xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 2574d7cbf635076825ea7953b12b75593ba41024)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Rewrite call/invoke instructions so as to make potential relocations
11 // performed by the garbage collector explicit in the IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/SetOperations.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstIterator.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/MDBuilder.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/Statepoint.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/IR/Verifier.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Transforms/Scalar.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/Cloning.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
46 
47 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
48 
49 using namespace llvm;
50 
51 // Print the liveset found at the insert location
52 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
53                                   cl::init(false));
54 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
55                                       cl::init(false));
56 // Print out the base pointers for debugging
57 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
58                                        cl::init(false));
59 
60 // Cost threshold measuring when it is profitable to rematerialize value instead
61 // of relocating it
62 static cl::opt<unsigned>
63 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
64                            cl::init(6));
65 
66 #ifdef EXPENSIVE_CHECKS
67 static bool ClobberNonLive = true;
68 #else
69 static bool ClobberNonLive = false;
70 #endif
71 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
72                                                   cl::location(ClobberNonLive),
73                                                   cl::Hidden);
74 
75 static cl::opt<bool>
76     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
77                                    cl::Hidden, cl::init(true));
78 
79 namespace {
80 struct RewriteStatepointsForGC : public ModulePass {
81   static char ID; // Pass identification, replacement for typeid
82 
83   RewriteStatepointsForGC() : ModulePass(ID) {
84     initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
85   }
86   bool runOnFunction(Function &F);
87   bool runOnModule(Module &M) override {
88     bool Changed = false;
89     for (Function &F : M)
90       Changed |= runOnFunction(F);
91 
92     if (Changed) {
93       // stripNonValidAttributesAndMetadata asserts that shouldRewriteStatepointsIn
94       // returns true for at least one function in the module.  Since at least
95       // one function changed, we know that the precondition is satisfied.
96       stripNonValidAttributesAndMetadata(M);
97     }
98 
99     return Changed;
100   }
101 
102   void getAnalysisUsage(AnalysisUsage &AU) const override {
103     // We add and rewrite a bunch of instructions, but don't really do much
104     // else.  We could in theory preserve a lot more analyses here.
105     AU.addRequired<DominatorTreeWrapperPass>();
106     AU.addRequired<TargetTransformInfoWrapperPass>();
107     AU.addRequired<TargetLibraryInfoWrapperPass>();
108   }
109 
110   /// The IR fed into RewriteStatepointsForGC may have had attributes and
111   /// metadata implying dereferenceability that are no longer valid/correct after
112   /// RewriteStatepointsForGC has run. This is because semantically, after
113   /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
114   /// heap. stripNonValidAttributesAndMetadata (conservatively) restores
115   /// correctness by erasing all attributes in the module that externally imply
116   /// dereferenceability. Similar reasoning also applies to the noalias
117   /// attributes and metadata. gc.statepoint can touch the entire heap including
118   /// noalias objects.
119   void stripNonValidAttributesAndMetadata(Module &M);
120 
121   // Helpers for stripNonValidAttributesAndMetadata
122   void stripNonValidAttributesAndMetadataFromBody(Function &F);
123   void stripNonValidAttributesFromPrototype(Function &F);
124   // Certain metadata on instructions are invalid after running RS4GC.
125   // Optimizations that run after RS4GC can incorrectly use this metadata to
126   // optimize functions. We drop such metadata on the instruction.
127   void stripInvalidMetadataFromInstruction(Instruction &I);
128 };
129 } // namespace
130 
131 char RewriteStatepointsForGC::ID = 0;
132 
133 ModulePass *llvm::createRewriteStatepointsForGCPass() {
134   return new RewriteStatepointsForGC();
135 }
136 
137 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
138                       "Make relocations explicit at statepoints", false, false)
139 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
140 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
141 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
142                     "Make relocations explicit at statepoints", false, false)
143 
144 namespace {
145 struct GCPtrLivenessData {
146   /// Values defined in this block.
147   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
148   /// Values used in this block (and thus live); does not included values
149   /// killed within this block.
150   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
151 
152   /// Values live into this basic block (i.e. used by any
153   /// instruction in this basic block or ones reachable from here)
154   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
155 
156   /// Values live out of this basic block (i.e. live into
157   /// any successor block)
158   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
159 };
160 
161 // The type of the internal cache used inside the findBasePointers family
162 // of functions.  From the callers perspective, this is an opaque type and
163 // should not be inspected.
164 //
165 // In the actual implementation this caches two relations:
166 // - The base relation itself (i.e. this pointer is based on that one)
167 // - The base defining value relation (i.e. before base_phi insertion)
168 // Generally, after the execution of a full findBasePointer call, only the
169 // base relation will remain.  Internally, we add a mixture of the two
170 // types, then update all the second type to the first type
171 typedef MapVector<Value *, Value *> DefiningValueMapTy;
172 typedef SetVector<Value *> StatepointLiveSetTy;
173 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>>
174   RematerializedValueMapTy;
175 
176 struct PartiallyConstructedSafepointRecord {
177   /// The set of values known to be live across this safepoint
178   StatepointLiveSetTy LiveSet;
179 
180   /// Mapping from live pointers to a base-defining-value
181   MapVector<Value *, Value *> PointerToBase;
182 
183   /// The *new* gc.statepoint instruction itself.  This produces the token
184   /// that normal path gc.relocates and the gc.result are tied to.
185   Instruction *StatepointToken;
186 
187   /// Instruction to which exceptional gc relocates are attached
188   /// Makes it easier to iterate through them during relocationViaAlloca.
189   Instruction *UnwindToken;
190 
191   /// Record live values we are rematerialized instead of relocating.
192   /// They are not included into 'LiveSet' field.
193   /// Maps rematerialized copy to it's original value.
194   RematerializedValueMapTy RematerializedValues;
195 };
196 }
197 
198 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
199   Optional<OperandBundleUse> DeoptBundle =
200       CS.getOperandBundle(LLVMContext::OB_deopt);
201 
202   if (!DeoptBundle.hasValue()) {
203     assert(AllowStatepointWithNoDeoptInfo &&
204            "Found non-leaf call without deopt info!");
205     return None;
206   }
207 
208   return DeoptBundle.getValue().Inputs;
209 }
210 
211 /// Compute the live-in set for every basic block in the function
212 static void computeLiveInValues(DominatorTree &DT, Function &F,
213                                 GCPtrLivenessData &Data);
214 
215 /// Given results from the dataflow liveness computation, find the set of live
216 /// Values at a particular instruction.
217 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
218                               StatepointLiveSetTy &out);
219 
220 // TODO: Once we can get to the GCStrategy, this becomes
221 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
222 
223 static bool isGCPointerType(Type *T) {
224   if (auto *PT = dyn_cast<PointerType>(T))
225     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
226     // GC managed heap.  We know that a pointer into this heap needs to be
227     // updated and that no other pointer does.
228     return PT->getAddressSpace() == 1;
229   return false;
230 }
231 
232 // Return true if this type is one which a) is a gc pointer or contains a GC
233 // pointer and b) is of a type this code expects to encounter as a live value.
234 // (The insertion code will assert that a type which matches (a) and not (b)
235 // is not encountered.)
236 static bool isHandledGCPointerType(Type *T) {
237   // We fully support gc pointers
238   if (isGCPointerType(T))
239     return true;
240   // We partially support vectors of gc pointers. The code will assert if it
241   // can't handle something.
242   if (auto VT = dyn_cast<VectorType>(T))
243     if (isGCPointerType(VT->getElementType()))
244       return true;
245   return false;
246 }
247 
248 #ifndef NDEBUG
249 /// Returns true if this type contains a gc pointer whether we know how to
250 /// handle that type or not.
251 static bool containsGCPtrType(Type *Ty) {
252   if (isGCPointerType(Ty))
253     return true;
254   if (VectorType *VT = dyn_cast<VectorType>(Ty))
255     return isGCPointerType(VT->getScalarType());
256   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
257     return containsGCPtrType(AT->getElementType());
258   if (StructType *ST = dyn_cast<StructType>(Ty))
259     return any_of(ST->subtypes(), containsGCPtrType);
260   return false;
261 }
262 
263 // Returns true if this is a type which a) is a gc pointer or contains a GC
264 // pointer and b) is of a type which the code doesn't expect (i.e. first class
265 // aggregates).  Used to trip assertions.
266 static bool isUnhandledGCPointerType(Type *Ty) {
267   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
268 }
269 #endif
270 
271 // Return the name of the value suffixed with the provided value, or if the
272 // value didn't have a name, the default value specified.
273 static std::string suffixed_name_or(Value *V, StringRef Suffix,
274                                     StringRef DefaultName) {
275   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
276 }
277 
278 // Conservatively identifies any definitions which might be live at the
279 // given instruction. The  analysis is performed immediately before the
280 // given instruction. Values defined by that instruction are not considered
281 // live.  Values used by that instruction are considered live.
282 static void
283 analyzeParsePointLiveness(DominatorTree &DT,
284                           GCPtrLivenessData &OriginalLivenessData, CallSite CS,
285                           PartiallyConstructedSafepointRecord &Result) {
286   Instruction *Inst = CS.getInstruction();
287 
288   StatepointLiveSetTy LiveSet;
289   findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet);
290 
291   if (PrintLiveSet) {
292     dbgs() << "Live Variables:\n";
293     for (Value *V : LiveSet)
294       dbgs() << " " << V->getName() << " " << *V << "\n";
295   }
296   if (PrintLiveSetSize) {
297     dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
298     dbgs() << "Number live values: " << LiveSet.size() << "\n";
299   }
300   Result.LiveSet = LiveSet;
301 }
302 
303 static bool isKnownBaseResult(Value *V);
304 namespace {
305 /// A single base defining value - An immediate base defining value for an
306 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
307 /// For instructions which have multiple pointer [vector] inputs or that
308 /// transition between vector and scalar types, there is no immediate base
309 /// defining value.  The 'base defining value' for 'Def' is the transitive
310 /// closure of this relation stopping at the first instruction which has no
311 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
312 /// but it can also be an arbitrary derived pointer.
313 struct BaseDefiningValueResult {
314   /// Contains the value which is the base defining value.
315   Value * const BDV;
316   /// True if the base defining value is also known to be an actual base
317   /// pointer.
318   const bool IsKnownBase;
319   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
320     : BDV(BDV), IsKnownBase(IsKnownBase) {
321 #ifndef NDEBUG
322     // Check consistency between new and old means of checking whether a BDV is
323     // a base.
324     bool MustBeBase = isKnownBaseResult(BDV);
325     assert(!MustBeBase || MustBeBase == IsKnownBase);
326 #endif
327   }
328 };
329 }
330 
331 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
332 
333 /// Return a base defining value for the 'Index' element of the given vector
334 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
335 /// 'I'.  As an optimization, this method will try to determine when the
336 /// element is known to already be a base pointer.  If this can be established,
337 /// the second value in the returned pair will be true.  Note that either a
338 /// vector or a pointer typed value can be returned.  For the former, the
339 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
340 /// If the later, the return pointer is a BDV (or possibly a base) for the
341 /// particular element in 'I'.
342 static BaseDefiningValueResult
343 findBaseDefiningValueOfVector(Value *I) {
344   // Each case parallels findBaseDefiningValue below, see that code for
345   // detailed motivation.
346 
347   if (isa<Argument>(I))
348     // An incoming argument to the function is a base pointer
349     return BaseDefiningValueResult(I, true);
350 
351   if (isa<Constant>(I))
352     // Base of constant vector consists only of constant null pointers.
353     // For reasoning see similar case inside 'findBaseDefiningValue' function.
354     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
355                                    true);
356 
357   if (isa<LoadInst>(I))
358     return BaseDefiningValueResult(I, true);
359 
360   if (isa<InsertElementInst>(I))
361     // We don't know whether this vector contains entirely base pointers or
362     // not.  To be conservatively correct, we treat it as a BDV and will
363     // duplicate code as needed to construct a parallel vector of bases.
364     return BaseDefiningValueResult(I, false);
365 
366   if (isa<ShuffleVectorInst>(I))
367     // We don't know whether this vector contains entirely base pointers or
368     // not.  To be conservatively correct, we treat it as a BDV and will
369     // duplicate code as needed to construct a parallel vector of bases.
370     // TODO: There a number of local optimizations which could be applied here
371     // for particular sufflevector patterns.
