1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstIterator.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/IR/Statepoint.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Transforms/Scalar.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/Cloning.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 44 45 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 46 47 using namespace llvm; 48 49 // Print tracing output 50 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 51 cl::init(false)); 52 53 // Print the liveset found at the insert location 54 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 55 cl::init(false)); 56 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 57 cl::init(false)); 58 // Print out the base pointers for debugging 59 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 60 cl::init(false)); 61 62 // Cost threshold measuring when it is profitable to rematerialize value instead 63 // of relocating it 64 static cl::opt<unsigned> 65 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 66 cl::init(6)); 67 68 #ifdef XDEBUG 69 static bool ClobberNonLive = true; 70 #else 71 static bool ClobberNonLive = false; 72 #endif 73 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 74 cl::location(ClobberNonLive), 75 cl::Hidden); 76 77 namespace { 78 struct RewriteStatepointsForGC : public ModulePass { 79 static char ID; // Pass identification, replacement for typeid 80 81 RewriteStatepointsForGC() : ModulePass(ID) { 82 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 83 } 84 bool runOnFunction(Function &F); 85 bool runOnModule(Module &M) override { 86 bool Changed = false; 87 for (Function &F : M) 88 Changed |= runOnFunction(F); 89 90 if (Changed) { 91 // stripDereferenceabilityInfo asserts that shouldRewriteStatepointsIn 92 // returns true for at least one function in the module. Since at least 93 // one function changed, we know that the precondition is satisfied. 94 stripDereferenceabilityInfo(M); 95 } 96 97 return Changed; 98 } 99 100 void getAnalysisUsage(AnalysisUsage &AU) const override { 101 // We add and rewrite a bunch of instructions, but don't really do much 102 // else. We could in theory preserve a lot more analyses here. 103 AU.addRequired<DominatorTreeWrapperPass>(); 104 AU.addRequired<TargetTransformInfoWrapperPass>(); 105 } 106 107 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 108 /// dereferenceability that are no longer valid/correct after 109 /// RewriteStatepointsForGC has run. This is because semantically, after 110 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 111 /// heap. stripDereferenceabilityInfo (conservatively) restores correctness 112 /// by erasing all attributes in the module that externally imply 113 /// dereferenceability. 114 /// 115 void stripDereferenceabilityInfo(Module &M); 116 117 // Helpers for stripDereferenceabilityInfo 118 void stripDereferenceabilityInfoFromBody(Function &F); 119 void stripDereferenceabilityInfoFromPrototype(Function &F); 120 }; 121 } // namespace 122 123 char RewriteStatepointsForGC::ID = 0; 124 125 ModulePass *llvm::createRewriteStatepointsForGCPass() { 126 return new RewriteStatepointsForGC(); 127 } 128 129 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 130 "Make relocations explicit at statepoints", false, false) 131 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 132 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 133 "Make relocations explicit at statepoints", false, false) 134 135 namespace { 136 struct GCPtrLivenessData { 137 /// Values defined in this block. 138 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 139 /// Values used in this block (and thus live); does not included values 140 /// killed within this block. 141 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 142 143 /// Values live into this basic block (i.e. used by any 144 /// instruction in this basic block or ones reachable from here) 145 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 146 147 /// Values live out of this basic block (i.e. live into 148 /// any successor block) 149 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 150 }; 151 152 // The type of the internal cache used inside the findBasePointers family 153 // of functions. From the callers perspective, this is an opaque type and 154 // should not be inspected. 155 // 156 // In the actual implementation this caches two relations: 157 // - The base relation itself (i.e. this pointer is based on that one) 158 // - The base defining value relation (i.e. before base_phi insertion) 159 // Generally, after the execution of a full findBasePointer call, only the 160 // base relation will remain. Internally, we add a mixture of the two 161 // types, then update all the second type to the first type 162 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 163 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 164 typedef DenseMap<Instruction *, Value *> RematerializedValueMapTy; 165 166 struct PartiallyConstructedSafepointRecord { 167 /// The set of values known to be live accross this safepoint 168 StatepointLiveSetTy liveset; 169 170 /// Mapping from live pointers to a base-defining-value 171 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 172 173 /// The *new* gc.statepoint instruction itself. This produces the token 174 /// that normal path gc.relocates and the gc.result are tied to. 175 Instruction *StatepointToken; 176 177 /// Instruction to which exceptional gc relocates are attached 178 /// Makes it easier to iterate through them during relocationViaAlloca. 179 Instruction *UnwindToken; 180 181 /// Record live values we are rematerialized instead of relocating. 182 /// They are not included into 'liveset' field. 183 /// Maps rematerialized copy to it's original value. 184 RematerializedValueMapTy RematerializedValues; 185 }; 186 } 187 188 /// Compute the live-in set for every basic block in the function 189 static void computeLiveInValues(DominatorTree &DT, Function &F, 190 GCPtrLivenessData &Data); 191 192 /// Given results from the dataflow liveness computation, find the set of live 193 /// Values at a particular instruction. 194 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 195 StatepointLiveSetTy &out); 196 197 // TODO: Once we can get to the GCStrategy, this becomes 198 // Optional<bool> isGCManagedPointer(const Value *V) const override { 199 200 static bool isGCPointerType(const Type *T) { 201 if (const PointerType *PT = dyn_cast<PointerType>(T)) 202 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 203 // GC managed heap. We know that a pointer into this heap needs to be 204 // updated and that no other pointer does. 205 return (1 == PT->getAddressSpace()); 206 return false; 207 } 208 209 // Return true if this type is one which a) is a gc pointer or contains a GC 210 // pointer and b) is of a type this code expects to encounter as a live value. 211 // (The insertion code will assert that a type which matches (a) and not (b) 212 // is not encountered.) 213 static bool isHandledGCPointerType(Type *T) { 214 // We fully support gc pointers 215 if (isGCPointerType(T)) 216 return true; 217 // We partially support vectors of gc pointers. The code will assert if it 218 // can't handle something. 219 if (auto VT = dyn_cast<VectorType>(T)) 220 if (isGCPointerType(VT->getElementType())) 221 return true; 222 return false; 223 } 224 225 #ifndef NDEBUG 226 /// Returns true if this type contains a gc pointer whether we know how to 227 /// handle that type or not. 228 static bool containsGCPtrType(Type *Ty) { 229 if (isGCPointerType(Ty)) 230 return true; 231 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 232 return isGCPointerType(VT->getScalarType()); 233 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 234 return containsGCPtrType(AT->getElementType()); 235 if (StructType *ST = dyn_cast<StructType>(Ty)) 236 return std::any_of( 237 ST->subtypes().begin(), ST->subtypes().end(), 238 [](Type *SubType) { return containsGCPtrType(SubType); }); 239 return false; 240 } 241 242 // Returns true if this is a type which a) is a gc pointer or contains a GC 243 // pointer and b) is of a type which the code doesn't expect (i.e. first class 244 // aggregates). Used to trip assertions. 245 static bool isUnhandledGCPointerType(Type *Ty) { 246 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 247 } 248 #endif 249 250 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 251 if (a->hasName() && b->hasName()) { 252 return -1 == a->getName().compare(b->getName()); 253 } else if (a->hasName() && !b->hasName()) { 254 return true; 255 } else if (!a->hasName() && b->hasName()) { 256 return false; 257 } else { 258 // Better than nothing, but not stable 259 return a < b; 260 } 261 } 262 263 // Conservatively identifies any definitions which might be live at the 264 // given instruction. The analysis is performed immediately before the 265 // given instruction. Values defined by that instruction are not considered 266 // live. Values used by that instruction are considered live. 267 static void analyzeParsePointLiveness( 268 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 269 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 270 Instruction *inst = CS.getInstruction(); 271 272 StatepointLiveSetTy liveset; 273 findLiveSetAtInst(inst, OriginalLivenessData, liveset); 274 275 if (PrintLiveSet) { 276 // Note: This output is used by several of the test cases 277 // The order of elemtns in a set is not stable, put them in a vec and sort 278 // by name 279 SmallVector<Value *, 64> temp; 280 temp.insert(temp.end(), liveset.begin(), liveset.end()); 281 std::sort(temp.begin(), temp.end(), order_by_name); 282 errs() << "Live Variables:\n"; 283 for (Value *V : temp) { 284 errs() << " " << V->getName(); // no newline 285 V->dump(); 286 } 287 } 288 if (PrintLiveSetSize) { 289 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 290 errs() << "Number live values: " << liveset.size() << "\n"; 291 } 292 result.liveset = liveset; 293 } 294 295 static Value *findBaseDefiningValue(Value *I); 296 297 /// Return a base defining value for the 'Index' element of the given vector 298 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 299 /// 'I'. As an optimization, this method will try to determine when the 300 /// element is known to already be a base pointer. If this can be established, 301 /// the second value in the returned pair will be true. Note that either a 302 /// vector or a pointer typed value can be returned. For the former, the 303 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 304 /// If the later, the return pointer is a BDV (or possibly a base) for the 305 /// particular element in 'I'. 306 static std::pair<Value *, bool> 307 findBaseDefiningValueOfVector(Value *I, Value *Index = nullptr) { 308 assert(I->getType()->isVectorTy() && 309 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 310 "Illegal to ask for the base pointer of a non-pointer type"); 311 312 // Each case parallels findBaseDefiningValue below, see that code for 313 // detailed motivation. 314 315 if (isa<Argument>(I)) 316 // An incoming argument to the function is a base pointer 317 return std::make_pair(I, true); 318 319 // We shouldn't see the address of a global as a vector value? 320 assert(!isa<GlobalVariable>(I) && 321 "unexpected global variable found in base of vector"); 322 323 // inlining could possibly introduce phi node that contains 324 // undef if callee has multiple returns 325 if (isa<UndefValue>(I)) 326 // utterly meaningless, but useful for dealing with partially optimized 327 // code. 328 return std::make_pair(I, true); 329 330 // Due to inheritance, this must be _after_ the global variable and undef 331 // checks 332 if (Constant *Con = dyn_cast<Constant>(I)) { 333 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 334 "order of checks wrong!"); 335 assert(Con->isNullValue() && "null is the only case which makes sense"); 336 return std::make_pair(Con, true); 337 } 338 339 if (isa<LoadInst>(I)) 340 return std::make_pair(I, true); 341 342 // For an insert element, we might be able to look through it if we know 343 // something about the indexes. 344 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(I)) { 345 if (Index) { 346 Value *InsertIndex = IEI->getOperand(2); 347 // This index is inserting the value, look for its BDV 348 if (InsertIndex == Index) 349 return std::make_pair(findBaseDefiningValue(IEI->getOperand(1)), false); 350 // Both constant, and can't be equal per above. This insert is definitely 351 // not relevant, look back at the rest of the vector and keep trying. 