1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite call/invoke instructions so as to make potential relocations 11 // performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstIterator.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/Cloning.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 46 47 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 48 49 using namespace llvm; 50 51 // Print the liveset found at the insert location 52 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 53 cl::init(false)); 54 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 55 cl::init(false)); 56 // Print out the base pointers for debugging 57 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 58 cl::init(false)); 59 60 // Cost threshold measuring when it is profitable to rematerialize value instead 61 // of relocating it 62 static cl::opt<unsigned> 63 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 64 cl::init(6)); 65 66 #ifdef EXPENSIVE_CHECKS 67 static bool ClobberNonLive = true; 68 #else 69 static bool ClobberNonLive = false; 70 #endif 71 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 72 cl::location(ClobberNonLive), 73 cl::Hidden); 74 75 static cl::opt<bool> 76 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 77 cl::Hidden, cl::init(true)); 78 79 namespace { 80 struct RewriteStatepointsForGC : public ModulePass { 81 static char ID; // Pass identification, replacement for typeid 82 83 RewriteStatepointsForGC() : ModulePass(ID) { 84 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 85 } 86 bool runOnFunction(Function &F); 87 bool runOnModule(Module &M) override { 88 bool Changed = false; 89 for (Function &F : M) 90 Changed |= runOnFunction(F); 91 92 if (Changed) { 93 // stripNonValidAttributesAndMetadata asserts that shouldRewriteStatepointsIn 94 // returns true for at least one function in the module. Since at least 95 // one function changed, we know that the precondition is satisfied. 96 stripNonValidAttributesAndMetadata(M); 97 } 98 99 return Changed; 100 } 101 102 void getAnalysisUsage(AnalysisUsage &AU) const override { 103 // We add and rewrite a bunch of instructions, but don't really do much 104 // else. We could in theory preserve a lot more analyses here. 105 AU.addRequired<DominatorTreeWrapperPass>(); 106 AU.addRequired<TargetTransformInfoWrapperPass>(); 107 AU.addRequired<TargetLibraryInfoWrapperPass>(); 108 } 109 110 /// The IR fed into RewriteStatepointsForGC may have had attributes and 111 /// metadata implying dereferenceability that are no longer valid/correct after 112 /// RewriteStatepointsForGC has run. This is because semantically, after 113 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 114 /// heap. stripNonValidAttributesAndMetadata (conservatively) restores 115 /// correctness by erasing all attributes in the module that externally imply 116 /// dereferenceability. Similar reasoning also applies to the noalias 117 /// attributes and metadata. gc.statepoint can touch the entire heap including 118 /// noalias objects. 119 void stripNonValidAttributesAndMetadata(Module &M); 120 121 // Helpers for stripNonValidAttributesAndMetadata 122 void stripNonValidAttributesAndMetadataFromBody(Function &F); 123 void stripNonValidAttributesFromPrototype(Function &F); 124 // Certain metadata on instructions are invalid after running RS4GC. 125 // Optimizations that run after RS4GC can incorrectly use this metadata to 126 // optimize functions. We drop such metadata on the instruction. 127 void stripInvalidMetadataFromInstruction(Instruction &I); 128 }; 129 } // namespace 130 131 char RewriteStatepointsForGC::ID = 0; 132 133 ModulePass *llvm::createRewriteStatepointsForGCPass() { 134 return new RewriteStatepointsForGC(); 135 } 136 137 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 138 "Make relocations explicit at statepoints", false, false) 139 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 140 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 141 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 142 "Make relocations explicit at statepoints", false, false) 143 144 namespace { 145 struct GCPtrLivenessData { 146 /// Values defined in this block. 147 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 148 /// Values used in this block (and thus live); does not included values 149 /// killed within this block. 150 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 151 152 /// Values live into this basic block (i.e. used by any 153 /// instruction in this basic block or ones reachable from here) 154 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 155 156 /// Values live out of this basic block (i.e. live into 157 /// any successor block) 158 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 159 }; 160 161 // The type of the internal cache used inside the findBasePointers family 162 // of functions. From the callers perspective, this is an opaque type and 163 // should not be inspected. 