of bases.
459     return BaseDefiningValueResult(I, false);
460 
461   if (isa<ShuffleVectorInst>(I))
462     // We don't know whether this vector contains entirely base pointers or
463     // not.  To be conservatively correct, we treat it as a BDV and will
464     // duplicate code as needed to construct a parallel vector of bases.
465     // TODO: There a number of local optimizations which could be applied here
466     // for particular sufflevector patterns.
467     return BaseDefiningValueResult(I, false);
468 
469   // The behavior of getelementptr instructions is the same for vector and
470   // non-vector data types.
471   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
472     return findBaseDefiningValue(GEP->getPointerOperand());
473 
474   // If the pointer comes through a bitcast of a vector of pointers to
475   // a vector of another type of pointer, then look through the bitcast
476   if (auto *BC = dyn_cast<BitCastInst>(I))
477     return findBaseDefiningValue(BC->getOperand(0));
478 
479   // We assume that functions in the source language only return base
480   // pointers.  This should probably be generalized via attributes to support
481   // both source language and internal functions.
482   if (isa<CallInst>(I) || isa<InvokeInst>(I))
483     return BaseDefiningValueResult(I, true);
484 
485   // A PHI or Select is a base defining value.  The outer findBasePointer
486   // algorithm is responsible for constructing a base value for this BDV.
487   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
488          "unknown vector instruction - no base found for vector element");
489   return BaseDefiningValueResult(I, false);
490 }
491 
492 /// Helper function for findBasePointer - Will return a value which either a)
493 /// defines the base pointer for the input, b) blocks the simple search
494 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
495 /// from pointer to vector type or back.
496 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
497   assert(I->getType()->isPtrOrPtrVectorTy() &&
498          "Illegal to ask for the base pointer of a non-pointer type");
499 
500   if (I->getType()->isVectorTy())
501     return findBaseDefiningValueOfVector(I);
502 
503   if (isa<Argument>(I))
504     // An incoming argument to the function is a base pointer
505     // We should have never reached here if this argument isn't an gc value
506     return BaseDefiningValueResult(I, true);
507 
508   if (isa<Constant>(I)) {
509     // We assume that objects with a constant base (e.g. a global) can't move
510     // and don't need to be reported to the collector because they are always
511     // live. Besides global references, all kinds of constants (e.g. undef,
512     // constant expressions, null pointers) can be introduced by the inliner or
513     // the optimizer, especially on dynamically dead paths.
514     // Here we treat all of them as having single null base. By doing this we
515     // trying to avoid problems reporting various conflicts in a form of
516     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
517     // See constant.ll file for relevant test cases.
518 
519     return BaseDefiningValueResult(
520         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
521   }
522 
523   if (CastInst *CI = dyn_cast<CastInst>(I)) {
524     Value *Def = CI->stripPointerCasts();
525     // If stripping pointer casts changes the address space there is an
526     // addrspacecast in between.
527     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
528                cast<PointerType>(CI->getType())->getAddressSpace() &&
529            "unsupported addrspacecast");
530     // If we find a cast instruction here, it means we've found a cast which is
531     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
532     // handle int->ptr conversion.
533     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
534     return findBaseDefiningValue(Def);
535   }
536 
537   if (isa<LoadInst>(I))
538     // The value loaded is an gc base itself
539     return BaseDefiningValueResult(I, true);
540 
541   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
542     // The base of this GEP is the base
543     return findBaseDefiningValue(GEP->getPointerOperand());
544 
545   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
546     switch (II->getIntrinsicID()) {
547     default:
548       // fall through to general call handling
549       break;
550     case Intrinsic::experimental_gc_statepoint:
551       llvm_unreachable("statepoints don't produce pointers");
552     case Intrinsic::experimental_gc_relocate:
553       // Rerunning safepoint insertion after safepoints are already
554       // inserted is not supported.  It could probably be made to work,
555       // but why are you doing this?  There's no good reason.
556       llvm_unreachable("repeat safepoint insertion is not supported");
557     case Intrinsic::gcroot:
558       // Currently, this mechanism hasn't been extended to work with gcroot.
559       // There's no reason it couldn't be, but I haven't thought about the
560       // implications much.
561       llvm_unreachable(
562           "interaction with the gcroot mechanism is not supported");
563     }
564   }
565   // We assume that functions in the source language only return base
566   // pointers.  This should probably be generalized via attributes to support
567   // both source language and internal functions.
568   if (isa<CallInst>(I) || isa<InvokeInst>(I))
569     return BaseDefiningValueResult(I, true);
570 
571   // TODO: I have absolutely no idea how to implement this part yet.  It's not
572   // necessarily hard, I just haven't really looked at it yet.
573   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
574 
575   if (isa<AtomicCmpXchgInst>(I))
576     // A CAS is effectively a atomic store and load combined under a
577     // predicate.  From the perspective of base pointers, we just treat it
578     // like a load.
579     return BaseDefiningValueResult(I, true);
580 
581   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
582                                    "binary ops which don't apply to pointers");
583 
584   // The aggregate ops.  Aggregates can either be in the heap or on the
585   // stack, but in either case, this is simply a field load.  As a result,
586   // this is a defining definition of the base just like a load is.
587   if (isa<ExtractValueInst>(I))
588     return BaseDefiningValueResult(I, true);
589 
590   // We should never see an insert vector since that would require we be
591   // tracing back a struct value not a pointer value.
592   assert(!isa<InsertValueInst>(I) &&
593          "Base pointer for a struct is meaningless");
594 
595   // An extractelement produces a base result exactly when it's input does.
596   // We may need to insert a parallel instruction to extract the appropriate
597   // element out of the base vector corresponding to the input. Given this,
598   // it's analogous to the phi and select case even though it's not a merge.
599   if (isa<ExtractElementInst>(I))
600     // Note: There a lot of obvious peephole cases here.  This are deliberately
601     // handled after the main base pointer inference algorithm to make writing
602     // test cases to exercise that code easier.
603     return BaseDefiningValueResult(I, false);
604 
605   // The last two cases here don't return a base pointer.  Instead, they
606   // return a value which dynamically selects from among several base
607   // derived pointers (each with it's own base potentially).  It's the job of
608   // the caller to resolve these.
609   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
610          "missing instruction case in findBaseDefiningValing");
611   return BaseDefiningValueResult(I, false);
612 }
613 
614 /// Returns the base defining value for this value.
615 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
616   Value *&Cached = Cache[I];
617   if (!Cached) {
618     Cached = findBaseDefiningValue(I).BDV;
619     DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
620                  << Cached->getName() << "\n");
621   }
622   assert(Cache[I] != nullptr);
623   return Cached;
624 }
625 
626 /// Return a base pointer for this value if known.  Otherwise, return it's
627 /// base defining value.
628 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
629   Value *Def = findBaseDefiningValueCached(I, Cache);
630   auto Found = Cache.find(Def);
631   if (Found != Cache.end()) {
632     // Either a base-of relation, or a self reference.  Caller must check.
633     return Found->second;
634   }
635   // Only a BDV available
636   return Def;
637 }
638 
639 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
640 /// is it known to be a base pointer?  Or do we need to continue searching.
641 static bool isKnownBaseResult(Value *V) {
642   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
643       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
644       !isa<ShuffleVectorInst>(V)) {
645     // no recursion possible
646     return true;
647   }
648   if (isa<Instruction>(V) &&
649       cast<Instruction>(V)->getMetadata("is_base_value")) {
650     // This is a previously inserted base phi or select.  We know
651     // that this is a base value.
652     return true;
653   }
654 
655   // We need to keep searching
656   return false;
657 }
658 
659 namespace {
660 
661 /// Models the state of a single base defining value in the findBasePointer
662 /// algorithm for determining where a new instruction is needed to propagate
663 /// the base of this BDV.
664 class BDVState {
665 public:
666   enum Status { Unknown, Base, Conflict };
667 
668   BDVState() : BaseValue(nullptr) {}
669 
670   explicit BDVState(Status Status, Value *BaseValue = nullptr)
671       : Status(Status), BaseValue(BaseValue) {
672     assert(Status != Base || BaseValue);
673   }
674 
675   explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
676 
677   Status getStatus() const { return Status; }
678   Value *getBaseValue() const { return BaseValue; }
679 
680   bool isBase() const { return getStatus() == Base; }
681   bool isUnknown() const { return getStatus() == Unknown; }
682   bool isConflict() const { return getStatus() == Conflict; }
683 
684   bool operator==(const BDVState &Other) const {
685     return BaseValue == Other.BaseValue && Status == Other.Status;
686   }
687 
688   bool operator!=(const BDVState &other) const { return !(*this == other); }
689 
690   LLVM_DUMP_METHOD
691   void dump() const {
692     print(dbgs());
693     dbgs() << '\n';
694   }
695 
696   void print(raw_ostream &OS) const {
697     switch (getStatus()) {
698     case Unknown:
699       OS << "U";
700       break;
701     case Base:
702       OS << "B";
703       break;
704     case Conflict:
705       OS << "C";
706       break;
707     }
708     OS << " (" << getBaseValue() << " - "
709        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
710   }
711 
712 private:
713   Status Status = Unknown;
714   AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
715 };
716 
717 } // end anonymous namespace
718 
719 #ifndef NDEBUG
720 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
721   State.print(OS);
722   return OS;
723 }
724 #endif
725 
726 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
727   switch (LHS.getStatus()) {
728   case BDVState::Unknown:
729     return RHS;
730 
731   case BDVState::Base:
732     assert(LHS.getBaseValue() && "can't be null");
733     if (RHS.isUnknown())
734       return LHS;
735 
736     if (RHS.isBase()) {
737       if (LHS.getBaseValue() == RHS.getBaseValue()) {
738         assert(LHS == RHS && "equality broken!");
739         return LHS;
740       }
741       return BDVState(BDVState::Conflict);
742     }
743     assert(RHS.isConflict() && "only three states!");
744     return BDVState(BDVState::Conflict);
745 
746   case BDVState::Conflict:
747     return LHS;
748   }
749   llvm_unreachable("only three states!");
750 }
751 
752 // Values of type BDVState form a lattice, and this function implements the meet
753 // operation.
754 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
755   BDVState Result = meetBDVStateImpl(LHS, RHS);
756   assert(Result == meetBDVStateImpl(RHS, LHS) &&
757          "Math is wrong: meet does not commute!");
758   return Result;
759 }
760 
761 /// For a given value or instruction, figure out what base ptr its derived from.
762 /// For gc objects, this is simply itself.  On success, returns a value which is
763 /// the base pointer.  (This is reliable and can be used for relocation.)  On
764 /// failure, returns nullptr.
765 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
766   Value *Def = findBaseOrBDV(I, Cache);
767 
768   if (isKnownBaseResult(Def))
769     return Def;
770 
771   // Here's the rough algorithm:
772   // - For every SSA value, construct a mapping to either an actual base
773   //   pointer or a PHI which obscures the base pointer.