372     return BaseDefiningValueResult(I, false);
373 
374   // The behavior of getelementptr instructions is the same for vector and
375   // non-vector data types.
376   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
377     return findBaseDefiningValue(GEP->getPointerOperand());
378 
379   // A PHI or Select is a base defining value.  The outer findBasePointer
380   // algorithm is responsible for constructing a base value for this BDV.
381   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
382          "unknown vector instruction - no base found for vector element");
383   return BaseDefiningValueResult(I, false);
384 }
385 
386 /// Helper function for findBasePointer - Will return a value which either a)
387 /// defines the base pointer for the input, b) blocks the simple search
388 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
389 /// from pointer to vector type or back.
390 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
391   assert(I->getType()->isPtrOrPtrVectorTy() &&
392          "Illegal to ask for the base pointer of a non-pointer type");
393 
394   if (I->getType()->isVectorTy())
395     return findBaseDefiningValueOfVector(I);
396 
397   if (isa<Argument>(I))
398     // An incoming argument to the function is a base pointer
399     // We should have never reached here if this argument isn't an gc value
400     return BaseDefiningValueResult(I, true);
401 
402   if (isa<Constant>(I)) {
403     // We assume that objects with a constant base (e.g. a global) can't move
404     // and don't need to be reported to the collector because they are always
405     // live. Besides global references, all kinds of constants (e.g. undef,
406     // constant expressions, null pointers) can be introduced by the inliner or
407     // the optimizer, especially on dynamically dead paths.
408     // Here we treat all of them as having single null base. By doing this we
409     // trying to avoid problems reporting various conflicts in a form of
410     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
411     // See constant.ll file for relevant test cases.
412 
413     return BaseDefiningValueResult(
414         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
415   }
416 
417   if (CastInst *CI = dyn_cast<CastInst>(I)) {
418     Value *Def = CI->stripPointerCasts();
419     // If stripping pointer casts changes the address space there is an
420     // addrspacecast in between.
421     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
422                cast<PointerType>(CI->getType())->getAddressSpace() &&
423            "unsupported addrspacecast");
424     // If we find a cast instruction here, it means we've found a cast which is
425     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
426     // handle int->ptr conversion.
427     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
428     return findBaseDefiningValue(Def);
429   }
430 
431   if (isa<LoadInst>(I))
432     // The value loaded is an gc base itself
433     return BaseDefiningValueResult(I, true);
434 
435 
436   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
437     // The base of this GEP is the base
438     return findBaseDefiningValue(GEP->getPointerOperand());
439 
440   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
441     switch (II->getIntrinsicID()) {
442     default:
443       // fall through to general call handling
444       break;
445     case Intrinsic::experimental_gc_statepoint:
446       llvm_unreachable("statepoints don't produce pointers");
447     case Intrinsic::experimental_gc_relocate: {
448       // Rerunning safepoint insertion after safepoints are already
449       // inserted is not supported.  It could probably be made to work,
450       // but why are you doing this?  There's no good reason.
451       llvm_unreachable("repeat safepoint insertion is not supported");
452     }
453     case Intrinsic::gcroot:
454       // Currently, this mechanism hasn't been extended to work with gcroot.
455       // There's no reason it couldn't be, but I haven't thought about the
456       // implications much.
457       llvm_unreachable(
458           "interaction with the gcroot mechanism is not supported");
459     }
460   }
461   // We assume that functions in the source language only return base
462   // pointers.  This should probably be generalized via attributes to support
463   // both source language and internal functions.
464   if (isa<CallInst>(I) || isa<InvokeInst>(I))
465     return BaseDefiningValueResult(I, true);
466 
467   // TODO: I have absolutely no idea how to implement this part yet.  It's not
468   // necessarily hard, I just haven't really looked at it yet.
469   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
470 
471   if (isa<AtomicCmpXchgInst>(I))
472     // A CAS is effectively a atomic store and load combined under a
473     // predicate.  From the perspective of base pointers, we just treat it
474     // like a load.
475     return BaseDefiningValueResult(I, true);
476 
477   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
478                                    "binary ops which don't apply to pointers");
479 
480   // The aggregate ops.  Aggregates can either be in the heap or on the
481   // stack, but in either case, this is simply a field load.  As a result,
482   // this is a defining definition of the base just like a load is.
483   if (isa<ExtractValueInst>(I))
484     return BaseDefiningValueResult(I, true);
485 
486   // We should never see an insert vector since that would require we be
487   // tracing back a struct value not a pointer value.
488   assert(!isa<InsertValueInst>(I) &&
489          "Base pointer for a struct is meaningless");
490 
491   // An extractelement produces a base result exactly when it's input does.
492   // We may need to insert a parallel instruction to extract the appropriate
493   // element out of the base vector corresponding to the input. Given this,
494   // it's analogous to the phi and select case even though it's not a merge.
495   if (isa<ExtractElementInst>(I))
496     // Note: There a lot of obvious peephole cases here.  This are deliberately
497     // handled after the main base pointer inference algorithm to make writing
498     // test cases to exercise that code easier.
499     return BaseDefiningValueResult(I, false);
500 
501   // The last two cases here don't return a base pointer.  Instead, they
502   // return a value which dynamically selects from among several base
503   // derived pointers (each with it's own base potentially).  It's the job of
504   // the caller to resolve these.
505   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
506          "missing instruction case in findBaseDefiningValing");
507   return BaseDefiningValueResult(I, false);
508 }
509 
510 /// Returns the base defining value for this value.
511 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
512   Value *&Cached = Cache[I];
513   if (!Cached) {
514     Cached = findBaseDefiningValue(I).BDV;
515     DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
516                  << Cached->getName() << "\n");
517   }
518   assert(Cache[I] != nullptr);
519   return Cached;
520 }
521 
522 /// Return a base pointer for this value if known.  Otherwise, return it's
523 /// base defining value.
524 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
525   Value *Def = findBaseDefiningValueCached(I, Cache);
526   auto Found = Cache.find(Def);
527   if (Found != Cache.end()) {
528     // Either a base-of relation, or a self reference.  Caller must check.
529     return Found->second;
530   }
531   // Only a BDV available
532   return Def;
533 }
534 
535 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
536 /// is it known to be a base pointer?  Or do we need to continue searching.
537 static bool isKnownBaseResult(Value *V) {
538   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
539       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
540       !isa<ShuffleVectorInst>(V)) {
541     // no recursion possible
542     return true;
543   }
544   if (isa<Instruction>(V) &&
545       cast<Instruction>(V)->getMetadata("is_base_value")) {
546     // This is a previously inserted base phi or select.  We know
547     // that this is a base value.
548     return true;
549   }
550 
551   // We need to keep searching
552   return false;
553 }
554 
555 namespace {
556 /// Models the state of a single base defining value in the findBasePointer
557 /// algorithm for determining where a new instruction is needed to propagate
558 /// the base of this BDV.
559 class BDVState {
560 public:
561   enum Status { Unknown, Base, Conflict };
562 
563   BDVState() : Status(Unknown), BaseValue(nullptr) {}
564 
565   explicit BDVState(Status Status, Value *BaseValue = nullptr)
566       : Status(Status), BaseValue(BaseValue) {
567     assert(Status != Base || BaseValue);
568   }
569 
570   explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
571 
572   Status getStatus() const { return Status; }
573   Value *getBaseValue() const { return BaseValue; }
574 
575   bool isBase() const { return getStatus() == Base; }
576   bool isUnknown() const { return getStatus() == Unknown; }
577   bool isConflict() const { return getStatus() == Conflict; }
578 
579   bool operator==(const BDVState &Other) const {
580     return BaseValue == Other.BaseValue && Status == Other.Status;
581   }
582 
583   bool operator!=(const BDVState &other) const { return !(*this == other); }
584 
585   LLVM_DUMP_METHOD
586   void dump() const {
587     print(dbgs());
588     dbgs() << '\n';
589   }
590 
591   void print(raw_ostream &OS) const {
592     switch (getStatus()) {
593     case Unknown:
594       OS << "U";
595       break;
596     case Base:
597       OS << "B";
598       break;
599     case Conflict:
600       OS << "C";
601       break;
602     };
603     OS << " (" << getBaseValue() << " - "
604        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
605   }
606 
607 private:
608   Status Status;
609   AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
610 };
611 }
612 
613 #ifndef NDEBUG
614 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
615   State.print(OS);
616   return OS;
617 }
618 #endif
619 
620 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
621   switch (LHS.getStatus()) {
622   case BDVState::Unknown:
623     return RHS;
624 
625   case BDVState::Base:
626     assert(LHS.getBaseValue() && "can't be null");
627     if (RHS.isUnknown())
628       return LHS;
629 
630     if (RHS.isBase()) {
631       if (LHS.getBaseValue() == RHS.getBaseValue()) {
632         assert(LHS == RHS && "equality broken!");
633         return LHS;
634       }
635       return BDVState(BDVState::Conflict);
636     }
637     assert(RHS.isConflict() && "only three states!");
638     return BDVState(BDVState::Conflict);
639 
640   case BDVState::Conflict:
641     return LHS;
642   }
643   llvm_unreachable("only three states!");
644 }
645 
646 // Values of type BDVState form a lattice, and this function implements the meet
647 // operation.
648 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
649   BDVState Result = meetBDVStateImpl(LHS, RHS);
650   assert(Result == meetBDVStateImpl(RHS, LHS) &&
651          "Math is wrong: meet does not commute!");
652   return Result;
653 }
654 
655 /// For a given value or instruction, figure out what base ptr its derived from.
656 /// For gc objects, this is simply itself.  On success, returns a value which is
657 /// the base pointer.  (This is reliable and can be used for relocation.)  On
658 /// failure, returns nullptr.
659 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
660   Value *Def = findBaseOrBDV(I, Cache);
661 
662   if (isKnownBaseResult(Def))
663     return Def;
664 
665   // Here's the rough algorithm:
666   // - For every SSA value, construct a mapping to either an actual base
667   //   pointer or a PHI which obscures the base pointer.
668   // - Construct a mapping from PHI to unknown TOP state.  Use an
669   //   optimistic algorithm to propagate base pointer information.  Lattice
670   //   looks like:
671   //   UNKNOWN
672   //   b1 b2 b3 b4
673   //   CONFLICT
674   //   When algorithm terminates, all PHIs will either have a single concrete
675   //   base or be in a conflict state.
676   // - For every conflict, insert a dummy PHI node without arguments.  Add
677   //   these to the base[Instruction] = BasePtr mapping.  For every
678   //   non-conflict, add the actual base.
679   //  - For every conflict, add arguments for the base[a] of each input
680   //   arguments.
681   //
682   // Note: A simpler form of this would be to add the conflict form of all
683   // PHIs without running the optimistic algorithm.  This would be
684   // analogous to pessimistic data flow and would likely lead to an
685   // overall worse solution.
686 
687 #ifndef NDEBUG
688   auto isExpectedBDVType = [](Value *BDV) {
689     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
690            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
691            isa<ShuffleVectorInst>(BDV);
692   };
693 #endif
694 
695   // Once populated, will contain a mapping from each potentially non-base BDV
696   // to a lattice value (described above) which corresponds to that BDV.
697   // We use the order of insertion (DFS over the def/use graph) to provide a
698   // stable deterministic ordering for visiting DenseMaps (which are unordered)
699   // below.  This is important for deterministic compilation.
700   MapVector<Value *, BDVState> States;
701 
702   // Recursively fill in all base defining values reachable from the initial
703   // one for which we don't already know a definite base value for
704   /* scope */ {
705     SmallVector<Value*, 16> Worklist;
706     Worklist.push_back(Def);
707     States.insert({Def, BDVState()});
708     while (!Worklist.empty()) {
709       Value *Current = Worklist.pop_back_val();
710       assert(!isKnownBaseResult(Current) && "why did it get added?");
711 
712       auto visitIncomingValue = [&](Value *InVal) {
713         Value *Base = findBaseOrBDV(InVal, Cache);
714         if (isKnownBaseResult(Base))
715           // Known bases won't need new instructions introduced and can be
716           // ignored safely
717           return;
718         assert(isExpectedBDVType(Base) && "the only non-base values "
719                "we see should be base defining values");
720         if (States.insert(std::make_pair(Base, BDVState())).second)
721           Worklist.push_back(Base);
722       };
723       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
724         for (Value *InVal : PN->incoming_values())
725           visitIncomingValue(InVal);
726       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
727         visitIncomingValue(SI->getTrueValue());
728         visitIncomingValue(SI->getFalseValue());
729       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
730         visitIncomingValue(EE->getVectorOperand());
731       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
732         visitIncomingValue(IE->getOperand(0)); // vector operand
733         visitIncomingValue(IE->getOperand(1)); // scalar operand
734       } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
735         visitIncomingValue(SV->getOperand(0));
736         visitIncomingValue(SV->getOperand(1));
737       }
738       else {
739         llvm_unreachable("Unimplemented instruction case");
740       }
741     }
742   }
743 
744 #ifndef NDEBUG
745   DEBUG(dbgs() << "States after initialization:\n");
746   for (auto Pair : States) {
747     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
748   }
749 #endif
750 
751   // Return a phi state for a base defining value.  We'll generate a new
752   // base state for known bases and expect to find a cached state otherwise.