164 // 165 // In the actual implementation this caches two relations: 166 // - The base relation itself (i.e. this pointer is based on that one) 167 // - The base defining value relation (i.e. before base_phi insertion) 168 // Generally, after the execution of a full findBasePointer call, only the 169 // base relation will remain. Internally, we add a mixture of the two 170 // types, then update all the second type to the first type 171 typedef MapVector<Value *, Value *> DefiningValueMapTy; 172 typedef SetVector<Value *> StatepointLiveSetTy; 173 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>> 174 RematerializedValueMapTy; 175 176 struct PartiallyConstructedSafepointRecord { 177 /// The set of values known to be live across this safepoint 178 StatepointLiveSetTy LiveSet; 179 180 /// Mapping from live pointers to a base-defining-value 181 MapVector<Value *, Value *> PointerToBase; 182 183 /// The *new* gc.statepoint instruction itself. This produces the token 184 /// that normal path gc.relocates and the gc.result are tied to. 185 Instruction *StatepointToken; 186 187 /// Instruction to which exceptional gc relocates are attached 188 /// Makes it easier to iterate through them during relocationViaAlloca. 189 Instruction *UnwindToken; 190 191 /// Record live values we are rematerialized instead of relocating. 192 /// They are not included into 'LiveSet' field. 193 /// Maps rematerialized copy to it's original value. 194 RematerializedValueMapTy RematerializedValues; 195 }; 196 } 197 198 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 199 Optional<OperandBundleUse> DeoptBundle = 200 CS.getOperandBundle(LLVMContext::OB_deopt); 201 202 if (!DeoptBundle.hasValue()) { 203 assert(AllowStatepointWithNoDeoptInfo && 204 "Found non-leaf call without deopt info!"); 205 return None; 206 } 207 208 return DeoptBundle.getValue().Inputs; 209 } 210 211 /// Compute the live-in set for every basic block in the function 212 static void computeLiveInValues(DominatorTree &DT, Function &F, 213 GCPtrLivenessData &Data); 214 215 /// Given results from the dataflow liveness computation, find the set of live 216 /// Values at a particular instruction. 217 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 218 StatepointLiveSetTy &out); 219 220 // TODO: Once we can get to the GCStrategy, this becomes 221 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 222 223 static bool isGCPointerType(Type *T) { 224 if (auto *PT = dyn_cast<PointerType>(T)) 225 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 226 // GC managed heap. We know that a pointer into this heap needs to be 227 // updated and that no other pointer does. 228 return PT->getAddressSpace() == 1; 229 return false; 230 } 231 232 // Return true if this type is one which a) is a gc pointer or contains a GC 233 // pointer and b) is of a type this code expects to encounter as a live value. 234 // (The insertion code will assert that a type which matches (a) and not (b) 235 // is not encountered.) 236 static bool isHandledGCPointerType(Type *T) { 237 // We fully support gc pointers 238 if (isGCPointerType(T)) 239 return true; 240 // We partially support vectors of gc pointers. The code will assert if it 241 // can't handle something. 242 if (auto VT = dyn_cast<VectorType>(T)) 243 if (isGCPointerType(VT->getElementType())) 244 return true; 245 return false; 246 } 247 248 #ifndef NDEBUG 249 /// Returns true if this type contains a gc pointer whether we know how to 250 /// handle that type or not. 251 static bool containsGCPtrType(Type *Ty) { 252 if (isGCPointerType(Ty)) 253 return true; 254 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 255 return isGCPointerType(VT->getScalarType()); 256 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 257 return containsGCPtrType(AT->getElementType()); 258 if (StructType *ST = dyn_cast<StructType>(Ty)) 259 return any_of(ST->subtypes(), containsGCPtrType); 260 return false; 261 } 262 263 // Returns true if this is a type which a) is a gc pointer or contains a GC 264 // pointer and b) is of a type which the code doesn't expect (i.e. first class 265 // aggregates). Used to trip assertions. 266 static bool isUnhandledGCPointerType(Type *Ty) { 267 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 268 } 269 #endif 270 271 // Return the name of the value suffixed with the provided value, or if the 272 // value didn't have a name, the default value specified. 