774   // - Construct a mapping from PHI to unknown TOP state.  Use an
775   //   optimistic algorithm to propagate base pointer information.  Lattice
776   //   looks like:
777   //   UNKNOWN
778   //   b1 b2 b3 b4
779   //   CONFLICT
780   //   When algorithm terminates, all PHIs will either have a single concrete
781   //   base or be in a conflict state.
782   // - For every conflict, insert a dummy PHI node without arguments.  Add
783   //   these to the base[Instruction] = BasePtr mapping.  For every
784   //   non-conflict, add the actual base.
785   //  - For every conflict, add arguments for the base[a] of each input
786   //   arguments.
787   //
788   // Note: A simpler form of this would be to add the conflict form of all
789   // PHIs without running the optimistic algorithm.  This would be
790   // analogous to pessimistic data flow and would likely lead to an
791   // overall worse solution.
792 
793 #ifndef NDEBUG
794   auto isExpectedBDVType = [](Value *BDV) {
795     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
796            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
797            isa<ShuffleVectorInst>(BDV);
798   };
799 #endif
800 
801   // Once populated, will contain a mapping from each potentially non-base BDV
802   // to a lattice value (described above) which corresponds to that BDV.
803   // We use the order of insertion (DFS over the def/use graph) to provide a
804   // stable deterministic ordering for visiting DenseMaps (which are unordered)
805   // below.  This is important for deterministic compilation.
806   MapVector<Value *, BDVState> States;
807 
808   // Recursively fill in all base defining values reachable from the initial
809   // one for which we don't already know a definite base value for
810   /* scope */ {
811     SmallVector<Value*, 16> Worklist;
812     Worklist.push_back(Def);
813     States.insert({Def, BDVState()});
814     while (!Worklist.empty()) {
815       Value *Current = Worklist.pop_back_val();
816       assert(!isKnownBaseResult(Current) && "why did it get added?");
817 
818       auto visitIncomingValue = [&](Value *InVal) {
819         Value *Base = findBaseOrBDV(InVal, Cache);
820         if (isKnownBaseResult(Base))
821           // Known bases won't need new instructions introduced and can be
822           // ignored safely
823           return;
824         assert(isExpectedBDVType(Base) && "the only non-base values "
825                "we see should be base defining values");
826         if (States.insert(std::make_pair(Base, BDVState())).second)
827           Worklist.push_back(Base);
828       };
829       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
830         for (Value *InVal : PN->incoming_values())
831           visitIncomingValue(InVal);
832       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
833         visitIncomingValue(SI->getTrueValue());
834         visitIncomingValue(SI->getFalseValue());
835       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
836         visitIncomingValue(EE->getVectorOperand());
837       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
838         visitIncomingValue(IE->getOperand(0)); // vector operand
839         visitIncomingValue(IE->getOperand(1)); // scalar operand
840       } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
841         visitIncomingValue(SV->getOperand(0));
842         visitIncomingValue(SV->getOperand(1));
843       }
844       else {
845         llvm_unreachable("Unimplemented instruction case");
846       }
847     }
848   }
849 
850 #ifndef NDEBUG
851   DEBUG(dbgs() << "States after initialization:\n");
852   for (auto Pair : States) {
853     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
854   }
855 #endif
856 
857   // Return a phi state for a base defining value.  We'll generate a new
858   // base state for known bases and expect to find a cached state otherwise.
859   auto getStateForBDV = [&](Value *baseValue) {
860     if (isKnownBaseResult(baseValue))
861       return BDVState(baseValue);
862     auto I = States.find(baseValue);
863     assert(I != States.end() && "lookup failed!");
864     return I->second;
865   };
866 
867   bool Progress = true;
868   while (Progress) {
869 #ifndef NDEBUG
870     const size_t OldSize = States.size();
871 #endif
872     Progress = false;
873     // We're only changing values in this loop, thus safe to keep iterators.
874     // Since this is computing a fixed point, the order of visit does not
875     // effect the result.  TODO: We could use a worklist here and make this run
876     // much faster.
877     for (auto Pair : States) {
878       Value *BDV = Pair.first;
879       assert(!isKnownBaseResult(BDV) && "why did it get added?");
880 
881       // Given an input value for the current instruction, return a BDVState
882       // instance which represents the BDV of that value.
883       auto getStateForInput = [&](Value *V) mutable {
884         Value *BDV = findBaseOrBDV(V, Cache);
885         return getStateForBDV(BDV);
886       };
887 
888       BDVState NewState;
889       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
890         NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
891         NewState =
892             meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
893       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
894         for (Value *Val : PN->incoming_values())
895           NewState = meetBDVState(NewState, getStateForInput(Val));
896       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
897         // The 'meet' for an extractelement is slightly trivial, but it's still
898         // useful in that it drives us to conflict if our input is.
899         NewState =
900             meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
901       } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
902         // Given there's a inherent type mismatch between the operands, will
903         // *always* produce Conflict.
904         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
905         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
906       } else {
907         // The only instance this does not return a Conflict is when both the
908         // vector operands are the same vector.
909         auto *SV = cast<ShuffleVectorInst>(BDV);
910         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
911         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
912       }
913 
914       BDVState OldState = States[BDV];
915       if (OldState != NewState) {
916         Progress = true;
917         States[BDV] = NewState;
918       }
919     }
920 
921     assert(OldSize == States.size() &&
922            "fixed point shouldn't be adding any new nodes to state");
923   }
924 
925 #ifndef NDEBUG
926   DEBUG(dbgs() << "States after meet iteration:\n");
927   for (auto Pair : States) {
928     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
929   }
930 #endif
931 
932   // Insert Phis for all conflicts
933   // TODO: adjust naming patterns to avoid this order of iteration dependency
934   for (auto Pair : States) {
935     Instruction *I = cast<Instruction>(Pair.first);
936     BDVState State = Pair.second;
937     assert(!isKnownBaseResult(I) && "why did it get added?");
938     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
939 
940     // extractelement instructions are a bit special in that we may need to
941     // insert an extract even when we know an exact base for the instruction.
942     // The problem is that we need to convert from a vector base to a scalar
943     // base for the particular indice we're interested in.
944     if (State.isBase() && isa<ExtractElementInst>(I) &&
945         isa<VectorType>(State.getBaseValue()->getType())) {
946       auto *EE = cast<ExtractElementInst>(I);
947       // TODO: In many cases, the new instruction is just EE itself.  We should
948       // exploit this, but can't do it here since it would break the invariant
949       // about the BDV not being known to be a base.
950       auto *BaseInst = ExtractElementInst::Create(
951           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
952       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
953       States[I] = BDVState(BDVState::Base, BaseInst);
954     }
955 
956     // Since we're joining a vector and scalar base, they can never be the
957     // same.  As a result, we should always see insert element having reached
958     // the conflict state.
959     assert(!isa<InsertElementInst>(I) || State.isConflict());
960 
961     if (!State.isConflict())
962       continue;
963 
964     /// Create and insert a new instruction which will represent the base of
965     /// the given instruction 'I'.
966     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
967       if (isa<PHINode>(I)) {
968         BasicBlock *BB = I->getParent();
969         int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
970         assert(NumPreds > 0 && "how did we reach here");
971         std::string Name = suffixed_name_or(I, ".base", "base_phi");
972         return PHINode::Create(I->getType(), NumPreds, Name, I);
973       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
974         // The undef will be replaced later
975         UndefValue *Undef = UndefValue::get(SI->getType());
976         std::string Name = suffixed_name_or(I, ".base", "base_select");
977         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
978       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
979         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
980         std::string Name = suffixed_name_or(I, ".base", "base_ee");
981         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
982                                           EE);
983       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
984         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
985         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
986         std::string Name = suffixed_name_or(I, ".base", "base_ie");
987         return InsertElementInst::Create(VecUndef, ScalarUndef,
988                                          IE->getOperand(2), Name, IE);
989       } else {
990         auto *SV = cast<ShuffleVectorInst>(I);
991         UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
992         std::string Name = suffixed_name_or(I, ".base", "base_sv");
993         return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2),
994                                      Name, SV);
995       }
996     };
997     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
998     // Add metadata marking this as a base value
999     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1000     States[I] = BDVState(BDVState::Conflict, BaseInst);
1001   }
1002 
1003   // Returns a instruction which produces the base pointer for a given
1004   // instruction.  The instruction is assumed to be an input to one of the BDVs
1005   // seen in the inference algorithm above.  As such, we must either already
1006   // know it's base defining value is a base, or have inserted a new
1007   // instruction to propagate the base of it's BDV and have entered that newly
1008   // introduced instruction into the state table.  In either case, we are
1009   // assured to be able to determine an instruction which produces it's base
1010   // pointer.
1011   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1012     Value *BDV = findBaseOrBDV(Input, Cache);
1013     Value *Base = nullptr;
1014     if (isKnownBaseResult(BDV)) {
1015       Base = BDV;
1016     } else {
1017       // Either conflict or base.
1018       assert(States.count(BDV));
1019       Base = States[BDV].getBaseValue();
1020     }
1021     assert(Base && "Can't be null");
1022     // The cast is needed since base traversal may strip away bitcasts
1023     if (Base->getType() != Input->getType() && InsertPt)
1024       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1025     return Base;
1026   };
1027 
1028   // Fixup all the inputs of the new PHIs.  Visit order needs to be
1029   // deterministic and predictable because we're naming newly created
1030   // instructions.
1031   for (auto Pair : States) {
1032     Instruction *BDV = cast<Instruction>(Pair.first);
1033     BDVState State = Pair.second;
1034 
1035     assert(!isKnownBaseResult(BDV) && "why did it get added?");
1036     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1037     if (!State.isConflict())
1038       continue;
1039 
1040     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1041       PHINode *PN = cast<PHINode>(BDV);
1042       unsigned NumPHIValues = PN->getNumIncomingValues();
1043       for (unsigned i = 0; i < NumPHIValues; i++) {
1044         Value *InVal = PN->getIncomingValue(i);
1045         BasicBlock *InBB = PN->getIncomingBlock(i);
1046 
1047         // If we've already seen InBB, add the same incoming value
1048         // we added for it earlier.  The IR verifier requires phi
1049         // nodes with multiple entries from the same basic block
1050         // to have the same incoming value for each of those
1051         // entries.  If we don't do this check here and basephi
1052         // has a different type than base, we'll end up adding two
1053         // bitcasts (and hence two distinct values) as incoming
1054         // values for the same basic block.
1055 
1056         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
1057         if (BlockIndex != -1) {
1058           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
1059           BasePHI->addIncoming(OldBase, InBB);
1060 
1061 #ifndef NDEBUG
1062           Value *Base = getBaseForInput(InVal, nullptr);
1063           // In essence this assert states: the only way two values
1064           // incoming from the same basic block may be different is by
1065           // being different bitcasts of the same value.  A cleanup
1066           // that remains TODO is changing findBaseOrBDV to return an
1067           // llvm::Value of the correct type (and still remain pure).