753   auto getStateForBDV = [&](Value *baseValue) {
754     if (isKnownBaseResult(baseValue))
755       return BDVState(baseValue);
756     auto I = States.find(baseValue);
757     assert(I != States.end() && "lookup failed!");
758     return I->second;
759   };
760 
761   bool Progress = true;
762   while (Progress) {
763 #ifndef NDEBUG
764     const size_t OldSize = States.size();
765 #endif
766     Progress = false;
767     // We're only changing values in this loop, thus safe to keep iterators.
768     // Since this is computing a fixed point, the order of visit does not
769     // effect the result.  TODO: We could use a worklist here and make this run
770     // much faster.
771     for (auto Pair : States) {
772       Value *BDV = Pair.first;
773       assert(!isKnownBaseResult(BDV) && "why did it get added?");
774 
775       // Given an input value for the current instruction, return a BDVState
776       // instance which represents the BDV of that value.
777       auto getStateForInput = [&](Value *V) mutable {
778         Value *BDV = findBaseOrBDV(V, Cache);
779         return getStateForBDV(BDV);
780       };
781 
782       BDVState NewState;
783       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
784         NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
785         NewState =
786             meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
787       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
788         for (Value *Val : PN->incoming_values())
789           NewState = meetBDVState(NewState, getStateForInput(Val));
790       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
791         // The 'meet' for an extractelement is slightly trivial, but it's still
792         // useful in that it drives us to conflict if our input is.
793         NewState =
794             meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
795       } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
796         // Given there's a inherent type mismatch between the operands, will
797         // *always* produce Conflict.
798         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
799         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
800       } else {
801         // The only instance this does not return a Conflict is when both the
802         // vector operands are the same vector.
803         auto *SV = cast<ShuffleVectorInst>(BDV);
804         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
805         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
806       }
807 
808       BDVState OldState = States[BDV];
809       if (OldState != NewState) {
810         Progress = true;
811         States[BDV] = NewState;
812       }
813     }
814 
815     assert(OldSize == States.size() &&
816            "fixed point shouldn't be adding any new nodes to state");
817   }
818 
819 #ifndef NDEBUG
820   DEBUG(dbgs() << "States after meet iteration:\n");
821   for (auto Pair : States) {
822     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
823   }
824 #endif
825 
826   // Insert Phis for all conflicts
827   // TODO: adjust naming patterns to avoid this order of iteration dependency
828   for (auto Pair : States) {
829     Instruction *I = cast<Instruction>(Pair.first);
830     BDVState State = Pair.second;
831     assert(!isKnownBaseResult(I) && "why did it get added?");
832     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
833 
834     // extractelement instructions are a bit special in that we may need to
835     // insert an extract even when we know an exact base for the instruction.
836     // The problem is that we need to convert from a vector base to a scalar
837     // base for the particular indice we're interested in.
838     if (State.isBase() && isa<ExtractElementInst>(I) &&
839         isa<VectorType>(State.getBaseValue()->getType())) {
840       auto *EE = cast<ExtractElementInst>(I);
841       // TODO: In many cases, the new instruction is just EE itself.  We should
842       // exploit this, but can't do it here since it would break the invariant
843       // about the BDV not being known to be a base.
844       auto *BaseInst = ExtractElementInst::Create(
845           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
846       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
847       States[I] = BDVState(BDVState::Base, BaseInst);
848     }
849 
850     // Since we're joining a vector and scalar base, they can never be the
851     // same.  As a result, we should always see insert element having reached
852     // the conflict state.
853     assert(!isa<InsertElementInst>(I) || State.isConflict());
854 
855     if (!State.isConflict())
856       continue;
857 
858     /// Create and insert a new instruction which will represent the base of
859     /// the given instruction 'I'.
860     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
861       if (isa<PHINode>(I)) {
862         BasicBlock *BB = I->getParent();
863         int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
864         assert(NumPreds > 0 && "how did we reach here");
865         std::string Name = suffixed_name_or(I, ".base", "base_phi");
866         return PHINode::Create(I->getType(), NumPreds, Name, I);
867       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
868         // The undef will be replaced later
869         UndefValue *Undef = UndefValue::get(SI->getType());
870         std::string Name = suffixed_name_or(I, ".base", "base_select");
871         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
872       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
873         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
874         std::string Name = suffixed_name_or(I, ".base", "base_ee");
875         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
876                                           EE);
877       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
878         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
879         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
880         std::string Name = suffixed_name_or(I, ".base", "base_ie");
881         return InsertElementInst::Create(VecUndef, ScalarUndef,
882                                          IE->getOperand(2), Name, IE);
883       } else {
884         auto *SV = cast<ShuffleVectorInst>(I);
885         UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
886         std::string Name = suffixed_name_or(I, ".base", "base_sv");
887         return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2),
888                                      Name, SV);
889       }
890     };
891     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
892     // Add metadata marking this as a base value
893     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
894     States[I] = BDVState(BDVState::Conflict, BaseInst);
895   }
896 
897   // Returns a instruction which produces the base pointer for a given
898   // instruction.  The instruction is assumed to be an input to one of the BDVs
899   // seen in the inference algorithm above.  As such, we must either already
900   // know it's base defining value is a base, or have inserted a new
901   // instruction to propagate the base of it's BDV and have entered that newly
902   // introduced instruction into the state table.  In either case, we are
903   // assured to be able to determine an instruction which produces it's base
904   // pointer.
905   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
906     Value *BDV = findBaseOrBDV(Input, Cache);
907     Value *Base = nullptr;
908     if (isKnownBaseResult(BDV)) {
909       Base = BDV;
910     } else {
911       // Either conflict or base.
912       assert(States.count(BDV));
913       Base = States[BDV].getBaseValue();
914     }
915     assert(Base && "Can't be null");
916     // The cast is needed since base traversal may strip away bitcasts
917     if (Base->getType() != Input->getType() && InsertPt)
918       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
919     return Base;
920   };
921 
922   // Fixup all the inputs of the new PHIs.  Visit order needs to be
923   // deterministic and predictable because we're naming newly created
924   // instructions.
925   for (auto Pair : States) {
926     Instruction *BDV = cast<Instruction>(Pair.first);
927     BDVState State = Pair.second;
928 
929     assert(!isKnownBaseResult(BDV) && "why did it get added?");
930     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
931     if (!State.isConflict())
932       continue;
933 
934     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
935       PHINode *PN = cast<PHINode>(BDV);
936       unsigned NumPHIValues = PN->getNumIncomingValues();
937       for (unsigned i = 0; i < NumPHIValues; i++) {
938         Value *InVal = PN->getIncomingValue(i);
939         BasicBlock *InBB = PN->getIncomingBlock(i);
940 
941         // If we've already seen InBB, add the same incoming value
942         // we added for it earlier.  The IR verifier requires phi
943         // nodes with multiple entries from the same basic block
944         // to have the same incoming value for each of those
945         // entries.  If we don't do this check here and basephi
946         // has a different type than base, we'll end up adding two
947         // bitcasts (and hence two distinct values) as incoming
948         // values for the same basic block.
949 
950         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
951         if (BlockIndex != -1) {
952           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
953           BasePHI->addIncoming(OldBase, InBB);
954 
955 #ifndef NDEBUG
956           Value *Base = getBaseForInput(InVal, nullptr);
957           // In essence this assert states: the only way two values
958           // incoming from the same basic block may be different is by
959           // being different bitcasts of the same value.  A cleanup
960           // that remains TODO is changing findBaseOrBDV to return an
961           // llvm::Value of the correct type (and still remain pure).
962           // This will remove the need to add bitcasts.
963           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
964                  "Sanity -- findBaseOrBDV should be pure!");
965 #endif
966           continue;
967         }
968 
969         // Find the instruction which produces the base for each input.  We may
970         // need to insert a bitcast in the incoming block.
971         // TODO: Need to split critical edges if insertion is needed
972         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
973         BasePHI->addIncoming(Base, InBB);
974       }
975       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
976     } else if (SelectInst *BaseSI =
977                    dyn_cast<SelectInst>(State.getBaseValue())) {
978       SelectInst *SI = cast<SelectInst>(BDV);
979 
980       // Find the instruction which produces the base for each input.
981       // We may need to insert a bitcast.
982       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
983       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
984     } else if (auto *BaseEE =
985                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
986       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
987       // Find the instruction which produces the base for each input.  We may
988       // need to insert a bitcast.
989       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
990     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
991       auto *BdvIE = cast<InsertElementInst>(BDV);
992       auto UpdateOperand = [&](int OperandIdx) {
993         Value *InVal = BdvIE->getOperand(OperandIdx);
994         Value *Base = getBaseForInput(InVal, BaseIE);
995         BaseIE->setOperand(OperandIdx, Base);
996       };
997       UpdateOperand(0); // vector operand
998       UpdateOperand(1); // scalar operand
999     } else {
1000       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1001       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1002       auto UpdateOperand = [&](int OperandIdx) {
1003         Value *InVal = BdvSV->getOperand(OperandIdx);
1004         Value *Base = getBaseForInput(InVal, BaseSV);
1005         BaseSV->setOperand(OperandIdx, Base);
1006       };
1007       UpdateOperand(0); // vector operand
1008       UpdateOperand(1); // vector operand
1009     }
1010   }
1011 
1012   // Cache all of our results so we can cheaply reuse them
1013   // NOTE: This is actually two caches: one of the base defining value
1014   // relation and one of the base pointer relation!  FIXME
1015   for (auto Pair : States) {
1016     auto *BDV = Pair.first;
1017     Value *Base = Pair.second.getBaseValue();
1018     assert(BDV && Base);
1019     assert(!isKnownBaseResult(BDV) && "why did it get added?");
1020 
1021     DEBUG(dbgs() << "Updating base value cache"
1022                  << " for: " << BDV->getName() << " from: "
1023                  << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1024                  << " to: " << Base->getName() << "\n");
1025 
1026     if (Cache.count(BDV)) {
1027       assert(isKnownBaseResult(Base) &&
1028              "must be something we 'know' is a base pointer");
1029       // Once we transition from the BDV relation being store in the Cache to
1030       // the base relation being stored, it must be stable
1031       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
1032              "base relation should be stable");
1033     }
1034     Cache[BDV] = Base;
1035   }
1036   assert(Cache.count(Def));
1037   return Cache[Def];
1038 }
1039 
1040 // For a set of live pointers (base and/or derived), identify the base
1041 // pointer of the object which they are derived from.  This routine will
1042 // mutate the IR graph as needed to make the 'base' pointer live at the
1043 // definition site of 'derived'.  This ensures that any use of 'derived' can
1044 // also use 'base'.  This may involve the insertion of a number of
1045 // additional PHI nodes.
1046 //
1047 // preconditions: live is a set of pointer type Values
1048 //
1049 // side effects: may insert PHI nodes into the existing CFG, will preserve
1050 // CFG, will not remove or mutate any existing nodes
1051 //
1052 // post condition: PointerToBase contains one (derived, base) pair for every
1053 // pointer in live.  Note that derived can be equal to base if the original
1054 // pointer was a base pointer.