273 static std::string suffixed_name_or(Value *V, StringRef Suffix, 274 StringRef DefaultName) { 275 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 276 } 277 278 // Conservatively identifies any definitions which might be live at the 279 // given instruction. The analysis is performed immediately before the 280 // given instruction. Values defined by that instruction are not considered 281 // live. Values used by that instruction are considered live. 282 static void 283 analyzeParsePointLiveness(DominatorTree &DT, 284 GCPtrLivenessData &OriginalLivenessData, CallSite CS, 285 PartiallyConstructedSafepointRecord &Result) { 286 Instruction *Inst = CS.getInstruction(); 287 288 StatepointLiveSetTy LiveSet; 289 findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet); 290 291 if (PrintLiveSet) { 292 dbgs() << "Live Variables:\n"; 293 for (Value *V : LiveSet) 294 dbgs() << " " << V->getName() << " " << *V << "\n"; 295 } 296 if (PrintLiveSetSize) { 297 dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 298 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 299 } 300 Result.LiveSet = LiveSet; 301 } 302 303 static bool isKnownBaseResult(Value *V); 304 namespace { 305 /// A single base defining value - An immediate base defining value for an 306 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 307 /// For instructions which have multiple pointer [vector] inputs or that 308 /// transition between vector and scalar types, there is no immediate base 309 /// defining value. The 'base defining value' for 'Def' is the transitive 310 /// closure of this relation stopping at the first instruction which has no 311 /// immediate base defining value. The b.d.v. might itself be a base pointer, 312 /// but it can also be an arbitrary derived pointer. 313 struct BaseDefiningValueResult { 314 /// Contains the value which is the base defining value. 315 Value * const BDV; 316 /// True if the base defining value is also known to be an actual base 317 /// pointer. 318 const bool IsKnownBase; 319 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 320 : BDV(BDV), IsKnownBase(IsKnownBase) { 321 #ifndef NDEBUG 322 // Check consistency between new and old means of checking whether a BDV is 323 // a base. 324 bool MustBeBase = isKnownBaseResult(BDV); 325 assert(!MustBeBase || MustBeBase == IsKnownBase); 326 #endif 327 } 328 }; 329 } 330 331 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 332 333 /// Return a base defining value for the 'Index' element of the given vector 334 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 335 /// 'I'. As an optimization, this method will try to determine when the 336 /// element is known to already be a base pointer. If this can be established, 337 /// the second value in the returned pair will be true. Note that either a 338 /// vector or a pointer typed value can be returned. For the former, the 339 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 340 /// If the later, the return pointer is a BDV (or possibly a base) for the 341 /// particular element in 'I'. 342 static BaseDefiningValueResult 343 findBaseDefiningValueOfVector(Value *I) { 344 // Each case parallels findBaseDefiningValue below, see that code for 345 // detailed motivation. 346 347 if (isa<Argument>(I)) 348 // An incoming argument to the function is a base pointer 349 return BaseDefiningValueResult(I, true); 350 351 if (isa<Constant>(I)) 352 // Base of constant vector consists only of constant null pointers. 353 // For reasoning see similar case inside 'findBaseDefiningValue' function. 354 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 355 true); 356 357 if (isa<LoadInst>(I)) 358 return BaseDefiningValueResult(I, true); 359 360 if (isa<InsertElementInst>(I)) 361 // We don't know whether this vector contains entirely base pointers or 362 // not. To be conservatively correct, we treat it as a BDV and will 363 // duplicate code as needed to construct a parallel vector of bases. 364 return BaseDefiningValueResult(I, false); 365 366 if (isa<ShuffleVectorInst>(I)) 367 // We don't know whether this vector contains entirely base pointers or 368 // not. To be conservatively correct, we treat it as a BDV and will 369 // duplicate code as needed to construct a parallel vector of bases. 370 // TODO: There a number of local optimizations which could be applied here 371 // for particular sufflevector patterns. 372 return BaseDefiningValueResult(I, false); 373 374 // The behavior of getelementptr instructions is the same for vector and 375 // non-vector data types. 