1068           // This will remove the need to add bitcasts.
1069           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1070                  "Sanity -- findBaseOrBDV should be pure!");
1071 #endif
1072           continue;
1073         }
1074 
1075         // Find the instruction which produces the base for each input.  We may
1076         // need to insert a bitcast in the incoming block.
1077         // TODO: Need to split critical edges if insertion is needed
1078         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1079         BasePHI->addIncoming(Base, InBB);
1080       }
1081       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
1082     } else if (SelectInst *BaseSI =
1083                    dyn_cast<SelectInst>(State.getBaseValue())) {
1084       SelectInst *SI = cast<SelectInst>(BDV);
1085 
1086       // Find the instruction which produces the base for each input.
1087       // We may need to insert a bitcast.
1088       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1089       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1090     } else if (auto *BaseEE =
1091                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1092       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1093       // Find the instruction which produces the base for each input.  We may
1094       // need to insert a bitcast.
1095       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1096     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1097       auto *BdvIE = cast<InsertElementInst>(BDV);
1098       auto UpdateOperand = [&](int OperandIdx) {
1099         Value *InVal = BdvIE->getOperand(OperandIdx);
1100         Value *Base = getBaseForInput(InVal, BaseIE);
1101         BaseIE->setOperand(OperandIdx, Base);
1102       };
1103       UpdateOperand(0); // vector operand
1104       UpdateOperand(1); // scalar operand
1105     } else {
1106       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1107       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1108       auto UpdateOperand = [&](int OperandIdx) {
1109         Value *InVal = BdvSV->getOperand(OperandIdx);
1110         Value *Base = getBaseForInput(InVal, BaseSV);
1111         BaseSV->setOperand(OperandIdx, Base);
1112       };
1113       UpdateOperand(0); // vector operand
1114       UpdateOperand(1); // vector operand
1115     }
1116   }
1117 
1118   // Cache all of our results so we can cheaply reuse them
1119   // NOTE: This is actually two caches: one of the base defining value
1120   // relation and one of the base pointer relation!  FIXME
1121   for (auto Pair : States) {
1122     auto *BDV = Pair.first;
1123     Value *Base = Pair.second.getBaseValue();
1124     assert(BDV && Base);
1125     assert(!isKnownBaseResult(BDV) && "why did it get added?");
1126 
1127     DEBUG(dbgs() << "Updating base value cache"
1128                  << " for: " << BDV->getName() << " from: "
1129                  << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1130                  << " to: " << Base->getName() << "\n");
1131 
1132     if (Cache.count(BDV)) {
1133       assert(isKnownBaseResult(Base) &&
1134              "must be something we 'know' is a base pointer");
1135       // Once we transition from the BDV relation being store in the Cache to
1136       // the base relation being stored, it must be stable
1137       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
1138              "base relation should be stable");
1139     }
1140     Cache[BDV] = Base;
1141   }
1142   assert(Cache.count(Def));
1143   return Cache[Def];
1144 }
1145 
1146 // For a set of live pointers (base and/or derived), identify the base
1147 // pointer of the object which they are derived from.  This routine will
1148 // mutate the IR graph as needed to make the 'base' pointer live at the
1149 // definition site of 'derived'.  This ensures that any use of 'derived' can
1150 // also use 'base'.  This may involve the insertion of a number of
1151 // additional PHI nodes.
1152 //
1153 // preconditions: live is a set of pointer type Values
1154 //
1155 // side effects: may insert PHI nodes into the existing CFG, will preserve
1156 // CFG, will not remove or mutate any existing nodes
1157 //
1158 // post condition: PointerToBase contains one (derived, base) pair for every
1159 // pointer in live.  Note that derived can be equal to base if the original
1160 // pointer was a base pointer.
1161 static void
1162 findBasePointers(const StatepointLiveSetTy &live,
1163                  MapVector<Value *, Value *> &PointerToBase,
1164                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1165   for (Value *ptr : live) {
1166     Value *base = findBasePointer(ptr, DVCache);
1167     assert(base && "failed to find base pointer");
1168     PointerToBase[ptr] = base;
1169     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1170             DT->dominates(cast<Instruction>(base)->getParent(),
1171                           cast<Instruction>(ptr)->getParent())) &&
1172            "The base we found better dominate the derived pointer");
1173   }
1174 }
1175 
1176 /// Find the required based pointers (and adjust the live set) for the given
1177 /// parse point.
1178 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1179                              CallSite CS,
1180                              PartiallyConstructedSafepointRecord &result) {
1181   MapVector<Value *, Value *> PointerToBase;
1182   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1183 
1184   if (PrintBasePointers) {
1185     errs() << "Base Pairs (w/o Relocation):\n";
1186     for (auto &Pair : PointerToBase) {
1187       errs() << " derived ";
1188       Pair.first->printAsOperand(errs(), false);
1189       errs() << " base ";
1190       Pair.second->printAsOperand(errs(), false);
1191       errs() << "\n";;
1192     }
1193   }
1194 
1195   result.PointerToBase = PointerToBase;
1196 }
1197 
1198 /// Given an updated version of the dataflow liveness results, update the
1199 /// liveset and base pointer maps for the call site CS.
1200 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1201                                   CallSite CS,
1202                                   PartiallyConstructedSafepointRecord &result);
1203 
1204 static void recomputeLiveInValues(
1205     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1206     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1207   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1208   // again.  The old values are still live and will help it stabilize quickly.
1209   GCPtrLivenessData RevisedLivenessData;
1210   computeLiveInValues(DT, F, RevisedLivenessData);
1211   for (size_t i = 0; i < records.size(); i++) {
1212     struct PartiallyConstructedSafepointRecord &info = records[i];
1213     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1214   }
1215 }
1216 
1217 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1218 // no uses of the original value / return value between the gc.statepoint and
1219 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1220 // starting one of the successor blocks.  We also need to be able to insert the
1221 // gc.relocates only on the path which goes through the statepoint.  We might
1222 // need to split an edge to make this possible.
1223 static BasicBlock *
1224 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1225                             DominatorTree &DT) {
1226   BasicBlock *Ret = BB;
1227   if (!BB->getUniquePredecessor())
1228     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1229 
1230   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1231   // from it
1232   FoldSingleEntryPHINodes(Ret);
1233   assert(!isa<PHINode>(Ret->begin()) &&
1234          "All PHI nodes should have been removed!");
1235 
1236   // At this point, we can safely insert a gc.relocate or gc.result as the first
1237   // instruction in Ret if needed.
1238   return Ret;
1239 }
1240 
1241 // Create new attribute set containing only attributes which can be transferred
1242 // from original call to the safepoint.
1243 static AttributeList legalizeCallAttributes(AttributeList AL) {
1244   if (AL.isEmpty())
1245     return AL;
1246 
1247   // Remove the readonly, readnone, and statepoint function attributes.
1248   AttrBuilder FnAttrs = AL.getFnAttributes();
1249   FnAttrs.removeAttribute(Attribute::ReadNone);
1250   FnAttrs.removeAttribute(Attribute::ReadOnly);
1251   for (Attribute A : AL.getFnAttributes()) {
1252     if (isStatepointDirectiveAttr(A))
1253       FnAttrs.remove(A);
1254   }
1255 
1256   // Just skip parameter and return attributes for now
1257   LLVMContext &Ctx = AL.getContext();
1258   return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1259                             AttributeSet::get(Ctx, FnAttrs));
1260 }
1261 
1262 /// Helper function to place all gc relocates necessary for the given
1263 /// statepoint.
1264 /// Inputs:
1265 ///   liveVariables - list of variables to be relocated.
1266 ///   liveStart - index of the first live variable.
1267 ///   basePtrs - base pointers.
1268 ///   statepointToken - statepoint instruction to which relocates should be
1269 ///   bound.
1270 ///   Builder - Llvm IR builder to be used to construct new calls.
1271 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1272                               const int LiveStart,
1273                               ArrayRef<Value *> BasePtrs,
1274                               Instruction *StatepointToken,
1275                               IRBuilder<> Builder) {
1276   if (LiveVariables.empty())
1277     return;
1278 
1279   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1280     auto ValIt = llvm::find(LiveVec, Val);
1281     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1282     size_t Index = std::distance(LiveVec.begin(), ValIt);
1283     assert(Index < LiveVec.size() && "Bug in std::find?");
1284     return Index;
1285   };
1286   Module *M = StatepointToken->getModule();
1287 
1288   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1289   // element type is i8 addrspace(1)*). We originally generated unique
1290   // declarations for each pointer type, but this proved problematic because
1291   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1292   // towards a single unified pointer type anyways, we can just cast everything
1293   // to an i8* of the right address space.  A bitcast is added later to convert
1294   // gc_relocate to the actual value's type.
1295   auto getGCRelocateDecl = [&] (Type *Ty) {
1296     assert(isHandledGCPointerType(Ty));
1297     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1298     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1299     if (auto *VT = dyn_cast<VectorType>(Ty))
1300       NewTy = VectorType::get(NewTy, VT->getNumElements());
1301     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1302                                      {NewTy});
1303   };
1304 
1305   // Lazily populated map from input types to the canonicalized form mentioned
1306   // in the comment above.  This should probably be cached somewhere more
1307   // broadly.
1308   DenseMap<Type*, Value*> TypeToDeclMap;
1309 
1310   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1311     // Generate the gc.relocate call and save the result
1312     Value *BaseIdx =
1313       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1314     Value *LiveIdx = Builder.getInt32(LiveStart + i);
1315 
1316     Type *Ty = LiveVariables[i]->getType();
1317     if (!TypeToDeclMap.count(Ty))
1318       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1319     Value *GCRelocateDecl = TypeToDeclMap[Ty];
1320 
1321     // only specify a debug name if we can give a useful one
1322     CallInst *Reloc = Builder.CreateCall(
1323         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1324         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1325     // Trick CodeGen into thinking there are lots of free registers at this
1326     // fake call.
1327     Reloc->setCallingConv(CallingConv::Cold);
1328   }
1329 }
1330 
1331 namespace {
1332 
1333 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1334 /// avoids having to worry about keeping around dangling pointers to Values.
1335 class DeferredReplacement {
1336   AssertingVH<Instruction> Old;
1337   AssertingVH<Instruction> New;
1338   bool IsDeoptimize = false;
1339 
1340   DeferredReplacement() = default;
1341 
1342 public:
1343   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1344     assert(Old != New && Old && New &&
1345            "Cannot RAUW equal values or to / from null!");
1346 
1347     DeferredReplacement D;
1348     D.Old = Old;
1349     D.New = New;
1350     return D;
1351   }
1352 
1353   static DeferredReplacement createDelete(Instruction *ToErase) {
1354     DeferredReplacement D;
1355     D.Old = ToErase;
1356     return D;
1357   }
1358 
1359   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1360 #ifndef NDEBUG
1361     auto *F = cast<CallInst>(Old)->getCalledFunction();
1362     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1363            "Only way to construct a deoptimize deferred replacement");
1364 #endif
1365     DeferredReplacement D;
1366     D.Old = Old;
1367     D.IsDeoptimize = true;
1368     return D;
1369   }
1370 
1371   /// Does the task represented by this instance.
