1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstIterator.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/IR/Statepoint.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Transforms/Scalar.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/Cloning.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 44 45 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 46 47 using namespace llvm; 48 49 // Print tracing output 50 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 51 cl::init(false)); 52 53 // Print the liveset found at the insert location 54 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 55 cl::init(false)); 56 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 57 cl::init(false)); 58 // Print out the base pointers for debugging 59 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 60 cl::init(false)); 61 62 // Cost threshold measuring when it is profitable to rematerialize value instead 63 // of relocating it 64 static cl::opt<unsigned> 65 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 66 cl::init(6)); 67 68 #ifdef XDEBUG 69 static bool ClobberNonLive = true; 70 #else 71 static bool ClobberNonLive = false; 72 #endif 73 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 74 cl::location(ClobberNonLive), 75 cl::Hidden); 76 77 namespace { 78 struct RewriteStatepointsForGC : public ModulePass { 79 static char ID; // Pass identification, replacement for typeid 80 81 RewriteStatepointsForGC() : ModulePass(ID) { 82 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 83 } 84 bool runOnFunction(Function &F); 85 bool runOnModule(Module &M) override { 86 bool Changed = false; 87 for (Function &F : M) 88 Changed |= runOnFunction(F); 89 90 if (Changed) { 91 // stripDereferenceabilityInfo asserts that shouldRewriteStatepointsIn 92 // returns true for at least one function in the module. Since at least 93 // one function changed, we know that the precondition is satisfied. 94 stripDereferenceabilityInfo(M); 95 } 96 97 return Changed; 98 } 99 100 void getAnalysisUsage(AnalysisUsage &AU) const override { 101 // We add and rewrite a bunch of instructions, but don't really do much 102 // else. We could in theory preserve a lot more analyses here. 103 AU.addRequired<DominatorTreeWrapperPass>(); 104 AU.addRequired<TargetTransformInfoWrapperPass>(); 105 } 106 107 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 108 /// dereferenceability that are no longer valid/correct after 109 /// RewriteStatepointsForGC has run. This is because semantically, after 110 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 111 /// heap. stripDereferenceabilityInfo (conservatively) restores correctness 112 /// by erasing all attributes in the module that externally imply 113 /// dereferenceability. 114 /// 115 void stripDereferenceabilityInfo(Module &M); 116 117 // Helpers for stripDereferenceabilityInfo 118 void stripDereferenceabilityInfoFromBody(Function &F); 119 void stripDereferenceabilityInfoFromPrototype(Function &F); 120 }; 121 } // namespace 122 123 char RewriteStatepointsForGC::ID = 0; 124 125 ModulePass *llvm::createRewriteStatepointsForGCPass() { 126 return new RewriteStatepointsForGC(); 127 } 128 129 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 130 "Make relocations explicit at statepoints", false, false) 131 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 132 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 133 "Make relocations explicit at statepoints", false, false) 134 135 namespace { 136 struct GCPtrLivenessData { 137 /// Values defined in this block. 138 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 139 /// Values used in this block (and thus live); does not included values 140 /// killed within this block. 141 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 142 143 /// Values live into this basic block (i.e. used by any 144 /// instruction in this basic block or ones reachable from here) 145 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 146 147 /// Values live out of this basic block (i.e. live into 148 /// any successor block) 149 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 150 }; 151 152 // The type of the internal cache used inside the findBasePointers family 153 // of functions. From the callers perspective, this is an opaque type and 154 // should not be inspected. 155 // 156 // In the actual implementation this caches two relations: 157 // - The base relation itself (i.e. this pointer is based on that one) 158 // - The base defining value relation (i.e. before base_phi insertion) 159 // Generally, after the execution of a full findBasePointer call, only the 160 // base relation will remain. Internally, we add a mixture of the two 161 // types, then update all the second type to the first type 162 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 163 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 164 typedef DenseMap<Instruction *, Value *> RematerializedValueMapTy; 165 166 struct PartiallyConstructedSafepointRecord { 167 /// The set of values known to be live accross this safepoint 168 StatepointLiveSetTy liveset; 169 170 /// Mapping from live pointers to a base-defining-value 171 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 172 173 /// The *new* gc.statepoint instruction itself. This produces the token 174 /// that normal path gc.relocates and the gc.result are tied to. 175 Instruction *StatepointToken; 176 177 /// Instruction to which exceptional gc relocates are attached 178 /// Makes it easier to iterate through them during relocationViaAlloca. 179 Instruction *UnwindToken; 180 181 /// Record live values we are rematerialized instead of relocating. 182 /// They are not included into 'liveset' field. 183 /// Maps rematerialized copy to it's original value. 184 RematerializedValueMapTy RematerializedValues; 185 }; 186 } 187 188 /// Compute the live-in set for every basic block in the function 189 static void computeLiveInValues(DominatorTree &DT, Function &F, 190 GCPtrLivenessData &Data); 191 192 /// Given results from the dataflow liveness computation, find the set of live 193 /// Values at a particular instruction. 194 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 195 StatepointLiveSetTy &out); 196 197 // TODO: Once we can get to the GCStrategy, this becomes 198 // Optional<bool> isGCManagedPointer(const Value *V) const override { 199 200 static bool isGCPointerType(const Type *T) { 201 if (const PointerType *PT = dyn_cast<PointerType>(T)) 202 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 203 // GC managed heap. We know that a pointer into this heap needs to be 204 // updated and that no other pointer does. 205 return (1 == PT->getAddressSpace()); 206 return false; 207 } 208 209 // Return true if this type is one which a) is a gc pointer or contains a GC 210 // pointer and b) is of a type this code expects to encounter as a live value. 211 // (The insertion code will assert that a type which matches (a) and not (b) 212 // is not encountered.) 213 static bool isHandledGCPointerType(Type *T) { 214 // We fully support gc pointers 215 if (isGCPointerType(T)) 216 return true; 217 // We partially support vectors of gc pointers. The code will assert if it 218 // can't handle something. 219 if (auto VT = dyn_cast<VectorType>(T)) 220 if (isGCPointerType(VT->getElementType())) 221 return true; 222 return false; 223 } 224 225 #ifndef NDEBUG 226 /// Returns true if this type contains a gc pointer whether we know how to 227 /// handle that type or not. 228 static bool containsGCPtrType(Type *Ty) { 229 if (isGCPointerType(Ty)) 230 return true; 231 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 232 return isGCPointerType(VT->getScalarType()); 233 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 234 return containsGCPtrType(AT->getElementType()); 235 if (StructType *ST = dyn_cast<StructType>(Ty)) 236 return std::any_of( 237 ST->subtypes().begin(), ST->subtypes().end(), 238 [](Type *SubType) { return containsGCPtrType(SubType); }); 239 return false; 240 } 241 242 // Returns true if this is a type which a) is a gc pointer or contains a GC 243 // pointer and b) is of a type which the code doesn't expect (i.e. first class 244 // aggregates). Used to trip assertions. 245 static bool isUnhandledGCPointerType(Type *Ty) { 246 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 247 } 248 #endif 249 250 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 251 if (a->hasName() && b->hasName()) { 252 return -1 == a->getName().compare(b->getName()); 253 } else if (a->hasName() && !b->hasName()) { 254 return true; 255 } else if (!a->hasName() && b->hasName()) { 256 return false; 257 } else { 258 // Better than nothing, but not stable 259 return a < b; 260 } 261 } 262 263 // Conservatively identifies any definitions which might be live at the 264 // given instruction. The analysis is performed immediately before the 265 // given instruction. Values defined by that instruction are not considered 266 // live. Values used by that instruction are considered live. 267 static void analyzeParsePointLiveness( 268 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 269 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 270 Instruction *inst = CS.getInstruction(); 271 272 StatepointLiveSetTy liveset; 273 findLiveSetAtInst(inst, OriginalLivenessData, liveset); 274 275 if (PrintLiveSet) { 276 // Note: This output is used by several of the test cases 277 // The order of elemtns in a set is not stable, put them in a vec and sort 278 // by name 279 SmallVector<Value *, 64> temp; 280 temp.insert(temp.end(), liveset.begin(), liveset.end()); 281 std::sort(temp.begin(), temp.end(), order_by_name); 282 errs() << "Live Variables:\n"; 283 for (Value *V : temp) { 284 errs() << " " << V->getName(); // no newline 285 V->dump(); 286 } 287 } 288 if (PrintLiveSetSize) { 289 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 290 errs() << "Number live values: " << liveset.size() << "\n"; 291 } 292 result.liveset = liveset; 293 } 294 295 static Value *findBaseDefiningValue(Value *I); 296 297 /// Return a base defining value for the 'Index' element of the given vector 298 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 299 /// 'I'. As an optimization, this method will try to determine when the 300 /// element is known to already be a base pointer. If this can be established, 301 /// the second value in the returned pair will be true. Note that either a 302 /// vector or a pointer typed value can be returned. For the former, the 303 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 304 /// If the later, the return pointer is a BDV (or possibly a base) for the 305 /// particular element in 'I'. 306 static std::pair<Value *, bool> 307 findBaseDefiningValueOfVector(Value *I, Value *Index = nullptr) { 308 assert(I->getType()->isVectorTy() && 309 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 310 "Illegal to ask for the base pointer of a non-pointer type"); 311 312 // Each case parallels findBaseDefiningValue below, see that code for 313 // detailed motivation. 314 315 if (isa<Argument>(I)) 316 // An incoming argument to the function is a base pointer 317 return std::make_pair(I, true); 318 319 // We shouldn't see the address of a global as a vector value? 320 assert(!isa<GlobalVariable>(I) && 321 "unexpected global variable found in base of vector"); 322 323 // inlining could possibly introduce phi node that contains 324 // undef if callee has multiple returns 325 if (isa<UndefValue>(I)) 326 // utterly meaningless, but useful for dealing with partially optimized 327 // code. 328 return std::make_pair(I, true); 329 330 // Due to inheritance, this must be _after_ the global variable and undef 331 // checks 332 if (Constant *Con = dyn_cast<Constant>(I)) { 333 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 334 "order of checks wrong!"); 335 assert(Con->isNullValue() && "null is the only case which makes sense"); 336 return std::make_pair(Con, true); 337 } 338 339 if (isa<LoadInst>(I)) 340 return std::make_pair(I, true); 341 342 // For an insert element, we might be able to look through it if we know 343 // something about the indexes. 344 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(I)) { 345 if (Index) { 346 Value *InsertIndex = IEI->getOperand(2); 347 // This index is inserting the value, look for its BDV 348 if (InsertIndex == Index) 349 return std::make_pair(findBaseDefiningValue(IEI->getOperand(1)), false); 350 // Both constant, and can't be equal per above. This insert is definitely 351 // not relevant, look back at the rest of the vector and keep trying. 