376 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 377 return findBaseDefiningValue(GEP->getPointerOperand()); 378 379 // A PHI or Select is a base defining value. The outer findBasePointer 380 // algorithm is responsible for constructing a base value for this BDV. 381 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 382 "unknown vector instruction - no base found for vector element"); 383 return BaseDefiningValueResult(I, false); 384 } 385 386 /// Helper function for findBasePointer - Will return a value which either a) 387 /// defines the base pointer for the input, b) blocks the simple search 388 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 389 /// from pointer to vector type or back. 390 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 391 assert(I->getType()->isPtrOrPtrVectorTy() && 392 "Illegal to ask for the base pointer of a non-pointer type"); 393 394 if (I->getType()->isVectorTy()) 395 return findBaseDefiningValueOfVector(I); 396 397 if (isa<Argument>(I)) 398 // An incoming argument to the function is a base pointer 399 // We should have never reached here if this argument isn't an gc value 400 return BaseDefiningValueResult(I, true); 401 402 if (isa<Constant>(I)) { 403 // We assume that objects with a constant base (e.g. a global) can't move 404 // and don't need to be reported to the collector because they are always 405 // live. Besides global references, all kinds of constants (e.g. undef, 406 // constant expressions, null pointers) can be introduced by the inliner or 407 // the optimizer, especially on dynamically dead paths. 408 // Here we treat all of them as having single null base. By doing this we 409 // trying to avoid problems reporting various conflicts in a form of 410 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 411 // See constant.ll file for relevant test cases. 412 413 return BaseDefiningValueResult( 414 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 415 } 416 417 if (CastInst *CI = dyn_cast<CastInst>(I)) { 418 Value *Def = CI->stripPointerCasts(); 419 // If stripping pointer casts changes the address space there is an 420 // addrspacecast in between. 421 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 422 cast<PointerType>(CI->getType())->getAddressSpace() && 423 "unsupported addrspacecast"); 424 // If we find a cast instruction here, it means we've found a cast which is 425 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 426 // handle int->ptr conversion. 427 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 428 return findBaseDefiningValue(Def); 429 } 430 431 if (isa<LoadInst>(I)) 432 // The value loaded is an gc base itself 433 return BaseDefiningValueResult(I, true); 434 435 436 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 437 // The base of this GEP is the base 438 return findBaseDefiningValue(GEP->getPointerOperand()); 439 440 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 441 switch (II->getIntrinsicID()) { 442 default: 443 // fall through to general call handling 444 break; 445 case Intrinsic::experimental_gc_statepoint: 446 llvm_unreachable("statepoints don't produce pointers"); 447 case Intrinsic::experimental_gc_relocate: { 448 // Rerunning safepoint insertion after safepoints are already 449 // inserted is not supported. It could probably be made to work, 450 // but why are you doing this? There's no good reason. 451 llvm_unreachable("repeat safepoint insertion is not supported"); 452 } 453 case Intrinsic::gcroot: 454 // Currently, this mechanism hasn't been extended to work with gcroot. 455 // There's no reason it couldn't be, but I haven't thought about the 456 // implications much. 457 llvm_unreachable( 458 "interaction with the gcroot mechanism is not supported"); 459 } 460 } 461 // We assume that functions in the source language only return base 462 // pointers. This should probably be generalized via attributes to support 463 // both source language and internal functions. 464 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 465 return BaseDefiningValueResult(I, true); 466 467 // TODO: I have absolutely no idea how to implement this part yet. It's not 468 // necessarily hard, I just haven't really looked at it yet. 469 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 470 471 if (isa<AtomicCmpXchgInst>(I)) 472 // A CAS is effectively a atomic store and load combined under a 473 // predicate. From the perspective of base pointers, we just treat it 474 // like a load. 475 return BaseDefiningValueResult(I, true); 476 477 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 478 "binary ops which don't apply to pointers"); 479 480 // The aggregate ops. Aggregates can either be in the heap or on the 481 // stack, but in either case, this is simply a field load. As a result, 482 // this is a defining definition of the base just like a load is. 483 if (isa<ExtractValueInst>(I)) 484 return BaseDefiningValueResult(I, true); 485 486 // We should never see an insert vector since that would require we be 487 // tracing back a struct value not a pointer value. 