352 if (isa<ConstantInt>(Index) && isa<ConstantInt>(InsertIndex)) 353 return findBaseDefiningValueOfVector(IEI->getOperand(0), Index); 354 } 355 356 // We don't know whether this vector contains entirely base pointers or 357 // not. To be conservatively correct, we treat it as a BDV and will 358 // duplicate code as needed to construct a parallel vector of bases. 359 return std::make_pair(IEI, false); 360 } 361 362 if (isa<ShuffleVectorInst>(I)) 363 // We don't know whether this vector contains entirely base pointers or 364 // not. To be conservatively correct, we treat it as a BDV and will 365 // duplicate code as needed to construct a parallel vector of bases. 366 // TODO: There a number of local optimizations which could be applied here 367 // for particular sufflevector patterns. 368 return std::make_pair(I, false); 369 370 // A PHI or Select is a base defining value. The outer findBasePointer 371 // algorithm is responsible for constructing a base value for this BDV. 372 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 373 "unknown vector instruction - no base found for vector element"); 374 return std::make_pair(I, false); 375 } 376 377 static bool isKnownBaseResult(Value *V); 378 379 /// Helper function for findBasePointer - Will return a value which either a) 380 /// defines the base pointer for the input or b) blocks the simple search 381 /// (i.e. a PHI or Select of two derived pointers) 382 static Value *findBaseDefiningValue(Value *I) { 383 if (I->getType()->isVectorTy()) 384 return findBaseDefiningValueOfVector(I).first; 385 386 assert(I->getType()->isPointerTy() && 387 "Illegal to ask for the base pointer of a non-pointer type"); 388 389 // This case is a bit of a hack - it only handles extracts from vectors which 390 // trivially contain only base pointers or cases where we can directly match 391 // the index of the original extract element to an insertion into the vector. 392 // See note inside the function for how to improve this. 393 if (auto *EEI = dyn_cast<ExtractElementInst>(I)) { 394 Value *VectorOperand = EEI->getVectorOperand(); 395 Value *Index = EEI->getIndexOperand(); 396 std::pair<Value *, bool> pair = 397 findBaseDefiningValueOfVector(VectorOperand, Index); 398 Value *VectorBase = pair.first; 399 if (VectorBase->getType()->isPointerTy()) 400 // We found a BDV for this specific element with the vector. This is an 401 // optimization, but in practice it covers most of the useful cases 402 // created via scalarization. 403 return VectorBase; 404 else { 405 assert(VectorBase->getType()->isVectorTy()); 406 if (pair.second) 407 // If the entire vector returned is known to be entirely base pointers, 408 // then the extractelement is valid base for this value. 409 return EEI; 410 else { 411 // Otherwise, we have an instruction which potentially produces a 412 // derived pointer and we need findBasePointers to clone code for us 413 // such that we can create an instruction which produces the 414 // accompanying base pointer. 415 // Note: This code is currently rather incomplete. We don't currently 416 // support the general form of shufflevector of insertelement. 417 // Conceptually, these are just 'base defining values' of the same 418 // variety as phi or select instructions. We need to update the 419 // findBasePointers algorithm to insert new 'base-only' versions of the 420 // original instructions. This is relative straight forward to do, but 421 // the case which would motivate the work hasn't shown up in real 422 // workloads yet. 423 assert((isa<PHINode>(VectorBase) || isa<SelectInst>(VectorBase)) && 424 "need to extend findBasePointers for generic vector" 425 "instruction cases"); 426 return VectorBase; 427 } 428 } 429 } 430 431 if (isa<Argument>(I)) 432 // An incoming argument to the function is a base pointer 433 // We should have never reached here if this argument isn't an gc value 434 return I; 435 436 if (isa<GlobalVariable>(I)) 437 // base case 438 return I; 439 440 // inlining could possibly introduce phi node that contains 441 // undef if callee has multiple returns 442 if (isa<UndefValue>(I)) 443 // utterly meaningless, but useful for dealing with 444 // partially optimized code. 445 return I; 446 447 // Due to inheritance, this must be _after_ the global variable and undef 448 // checks 449 if (Constant *Con = dyn_cast<Constant>(I)) { 450 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 451 "order of checks wrong!"); 452 // Note: Finding a constant base for something marked for relocation 453 // doesn't really make sense. The most likely case is either a) some 454 // screwed up the address space usage or b) your validating against 455 // compiled C++ code w/o the proper separation. The only real exception 456 // is a null pointer. You could have generic code written to index of 457 // off a potentially null value and have proven it null. We also use 458 // null pointers in dead paths of relocation phis (which we might later 459 // want to find a base pointer for). 460 assert(isa<ConstantPointerNull>(Con) && 461 "null is the only case which makes sense"); 462 return Con; 463 } 464 465 if (CastInst *CI = dyn_cast<CastInst>(I)) { 466 Value *Def = CI->stripPointerCasts(); 467 // If we find a cast instruction here, it means we've found a cast which is 468 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 469 // handle int->ptr conversion. 470 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 471 return findBaseDefiningValue(Def); 472 } 473 474 if (isa<LoadInst>(I)) 475 return I; // The value loaded is an gc base itself 476 477 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 478 // The base of this GEP is the base 479 return findBaseDefiningValue(GEP->getPointerOperand()); 480 481 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 482 switch (II->getIntrinsicID()) { 483 case Intrinsic::experimental_gc_result_ptr: 484 default: 485 // fall through to general call handling 486 break; 487 case Intrinsic::experimental_gc_statepoint: 488 case Intrinsic::experimental_gc_result_float: 489 case Intrinsic::experimental_gc_result_int: 490 llvm_unreachable("these don't produce pointers"); 491 case Intrinsic::experimental_gc_relocate: { 492 // Rerunning safepoint insertion after safepoints are already 493 // inserted is not supported. It could probably be made to work, 494 // but why are you doing this? There's no good reason. 495 llvm_unreachable("repeat safepoint insertion is not supported"); 496 } 497 case Intrinsic::gcroot: 498 // Currently, this mechanism hasn't been extended to work with gcroot. 499 // There's no reason it couldn't be, but I haven't thought about the 500 // implications much. 501 llvm_unreachable( 502 "interaction with the gcroot mechanism is not supported"); 503 } 504 } 505 // We assume that functions in the source language only return base 506 // pointers. This should probably be generalized via attributes to support 507 // both source language and internal functions. 508 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 509 return I; 510 511 // I have absolutely no idea how to implement this part yet. It's not 512 // neccessarily hard, I just haven't really looked at it yet. 513 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 514 515 if (isa<AtomicCmpXchgInst>(I)) 516 // A CAS is effectively a atomic store and load combined under a 517 // predicate. From the perspective of base pointers, we just treat it 518 // like a load. 519 return I; 520 521 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 522 "binary ops which don't apply to pointers"); 523 524 // The aggregate ops. Aggregates can either be in the heap or on the 525 // stack, but in either case, this is simply a field load. As a result, 526 // this is a defining definition of the base just like a load is. 527 if (isa<ExtractValueInst>(I)) 528 return I; 529 530 // We should never see an insert vector since that would require we be 531 // tracing back a struct value not a pointer value. 532 assert(!isa<InsertValueInst>(I) && 533 "Base pointer for a struct is meaningless"); 534 535 // The last two cases here don't return a base pointer. Instead, they 536 // return a value which dynamically selects from amoung several base 537 // derived pointers (each with it's own base potentially). It's the job of 538 // the caller to resolve these. 539 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 540 "missing instruction case in findBaseDefiningValing"); 541 return I; 542 } 543 544 /// Returns the base defining value for this value. 545 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 546 Value *&Cached = Cache[I]; 547 if (!Cached) { 548 Cached = findBaseDefiningValue(I); 549 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 550 << Cached->getName() << "\n"); 551 } 552 assert(Cache[I] != nullptr); 553 return Cached; 554 } 555 556 /// Return a base pointer for this value if known. Otherwise, return it's 557 /// base defining value. 558 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 559 Value *Def = findBaseDefiningValueCached(I, Cache); 560 auto Found = Cache.find(Def); 561 if (Found != Cache.end()) { 562 // Either a base-of relation, or a self reference. Caller must check. 563 return Found->second; 564 } 565 // Only a BDV available 566 return Def; 567 } 568 569 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 570 /// is it known to be a base pointer? Or do we need to continue searching. 571 static bool isKnownBaseResult(Value *V) { 572 if (!isa<PHINode>(V) && !isa<SelectInst>(V)) { 573 // no recursion possible 574 return true; 575 } 576 if (isa<Instruction>(V) && 577 cast<Instruction>(V)->getMetadata("is_base_value")) { 578 // This is a previously inserted base phi or select. We know 579 // that this is a base value. 580 return true; 581 } 582 583 // We need to keep searching 584 return false; 585 } 586 587 // TODO: find a better name for this 588 namespace { 589 class PhiState { 590 public: 591 enum Status { Unknown, Base, Conflict }; 592 593 PhiState(Status s, Value *b = nullptr) : status(s), base(b) { 594 assert(status != Base || b); 595 } 596 PhiState(Value *b) : status(Base), base(b) {} 597 PhiState() : status(Unknown), base(nullptr) {} 598 599 Status getStatus() const { return status; } 600 Value *getBase() const { return base; } 601 602 bool isBase() const { return getStatus() == Base; } 603 bool isUnknown() const { return getStatus() == Unknown; } 604 bool isConflict() const { return getStatus() == Conflict; } 605 606 bool operator==(const PhiState &other) const { 607 return base == other.base && status == other.status; 608 } 609 610 bool operator!=(const PhiState &other) const { return !(*this == other); } 611 612 LLVM_DUMP_METHOD 613 void dump() const { print(dbgs()); dbgs() << '\n'; } 614 615 void print(raw_ostream &OS) const { 616 OS << status << " (" << base << " - " 617 << (base ? base->getName() : "nullptr") << "): "; 618 } 619 620 private: 621 Status status; 622 Value *base; // non null only if status == base 623 }; 624 625 inline raw_ostream &operator<<(raw_ostream &OS, const PhiState &State) { 626 State.print(OS); 627 return OS; 628 } 629 630 631 typedef DenseMap<Value *, PhiState> ConflictStateMapTy; 632 // Values of type PhiState form a lattice, and this is a helper 633 // class that implementes the meet operation. The meat of the meet 634 // operation is implemented in MeetPhiStates::pureMeet 635 class MeetPhiStates { 636 public: 637 /// Initializes the currentResult to the TOP state so that if can be met with 638 /// any other state to produce that state. 639 MeetPhiStates() {} 640 641 // Destructively meet the current result with the given PhiState 642 void meetWith(PhiState otherState) { 643 currentResult = meet(otherState, currentResult); 644 } 645 646 PhiState getResult() const { return currentResult; } 647 648 private: 649 PhiState currentResult; 650 651 /// Perform a meet operation on two elements of the PhiState lattice. 652 static PhiState meet(PhiState LHS, PhiState RHS) { 653 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 654 "math is wrong: meet does not commute!"); 655 PhiState Result = pureMeet(LHS, RHS); 656 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 657 << " produced " << Result << "\n"); 658 return Result; 659 } 660 661 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { 662 switch (stateA.getStatus()) { 663 case PhiState::Unknown: 664 return stateB; 665 666 case PhiState::Base: 667 assert(stateA.getBase() && "can't be null"); 668 if (stateB.isUnknown()) 669 return stateA; 670 671 if (stateB.isBase()) { 672 if (stateA.getBase() == stateB.getBase()) { 673 assert(stateA == stateB && "equality broken!"); 674 return stateA; 675 } 676 return PhiState(PhiState::Conflict); 677 } 678 assert(stateB.isConflict() && "only three states!"); 679 return PhiState(PhiState::Conflict); 680 681 case PhiState::Conflict: 682 return stateA; 683 } 684 llvm_unreachable("only three states!"); 685 } 686 }; 687 } 688 /// For a given value or instruction, figure out what base ptr it's derived 689 /// from. For gc objects, this is simply itself. On success, returns a value 690 /// which is the base pointer. (This is reliable and can be used for 691 /// relocation.) On failure, returns nullptr. 