1372   void doReplacement() {
1373     Instruction *OldI = Old;
1374     Instruction *NewI = New;
1375 
1376     assert(OldI != NewI && "Disallowed at construction?!");
1377     assert((!IsDeoptimize || !New) &&
1378            "Deoptimize instrinsics are not replaced!");
1379 
1380     Old = nullptr;
1381     New = nullptr;
1382 
1383     if (NewI)
1384       OldI->replaceAllUsesWith(NewI);
1385 
1386     if (IsDeoptimize) {
1387       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1388       // not necessarilly be followed by the matching return.
1389       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1390       new UnreachableInst(RI->getContext(), RI);
1391       RI->eraseFromParent();
1392     }
1393 
1394     OldI->eraseFromParent();
1395   }
1396 };
1397 
1398 } // end anonymous namespace
1399 
1400 static StringRef getDeoptLowering(CallSite CS) {
1401   const char *DeoptLowering = "deopt-lowering";
1402   if (CS.hasFnAttr(DeoptLowering)) {
1403     // FIXME: CallSite has a *really* confusing interface around attributes
1404     // with values.
1405     const AttributeList &CSAS = CS.getAttributes();
1406     if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1407       return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1408           .getValueAsString();
1409     Function *F = CS.getCalledFunction();
1410     assert(F && F->hasFnAttribute(DeoptLowering));
1411     return F->getFnAttribute(DeoptLowering).getValueAsString();
1412   }
1413   return "live-through";
1414 }
1415 
1416 static void
1417 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1418                            const SmallVectorImpl<Value *> &BasePtrs,
1419                            const SmallVectorImpl<Value *> &LiveVariables,
1420                            PartiallyConstructedSafepointRecord &Result,
1421                            std::vector<DeferredReplacement> &Replacements) {
1422   assert(BasePtrs.size() == LiveVariables.size());
1423 
1424   // Then go ahead and use the builder do actually do the inserts.  We insert
1425   // immediately before the previous instruction under the assumption that all
1426   // arguments will be available here.  We can't insert afterwards since we may
1427   // be replacing a terminator.
1428   Instruction *InsertBefore = CS.getInstruction();
1429   IRBuilder<> Builder(InsertBefore);
1430 
1431   ArrayRef<Value *> GCArgs(LiveVariables);
1432   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1433   uint32_t NumPatchBytes = 0;
1434   uint32_t Flags = uint32_t(StatepointFlags::None);
1435 
1436   ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
1437   ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
1438   ArrayRef<Use> TransitionArgs;
1439   if (auto TransitionBundle =
1440       CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
1441     Flags |= uint32_t(StatepointFlags::GCTransition);
1442     TransitionArgs = TransitionBundle->Inputs;
1443   }
1444 
1445   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1446   // with a return value, we lower then as never returning calls to
1447   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1448   bool IsDeoptimize = false;
1449 
1450   StatepointDirectives SD =
1451       parseStatepointDirectivesFromAttrs(CS.getAttributes());
1452   if (SD.NumPatchBytes)
1453     NumPatchBytes = *SD.NumPatchBytes;
1454   if (SD.StatepointID)
1455     StatepointID = *SD.StatepointID;
1456 
1457   // Pass through the requested lowering if any.  The default is live-through.
1458   StringRef DeoptLowering = getDeoptLowering(CS);
1459   if (DeoptLowering.equals("live-in"))
1460     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1461   else {
1462     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1463   }
1464 
1465   Value *CallTarget = CS.getCalledValue();
1466   if (Function *F = dyn_cast<Function>(CallTarget)) {
1467     if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1468       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1469       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1470       // verifier does not allow taking the address of an intrinsic function.
1471 
1472       SmallVector<Type *, 8> DomainTy;
1473       for (Value *Arg : CallArgs)
1474         DomainTy.push_back(Arg->getType());
1475       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1476                                     /* isVarArg = */ false);
1477 
1478       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1479       // calls to @llvm.experimental.deoptimize with different argument types in
1480       // the same module.  This is fine -- we assume the frontend knew what it
1481       // was doing when generating this kind of IR.
1482       CallTarget =
1483           F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
1484 
1485       IsDeoptimize = true;
1486     }
1487   }
1488 
1489   // Create the statepoint given all the arguments
1490   Instruction *Token = nullptr;
1491   if (CS.isCall()) {
1492     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1493     CallInst *Call = Builder.CreateGCStatepointCall(
1494         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1495         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1496 
1497     Call->setTailCallKind(ToReplace->getTailCallKind());
1498     Call->setCallingConv(ToReplace->getCallingConv());
1499 
1500     // Currently we will fail on parameter attributes and on certain
1501     // function attributes.  In case if we can handle this set of attributes -
1502     // set up function attrs directly on statepoint and return attrs later for
1503     // gc_result intrinsic.
1504     Call->setAttributes(legalizeCallAttributes(ToReplace->getAttributes()));
1505 
1506     Token = Call;
1507 
1508     // Put the following gc_result and gc_relocate calls immediately after the
1509     // the old call (which we're about to delete)
1510     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1511     Builder.SetInsertPoint(ToReplace->getNextNode());
1512     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1513   } else {
1514     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1515 
1516     // Insert the new invoke into the old block.  We'll remove the old one in a
1517     // moment at which point this will become the new terminator for the
1518     // original block.
1519     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1520         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1521         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1522         GCArgs, "statepoint_token");
1523 
1524     Invoke->setCallingConv(ToReplace->getCallingConv());
1525 
1526     // Currently we will fail on parameter attributes and on certain
1527     // function attributes.  In case if we can handle this set of attributes -
1528     // set up function attrs directly on statepoint and return attrs later for
1529     // gc_result intrinsic.
1530     Invoke->setAttributes(legalizeCallAttributes(ToReplace->getAttributes()));
1531 
1532     Token = Invoke;
1533 
1534     // Generate gc relocates in exceptional path
1535     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1536     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1537            UnwindBlock->getUniquePredecessor() &&
1538            "can't safely insert in this block!");
1539 
1540     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1541     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1542 
1543     // Attach exceptional gc relocates to the landingpad.
1544     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1545     Result.UnwindToken = ExceptionalToken;
1546 
1547     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1548     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1549                       Builder);
1550 
1551     // Generate gc relocates and returns for normal block
1552     BasicBlock *NormalDest = ToReplace->getNormalDest();
1553     assert(!isa<PHINode>(NormalDest->begin()) &&
1554            NormalDest->getUniquePredecessor() &&
1555            "can't safely insert in this block!");
1556 
1557     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1558 
1559     // gc relocates will be generated later as if it were regular call
1560     // statepoint
1561   }
1562   assert(Token && "Should be set in one of the above branches!");
1563 
1564   if (IsDeoptimize) {
1565     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1566     // transform the tail-call like structure to a call to a void function
1567     // followed by unreachable to get better codegen.
1568     Replacements.push_back(
1569         DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
1570   } else {
1571     Token->setName("statepoint_token");
1572     if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1573       StringRef Name =
1574           CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1575       CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1576       GCResult->setAttributes(
1577           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1578                              CS.getAttributes().getRetAttributes()));
1579 
1580       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1581       // live set of some other safepoint, in which case that safepoint's
1582       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1583       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1584       // after the live sets have been made explicit in the IR, and we no longer
1585       // have raw pointers to worry about.
1586       Replacements.emplace_back(
1587           DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
1588     } else {
1589       Replacements.emplace_back(
1590           DeferredReplacement::createDelete(CS.getInstruction()));
1591     }
1592   }
1593 
1594   Result.StatepointToken = Token;
1595 
1596   // Second, create a gc.relocate for every live variable
1597   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1598   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1599 }
1600 
1601 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1602 // which make the relocations happening at this safepoint explicit.
1603 //
1604 // WARNING: Does not do any fixup to adjust users of the original live
1605 // values.  That's the callers responsibility.
1606 static void
1607 makeStatepointExplicit(DominatorTree &DT, CallSite CS,
1608                        PartiallyConstructedSafepointRecord &Result,
1609                        std::vector<DeferredReplacement> &Replacements) {
1610   const auto &LiveSet = Result.LiveSet;
1611   const auto &PointerToBase = Result.PointerToBase;
1612 
1613   // Convert to vector for efficient cross referencing.
1614   SmallVector<Value *, 64> BaseVec, LiveVec;
1615   LiveVec.reserve(LiveSet.size());
1616   BaseVec.reserve(LiveSet.size());
1617   for (Value *L : LiveSet) {
1618     LiveVec.push_back(L);
1619     assert(PointerToBase.count(L));
1620     Value *Base = PointerToBase.find(L)->second;
1621     BaseVec.push_back(Base);
1622   }
1623   assert(LiveVec.size() == BaseVec.size());
1624 
1625   // Do the actual rewriting and delete the old statepoint
1626   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1627 }
1628 
1629 // Helper function for the relocationViaAlloca.
1630 //
1631 // It receives iterator to the statepoint gc relocates and emits a store to the
1632 // assigned location (via allocaMap) for the each one of them.  It adds the
1633 // visited values into the visitedLiveValues set, which we will later use them
1634 // for sanity checking.
1635 static void
1636 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1637                        DenseMap<Value *, Value *> &AllocaMap,
1638                        DenseSet<Value *> &VisitedLiveValues) {
1639   for (User *U : GCRelocs) {
1640     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1641     if (!Relocate)
1642       continue;
1643 
1644     Value *OriginalValue = Relocate->getDerivedPtr();
1645     assert(AllocaMap.count(OriginalValue));
1646     Value *Alloca = AllocaMap[OriginalValue];
1647 
1648     // Emit store into the related alloca
1649     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1650     // the correct type according to alloca.
1651     assert(Relocate->getNextNode() &&
1652            "Should always have one since it's not a terminator");
1653     IRBuilder<> Builder(Relocate->getNextNode());
1654     Value *CastedRelocatedValue =
1655       Builder.CreateBitCast(Relocate,
1656                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1657                             suffixed_name_or(Relocate, ".casted", ""));
1658 
1659     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1660     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1661 
1662 #ifndef NDEBUG
1663     VisitedLiveValues.insert(OriginalValue);
1664 #endif
1665   }
1666 }
1667 
1668 // Helper function for the "relocationViaAlloca". Similar to the
1669 // "insertRelocationStores" but works for rematerialized values.