488 assert(!isa<InsertValueInst>(I) && 489 "Base pointer for a struct is meaningless"); 490 491 // An extractelement produces a base result exactly when it's input does. 492 // We may need to insert a parallel instruction to extract the appropriate 493 // element out of the base vector corresponding to the input. Given this, 494 // it's analogous to the phi and select case even though it's not a merge. 495 if (isa<ExtractElementInst>(I)) 496 // Note: There a lot of obvious peephole cases here. This are deliberately 497 // handled after the main base pointer inference algorithm to make writing 498 // test cases to exercise that code easier. 499 return BaseDefiningValueResult(I, false); 500 501 // The last two cases here don't return a base pointer. Instead, they 502 // return a value which dynamically selects from among several base 503 // derived pointers (each with it's own base potentially). It's the job of 504 // the caller to resolve these. 505 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 506 "missing instruction case in findBaseDefiningValing"); 507 return BaseDefiningValueResult(I, false); 508 } 509 510 /// Returns the base defining value for this value. 511 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 512 Value *&Cached = Cache[I]; 513 if (!Cached) { 514 Cached = findBaseDefiningValue(I).BDV; 515 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 516 << Cached->getName() << "\n"); 517 } 518 assert(Cache[I] != nullptr); 519 return Cached; 520 } 521 522 /// Return a base pointer for this value if known. Otherwise, return it's 523 /// base defining value. 524 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 525 Value *Def = findBaseDefiningValueCached(I, Cache); 526 auto Found = Cache.find(Def); 527 if (Found != Cache.end()) { 528 // Either a base-of relation, or a self reference. Caller must check. 529 return Found->second; 530 } 531 // Only a BDV available 532 return Def; 533 } 534 535 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 536 /// is it known to be a base pointer? Or do we need to continue searching. 537 static bool isKnownBaseResult(Value *V) { 538 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 539 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 540 !isa<ShuffleVectorInst>(V)) { 541 // no recursion possible 542 return true; 543 } 544 if (isa<Instruction>(V) && 545 cast<Instruction>(V)->getMetadata("is_base_value")) { 546 // This is a previously inserted base phi or select. We know 547 // that this is a base value. 548 return true; 549 } 550 551 // We need to keep searching 552 return false; 553 } 554 555 namespace { 556 /// Models the state of a single base defining value in the findBasePointer 557 /// algorithm for determining where a new instruction is needed to propagate 558 /// the base of this BDV. 559 class BDVState { 560 public: 561 enum Status { Unknown, Base, Conflict }; 562 563 BDVState() : Status(Unknown), BaseValue(nullptr) {} 564 565 explicit BDVState(Status Status, Value *BaseValue = nullptr) 566 : Status(Status), BaseValue(BaseValue) { 567 assert(Status != Base || BaseValue); 568 } 569 570 explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {} 571 572 Status getStatus() const { return Status; } 573 Value *getBaseValue() const { return BaseValue; } 574 575 bool isBase() const { return getStatus() == Base; } 576 bool isUnknown() const { return getStatus() == Unknown; } 577 bool isConflict() const { return getStatus() == Conflict; } 578 579 bool operator==(const BDVState &Other) const { 580 return BaseValue == Other.BaseValue && Status == Other.Status; 581 } 582 583 bool operator!=(const BDVState &other) const { return !(*this == other); } 584 585 LLVM_DUMP_METHOD 586 void dump() const { 587 print(dbgs()); 588 dbgs() << '\n'; 589 } 590 591 void print(raw_ostream &OS) const { 592 switch (getStatus()) { 593 case Unknown: 594 OS << "U"; 595 break; 596 case Base: 597 OS << "B"; 598 break; 599 case Conflict: 600 OS << "C"; 601 break; 602 }; 603 OS << " (" << getBaseValue() << " - " 604 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): "; 605 } 606 607 private: 608 Status Status; 609 AssertingVH<Value> BaseValue; // Non-null only if Status == Base. 610 }; 611 } 612 613 #ifndef NDEBUG 614 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 615 State.print(OS); 616 return OS; 617 } 618 #endif 619 620 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) { 621 switch (LHS.getStatus()) { 622 case BDVState::Unknown: 623 return RHS; 624 625 case BDVState::Base: 626 assert(LHS.getBaseValue() && "can't be null"); 627 if (RHS.isUnknown()) 628 return LHS; 629 630 if (RHS.isBase()) { 631 if (LHS.getBaseValue() == RHS.getBaseValue()) { 632 assert(LHS == RHS && "equality broken!"); 633 return LHS; 634 } 635 return BDVState(BDVState::Conflict); 636 } 637 assert(RHS.isConflict() && "only three states!"); 638 return BDVState(BDVState::Conflict); 639 640 case BDVState::Conflict: 641 return LHS; 642 } 643 llvm_unreachable("only three states!"); 644 } 645 646 // Values of type BDVState form a lattice, and this function implements the meet 647 // operation. 