692 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 693 Value *def = findBaseOrBDV(I, cache); 694 695 if (isKnownBaseResult(def)) { 696 return def; 697 } 698 699 // Here's the rough algorithm: 700 // - For every SSA value, construct a mapping to either an actual base 701 // pointer or a PHI which obscures the base pointer. 702 // - Construct a mapping from PHI to unknown TOP state. Use an 703 // optimistic algorithm to propagate base pointer information. Lattice 704 // looks like: 705 // UNKNOWN 706 // b1 b2 b3 b4 707 // CONFLICT 708 // When algorithm terminates, all PHIs will either have a single concrete 709 // base or be in a conflict state. 710 // - For every conflict, insert a dummy PHI node without arguments. Add 711 // these to the base[Instruction] = BasePtr mapping. For every 712 // non-conflict, add the actual base. 713 // - For every conflict, add arguments for the base[a] of each input 714 // arguments. 715 // 716 // Note: A simpler form of this would be to add the conflict form of all 717 // PHIs without running the optimistic algorithm. This would be 718 // analougous to pessimistic data flow and would likely lead to an 719 // overall worse solution. 720 721 ConflictStateMapTy states; 722 states[def] = PhiState(); 723 // Recursively fill in all phis & selects reachable from the initial one 724 // for which we don't already know a definite base value for 725 // TODO: This should be rewritten with a worklist 726 bool done = false; 727 while (!done) { 728 done = true; 729 // Since we're adding elements to 'states' as we run, we can't keep 730 // iterators into the set. 731 SmallVector<Value *, 16> Keys; 732 Keys.reserve(states.size()); 733 for (auto Pair : states) { 734 Value *V = Pair.first; 735 Keys.push_back(V); 736 } 737 for (Value *v : Keys) { 738 assert(!isKnownBaseResult(v) && "why did it get added?"); 739 if (PHINode *phi = dyn_cast<PHINode>(v)) { 740 assert(phi->getNumIncomingValues() > 0 && 741 "zero input phis are illegal"); 742 for (Value *InVal : phi->incoming_values()) { 743 Value *local = findBaseOrBDV(InVal, cache); 744 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 745 states[local] = PhiState(); 746 done = false; 747 } 748 } 749 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 750 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 751 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 752 states[local] = PhiState(); 753 done = false; 754 } 755 local = findBaseOrBDV(sel->getFalseValue(), cache); 756 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 757 states[local] = PhiState(); 758 done = false; 759 } 760 } 761 } 762 } 763 764 if (TraceLSP) { 765 errs() << "States after initialization:\n"; 766 for (auto Pair : states) 767 dbgs() << " " << Pair.second << " for " << Pair.first << "\n"; 768 } 769 770 // TODO: come back and revisit the state transitions around inputs which 771 // have reached conflict state. The current version seems too conservative. 772 773 // Return a phi state for a base defining value. We'll generate a new 774 // base state for known bases and expect to find a cached state otherwise. 775 auto getStateForBDV = [&](Value *baseValue) { 776 if (isKnownBaseResult(baseValue)) 777 return PhiState(baseValue); 778 auto I = states.find(baseValue); 779 assert(I != states.end() && "lookup failed!"); 780 return I->second; 781 }; 782 783 bool progress = true; 784 while (progress) { 785 #ifndef NDEBUG 786 size_t oldSize = states.size(); 787 #endif 788 progress = false; 789 // We're only changing keys in this loop, thus safe to keep iterators 790 for (auto Pair : states) { 791 Value *v = Pair.first; 792 assert(!isKnownBaseResult(v) && "why did it get added?"); 793 794 // Given an input value for the current instruction, return a PhiState 795 // instance which represents the BDV of that value. 796 auto getStateForInput = [&](Value *V) mutable { 797 Value *BDV = findBaseOrBDV(V, cache); 798 return getStateForBDV(BDV); 799 }; 800 801 MeetPhiStates calculateMeet; 802 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 803 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 804 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 805 } else 806 for (Value *Val : cast<PHINode>(v)->incoming_values()) 807 calculateMeet.meetWith(getStateForInput(Val)); 808 809 PhiState oldState = states[v]; 810 PhiState newState = calculateMeet.getResult(); 811 if (oldState != newState) { 812 progress = true; 813 states[v] = newState; 814 } 815 } 816 817 assert(oldSize <= states.size()); 818 assert(oldSize == states.size() || progress); 819 } 820 821 if (TraceLSP) { 822 errs() << "States after meet iteration:\n"; 823 for (auto Pair : states) 824 dbgs() << " " << Pair.second << " for " << Pair.first << "\n"; 825 } 826 827 // Insert Phis for all conflicts 828 // We want to keep naming deterministic in the loop that follows, so 829 // sort the keys before iteration. This is useful in allowing us to 830 // write stable tests. Note that there is no invalidation issue here. 831 SmallVector<Value *, 16> Keys; 832 Keys.reserve(states.size()); 833 for (auto Pair : states) { 834 Value *V = Pair.first; 835 Keys.push_back(V); 836 } 837 std::sort(Keys.begin(), Keys.end(), order_by_name); 838 // TODO: adjust naming patterns to avoid this order of iteration dependency 839 for (Value *V : Keys) { 840 Instruction *I = cast<Instruction>(V); 841 PhiState State = states[I]; 842 assert(!isKnownBaseResult(I) && "why did it get added?"); 843 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 844 if (!State.isConflict()) 845 continue; 846 847 /// Create and insert a new instruction which will represent the base of 848 /// the given instruction 'I'. 849 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 850 if (isa<PHINode>(I)) { 851 BasicBlock *BB = I->getParent(); 852 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 853 assert(NumPreds > 0 && "how did we reach here"); 854 return PHINode::Create(I->getType(), NumPreds, "base_phi", I); 855 } 856 SelectInst *Sel = cast<SelectInst>(I); 857 // The undef will be replaced later 858 UndefValue *Undef = UndefValue::get(Sel->getType()); 859 return SelectInst::Create(Sel->getCondition(), Undef, 860 Undef, "base_select", Sel); 861 }; 862 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 863 // Add metadata marking this as a base value 864 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 865 states[I] = PhiState(PhiState::Conflict, BaseInst); 866 } 867 868 // Fixup all the inputs of the new PHIs 869 for (auto Pair : states) { 870 Instruction *v = cast<Instruction>(Pair.first); 871 PhiState state = Pair.second; 872 873 assert(!isKnownBaseResult(v) && "why did it get added?"); 874 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 875 if (!state.isConflict()) 876 continue; 877 878 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 879 PHINode *phi = cast<PHINode>(v); 880 unsigned NumPHIValues = phi->getNumIncomingValues(); 881 for (unsigned i = 0; i < NumPHIValues; i++) { 882 Value *InVal = phi->getIncomingValue(i); 883 BasicBlock *InBB = phi->getIncomingBlock(i); 884 885 // If we've already seen InBB, add the same incoming value 886 // we added for it earlier. The IR verifier requires phi 887 // nodes with multiple entries from the same basic block 888 // to have the same incoming value for each of those 889 // entries. If we don't do this check here and basephi 890 // has a different type than base, we'll end up adding two 891 // bitcasts (and hence two distinct values) as incoming 892 // values for the same basic block. 893 894 int blockIndex = basephi->getBasicBlockIndex(InBB); 895 if (blockIndex != -1) { 896 Value *oldBase = basephi->getIncomingValue(blockIndex); 897 basephi->addIncoming(oldBase, InBB); 898 #ifndef NDEBUG 899 Value *base = findBaseOrBDV(InVal, cache); 900 if (!isKnownBaseResult(base)) { 901 // Either conflict or base. 902 assert(states.count(base)); 903 base = states[base].getBase(); 904 assert(base != nullptr && "unknown PhiState!"); 905 } 906 907 // In essense this assert states: the only way two 908 // values incoming from the same basic block may be 909 // different is by being different bitcasts of the same 910 // value. A cleanup that remains TODO is changing 911 // findBaseOrBDV to return an llvm::Value of the correct 912 // type (and still remain pure). This will remove the 913 // need to add bitcasts. 914 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 915 "sanity -- findBaseOrBDV should be pure!"); 916 #endif 917 continue; 918 } 919 920 // Find either the defining value for the PHI or the normal base for 921 // a non-phi node 922 Value *base = findBaseOrBDV(InVal, cache); 923 if (!isKnownBaseResult(base)) { 924 // Either conflict or base. 925 assert(states.count(base)); 926 base = states[base].getBase(); 927 assert(base != nullptr && "unknown PhiState!"); 928 } 929 assert(base && "can't be null"); 930 // Must use original input BB since base may not be Instruction 931 // The cast is needed since base traversal may strip away bitcasts 932 if (base->getType() != basephi->getType()) { 933 base = new BitCastInst(base, basephi->getType(), "cast", 934 InBB->getTerminator()); 935 } 936 basephi->addIncoming(base, InBB); 937 } 938 assert(basephi->getNumIncomingValues() == NumPHIValues); 939 } else { 940 SelectInst *basesel = cast<SelectInst>(state.getBase()); 941 SelectInst *sel = cast<SelectInst>(v); 942 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 943 // something more safe and less hacky. 944 for (int i = 1; i <= 2; i++) { 945 Value *InVal = sel->getOperand(i); 946 // Find either the defining value for the PHI or the normal base for 947 // a non-phi node 948 Value *base = findBaseOrBDV(InVal, cache); 949 if (!isKnownBaseResult(base)) { 950 // Either conflict or base. 951 assert(states.count(base)); 952 base = states[base].getBase(); 953 assert(base != nullptr && "unknown PhiState!"); 954 } 955 assert(base && "can't be null"); 956 // Must use original input BB since base may not be Instruction 957 // The cast is needed since base traversal may strip away bitcasts 958 if (base->getType() != basesel->getType()) { 959 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 960 } 961 basesel->setOperand(i, base); 962 } 963 } 964 } 965 966 // Cache all of our results so we can cheaply reuse them 967 // NOTE: This is actually two caches: one of the base defining value 968 // relation and one of the base pointer relation! FIXME 969 for (auto item : states) { 970 Value *v = item.first; 971 Value *base = item.second.getBase(); 972 assert(v && base); 973 assert(!isKnownBaseResult(v) && "why did it get added?"); 974 975 if (TraceLSP) { 976 std::string fromstr = 977 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 978 : "none"; 979 errs() << "Updating base value cache" 980 << " for: " << (v->hasName() ? v->getName() : "") 981 << " from: " << fromstr 982 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 983 } 984 985 assert(isKnownBaseResult(base) && 986 "must be something we 'know' is a base pointer"); 987 if (cache.count(v)) { 988 // Once we transition from the BDV relation being store in the cache to 989 // the base relation being stored, it must be stable 990 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 991 "base relation should be stable"); 992 } 993 cache[v] = base; 994 } 995 assert(cache.find(def) != cache.end()); 996 return cache[def]; 997 } 998 999 // For a set of live pointers (base and/or derived), identify the base 1000 // pointer of the object which they are derived from. This routine will 1001 // mutate the IR graph as needed to make the 'base' pointer live at the 1002 // definition site of 'derived'. This ensures that any use of 'derived' can 1003 // also use 'base'. This may involve the insertion of a number of 1004 // additional PHI nodes. 1005 // 1006 // preconditions: live is a set of pointer type Values 1007 // 1008 // side effects: may insert PHI nodes into the existing CFG, will preserve 1009 // CFG, will not remove or mutate any existing nodes 1010 // 1011 // post condition: PointerToBase contains one (derived, base) pair for every 1012 // pointer in live. Note that derived can be equal to base if the original 1013 // pointer was a base pointer. 