1055 static void
1056 findBasePointers(const StatepointLiveSetTy &live,
1057                  MapVector<Value *, Value *> &PointerToBase,
1058                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1059   for (Value *ptr : live) {
1060     Value *base = findBasePointer(ptr, DVCache);
1061     assert(base && "failed to find base pointer");
1062     PointerToBase[ptr] = base;
1063     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1064             DT->dominates(cast<Instruction>(base)->getParent(),
1065                           cast<Instruction>(ptr)->getParent())) &&
1066            "The base we found better dominate the derived pointer");
1067   }
1068 }
1069 
1070 /// Find the required based pointers (and adjust the live set) for the given
1071 /// parse point.
1072 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1073                              CallSite CS,
1074                              PartiallyConstructedSafepointRecord &result) {
1075   MapVector<Value *, Value *> PointerToBase;
1076   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1077 
1078   if (PrintBasePointers) {
1079     errs() << "Base Pairs (w/o Relocation):\n";
1080     for (auto &Pair : PointerToBase) {
1081       errs() << " derived ";
1082       Pair.first->printAsOperand(errs(), false);
1083       errs() << " base ";
1084       Pair.second->printAsOperand(errs(), false);
1085       errs() << "\n";;
1086     }
1087   }
1088 
1089   result.PointerToBase = PointerToBase;
1090 }
1091 
1092 /// Given an updated version of the dataflow liveness results, update the
1093 /// liveset and base pointer maps for the call site CS.
1094 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1095                                   CallSite CS,
1096                                   PartiallyConstructedSafepointRecord &result);
1097 
1098 static void recomputeLiveInValues(
1099     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1100     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1101   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1102   // again.  The old values are still live and will help it stabilize quickly.
1103   GCPtrLivenessData RevisedLivenessData;
1104   computeLiveInValues(DT, F, RevisedLivenessData);
1105   for (size_t i = 0; i < records.size(); i++) {
1106     struct PartiallyConstructedSafepointRecord &info = records[i];
1107     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1108   }
1109 }
1110 
1111 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1112 // no uses of the original value / return value between the gc.statepoint and
1113 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1114 // starting one of the successor blocks.  We also need to be able to insert the
1115 // gc.relocates only on the path which goes through the statepoint.  We might
1116 // need to split an edge to make this possible.
1117 static BasicBlock *
1118 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1119                             DominatorTree &DT) {
1120   BasicBlock *Ret = BB;
1121   if (!BB->getUniquePredecessor())
1122     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1123 
1124   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1125   // from it
1126   FoldSingleEntryPHINodes(Ret);
1127   assert(!isa<PHINode>(Ret->begin()) &&
1128          "All PHI nodes should have been removed!");
1129 
1130   // At this point, we can safely insert a gc.relocate or gc.result as the first
1131   // instruction in Ret if needed.
1132   return Ret;
1133 }
1134 
1135 // Create new attribute set containing only attributes which can be transferred
1136 // from original call to the safepoint.
1137 static AttributeList legalizeCallAttributes(AttributeList AL) {
1138   if (AL.isEmpty())
1139     return AL;
1140 
1141   // Remove the readonly, readnone, and statepoint function attributes.
1142   AttrBuilder FnAttrs = AL.getFnAttributes();
1143   FnAttrs.removeAttribute(Attribute::ReadNone);
1144   FnAttrs.removeAttribute(Attribute::ReadOnly);
1145   for (Attribute A : AL.getFnAttributes()) {
1146     if (isStatepointDirectiveAttr(A))
1147       FnAttrs.remove(A);
1148   }
1149 
1150   // Just skip parameter and return attributes for now
1151   LLVMContext &Ctx = AL.getContext();
1152   return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1153                             AttributeSet::get(Ctx, FnAttrs));
1154 }
1155 
1156 /// Helper function to place all gc relocates necessary for the given
1157 /// statepoint.
1158 /// Inputs:
1159 ///   liveVariables - list of variables to be relocated.
1160 ///   liveStart - index of the first live variable.
1161 ///   basePtrs - base pointers.
1162 ///   statepointToken - statepoint instruction to which relocates should be
1163 ///   bound.
1164 ///   Builder - Llvm IR builder to be used to construct new calls.
1165 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1166                               const int LiveStart,
1167                               ArrayRef<Value *> BasePtrs,
1168                               Instruction *StatepointToken,
1169                               IRBuilder<> Builder) {
1170   if (LiveVariables.empty())
1171     return;
1172 
1173   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1174     auto ValIt = find(LiveVec, Val);
1175     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1176     size_t Index = std::distance(LiveVec.begin(), ValIt);
1177     assert(Index < LiveVec.size() && "Bug in std::find?");
1178     return Index;
1179   };
1180   Module *M = StatepointToken->getModule();
1181 
1182   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1183   // element type is i8 addrspace(1)*). We originally generated unique
1184   // declarations for each pointer type, but this proved problematic because
1185   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1186   // towards a single unified pointer type anyways, we can just cast everything
1187   // to an i8* of the right address space.  A bitcast is added later to convert
1188   // gc_relocate to the actual value's type.
1189   auto getGCRelocateDecl = [&] (Type *Ty) {
1190     assert(isHandledGCPointerType(Ty));
1191     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1192     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1193     if (auto *VT = dyn_cast<VectorType>(Ty))
1194       NewTy = VectorType::get(NewTy, VT->getNumElements());
1195     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1196                                      {NewTy});
1197   };
1198 
1199   // Lazily populated map from input types to the canonicalized form mentioned
1200   // in the comment above.  This should probably be cached somewhere more
1201   // broadly.
1202   DenseMap<Type*, Value*> TypeToDeclMap;
1203 
1204   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1205     // Generate the gc.relocate call and save the result
1206     Value *BaseIdx =
1207       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1208     Value *LiveIdx = Builder.getInt32(LiveStart + i);
1209 
1210     Type *Ty = LiveVariables[i]->getType();
1211     if (!TypeToDeclMap.count(Ty))
1212       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1213     Value *GCRelocateDecl = TypeToDeclMap[Ty];
1214 
1215     // only specify a debug name if we can give a useful one
1216     CallInst *Reloc = Builder.CreateCall(
1217         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1218         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1219     // Trick CodeGen into thinking there are lots of free registers at this
1220     // fake call.
1221     Reloc->setCallingConv(CallingConv::Cold);
1222   }
1223 }
1224 
1225 namespace {
1226 
1227 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1228 /// avoids having to worry about keeping around dangling pointers to Values.
1229 class DeferredReplacement {
1230   AssertingVH<Instruction> Old;
1231   AssertingVH<Instruction> New;
1232   bool IsDeoptimize = false;
1233 
1234   DeferredReplacement() {}
1235 
1236 public:
1237   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1238     assert(Old != New && Old && New &&
1239            "Cannot RAUW equal values or to / from null!");
1240 
1241     DeferredReplacement D;
1242     D.Old = Old;
1243     D.New = New;
1244     return D;
1245   }
1246 
1247   static DeferredReplacement createDelete(Instruction *ToErase) {
1248     DeferredReplacement D;
1249     D.Old = ToErase;
1250     return D;
1251   }
1252 
1253   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1254 #ifndef NDEBUG
1255     auto *F = cast<CallInst>(Old)->getCalledFunction();
1256     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1257            "Only way to construct a deoptimize deferred replacement");
1258 #endif
1259     DeferredReplacement D;
1260     D.Old = Old;
1261     D.IsDeoptimize = true;
1262     return D;
1263   }
1264 
1265   /// Does the task represented by this instance.
1266   void doReplacement() {
1267     Instruction *OldI = Old;
1268     Instruction *NewI = New;
1269 
1270     assert(OldI != NewI && "Disallowed at construction?!");
1271     assert((!IsDeoptimize || !New) &&
1272            "Deoptimize instrinsics are not replaced!");
1273 
1274     Old = nullptr;
1275     New = nullptr;
1276 
1277     if (NewI)
1278       OldI->replaceAllUsesWith(NewI);
1279 
1280     if (IsDeoptimize) {
1281       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1282       // not necessarilly be followed by the matching return.
1283       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1284       new UnreachableInst(RI->getContext(), RI);
1285       RI->eraseFromParent();
1286     }
1287 
1288     OldI->eraseFromParent();
1289   }
1290 };
1291 }
1292 
1293 static StringRef getDeoptLowering(CallSite CS) {
1294   const char *DeoptLowering = "deopt-lowering";
1295   if (CS.hasFnAttr(DeoptLowering)) {
1296     // FIXME: CallSite has a *really* confusing interface around attributes
1297     // with values.
1298     const AttributeList &CSAS = CS.getAttributes();
1299     if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1300       return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1301           .getValueAsString();
1302     Function *F = CS.getCalledFunction();
1303     assert(F && F->hasFnAttribute(DeoptLowering));
1304     return F->getFnAttribute(DeoptLowering).getValueAsString();
1305   }
1306   return "live-through";
1307 }
1308 
1309 
1310 static void
1311 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1312                            const SmallVectorImpl<Value *> &BasePtrs,
1313                            const SmallVectorImpl<Value *> &LiveVariables,
1314                            PartiallyConstructedSafepointRecord &Result,
1315                            std::vector<DeferredReplacement> &Replacements) {
1316   assert(BasePtrs.size() == LiveVariables.size());
1317 
1318   // Then go ahead and use the builder do actually do the inserts.  We insert
1319   // immediately before the previous instruction under the assumption that all
1320   // arguments will be available here.  We can't insert afterwards since we may
1321   // be replacing a terminator.
1322   Instruction *InsertBefore = CS.getInstruction();
1323   IRBuilder<> Builder(InsertBefore);
1324 
1325   ArrayRef<Value *> GCArgs(LiveVariables);
1326   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1327   uint32_t NumPatchBytes = 0;
1328   uint32_t Flags = uint32_t(StatepointFlags::None);
1329 
1330   ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
1331   ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
1332   ArrayRef<Use> TransitionArgs;
1333   if (auto TransitionBundle =
1334       CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
1335     Flags |= uint32_t(StatepointFlags::GCTransition);
1336     TransitionArgs = TransitionBundle->Inputs;
1337   }
1338 
1339   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1340   // with a return value, we lower then as never returning calls to
1341   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1342   bool IsDeoptimize = false;
1343 
1344   StatepointDirectives SD =
1345       parseStatepointDirectivesFromAttrs(CS.getAttributes());
1346   if (SD.NumPatchBytes)
1347     NumPatchBytes = *SD.NumPatchBytes;
1348   if (SD.StatepointID)
1349     StatepointID = *SD.StatepointID;
1350 
1351   // Pass through the requested lowering if any.  The default is live-through.
1352   StringRef DeoptLowering = getDeoptLowering(CS);
1353   if (DeoptLowering.equals("live-in"))
1354     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1355   else {
1356     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1357   }
1358 
1359   Value *CallTarget = CS.getCalledValue();
1360   if (Function *F = dyn_cast<Function>(CallTarget)) {
1361     if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1362       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1363       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1364       // verifier does not allow taking the address of an intrinsic function.
1365 
1366       SmallVector<Type *, 8> DomainTy;
1367       for (Value *Arg : CallArgs)
1368         DomainTy.push_back(Arg->getType());
1369       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1370                                     /* isVarArg = */ false);
1371 
1372       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1373       // calls to @llvm.experimental.deoptimize with different argument types in
1374       // the same module.  This is fine -- we assume the frontend knew what it
1375       // was doing when generating this kind of IR.
1376       CallTarget =
1377           F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
1378 
1379       IsDeoptimize = true;
1380     }
1381   }
1382 
1383   // Create the statepoint given all the arguments
1384   Instruction *Token = nullptr;
1385   if (CS.isCall()) {
1386     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1387     CallInst *Call = Builder.CreateGCStatepointCall(
1388         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1389         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1390 
1391     Call->setTailCallKind(ToReplace->getTailCallKind());
1392     Call->setCallingConv(ToReplace->getCallingConv());
1393 
1394     // Currently we will fail on parameter attributes and on certain
1395     // function attributes.  In case if we can handle this set of attributes -
1396     // set up function attrs directly on statepoint and return attrs later for
1397     // gc_result intrinsic.
1398     Call->setAttributes(legalizeCallAttributes(ToReplace->getAttributes()));
1399 
1400     Token = Call;
1401 
1402     // Put the following gc_result and gc_relocate calls immediately after the
1403     // the old call (which we're about to delete)
1404     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1405     Builder.SetInsertPoint(ToReplace->getNextNode());
1406     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1407   } else {
1408     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1409 
1410     // Insert the new invoke into the old block.  We'll remove the old one in a
1411     // moment at which point this will become the new terminator for the
1412     // original block.