1670 static void insertRematerializationStores(
1671     const RematerializedValueMapTy &RematerializedValues,
1672     DenseMap<Value *, Value *> &AllocaMap,
1673     DenseSet<Value *> &VisitedLiveValues) {
1674   for (auto RematerializedValuePair: RematerializedValues) {
1675     Instruction *RematerializedValue = RematerializedValuePair.first;
1676     Value *OriginalValue = RematerializedValuePair.second;
1677 
1678     assert(AllocaMap.count(OriginalValue) &&
1679            "Can not find alloca for rematerialized value");
1680     Value *Alloca = AllocaMap[OriginalValue];
1681 
1682     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1683     Store->insertAfter(RematerializedValue);
1684 
1685 #ifndef NDEBUG
1686     VisitedLiveValues.insert(OriginalValue);
1687 #endif
1688   }
1689 }
1690 
1691 /// Do all the relocation update via allocas and mem2reg
1692 static void relocationViaAlloca(
1693     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1694     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1695 #ifndef NDEBUG
1696   // record initial number of (static) allocas; we'll check we have the same
1697   // number when we get done.
1698   int InitialAllocaNum = 0;
1699   for (Instruction &I : F.getEntryBlock())
1700     if (isa<AllocaInst>(I))
1701       InitialAllocaNum++;
1702 #endif
1703 
1704   // TODO-PERF: change data structures, reserve
1705   DenseMap<Value *, Value *> AllocaMap;
1706   SmallVector<AllocaInst *, 200> PromotableAllocas;
1707   // Used later to chack that we have enough allocas to store all values
1708   std::size_t NumRematerializedValues = 0;
1709   PromotableAllocas.reserve(Live.size());
1710 
1711   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1712   // "PromotableAllocas"
1713   const DataLayout &DL = F.getParent()->getDataLayout();
1714   auto emitAllocaFor = [&](Value *LiveValue) {
1715     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1716                                         DL.getAllocaAddrSpace(), "",
1717                                         F.getEntryBlock().getFirstNonPHI());
1718     AllocaMap[LiveValue] = Alloca;
1719     PromotableAllocas.push_back(Alloca);
1720   };
1721 
1722   // Emit alloca for each live gc pointer
1723   for (Value *V : Live)
1724     emitAllocaFor(V);
1725 
1726   // Emit allocas for rematerialized values
1727   for (const auto &Info : Records)
1728     for (auto RematerializedValuePair : Info.RematerializedValues) {
1729       Value *OriginalValue = RematerializedValuePair.second;
1730       if (AllocaMap.count(OriginalValue) != 0)
1731         continue;
1732 
1733       emitAllocaFor(OriginalValue);
1734       ++NumRematerializedValues;
1735     }
1736 
1737   // The next two loops are part of the same conceptual operation.  We need to
1738   // insert a store to the alloca after the original def and at each
1739   // redefinition.  We need to insert a load before each use.  These are split
1740   // into distinct loops for performance reasons.
1741 
1742   // Update gc pointer after each statepoint: either store a relocated value or
1743   // null (if no relocated value was found for this gc pointer and it is not a
1744   // gc_result).  This must happen before we update the statepoint with load of
1745   // alloca otherwise we lose the link between statepoint and old def.
1746   for (const auto &Info : Records) {
1747     Value *Statepoint = Info.StatepointToken;
1748 
1749     // This will be used for consistency check
1750     DenseSet<Value *> VisitedLiveValues;
1751 
1752     // Insert stores for normal statepoint gc relocates
1753     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1754 
1755     // In case if it was invoke statepoint
1756     // we will insert stores for exceptional path gc relocates.
1757     if (isa<InvokeInst>(Statepoint)) {
1758       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1759                              VisitedLiveValues);
1760     }
1761 
1762     // Do similar thing with rematerialized values
1763     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1764                                   VisitedLiveValues);
1765 
1766     if (ClobberNonLive) {
1767       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1768       // the gc.statepoint.  This will turn some subtle GC problems into
1769       // slightly easier to debug SEGVs.  Note that on large IR files with
1770       // lots of gc.statepoints this is extremely costly both memory and time
1771       // wise.
1772       SmallVector<AllocaInst *, 64> ToClobber;
1773       for (auto Pair : AllocaMap) {
1774         Value *Def = Pair.first;
1775         AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1776 
1777         // This value was relocated
1778         if (VisitedLiveValues.count(Def)) {
1779           continue;
1780         }
1781         ToClobber.push_back(Alloca);
1782       }
1783 
1784       auto InsertClobbersAt = [&](Instruction *IP) {
1785         for (auto *AI : ToClobber) {
1786           auto PT = cast<PointerType>(AI->getAllocatedType());
1787           Constant *CPN = ConstantPointerNull::get(PT);
1788           StoreInst *Store = new StoreInst(CPN, AI);
1789           Store->insertBefore(IP);
1790         }
1791       };
1792 
1793       // Insert the clobbering stores.  These may get intermixed with the
1794       // gc.results and gc.relocates, but that's fine.
1795       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1796         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1797         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1798       } else {
1799         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1800       }
1801     }
1802   }
1803 
1804   // Update use with load allocas and add store for gc_relocated.
1805   for (auto Pair : AllocaMap) {
1806     Value *Def = Pair.first;
1807     Value *Alloca = Pair.second;
1808 
1809     // We pre-record the uses of allocas so that we dont have to worry about
1810     // later update that changes the user information..
1811 
1812     SmallVector<Instruction *, 20> Uses;
1813     // PERF: trade a linear scan for repeated reallocation
1814     Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1815     for (User *U : Def->users()) {
1816       if (!isa<ConstantExpr>(U)) {
1817         // If the def has a ConstantExpr use, then the def is either a
1818         // ConstantExpr use itself or null.  In either case
1819         // (recursively in the first, directly in the second), the oop
1820         // it is ultimately dependent on is null and this particular
1821         // use does not need to be fixed up.
1822         Uses.push_back(cast<Instruction>(U));
1823       }
1824     }
1825 
1826     std::sort(Uses.begin(), Uses.end());
1827     auto Last = std::unique(Uses.begin(), Uses.end());
1828     Uses.erase(Last, Uses.end());
1829 
1830     for (Instruction *Use : Uses) {
1831       if (isa<PHINode>(Use)) {
1832         PHINode *Phi = cast<PHINode>(Use);
1833         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1834           if (Def == Phi->getIncomingValue(i)) {
1835             LoadInst *Load = new LoadInst(
1836                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1837             Phi->setIncomingValue(i, Load);
1838           }
1839         }
1840       } else {
1841         LoadInst *Load = new LoadInst(Alloca, "", Use);
1842         Use->replaceUsesOfWith(Def, Load);
1843       }
1844     }
1845 
1846     // Emit store for the initial gc value.  Store must be inserted after load,
1847     // otherwise store will be in alloca's use list and an extra load will be
1848     // inserted before it.
1849     StoreInst *Store = new StoreInst(Def, Alloca);
1850     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1851       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1852         // InvokeInst is a TerminatorInst so the store need to be inserted
1853         // into its normal destination block.
1854         BasicBlock *NormalDest = Invoke->getNormalDest();
1855         Store->insertBefore(NormalDest->getFirstNonPHI());
1856       } else {
1857         assert(!Inst->isTerminator() &&
1858                "The only TerminatorInst that can produce a value is "
1859                "InvokeInst which is handled above.");
1860         Store->insertAfter(Inst);
1861       }
1862     } else {
1863       assert(isa<Argument>(Def));
1864       Store->insertAfter(cast<Instruction>(Alloca));
1865     }
1866   }
1867 
1868   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1869          "we must have the same allocas with lives");
1870   if (!PromotableAllocas.empty()) {
1871     // Apply mem2reg to promote alloca to SSA
1872     PromoteMemToReg(PromotableAllocas, DT);
1873   }
1874 
1875 #ifndef NDEBUG
1876   for (auto &I : F.getEntryBlock())
1877     if (isa<AllocaInst>(I))
1878       InitialAllocaNum--;
1879   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1880 #endif
1881 }
1882 
1883 /// Implement a unique function which doesn't require we sort the input
1884 /// vector.  Doing so has the effect of changing the output of a couple of
1885 /// tests in ways which make them less useful in testing fused safepoints.
1886 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1887   SmallSet<T, 8> Seen;
1888   Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }),
1889             Vec.end());
1890 }
1891 
1892 /// Insert holders so that each Value is obviously live through the entire
1893 /// lifetime of the call.
1894 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1895                                  SmallVectorImpl<CallInst *> &Holders) {
1896   if (Values.empty())
1897     // No values to hold live, might as well not insert the empty holder
1898     return;
1899 
1900   Module *M = CS.getInstruction()->getModule();
1901   // Use a dummy vararg function to actually hold the values live
1902   Function *Func = cast<Function>(M->getOrInsertFunction(
1903       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1904   if (CS.isCall()) {
1905     // For call safepoints insert dummy calls right after safepoint
1906     Holders.push_back(CallInst::Create(Func, Values, "",
1907                                        &*++CS.getInstruction()->getIterator()));
1908     return;
1909   }
1910   // For invoke safepooints insert dummy calls both in normal and
1911   // exceptional destination blocks
1912   auto *II = cast<InvokeInst>(CS.getInstruction());
1913   Holders.push_back(CallInst::Create(
1914       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1915   Holders.push_back(CallInst::Create(
1916       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1917 }
1918 
1919 static void findLiveReferences(
1920     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1921     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1922   GCPtrLivenessData OriginalLivenessData;
1923   computeLiveInValues(DT, F, OriginalLivenessData);
1924   for (size_t i = 0; i < records.size(); i++) {
1925     struct PartiallyConstructedSafepointRecord &info = records[i];
1926     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
1927   }
1928 }
1929 
1930 // Helper function for the "rematerializeLiveValues". It walks use chain
1931 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
1932 // the base or a value it cannot process. Only "simple" values are processed
1933 // (currently it is GEP's and casts). The returned root is  examined by the
1934 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
1935 // with all visited values.
1936 static Value* findRematerializableChainToBasePointer(
1937   SmallVectorImpl<Instruction*> &ChainToBase,
1938   Value *CurrentValue) {
1939   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1940     ChainToBase.push_back(GEP);
1941     return findRematerializableChainToBasePointer(ChainToBase,
1942                                                   GEP->getPointerOperand());
1943   }
1944 
1945   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1946     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1947       return CI;
1948 
1949     ChainToBase.push_back(CI);
1950     return findRematerializableChainToBasePointer(ChainToBase,
1951                                                   CI->getOperand(0));
1952   }
1953 
1954   // We have reached the root of the chain, which is either equal to the base or
1955   // is the first unsupported value along the use chain.
1956   return CurrentValue;
1957 }
1958 
1959 // Helper function for the "rematerializeLiveValues". Compute cost of the use
1960 // chain we are going to rematerialize.