352 if (isa<ConstantInt>(Index) && isa<ConstantInt>(InsertIndex)) 353 return findBaseDefiningValueOfVector(IEI->getOperand(0), Index); 354 } 355 356 // We don't know whether this vector contains entirely base pointers or 357 // not. To be conservatively correct, we treat it as a BDV and will 358 // duplicate code as needed to construct a parallel vector of bases. 359 return std::make_pair(IEI, false); 360 } 361 362 if (isa<ShuffleVectorInst>(I)) 363 // We don't know whether this vector contains entirely base pointers or 364 // not. To be conservatively correct, we treat it as a BDV and will 365 // duplicate code as needed to construct a parallel vector of bases. 366 // TODO: There a number of local optimizations which could be applied here 367 // for particular sufflevector patterns. 368 return std::make_pair(I, false); 369 370 // A PHI or Select is a base defining value. The outer findBasePointer 371 // algorithm is responsible for constructing a base value for this BDV. 372 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 373 "unknown vector instruction - no base found for vector element"); 374 return std::make_pair(I, false); 375 } 376 377 static bool isKnownBaseResult(Value *V); 378 379 /// Helper function for findBasePointer - Will return a value which either a) 380 /// defines the base pointer for the input or b) blocks the simple search 381 /// (i.e. a PHI or Select of two derived pointers) 382 static Value *findBaseDefiningValue(Value *I) { 383 if (I->getType()->isVectorTy()) 384 return findBaseDefiningValueOfVector(I).first; 385 386 assert(I->getType()->isPointerTy() && 387 "Illegal to ask for the base pointer of a non-pointer type"); 388 389 // This case is a bit of a hack - it only handles extracts from vectors which 390 // trivially contain only base pointers or cases where we can directly match 391 // the index of the original extract element to an insertion into the vector. 392 // See note inside the function for how to improve this. 393 if (auto *EEI = dyn_cast<ExtractElementInst>(I)) { 394 Value *VectorOperand = EEI->getVectorOperand(); 395 Value *Index = EEI->getIndexOperand(); 396 std::pair<Value *, bool> pair = 397 findBaseDefiningValueOfVector(VectorOperand, Index); 398 Value *VectorBase = pair.first; 399 if (VectorBase->getType()->isPointerTy()) 400 // We found a BDV for this specific element with the vector. This is an 401 // optimization, but in practice it covers most of the useful cases 402 // created via scalarization. 403 return VectorBase; 404 else { 405 assert(VectorBase->getType()->isVectorTy()); 406 if (pair.second) 407 // If the entire vector returned is known to be entirely base pointers, 408 // then the extractelement is valid base for this value. 409 return EEI; 410 else { 411 // Otherwise, we have an instruction which potentially produces a 412 // derived pointer and we need findBasePointers to clone code for us 413 // such that we can create an instruction which produces the 414 // accompanying base pointer. 415 // Note: This code is currently rather incomplete. We don't currently 416 // support the general form of shufflevector of insertelement. 417 // Conceptually, these are just 'base defining values' of the same 418 // variety as phi or select instructions. We need to update the 419 // findBasePointers algorithm to insert new 'base-only' versions of the 420 // original instructions. This is relative straight forward to do, but 421 // the case which would motivate the work hasn't shown up in real 422 // workloads yet. 423 assert((isa<PHINode>(VectorBase) || isa<SelectInst>(VectorBase)) && 424 "need to extend findBasePointers for generic vector" 425 "instruction cases"); 426 return VectorBase; 427 } 428 } 429 } 430 431 if (isa<Argument>(I)) 432 // An incoming argument to the function is a base pointer 433 // We should have never reached here if this argument isn't an gc value 434 return I; 435 436 if (isa<GlobalVariable>(I)) 437 // base case 438 return I; 439 440 // inlining could possibly introduce phi node that contains 441 // undef if callee has multiple returns 442 if (isa<UndefValue>(I)) 443 // utterly meaningless, but useful for dealing with 444 // partially optimized code. 445 return I; 446 447 // Due to inheritance, this must be _after_ the global variable and undef 448 // checks 449 if (Constant *Con = dyn_cast<Constant>(I)) { 450 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 451 "order of checks wrong!"); 452 // Note: Finding a constant base for something marked for relocation 453 // doesn't really make sense. The most likely case is either a) some 454 // screwed up the address space usage or b) your validating against 455 // compiled C++ code w/o the proper separation. The only real exception 456 // is a null pointer. You could have generic code written to index of 457 // off a potentially null value and have proven it null. We also use 458 // null pointers in dead paths of relocation phis (which we might later 459 // want to find a base pointer for). 460 assert(isa<ConstantPointerNull>(Con) && 461 "null is the only case which makes sense"); 462 return Con; 463 } 464 465 if (CastInst *CI = dyn_cast<CastInst>(I)) { 466 Value *Def = CI->stripPointerCasts(); 467 // If we find a cast instruction here, it means we've found a cast which is 468 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 469 // handle int->ptr conversion. 470 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 471 return findBaseDefiningValue(Def); 472 } 473 474 if (isa<LoadInst>(I)) 475 return I; // The value loaded is an gc base itself 476 477 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 478 // The base of this GEP is the base 479 return findBaseDefiningValue(GEP->getPointerOperand()); 480 481 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 482 switch (II->getIntrinsicID()) { 483 case Intrinsic::experimental_gc_result_ptr: 484 default: 485 // fall through to general call handling 486 break; 487 case Intrinsic::experimental_gc_statepoint: 488 case Intrinsic::experimental_gc_result_float: 489 case Intrinsic::experimental_gc_result_int: 490 llvm_unreachable("these don't produce pointers"); 491 case Intrinsic::experimental_gc_relocate: { 492 // Rerunning safepoint insertion after safepoints are already 493 // inserted is not supported. It could probably be made to work, 494 // but why are you doing this? There's no good reason. 495 llvm_unreachable("repeat safepoint insertion is not supported"); 496 } 497 case Intrinsic::gcroot: 498 // Currently, this mechanism hasn't been extended to work with gcroot. 499 // There's no reason it couldn't be, but I haven't thought about the 500 // implications much. 501 llvm_unreachable( 502 "interaction with the gcroot mechanism is not supported"); 503 } 504 } 505 // We assume that functions in the source language only return base 506 // pointers. This should probably be generalized via attributes to support 507 // both source language and internal functions. 508 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 509 return I; 510 511 // I have absolutely no idea how to implement this part yet. It's not 512 // neccessarily hard, I just haven't really looked at it yet. 513 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 514 515 if (isa<AtomicCmpXchgInst>(I)) 516 // A CAS is effectively a atomic store and load combined under a 517 // predicate. From the perspective of base pointers, we just treat it 518 // like a load. 519 return I; 520 521 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 522 "binary ops which don't apply to pointers"); 523 524 // The aggregate ops. Aggregates can either be in the heap or on the 525 // stack, but in either case, this is simply a field load. As a result, 526 // this is a defining definition of the base just like a load is. 527 if (isa<ExtractValueInst>(I)) 528 return I; 529 530 // We should never see an insert vector since that would require we be 531 // tracing back a struct value not a pointer value. 532 assert(!isa<InsertValueInst>(I) && 533 "Base pointer for a struct is meaningless"); 534 535 // The last two cases here don't return a base pointer. Instead, they 536 // return a value which dynamically selects from amoung several base 537 // derived pointers (each with it's own base potentially). It's the job of 538 // the caller to resolve these. 539 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 540 "missing instruction case in findBaseDefiningValing"); 541 return I; 542 } 543 544 /// Returns the base defining value for this value. 545 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 546 Value *&Cached = Cache[I]; 547 if (!Cached) { 548 Cached = findBaseDefiningValue(I); 549 } 550 assert(Cache[I] != nullptr); 551 552 if (TraceLSP) { 553 dbgs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() 554 << "\n"; 555 } 556 return Cached; 557 } 558 559 /// Return a base pointer for this value if known. Otherwise, return it's 560 /// base defining value. 561 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 562 Value *Def = findBaseDefiningValueCached(I, Cache); 563 auto Found = Cache.find(Def); 564 if (Found != Cache.end()) { 565 // Either a base-of relation, or a self reference. Caller must check. 566 return Found->second; 567 } 568 // Only a BDV available 569 return Def; 570 } 571 572 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 573 /// is it known to be a base pointer? Or do we need to continue searching. 574 static bool isKnownBaseResult(Value *V) { 575 if (!isa<PHINode>(V) && !isa<SelectInst>(V)) { 576 // no recursion possible 577 return true; 578 } 579 if (isa<Instruction>(V) && 580 cast<Instruction>(V)->getMetadata("is_base_value")) { 581 // This is a previously inserted base phi or select. We know 582 // that this is a base value. 583 return true; 584 } 585 586 // We need to keep searching 587 return false; 588 } 589 590 // TODO: find a better name for this 591 namespace { 592 class PhiState { 593 public: 594 enum Status { Unknown, Base, Conflict }; 595 596 PhiState(Status s, Value *b = nullptr) : status(s), base(b) { 597 assert(status != Base || b); 598 } 599 PhiState(Value *b) : status(Base), base(b) {} 600 PhiState() : status(Unknown), base(nullptr) {} 601 602 Status getStatus() const { return status; } 603 Value *getBase() const { return base; } 604 605 bool isBase() const { return getStatus() == Base; } 606 bool isUnknown() const { return getStatus() == Unknown; } 607 bool isConflict() const { return getStatus() == Conflict; } 608 609 bool operator==(const PhiState &other) const { 610 return base == other.base && status == other.status; 611 } 612 613 bool operator!=(const PhiState &other) const { return !(*this == other); } 614 615 void dump() { 616 errs() << status << " (" << base << " - " 617 << (base ? base->getName() : "nullptr") << "): "; 618 } 619 620 private: 621 Status status; 622 Value *base; // non null only if status == base 623 }; 624 625 typedef DenseMap<Value *, PhiState> ConflictStateMapTy; 626 // Values of type PhiState form a lattice, and this is a helper 627 // class that implementes the meet operation. The meat of the meet 628 // operation is implemented in MeetPhiStates::pureMeet 629 class MeetPhiStates { 630 public: 631 /// Initializes the currentResult to the TOP state so that if can be met with 632 /// any other state to produce that state. 633 MeetPhiStates() {} 634 635 // Destructively meet the current result with the given PhiState 636 void meetWith(PhiState otherState) { 637 currentResult = meet(otherState, currentResult); 638 } 639 640 PhiState getResult() const { return currentResult; } 641 642 private: 643 PhiState currentResult; 644 645 /// Perform a meet operation on two elements of the PhiState lattice. 646 static PhiState meet(PhiState LHS, PhiState RHS) { 647 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 648 "math is wrong: meet does not commute!"); 649 return pureMeet(LHS, RHS); 650 } 651 652 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { 653 switch (stateA.getStatus()) { 654 case PhiState::Unknown: 655 return stateB; 656 657 case PhiState::Base: 658 assert(stateA.getBase() && "can't be null"); 659 if (stateB.isUnknown()) 660 return stateA; 661 662 if (stateB.isBase()) { 663 if (stateA.getBase() == stateB.getBase()) { 664 assert(stateA == stateB && "equality broken!"); 665 return stateA; 666 } 667 return PhiState(PhiState::Conflict); 668 } 669 assert(stateB.isConflict() && "only three states!"); 670 return PhiState(PhiState::Conflict); 671 672 case PhiState::Conflict: 673 return stateA; 674 } 675 llvm_unreachable("only three states!"); 676 } 677 }; 678 } 679 /// For a given value or instruction, figure out what base ptr it's derived 680 /// from. For gc objects, this is simply itself. On success, returns a value 681 /// which is the base pointer. (This is reliable and can be used for 682 /// relocation.) On failure, returns nullptr. 