1014 static void 1015 findBasePointers(const StatepointLiveSetTy &live, 1016 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 1017 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1018 // For the naming of values inserted to be deterministic - which makes for 1019 // much cleaner and more stable tests - we need to assign an order to the 1020 // live values. DenseSets do not provide a deterministic order across runs. 1021 SmallVector<Value *, 64> Temp; 1022 Temp.insert(Temp.end(), live.begin(), live.end()); 1023 std::sort(Temp.begin(), Temp.end(), order_by_name); 1024 for (Value *ptr : Temp) { 1025 Value *base = findBasePointer(ptr, DVCache); 1026 assert(base && "failed to find base pointer"); 1027 PointerToBase[ptr] = base; 1028 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1029 DT->dominates(cast<Instruction>(base)->getParent(), 1030 cast<Instruction>(ptr)->getParent())) && 1031 "The base we found better dominate the derived pointer"); 1032 1033 // If you see this trip and like to live really dangerously, the code should 1034 // be correct, just with idioms the verifier can't handle. You can try 1035 // disabling the verifier at your own substaintial risk. 1036 assert(!isa<ConstantPointerNull>(base) && 1037 "the relocation code needs adjustment to handle the relocation of " 1038 "a null pointer constant without causing false positives in the " 1039 "safepoint ir verifier."); 1040 } 1041 } 1042 1043 /// Find the required based pointers (and adjust the live set) for the given 1044 /// parse point. 1045 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1046 const CallSite &CS, 1047 PartiallyConstructedSafepointRecord &result) { 1048 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 1049 findBasePointers(result.liveset, PointerToBase, &DT, DVCache); 1050 1051 if (PrintBasePointers) { 1052 // Note: Need to print these in a stable order since this is checked in 1053 // some tests. 1054 errs() << "Base Pairs (w/o Relocation):\n"; 1055 SmallVector<Value *, 64> Temp; 1056 Temp.reserve(PointerToBase.size()); 1057 for (auto Pair : PointerToBase) { 1058 Temp.push_back(Pair.first); 1059 } 1060 std::sort(Temp.begin(), Temp.end(), order_by_name); 1061 for (Value *Ptr : Temp) { 1062 Value *Base = PointerToBase[Ptr]; 1063 errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() 1064 << "\n"; 1065 } 1066 } 1067 1068 result.PointerToBase = PointerToBase; 1069 } 1070 1071 /// Given an updated version of the dataflow liveness results, update the 1072 /// liveset and base pointer maps for the call site CS. 1073 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1074 const CallSite &CS, 1075 PartiallyConstructedSafepointRecord &result); 1076 1077 static void recomputeLiveInValues( 1078 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1079 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1080 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1081 // again. The old values are still live and will help it stablize quickly. 1082 GCPtrLivenessData RevisedLivenessData; 1083 computeLiveInValues(DT, F, RevisedLivenessData); 1084 for (size_t i = 0; i < records.size(); i++) { 1085 struct PartiallyConstructedSafepointRecord &info = records[i]; 1086 const CallSite &CS = toUpdate[i]; 1087 recomputeLiveInValues(RevisedLivenessData, CS, info); 1088 } 1089 } 1090 1091 // When inserting gc.relocate calls, we need to ensure there are no uses 1092 // of the original value between the gc.statepoint and the gc.relocate call. 1093 // One case which can arise is a phi node starting one of the successor blocks. 1094 // We also need to be able to insert the gc.relocates only on the path which 1095 // goes through the statepoint. We might need to split an edge to make this 1096 // possible. 1097 static BasicBlock * 1098 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1099 DominatorTree &DT) { 1100 BasicBlock *Ret = BB; 1101 if (!BB->getUniquePredecessor()) { 1102 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1103 } 1104 1105 // Now that 'ret' has unique predecessor we can safely remove all phi nodes 1106 // from it 1107 FoldSingleEntryPHINodes(Ret); 1108 assert(!isa<PHINode>(Ret->begin())); 1109 1110 // At this point, we can safely insert a gc.relocate as the first instruction 1111 // in Ret if needed. 1112 return Ret; 1113 } 1114 1115 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1116 auto itr = std::find(livevec.begin(), livevec.end(), val); 1117 assert(livevec.end() != itr); 1118 size_t index = std::distance(livevec.begin(), itr); 1119 assert(index < livevec.size()); 1120 return index; 1121 } 1122 1123 // Create new attribute set containing only attributes which can be transfered 1124 // from original call to the safepoint. 1125 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1126 AttributeSet ret; 1127 1128 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1129 unsigned index = AS.getSlotIndex(Slot); 1130 1131 if (index == AttributeSet::ReturnIndex || 1132 index == AttributeSet::FunctionIndex) { 1133 1134 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1135 ++it) { 1136 Attribute attr = *it; 1137 1138 // Do not allow certain attributes - just skip them 1139 // Safepoint can not be read only or read none. 1140 if (attr.hasAttribute(Attribute::ReadNone) || 1141 attr.hasAttribute(Attribute::ReadOnly)) 1142 continue; 1143 1144 ret = ret.addAttributes( 1145 AS.getContext(), index, 1146 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1147 } 1148 } 1149 1150 // Just skip parameter attributes for now 1151 } 1152 1153 return ret; 1154 } 1155 1156 /// Helper function to place all gc relocates necessary for the given 1157 /// statepoint. 1158 /// Inputs: 1159 /// liveVariables - list of variables to be relocated. 1160 /// liveStart - index of the first live variable. 1161 /// basePtrs - base pointers. 1162 /// statepointToken - statepoint instruction to which relocates should be 1163 /// bound. 1164 /// Builder - Llvm IR builder to be used to construct new calls. 1165 static void CreateGCRelocates(ArrayRef<llvm::Value *> LiveVariables, 1166 const int LiveStart, 1167 ArrayRef<llvm::Value *> BasePtrs, 1168 Instruction *StatepointToken, 1169 IRBuilder<> Builder) { 1170 if (LiveVariables.empty()) 1171 return; 1172 1173 // All gc_relocate are set to i8 addrspace(1)* type. We originally generated 1174 // unique declarations for each pointer type, but this proved problematic 1175 // because the intrinsic mangling code is incomplete and fragile. Since 1176 // we're moving towards a single unified pointer type anyways, we can just 1177 // cast everything to an i8* of the right address space. A bitcast is added 1178 // later to convert gc_relocate to the actual value's type. 1179 Module *M = StatepointToken->getModule(); 1180 auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace(); 1181 Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)}; 1182 Value *GCRelocateDecl = 1183 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); 1184 1185 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1186 // Generate the gc.relocate call and save the result 1187 Value *BaseIdx = 1188 Builder.getInt32(LiveStart + find_index(LiveVariables, BasePtrs[i])); 1189 Value *LiveIdx = 1190 Builder.getInt32(LiveStart + find_index(LiveVariables, LiveVariables[i])); 1191 1192 // only specify a debug name if we can give a useful one 1193 CallInst *Reloc = Builder.CreateCall( 1194 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1195 LiveVariables[i]->hasName() ? LiveVariables[i]->getName() + ".relocated" 1196 : ""); 1197 // Trick CodeGen into thinking there are lots of free registers at this 1198 // fake call. 1199 Reloc->setCallingConv(CallingConv::Cold); 1200 } 1201 } 1202 1203 static void 1204 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1205 const SmallVectorImpl<llvm::Value *> &basePtrs, 1206 const SmallVectorImpl<llvm::Value *> &liveVariables, 1207 Pass *P, 1208 PartiallyConstructedSafepointRecord &result) { 1209 assert(basePtrs.size() == liveVariables.size()); 1210 assert(isStatepoint(CS) && 1211 "This method expects to be rewriting a statepoint"); 1212 1213 BasicBlock *BB = CS.getInstruction()->getParent(); 1214 assert(BB); 1215 Function *F = BB->getParent(); 1216 assert(F && "must be set"); 1217 Module *M = F->getParent(); 1218 (void)M; 1219 assert(M && "must be set"); 1220 1221 // We're not changing the function signature of the statepoint since the gc 1222 // arguments go into the var args section. 1223 Function *gc_statepoint_decl = CS.getCalledFunction(); 1224 1225 // Then go ahead and use the builder do actually do the inserts. We insert 1226 // immediately before the previous instruction under the assumption that all 1227 // arguments will be available here. We can't insert afterwards since we may 1228 // be replacing a terminator. 1229 Instruction *insertBefore = CS.getInstruction(); 1230 IRBuilder<> Builder(insertBefore); 1231 // Copy all of the arguments from the original statepoint - this includes the 1232 // target, call args, and deopt args 1233 SmallVector<llvm::Value *, 64> args; 1234 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1235 // TODO: Clear the 'needs rewrite' flag 1236 1237 // add all the pointers to be relocated (gc arguments) 1238 // Capture the start of the live variable list for use in the gc_relocates 1239 const int live_start = args.size(); 1240 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1241 1242 // Create the statepoint given all the arguments 1243 Instruction *token = nullptr; 1244 AttributeSet return_attributes; 1245 if (CS.isCall()) { 1246 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1247 CallInst *call = 1248 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1249 call->setTailCall(toReplace->isTailCall()); 1250 call->setCallingConv(toReplace->getCallingConv()); 1251 1252 // Currently we will fail on parameter attributes and on certain 1253 // function attributes. 1254 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1255 // In case if we can handle this set of sttributes - set up function attrs 1256 // directly on statepoint and return attrs later for gc_result intrinsic. 1257 call->setAttributes(new_attrs.getFnAttributes()); 1258 return_attributes = new_attrs.getRetAttributes(); 1259 1260 token = call; 1261 1262 // Put the following gc_result and gc_relocate calls immediately after the 1263 // the old call (which we're about to delete) 1264 BasicBlock::iterator next(toReplace); 1265 assert(BB->end() != next && "not a terminator, must have next"); 1266 next++; 1267 Instruction *IP = &*(next); 1268 Builder.SetInsertPoint(IP); 1269 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1270 1271 } else { 1272 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1273 1274 // Insert the new invoke into the old block. We'll remove the old one in a 1275 // moment at which point this will become the new terminator for the 1276 // original block. 1277 InvokeInst *invoke = InvokeInst::Create( 1278 gc_statepoint_decl, toReplace->getNormalDest(), 1279 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1280 invoke->setCallingConv(toReplace->getCallingConv()); 1281 1282 // Currently we will fail on parameter attributes and on certain 1283 // function attributes. 1284 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1285 // In case if we can handle this set of sttributes - set up function attrs 1286 // directly on statepoint and return attrs later for gc_result intrinsic. 1287 invoke->setAttributes(new_attrs.getFnAttributes()); 1288 return_attributes = new_attrs.getRetAttributes(); 1289 1290 token = invoke; 1291 1292 // Generate gc relocates in exceptional path 1293 BasicBlock *unwindBlock = toReplace->getUnwindDest(); 1294 assert(!isa<PHINode>(unwindBlock->begin()) && 1295 unwindBlock->getUniquePredecessor() && 1296 "can't safely insert in this block!"); 1297 1298 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1299 Builder.SetInsertPoint(IP); 1300 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1301 1302 // Extract second element from landingpad return value. We will attach 1303 // exceptional gc relocates to it. 1304 const unsigned idx = 1; 1305 Instruction *exceptional_token = 1306 cast<Instruction>(Builder.CreateExtractValue( 1307 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1308 result.UnwindToken = exceptional_token; 1309 1310 CreateGCRelocates(liveVariables, live_start, basePtrs, 1311 exceptional_token, Builder); 1312 1313 // Generate gc relocates and returns for normal block 1314 BasicBlock *normalDest = toReplace->getNormalDest(); 1315 assert(!isa<PHINode>(normalDest->begin()) && 1316 normalDest->getUniquePredecessor() && 1317 "can't safely insert in this block!"); 1318 1319 IP = &*(normalDest->getFirstInsertionPt()); 1320 Builder.SetInsertPoint(IP); 1321 1322 // gc relocates will be generated later as if it were regular call 1323 // statepoint 1324 } 1325 assert(token); 1326 1327 // Take the name of the original value call if it had one. 1328 token->takeName(CS.getInstruction()); 1329 1330 // The GCResult is already inserted, we just need to find it 1331 #ifndef NDEBUG 1332 Instruction *toReplace = CS.getInstruction(); 1333 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1334 "only valid use before rewrite is gc.result"); 1335 assert(!toReplace->hasOneUse() || 1336 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1337 #endif 1338 1339 // Update the gc.result of the original statepoint (if any) to use the newly 1340 // inserted statepoint. This is safe to do here since the token can't be 1341 // considered a live reference. 