1413     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1414         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1415         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1416         GCArgs, "statepoint_token");
1417 
1418     Invoke->setCallingConv(ToReplace->getCallingConv());
1419 
1420     // Currently we will fail on parameter attributes and on certain
1421     // function attributes.  In case if we can handle this set of attributes -
1422     // set up function attrs directly on statepoint and return attrs later for
1423     // gc_result intrinsic.
1424     Invoke->setAttributes(legalizeCallAttributes(ToReplace->getAttributes()));
1425 
1426     Token = Invoke;
1427 
1428     // Generate gc relocates in exceptional path
1429     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1430     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1431            UnwindBlock->getUniquePredecessor() &&
1432            "can't safely insert in this block!");
1433 
1434     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1435     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1436 
1437     // Attach exceptional gc relocates to the landingpad.
1438     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1439     Result.UnwindToken = ExceptionalToken;
1440 
1441     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1442     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1443                       Builder);
1444 
1445     // Generate gc relocates and returns for normal block
1446     BasicBlock *NormalDest = ToReplace->getNormalDest();
1447     assert(!isa<PHINode>(NormalDest->begin()) &&
1448            NormalDest->getUniquePredecessor() &&
1449            "can't safely insert in this block!");
1450 
1451     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1452 
1453     // gc relocates will be generated later as if it were regular call
1454     // statepoint
1455   }
1456   assert(Token && "Should be set in one of the above branches!");
1457 
1458   if (IsDeoptimize) {
1459     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1460     // transform the tail-call like structure to a call to a void function
1461     // followed by unreachable to get better codegen.
1462     Replacements.push_back(
1463         DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
1464   } else {
1465     Token->setName("statepoint_token");
1466     if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1467       StringRef Name =
1468           CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1469       CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1470       GCResult->setAttributes(
1471           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1472                              CS.getAttributes().getRetAttributes()));
1473 
1474       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1475       // live set of some other safepoint, in which case that safepoint's
1476       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1477       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1478       // after the live sets have been made explicit in the IR, and we no longer
1479       // have raw pointers to worry about.
1480       Replacements.emplace_back(
1481           DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
1482     } else {
1483       Replacements.emplace_back(
1484           DeferredReplacement::createDelete(CS.getInstruction()));
1485     }
1486   }
1487 
1488   Result.StatepointToken = Token;
1489 
1490   // Second, create a gc.relocate for every live variable
1491   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1492   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1493 }
1494 
1495 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1496 // which make the relocations happening at this safepoint explicit.
1497 //
1498 // WARNING: Does not do any fixup to adjust users of the original live
1499 // values.  That's the callers responsibility.
1500 static void
1501 makeStatepointExplicit(DominatorTree &DT, CallSite CS,
1502                        PartiallyConstructedSafepointRecord &Result,
1503                        std::vector<DeferredReplacement> &Replacements) {
1504   const auto &LiveSet = Result.LiveSet;
1505   const auto &PointerToBase = Result.PointerToBase;
1506 
1507   // Convert to vector for efficient cross referencing.
1508   SmallVector<Value *, 64> BaseVec, LiveVec;
1509   LiveVec.reserve(LiveSet.size());
1510   BaseVec.reserve(LiveSet.size());
1511   for (Value *L : LiveSet) {
1512     LiveVec.push_back(L);
1513     assert(PointerToBase.count(L));
1514     Value *Base = PointerToBase.find(L)->second;
1515     BaseVec.push_back(Base);
1516   }
1517   assert(LiveVec.size() == BaseVec.size());
1518 
1519   // Do the actual rewriting and delete the old statepoint
1520   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1521 }
1522 
1523 // Helper function for the relocationViaAlloca.
1524 //
1525 // It receives iterator to the statepoint gc relocates and emits a store to the
1526 // assigned location (via allocaMap) for the each one of them.  It adds the
1527 // visited values into the visitedLiveValues set, which we will later use them
1528 // for sanity checking.
1529 static void
1530 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1531                        DenseMap<Value *, Value *> &AllocaMap,
1532                        DenseSet<Value *> &VisitedLiveValues) {
1533 
1534   for (User *U : GCRelocs) {
1535     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1536     if (!Relocate)
1537       continue;
1538 
1539     Value *OriginalValue = Relocate->getDerivedPtr();
1540     assert(AllocaMap.count(OriginalValue));
1541     Value *Alloca = AllocaMap[OriginalValue];
1542 
1543     // Emit store into the related alloca
1544     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1545     // the correct type according to alloca.
1546     assert(Relocate->getNextNode() &&
1547            "Should always have one since it's not a terminator");
1548     IRBuilder<> Builder(Relocate->getNextNode());
1549     Value *CastedRelocatedValue =
1550       Builder.CreateBitCast(Relocate,
1551                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1552                             suffixed_name_or(Relocate, ".casted", ""));
1553 
1554     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1555     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1556 
1557 #ifndef NDEBUG
1558     VisitedLiveValues.insert(OriginalValue);
1559 #endif
1560   }
1561 }
1562 
1563 // Helper function for the "relocationViaAlloca". Similar to the
1564 // "insertRelocationStores" but works for rematerialized values.
1565 static void insertRematerializationStores(
1566     const RematerializedValueMapTy &RematerializedValues,
1567     DenseMap<Value *, Value *> &AllocaMap,
1568     DenseSet<Value *> &VisitedLiveValues) {
1569 
1570   for (auto RematerializedValuePair: RematerializedValues) {
1571     Instruction *RematerializedValue = RematerializedValuePair.first;
1572     Value *OriginalValue = RematerializedValuePair.second;
1573 
1574     assert(AllocaMap.count(OriginalValue) &&
1575            "Can not find alloca for rematerialized value");
1576     Value *Alloca = AllocaMap[OriginalValue];
1577 
1578     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1579     Store->insertAfter(RematerializedValue);
1580 
1581 #ifndef NDEBUG
1582     VisitedLiveValues.insert(OriginalValue);
1583 #endif
1584   }
1585 }
1586 
1587 /// Do all the relocation update via allocas and mem2reg
1588 static void relocationViaAlloca(
1589     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1590     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1591 #ifndef NDEBUG
1592   // record initial number of (static) allocas; we'll check we have the same
1593   // number when we get done.
1594   int InitialAllocaNum = 0;
1595   for (Instruction &I : F.getEntryBlock())
1596     if (isa<AllocaInst>(I))
1597       InitialAllocaNum++;
1598 #endif
1599 
1600   // TODO-PERF: change data structures, reserve
1601   DenseMap<Value *, Value *> AllocaMap;
1602   SmallVector<AllocaInst *, 200> PromotableAllocas;
1603   // Used later to chack that we have enough allocas to store all values
1604   std::size_t NumRematerializedValues = 0;
1605   PromotableAllocas.reserve(Live.size());
1606 
1607   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1608   // "PromotableAllocas"
1609   const DataLayout &DL = F.getParent()->getDataLayout();
1610   auto emitAllocaFor = [&](Value *LiveValue) {
1611     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1612                                         DL.getAllocaAddrSpace(), "",
1613                                         F.getEntryBlock().getFirstNonPHI());
1614     AllocaMap[LiveValue] = Alloca;
1615     PromotableAllocas.push_back(Alloca);
1616   };
1617 
1618   // Emit alloca for each live gc pointer
1619   for (Value *V : Live)
1620     emitAllocaFor(V);
1621 
1622   // Emit allocas for rematerialized values
1623   for (const auto &Info : Records)
1624     for (auto RematerializedValuePair : Info.RematerializedValues) {
1625       Value *OriginalValue = RematerializedValuePair.second;
1626       if (AllocaMap.count(OriginalValue) != 0)
1627         continue;
1628 
1629       emitAllocaFor(OriginalValue);
1630       ++NumRematerializedValues;
1631     }
1632 
1633   // The next two loops are part of the same conceptual operation.  We need to
1634   // insert a store to the alloca after the original def and at each
1635   // redefinition.  We need to insert a load before each use.  These are split
1636   // into distinct loops for performance reasons.
1637 
1638   // Update gc pointer after each statepoint: either store a relocated value or
1639   // null (if no relocated value was found for this gc pointer and it is not a
1640   // gc_result).  This must happen before we update the statepoint with load of
1641   // alloca otherwise we lose the link between statepoint and old def.
1642   for (const auto &Info : Records) {
1643     Value *Statepoint = Info.StatepointToken;
1644 
1645     // This will be used for consistency check
1646     DenseSet<Value *> VisitedLiveValues;
1647 
1648     // Insert stores for normal statepoint gc relocates
1649     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1650 
1651     // In case if it was invoke statepoint
1652     // we will insert stores for exceptional path gc relocates.
1653     if (isa<InvokeInst>(Statepoint)) {
1654       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1655                              VisitedLiveValues);
1656     }
1657 
1658     // Do similar thing with rematerialized values
1659     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1660                                   VisitedLiveValues);
1661 
1662     if (ClobberNonLive) {
1663       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1664       // the gc.statepoint.  This will turn some subtle GC problems into
1665       // slightly easier to debug SEGVs.  Note that on large IR files with
1666       // lots of gc.statepoints this is extremely costly both memory and time
1667       // wise.
1668       SmallVector<AllocaInst *, 64> ToClobber;
1669       for (auto Pair : AllocaMap) {
1670         Value *Def = Pair.first;
1671         AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1672 
1673         // This value was relocated
1674         if (VisitedLiveValues.count(Def)) {
1675           continue;
1676         }
1677         ToClobber.push_back(Alloca);
1678       }
1679 
1680       auto InsertClobbersAt = [&](Instruction *IP) {
1681         for (auto *AI : ToClobber) {
1682           auto PT = cast<PointerType>(AI->getAllocatedType());
1683           Constant *CPN = ConstantPointerNull::get(PT);
1684           StoreInst *Store = new StoreInst(CPN, AI);
1685           Store->insertBefore(IP);
1686         }
1687       };
1688 
1689       // Insert the clobbering stores.  These may get intermixed with the
1690       // gc.results and gc.relocates, but that's fine.
1691       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1692         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1693         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1694       } else {
1695         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1696       }
1697     }
1698   }
1699 
1700   // Update use with load allocas and add store for gc_relocated.
1701   for (auto Pair : AllocaMap) {
1702     Value *Def = Pair.first;
1703     Value *Alloca = Pair.second;
1704 
1705     // We pre-record the uses of allocas so that we dont have to worry about
1706     // later update that changes the user information..
1707 
1708     SmallVector<Instruction *, 20> Uses;
1709     // PERF: trade a linear scan for repeated reallocation
1710     Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1711     for (User *U : Def->users()) {
1712       if (!isa<ConstantExpr>(U)) {
1713         // If the def has a ConstantExpr use, then the def is either a
1714         // ConstantExpr use itself or null.  In either case
1715         // (recursively in the first, directly in the second), the oop
1716         // it is ultimately dependent on is null and this particular
1717         // use does not need to be fixed up.
1718         Uses.push_back(cast<Instruction>(U));
1719       }
1720     }
1721 
1722     std::sort(Uses.begin(), Uses.end());
1723     auto Last = std::unique(Uses.begin(), Uses.end());
1724     Uses.erase(Last, Uses.end());
1725 
1726     for (Instruction *Use : Uses) {
1727       if (isa<PHINode>(Use)) {
1728         PHINode *Phi = cast<PHINode>(Use);
1729         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1730           if (Def == Phi->getIncomingValue(i)) {
1731             LoadInst *Load = new LoadInst(
1732                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1733             Phi->setIncomingValue(i, Load);
1734           }
1735         }
1736       } else {
1737         LoadInst *Load = new LoadInst(Alloca, "", Use);
1738         Use->replaceUsesOfWith(Def, Load);
1739       }
1740     }
1741 
1742     // Emit store for the initial gc value.  Store must be inserted after load,
1743     // otherwise store will be in alloca's use list and an extra load will be
1744     // inserted before it.
1745     StoreInst *Store = new StoreInst(Def, Alloca);
1746     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1747       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1748         // InvokeInst is a TerminatorInst so the store need to be inserted
1749         // into its normal destination block.