1961 static unsigned
1962 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1963                        TargetTransformInfo &TTI) {
1964   unsigned Cost = 0;
1965 
1966   for (Instruction *Instr : Chain) {
1967     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1968       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1969              "non noop cast is found during rematerialization");
1970 
1971       Type *SrcTy = CI->getOperand(0)->getType();
1972       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI);
1973 
1974     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1975       // Cost of the address calculation
1976       Type *ValTy = GEP->getSourceElementType();
1977       Cost += TTI.getAddressComputationCost(ValTy);
1978 
1979       // And cost of the GEP itself
1980       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1981       //       allowed for the external usage)
1982       if (!GEP->hasAllConstantIndices())
1983         Cost += 2;
1984 
1985     } else {
1986       llvm_unreachable("unsupported instruciton type during rematerialization");
1987     }
1988   }
1989 
1990   return Cost;
1991 }
1992 
1993 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
1994   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
1995   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
1996       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
1997     return false;
1998   // Map of incoming values and their corresponding basic blocks of
1999   // OrigRootPhi.
2000   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
2001   for (unsigned i = 0; i < PhiNum; i++)
2002     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2003         OrigRootPhi.getIncomingBlock(i);
2004 
2005   // Both current and base PHIs should have same incoming values and
2006   // the same basic blocks corresponding to the incoming values.
2007   for (unsigned i = 0; i < PhiNum; i++) {
2008     auto CIVI =
2009         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2010     if (CIVI == CurrentIncomingValues.end())
2011       return false;
2012     BasicBlock *CurrentIncomingBB = CIVI->second;
2013     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2014       return false;
2015   }
2016   return true;
2017 }
2018 
2019 // From the statepoint live set pick values that are cheaper to recompute then
2020 // to relocate. Remove this values from the live set, rematerialize them after
2021 // statepoint and record them in "Info" structure. Note that similar to
2022 // relocated values we don't do any user adjustments here.
2023 static void rematerializeLiveValues(CallSite CS,
2024                                     PartiallyConstructedSafepointRecord &Info,
2025                                     TargetTransformInfo &TTI) {
2026   const unsigned int ChainLengthThreshold = 10;
2027 
2028   // Record values we are going to delete from this statepoint live set.
2029   // We can not di this in following loop due to iterator invalidation.
2030   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2031 
2032   for (Value *LiveValue: Info.LiveSet) {
2033     // For each live pointer find it's defining chain
2034     SmallVector<Instruction *, 3> ChainToBase;
2035     assert(Info.PointerToBase.count(LiveValue));
2036     Value *RootOfChain =
2037       findRematerializableChainToBasePointer(ChainToBase,
2038                                              LiveValue);
2039 
2040     // Nothing to do, or chain is too long
2041     if ( ChainToBase.size() == 0 ||
2042         ChainToBase.size() > ChainLengthThreshold)
2043       continue;
2044 
2045     // Handle the scenario where the RootOfChain is not equal to the
2046     // Base Value, but they are essentially the same phi values.
2047     if (RootOfChain != Info.PointerToBase[LiveValue]) {
2048       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2049       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2050       if (!OrigRootPhi || !AlternateRootPhi)
2051         continue;
2052       // PHI nodes that have the same incoming values, and belonging to the same
2053       // basic blocks are essentially the same SSA value.  When the original phi
2054       // has incoming values with different base pointers, the original phi is
2055       // marked as conflict, and an additional `AlternateRootPhi` with the same
2056       // incoming values get generated by the findBasePointer function. We need
2057       // to identify the newly generated AlternateRootPhi (.base version of phi)
2058       // and RootOfChain (the original phi node itself) are the same, so that we
2059       // can rematerialize the gep and casts. This is a workaround for the
2060       // deficiency in the findBasePointer algorithm.
2061       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2062         continue;
2063       // Now that the phi nodes are proved to be the same, assert that
2064       // findBasePointer's newly generated AlternateRootPhi is present in the
2065       // liveset of the call.
2066       assert(Info.LiveSet.count(AlternateRootPhi));
2067     }
2068     // Compute cost of this chain
2069     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
2070     // TODO: We can also account for cases when we will be able to remove some
2071     //       of the rematerialized values by later optimization passes. I.e if
2072     //       we rematerialized several intersecting chains. Or if original values
2073     //       don't have any uses besides this statepoint.
2074 
2075     // For invokes we need to rematerialize each chain twice - for normal and
2076     // for unwind basic blocks. Model this by multiplying cost by two.
2077     if (CS.isInvoke()) {
2078       Cost *= 2;
2079     }
2080     // If it's too expensive - skip it
2081     if (Cost >= RematerializationThreshold)
2082       continue;
2083 
2084     // Remove value from the live set
2085     LiveValuesToBeDeleted.push_back(LiveValue);
2086 
2087     // Clone instructions and record them inside "Info" structure
2088 
2089     // Walk backwards to visit top-most instructions first
2090     std::reverse(ChainToBase.begin(), ChainToBase.end());
2091 
2092     // Utility function which clones all instructions from "ChainToBase"
2093     // and inserts them before "InsertBefore". Returns rematerialized value
2094     // which should be used after statepoint.
2095     auto rematerializeChain = [&ChainToBase](
2096         Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2097       Instruction *LastClonedValue = nullptr;
2098       Instruction *LastValue = nullptr;
2099       for (Instruction *Instr: ChainToBase) {
2100         // Only GEP's and casts are supported as we need to be careful to not
2101         // introduce any new uses of pointers not in the liveset.
2102         // Note that it's fine to introduce new uses of pointers which were
2103         // otherwise not used after this statepoint.
2104         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2105 
2106         Instruction *ClonedValue = Instr->clone();
2107         ClonedValue->insertBefore(InsertBefore);
2108         ClonedValue->setName(Instr->getName() + ".remat");
2109 
2110         // If it is not first instruction in the chain then it uses previously
2111         // cloned value. We should update it to use cloned value.
2112         if (LastClonedValue) {
2113           assert(LastValue);
2114           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2115 #ifndef NDEBUG
2116           for (auto OpValue : ClonedValue->operand_values()) {
2117             // Assert that cloned instruction does not use any instructions from
2118             // this chain other than LastClonedValue
2119             assert(!is_contained(ChainToBase, OpValue) &&
2120                    "incorrect use in rematerialization chain");
2121             // Assert that the cloned instruction does not use the RootOfChain
2122             // or the AlternateLiveBase.
2123             assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2124           }
2125 #endif
2126         } else {
2127           // For the first instruction, replace the use of unrelocated base i.e.
2128           // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2129           // live set. They have been proved to be the same PHI nodes.  Note
2130           // that the *only* use of the RootOfChain in the ChainToBase list is
2131           // the first Value in the list.
2132           if (RootOfChain != AlternateLiveBase)
2133             ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2134         }
2135 
2136         LastClonedValue = ClonedValue;
2137         LastValue = Instr;
2138       }
2139       assert(LastClonedValue);
2140       return LastClonedValue;
2141     };
2142 
2143     // Different cases for calls and invokes. For invokes we need to clone
2144     // instructions both on normal and unwind path.
2145     if (CS.isCall()) {
2146       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
2147       assert(InsertBefore);
2148       Instruction *RematerializedValue = rematerializeChain(
2149           InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2150       Info.RematerializedValues[RematerializedValue] = LiveValue;
2151     } else {
2152       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
2153 
2154       Instruction *NormalInsertBefore =
2155           &*Invoke->getNormalDest()->getFirstInsertionPt();
2156       Instruction *UnwindInsertBefore =
2157           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2158 
2159       Instruction *NormalRematerializedValue = rematerializeChain(
2160           NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2161       Instruction *UnwindRematerializedValue = rematerializeChain(
2162           UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2163 
2164       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2165       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2166     }
2167   }
2168 
2169   // Remove rematerializaed values from the live set
2170   for (auto LiveValue: LiveValuesToBeDeleted) {
2171     Info.LiveSet.remove(LiveValue);
2172   }
2173 }
2174 
2175 static bool insertParsePoints(Function &F, DominatorTree &DT,
2176                               TargetTransformInfo &TTI,
2177                               SmallVectorImpl<CallSite> &ToUpdate) {
2178 #ifndef NDEBUG
2179   // sanity check the input
2180   std::set<CallSite> Uniqued;
2181   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2182   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2183 
2184   for (CallSite CS : ToUpdate)
2185     assert(CS.getInstruction()->getFunction() == &F);
2186 #endif
2187 
2188   // When inserting gc.relocates for invokes, we need to be able to insert at
2189   // the top of the successor blocks.  See the comment on
2190   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2191   // may restructure the CFG.
2192   for (CallSite CS : ToUpdate) {
2193     if (!CS.isInvoke())
2194       continue;
2195     auto *II = cast<InvokeInst>(CS.getInstruction());
2196     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2197     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2198   }
2199 
2200   // A list of dummy calls added to the IR to keep various values obviously
2201   // live in the IR.  We'll remove all of these when done.
2202   SmallVector<CallInst *, 64> Holders;
2203 
2204   // Insert a dummy call with all of the deopt operands we'll need for the
2205   // actual safepoint insertion as arguments.  This ensures reference operands
2206   // in the deopt argument list are considered live through the safepoint (and
2207   // thus makes sure they get relocated.)
2208   for (CallSite CS : ToUpdate) {
2209     SmallVector<Value *, 64> DeoptValues;
2210 
2211     for (Value *Arg : GetDeoptBundleOperands(CS)) {
2212       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2213              "support for FCA unimplemented");
2214       if (isHandledGCPointerType(Arg->getType()))
2215         DeoptValues.push_back(Arg);
2216     }
2217 
2218     insertUseHolderAfter(CS, DeoptValues, Holders);
2219   }
2220 
2221   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2222 
2223   // A) Identify all gc pointers which are statically live at the given call
2224   // site.
2225   findLiveReferences(F, DT, ToUpdate, Records);
2226 
2227   // B) Find the base pointers for each live pointer
2228   /* scope for caching */ {
2229     // Cache the 'defining value' relation used in the computation and
2230     // insertion of base phis and selects.  This ensures that we don't insert
2231     // large numbers of duplicate base_phis.
2232     DefiningValueMapTy DVCache;
2233 
2234     for (size_t i = 0; i < Records.size(); i++) {
2235       PartiallyConstructedSafepointRecord &info = Records[i];
2236       findBasePointers(DT, DVCache, ToUpdate[i], info);
2237     }
2238   } // end of cache scope
2239 
2240   // The base phi insertion logic (for any safepoint) may have inserted new
2241   // instructions which are now live at some safepoint.  The simplest such
2242   // example is:
2243   // loop:
2244   //   phi a  <-- will be a new base_phi here
2245   //   safepoint 1 <-- that needs to be live here
2246   //   gep a + 1
2247   //   safepoint 2
2248   //   br loop
2249   // We insert some dummy calls after each safepoint to definitely hold live
2250   // the base pointers which were identified for that safepoint.  We'll then
2251   // ask liveness for _every_ base inserted to see what is now live.  Then we
2252   // remove the dummy calls.
2253   Holders.reserve(Holders.size() + Records.size());
2254   for (size_t i = 0; i < Records.size(); i++) {
2255     PartiallyConstructedSafepointRecord &Info = Records[i];
2256 
2257     SmallVector<Value *, 128> Bases;
2258     for (auto Pair : Info.PointerToBase)
2259       Bases.push_back(Pair.second);
2260 
2261     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2262   }
2263 
2264   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2265   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2266   // not the key issue.