1342 CS.getInstruction()->replaceAllUsesWith(token); 1343 1344 result.StatepointToken = token; 1345 1346 // Second, create a gc.relocate for every live variable 1347 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1348 } 1349 1350 namespace { 1351 struct name_ordering { 1352 Value *base; 1353 Value *derived; 1354 bool operator()(name_ordering const &a, name_ordering const &b) { 1355 return -1 == a.derived->getName().compare(b.derived->getName()); 1356 } 1357 }; 1358 } 1359 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1360 SmallVectorImpl<Value *> &livevec) { 1361 assert(basevec.size() == livevec.size()); 1362 1363 SmallVector<name_ordering, 64> temp; 1364 for (size_t i = 0; i < basevec.size(); i++) { 1365 name_ordering v; 1366 v.base = basevec[i]; 1367 v.derived = livevec[i]; 1368 temp.push_back(v); 1369 } 1370 std::sort(temp.begin(), temp.end(), name_ordering()); 1371 for (size_t i = 0; i < basevec.size(); i++) { 1372 basevec[i] = temp[i].base; 1373 livevec[i] = temp[i].derived; 1374 } 1375 } 1376 1377 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1378 // which make the relocations happening at this safepoint explicit. 1379 // 1380 // WARNING: Does not do any fixup to adjust users of the original live 1381 // values. That's the callers responsibility. 1382 static void 1383 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1384 PartiallyConstructedSafepointRecord &result) { 1385 auto liveset = result.liveset; 1386 auto PointerToBase = result.PointerToBase; 1387 1388 // Convert to vector for efficient cross referencing. 1389 SmallVector<Value *, 64> basevec, livevec; 1390 livevec.reserve(liveset.size()); 1391 basevec.reserve(liveset.size()); 1392 for (Value *L : liveset) { 1393 livevec.push_back(L); 1394 assert(PointerToBase.count(L)); 1395 Value *base = PointerToBase[L]; 1396 basevec.push_back(base); 1397 } 1398 assert(livevec.size() == basevec.size()); 1399 1400 // To make the output IR slightly more stable (for use in diffs), ensure a 1401 // fixed order of the values in the safepoint (by sorting the value name). 1402 // The order is otherwise meaningless. 1403 stablize_order(basevec, livevec); 1404 1405 // Do the actual rewriting and delete the old statepoint 1406 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1407 CS.getInstruction()->eraseFromParent(); 1408 } 1409 1410 // Helper function for the relocationViaAlloca. 1411 // It receives iterator to the statepoint gc relocates and emits store to the 1412 // assigned 1413 // location (via allocaMap) for the each one of them. 1414 // Add visited values into the visitedLiveValues set we will later use them 1415 // for sanity check. 1416 static void 1417 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1418 DenseMap<Value *, Value *> &AllocaMap, 1419 DenseSet<Value *> &VisitedLiveValues) { 1420 1421 for (User *U : GCRelocs) { 1422 if (!isa<IntrinsicInst>(U)) 1423 continue; 1424 1425 IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U); 1426 1427 // We only care about relocates 1428 if (RelocatedValue->getIntrinsicID() != 1429 Intrinsic::experimental_gc_relocate) { 1430 continue; 1431 } 1432 1433 GCRelocateOperands RelocateOperands(RelocatedValue); 1434 Value *OriginalValue = 1435 const_cast<Value *>(RelocateOperands.getDerivedPtr()); 1436 assert(AllocaMap.count(OriginalValue)); 1437 Value *Alloca = AllocaMap[OriginalValue]; 1438 1439 // Emit store into the related alloca 1440 // All gc_relocate are i8 addrspace(1)* typed, and it must be bitcasted to 1441 // the correct type according to alloca. 1442 assert(RelocatedValue->getNextNode() && "Should always have one since it's not a terminator"); 1443 IRBuilder<> Builder(RelocatedValue->getNextNode()); 1444 Value *CastedRelocatedValue = 1445 Builder.CreateBitCast(RelocatedValue, cast<AllocaInst>(Alloca)->getAllocatedType(), 1446 RelocatedValue->hasName() ? RelocatedValue->getName() + ".casted" : ""); 1447 1448 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1449 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1450 1451 #ifndef NDEBUG 1452 VisitedLiveValues.insert(OriginalValue); 1453 #endif 1454 } 1455 } 1456 1457 // Helper function for the "relocationViaAlloca". Similar to the 1458 // "insertRelocationStores" but works for rematerialized values. 1459 static void 1460 insertRematerializationStores( 1461 RematerializedValueMapTy RematerializedValues, 1462 DenseMap<Value *, Value *> &AllocaMap, 1463 DenseSet<Value *> &VisitedLiveValues) { 1464 1465 for (auto RematerializedValuePair: RematerializedValues) { 1466 Instruction *RematerializedValue = RematerializedValuePair.first; 1467 Value *OriginalValue = RematerializedValuePair.second; 1468 1469 assert(AllocaMap.count(OriginalValue) && 1470 "Can not find alloca for rematerialized value"); 1471 Value *Alloca = AllocaMap[OriginalValue]; 1472 1473 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1474 Store->insertAfter(RematerializedValue); 1475 1476 #ifndef NDEBUG 1477 VisitedLiveValues.insert(OriginalValue); 1478 #endif 1479 } 1480 } 1481 1482 /// do all the relocation update via allocas and mem2reg 1483 static void relocationViaAlloca( 1484 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1485 ArrayRef<struct PartiallyConstructedSafepointRecord> Records) { 1486 #ifndef NDEBUG 1487 // record initial number of (static) allocas; we'll check we have the same 1488 // number when we get done. 1489 int InitialAllocaNum = 0; 1490 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1491 I++) 1492 if (isa<AllocaInst>(*I)) 1493 InitialAllocaNum++; 1494 #endif 1495 1496 // TODO-PERF: change data structures, reserve 1497 DenseMap<Value *, Value *> AllocaMap; 1498 SmallVector<AllocaInst *, 200> PromotableAllocas; 1499 // Used later to chack that we have enough allocas to store all values 1500 std::size_t NumRematerializedValues = 0; 1501 PromotableAllocas.reserve(Live.size()); 1502 1503 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1504 // "PromotableAllocas" 1505 auto emitAllocaFor = [&](Value *LiveValue) { 1506 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1507 F.getEntryBlock().getFirstNonPHI()); 1508 AllocaMap[LiveValue] = Alloca; 1509 PromotableAllocas.push_back(Alloca); 1510 }; 1511 1512 // emit alloca for each live gc pointer 1513 for (unsigned i = 0; i < Live.size(); i++) { 1514 emitAllocaFor(Live[i]); 1515 } 1516 1517 // emit allocas for rematerialized values 1518 for (size_t i = 0; i < Records.size(); i++) { 1519 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1520 1521 for (auto RematerializedValuePair : Info.RematerializedValues) { 1522 Value *OriginalValue = RematerializedValuePair.second; 1523 if (AllocaMap.count(OriginalValue) != 0) 1524 continue; 1525 1526 emitAllocaFor(OriginalValue); 1527 ++NumRematerializedValues; 1528 } 1529 } 1530 1531 // The next two loops are part of the same conceptual operation. We need to 1532 // insert a store to the alloca after the original def and at each 1533 // redefinition. We need to insert a load before each use. These are split 1534 // into distinct loops for performance reasons. 1535 1536 // update gc pointer after each statepoint 1537 // either store a relocated value or null (if no relocated value found for 1538 // this gc pointer and it is not a gc_result) 1539 // this must happen before we update the statepoint with load of alloca 1540 // otherwise we lose the link between statepoint and old def 1541 for (size_t i = 0; i < Records.size(); i++) { 1542 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1543 Value *Statepoint = Info.StatepointToken; 1544 1545 // This will be used for consistency check 1546 DenseSet<Value *> VisitedLiveValues; 1547 1548 // Insert stores for normal statepoint gc relocates 1549 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1550 1551 // In case if it was invoke statepoint 1552 // we will insert stores for exceptional path gc relocates. 1553 if (isa<InvokeInst>(Statepoint)) { 1554 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1555 VisitedLiveValues); 1556 } 1557 1558 // Do similar thing with rematerialized values 1559 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1560 VisitedLiveValues); 1561 1562 if (ClobberNonLive) { 1563 // As a debuging aid, pretend that an unrelocated pointer becomes null at 1564 // the gc.statepoint. This will turn some subtle GC problems into 1565 // slightly easier to debug SEGVs. Note that on large IR files with 1566 // lots of gc.statepoints this is extremely costly both memory and time 1567 // wise. 1568 SmallVector<AllocaInst *, 64> ToClobber; 1569 for (auto Pair : AllocaMap) { 1570 Value *Def = Pair.first; 1571 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1572 1573 // This value was relocated 1574 if (VisitedLiveValues.count(Def)) { 1575 continue; 1576 } 1577 ToClobber.push_back(Alloca); 1578 } 1579 1580 auto InsertClobbersAt = [&](Instruction *IP) { 1581 for (auto *AI : ToClobber) { 1582 auto AIType = cast<PointerType>(AI->getType()); 1583 auto PT = cast<PointerType>(AIType->getElementType()); 1584 Constant *CPN = ConstantPointerNull::get(PT); 1585 StoreInst *Store = new StoreInst(CPN, AI); 1586 Store->insertBefore(IP); 1587 } 1588 }; 1589 1590 // Insert the clobbering stores. These may get intermixed with the 1591 // gc.results and gc.relocates, but that's fine. 1592 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1593 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1594 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1595 } else { 1596 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1597 Next++; 1598 InsertClobbersAt(Next); 1599 } 1600 } 1601 } 1602 // update use with load allocas and add store for gc_relocated 1603 for (auto Pair : AllocaMap) { 1604 Value *Def = Pair.first; 1605 Value *Alloca = Pair.second; 1606 1607 // we pre-record the uses of allocas so that we dont have to worry about 1608 // later update 1609 // that change the user information. 1610 SmallVector<Instruction *, 20> Uses; 1611 // PERF: trade a linear scan for repeated reallocation 1612 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1613 for (User *U : Def->users()) { 1614 if (!isa<ConstantExpr>(U)) { 1615 // If the def has a ConstantExpr use, then the def is either a 1616 // ConstantExpr use itself or null. In either case 1617 // (recursively in the first, directly in the second), the oop 1618 // it is ultimately dependent on is null and this particular 1619 // use does not need to be fixed up. 1620 Uses.push_back(cast<Instruction>(U)); 1621 } 1622 } 1623 1624 std::sort(Uses.begin(), Uses.end()); 1625 auto Last = std::unique(Uses.begin(), Uses.end()); 1626 Uses.erase(Last, Uses.end()); 1627 1628 for (Instruction *Use : Uses) { 1629 if (isa<PHINode>(Use)) { 1630 PHINode *Phi = cast<PHINode>(Use); 1631 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1632 if (Def == Phi->getIncomingValue(i)) { 1633 LoadInst *Load = new LoadInst( 1634 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1635 Phi->setIncomingValue(i, Load); 1636 } 1637 } 1638 } else { 1639 LoadInst *Load = new LoadInst(Alloca, "", Use); 1640 Use->replaceUsesOfWith(Def, Load); 1641 } 1642 } 1643 1644 // emit store for the initial gc value 1645 // store must be inserted after load, otherwise store will be in alloca's 1646 // use list and an extra load will be inserted before it 1647 StoreInst *Store = new StoreInst(Def, Alloca); 1648 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1649 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1650 // InvokeInst is a TerminatorInst so the store need to be inserted 1651 // into its normal destination block. 