1750         BasicBlock *NormalDest = Invoke->getNormalDest();
1751         Store->insertBefore(NormalDest->getFirstNonPHI());
1752       } else {
1753         assert(!Inst->isTerminator() &&
1754                "The only TerminatorInst that can produce a value is "
1755                "InvokeInst which is handled above.");
1756         Store->insertAfter(Inst);
1757       }
1758     } else {
1759       assert(isa<Argument>(Def));
1760       Store->insertAfter(cast<Instruction>(Alloca));
1761     }
1762   }
1763 
1764   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1765          "we must have the same allocas with lives");
1766   if (!PromotableAllocas.empty()) {
1767     // Apply mem2reg to promote alloca to SSA
1768     PromoteMemToReg(PromotableAllocas, DT);
1769   }
1770 
1771 #ifndef NDEBUG
1772   for (auto &I : F.getEntryBlock())
1773     if (isa<AllocaInst>(I))
1774       InitialAllocaNum--;
1775   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1776 #endif
1777 }
1778 
1779 /// Implement a unique function which doesn't require we sort the input
1780 /// vector.  Doing so has the effect of changing the output of a couple of
1781 /// tests in ways which make them less useful in testing fused safepoints.
1782 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1783   SmallSet<T, 8> Seen;
1784   Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }),
1785             Vec.end());
1786 }
1787 
1788 /// Insert holders so that each Value is obviously live through the entire
1789 /// lifetime of the call.
1790 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1791                                  SmallVectorImpl<CallInst *> &Holders) {
1792   if (Values.empty())
1793     // No values to hold live, might as well not insert the empty holder
1794     return;
1795 
1796   Module *M = CS.getInstruction()->getModule();
1797   // Use a dummy vararg function to actually hold the values live
1798   Function *Func = cast<Function>(M->getOrInsertFunction(
1799       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1800   if (CS.isCall()) {
1801     // For call safepoints insert dummy calls right after safepoint
1802     Holders.push_back(CallInst::Create(Func, Values, "",
1803                                        &*++CS.getInstruction()->getIterator()));
1804     return;
1805   }
1806   // For invoke safepooints insert dummy calls both in normal and
1807   // exceptional destination blocks
1808   auto *II = cast<InvokeInst>(CS.getInstruction());
1809   Holders.push_back(CallInst::Create(
1810       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1811   Holders.push_back(CallInst::Create(
1812       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1813 }
1814 
1815 static void findLiveReferences(
1816     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1817     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1818   GCPtrLivenessData OriginalLivenessData;
1819   computeLiveInValues(DT, F, OriginalLivenessData);
1820   for (size_t i = 0; i < records.size(); i++) {
1821     struct PartiallyConstructedSafepointRecord &info = records[i];
1822     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
1823   }
1824 }
1825 
1826 // Helper function for the "rematerializeLiveValues". It walks use chain
1827 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
1828 // the base or a value it cannot process. Only "simple" values are processed
1829 // (currently it is GEP's and casts). The returned root is  examined by the
1830 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
1831 // with all visited values.
1832 static Value* findRematerializableChainToBasePointer(
1833   SmallVectorImpl<Instruction*> &ChainToBase,
1834   Value *CurrentValue) {
1835 
1836   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1837     ChainToBase.push_back(GEP);
1838     return findRematerializableChainToBasePointer(ChainToBase,
1839                                                   GEP->getPointerOperand());
1840   }
1841 
1842   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1843     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1844       return CI;
1845 
1846     ChainToBase.push_back(CI);
1847     return findRematerializableChainToBasePointer(ChainToBase,
1848                                                   CI->getOperand(0));
1849   }
1850 
1851   // We have reached the root of the chain, which is either equal to the base or
1852   // is the first unsupported value along the use chain.
1853   return CurrentValue;
1854 }
1855 
1856 // Helper function for the "rematerializeLiveValues". Compute cost of the use
1857 // chain we are going to rematerialize.
1858 static unsigned
1859 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1860                        TargetTransformInfo &TTI) {
1861   unsigned Cost = 0;
1862 
1863   for (Instruction *Instr : Chain) {
1864     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1865       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1866              "non noop cast is found during rematerialization");
1867 
1868       Type *SrcTy = CI->getOperand(0)->getType();
1869       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI);
1870 
1871     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1872       // Cost of the address calculation
1873       Type *ValTy = GEP->getSourceElementType();
1874       Cost += TTI.getAddressComputationCost(ValTy);
1875 
1876       // And cost of the GEP itself
1877       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1878       //       allowed for the external usage)
1879       if (!GEP->hasAllConstantIndices())
1880         Cost += 2;
1881 
1882     } else {
1883       llvm_unreachable("unsupported instruciton type during rematerialization");
1884     }
1885   }
1886 
1887   return Cost;
1888 }
1889 
1890 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
1891 
1892   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
1893   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
1894       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
1895     return false;
1896   // Map of incoming values and their corresponding basic blocks of
1897   // OrigRootPhi.
1898   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
1899   for (unsigned i = 0; i < PhiNum; i++)
1900     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
1901         OrigRootPhi.getIncomingBlock(i);
1902 
1903   // Both current and base PHIs should have same incoming values and
1904   // the same basic blocks corresponding to the incoming values.
1905   for (unsigned i = 0; i < PhiNum; i++) {
1906     auto CIVI =
1907         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
1908     if (CIVI == CurrentIncomingValues.end())
1909       return false;
1910     BasicBlock *CurrentIncomingBB = CIVI->second;
1911     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
1912       return false;
1913   }
1914   return true;
1915 
1916 }
1917 
1918 // From the statepoint live set pick values that are cheaper to recompute then
1919 // to relocate. Remove this values from the live set, rematerialize them after
1920 // statepoint and record them in "Info" structure. Note that similar to
1921 // relocated values we don't do any user adjustments here.
1922 static void rematerializeLiveValues(CallSite CS,
1923                                     PartiallyConstructedSafepointRecord &Info,
1924                                     TargetTransformInfo &TTI) {
1925   const unsigned int ChainLengthThreshold = 10;
1926 
1927   // Record values we are going to delete from this statepoint live set.
1928   // We can not di this in following loop due to iterator invalidation.
1929   SmallVector<Value *, 32> LiveValuesToBeDeleted;
1930 
1931   for (Value *LiveValue: Info.LiveSet) {
1932     // For each live pointer find it's defining chain
1933     SmallVector<Instruction *, 3> ChainToBase;
1934     assert(Info.PointerToBase.count(LiveValue));
1935     Value *RootOfChain =
1936       findRematerializableChainToBasePointer(ChainToBase,
1937                                              LiveValue);
1938 
1939     // Nothing to do, or chain is too long
1940     if ( ChainToBase.size() == 0 ||
1941         ChainToBase.size() > ChainLengthThreshold)
1942       continue;
1943 
1944     // Handle the scenario where the RootOfChain is not equal to the
1945     // Base Value, but they are essentially the same phi values.
1946     if (RootOfChain != Info.PointerToBase[LiveValue]) {
1947       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
1948       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
1949       if (!OrigRootPhi || !AlternateRootPhi)
1950         continue;
1951       // PHI nodes that have the same incoming values, and belonging to the same
1952       // basic blocks are essentially the same SSA value.  When the original phi
1953       // has incoming values with different base pointers, the original phi is
1954       // marked as conflict, and an additional `AlternateRootPhi` with the same
1955       // incoming values get generated by the findBasePointer function. We need
1956       // to identify the newly generated AlternateRootPhi (.base version of phi)
1957       // and RootOfChain (the original phi node itself) are the same, so that we
1958       // can rematerialize the gep and casts. This is a workaround for the
1959       // deficiency in the findBasePointer algorithm.
1960       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
1961         continue;
1962       // Now that the phi nodes are proved to be the same, assert that
1963       // findBasePointer's newly generated AlternateRootPhi is present in the
1964       // liveset of the call.
1965       assert(Info.LiveSet.count(AlternateRootPhi));
1966     }
1967     // Compute cost of this chain
1968     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
1969     // TODO: We can also account for cases when we will be able to remove some
1970     //       of the rematerialized values by later optimization passes. I.e if
1971     //       we rematerialized several intersecting chains. Or if original values
1972     //       don't have any uses besides this statepoint.
1973 
1974     // For invokes we need to rematerialize each chain twice - for normal and
1975     // for unwind basic blocks. Model this by multiplying cost by two.
1976     if (CS.isInvoke()) {
1977       Cost *= 2;
1978     }
1979     // If it's too expensive - skip it
1980     if (Cost >= RematerializationThreshold)
1981       continue;
1982 
1983     // Remove value from the live set
1984     LiveValuesToBeDeleted.push_back(LiveValue);
1985 
1986     // Clone instructions and record them inside "Info" structure
1987 
1988     // Walk backwards to visit top-most instructions first
1989     std::reverse(ChainToBase.begin(), ChainToBase.end());
1990 
1991     // Utility function which clones all instructions from "ChainToBase"
1992     // and inserts them before "InsertBefore". Returns rematerialized value
1993     // which should be used after statepoint.
1994     auto rematerializeChain = [&ChainToBase](
1995         Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
1996       Instruction *LastClonedValue = nullptr;
1997       Instruction *LastValue = nullptr;
1998       for (Instruction *Instr: ChainToBase) {
1999         // Only GEP's and casts are supported as we need to be careful to not
2000         // introduce any new uses of pointers not in the liveset.
2001         // Note that it's fine to introduce new uses of pointers which were
2002         // otherwise not used after this statepoint.
2003         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2004 
2005         Instruction *ClonedValue = Instr->clone();
2006         ClonedValue->insertBefore(InsertBefore);
2007         ClonedValue->setName(Instr->getName() + ".remat");
2008 
2009         // If it is not first instruction in the chain then it uses previously
2010         // cloned value. We should update it to use cloned value.
2011         if (LastClonedValue) {
2012           assert(LastValue);
2013           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2014 #ifndef NDEBUG
2015           for (auto OpValue : ClonedValue->operand_values()) {
2016             // Assert that cloned instruction does not use any instructions from
2017             // this chain other than LastClonedValue
2018             assert(!is_contained(ChainToBase, OpValue) &&
2019                    "incorrect use in rematerialization chain");
2020             // Assert that the cloned instruction does not use the RootOfChain
2021             // or the AlternateLiveBase.
2022             assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2023           }
2024 #endif
2025         } else {
2026           // For the first instruction, replace the use of unrelocated base i.e.
2027           // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2028           // live set. They have been proved to be the same PHI nodes.  Note
2029           // that the *only* use of the RootOfChain in the ChainToBase list is
2030           // the first Value in the list.
2031           if (RootOfChain != AlternateLiveBase)
2032             ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2033         }
2034 
2035         LastClonedValue = ClonedValue;
2036         LastValue = Instr;
2037       }
2038       assert(LastClonedValue);
2039       return LastClonedValue;
2040     };
2041 
2042     // Different cases for calls and invokes. For invokes we need to clone
2043     // instructions both on normal and unwind path.
2044     if (CS.isCall()) {
2045       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
2046       assert(InsertBefore);
2047       Instruction *RematerializedValue = rematerializeChain(
2048           InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2049       Info.RematerializedValues[RematerializedValue] = LiveValue;
2050     } else {
2051       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
2052 
2053       Instruction *NormalInsertBefore =
2054           &*Invoke->getNormalDest()->getFirstInsertionPt();
2055       Instruction *UnwindInsertBefore =
2056           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2057 
2058       Instruction *NormalRematerializedValue = rematerializeChain(
2059           NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2060       Instruction *UnwindRematerializedValue = rematerializeChain(
2061           UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2062 
2063       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2064       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2065     }
2066   }
2067 
2068   // Remove rematerializaed values from the live set
2069   for (auto LiveValue: LiveValuesToBeDeleted) {
2070     Info.LiveSet.remove(LiveValue);
2071   }
2072 }
2073 
2074 static bool insertParsePoints(Function &F, DominatorTree &DT,
2075                               TargetTransformInfo &TTI,
2076                               SmallVectorImpl<CallSite> &ToUpdate) {
2077 #ifndef NDEBUG
2078   // sanity check the input
2079   std::set<CallSite> Uniqued;
2080   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2081   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2082 
2083   for (CallSite CS : ToUpdate)
2084     assert(CS.getInstruction()->getFunction() == &F);
2085 #endif
2086 
2087   // When inserting gc.relocates for invokes, we need to be able to insert at
2088   // the top of the successor blocks.  See the comment on
2089   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2090   // may restructure the CFG.