683 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 684 Value *def = findBaseOrBDV(I, cache); 685 686 if (isKnownBaseResult(def)) { 687 return def; 688 } 689 690 // Here's the rough algorithm: 691 // - For every SSA value, construct a mapping to either an actual base 692 // pointer or a PHI which obscures the base pointer. 693 // - Construct a mapping from PHI to unknown TOP state. Use an 694 // optimistic algorithm to propagate base pointer information. Lattice 695 // looks like: 696 // UNKNOWN 697 // b1 b2 b3 b4 698 // CONFLICT 699 // When algorithm terminates, all PHIs will either have a single concrete 700 // base or be in a conflict state. 701 // - For every conflict, insert a dummy PHI node without arguments. Add 702 // these to the base[Instruction] = BasePtr mapping. For every 703 // non-conflict, add the actual base. 704 // - For every conflict, add arguments for the base[a] of each input 705 // arguments. 706 // 707 // Note: A simpler form of this would be to add the conflict form of all 708 // PHIs without running the optimistic algorithm. This would be 709 // analougous to pessimistic data flow and would likely lead to an 710 // overall worse solution. 711 712 ConflictStateMapTy states; 713 states[def] = PhiState(); 714 // Recursively fill in all phis & selects reachable from the initial one 715 // for which we don't already know a definite base value for 716 // TODO: This should be rewritten with a worklist 717 bool done = false; 718 while (!done) { 719 done = true; 720 // Since we're adding elements to 'states' as we run, we can't keep 721 // iterators into the set. 722 SmallVector<Value *, 16> Keys; 723 Keys.reserve(states.size()); 724 for (auto Pair : states) { 725 Value *V = Pair.first; 726 Keys.push_back(V); 727 } 728 for (Value *v : Keys) { 729 assert(!isKnownBaseResult(v) && "why did it get added?"); 730 if (PHINode *phi = dyn_cast<PHINode>(v)) { 731 assert(phi->getNumIncomingValues() > 0 && 732 "zero input phis are illegal"); 733 for (Value *InVal : phi->incoming_values()) { 734 Value *local = findBaseOrBDV(InVal, cache); 735 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 736 states[local] = PhiState(); 737 done = false; 738 } 739 } 740 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 741 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 742 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 743 states[local] = PhiState(); 744 done = false; 745 } 746 local = findBaseOrBDV(sel->getFalseValue(), cache); 747 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 748 states[local] = PhiState(); 749 done = false; 750 } 751 } 752 } 753 } 754 755 if (TraceLSP) { 756 errs() << "States after initialization:\n"; 757 for (auto Pair : states) { 758 Instruction *v = cast<Instruction>(Pair.first); 759 PhiState state = Pair.second; 760 state.dump(); 761 v->dump(); 762 } 763 } 764 765 // TODO: come back and revisit the state transitions around inputs which 766 // have reached conflict state. The current version seems too conservative. 767 768 // Return a phi state for a base defining value. We'll generate a new 769 // base state for known bases and expect to find a cached state otherwise. 770 auto getStateForBDV = [&](Value *baseValue) { 771 if (isKnownBaseResult(baseValue)) 772 return PhiState(baseValue); 773 auto I = states.find(baseValue); 774 assert(I != states.end() && "lookup failed!"); 775 return I->second; 776 }; 777 778 bool progress = true; 779 while (progress) { 780 #ifndef NDEBUG 781 size_t oldSize = states.size(); 782 #endif 783 progress = false; 784 // We're only changing keys in this loop, thus safe to keep iterators 785 for (auto Pair : states) { 786 Value *v = Pair.first; 787 assert(!isKnownBaseResult(v) && "why did it get added?"); 788 789 // Given an input value for the current instruction, return a PhiState 790 // instance which represents the BDV of that value. 791 auto getStateForInput = [&](Value *V) mutable { 792 Value *BDV = findBaseOrBDV(V, cache); 793 return getStateForBDV(BDV); 794 }; 795 796 MeetPhiStates calculateMeet; 797 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 798 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 799 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 800 } else 801 for (Value *Val : cast<PHINode>(v)->incoming_values()) 802 calculateMeet.meetWith(getStateForInput(Val)); 803 804 PhiState oldState = states[v]; 805 PhiState newState = calculateMeet.getResult(); 806 if (oldState != newState) { 807 progress = true; 808 states[v] = newState; 809 } 810 } 811 812 assert(oldSize <= states.size()); 813 assert(oldSize == states.size() || progress); 814 } 815 816 if (TraceLSP) { 817 errs() << "States after meet iteration:\n"; 818 for (auto Pair : states) { 819 Instruction *v = cast<Instruction>(Pair.first); 820 PhiState state = Pair.second; 821 state.dump(); 822 v->dump(); 823 } 824 } 825 826 // Insert Phis for all conflicts 827 // We want to keep naming deterministic in the loop that follows, so 828 // sort the keys before iteration. This is useful in allowing us to 829 // write stable tests. Note that there is no invalidation issue here. 830 SmallVector<Value *, 16> Keys; 831 Keys.reserve(states.size()); 832 for (auto Pair : states) { 833 Value *V = Pair.first; 834 Keys.push_back(V); 835 } 836 std::sort(Keys.begin(), Keys.end(), order_by_name); 837 // TODO: adjust naming patterns to avoid this order of iteration dependency 838 for (Value *V : Keys) { 839 Instruction *I = cast<Instruction>(V); 840 PhiState State = states[I]; 841 assert(!isKnownBaseResult(I) && "why did it get added?"); 842 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 843 if (!State.isConflict()) 844 continue; 845 846 /// Create and insert a new instruction which will represent the base of 847 /// the given instruction 'I'. 848 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 849 if (isa<PHINode>(I)) { 850 BasicBlock *BB = I->getParent(); 851 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 852 assert(NumPreds > 0 && "how did we reach here"); 853 return PHINode::Create(I->getType(), NumPreds, "base_phi", I); 854 } 855 SelectInst *Sel = cast<SelectInst>(I); 856 // The undef will be replaced later 857 UndefValue *Undef = UndefValue::get(Sel->getType()); 858 return SelectInst::Create(Sel->getCondition(), Undef, 859 Undef, "base_select", Sel); 860 }; 861 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 862 // Add metadata marking this as a base value 863 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 864 states[I] = PhiState(PhiState::Conflict, BaseInst); 865 } 866 867 // Fixup all the inputs of the new PHIs 868 for (auto Pair : states) { 869 Instruction *v = cast<Instruction>(Pair.first); 870 PhiState state = Pair.second; 871 872 assert(!isKnownBaseResult(v) && "why did it get added?"); 873 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 874 if (!state.isConflict()) 875 continue; 876 877 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 878 PHINode *phi = cast<PHINode>(v); 879 unsigned NumPHIValues = phi->getNumIncomingValues(); 880 for (unsigned i = 0; i < NumPHIValues; i++) { 881 Value *InVal = phi->getIncomingValue(i); 882 BasicBlock *InBB = phi->getIncomingBlock(i); 883 884 // If we've already seen InBB, add the same incoming value 885 // we added for it earlier. The IR verifier requires phi 886 // nodes with multiple entries from the same basic block 887 // to have the same incoming value for each of those 888 // entries. If we don't do this check here and basephi 889 // has a different type than base, we'll end up adding two 890 // bitcasts (and hence two distinct values) as incoming 891 // values for the same basic block. 892 893 int blockIndex = basephi->getBasicBlockIndex(InBB); 894 if (blockIndex != -1) { 895 Value *oldBase = basephi->getIncomingValue(blockIndex); 896 basephi->addIncoming(oldBase, InBB); 897 #ifndef NDEBUG 898 Value *base = findBaseOrBDV(InVal, cache); 899 if (!isKnownBaseResult(base)) { 900 // Either conflict or base. 901 assert(states.count(base)); 902 base = states[base].getBase(); 903 assert(base != nullptr && "unknown PhiState!"); 904 } 905 906 // In essense this assert states: the only way two 907 // values incoming from the same basic block may be 908 // different is by being different bitcasts of the same 909 // value. A cleanup that remains TODO is changing 910 // findBaseOrBDV to return an llvm::Value of the correct 911 // type (and still remain pure). This will remove the 912 // need to add bitcasts. 913 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 914 "sanity -- findBaseOrBDV should be pure!"); 915 #endif 916 continue; 917 } 918 919 // Find either the defining value for the PHI or the normal base for 920 // a non-phi node 921 Value *base = findBaseOrBDV(InVal, cache); 922 if (!isKnownBaseResult(base)) { 923 // Either conflict or base. 924 assert(states.count(base)); 925 base = states[base].getBase(); 926 assert(base != nullptr && "unknown PhiState!"); 927 } 928 assert(base && "can't be null"); 929 // Must use original input BB since base may not be Instruction 930 // The cast is needed since base traversal may strip away bitcasts 931 if (base->getType() != basephi->getType()) { 932 base = new BitCastInst(base, basephi->getType(), "cast", 933 InBB->getTerminator()); 934 } 935 basephi->addIncoming(base, InBB); 936 } 937 assert(basephi->getNumIncomingValues() == NumPHIValues); 938 } else { 939 SelectInst *basesel = cast<SelectInst>(state.getBase()); 940 SelectInst *sel = cast<SelectInst>(v); 941 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 942 // something more safe and less hacky. 943 for (int i = 1; i <= 2; i++) { 944 Value *InVal = sel->getOperand(i); 945 // Find either the defining value for the PHI or the normal base for 946 // a non-phi node 947 Value *base = findBaseOrBDV(InVal, cache); 948 if (!isKnownBaseResult(base)) { 949 // Either conflict or base. 950 assert(states.count(base)); 951 base = states[base].getBase(); 952 assert(base != nullptr && "unknown PhiState!"); 953 } 954 assert(base && "can't be null"); 955 // Must use original input BB since base may not be Instruction 956 // The cast is needed since base traversal may strip away bitcasts 957 if (base->getType() != basesel->getType()) { 958 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 959 } 960 basesel->setOperand(i, base); 961 } 962 } 963 } 964 965 // Cache all of our results so we can cheaply reuse them 966 // NOTE: This is actually two caches: one of the base defining value 967 // relation and one of the base pointer relation! FIXME 968 for (auto item : states) { 969 Value *v = item.first; 970 Value *base = item.second.getBase(); 971 assert(v && base); 972 assert(!isKnownBaseResult(v) && "why did it get added?"); 973 974 if (TraceLSP) { 975 std::string fromstr = 976 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 977 : "none"; 978 errs() << "Updating base value cache" 979 << " for: " << (v->hasName() ? v->getName() : "") 980 << " from: " << fromstr 981 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 982 } 983 984 assert(isKnownBaseResult(base) && 985 "must be something we 'know' is a base pointer"); 986 if (cache.count(v)) { 987 // Once we transition from the BDV relation being store in the cache to 988 // the base relation being stored, it must be stable 989 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 990 "base relation should be stable"); 991 } 992 cache[v] = base; 993 } 994 assert(cache.find(def) != cache.end()); 995 return cache[def]; 996 } 997 998 // For a set of live pointers (base and/or derived), identify the base 999 // pointer of the object which they are derived from. This routine will 1000 // mutate the IR graph as needed to make the 'base' pointer live at the 1001 // definition site of 'derived'. This ensures that any use of 'derived' can 1002 // also use 'base'. This may involve the insertion of a number of 1003 // additional PHI nodes. 1004 // 1005 // preconditions: live is a set of pointer type Values 1006 // 1007 // side effects: may insert PHI nodes into the existing CFG, will preserve 1008 // CFG, will not remove or mutate any existing nodes 1009 // 1010 // post condition: PointerToBase contains one (derived, base) pair for every 1011 // pointer in live. Note that derived can be equal to base if the original 1012 // pointer was a base pointer. 