1652 BasicBlock *NormalDest = Invoke->getNormalDest(); 1653 Store->insertBefore(NormalDest->getFirstNonPHI()); 1654 } else { 1655 assert(!Inst->isTerminator() && 1656 "The only TerminatorInst that can produce a value is " 1657 "InvokeInst which is handled above."); 1658 Store->insertAfter(Inst); 1659 } 1660 } else { 1661 assert(isa<Argument>(Def)); 1662 Store->insertAfter(cast<Instruction>(Alloca)); 1663 } 1664 } 1665 1666 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1667 "we must have the same allocas with lives"); 1668 if (!PromotableAllocas.empty()) { 1669 // apply mem2reg to promote alloca to SSA 1670 PromoteMemToReg(PromotableAllocas, DT); 1671 } 1672 1673 #ifndef NDEBUG 1674 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1675 I++) 1676 if (isa<AllocaInst>(*I)) 1677 InitialAllocaNum--; 1678 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1679 #endif 1680 } 1681 1682 /// Implement a unique function which doesn't require we sort the input 1683 /// vector. Doing so has the effect of changing the output of a couple of 1684 /// tests in ways which make them less useful in testing fused safepoints. 1685 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1686 SmallSet<T, 8> Seen; 1687 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1688 return !Seen.insert(V).second; 1689 }), Vec.end()); 1690 } 1691 1692 /// Insert holders so that each Value is obviously live through the entire 1693 /// lifetime of the call. 1694 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1695 SmallVectorImpl<CallInst *> &Holders) { 1696 if (Values.empty()) 1697 // No values to hold live, might as well not insert the empty holder 1698 return; 1699 1700 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1701 // Use a dummy vararg function to actually hold the values live 1702 Function *Func = cast<Function>(M->getOrInsertFunction( 1703 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1704 if (CS.isCall()) { 1705 // For call safepoints insert dummy calls right after safepoint 1706 BasicBlock::iterator Next(CS.getInstruction()); 1707 Next++; 1708 Holders.push_back(CallInst::Create(Func, Values, "", Next)); 1709 return; 1710 } 1711 // For invoke safepooints insert dummy calls both in normal and 1712 // exceptional destination blocks 1713 auto *II = cast<InvokeInst>(CS.getInstruction()); 1714 Holders.push_back(CallInst::Create( 1715 Func, Values, "", II->getNormalDest()->getFirstInsertionPt())); 1716 Holders.push_back(CallInst::Create( 1717 Func, Values, "", II->getUnwindDest()->getFirstInsertionPt())); 1718 } 1719 1720 static void findLiveReferences( 1721 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1722 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1723 GCPtrLivenessData OriginalLivenessData; 1724 computeLiveInValues(DT, F, OriginalLivenessData); 1725 for (size_t i = 0; i < records.size(); i++) { 1726 struct PartiallyConstructedSafepointRecord &info = records[i]; 1727 const CallSite &CS = toUpdate[i]; 1728 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1729 } 1730 } 1731 1732 /// Remove any vector of pointers from the liveset by scalarizing them over the 1733 /// statepoint instruction. Adds the scalarized pieces to the liveset. It 1734 /// would be preferrable to include the vector in the statepoint itself, but 1735 /// the lowering code currently does not handle that. Extending it would be 1736 /// slightly non-trivial since it requires a format change. Given how rare 1737 /// such cases are (for the moment?) scalarizing is an acceptable comprimise. 1738 static void splitVectorValues(Instruction *StatepointInst, 1739 StatepointLiveSetTy &LiveSet, 1740 DenseMap<Value *, Value *>& PointerToBase, 1741 DominatorTree &DT) { 1742 SmallVector<Value *, 16> ToSplit; 1743 for (Value *V : LiveSet) 1744 if (isa<VectorType>(V->getType())) 1745 ToSplit.push_back(V); 1746 1747 if (ToSplit.empty()) 1748 return; 1749 1750 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1751 1752 Function &F = *(StatepointInst->getParent()->getParent()); 1753 1754 DenseMap<Value *, AllocaInst *> AllocaMap; 1755 // First is normal return, second is exceptional return (invoke only) 1756 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1757 for (Value *V : ToSplit) { 1758 AllocaInst *Alloca = 1759 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1760 AllocaMap[V] = Alloca; 1761 1762 VectorType *VT = cast<VectorType>(V->getType()); 1763 IRBuilder<> Builder(StatepointInst); 1764 SmallVector<Value *, 16> Elements; 1765 for (unsigned i = 0; i < VT->getNumElements(); i++) 1766 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1767 ElementMapping[V] = Elements; 1768 1769 auto InsertVectorReform = [&](Instruction *IP) { 1770 Builder.SetInsertPoint(IP); 1771 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1772 Value *ResultVec = UndefValue::get(VT); 1773 for (unsigned i = 0; i < VT->getNumElements(); i++) 1774 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1775 Builder.getInt32(i)); 1776 return ResultVec; 1777 }; 1778 1779 if (isa<CallInst>(StatepointInst)) { 1780 BasicBlock::iterator Next(StatepointInst); 1781 Next++; 1782 Instruction *IP = &*(Next); 1783 Replacements[V].first = InsertVectorReform(IP); 1784 Replacements[V].second = nullptr; 1785 } else { 1786 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 1787 // We've already normalized - check that we don't have shared destination 1788 // blocks 1789 BasicBlock *NormalDest = Invoke->getNormalDest(); 1790 assert(!isa<PHINode>(NormalDest->begin())); 1791 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 1792 assert(!isa<PHINode>(UnwindDest->begin())); 1793 // Insert insert element sequences in both successors 1794 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 1795 Replacements[V].first = InsertVectorReform(IP); 1796 IP = &*(UnwindDest->getFirstInsertionPt()); 1797 Replacements[V].second = InsertVectorReform(IP); 1798 } 1799 } 1800 1801 for (Value *V : ToSplit) { 1802 AllocaInst *Alloca = AllocaMap[V]; 1803 1804 // Capture all users before we start mutating use lists 1805 SmallVector<Instruction *, 16> Users; 1806 for (User *U : V->users()) 1807 Users.push_back(cast<Instruction>(U)); 1808 1809 for (Instruction *I : Users) { 1810 if (auto Phi = dyn_cast<PHINode>(I)) { 1811 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 1812 if (V == Phi->getIncomingValue(i)) { 1813 LoadInst *Load = new LoadInst( 1814 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1815 Phi->setIncomingValue(i, Load); 1816 } 1817 } else { 1818 LoadInst *Load = new LoadInst(Alloca, "", I); 1819 I->replaceUsesOfWith(V, Load); 1820 } 1821 } 1822 1823 // Store the original value and the replacement value into the alloca 1824 StoreInst *Store = new StoreInst(V, Alloca); 1825 if (auto I = dyn_cast<Instruction>(V)) 1826 Store->insertAfter(I); 1827 else 1828 Store->insertAfter(Alloca); 1829 1830 // Normal return for invoke, or call return 1831 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 1832 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1833 // Unwind return for invoke only 1834 Replacement = cast_or_null<Instruction>(Replacements[V].second); 1835 if (Replacement) 1836 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1837 } 1838 1839 // apply mem2reg to promote alloca to SSA 1840 SmallVector<AllocaInst *, 16> Allocas; 1841 for (Value *V : ToSplit) 1842 Allocas.push_back(AllocaMap[V]); 1843 PromoteMemToReg(Allocas, DT); 1844 1845 // Update our tracking of live pointers and base mappings to account for the 1846 // changes we just made. 1847 for (Value *V : ToSplit) { 1848 auto &Elements = ElementMapping[V]; 1849 1850 LiveSet.erase(V); 1851 LiveSet.insert(Elements.begin(), Elements.end()); 1852 // We need to update the base mapping as well. 1853 assert(PointerToBase.count(V)); 1854 Value *OldBase = PointerToBase[V]; 1855 auto &BaseElements = ElementMapping[OldBase]; 1856 PointerToBase.erase(V); 1857 assert(Elements.size() == BaseElements.size()); 1858 for (unsigned i = 0; i < Elements.size(); i++) { 1859 Value *Elem = Elements[i]; 1860 PointerToBase[Elem] = BaseElements[i]; 1861 } 1862 } 1863 } 1864 1865 // Helper function for the "rematerializeLiveValues". It walks use chain 1866 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1867 // values are visited (currently it is GEP's and casts). Returns true if it 1868 // sucessfully reached "BaseValue" and false otherwise. 1869 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1870 // recorded. 1871 static bool findRematerializableChainToBasePointer( 1872 SmallVectorImpl<Instruction*> &ChainToBase, 1873 Value *CurrentValue, Value *BaseValue) { 1874 1875 // We have found a base value 1876 if (CurrentValue == BaseValue) { 1877 return true; 1878 } 1879 1880 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1881 ChainToBase.push_back(GEP); 1882 return findRematerializableChainToBasePointer(ChainToBase, 1883 GEP->getPointerOperand(), 1884 BaseValue); 1885 } 1886 1887 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1888 Value *Def = CI->stripPointerCasts(); 1889 1890 // This two checks are basically similar. First one is here for the 1891 // consistency with findBasePointers logic. 1892 assert(!isa<CastInst>(Def) && "not a pointer cast found"); 1893 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1894 return false; 1895 1896 ChainToBase.push_back(CI); 1897 return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue); 1898 } 1899 1900 // Not supported instruction in the chain 1901 return false; 1902 } 1903 1904 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1905 // chain we are going to rematerialize. 1906 static unsigned 1907 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1908 TargetTransformInfo &TTI) { 1909 unsigned Cost = 0; 1910 1911 for (Instruction *Instr : Chain) { 1912 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1913 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1914 "non noop cast is found during rematerialization"); 1915 1916 Type *SrcTy = CI->getOperand(0)->getType(); 1917 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 1918 1919 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1920 // Cost of the address calculation 1921 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); 1922 Cost += TTI.getAddressComputationCost(ValTy); 1923 1924 // And cost of the GEP itself 1925 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1926 // allowed for the external usage) 1927 if (!GEP->hasAllConstantIndices()) 1928 Cost += 2; 1929 1930 } else { 1931 llvm_unreachable("unsupported instruciton type during rematerialization"); 1932 } 1933 } 1934 1935 return Cost; 1936 } 1937 1938 // From the statepoint liveset pick values that are cheaper to recompute then to 1939 // relocate. Remove this values from the liveset, rematerialize them after 1940 // statepoint and record them in "Info" structure. Note that similar to 1941 // relocated values we don't do any user adjustments here. 1942 static void rematerializeLiveValues(CallSite CS, 1943 PartiallyConstructedSafepointRecord &Info, 1944 TargetTransformInfo &TTI) { 1945 const unsigned int ChainLengthThreshold = 10; 1946 1947 // Record values we are going to delete from this statepoint live set. 1948 // We can not di this in following loop due to iterator invalidation. 1949 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1950 1951 for (Value *LiveValue: Info.liveset) { 1952 // For each live pointer find it's defining chain 1953 SmallVector<Instruction *, 3> ChainToBase; 1954 assert(Info.PointerToBase.count(LiveValue)); 1955 bool FoundChain = 1956 findRematerializableChainToBasePointer(ChainToBase, 1957 LiveValue, 1958 Info.PointerToBase[LiveValue]); 1959 // Nothing to do, or chain is too long 1960 if (!FoundChain || 1961 ChainToBase.size() == 0 || 1962 ChainToBase.size() > ChainLengthThreshold) 1963 continue; 1964 1965 // Compute cost of this chain 1966 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1967 // TODO: We can also account for cases when we will be able to remove some 1968 // of the rematerialized values by later optimization passes. I.e if 1969 // we rematerialized several intersecting chains. Or if original values 1970 // don't have any uses besides this statepoint. 1971 1972 // For invokes we need to rematerialize each chain twice - for normal and 1973 // for unwind basic blocks. Model this by multiplying cost by two. 1974 if (CS.isInvoke()) { 1975 Cost *= 2; 1976 } 1977 // If it's too expensive - skip it 1978 if (Cost >= RematerializationThreshold) 1979 continue; 1980 1981 // Remove value from the live set 1982 LiveValuesToBeDeleted.push_back(LiveValue); 1983 1984 // Clone instructions and record them inside "Info" structure 1985 1986 // Walk backwards to visit top-most instructions first 1987 std::reverse(ChainToBase.begin(), ChainToBase.end()); 1988 1989 // Utility function which clones all instructions from "ChainToBase" 1990 // and inserts them before "InsertBefore". Returns rematerialized value 1991 // which should be used after statepoint. 