2267   recomputeLiveInValues(F, DT, ToUpdate, Records);
2268 
2269   if (PrintBasePointers) {
2270     for (auto &Info : Records) {
2271       errs() << "Base Pairs: (w/Relocation)\n";
2272       for (auto Pair : Info.PointerToBase) {
2273         errs() << " derived ";
2274         Pair.first->printAsOperand(errs(), false);
2275         errs() << " base ";
2276         Pair.second->printAsOperand(errs(), false);
2277         errs() << "\n";
2278       }
2279     }
2280   }
2281 
2282   // It is possible that non-constant live variables have a constant base.  For
2283   // example, a GEP with a variable offset from a global.  In this case we can
2284   // remove it from the liveset.  We already don't add constants to the liveset
2285   // because we assume they won't move at runtime and the GC doesn't need to be
2286   // informed about them.  The same reasoning applies if the base is constant.
2287   // Note that the relocation placement code relies on this filtering for
2288   // correctness as it expects the base to be in the liveset, which isn't true
2289   // if the base is constant.
2290   for (auto &Info : Records)
2291     for (auto &BasePair : Info.PointerToBase)
2292       if (isa<Constant>(BasePair.second))
2293         Info.LiveSet.remove(BasePair.first);
2294 
2295   for (CallInst *CI : Holders)
2296     CI->eraseFromParent();
2297 
2298   Holders.clear();
2299 
2300   // In order to reduce live set of statepoint we might choose to rematerialize
2301   // some values instead of relocating them. This is purely an optimization and
2302   // does not influence correctness.
2303   for (size_t i = 0; i < Records.size(); i++)
2304     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2305 
2306   // We need this to safely RAUW and delete call or invoke return values that
2307   // may themselves be live over a statepoint.  For details, please see usage in
2308   // makeStatepointExplicitImpl.
2309   std::vector<DeferredReplacement> Replacements;
2310 
2311   // Now run through and replace the existing statepoints with new ones with
2312   // the live variables listed.  We do not yet update uses of the values being
2313   // relocated. We have references to live variables that need to
2314   // survive to the last iteration of this loop.  (By construction, the
2315   // previous statepoint can not be a live variable, thus we can and remove
2316   // the old statepoint calls as we go.)
2317   for (size_t i = 0; i < Records.size(); i++)
2318     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2319 
2320   ToUpdate.clear(); // prevent accident use of invalid CallSites
2321 
2322   for (auto &PR : Replacements)
2323     PR.doReplacement();
2324 
2325   Replacements.clear();
2326 
2327   for (auto &Info : Records) {
2328     // These live sets may contain state Value pointers, since we replaced calls
2329     // with operand bundles with calls wrapped in gc.statepoint, and some of
2330     // those calls may have been def'ing live gc pointers.  Clear these out to
2331     // avoid accidentally using them.
2332     //
2333     // TODO: We should create a separate data structure that does not contain
2334     // these live sets, and migrate to using that data structure from this point
2335     // onward.
2336     Info.LiveSet.clear();
2337     Info.PointerToBase.clear();
2338   }
2339 
2340   // Do all the fixups of the original live variables to their relocated selves
2341   SmallVector<Value *, 128> Live;
2342   for (size_t i = 0; i < Records.size(); i++) {
2343     PartiallyConstructedSafepointRecord &Info = Records[i];
2344 
2345     // We can't simply save the live set from the original insertion.  One of
2346     // the live values might be the result of a call which needs a safepoint.
2347     // That Value* no longer exists and we need to use the new gc_result.
2348     // Thankfully, the live set is embedded in the statepoint (and updated), so
2349     // we just grab that.
2350     Statepoint Statepoint(Info.StatepointToken);
2351     Live.insert(Live.end(), Statepoint.gc_args_begin(),
2352                 Statepoint.gc_args_end());
2353 #ifndef NDEBUG
2354     // Do some basic sanity checks on our liveness results before performing
2355     // relocation.  Relocation can and will turn mistakes in liveness results
2356     // into non-sensical code which is must harder to debug.
2357     // TODO: It would be nice to test consistency as well
2358     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2359            "statepoint must be reachable or liveness is meaningless");
2360     for (Value *V : Statepoint.gc_args()) {
2361       if (!isa<Instruction>(V))
2362         // Non-instruction values trivial dominate all possible uses
2363         continue;
2364       auto *LiveInst = cast<Instruction>(V);
2365       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2366              "unreachable values should never be live");
2367       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2368              "basic SSA liveness expectation violated by liveness analysis");
2369     }
2370 #endif
2371   }
2372   unique_unsorted(Live);
2373 
2374 #ifndef NDEBUG
2375   // sanity check
2376   for (auto *Ptr : Live)
2377     assert(isHandledGCPointerType(Ptr->getType()) &&
2378            "must be a gc pointer type");
2379 #endif
2380 
2381   relocationViaAlloca(F, DT, Live, Records);
2382   return !Records.empty();
2383 }
2384 
2385 // Handles both return values and arguments for Functions and CallSites.
2386 template <typename AttrHolder>
2387 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2388                                       unsigned Index) {
2389   AttrBuilder R;
2390   if (AH.getDereferenceableBytes(Index))
2391     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2392                                   AH.getDereferenceableBytes(Index)));
2393   if (AH.getDereferenceableOrNullBytes(Index))
2394     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2395                                   AH.getDereferenceableOrNullBytes(Index)));
2396   if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
2397     R.addAttribute(Attribute::NoAlias);
2398 
2399   if (!R.empty())
2400     AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2401 }
2402 
2403 static void stripNonValidAttributesFromPrototype(Function &F) {
2404   LLVMContext &Ctx = F.getContext();
2405 
2406   for (Argument &A : F.args())
2407     if (isa<PointerType>(A.getType()))
2408       RemoveNonValidAttrAtIndex(Ctx, F,
2409                                 A.getArgNo() + AttributeList::FirstArgIndex);
2410 
2411   if (isa<PointerType>(F.getReturnType()))
2412     RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2413 }
2414 
2415 /// Certain metadata on instructions are invalid after running RS4GC.
2416 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2417 /// optimize functions. We drop such metadata on the instruction.
2418 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2419   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2420     return;
2421   // These are the attributes that are still valid on loads and stores after
2422   // RS4GC.
2423   // The metadata implying dereferenceability and noalias are (conservatively)
2424   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2425   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2426   // touch the entire heap including noalias objects. Note: The reasoning is
2427   // same as stripping the dereferenceability and noalias attributes that are
2428   // analogous to the metadata counterparts.
2429   // We also drop the invariant.load metadata on the load because that metadata
2430   // implies the address operand to the load points to memory that is never
2431   // changed once it became dereferenceable. This is no longer true after RS4GC.
2432   // Similar reasoning applies to invariant.group metadata, which applies to
2433   // loads within a group.
2434   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2435                          LLVMContext::MD_range,
2436                          LLVMContext::MD_alias_scope,
2437                          LLVMContext::MD_nontemporal,
2438                          LLVMContext::MD_nonnull,
2439                          LLVMContext::MD_align,
2440                          LLVMContext::MD_type};
2441 
2442   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2443   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2444 }
2445 
2446 static void stripNonValidDataFromBody(Function &F) {
2447   if (F.empty())
2448     return;
2449 
2450   LLVMContext &Ctx = F.getContext();
2451   MDBuilder Builder(Ctx);
2452 
2453   // Set of invariantstart instructions that we need to remove.
2454   // Use this to avoid invalidating the instruction iterator.
2455   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2456 
2457   for (Instruction &I : instructions(F)) {
2458     // invariant.start on memory location implies that the referenced memory
2459     // location is constant and unchanging. This is no longer true after
2460     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2461     // which frees the entire heap and the presence of invariant.start allows
2462     // the optimizer to sink the load of a memory location past a statepoint,
2463     // which is incorrect.
2464     if (auto *II = dyn_cast<IntrinsicInst>(&I))
2465       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2466         InvariantStartInstructions.push_back(II);
2467         continue;
2468       }
2469 
2470     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2471       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2472       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2473     }
2474 
2475     stripInvalidMetadataFromInstruction(I);
2476 
2477     if (CallSite CS = CallSite(&I)) {
2478       for (int i = 0, e = CS.arg_size(); i != e; i++)
2479         if (isa<PointerType>(CS.getArgument(i)->getType()))
2480           RemoveNonValidAttrAtIndex(Ctx, CS, i + AttributeList::FirstArgIndex);
2481       if (isa<PointerType>(CS.getType()))
2482         RemoveNonValidAttrAtIndex(Ctx, CS, AttributeList::ReturnIndex);
2483     }
2484   }
2485 
2486   // Delete the invariant.start instructions and RAUW undef.
2487   for (auto *II : InvariantStartInstructions) {
2488     II->replaceAllUsesWith(UndefValue::get(II->getType()));
2489     II->eraseFromParent();
2490   }
2491 }
2492 
2493 /// Returns true if this function should be rewritten by this pass.  The main
2494 /// point of this function is as an extension point for custom logic.
2495 static bool shouldRewriteStatepointsIn(Function &F) {
2496   // TODO: This should check the GCStrategy
2497   if (F.hasGC()) {
2498     const auto &FunctionGCName = F.getGC();
2499     const StringRef StatepointExampleName("statepoint-example");
2500     const StringRef CoreCLRName("coreclr");
2501     return (StatepointExampleName == FunctionGCName) ||
2502            (CoreCLRName == FunctionGCName);
2503   } else
2504     return false;
2505 }
2506 
2507 static void stripNonValidData(Module &M) {
2508 #ifndef NDEBUG
2509   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2510 #endif
2511 
2512   for (Function &F : M)
2513     stripNonValidAttributesFromPrototype(F);
2514 
2515   for (Function &F : M)
2516     stripNonValidDataFromBody(F);
2517 }
2518 
2519 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2520                                             TargetTransformInfo &TTI,
2521                                             const TargetLibraryInfo &TLI) {
2522   assert(!F.isDeclaration() && !F.empty() &&
2523          "need function body to rewrite statepoints in");
2524   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2525 
2526   auto NeedsRewrite = [&TLI](Instruction &I) {
2527     if (ImmutableCallSite CS = ImmutableCallSite(&I))
2528       return !callsGCLeafFunction(CS, TLI) && !isStatepoint(CS);
2529     return false;
2530   };
2531 
2532 
2533   // Delete any unreachable statepoints so that we don't have unrewritten
2534   // statepoints surviving this pass.  This makes testing easier and the
2535   // resulting IR less confusing to human readers.
2536   DeferredDominance DD(DT);
2537   bool MadeChange = removeUnreachableBlocks(F, nullptr, &DD);
2538   DD.flush();
2539 
2540   // Gather all the statepoints which need rewritten.  Be careful to only
2541   // consider those in reachable code since we need to ask dominance queries
2542   // when rewriting.  We'll delete the unreachable ones in a moment.