1013 static void 1014 findBasePointers(const StatepointLiveSetTy &live, 1015 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 1016 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1017 // For the naming of values inserted to be deterministic - which makes for 1018 // much cleaner and more stable tests - we need to assign an order to the 1019 // live values. DenseSets do not provide a deterministic order across runs. 1020 SmallVector<Value *, 64> Temp; 1021 Temp.insert(Temp.end(), live.begin(), live.end()); 1022 std::sort(Temp.begin(), Temp.end(), order_by_name); 1023 for (Value *ptr : Temp) { 1024 Value *base = findBasePointer(ptr, DVCache); 1025 assert(base && "failed to find base pointer"); 1026 PointerToBase[ptr] = base; 1027 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1028 DT->dominates(cast<Instruction>(base)->getParent(), 1029 cast<Instruction>(ptr)->getParent())) && 1030 "The base we found better dominate the derived pointer"); 1031 1032 // If you see this trip and like to live really dangerously, the code should 1033 // be correct, just with idioms the verifier can't handle. You can try 1034 // disabling the verifier at your own substaintial risk. 1035 assert(!isa<ConstantPointerNull>(base) && 1036 "the relocation code needs adjustment to handle the relocation of " 1037 "a null pointer constant without causing false positives in the " 1038 "safepoint ir verifier."); 1039 } 1040 } 1041 1042 /// Find the required based pointers (and adjust the live set) for the given 1043 /// parse point. 1044 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1045 const CallSite &CS, 1046 PartiallyConstructedSafepointRecord &result) { 1047 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 1048 findBasePointers(result.liveset, PointerToBase, &DT, DVCache); 1049 1050 if (PrintBasePointers) { 1051 // Note: Need to print these in a stable order since this is checked in 1052 // some tests. 1053 errs() << "Base Pairs (w/o Relocation):\n"; 1054 SmallVector<Value *, 64> Temp; 1055 Temp.reserve(PointerToBase.size()); 1056 for (auto Pair : PointerToBase) { 1057 Temp.push_back(Pair.first); 1058 } 1059 std::sort(Temp.begin(), Temp.end(), order_by_name); 1060 for (Value *Ptr : Temp) { 1061 Value *Base = PointerToBase[Ptr]; 1062 errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() 1063 << "\n"; 1064 } 1065 } 1066 1067 result.PointerToBase = PointerToBase; 1068 } 1069 1070 /// Given an updated version of the dataflow liveness results, update the 1071 /// liveset and base pointer maps for the call site CS. 1072 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1073 const CallSite &CS, 1074 PartiallyConstructedSafepointRecord &result); 1075 1076 static void recomputeLiveInValues( 1077 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1078 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1079 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1080 // again. The old values are still live and will help it stablize quickly. 1081 GCPtrLivenessData RevisedLivenessData; 1082 computeLiveInValues(DT, F, RevisedLivenessData); 1083 for (size_t i = 0; i < records.size(); i++) { 1084 struct PartiallyConstructedSafepointRecord &info = records[i]; 1085 const CallSite &CS = toUpdate[i]; 1086 recomputeLiveInValues(RevisedLivenessData, CS, info); 1087 } 1088 } 1089 1090 // When inserting gc.relocate calls, we need to ensure there are no uses 1091 // of the original value between the gc.statepoint and the gc.relocate call. 1092 // One case which can arise is a phi node starting one of the successor blocks. 1093 // We also need to be able to insert the gc.relocates only on the path which 1094 // goes through the statepoint. We might need to split an edge to make this 1095 // possible. 1096 static BasicBlock * 1097 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1098 DominatorTree &DT) { 1099 BasicBlock *Ret = BB; 1100 if (!BB->getUniquePredecessor()) { 1101 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1102 } 1103 1104 // Now that 'ret' has unique predecessor we can safely remove all phi nodes 1105 // from it 1106 FoldSingleEntryPHINodes(Ret); 1107 assert(!isa<PHINode>(Ret->begin())); 1108 1109 // At this point, we can safely insert a gc.relocate as the first instruction 1110 // in Ret if needed. 1111 return Ret; 1112 } 1113 1114 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1115 auto itr = std::find(livevec.begin(), livevec.end(), val); 1116 assert(livevec.end() != itr); 1117 size_t index = std::distance(livevec.begin(), itr); 1118 assert(index < livevec.size()); 1119 return index; 1120 } 1121 1122 // Create new attribute set containing only attributes which can be transfered 1123 // from original call to the safepoint. 1124 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1125 AttributeSet ret; 1126 1127 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1128 unsigned index = AS.getSlotIndex(Slot); 1129 1130 if (index == AttributeSet::ReturnIndex || 1131 index == AttributeSet::FunctionIndex) { 1132 1133 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1134 ++it) { 1135 Attribute attr = *it; 1136 1137 // Do not allow certain attributes - just skip them 1138 // Safepoint can not be read only or read none. 1139 if (attr.hasAttribute(Attribute::ReadNone) || 1140 attr.hasAttribute(Attribute::ReadOnly)) 1141 continue; 1142 1143 ret = ret.addAttributes( 1144 AS.getContext(), index, 1145 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1146 } 1147 } 1148 1149 // Just skip parameter attributes for now 1150 } 1151 1152 return ret; 1153 } 1154 1155 /// Helper function to place all gc relocates necessary for the given 1156 /// statepoint. 1157 /// Inputs: 1158 /// liveVariables - list of variables to be relocated. 1159 /// liveStart - index of the first live variable. 1160 /// basePtrs - base pointers. 1161 /// statepointToken - statepoint instruction to which relocates should be 1162 /// bound. 1163 /// Builder - Llvm IR builder to be used to construct new calls. 1164 static void CreateGCRelocates(ArrayRef<llvm::Value *> LiveVariables, 1165 const int LiveStart, 1166 ArrayRef<llvm::Value *> BasePtrs, 1167 Instruction *StatepointToken, 1168 IRBuilder<> Builder) { 1169 if (LiveVariables.empty()) 1170 return; 1171 1172 // All gc_relocate are set to i8 addrspace(1)* type. We originally generated 1173 // unique declarations for each pointer type, but this proved problematic 1174 // because the intrinsic mangling code is incomplete and fragile. Since 1175 // we're moving towards a single unified pointer type anyways, we can just 1176 // cast everything to an i8* of the right address space. A bitcast is added 1177 // later to convert gc_relocate to the actual value's type. 1178 Module *M = StatepointToken->getModule(); 1179 auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace(); 1180 Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)}; 1181 Value *GCRelocateDecl = 1182 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); 1183 1184 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1185 // Generate the gc.relocate call and save the result 1186 Value *BaseIdx = 1187 Builder.getInt32(LiveStart + find_index(LiveVariables, BasePtrs[i])); 1188 Value *LiveIdx = 1189 Builder.getInt32(LiveStart + find_index(LiveVariables, LiveVariables[i])); 1190 1191 // only specify a debug name if we can give a useful one 1192 CallInst *Reloc = Builder.CreateCall( 1193 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1194 LiveVariables[i]->hasName() ? LiveVariables[i]->getName() + ".relocated" 1195 : ""); 1196 // Trick CodeGen into thinking there are lots of free registers at this 1197 // fake call. 1198 Reloc->setCallingConv(CallingConv::Cold); 1199 } 1200 } 1201 1202 static void 1203 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1204 const SmallVectorImpl<llvm::Value *> &basePtrs, 1205 const SmallVectorImpl<llvm::Value *> &liveVariables, 1206 Pass *P, 1207 PartiallyConstructedSafepointRecord &result) { 1208 assert(basePtrs.size() == liveVariables.size()); 1209 assert(isStatepoint(CS) && 1210 "This method expects to be rewriting a statepoint"); 1211 1212 BasicBlock *BB = CS.getInstruction()->getParent(); 1213 assert(BB); 1214 Function *F = BB->getParent(); 1215 assert(F && "must be set"); 1216 Module *M = F->getParent(); 1217 (void)M; 1218 assert(M && "must be set"); 1219 1220 // We're not changing the function signature of the statepoint since the gc 1221 // arguments go into the var args section. 1222 Function *gc_statepoint_decl = CS.getCalledFunction(); 1223 1224 // Then go ahead and use the builder do actually do the inserts. We insert 1225 // immediately before the previous instruction under the assumption that all 1226 // arguments will be available here. We can't insert afterwards since we may 1227 // be replacing a terminator. 1228 Instruction *insertBefore = CS.getInstruction(); 1229 IRBuilder<> Builder(insertBefore); 1230 // Copy all of the arguments from the original statepoint - this includes the 1231 // target, call args, and deopt args 1232 SmallVector<llvm::Value *, 64> args; 1233 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1234 // TODO: Clear the 'needs rewrite' flag 1235 1236 // add all the pointers to be relocated (gc arguments) 1237 // Capture the start of the live variable list for use in the gc_relocates 1238 const int live_start = args.size(); 1239 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1240 1241 // Create the statepoint given all the arguments 1242 Instruction *token = nullptr; 1243 AttributeSet return_attributes; 1244 if (CS.isCall()) { 1245 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1246 CallInst *call = 1247 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1248 call->setTailCall(toReplace->isTailCall()); 1249 call->setCallingConv(toReplace->getCallingConv()); 1250 1251 // Currently we will fail on parameter attributes and on certain 1252 // function attributes. 1253 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1254 // In case if we can handle this set of sttributes - set up function attrs 1255 // directly on statepoint and return attrs later for gc_result intrinsic. 1256 call->setAttributes(new_attrs.getFnAttributes()); 1257 return_attributes = new_attrs.getRetAttributes(); 1258 1259 token = call; 1260 1261 // Put the following gc_result and gc_relocate calls immediately after the 1262 // the old call (which we're about to delete) 1263 BasicBlock::iterator next(toReplace); 1264 assert(BB->end() != next && "not a terminator, must have next"); 1265 next++; 1266 Instruction *IP = &*(next); 1267 Builder.SetInsertPoint(IP); 1268 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1269 1270 } else { 1271 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1272 1273 // Insert the new invoke into the old block. We'll remove the old one in a 1274 // moment at which point this will become the new terminator for the 1275 // original block. 1276 InvokeInst *invoke = InvokeInst::Create( 1277 gc_statepoint_decl, toReplace->getNormalDest(), 1278 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1279 invoke->setCallingConv(toReplace->getCallingConv()); 1280 1281 // Currently we will fail on parameter attributes and on certain 1282 // function attributes. 1283 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1284 // In case if we can handle this set of sttributes - set up function attrs 1285 // directly on statepoint and return attrs later for gc_result intrinsic. 1286 invoke->setAttributes(new_attrs.getFnAttributes()); 1287 return_attributes = new_attrs.getRetAttributes(); 1288 1289 token = invoke; 1290 1291 // Generate gc relocates in exceptional path 1292 BasicBlock *unwindBlock = toReplace->getUnwindDest(); 1293 assert(!isa<PHINode>(unwindBlock->begin()) && 1294 unwindBlock->getUniquePredecessor() && 1295 "can't safely insert in this block!"); 1296 1297 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1298 Builder.SetInsertPoint(IP); 1299 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1300 1301 // Extract second element from landingpad return value. We will attach 1302 // exceptional gc relocates to it. 1303 const unsigned idx = 1; 1304 Instruction *exceptional_token = 1305 cast<Instruction>(Builder.CreateExtractValue( 1306 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1307 result.UnwindToken = exceptional_token; 1308 1309 CreateGCRelocates(liveVariables, live_start, basePtrs, 1310 exceptional_token, Builder); 1311 1312 // Generate gc relocates and returns for normal block 1313 BasicBlock *normalDest = toReplace->getNormalDest(); 1314 assert(!isa<PHINode>(normalDest->begin()) && 1315 normalDest->getUniquePredecessor() && 1316 "can't safely insert in this block!"); 1317 1318 IP = &*(normalDest->getFirstInsertionPt()); 1319 Builder.SetInsertPoint(IP); 1320 1321 // gc relocates will be generated later as if it were regular call 1322 // statepoint 1323 } 1324 assert(token); 1325 1326 // Take the name of the original value call if it had one. 1327 token->takeName(CS.getInstruction()); 1328 1329 // The GCResult is already inserted, we just need to find it 1330 #ifndef NDEBUG 1331 Instruction *toReplace = CS.getInstruction(); 1332 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1333 "only valid use before rewrite is gc.result"); 1334 assert(!toReplace->hasOneUse() || 1335 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1336 #endif 1337 1338 // Update the gc.result of the original statepoint (if any) to use the newly 1339 // inserted statepoint. This is safe to do here since the token can't be 1340 // considered a live reference. 