1992 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 1993 Instruction *LastClonedValue = nullptr; 1994 Instruction *LastValue = nullptr; 1995 for (Instruction *Instr: ChainToBase) { 1996 // Only GEP's and casts are suported as we need to be careful to not 1997 // introduce any new uses of pointers not in the liveset. 1998 // Note that it's fine to introduce new uses of pointers which were 1999 // otherwise not used after this statepoint. 2000 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2001 2002 Instruction *ClonedValue = Instr->clone(); 2003 ClonedValue->insertBefore(InsertBefore); 2004 ClonedValue->setName(Instr->getName() + ".remat"); 2005 2006 // If it is not first instruction in the chain then it uses previously 2007 // cloned value. We should update it to use cloned value. 2008 if (LastClonedValue) { 2009 assert(LastValue); 2010 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2011 #ifndef NDEBUG 2012 // Assert that cloned instruction does not use any instructions from 2013 // this chain other than LastClonedValue 2014 for (auto OpValue : ClonedValue->operand_values()) { 2015 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2016 ChainToBase.end() && 2017 "incorrect use in rematerialization chain"); 2018 } 2019 #endif 2020 } 2021 2022 LastClonedValue = ClonedValue; 2023 LastValue = Instr; 2024 } 2025 assert(LastClonedValue); 2026 return LastClonedValue; 2027 }; 2028 2029 // Different cases for calls and invokes. For invokes we need to clone 2030 // instructions both on normal and unwind path. 2031 if (CS.isCall()) { 2032 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2033 assert(InsertBefore); 2034 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2035 Info.RematerializedValues[RematerializedValue] = LiveValue; 2036 } else { 2037 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2038 2039 Instruction *NormalInsertBefore = 2040 Invoke->getNormalDest()->getFirstInsertionPt(); 2041 Instruction *UnwindInsertBefore = 2042 Invoke->getUnwindDest()->getFirstInsertionPt(); 2043 2044 Instruction *NormalRematerializedValue = 2045 rematerializeChain(NormalInsertBefore); 2046 Instruction *UnwindRematerializedValue = 2047 rematerializeChain(UnwindInsertBefore); 2048 2049 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2050 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2051 } 2052 } 2053 2054 // Remove rematerializaed values from the live set 2055 for (auto LiveValue: LiveValuesToBeDeleted) { 2056 Info.liveset.erase(LiveValue); 2057 } 2058 } 2059 2060 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 2061 SmallVectorImpl<CallSite> &toUpdate) { 2062 #ifndef NDEBUG 2063 // sanity check the input 2064 std::set<CallSite> uniqued; 2065 uniqued.insert(toUpdate.begin(), toUpdate.end()); 2066 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 2067 2068 for (size_t i = 0; i < toUpdate.size(); i++) { 2069 CallSite &CS = toUpdate[i]; 2070 assert(CS.getInstruction()->getParent()->getParent() == &F); 2071 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 2072 } 2073 #endif 2074 2075 // When inserting gc.relocates for invokes, we need to be able to insert at 2076 // the top of the successor blocks. See the comment on 2077 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2078 // may restructure the CFG. 2079 for (CallSite CS : toUpdate) { 2080 if (!CS.isInvoke()) 2081 continue; 2082 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 2083 normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(), 2084 DT); 2085 normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(), 2086 DT); 2087 } 2088 2089 // A list of dummy calls added to the IR to keep various values obviously 2090 // live in the IR. We'll remove all of these when done. 2091 SmallVector<CallInst *, 64> holders; 2092 2093 // Insert a dummy call with all of the arguments to the vm_state we'll need 2094 // for the actual safepoint insertion. This ensures reference arguments in 2095 // the deopt argument list are considered live through the safepoint (and 2096 // thus makes sure they get relocated.) 2097 for (size_t i = 0; i < toUpdate.size(); i++) { 2098 CallSite &CS = toUpdate[i]; 2099 Statepoint StatepointCS(CS); 2100 2101 SmallVector<Value *, 64> DeoptValues; 2102 for (Use &U : StatepointCS.vm_state_args()) { 2103 Value *Arg = cast<Value>(&U); 2104 assert(!isUnhandledGCPointerType(Arg->getType()) && 2105 "support for FCA unimplemented"); 2106 if (isHandledGCPointerType(Arg->getType())) 2107 DeoptValues.push_back(Arg); 2108 } 2109 insertUseHolderAfter(CS, DeoptValues, holders); 2110 } 2111 2112 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 2113 records.reserve(toUpdate.size()); 2114 for (size_t i = 0; i < toUpdate.size(); i++) { 2115 struct PartiallyConstructedSafepointRecord info; 2116 records.push_back(info); 2117 } 2118 assert(records.size() == toUpdate.size()); 2119 2120 // A) Identify all gc pointers which are staticly live at the given call 2121 // site. 2122 findLiveReferences(F, DT, P, toUpdate, records); 2123 2124 // B) Find the base pointers for each live pointer 2125 /* scope for caching */ { 2126 // Cache the 'defining value' relation used in the computation and 2127 // insertion of base phis and selects. This ensures that we don't insert 2128 // large numbers of duplicate base_phis. 2129 DefiningValueMapTy DVCache; 2130 2131 for (size_t i = 0; i < records.size(); i++) { 2132 struct PartiallyConstructedSafepointRecord &info = records[i]; 2133 CallSite &CS = toUpdate[i]; 2134 findBasePointers(DT, DVCache, CS, info); 2135 } 2136 } // end of cache scope 2137 2138 // The base phi insertion logic (for any safepoint) may have inserted new 2139 // instructions which are now live at some safepoint. The simplest such 2140 // example is: 2141 // loop: 2142 // phi a <-- will be a new base_phi here 2143 // safepoint 1 <-- that needs to be live here 2144 // gep a + 1 2145 // safepoint 2 2146 // br loop 2147 // We insert some dummy calls after each safepoint to definitely hold live 2148 // the base pointers which were identified for that safepoint. We'll then 2149 // ask liveness for _every_ base inserted to see what is now live. Then we 2150 // remove the dummy calls. 2151 holders.reserve(holders.size() + records.size()); 2152 for (size_t i = 0; i < records.size(); i++) { 2153 struct PartiallyConstructedSafepointRecord &info = records[i]; 2154 CallSite &CS = toUpdate[i]; 2155 2156 SmallVector<Value *, 128> Bases; 2157 for (auto Pair : info.PointerToBase) { 2158 Bases.push_back(Pair.second); 2159 } 2160 insertUseHolderAfter(CS, Bases, holders); 2161 } 2162 2163 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2164 // need to rerun liveness. We may *also* have inserted new defs, but that's 2165 // not the key issue. 2166 recomputeLiveInValues(F, DT, P, toUpdate, records); 2167 2168 if (PrintBasePointers) { 2169 for (size_t i = 0; i < records.size(); i++) { 2170 struct PartiallyConstructedSafepointRecord &info = records[i]; 2171 errs() << "Base Pairs: (w/Relocation)\n"; 2172 for (auto Pair : info.PointerToBase) { 2173 errs() << " derived %" << Pair.first->getName() << " base %" 2174 << Pair.second->getName() << "\n"; 2175 } 2176 } 2177 } 2178 for (size_t i = 0; i < holders.size(); i++) { 2179 holders[i]->eraseFromParent(); 2180 holders[i] = nullptr; 2181 } 2182 holders.clear(); 2183 2184 // Do a limited scalarization of any live at safepoint vector values which 2185 // contain pointers. This enables this pass to run after vectorization at 2186 // the cost of some possible performance loss. TODO: it would be nice to 2187 // natively support vectors all the way through the backend so we don't need 2188 // to scalarize here. 2189 for (size_t i = 0; i < records.size(); i++) { 2190 struct PartiallyConstructedSafepointRecord &info = records[i]; 2191 Instruction *statepoint = toUpdate[i].getInstruction(); 2192 splitVectorValues(cast<Instruction>(statepoint), info.liveset, 2193 info.PointerToBase, DT); 2194 } 2195 2196 // In order to reduce live set of statepoint we might choose to rematerialize 2197 // some values instead of relocating them. This is purelly an optimization and 2198 // does not influence correctness. 2199 TargetTransformInfo &TTI = 2200 P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2201 2202 for (size_t i = 0; i < records.size(); i++) { 2203 struct PartiallyConstructedSafepointRecord &info = records[i]; 2204 CallSite &CS = toUpdate[i]; 2205 2206 rematerializeLiveValues(CS, info, TTI); 2207 } 2208 2209 // Now run through and replace the existing statepoints with new ones with 2210 // the live variables listed. We do not yet update uses of the values being 2211 // relocated. We have references to live variables that need to 2212 // survive to the last iteration of this loop. (By construction, the 2213 // previous statepoint can not be a live variable, thus we can and remove 2214 // the old statepoint calls as we go.) 2215 for (size_t i = 0; i < records.size(); i++) { 2216 struct PartiallyConstructedSafepointRecord &info = records[i]; 2217 CallSite &CS = toUpdate[i]; 2218 makeStatepointExplicit(DT, CS, P, info); 2219 } 2220 toUpdate.clear(); // prevent accident use of invalid CallSites 2221 2222 // Do all the fixups of the original live variables to their relocated selves 2223 SmallVector<Value *, 128> live; 2224 for (size_t i = 0; i < records.size(); i++) { 2225 struct PartiallyConstructedSafepointRecord &info = records[i]; 2226 // We can't simply save the live set from the original insertion. One of 2227 // the live values might be the result of a call which needs a safepoint. 2228 // That Value* no longer exists and we need to use the new gc_result. 2229 // Thankfully, the liveset is embedded in the statepoint (and updated), so 2230 // we just grab that. 2231 Statepoint statepoint(info.StatepointToken); 2232 live.insert(live.end(), statepoint.gc_args_begin(), 2233 statepoint.gc_args_end()); 2234 #ifndef NDEBUG 2235 // Do some basic sanity checks on our liveness results before performing 2236 // relocation. Relocation can and will turn mistakes in liveness results 2237 // into non-sensical code which is must harder to debug. 2238 // TODO: It would be nice to test consistency as well 2239 assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) && 2240 "statepoint must be reachable or liveness is meaningless"); 2241 for (Value *V : statepoint.gc_args()) { 2242 if (!isa<Instruction>(V)) 2243 // Non-instruction values trivial dominate all possible uses 2244 continue; 2245 auto LiveInst = cast<Instruction>(V); 2246 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2247 "unreachable values should never be live"); 2248 assert(DT.dominates(LiveInst, info.StatepointToken) && 2249 "basic SSA liveness expectation violated by liveness analysis"); 2250 } 2251 #endif 2252 } 2253 unique_unsorted(live); 2254 2255 #ifndef NDEBUG 2256 // sanity check 2257 for (auto ptr : live) { 2258 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 2259 } 2260 #endif 2261 2262 relocationViaAlloca(F, DT, live, records); 2263 return !records.empty(); 2264 } 2265 2266 // Handles both return values and arguments for Functions and CallSites. 2267 template <typename AttrHolder> 2268 static void RemoveDerefAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2269 unsigned Index) { 2270 AttrBuilder R; 2271 if (AH.getDereferenceableBytes(Index)) 2272 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2273 AH.getDereferenceableBytes(Index))); 2274 if (AH.getDereferenceableOrNullBytes(Index)) 2275 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2276 AH.getDereferenceableOrNullBytes(Index))); 2277 2278 if (!R.empty()) 2279 AH.setAttributes(AH.getAttributes().removeAttributes( 2280 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2281 } 2282 2283 void 2284 RewriteStatepointsForGC::stripDereferenceabilityInfoFromPrototype(Function &F) { 2285 LLVMContext &Ctx = F.getContext(); 2286 2287 for (Argument &A : F.args()) 2288 if (isa<PointerType>(A.getType())) 2289 RemoveDerefAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2290 2291 if (isa<PointerType>(F.getReturnType())) 2292 RemoveDerefAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2293 } 2294 2295 void RewriteStatepointsForGC::stripDereferenceabilityInfoFromBody(Function &F) { 2296 if (F.empty()) 2297 return; 2298 2299 LLVMContext &Ctx = F.getContext(); 2300 MDBuilder Builder(Ctx); 2301 2302 for (Instruction &I : inst_range(F)) { 2303 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2304 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2305 bool IsImmutableTBAA = 2306 MD->getNumOperands() == 4 && 2307 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2308 2309 if (!IsImmutableTBAA) 2310 continue; // no work to do, MD_tbaa is already marked mutable 2311 2312 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2313 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2314 uint64_t Offset = 2315 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2316 2317 MDNode *MutableTBAA = 2318 Builder.createTBAAStructTagNode(Base, Access, Offset); 2319 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2320 } 2321 2322 if (CallSite CS = CallSite(&I)) { 2323 for (int i = 0, e = CS.arg_size(); i != e; i++) 2324 if (isa<PointerType>(CS.getArgument(i)->getType())) 2325 RemoveDerefAttrAtIndex(Ctx, CS, i + 1); 2326 if (isa<PointerType>(CS.getType())) 2327 RemoveDerefAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2328 } 2329 } 2330 } 2331 2332 /// Returns true if this function should be rewritten by this pass. The main 2333 /// point of this function is as an extension point for custom logic. 