2543   SmallVector<CallSite, 64> ParsePointNeeded;
2544   for (Instruction &I : instructions(F)) {
2545     // TODO: only the ones with the flag set!
2546     if (NeedsRewrite(I)) {
2547       // NOTE removeUnreachableBlocks() is stronger than
2548       // DominatorTree::isReachableFromEntry(). In other words
2549       // removeUnreachableBlocks can remove some blocks for which
2550       // isReachableFromEntry() returns true.
2551       assert(DT.isReachableFromEntry(I.getParent()) &&
2552             "no unreachable blocks expected");
2553       ParsePointNeeded.push_back(CallSite(&I));
2554     }
2555   }
2556 
2557   // Return early if no work to do.
2558   if (ParsePointNeeded.empty())
2559     return MadeChange;
2560 
2561   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2562   // These are created by LCSSA.  They have the effect of increasing the size
2563   // of liveness sets for no good reason.  It may be harder to do this post
2564   // insertion since relocations and base phis can confuse things.
2565   for (BasicBlock &BB : F)
2566     if (BB.getUniquePredecessor()) {
2567       MadeChange = true;
2568       FoldSingleEntryPHINodes(&BB);
2569     }
2570 
2571   // Before we start introducing relocations, we want to tweak the IR a bit to
2572   // avoid unfortunate code generation effects.  The main example is that we
2573   // want to try to make sure the comparison feeding a branch is after any
2574   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2575   // values feeding a branch after relocation.  This is semantically correct,
2576   // but results in extra register pressure since both the pre-relocation and
2577   // post-relocation copies must be available in registers.  For code without
2578   // relocations this is handled elsewhere, but teaching the scheduler to
2579   // reverse the transform we're about to do would be slightly complex.
2580   // Note: This may extend the live range of the inputs to the icmp and thus
2581   // increase the liveset of any statepoint we move over.  This is profitable
2582   // as long as all statepoints are in rare blocks.  If we had in-register
2583   // lowering for live values this would be a much safer transform.
2584   auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2585     if (auto *BI = dyn_cast<BranchInst>(TI))
2586       if (BI->isConditional())
2587         return dyn_cast<Instruction>(BI->getCondition());
2588     // TODO: Extend this to handle switches
2589     return nullptr;
2590   };
2591   for (BasicBlock &BB : F) {
2592     TerminatorInst *TI = BB.getTerminator();
2593     if (auto *Cond = getConditionInst(TI))
2594       // TODO: Handle more than just ICmps here.  We should be able to move
2595       // most instructions without side effects or memory access.
2596       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2597         MadeChange = true;
2598         Cond->moveBefore(TI);
2599       }
2600   }
2601 
2602   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2603   return MadeChange;
2604 }
2605 
2606 // liveness computation via standard dataflow
2607 // -------------------------------------------------------------------
2608 
2609 // TODO: Consider using bitvectors for liveness, the set of potentially
2610 // interesting values should be small and easy to pre-compute.
2611 
2612 /// Compute the live-in set for the location rbegin starting from
2613 /// the live-out set of the basic block
2614 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2615                                 BasicBlock::reverse_iterator End,
2616                                 SetVector<Value *> &LiveTmp) {
2617   for (auto &I : make_range(Begin, End)) {
2618     // KILL/Def - Remove this definition from LiveIn
2619     LiveTmp.remove(&I);
2620 
2621     // Don't consider *uses* in PHI nodes, we handle their contribution to
2622     // predecessor blocks when we seed the LiveOut sets
2623     if (isa<PHINode>(I))
2624       continue;
2625 
2626     // USE - Add to the LiveIn set for this instruction
2627     for (Value *V : I.operands()) {
2628       assert(!isUnhandledGCPointerType(V->getType()) &&
2629              "support for FCA unimplemented");
2630       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2631         // The choice to exclude all things constant here is slightly subtle.
2632         // There are two independent reasons:
2633         // - We assume that things which are constant (from LLVM's definition)
2634         // do not move at runtime.  For example, the address of a global
2635         // variable is fixed, even though it's contents may not be.
2636         // - Second, we can't disallow arbitrary inttoptr constants even
2637         // if the language frontend does.  Optimization passes are free to
2638         // locally exploit facts without respect to global reachability.  This
2639         // can create sections of code which are dynamically unreachable and
2640         // contain just about anything.  (see constants.ll in tests)
2641         LiveTmp.insert(V);
2642       }
2643     }
2644   }
2645 }
2646 
2647 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2648   for (BasicBlock *Succ : successors(BB)) {
2649     for (auto &I : *Succ) {
2650       PHINode *PN = dyn_cast<PHINode>(&I);
2651       if (!PN)
2652         break;
2653 
2654       Value *V = PN->getIncomingValueForBlock(BB);
2655       assert(!isUnhandledGCPointerType(V->getType()) &&
2656              "support for FCA unimplemented");
2657       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2658         LiveTmp.insert(V);
2659     }
2660   }
2661 }
2662 
2663 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2664   SetVector<Value *> KillSet;
2665   for (Instruction &I : *BB)
2666     if (isHandledGCPointerType(I.getType()))
2667       KillSet.insert(&I);
2668   return KillSet;
2669 }
2670 
2671 #ifndef NDEBUG
2672 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2673 /// sanity check for the liveness computation.
2674 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2675                           TerminatorInst *TI, bool TermOkay = false) {
2676   for (Value *V : Live) {
2677     if (auto *I = dyn_cast<Instruction>(V)) {
2678       // The terminator can be a member of the LiveOut set.  LLVM's definition
2679       // of instruction dominance states that V does not dominate itself.  As
2680       // such, we need to special case this to allow it.
2681       if (TermOkay && TI == I)
2682         continue;
2683       assert(DT.dominates(I, TI) &&
2684              "basic SSA liveness expectation violated by liveness analysis");
2685     }
2686   }
2687 }
2688 
2689 /// Check that all the liveness sets used during the computation of liveness
2690 /// obey basic SSA properties.  This is useful for finding cases where we miss
2691 /// a def.
2692 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2693                           BasicBlock &BB) {
2694   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2695   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2696   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2697 }
2698 #endif
2699 
2700 static void computeLiveInValues(DominatorTree &DT, Function &F,
2701                                 GCPtrLivenessData &Data) {
2702   SmallSetVector<BasicBlock *, 32> Worklist;
2703 
2704   // Seed the liveness for each individual block
2705   for (BasicBlock &BB : F) {
2706     Data.KillSet[&BB] = computeKillSet(&BB);
2707     Data.LiveSet[&BB].clear();
2708     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2709 
2710 #ifndef NDEBUG
2711     for (Value *Kill : Data.KillSet[&BB])
2712       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2713 #endif
2714 
2715     Data.LiveOut[&BB] = SetVector<Value *>();
2716     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2717     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2718     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2719     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2720     if (!Data.LiveIn[&BB].empty())
2721       Worklist.insert(pred_begin(&BB), pred_end(&BB));
2722   }
2723 
2724   // Propagate that liveness until stable
2725   while (!Worklist.empty()) {
2726     BasicBlock *BB = Worklist.pop_back_val();
2727 
2728     // Compute our new liveout set, then exit early if it hasn't changed despite
2729     // the contribution of our successor.
2730     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2731     const auto OldLiveOutSize = LiveOut.size();
2732     for (BasicBlock *Succ : successors(BB)) {
2733       assert(Data.LiveIn.count(Succ));
2734       LiveOut.set_union(Data.LiveIn[Succ]);
2735     }
2736     // assert OutLiveOut is a subset of LiveOut
2737     if (OldLiveOutSize == LiveOut.size()) {
2738       // If the sets are the same size, then we didn't actually add anything
2739       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
2740       // hasn't changed.
2741       continue;
2742     }
2743     Data.LiveOut[BB] = LiveOut;
2744 
2745     // Apply the effects of this basic block
2746     SetVector<Value *> LiveTmp = LiveOut;
2747     LiveTmp.set_union(Data.LiveSet[BB]);
2748     LiveTmp.set_subtract(Data.KillSet[BB]);
2749 
2750     assert(Data.LiveIn.count(BB));
2751     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2752     // assert: OldLiveIn is a subset of LiveTmp
2753     if (OldLiveIn.size() != LiveTmp.size()) {
2754       Data.LiveIn[BB] = LiveTmp;
2755       Worklist.insert(pred_begin(BB), pred_end(BB));
2756     }
2757   } // while (!Worklist.empty())
2758 
2759 #ifndef NDEBUG
2760   // Sanity check our output against SSA properties.  This helps catch any
2761   // missing kills during the above iteration.
2762   for (BasicBlock &BB : F)
2763     checkBasicSSA(DT, Data, BB);
2764 #endif
2765 }
2766 
2767 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2768                               StatepointLiveSetTy &Out) {
2769   BasicBlock *BB = Inst->getParent();
2770 
2771   // Note: The copy is intentional and required
2772   assert(Data.LiveOut.count(BB));
2773   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2774 
2775   // We want to handle the statepoint itself oddly.  It's
2776   // call result is not live (normal), nor are it's arguments
2777   // (unless they're used again later).  This adjustment is
2778   // specifically what we need to relocate
2779   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
2780                       LiveOut);
2781   LiveOut.remove(Inst);
2782   Out.insert(LiveOut.begin(), LiveOut.end());
2783 }
2784 
2785 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2786                                   CallSite CS,
2787                                   PartiallyConstructedSafepointRecord &Info) {
2788   Instruction *Inst = CS.getInstruction();
2789   StatepointLiveSetTy Updated;
2790   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2791 
2792   // We may have base pointers which are now live that weren't before.  We need
2793   // to update the PointerToBase structure to reflect this.
2794   for (auto V : Updated)
2795     if (Info.PointerToBase.insert({V, V}).second) {
2796       assert(isKnownBaseResult(V) &&
2797              "Can't find base for unexpected live value!");
2798       continue;
2799     }
2800 
2801 #ifndef NDEBUG
2802   for (auto V : Updated)
2803     assert(Info.PointerToBase.count(V) &&
2804            "Must be able to find base for live value!");
2805 #endif
2806 
2807   // Remove any stale base mappings - this can happen since our liveness is
2808   // more precise then the one inherent in the base pointer analysis.
2809   DenseSet<Value *> ToErase;
2810   for (auto KVPair : Info.PointerToBase)
2811     if (!Updated.count(KVPair.first))
2812       ToErase.insert(KVPair.first);
2813 
2814   for (auto *V : ToErase)
2815     Info.PointerToBase.erase(V);
2816 
2817 #ifndef NDEBUG
2818   for (auto KVPair : Info.PointerToBase)
2819     assert(Updated.count(KVPair.first) && "record for non-live value");
2820 #endif
2821 
2822   Info.LiveSet = Updated;
2823 }
2824