1341 CS.getInstruction()->replaceAllUsesWith(token); 1342 1343 result.StatepointToken = token; 1344 1345 // Second, create a gc.relocate for every live variable 1346 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1347 } 1348 1349 namespace { 1350 struct name_ordering { 1351 Value *base; 1352 Value *derived; 1353 bool operator()(name_ordering const &a, name_ordering const &b) { 1354 return -1 == a.derived->getName().compare(b.derived->getName()); 1355 } 1356 }; 1357 } 1358 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1359 SmallVectorImpl<Value *> &livevec) { 1360 assert(basevec.size() == livevec.size()); 1361 1362 SmallVector<name_ordering, 64> temp; 1363 for (size_t i = 0; i < basevec.size(); i++) { 1364 name_ordering v; 1365 v.base = basevec[i]; 1366 v.derived = livevec[i]; 1367 temp.push_back(v); 1368 } 1369 std::sort(temp.begin(), temp.end(), name_ordering()); 1370 for (size_t i = 0; i < basevec.size(); i++) { 1371 basevec[i] = temp[i].base; 1372 livevec[i] = temp[i].derived; 1373 } 1374 } 1375 1376 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1377 // which make the relocations happening at this safepoint explicit. 1378 // 1379 // WARNING: Does not do any fixup to adjust users of the original live 1380 // values. That's the callers responsibility. 1381 static void 1382 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1383 PartiallyConstructedSafepointRecord &result) { 1384 auto liveset = result.liveset; 1385 auto PointerToBase = result.PointerToBase; 1386 1387 // Convert to vector for efficient cross referencing. 1388 SmallVector<Value *, 64> basevec, livevec; 1389 livevec.reserve(liveset.size()); 1390 basevec.reserve(liveset.size()); 1391 for (Value *L : liveset) { 1392 livevec.push_back(L); 1393 assert(PointerToBase.count(L)); 1394 Value *base = PointerToBase[L]; 1395 basevec.push_back(base); 1396 } 1397 assert(livevec.size() == basevec.size()); 1398 1399 // To make the output IR slightly more stable (for use in diffs), ensure a 1400 // fixed order of the values in the safepoint (by sorting the value name). 1401 // The order is otherwise meaningless. 1402 stablize_order(basevec, livevec); 1403 1404 // Do the actual rewriting and delete the old statepoint 1405 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1406 CS.getInstruction()->eraseFromParent(); 1407 } 1408 1409 // Helper function for the relocationViaAlloca. 1410 // It receives iterator to the statepoint gc relocates and emits store to the 1411 // assigned 1412 // location (via allocaMap) for the each one of them. 1413 // Add visited values into the visitedLiveValues set we will later use them 1414 // for sanity check. 1415 static void 1416 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1417 DenseMap<Value *, Value *> &AllocaMap, 1418 DenseSet<Value *> &VisitedLiveValues) { 1419 1420 for (User *U : GCRelocs) { 1421 if (!isa<IntrinsicInst>(U)) 1422 continue; 1423 1424 IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U); 1425 1426 // We only care about relocates 1427 if (RelocatedValue->getIntrinsicID() != 1428 Intrinsic::experimental_gc_relocate) { 1429 continue; 1430 } 1431 1432 GCRelocateOperands RelocateOperands(RelocatedValue); 1433 Value *OriginalValue = 1434 const_cast<Value *>(RelocateOperands.getDerivedPtr()); 1435 assert(AllocaMap.count(OriginalValue)); 1436 Value *Alloca = AllocaMap[OriginalValue]; 1437 1438 // Emit store into the related alloca 1439 // All gc_relocate are i8 addrspace(1)* typed, and it must be bitcasted to 1440 // the correct type according to alloca. 1441 assert(RelocatedValue->getNextNode() && "Should always have one since it's not a terminator"); 1442 IRBuilder<> Builder(RelocatedValue->getNextNode()); 1443 Value *CastedRelocatedValue = 1444 Builder.CreateBitCast(RelocatedValue, cast<AllocaInst>(Alloca)->getAllocatedType(), 1445 RelocatedValue->hasName() ? RelocatedValue->getName() + ".casted" : ""); 1446 1447 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1448 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1449 1450 #ifndef NDEBUG 1451 VisitedLiveValues.insert(OriginalValue); 1452 #endif 1453 } 1454 } 1455 1456 // Helper function for the "relocationViaAlloca". Similar to the 1457 // "insertRelocationStores" but works for rematerialized values. 1458 static void 1459 insertRematerializationStores( 1460 RematerializedValueMapTy RematerializedValues, 1461 DenseMap<Value *, Value *> &AllocaMap, 1462 DenseSet<Value *> &VisitedLiveValues) { 1463 1464 for (auto RematerializedValuePair: RematerializedValues) { 1465 Instruction *RematerializedValue = RematerializedValuePair.first; 1466 Value *OriginalValue = RematerializedValuePair.second; 1467 1468 assert(AllocaMap.count(OriginalValue) && 1469 "Can not find alloca for rematerialized value"); 1470 Value *Alloca = AllocaMap[OriginalValue]; 1471 1472 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1473 Store->insertAfter(RematerializedValue); 1474 1475 #ifndef NDEBUG 1476 VisitedLiveValues.insert(OriginalValue); 1477 #endif 1478 } 1479 } 1480 1481 /// do all the relocation update via allocas and mem2reg 1482 static void relocationViaAlloca( 1483 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1484 ArrayRef<struct PartiallyConstructedSafepointRecord> Records) { 1485 #ifndef NDEBUG 1486 // record initial number of (static) allocas; we'll check we have the same 1487 // number when we get done. 1488 int InitialAllocaNum = 0; 1489 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1490 I++) 1491 if (isa<AllocaInst>(*I)) 1492 InitialAllocaNum++; 1493 #endif 1494 1495 // TODO-PERF: change data structures, reserve 1496 DenseMap<Value *, Value *> AllocaMap; 1497 SmallVector<AllocaInst *, 200> PromotableAllocas; 1498 // Used later to chack that we have enough allocas to store all values 1499 std::size_t NumRematerializedValues = 0; 1500 PromotableAllocas.reserve(Live.size()); 1501 1502 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1503 // "PromotableAllocas" 1504 auto emitAllocaFor = [&](Value *LiveValue) { 1505 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1506 F.getEntryBlock().getFirstNonPHI()); 1507 AllocaMap[LiveValue] = Alloca; 1508 PromotableAllocas.push_back(Alloca); 1509 }; 1510 1511 // emit alloca for each live gc pointer 1512 for (unsigned i = 0; i < Live.size(); i++) { 1513 emitAllocaFor(Live[i]); 1514 } 1515 1516 // emit allocas for rematerialized values 1517 for (size_t i = 0; i < Records.size(); i++) { 1518 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1519 1520 for (auto RematerializedValuePair : Info.RematerializedValues) { 1521 Value *OriginalValue = RematerializedValuePair.second; 1522 if (AllocaMap.count(OriginalValue) != 0) 1523 continue; 1524 1525 emitAllocaFor(OriginalValue); 1526 ++NumRematerializedValues; 1527 } 1528 } 1529 1530 // The next two loops are part of the same conceptual operation. We need to 1531 // insert a store to the alloca after the original def and at each 1532 // redefinition. We need to insert a load before each use. These are split 1533 // into distinct loops for performance reasons. 1534 1535 // update gc pointer after each statepoint 1536 // either store a relocated value or null (if no relocated value found for 1537 // this gc pointer and it is not a gc_result) 1538 // this must happen before we update the statepoint with load of alloca 1539 // otherwise we lose the link between statepoint and old def 1540 for (size_t i = 0; i < Records.size(); i++) { 1541 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1542 Value *Statepoint = Info.StatepointToken; 1543 1544 // This will be used for consistency check 1545 DenseSet<Value *> VisitedLiveValues; 1546 1547 // Insert stores for normal statepoint gc relocates 1548 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1549 1550 // In case if it was invoke statepoint 1551 // we will insert stores for exceptional path gc relocates. 1552 if (isa<InvokeInst>(Statepoint)) { 1553 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1554 VisitedLiveValues); 1555 } 1556 1557 // Do similar thing with rematerialized values 1558 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1559 VisitedLiveValues); 1560 1561 if (ClobberNonLive) { 1562 // As a debuging aid, pretend that an unrelocated pointer becomes null at 1563 // the gc.statepoint. This will turn some subtle GC problems into 1564 // slightly easier to debug SEGVs. Note that on large IR files with 1565 // lots of gc.statepoints this is extremely costly both memory and time 1566 // wise. 1567 SmallVector<AllocaInst *, 64> ToClobber; 1568 for (auto Pair : AllocaMap) { 1569 Value *Def = Pair.first; 1570 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1571 1572 // This value was relocated 1573 if (VisitedLiveValues.count(Def)) { 1574 continue; 1575 } 1576 ToClobber.push_back(Alloca); 1577 } 1578 1579 auto InsertClobbersAt = [&](Instruction *IP) { 1580 for (auto *AI : ToClobber) { 1581 auto AIType = cast<PointerType>(AI->getType()); 1582 auto PT = cast<PointerType>(AIType->getElementType()); 1583 Constant *CPN = ConstantPointerNull::get(PT); 1584 StoreInst *Store = new StoreInst(CPN, AI); 1585 Store->insertBefore(IP); 1586 } 1587 }; 1588 1589 // Insert the clobbering stores. These may get intermixed with the 1590 // gc.results and gc.relocates, but that's fine. 1591 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1592 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1593 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1594 } else { 1595 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1596 Next++; 1597 InsertClobbersAt(Next); 1598 } 1599 } 1600 } 1601 // update use with load allocas and add store for gc_relocated 1602 for (auto Pair : AllocaMap) { 1603 Value *Def = Pair.first; 1604 Value *Alloca = Pair.second; 1605 1606 // we pre-record the uses of allocas so that we dont have to worry about 1607 // later update 1608 // that change the user information. 1609 SmallVector<Instruction *, 20> Uses; 1610 // PERF: trade a linear scan for repeated reallocation 1611 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1612 for (User *U : Def->users()) { 1613 if (!isa<ConstantExpr>(U)) { 1614 // If the def has a ConstantExpr use, then the def is either a 1615 // ConstantExpr use itself or null. In either case 1616 // (recursively in the first, directly in the second), the oop 1617 // it is ultimately dependent on is null and this particular 1618 // use does not need to be fixed up. 1619 Uses.push_back(cast<Instruction>(U)); 1620 } 1621 } 1622 1623 std::sort(Uses.begin(), Uses.end()); 1624 auto Last = std::unique(Uses.begin(), Uses.end()); 1625 Uses.erase(Last, Uses.end()); 1626 1627 for (Instruction *Use : Uses) { 1628 if (isa<PHINode>(Use)) { 1629 PHINode *Phi = cast<PHINode>(Use); 1630 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1631 if (Def == Phi->getIncomingValue(i)) { 1632 LoadInst *Load = new LoadInst( 1633 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1634 Phi->setIncomingValue(i, Load); 1635 } 1636 } 1637 } else { 1638 LoadInst *Load = new LoadInst(Alloca, "", Use); 1639 Use->replaceUsesOfWith(Def, Load); 1640 } 1641 } 1642 1643 // emit store for the initial gc value 1644 // store must be inserted after load, otherwise store will be in alloca's 1645 // use list and an extra load will be inserted before it 1646 StoreInst *Store = new StoreInst(Def, Alloca); 1647 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1648 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1649 // InvokeInst is a TerminatorInst so the store need to be inserted 1650 // into its normal destination block. 