648 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) { 649 BDVState Result = meetBDVStateImpl(LHS, RHS); 650 assert(Result == meetBDVStateImpl(RHS, LHS) && 651 "Math is wrong: meet does not commute!"); 652 return Result; 653 } 654 655 /// For a given value or instruction, figure out what base ptr its derived from. 656 /// For gc objects, this is simply itself. On success, returns a value which is 657 /// the base pointer. (This is reliable and can be used for relocation.) On 658 /// failure, returns nullptr. 659 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 660 Value *Def = findBaseOrBDV(I, Cache); 661 662 if (isKnownBaseResult(Def)) 663 return Def; 664 665 // Here's the rough algorithm: 666 // - For every SSA value, construct a mapping to either an actual base 667 // pointer or a PHI which obscures the base pointer. 668 // - Construct a mapping from PHI to unknown TOP state. Use an 669 // optimistic algorithm to propagate base pointer information. Lattice 670 // looks like: 671 // UNKNOWN 672 // b1 b2 b3 b4 673 // CONFLICT 674 // When algorithm terminates, all PHIs will either have a single concrete 675 // base or be in a conflict state. 676 // - For every conflict, insert a dummy PHI node without arguments. Add 677 // these to the base[Instruction] = BasePtr mapping. For every 678 // non-conflict, add the actual base. 679 // - For every conflict, add arguments for the base[a] of each input 680 // arguments. 681 // 682 // Note: A simpler form of this would be to add the conflict form of all 683 // PHIs without running the optimistic algorithm. This would be 684 // analogous to pessimistic data flow and would likely lead to an 685 // overall worse solution. 686 687 #ifndef NDEBUG 688 auto isExpectedBDVType = [](Value *BDV) { 689 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 690 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 691 isa<ShuffleVectorInst>(BDV); 692 }; 693 #endif 694 695 // Once populated, will contain a mapping from each potentially non-base BDV 696 // to a lattice value (described above) which corresponds to that BDV. 697 // We use the order of insertion (DFS over the def/use graph) to provide a 698 // stable deterministic ordering for visiting DenseMaps (which are unordered) 699 // below. This is important for deterministic compilation. 700 MapVector<Value *, BDVState> States; 701 702 // Recursively fill in all base defining values reachable from the initial 703 // one for which we don't already know a definite base value for 704 /* scope */ { 705 SmallVector<Value*, 16> Worklist; 706 Worklist.push_back(Def); 707 States.insert({Def, BDVState()}); 708 while (!Worklist.empty()) { 709 Value *Current = Worklist.pop_back_val(); 710 assert(!isKnownBaseResult(Current) && "why did it get added?"); 711 712 auto visitIncomingValue = [&](Value *InVal) { 713 Value *Base = findBaseOrBDV(InVal, Cache); 714 if (isKnownBaseResult(Base)) 715 // Known bases won't need new instructions introduced and can be 716 // ignored safely 717 return; 718 assert(isExpectedBDVType(Base) && "the only non-base values " 719 "we see should be base defining values"); 720 if (States.insert(std::make_pair(Base, BDVState())).second) 721 Worklist.push_back(Base); 722 }; 723 if (PHINode *PN = dyn_cast<PHINode>(Current)) { 724 for (Value *InVal : PN->incoming_values()) 725 visitIncomingValue(InVal); 726 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { 727 visitIncomingValue(SI->getTrueValue()); 728 visitIncomingValue(SI->getFalseValue()); 729 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 730 visitIncomingValue(EE->getVectorOperand()); 731 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 732 visitIncomingValue(IE->getOperand(0)); // vector operand 733 visitIncomingValue(IE->getOperand(1)); // scalar operand 734 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) { 735 visitIncomingValue(SV->getOperand(0)); 736 visitIncomingValue(SV->getOperand(1)); 737 } 738 else { 739 llvm_unreachable("Unimplemented instruction case"); 740 } 741 } 742 } 743 744 #ifndef NDEBUG 745 DEBUG(dbgs() << "States after initialization:\n"); 746 for (auto Pair : States) { 747 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 748 } 749 #endif 750 751 // Return a phi state for a base defining value. We'll generate a new 752 // base state for known bases and expect to find a cached state otherwise. 