2334 static bool shouldRewriteStatepointsIn(Function &F) { 2335 // TODO: This should check the GCStrategy 2336 if (F.hasGC()) { 2337 const char *FunctionGCName = F.getGC(); 2338 const StringRef StatepointExampleName("statepoint-example"); 2339 const StringRef CoreCLRName("coreclr"); 2340 return (StatepointExampleName == FunctionGCName) || 2341 (CoreCLRName == FunctionGCName); 2342 } else 2343 return false; 2344 } 2345 2346 void RewriteStatepointsForGC::stripDereferenceabilityInfo(Module &M) { 2347 #ifndef NDEBUG 2348 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2349 "precondition!"); 2350 #endif 2351 2352 for (Function &F : M) 2353 stripDereferenceabilityInfoFromPrototype(F); 2354 2355 for (Function &F : M) 2356 stripDereferenceabilityInfoFromBody(F); 2357 } 2358 2359 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2360 // Nothing to do for declarations. 2361 if (F.isDeclaration() || F.empty()) 2362 return false; 2363 2364 // Policy choice says not to rewrite - the most common reason is that we're 2365 // compiling code without a GCStrategy. 2366 if (!shouldRewriteStatepointsIn(F)) 2367 return false; 2368 2369 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2370 2371 // Gather all the statepoints which need rewritten. Be careful to only 2372 // consider those in reachable code since we need to ask dominance queries 2373 // when rewriting. We'll delete the unreachable ones in a moment. 2374 SmallVector<CallSite, 64> ParsePointNeeded; 2375 bool HasUnreachableStatepoint = false; 2376 for (Instruction &I : inst_range(F)) { 2377 // TODO: only the ones with the flag set! 2378 if (isStatepoint(I)) { 2379 if (DT.isReachableFromEntry(I.getParent())) 2380 ParsePointNeeded.push_back(CallSite(&I)); 2381 else 2382 HasUnreachableStatepoint = true; 2383 } 2384 } 2385 2386 bool MadeChange = false; 2387 2388 // Delete any unreachable statepoints so that we don't have unrewritten 2389 // statepoints surviving this pass. This makes testing easier and the 2390 // resulting IR less confusing to human readers. Rather than be fancy, we 2391 // just reuse a utility function which removes the unreachable blocks. 2392 if (HasUnreachableStatepoint) 2393 MadeChange |= removeUnreachableBlocks(F); 2394 2395 // Return early if no work to do. 2396 if (ParsePointNeeded.empty()) 2397 return MadeChange; 2398 2399 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2400 // These are created by LCSSA. They have the effect of increasing the size 2401 // of liveness sets for no good reason. It may be harder to do this post 2402 // insertion since relocations and base phis can confuse things. 2403 for (BasicBlock &BB : F) 2404 if (BB.getUniquePredecessor()) { 2405 MadeChange = true; 2406 FoldSingleEntryPHINodes(&BB); 2407 } 2408 2409 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); 2410 return MadeChange; 2411 } 2412 2413 // liveness computation via standard dataflow 2414 // ------------------------------------------------------------------- 2415 2416 // TODO: Consider using bitvectors for liveness, the set of potentially 2417 // interesting values should be small and easy to pre-compute. 2418 2419 /// Compute the live-in set for the location rbegin starting from 2420 /// the live-out set of the basic block 2421 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2422 BasicBlock::reverse_iterator rend, 2423 DenseSet<Value *> &LiveTmp) { 2424 2425 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2426 Instruction *I = &*ritr; 2427 2428 // KILL/Def - Remove this definition from LiveIn 2429 LiveTmp.erase(I); 2430 2431 // Don't consider *uses* in PHI nodes, we handle their contribution to 2432 // predecessor blocks when we seed the LiveOut sets 2433 if (isa<PHINode>(I)) 2434 continue; 2435 2436 // USE - Add to the LiveIn set for this instruction 2437 for (Value *V : I->operands()) { 2438 assert(!isUnhandledGCPointerType(V->getType()) && 2439 "support for FCA unimplemented"); 2440 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2441 // The choice to exclude all things constant here is slightly subtle. 2442 // There are two idependent reasons: 2443 // - We assume that things which are constant (from LLVM's definition) 2444 // do not move at runtime. For example, the address of a global 2445 // variable is fixed, even though it's contents may not be. 2446 // - Second, we can't disallow arbitrary inttoptr constants even 2447 // if the language frontend does. Optimization passes are free to 2448 // locally exploit facts without respect to global reachability. This 2449 // can create sections of code which are dynamically unreachable and 2450 // contain just about anything. (see constants.ll in tests) 2451 LiveTmp.insert(V); 2452 } 2453 } 2454 } 2455 } 2456 2457 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2458 2459 for (BasicBlock *Succ : successors(BB)) { 2460 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2461 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2462 PHINode *Phi = cast<PHINode>(&*I); 2463 Value *V = Phi->getIncomingValueForBlock(BB); 2464 assert(!isUnhandledGCPointerType(V->getType()) && 2465 "support for FCA unimplemented"); 2466 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2467 LiveTmp.insert(V); 2468 } 2469 } 2470 } 2471 } 2472 2473 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2474 DenseSet<Value *> KillSet; 2475 for (Instruction &I : *BB) 2476 if (isHandledGCPointerType(I.getType())) 2477 KillSet.insert(&I); 2478 return KillSet; 2479 } 2480 2481 #ifndef NDEBUG 2482 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2483 /// sanity check for the liveness computation. 2484 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2485 TerminatorInst *TI, bool TermOkay = false) { 2486 for (Value *V : Live) { 2487 if (auto *I = dyn_cast<Instruction>(V)) { 2488 // The terminator can be a member of the LiveOut set. LLVM's definition 2489 // of instruction dominance states that V does not dominate itself. As 2490 // such, we need to special case this to allow it. 2491 if (TermOkay && TI == I) 2492 continue; 2493 assert(DT.dominates(I, TI) && 2494 "basic SSA liveness expectation violated by liveness analysis"); 2495 } 2496 } 2497 } 2498 2499 /// Check that all the liveness sets used during the computation of liveness 2500 /// obey basic SSA properties. This is useful for finding cases where we miss 2501 /// a def. 2502 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2503 BasicBlock &BB) { 2504 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2505 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2506 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2507 } 2508 #endif 2509 2510 static void computeLiveInValues(DominatorTree &DT, Function &F, 2511 GCPtrLivenessData &Data) { 2512 2513 SmallSetVector<BasicBlock *, 200> Worklist; 2514 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2515 // We use a SetVector so that we don't have duplicates in the worklist. 2516 Worklist.insert(pred_begin(BB), pred_end(BB)); 2517 }; 2518 auto NextItem = [&]() { 2519 BasicBlock *BB = Worklist.back(); 2520 Worklist.pop_back(); 2521 return BB; 2522 }; 2523 2524 // Seed the liveness for each individual block 2525 for (BasicBlock &BB : F) { 2526 Data.KillSet[&BB] = computeKillSet(&BB); 2527 Data.LiveSet[&BB].clear(); 2528 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2529 2530 #ifndef NDEBUG 2531 for (Value *Kill : Data.KillSet[&BB]) 2532 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2533 #endif 2534 2535 Data.LiveOut[&BB] = DenseSet<Value *>(); 2536 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2537 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2538 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2539 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2540 if (!Data.LiveIn[&BB].empty()) 2541 AddPredsToWorklist(&BB); 2542 } 2543 2544 // Propagate that liveness until stable 2545 while (!Worklist.empty()) { 2546 BasicBlock *BB = NextItem(); 2547 2548 // Compute our new liveout set, then exit early if it hasn't changed 2549 // despite the contribution of our successor. 2550 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2551 const auto OldLiveOutSize = LiveOut.size(); 2552 for (BasicBlock *Succ : successors(BB)) { 2553 assert(Data.LiveIn.count(Succ)); 2554 set_union(LiveOut, Data.LiveIn[Succ]); 2555 } 2556 // assert OutLiveOut is a subset of LiveOut 2557 if (OldLiveOutSize == LiveOut.size()) { 2558 // If the sets are the same size, then we didn't actually add anything 2559 // when unioning our successors LiveIn Thus, the LiveIn of this block 2560 // hasn't changed. 2561 continue; 2562 } 2563 Data.LiveOut[BB] = LiveOut; 2564 2565 // Apply the effects of this basic block 2566 DenseSet<Value *> LiveTmp = LiveOut; 2567 set_union(LiveTmp, Data.LiveSet[BB]); 2568 set_subtract(LiveTmp, Data.KillSet[BB]); 2569 2570 assert(Data.LiveIn.count(BB)); 2571 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2572 // assert: OldLiveIn is a subset of LiveTmp 2573 if (OldLiveIn.size() != LiveTmp.size()) { 2574 Data.LiveIn[BB] = LiveTmp; 2575 AddPredsToWorklist(BB); 2576 } 2577 } // while( !worklist.empty() ) 2578 2579 #ifndef NDEBUG 2580 // Sanity check our ouput against SSA properties. This helps catch any 2581 // missing kills during the above iteration. 2582 for (BasicBlock &BB : F) { 2583 checkBasicSSA(DT, Data, BB); 2584 } 2585 #endif 2586 } 2587 2588 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2589 StatepointLiveSetTy &Out) { 2590 2591 BasicBlock *BB = Inst->getParent(); 2592 2593 // Note: The copy is intentional and required 2594 assert(Data.LiveOut.count(BB)); 2595 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2596 2597 // We want to handle the statepoint itself oddly. It's 2598 // call result is not live (normal), nor are it's arguments 2599 // (unless they're used again later). This adjustment is 2600 // specifically what we need to relocate 2601 BasicBlock::reverse_iterator rend(Inst); 2602 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2603 LiveOut.erase(Inst); 2604 Out.insert(LiveOut.begin(), LiveOut.end()); 2605 } 2606 2607 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2608 const CallSite &CS, 2609 PartiallyConstructedSafepointRecord &Info) { 2610 Instruction *Inst = CS.getInstruction(); 2611 StatepointLiveSetTy Updated; 2612 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2613 2614 #ifndef NDEBUG 2615 DenseSet<Value *> Bases; 2616 for (auto KVPair : Info.PointerToBase) { 2617 Bases.insert(KVPair.second); 2618 } 2619 #endif 2620 // We may have base pointers which are now live that weren't before. We need 2621 // to update the PointerToBase structure to reflect this. 2622 for (auto V : Updated) 2623 if (!Info.PointerToBase.count(V)) { 2624 assert(Bases.count(V) && "can't find base for unexpected live value"); 2625 Info.PointerToBase[V] = V; 2626 continue; 2627 } 2628 2629 #ifndef NDEBUG 2630 for (auto V : Updated) { 2631 assert(Info.PointerToBase.count(V) && 2632 "must be able to find base for live value"); 2633 } 2634 #endif 2635 2636 // Remove any stale base mappings - this can happen since our liveness is 2637 // more precise then the one inherent in the base pointer analysis 2638 DenseSet<Value *> ToErase; 2639 for (auto KVPair : Info.PointerToBase) 2640 if (!Updated.count(KVPair.first)) 2641 ToErase.insert(KVPair.first); 2642 for (auto V : ToErase) 2643 Info.PointerToBase.erase(V); 2644 2645 #ifndef NDEBUG 2646 for (auto KVPair : Info.PointerToBase) 2647 assert(Updated.count(KVPair.first) && "record for non-live value"); 2648 #endif 2649 2650 Info.liveset = Updated; 2651 } 2652