1651 BasicBlock *NormalDest = Invoke->getNormalDest(); 1652 Store->insertBefore(NormalDest->getFirstNonPHI()); 1653 } else { 1654 assert(!Inst->isTerminator() && 1655 "The only TerminatorInst that can produce a value is " 1656 "InvokeInst which is handled above."); 1657 Store->insertAfter(Inst); 1658 } 1659 } else { 1660 assert(isa<Argument>(Def)); 1661 Store->insertAfter(cast<Instruction>(Alloca)); 1662 } 1663 } 1664 1665 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1666 "we must have the same allocas with lives"); 1667 if (!PromotableAllocas.empty()) { 1668 // apply mem2reg to promote alloca to SSA 1669 PromoteMemToReg(PromotableAllocas, DT); 1670 } 1671 1672 #ifndef NDEBUG 1673 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1674 I++) 1675 if (isa<AllocaInst>(*I)) 1676 InitialAllocaNum--; 1677 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1678 #endif 1679 } 1680 1681 /// Implement a unique function which doesn't require we sort the input 1682 /// vector. Doing so has the effect of changing the output of a couple of 1683 /// tests in ways which make them less useful in testing fused safepoints. 1684 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1685 SmallSet<T, 8> Seen; 1686 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1687 return !Seen.insert(V).second; 1688 }), Vec.end()); 1689 } 1690 1691 /// Insert holders so that each Value is obviously live through the entire 1692 /// lifetime of the call. 1693 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1694 SmallVectorImpl<CallInst *> &Holders) { 1695 if (Values.empty()) 1696 // No values to hold live, might as well not insert the empty holder 1697 return; 1698 1699 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1700 // Use a dummy vararg function to actually hold the values live 1701 Function *Func = cast<Function>(M->getOrInsertFunction( 1702 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1703 if (CS.isCall()) { 1704 // For call safepoints insert dummy calls right after safepoint 1705 BasicBlock::iterator Next(CS.getInstruction()); 1706 Next++; 1707 Holders.push_back(CallInst::Create(Func, Values, "", Next)); 1708 return; 1709 } 1710 // For invoke safepooints insert dummy calls both in normal and 1711 // exceptional destination blocks 1712 auto *II = cast<InvokeInst>(CS.getInstruction()); 1713 Holders.push_back(CallInst::Create( 1714 Func, Values, "", II->getNormalDest()->getFirstInsertionPt())); 1715 Holders.push_back(CallInst::Create( 1716 Func, Values, "", II->getUnwindDest()->getFirstInsertionPt())); 1717 } 1718 1719 static void findLiveReferences( 1720 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1721 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1722 GCPtrLivenessData OriginalLivenessData; 1723 computeLiveInValues(DT, F, OriginalLivenessData); 1724 for (size_t i = 0; i < records.size(); i++) { 1725 struct PartiallyConstructedSafepointRecord &info = records[i]; 1726 const CallSite &CS = toUpdate[i]; 1727 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1728 } 1729 } 1730 1731 /// Remove any vector of pointers from the liveset by scalarizing them over the 1732 /// statepoint instruction. Adds the scalarized pieces to the liveset. It 1733 /// would be preferrable to include the vector in the statepoint itself, but 1734 /// the lowering code currently does not handle that. Extending it would be 1735 /// slightly non-trivial since it requires a format change. Given how rare 1736 /// such cases are (for the moment?) scalarizing is an acceptable comprimise. 1737 static void splitVectorValues(Instruction *StatepointInst, 1738 StatepointLiveSetTy &LiveSet, 1739 DenseMap<Value *, Value *>& PointerToBase, 1740 DominatorTree &DT) { 1741 SmallVector<Value *, 16> ToSplit; 1742 for (Value *V : LiveSet) 1743 if (isa<VectorType>(V->getType())) 1744 ToSplit.push_back(V); 1745 1746 if (ToSplit.empty()) 1747 return; 1748 1749 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1750 1751 Function &F = *(StatepointInst->getParent()->getParent()); 1752 1753 DenseMap<Value *, AllocaInst *> AllocaMap; 1754 // First is normal return, second is exceptional return (invoke only) 1755 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1756 for (Value *V : ToSplit) { 1757 AllocaInst *Alloca = 1758 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1759 AllocaMap[V] = Alloca; 1760 1761 VectorType *VT = cast<VectorType>(V->getType()); 1762 IRBuilder<> Builder(StatepointInst); 1763 SmallVector<Value *, 16> Elements; 1764 for (unsigned i = 0; i < VT->getNumElements(); i++) 1765 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1766 ElementMapping[V] = Elements; 1767 1768 auto InsertVectorReform = [&](Instruction *IP) { 1769 Builder.SetInsertPoint(IP); 1770 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1771 Value *ResultVec = UndefValue::get(VT); 1772 for (unsigned i = 0; i < VT->getNumElements(); i++) 1773 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1774 Builder.getInt32(i)); 1775 return ResultVec; 1776 }; 1777 1778 if (isa<CallInst>(StatepointInst)) { 1779 BasicBlock::iterator Next(StatepointInst); 1780 Next++; 1781 Instruction *IP = &*(Next); 1782 Replacements[V].first = InsertVectorReform(IP); 1783 Replacements[V].second = nullptr; 1784 } else { 1785 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 1786 // We've already normalized - check that we don't have shared destination 1787 // blocks 1788 BasicBlock *NormalDest = Invoke->getNormalDest(); 1789 assert(!isa<PHINode>(NormalDest->begin())); 1790 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 1791 assert(!isa<PHINode>(UnwindDest->begin())); 1792 // Insert insert element sequences in both successors 1793 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 1794 Replacements[V].first = InsertVectorReform(IP); 1795 IP = &*(UnwindDest->getFirstInsertionPt()); 1796 Replacements[V].second = InsertVectorReform(IP); 1797 } 1798 } 1799 1800 for (Value *V : ToSplit) { 1801 AllocaInst *Alloca = AllocaMap[V]; 1802 1803 // Capture all users before we start mutating use lists 1804 SmallVector<Instruction *, 16> Users; 1805 for (User *U : V->users()) 1806 Users.push_back(cast<Instruction>(U)); 1807 1808 for (Instruction *I : Users) { 1809 if (auto Phi = dyn_cast<PHINode>(I)) { 1810 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 1811 if (V == Phi->getIncomingValue(i)) { 1812 LoadInst *Load = new LoadInst( 1813 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1814 Phi->setIncomingValue(i, Load); 1815 } 1816 } else { 1817 LoadInst *Load = new LoadInst(Alloca, "", I); 1818 I->replaceUsesOfWith(V, Load); 1819 } 1820 } 1821 1822 // Store the original value and the replacement value into the alloca 1823 StoreInst *Store = new StoreInst(V, Alloca); 1824 if (auto I = dyn_cast<Instruction>(V)) 1825 Store->insertAfter(I); 1826 else 1827 Store->insertAfter(Alloca); 1828 1829 // Normal return for invoke, or call return 1830 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 1831 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1832 // Unwind return for invoke only 1833 Replacement = cast_or_null<Instruction>(Replacements[V].second); 1834 if (Replacement) 1835 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1836 } 1837 1838 // apply mem2reg to promote alloca to SSA 1839 SmallVector<AllocaInst *, 16> Allocas; 1840 for (Value *V : ToSplit) 1841 Allocas.push_back(AllocaMap[V]); 1842 PromoteMemToReg(Allocas, DT); 1843 1844 // Update our tracking of live pointers and base mappings to account for the 1845 // changes we just made. 1846 for (Value *V : ToSplit) { 1847 auto &Elements = ElementMapping[V]; 1848 1849 LiveSet.erase(V); 1850 LiveSet.insert(Elements.begin(), Elements.end()); 1851 // We need to update the base mapping as well. 1852 assert(PointerToBase.count(V)); 1853 Value *OldBase = PointerToBase[V]; 1854 auto &BaseElements = ElementMapping[OldBase]; 1855 PointerToBase.erase(V); 1856 assert(Elements.size() == BaseElements.size()); 1857 for (unsigned i = 0; i < Elements.size(); i++) { 1858 Value *Elem = Elements[i]; 1859 PointerToBase[Elem] = BaseElements[i]; 1860 } 1861 } 1862 } 1863 1864 // Helper function for the "rematerializeLiveValues". It walks use chain 1865 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1866 // values are visited (currently it is GEP's and casts). Returns true if it 1867 // sucessfully reached "BaseValue" and false otherwise. 1868 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1869 // recorded. 1870 static bool findRematerializableChainToBasePointer( 1871 SmallVectorImpl<Instruction*> &ChainToBase, 1872 Value *CurrentValue, Value *BaseValue) { 1873 1874 // We have found a base value 1875 if (CurrentValue == BaseValue) { 1876 return true; 1877 } 1878 1879 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1880 ChainToBase.push_back(GEP); 1881 return findRematerializableChainToBasePointer(ChainToBase, 1882 GEP->getPointerOperand(), 1883 BaseValue); 1884 } 1885 1886 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1887 Value *Def = CI->stripPointerCasts(); 1888 1889 // This two checks are basically similar. First one is here for the 1890 // consistency with findBasePointers logic. 1891 assert(!isa<CastInst>(Def) && "not a pointer cast found"); 1892 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1893 return false; 1894 1895 ChainToBase.push_back(CI); 1896 return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue); 1897 } 1898 1899 // Not supported instruction in the chain 1900 return false; 1901 } 1902 1903 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1904 // chain we are going to rematerialize. 1905 static unsigned 1906 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1907 TargetTransformInfo &TTI) { 1908 unsigned Cost = 0; 1909 1910 for (Instruction *Instr : Chain) { 1911 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1912 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1913 "non noop cast is found during rematerialization"); 1914 1915 Type *SrcTy = CI->getOperand(0)->getType(); 1916 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 1917 1918 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1919 // Cost of the address calculation 1920 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); 1921 Cost += TTI.getAddressComputationCost(ValTy); 1922 1923 // And cost of the GEP itself 1924 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1925 // allowed for the external usage) 1926 if (!GEP->hasAllConstantIndices()) 1927 Cost += 2; 1928 1929 } else { 1930 llvm_unreachable("unsupported instruciton type during rematerialization"); 1931 } 1932 } 1933 1934 return Cost; 1935 } 1936 1937 // From the statepoint liveset pick values that are cheaper to recompute then to 1938 // relocate. Remove this values from the liveset, rematerialize them after 1939 // statepoint and record them in "Info" structure. Note that similar to 1940 // relocated values we don't do any user adjustments here. 1941 static void rematerializeLiveValues(CallSite CS, 1942 PartiallyConstructedSafepointRecord &Info, 1943 TargetTransformInfo &TTI) { 1944 const unsigned int ChainLengthThreshold = 10; 1945 1946 // Record values we are going to delete from this statepoint live set. 1947 // We can not di this in following loop due to iterator invalidation. 1948 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1949 1950 for (Value *LiveValue: Info.liveset) { 1951 // For each live pointer find it's defining chain 1952 SmallVector<Instruction *, 3> ChainToBase; 1953 assert(Info.PointerToBase.count(LiveValue)); 1954 bool FoundChain = 1955 findRematerializableChainToBasePointer(ChainToBase, 1956 LiveValue, 1957 Info.PointerToBase[LiveValue]); 1958 // Nothing to do, or chain is too long 1959 if (!FoundChain || 1960 ChainToBase.size() == 0 || 1961 ChainToBase.size() > ChainLengthThreshold) 1962 continue; 1963 1964 // Compute cost of this chain 1965 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1966 // TODO: We can also account for cases when we will be able to remove some 1967 // of the rematerialized values by later optimization passes. I.e if 1968 // we rematerialized several intersecting chains. Or if original values 1969 // don't have any uses besides this statepoint. 1970 1971 // For invokes we need to rematerialize each chain twice - for normal and 1972 // for unwind basic blocks. Model this by multiplying cost by two. 1973 if (CS.isInvoke()) { 1974 Cost *= 2; 1975 } 1976 // If it's too expensive - skip it 1977 if (Cost >= RematerializationThreshold) 1978 continue; 1979 1980 // Remove value from the live set 1981 LiveValuesToBeDeleted.push_back(LiveValue); 1982 1983 // Clone instructions and record them inside "Info" structure 1984 1985 // Walk backwards to visit top-most instructions first 1986 std::reverse(ChainToBase.begin(), ChainToBase.end()); 1987 1988 // Utility function which clones all instructions from "ChainToBase" 1989 // and inserts them before "InsertBefore". Returns rematerialized value 1990 // which should be used after statepoint. 