2091   for (CallSite CS : ToUpdate) {
2092     if (!CS.isInvoke())
2093       continue;
2094     auto *II = cast<InvokeInst>(CS.getInstruction());
2095     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2096     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2097   }
2098 
2099   // A list of dummy calls added to the IR to keep various values obviously
2100   // live in the IR.  We'll remove all of these when done.
2101   SmallVector<CallInst *, 64> Holders;
2102 
2103   // Insert a dummy call with all of the deopt operands we'll need for the
2104   // actual safepoint insertion as arguments.  This ensures reference operands
2105   // in the deopt argument list are considered live through the safepoint (and
2106   // thus makes sure they get relocated.)
2107   for (CallSite CS : ToUpdate) {
2108     SmallVector<Value *, 64> DeoptValues;
2109 
2110     for (Value *Arg : GetDeoptBundleOperands(CS)) {
2111       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2112              "support for FCA unimplemented");
2113       if (isHandledGCPointerType(Arg->getType()))
2114         DeoptValues.push_back(Arg);
2115     }
2116 
2117     insertUseHolderAfter(CS, DeoptValues, Holders);
2118   }
2119 
2120   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2121 
2122   // A) Identify all gc pointers which are statically live at the given call
2123   // site.
2124   findLiveReferences(F, DT, ToUpdate, Records);
2125 
2126   // B) Find the base pointers for each live pointer
2127   /* scope for caching */ {
2128     // Cache the 'defining value' relation used in the computation and
2129     // insertion of base phis and selects.  This ensures that we don't insert
2130     // large numbers of duplicate base_phis.
2131     DefiningValueMapTy DVCache;
2132 
2133     for (size_t i = 0; i < Records.size(); i++) {
2134       PartiallyConstructedSafepointRecord &info = Records[i];
2135       findBasePointers(DT, DVCache, ToUpdate[i], info);
2136     }
2137   } // end of cache scope
2138 
2139   // The base phi insertion logic (for any safepoint) may have inserted new
2140   // instructions which are now live at some safepoint.  The simplest such
2141   // example is:
2142   // loop:
2143   //   phi a  <-- will be a new base_phi here
2144   //   safepoint 1 <-- that needs to be live here
2145   //   gep a + 1
2146   //   safepoint 2
2147   //   br loop
2148   // We insert some dummy calls after each safepoint to definitely hold live
2149   // the base pointers which were identified for that safepoint.  We'll then
2150   // ask liveness for _every_ base inserted to see what is now live.  Then we
2151   // remove the dummy calls.
2152   Holders.reserve(Holders.size() + Records.size());
2153   for (size_t i = 0; i < Records.size(); i++) {
2154     PartiallyConstructedSafepointRecord &Info = Records[i];
2155 
2156     SmallVector<Value *, 128> Bases;
2157     for (auto Pair : Info.PointerToBase)
2158       Bases.push_back(Pair.second);
2159 
2160     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2161   }
2162 
2163   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2164   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2165   // not the key issue.
2166   recomputeLiveInValues(F, DT, ToUpdate, Records);
2167 
2168   if (PrintBasePointers) {
2169     for (auto &Info : Records) {
2170       errs() << "Base Pairs: (w/Relocation)\n";
2171       for (auto Pair : Info.PointerToBase) {
2172         errs() << " derived ";
2173         Pair.first->printAsOperand(errs(), false);
2174         errs() << " base ";
2175         Pair.second->printAsOperand(errs(), false);
2176         errs() << "\n";
2177       }
2178     }
2179   }
2180 
2181   // It is possible that non-constant live variables have a constant base.  For
2182   // example, a GEP with a variable offset from a global.  In this case we can
2183   // remove it from the liveset.  We already don't add constants to the liveset
2184   // because we assume they won't move at runtime and the GC doesn't need to be
2185   // informed about them.  The same reasoning applies if the base is constant.
2186   // Note that the relocation placement code relies on this filtering for
2187   // correctness as it expects the base to be in the liveset, which isn't true
2188   // if the base is constant.
2189   for (auto &Info : Records)
2190     for (auto &BasePair : Info.PointerToBase)
2191       if (isa<Constant>(BasePair.second))
2192         Info.LiveSet.remove(BasePair.first);
2193 
2194   for (CallInst *CI : Holders)
2195     CI->eraseFromParent();
2196 
2197   Holders.clear();
2198 
2199   // In order to reduce live set of statepoint we might choose to rematerialize
2200   // some values instead of relocating them. This is purely an optimization and
2201   // does not influence correctness.
2202   for (size_t i = 0; i < Records.size(); i++)
2203     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2204 
2205   // We need this to safely RAUW and delete call or invoke return values that
2206   // may themselves be live over a statepoint.  For details, please see usage in
2207   // makeStatepointExplicitImpl.
2208   std::vector<DeferredReplacement> Replacements;
2209 
2210   // Now run through and replace the existing statepoints with new ones with
2211   // the live variables listed.  We do not yet update uses of the values being
2212   // relocated. We have references to live variables that need to
2213   // survive to the last iteration of this loop.  (By construction, the
2214   // previous statepoint can not be a live variable, thus we can and remove
2215   // the old statepoint calls as we go.)
2216   for (size_t i = 0; i < Records.size(); i++)
2217     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2218 
2219   ToUpdate.clear(); // prevent accident use of invalid CallSites
2220 
2221   for (auto &PR : Replacements)
2222     PR.doReplacement();
2223 
2224   Replacements.clear();
2225 
2226   for (auto &Info : Records) {
2227     // These live sets may contain state Value pointers, since we replaced calls
2228     // with operand bundles with calls wrapped in gc.statepoint, and some of
2229     // those calls may have been def'ing live gc pointers.  Clear these out to
2230     // avoid accidentally using them.
2231     //
2232     // TODO: We should create a separate data structure that does not contain
2233     // these live sets, and migrate to using that data structure from this point
2234     // onward.
2235     Info.LiveSet.clear();
2236     Info.PointerToBase.clear();
2237   }
2238 
2239   // Do all the fixups of the original live variables to their relocated selves
2240   SmallVector<Value *, 128> Live;
2241   for (size_t i = 0; i < Records.size(); i++) {
2242     PartiallyConstructedSafepointRecord &Info = Records[i];
2243 
2244     // We can't simply save the live set from the original insertion.  One of
2245     // the live values might be the result of a call which needs a safepoint.
2246     // That Value* no longer exists and we need to use the new gc_result.
2247     // Thankfully, the live set is embedded in the statepoint (and updated), so
2248     // we just grab that.
2249     Statepoint Statepoint(Info.StatepointToken);
2250     Live.insert(Live.end(), Statepoint.gc_args_begin(),
2251                 Statepoint.gc_args_end());
2252 #ifndef NDEBUG
2253     // Do some basic sanity checks on our liveness results before performing
2254     // relocation.  Relocation can and will turn mistakes in liveness results
2255     // into non-sensical code which is must harder to debug.
2256     // TODO: It would be nice to test consistency as well
2257     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2258            "statepoint must be reachable or liveness is meaningless");
2259     for (Value *V : Statepoint.gc_args()) {
2260       if (!isa<Instruction>(V))
2261         // Non-instruction values trivial dominate all possible uses
2262         continue;
2263       auto *LiveInst = cast<Instruction>(V);
2264       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2265              "unreachable values should never be live");
2266       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2267              "basic SSA liveness expectation violated by liveness analysis");
2268     }
2269 #endif
2270   }
2271   unique_unsorted(Live);
2272 
2273 #ifndef NDEBUG
2274   // sanity check
2275   for (auto *Ptr : Live)
2276     assert(isHandledGCPointerType(Ptr->getType()) &&
2277            "must be a gc pointer type");
2278 #endif
2279 
2280   relocationViaAlloca(F, DT, Live, Records);
2281   return !Records.empty();
2282 }
2283 
2284 // Handles both return values and arguments for Functions and CallSites.
2285 template <typename AttrHolder>
2286 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2287                                       unsigned Index) {
2288   AttrBuilder R;
2289   if (AH.getDereferenceableBytes(Index))
2290     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2291                                   AH.getDereferenceableBytes(Index)));
2292   if (AH.getDereferenceableOrNullBytes(Index))
2293     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2294                                   AH.getDereferenceableOrNullBytes(Index)));
2295   if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
2296     R.addAttribute(Attribute::NoAlias);
2297 
2298   if (!R.empty())
2299     AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2300 }
2301 
2302 void
2303 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
2304   LLVMContext &Ctx = F.getContext();
2305 
2306   for (Argument &A : F.args())
2307     if (isa<PointerType>(A.getType()))
2308       RemoveNonValidAttrAtIndex(Ctx, F,
2309                                 A.getArgNo() + AttributeList::FirstArgIndex);
2310 
2311   if (isa<PointerType>(F.getReturnType()))
2312     RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2313 }
2314 
2315 void RewriteStatepointsForGC::stripInvalidMetadataFromInstruction(Instruction &I) {
2316 
2317   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2318     return;
2319   // These are the attributes that are still valid on loads and stores after
2320   // RS4GC.
2321   // The metadata implying dereferenceability and noalias are (conservatively)
2322   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2323   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2324   // touch the entire heap including noalias objects. Note: The reasoning is
2325   // same as stripping the dereferenceability and noalias attributes that are
2326   // analogous to the metadata counterparts.
2327   // We also drop the invariant.load metadata on the load because that metadata
2328   // implies the address operand to the load points to memory that is never
2329   // changed once it became dereferenceable. This is no longer true after RS4GC.
2330   // Similar reasoning applies to invariant.group metadata, which applies to
2331   // loads within a group.
2332   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2333                          LLVMContext::MD_range,
2334                          LLVMContext::MD_alias_scope,
2335                          LLVMContext::MD_nontemporal,
2336                          LLVMContext::MD_nonnull,
2337                          LLVMContext::MD_align,
2338                          LLVMContext::MD_type};
2339 
2340   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2341   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2342 
2343 }
2344 
2345 void RewriteStatepointsForGC::stripNonValidAttributesAndMetadataFromBody(Function &F) {
2346   if (F.empty())
2347     return;
2348 
2349   LLVMContext &Ctx = F.getContext();
2350   MDBuilder Builder(Ctx);
2351 
2352 
2353   for (Instruction &I : instructions(F)) {
2354     if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2355       assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2356       bool IsImmutableTBAA =
2357           MD->getNumOperands() == 4 &&
2358           mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2359 
2360       if (!IsImmutableTBAA)
2361         continue; // no work to do, MD_tbaa is already marked mutable
2362 
2363       MDNode *Base = cast<MDNode>(MD->getOperand(0));
2364       MDNode *Access = cast<MDNode>(MD->getOperand(1));
2365       uint64_t Offset =
2366           mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2367 
2368       MDNode *MutableTBAA =
2369           Builder.createTBAAStructTagNode(Base, Access, Offset);
2370       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2371     }
2372 
2373     stripInvalidMetadataFromInstruction(I);
2374 
2375     if (CallSite CS = CallSite(&I)) {
2376       for (int i = 0, e = CS.arg_size(); i != e; i++)
2377         if (isa<PointerType>(CS.getArgument(i)->getType()))
2378           RemoveNonValidAttrAtIndex(Ctx, CS, i + AttributeList::FirstArgIndex);
2379       if (isa<PointerType>(CS.getType()))
2380         RemoveNonValidAttrAtIndex(Ctx, CS, AttributeList::ReturnIndex);
2381     }
2382   }
2383 }
2384 
2385 /// Returns true if this function should be rewritten by this pass.  The main
2386 /// point of this function is as an extension point for custom logic.
2387 static bool shouldRewriteStatepointsIn(Function &F) {
2388   // TODO: This should check the GCStrategy
2389   if (F.hasGC()) {
2390     const auto &FunctionGCName = F.getGC();
2391     const StringRef StatepointExampleName("statepoint-example");
2392     const StringRef CoreCLRName("coreclr");
2393     return (StatepointExampleName == FunctionGCName) ||
2394            (CoreCLRName == FunctionGCName);
2395   } else
2396     return false;
2397 }
2398 
2399 void RewriteStatepointsForGC::stripNonValidAttributesAndMetadata(Module &M) {
2400 #ifndef NDEBUG
2401   assert(any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2402 #endif
2403 
2404   for (Function &F : M)
2405     stripNonValidAttributesFromPrototype(F);
2406 
2407   for (Function &F : M)
2408     stripNonValidAttributesAndMetadataFromBody(F);
2409 }
2410 
2411 bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2412   // Nothing to do for declarations.