1991 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 1992 Instruction *LastClonedValue = nullptr; 1993 Instruction *LastValue = nullptr; 1994 for (Instruction *Instr: ChainToBase) { 1995 // Only GEP's and casts are suported as we need to be careful to not 1996 // introduce any new uses of pointers not in the liveset. 1997 // Note that it's fine to introduce new uses of pointers which were 1998 // otherwise not used after this statepoint. 1999 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2000 2001 Instruction *ClonedValue = Instr->clone(); 2002 ClonedValue->insertBefore(InsertBefore); 2003 ClonedValue->setName(Instr->getName() + ".remat"); 2004 2005 // If it is not first instruction in the chain then it uses previously 2006 // cloned value. We should update it to use cloned value. 2007 if (LastClonedValue) { 2008 assert(LastValue); 2009 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2010 #ifndef NDEBUG 2011 // Assert that cloned instruction does not use any instructions from 2012 // this chain other than LastClonedValue 2013 for (auto OpValue : ClonedValue->operand_values()) { 2014 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2015 ChainToBase.end() && 2016 "incorrect use in rematerialization chain"); 2017 } 2018 #endif 2019 } 2020 2021 LastClonedValue = ClonedValue; 2022 LastValue = Instr; 2023 } 2024 assert(LastClonedValue); 2025 return LastClonedValue; 2026 }; 2027 2028 // Different cases for calls and invokes. For invokes we need to clone 2029 // instructions both on normal and unwind path. 2030 if (CS.isCall()) { 2031 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2032 assert(InsertBefore); 2033 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2034 Info.RematerializedValues[RematerializedValue] = LiveValue; 2035 } else { 2036 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2037 2038 Instruction *NormalInsertBefore = 2039 Invoke->getNormalDest()->getFirstInsertionPt(); 2040 Instruction *UnwindInsertBefore = 2041 Invoke->getUnwindDest()->getFirstInsertionPt(); 2042 2043 Instruction *NormalRematerializedValue = 2044 rematerializeChain(NormalInsertBefore); 2045 Instruction *UnwindRematerializedValue = 2046 rematerializeChain(UnwindInsertBefore); 2047 2048 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2049 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2050 } 2051 } 2052 2053 // Remove rematerializaed values from the live set 2054 for (auto LiveValue: LiveValuesToBeDeleted) { 2055 Info.liveset.erase(LiveValue); 2056 } 2057 } 2058 2059 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 2060 SmallVectorImpl<CallSite> &toUpdate) { 2061 #ifndef NDEBUG 2062 // sanity check the input 2063 std::set<CallSite> uniqued; 2064 uniqued.insert(toUpdate.begin(), toUpdate.end()); 2065 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 2066 2067 for (size_t i = 0; i < toUpdate.size(); i++) { 2068 CallSite &CS = toUpdate[i]; 2069 assert(CS.getInstruction()->getParent()->getParent() == &F); 2070 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 2071 } 2072 #endif 2073 2074 // When inserting gc.relocates for invokes, we need to be able to insert at 2075 // the top of the successor blocks. See the comment on 2076 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2077 // may restructure the CFG. 2078 for (CallSite CS : toUpdate) { 2079 if (!CS.isInvoke()) 2080 continue; 2081 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 2082 normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(), 2083 DT); 2084 normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(), 2085 DT); 2086 } 2087 2088 // A list of dummy calls added to the IR to keep various values obviously 2089 // live in the IR. We'll remove all of these when done. 2090 SmallVector<CallInst *, 64> holders; 2091 2092 // Insert a dummy call with all of the arguments to the vm_state we'll need 2093 // for the actual safepoint insertion. This ensures reference arguments in 2094 // the deopt argument list are considered live through the safepoint (and 2095 // thus makes sure they get relocated.) 2096 for (size_t i = 0; i < toUpdate.size(); i++) { 2097 CallSite &CS = toUpdate[i]; 2098 Statepoint StatepointCS(CS); 2099 2100 SmallVector<Value *, 64> DeoptValues; 2101 for (Use &U : StatepointCS.vm_state_args()) { 2102 Value *Arg = cast<Value>(&U); 2103 assert(!isUnhandledGCPointerType(Arg->getType()) && 2104 "support for FCA unimplemented"); 2105 if (isHandledGCPointerType(Arg->getType())) 2106 DeoptValues.push_back(Arg); 2107 } 2108 insertUseHolderAfter(CS, DeoptValues, holders); 2109 } 2110 2111 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 2112 records.reserve(toUpdate.size()); 2113 for (size_t i = 0; i < toUpdate.size(); i++) { 2114 struct PartiallyConstructedSafepointRecord info; 2115 records.push_back(info); 2116 } 2117 assert(records.size() == toUpdate.size()); 2118 2119 // A) Identify all gc pointers which are staticly live at the given call 2120 // site. 2121 findLiveReferences(F, DT, P, toUpdate, records); 2122 2123 // B) Find the base pointers for each live pointer 2124 /* scope for caching */ { 2125 // Cache the 'defining value' relation used in the computation and 2126 // insertion of base phis and selects. This ensures that we don't insert 2127 // large numbers of duplicate base_phis. 2128 DefiningValueMapTy DVCache; 2129 2130 for (size_t i = 0; i < records.size(); i++) { 2131 struct PartiallyConstructedSafepointRecord &info = records[i]; 2132 CallSite &CS = toUpdate[i]; 2133 findBasePointers(DT, DVCache, CS, info); 2134 } 2135 } // end of cache scope 2136 2137 // The base phi insertion logic (for any safepoint) may have inserted new 2138 // instructions which are now live at some safepoint. The simplest such 2139 // example is: 2140 // loop: 2141 // phi a <-- will be a new base_phi here 2142 // safepoint 1 <-- that needs to be live here 2143 // gep a + 1 2144 // safepoint 2 2145 // br loop 2146 // We insert some dummy calls after each safepoint to definitely hold live 2147 // the base pointers which were identified for that safepoint. We'll then 2148 // ask liveness for _every_ base inserted to see what is now live. Then we 2149 // remove the dummy calls. 2150 holders.reserve(holders.size() + records.size()); 2151 for (size_t i = 0; i < records.size(); i++) { 2152 struct PartiallyConstructedSafepointRecord &info = records[i]; 2153 CallSite &CS = toUpdate[i]; 2154 2155 SmallVector<Value *, 128> Bases; 2156 for (auto Pair : info.PointerToBase) { 2157 Bases.push_back(Pair.second); 2158 } 2159 insertUseHolderAfter(CS, Bases, holders); 2160 } 2161 2162 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2163 // need to rerun liveness. We may *also* have inserted new defs, but that's 2164 // not the key issue. 2165 recomputeLiveInValues(F, DT, P, toUpdate, records); 2166 2167 if (PrintBasePointers) { 2168 for (size_t i = 0; i < records.size(); i++) { 2169 struct PartiallyConstructedSafepointRecord &info = records[i]; 2170 errs() << "Base Pairs: (w/Relocation)\n"; 2171 for (auto Pair : info.PointerToBase) { 2172 errs() << " derived %" << Pair.first->getName() << " base %" 2173 << Pair.second->getName() << "\n"; 2174 } 2175 } 2176 } 2177 for (size_t i = 0; i < holders.size(); i++) { 2178 holders[i]->eraseFromParent(); 2179 holders[i] = nullptr; 2180 } 2181 holders.clear(); 2182 2183 // Do a limited scalarization of any live at safepoint vector values which 2184 // contain pointers. This enables this pass to run after vectorization at 2185 // the cost of some possible performance loss. TODO: it would be nice to 2186 // natively support vectors all the way through the backend so we don't need 2187 // to scalarize here. 2188 for (size_t i = 0; i < records.size(); i++) { 2189 struct PartiallyConstructedSafepointRecord &info = records[i]; 2190 Instruction *statepoint = toUpdate[i].getInstruction(); 2191 splitVectorValues(cast<Instruction>(statepoint), info.liveset, 2192 info.PointerToBase, DT); 2193 } 2194 2195 // In order to reduce live set of statepoint we might choose to rematerialize 2196 // some values instead of relocating them. This is purelly an optimization and 2197 // does not influence correctness. 2198 TargetTransformInfo &TTI = 2199 P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2200 2201 for (size_t i = 0; i < records.size(); i++) { 2202 struct PartiallyConstructedSafepointRecord &info = records[i]; 2203 CallSite &CS = toUpdate[i]; 2204 2205 rematerializeLiveValues(CS, info, TTI); 2206 } 2207 2208 // Now run through and replace the existing statepoints with new ones with 2209 // the live variables listed. We do not yet update uses of the values being 2210 // relocated. We have references to live variables that need to 2211 // survive to the last iteration of this loop. (By construction, the 2212 // previous statepoint can not be a live variable, thus we can and remove 2213 // the old statepoint calls as we go.) 2214 for (size_t i = 0; i < records.size(); i++) { 2215 struct PartiallyConstructedSafepointRecord &info = records[i]; 2216 CallSite &CS = toUpdate[i]; 2217 makeStatepointExplicit(DT, CS, P, info); 2218 } 2219 toUpdate.clear(); // prevent accident use of invalid CallSites 2220 2221 // Do all the fixups of the original live variables to their relocated selves 2222 SmallVector<Value *, 128> live; 2223 for (size_t i = 0; i < records.size(); i++) { 2224 struct PartiallyConstructedSafepointRecord &info = records[i]; 2225 // We can't simply save the live set from the original insertion. One of 2226 // the live values might be the result of a call which needs a safepoint. 2227 // That Value* no longer exists and we need to use the new gc_result. 2228 // Thankfully, the liveset is embedded in the statepoint (and updated), so 2229 // we just grab that. 2230 Statepoint statepoint(info.StatepointToken); 2231 live.insert(live.end(), statepoint.gc_args_begin(), 2232 statepoint.gc_args_end()); 2233 #ifndef NDEBUG 2234 // Do some basic sanity checks on our liveness results before performing 2235 // relocation. Relocation can and will turn mistakes in liveness results 2236 // into non-sensical code which is must harder to debug. 2237 // TODO: It would be nice to test consistency as well 2238 assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) && 2239 "statepoint must be reachable or liveness is meaningless"); 2240 for (Value *V : statepoint.gc_args()) { 2241 if (!isa<Instruction>(V)) 2242 // Non-instruction values trivial dominate all possible uses 2243 continue; 2244 auto LiveInst = cast<Instruction>(V); 2245 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2246 "unreachable values should never be live"); 2247 assert(DT.dominates(LiveInst, info.StatepointToken) && 2248 "basic SSA liveness expectation violated by liveness analysis"); 2249 } 2250 #endif 2251 } 2252 unique_unsorted(live); 2253 2254 #ifndef NDEBUG 2255 // sanity check 2256 for (auto ptr : live) { 2257 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 2258 } 2259 #endif 2260 2261 relocationViaAlloca(F, DT, live, records); 2262 return !records.empty(); 2263 } 2264 2265 // Handles both return values and arguments for Functions and CallSites. 2266 template <typename AttrHolder> 2267 static void RemoveDerefAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2268 unsigned Index) { 2269 AttrBuilder R; 2270 if (AH.getDereferenceableBytes(Index)) 2271 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2272 AH.getDereferenceableBytes(Index))); 2273 if (AH.getDereferenceableOrNullBytes(Index)) 2274 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2275 AH.getDereferenceableOrNullBytes(Index))); 2276 2277 if (!R.empty()) 2278 AH.setAttributes(AH.getAttributes().removeAttributes( 2279 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2280 } 2281 2282 void 2283 RewriteStatepointsForGC::stripDereferenceabilityInfoFromPrototype(Function &F) { 2284 LLVMContext &Ctx = F.getContext(); 2285 2286 for (Argument &A : F.args()) 2287 if (isa<PointerType>(A.getType())) 2288 RemoveDerefAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2289 2290 if (isa<PointerType>(F.getReturnType())) 2291 RemoveDerefAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2292 } 2293 2294 void RewriteStatepointsForGC::stripDereferenceabilityInfoFromBody(Function &F) { 2295 if (F.empty()) 2296 return; 2297 2298 LLVMContext &Ctx = F.getContext(); 2299 MDBuilder Builder(Ctx); 2300 2301 for (Instruction &I : inst_range(F)) { 2302 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2303 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2304 bool IsImmutableTBAA = 2305 MD->getNumOperands() == 4 && 2306 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2307 2308 if (!IsImmutableTBAA) 2309 continue; // no work to do, MD_tbaa is already marked mutable 2310 2311 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2312 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2313 uint64_t Offset = 2314 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2315 2316 MDNode *MutableTBAA = 2317 Builder.createTBAAStructTagNode(Base, Access, Offset); 2318 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2319 } 2320 2321 if (CallSite CS = CallSite(&I)) { 2322 for (int i = 0, e = CS.arg_size(); i != e; i++) 2323 if (isa<PointerType>(CS.getArgument(i)->getType())) 2324 RemoveDerefAttrAtIndex(Ctx, CS, i + 1); 2325 if (isa<PointerType>(CS.getType())) 2326 RemoveDerefAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2327 } 2328 } 2329 } 2330 2331 /// Returns true if this function should be rewritten by this pass. The main 2332 /// point of this function is as an extension point for custom logic. 2333 static bool shouldRewriteStatepointsIn(Function &F) { 2334 // TODO: This should check the GCStrategy 2335 if (F.hasGC()) { 2336 const char *FunctionGCName = F.getGC(); 2337 const StringRef StatepointExampleName("statepoint-example"); 2338 const StringRef CoreCLRName("coreclr"); 2339 return (StatepointExampleName == FunctionGCName) || 2340 (CoreCLRName == FunctionGCName); 2341 } else 2342 return false; 2343 } 2344 2345 void RewriteStatepointsForGC::stripDereferenceabilityInfo(Module &M) { 2346 #ifndef NDEBUG 2347 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2348 "precondition!"); 2349 #endif 2350 2351 for (Function &F : M) 2352 stripDereferenceabilityInfoFromPrototype(F); 2353 2354 for (Function &F : M) 2355 stripDereferenceabilityInfoFromBody(F); 2356 } 2357 2358 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2359 // Nothing to do for declarations. 2360 if (F.isDeclaration() || F.empty()) 2361 return false; 2362 2363 // Policy choice says not to rewrite - the most common reason is that we're 2364 // compiling code without a GCStrategy. 2365 if (!shouldRewriteStatepointsIn(F)) 2366 return false; 2367 2368 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2369 2370 // Gather all the statepoints which need rewritten. Be careful to only 2371 // consider those in reachable code since we need to ask dominance queries 2372 // when rewriting. We'll delete the unreachable ones in a moment. 2373 SmallVector<CallSite, 64> ParsePointNeeded; 2374 bool HasUnreachableStatepoint = false; 2375 for (Instruction &I : inst_range(F)) { 2376 // TODO: only the ones with the flag set! 2377 if (isStatepoint(I)) { 2378 if (DT.isReachableFromEntry(I.getParent())) 2379 ParsePointNeeded.push_back(CallSite(&I)); 2380 else 2381 HasUnreachableStatepoint = true; 2382 } 2383 } 2384 2385 bool MadeChange = false; 2386 2387 // Delete any unreachable statepoints so that we don't have unrewritten 2388 // statepoints surviving this pass. This makes testing easier and the 2389 // resulting IR less confusing to human readers. Rather than be fancy, we 2390 // just reuse a utility function which removes the unreachable blocks. 2391 if (HasUnreachableStatepoint) 2392 MadeChange |= removeUnreachableBlocks(F); 2393 2394 // Return early if no work to do. 2395 if (ParsePointNeeded.empty()) 2396 return MadeChange; 2397 2398 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2399 // These are created by LCSSA. They have the effect of increasing the size 2400 // of liveness sets for no good reason. It may be harder to do this post 2401 // insertion since relocations and base phis can confuse things. 2402 for (BasicBlock &BB : F) 2403 if (BB.getUniquePredecessor()) { 2404 MadeChange = true; 2405 FoldSingleEntryPHINodes(&BB); 2406 } 2407 2408 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); 2409 return MadeChange; 2410 } 2411 2412 // liveness computation via standard dataflow 2413 // ------------------------------------------------------------------- 2414 2415 // TODO: Consider using bitvectors for liveness, the set of potentially 2416 // interesting values should be small and easy to pre-compute. 2417 2418 /// Compute the live-in set for the location rbegin starting from 2419 /// the live-out set of the basic block 2420 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2421 BasicBlock::reverse_iterator rend, 2422 DenseSet<Value *> &LiveTmp) { 2423 2424 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2425 Instruction *I = &*ritr; 2426 2427 // KILL/Def - Remove this definition from LiveIn 2428 LiveTmp.erase(I); 2429 2430 // Don't consider *uses* in PHI nodes, we handle their contribution to 2431 // predecessor blocks when we seed the LiveOut sets 2432 if (isa<PHINode>(I)) 2433 continue; 2434 2435 // USE - Add to the LiveIn set for this instruction 2436 for (Value *V : I->operands()) { 2437 assert(!isUnhandledGCPointerType(V->getType()) && 2438 "support for FCA unimplemented"); 2439 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2440 // The choice to exclude all things constant here is slightly subtle. 2441 // There are two idependent reasons: 2442 // - We assume that things which are constant (from LLVM's definition) 2443 // do not move at runtime. For example, the address of a global 2444 // variable is fixed, even though it's contents may not be. 2445 // - Second, we can't disallow arbitrary inttoptr constants even 2446 // if the language frontend does. Optimization passes are free to 2447 // locally exploit facts without respect to global reachability. This 2448 // can create sections of code which are dynamically unreachable and 2449 // contain just about anything. (see constants.ll in tests) 2450 LiveTmp.insert(V); 2451 } 2452 } 2453 } 2454 } 2455 2456 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2457 2458 for (BasicBlock *Succ : successors(BB)) { 2459 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2460 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2461 PHINode *Phi = cast<PHINode>(&*I); 2462 Value *V = Phi->getIncomingValueForBlock(BB); 2463 assert(!isUnhandledGCPointerType(V->getType()) && 2464 "support for FCA unimplemented"); 2465 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2466 LiveTmp.insert(V); 2467 } 2468 } 2469 } 2470 } 2471 2472 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2473 DenseSet<Value *> KillSet; 2474 for (Instruction &I : *BB) 2475 if (isHandledGCPointerType(I.getType())) 2476 KillSet.insert(&I); 2477 return KillSet; 2478 } 2479 2480 #ifndef NDEBUG 2481 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2482 /// sanity check for the liveness computation. 2483 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2484 TerminatorInst *TI, bool TermOkay = false) { 2485 for (Value *V : Live) { 2486 if (auto *I = dyn_cast<Instruction>(V)) { 2487 // The terminator can be a member of the LiveOut set. LLVM's definition 2488 // of instruction dominance states that V does not dominate itself. As 2489 // such, we need to special case this to allow it. 2490 if (TermOkay && TI == I) 2491 continue; 2492 assert(DT.dominates(I, TI) && 2493 "basic SSA liveness expectation violated by liveness analysis"); 2494 } 2495 } 2496 } 2497 2498 /// Check that all the liveness sets used during the computation of liveness 2499 /// obey basic SSA properties. This is useful for finding cases where we miss 2500 /// a def. 2501 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2502 BasicBlock &BB) { 2503 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2504 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2505 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2506 } 2507 #endif 2508 2509 static void computeLiveInValues(DominatorTree &DT, Function &F, 2510 GCPtrLivenessData &Data) { 2511 2512 SmallSetVector<BasicBlock *, 200> Worklist; 2513 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2514 // We use a SetVector so that we don't have duplicates in the worklist. 2515 Worklist.insert(pred_begin(BB), pred_end(BB)); 2516 }; 2517 auto NextItem = [&]() { 2518 BasicBlock *BB = Worklist.back(); 2519 Worklist.pop_back(); 2520 return BB; 2521 }; 2522 2523 // Seed the liveness for each individual block 2524 for (BasicBlock &BB : F) { 2525 Data.KillSet[&BB] = computeKillSet(&BB); 2526 Data.LiveSet[&BB].clear(); 2527 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2528 2529 #ifndef NDEBUG 2530 for (Value *Kill : Data.KillSet[&BB]) 2531 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2532 #endif 2533 2534 Data.LiveOut[&BB] = DenseSet<Value *>(); 2535 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2536 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2537 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2538 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2539 if (!Data.LiveIn[&BB].empty()) 2540 AddPredsToWorklist(&BB); 2541 } 2542 2543 // Propagate that liveness until stable 2544 while (!Worklist.empty()) { 2545 BasicBlock *BB = NextItem(); 2546 2547 // Compute our new liveout set, then exit early if it hasn't changed 2548 // despite the contribution of our successor. 2549 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2550 const auto OldLiveOutSize = LiveOut.size(); 2551 for (BasicBlock *Succ : successors(BB)) { 2552 assert(Data.LiveIn.count(Succ)); 2553 set_union(LiveOut, Data.LiveIn[Succ]); 2554 } 2555 // assert OutLiveOut is a subset of LiveOut 2556 if (OldLiveOutSize == LiveOut.size()) { 2557 // If the sets are the same size, then we didn't actually add anything 2558 // when unioning our successors LiveIn Thus, the LiveIn of this block 2559 // hasn't changed. 2560 continue; 2561 } 2562 Data.LiveOut[BB] = LiveOut; 2563 2564 // Apply the effects of this basic block 2565 DenseSet<Value *> LiveTmp = LiveOut; 2566 set_union(LiveTmp, Data.LiveSet[BB]); 2567 set_subtract(LiveTmp, Data.KillSet[BB]); 2568 2569 assert(Data.LiveIn.count(BB)); 2570 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2571 // assert: OldLiveIn is a subset of LiveTmp 2572 if (OldLiveIn.size() != LiveTmp.size()) { 2573 Data.LiveIn[BB] = LiveTmp; 2574 AddPredsToWorklist(BB); 2575 } 2576 } // while( !worklist.empty() ) 2577 2578 #ifndef NDEBUG 2579 // Sanity check our ouput against SSA properties. This helps catch any 2580 // missing kills during the above iteration. 2581 for (BasicBlock &BB : F) { 2582 checkBasicSSA(DT, Data, BB); 2583 } 2584 #endif 2585 } 2586 2587 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2588 StatepointLiveSetTy &Out) { 2589 2590 BasicBlock *BB = Inst->getParent(); 2591 2592 // Note: The copy is intentional and required 2593 assert(Data.LiveOut.count(BB)); 2594 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2595 2596 // We want to handle the statepoint itself oddly. It's 2597 // call result is not live (normal), nor are it's arguments 2598 // (unless they're used again later). This adjustment is 2599 // specifically what we need to relocate 2600 BasicBlock::reverse_iterator rend(Inst); 2601 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2602 LiveOut.erase(Inst); 2603 Out.insert(LiveOut.begin(), LiveOut.end()); 2604 } 2605 2606 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2607 const CallSite &CS, 2608 PartiallyConstructedSafepointRecord &Info) { 2609 Instruction *Inst = CS.getInstruction(); 2610 StatepointLiveSetTy Updated; 2611 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2612 2613 #ifndef NDEBUG 2614 DenseSet<Value *> Bases; 2615 for (auto KVPair : Info.PointerToBase) { 2616 Bases.insert(KVPair.second); 2617 } 2618 #endif 2619 // We may have base pointers which are now live that weren't before. We need 2620 // to update the PointerToBase structure to reflect this. 2621 for (auto V : Updated) 2622 if (!Info.PointerToBase.count(V)) { 2623 assert(Bases.count(V) && "can't find base for unexpected live value"); 2624 Info.PointerToBase[V] = V; 2625 continue; 2626 } 2627 2628 #ifndef NDEBUG 2629 for (auto V : Updated) { 2630 assert(Info.PointerToBase.count(V) && 2631 "must be able to find base for live value"); 2632 } 2633 #endif 2634 2635 // Remove any stale base mappings - this can happen since our liveness is 2636 // more precise then the one inherent in the base pointer analysis 2637 DenseSet<Value *> ToErase; 2638 for (auto KVPair : Info.PointerToBase) 2639 if (!Updated.count(KVPair.first)) 2640 ToErase.insert(KVPair.first); 2641 for (auto V : ToErase) 2642 Info.PointerToBase.erase(V); 2643 2644 #ifndef NDEBUG 2645 for (auto KVPair : Info.PointerToBase) 2646 assert(Updated.count(KVPair.first) && "record for non-live value"); 2647 #endif 2648 2649 Info.liveset = Updated; 2650 } 2651