2413   if (F.isDeclaration() || F.empty())
2414     return false;
2415 
2416   // Policy choice says not to rewrite - the most common reason is that we're
2417   // compiling code without a GCStrategy.
2418   if (!shouldRewriteStatepointsIn(F))
2419     return false;
2420 
2421   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2422   TargetTransformInfo &TTI =
2423       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2424   const TargetLibraryInfo &TLI =
2425       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2426 
2427   auto NeedsRewrite = [&TLI](Instruction &I) {
2428     if (ImmutableCallSite CS = ImmutableCallSite(&I))
2429       return !callsGCLeafFunction(CS, TLI) && !isStatepoint(CS);
2430     return false;
2431   };
2432 
2433   // Gather all the statepoints which need rewritten.  Be careful to only
2434   // consider those in reachable code since we need to ask dominance queries
2435   // when rewriting.  We'll delete the unreachable ones in a moment.
2436   SmallVector<CallSite, 64> ParsePointNeeded;
2437   bool HasUnreachableStatepoint = false;
2438   for (Instruction &I : instructions(F)) {
2439     // TODO: only the ones with the flag set!
2440     if (NeedsRewrite(I)) {
2441       if (DT.isReachableFromEntry(I.getParent()))
2442         ParsePointNeeded.push_back(CallSite(&I));
2443       else
2444         HasUnreachableStatepoint = true;
2445     }
2446   }
2447 
2448   bool MadeChange = false;
2449 
2450   // Delete any unreachable statepoints so that we don't have unrewritten
2451   // statepoints surviving this pass.  This makes testing easier and the
2452   // resulting IR less confusing to human readers.  Rather than be fancy, we
2453   // just reuse a utility function which removes the unreachable blocks.
2454   if (HasUnreachableStatepoint)
2455     MadeChange |= removeUnreachableBlocks(F);
2456 
2457   // Return early if no work to do.
2458   if (ParsePointNeeded.empty())
2459     return MadeChange;
2460 
2461   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2462   // These are created by LCSSA.  They have the effect of increasing the size
2463   // of liveness sets for no good reason.  It may be harder to do this post
2464   // insertion since relocations and base phis can confuse things.
2465   for (BasicBlock &BB : F)
2466     if (BB.getUniquePredecessor()) {
2467       MadeChange = true;
2468       FoldSingleEntryPHINodes(&BB);
2469     }
2470 
2471   // Before we start introducing relocations, we want to tweak the IR a bit to
2472   // avoid unfortunate code generation effects.  The main example is that we
2473   // want to try to make sure the comparison feeding a branch is after any
2474   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2475   // values feeding a branch after relocation.  This is semantically correct,
2476   // but results in extra register pressure since both the pre-relocation and
2477   // post-relocation copies must be available in registers.  For code without
2478   // relocations this is handled elsewhere, but teaching the scheduler to
2479   // reverse the transform we're about to do would be slightly complex.
2480   // Note: This may extend the live range of the inputs to the icmp and thus
2481   // increase the liveset of any statepoint we move over.  This is profitable
2482   // as long as all statepoints are in rare blocks.  If we had in-register
2483   // lowering for live values this would be a much safer transform.
2484   auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2485     if (auto *BI = dyn_cast<BranchInst>(TI))
2486       if (BI->isConditional())
2487         return dyn_cast<Instruction>(BI->getCondition());
2488     // TODO: Extend this to handle switches
2489     return nullptr;
2490   };
2491   for (BasicBlock &BB : F) {
2492     TerminatorInst *TI = BB.getTerminator();
2493     if (auto *Cond = getConditionInst(TI))
2494       // TODO: Handle more than just ICmps here.  We should be able to move
2495       // most instructions without side effects or memory access.
2496       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2497         MadeChange = true;
2498         Cond->moveBefore(TI);
2499       }
2500   }
2501 
2502   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2503   return MadeChange;
2504 }
2505 
2506 // liveness computation via standard dataflow
2507 // -------------------------------------------------------------------
2508 
2509 // TODO: Consider using bitvectors for liveness, the set of potentially
2510 // interesting values should be small and easy to pre-compute.
2511 
2512 /// Compute the live-in set for the location rbegin starting from
2513 /// the live-out set of the basic block
2514 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2515                                 BasicBlock::reverse_iterator End,
2516                                 SetVector<Value *> &LiveTmp) {
2517   for (auto &I : make_range(Begin, End)) {
2518     // KILL/Def - Remove this definition from LiveIn
2519     LiveTmp.remove(&I);
2520 
2521     // Don't consider *uses* in PHI nodes, we handle their contribution to
2522     // predecessor blocks when we seed the LiveOut sets
2523     if (isa<PHINode>(I))
2524       continue;
2525 
2526     // USE - Add to the LiveIn set for this instruction
2527     for (Value *V : I.operands()) {
2528       assert(!isUnhandledGCPointerType(V->getType()) &&
2529              "support for FCA unimplemented");
2530       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2531         // The choice to exclude all things constant here is slightly subtle.
2532         // There are two independent reasons:
2533         // - We assume that things which are constant (from LLVM's definition)
2534         // do not move at runtime.  For example, the address of a global
2535         // variable is fixed, even though it's contents may not be.
2536         // - Second, we can't disallow arbitrary inttoptr constants even
2537         // if the language frontend does.  Optimization passes are free to
2538         // locally exploit facts without respect to global reachability.  This
2539         // can create sections of code which are dynamically unreachable and
2540         // contain just about anything.  (see constants.ll in tests)
2541         LiveTmp.insert(V);
2542       }
2543     }
2544   }
2545 }
2546 
2547 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2548   for (BasicBlock *Succ : successors(BB)) {
2549     for (auto &I : *Succ) {
2550       PHINode *PN = dyn_cast<PHINode>(&I);
2551       if (!PN)
2552         break;
2553 
2554       Value *V = PN->getIncomingValueForBlock(BB);
2555       assert(!isUnhandledGCPointerType(V->getType()) &&
2556              "support for FCA unimplemented");
2557       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2558         LiveTmp.insert(V);
2559     }
2560   }
2561 }
2562 
2563 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2564   SetVector<Value *> KillSet;
2565   for (Instruction &I : *BB)
2566     if (isHandledGCPointerType(I.getType()))
2567       KillSet.insert(&I);
2568   return KillSet;
2569 }
2570 
2571 #ifndef NDEBUG
2572 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2573 /// sanity check for the liveness computation.
2574 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2575                           TerminatorInst *TI, bool TermOkay = false) {
2576   for (Value *V : Live) {
2577     if (auto *I = dyn_cast<Instruction>(V)) {
2578       // The terminator can be a member of the LiveOut set.  LLVM's definition
2579       // of instruction dominance states that V does not dominate itself.  As
2580       // such, we need to special case this to allow it.
2581       if (TermOkay && TI == I)
2582         continue;
2583       assert(DT.dominates(I, TI) &&
2584              "basic SSA liveness expectation violated by liveness analysis");
2585     }
2586   }
2587 }
2588 
2589 /// Check that all the liveness sets used during the computation of liveness
2590 /// obey basic SSA properties.  This is useful for finding cases where we miss
2591 /// a def.
2592 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2593                           BasicBlock &BB) {
2594   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2595   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2596   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2597 }
2598 #endif
2599 
2600 static void computeLiveInValues(DominatorTree &DT, Function &F,
2601                                 GCPtrLivenessData &Data) {
2602   SmallSetVector<BasicBlock *, 32> Worklist;
2603 
2604   // Seed the liveness for each individual block
2605   for (BasicBlock &BB : F) {
2606     Data.KillSet[&BB] = computeKillSet(&BB);
2607     Data.LiveSet[&BB].clear();
2608     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2609 
2610 #ifndef NDEBUG
2611     for (Value *Kill : Data.KillSet[&BB])
2612       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2613 #endif
2614 
2615     Data.LiveOut[&BB] = SetVector<Value *>();
2616     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2617     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2618     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2619     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2620     if (!Data.LiveIn[&BB].empty())
2621       Worklist.insert(pred_begin(&BB), pred_end(&BB));
2622   }
2623 
2624   // Propagate that liveness until stable
2625   while (!Worklist.empty()) {
2626     BasicBlock *BB = Worklist.pop_back_val();
2627 
2628     // Compute our new liveout set, then exit early if it hasn't changed despite
2629     // the contribution of our successor.
2630     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2631     const auto OldLiveOutSize = LiveOut.size();
2632     for (BasicBlock *Succ : successors(BB)) {
2633       assert(Data.LiveIn.count(Succ));
2634       LiveOut.set_union(Data.LiveIn[Succ]);
2635     }
2636     // assert OutLiveOut is a subset of LiveOut
2637     if (OldLiveOutSize == LiveOut.size()) {
2638       // If the sets are the same size, then we didn't actually add anything
2639       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
2640       // hasn't changed.
2641       continue;
2642     }
2643     Data.LiveOut[BB] = LiveOut;
2644 
2645     // Apply the effects of this basic block
2646     SetVector<Value *> LiveTmp = LiveOut;
2647     LiveTmp.set_union(Data.LiveSet[BB]);
2648     LiveTmp.set_subtract(Data.KillSet[BB]);
2649 
2650     assert(Data.LiveIn.count(BB));
2651     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2652     // assert: OldLiveIn is a subset of LiveTmp
2653     if (OldLiveIn.size() != LiveTmp.size()) {
2654       Data.LiveIn[BB] = LiveTmp;
2655       Worklist.insert(pred_begin(BB), pred_end(BB));
2656     }
2657   } // while (!Worklist.empty())
2658 
2659 #ifndef NDEBUG
2660   // Sanity check our output against SSA properties.  This helps catch any
2661   // missing kills during the above iteration.
2662   for (BasicBlock &BB : F)
2663     checkBasicSSA(DT, Data, BB);
2664 #endif
2665 }
2666 
2667 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2668                               StatepointLiveSetTy &Out) {
2669 
2670   BasicBlock *BB = Inst->getParent();
2671 
2672   // Note: The copy is intentional and required
2673   assert(Data.LiveOut.count(BB));
2674   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2675 
2676   // We want to handle the statepoint itself oddly.  It's
2677   // call result is not live (normal), nor are it's arguments
2678   // (unless they're used again later).  This adjustment is
2679   // specifically what we need to relocate
2680   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
2681                       LiveOut);
2682   LiveOut.remove(Inst);
2683   Out.insert(LiveOut.begin(), LiveOut.end());
2684 }
2685 
2686 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2687                                   CallSite CS,
2688                                   PartiallyConstructedSafepointRecord &Info) {
2689   Instruction *Inst = CS.getInstruction();
2690   StatepointLiveSetTy Updated;
2691   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2692 
2693 #ifndef NDEBUG
2694   DenseSet<Value *> Bases;
2695   for (auto KVPair : Info.PointerToBase)
2696     Bases.insert(KVPair.second);
2697 #endif
2698 
2699   // We may have base pointers which are now live that weren't before.  We need
2700   // to update the PointerToBase structure to reflect this.
2701   for (auto V : Updated)
2702     if (Info.PointerToBase.insert({V, V}).second) {
2703       assert(Bases.count(V) && "Can't find base for unexpected live value!");
2704       continue;
2705     }
2706 
2707 #ifndef NDEBUG
2708   for (auto V : Updated)
2709     assert(Info.PointerToBase.count(V) &&
2710            "Must be able to find base for live value!");
2711 #endif
2712 
2713   // Remove any stale base mappings - this can happen since our liveness is
2714   // more precise then the one inherent in the base pointer analysis.
2715   DenseSet<Value *> ToErase;
2716   for (auto KVPair : Info.PointerToBase)
2717     if (!Updated.count(KVPair.first))
2718       ToErase.insert(KVPair.first);
2719 
2720   for (auto *V : ToErase)
2721     Info.PointerToBase.erase(V);
2722 
2723 #ifndef NDEBUG
2724   for (auto KVPair : Info.PointerToBase)
2725     assert(Updated.count(KVPair.first) && "record for non-live value");
2726 #endif
2727 
2728   Info.LiveSet = Updated;
2729 }
2730