753 auto getStateForBDV = [&](Value *baseValue) { 754 if (isKnownBaseResult(baseValue)) 755 return BDVState(baseValue); 756 auto I = States.find(baseValue); 757 assert(I != States.end() && "lookup failed!"); 758 return I->second; 759 }; 760 761 bool Progress = true; 762 while (Progress) { 763 #ifndef NDEBUG 764 const size_t OldSize = States.size(); 765 #endif 766 Progress = false; 767 // We're only changing values in this loop, thus safe to keep iterators. 768 // Since this is computing a fixed point, the order of visit does not 769 // effect the result. TODO: We could use a worklist here and make this run 770 // much faster. 771 for (auto Pair : States) { 772 Value *BDV = Pair.first; 773 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 774 775 // Given an input value for the current instruction, return a BDVState 776 // instance which represents the BDV of that value. 777 auto getStateForInput = [&](Value *V) mutable { 778 Value *BDV = findBaseOrBDV(V, Cache); 779 return getStateForBDV(BDV); 780 }; 781 782 BDVState NewState; 783 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 784 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); 785 NewState = 786 meetBDVState(NewState, getStateForInput(SI->getFalseValue())); 787 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 788 for (Value *Val : PN->incoming_values()) 789 NewState = meetBDVState(NewState, getStateForInput(Val)); 790 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 791 // The 'meet' for an extractelement is slightly trivial, but it's still 792 // useful in that it drives us to conflict if our input is. 793 NewState = 794 meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); 795 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){ 796 // Given there's a inherent type mismatch between the operands, will 797 // *always* produce Conflict. 798 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); 799 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); 800 } else { 801 // The only instance this does not return a Conflict is when both the 802 // vector operands are the same vector. 803 auto *SV = cast<ShuffleVectorInst>(BDV); 804 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0))); 805 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1))); 806 } 807 808 BDVState OldState = States[BDV]; 809 if (OldState != NewState) { 810 Progress = true; 811 States[BDV] = NewState; 812 } 813 } 814 815 assert(OldSize == States.size() && 816 "fixed point shouldn't be adding any new nodes to state"); 817 } 818 819 #ifndef NDEBUG 820 DEBUG(dbgs() << "States after meet iteration:\n"); 821 for (auto Pair : States) { 822 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 823 } 824 #endif 825 826 // Insert Phis for all conflicts 827 // TODO: adjust naming patterns to avoid this order of iteration dependency 828 for (auto Pair : States) { 829 Instruction *I = cast<Instruction>(Pair.first); 830 BDVState State = Pair.second; 831 assert(!isKnownBaseResult(I) && "why did it get added?"); 832 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 833 834 // extractelement instructions are a bit special in that we may need to 835 // insert an extract even when we know an exact base for the instruction. 836 // The problem is that we need to convert from a vector base to a scalar 837 // base for the particular indice we're interested in. 838 if (State.isBase() && isa<ExtractElementInst>(I) && 839 isa<VectorType>(State.getBaseValue()->getType())) { 840 auto *EE = cast<ExtractElementInst>(I); 841 // TODO: In many cases, the new instruction is just EE itself. We should 842 // exploit this, but can't do it here since it would break the invariant 843 // about the BDV not being known to be a base. 844 auto *BaseInst = ExtractElementInst::Create( 845 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 846 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 847 States[I] = BDVState(BDVState::Base, BaseInst); 848 } 849 850 // Since we're joining a vector and scalar base, they can never be the 851 // same. As a result, we should always see insert element having reached 852 // the conflict state. 853 assert(!isa<InsertElementInst>(I) || State.isConflict()); 854 855 if (!State.isConflict()) 856 continue; 857 858 /// Create and insert a new instruction which will represent the base of 859 /// the given instruction 'I'. 860 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 861 if (isa<PHINode>(I)) { 862 BasicBlock *BB = I->getParent(); 863 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 864 assert(NumPreds > 0 && "how did we reach here"); 865 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 866 return PHINode::Create(I->getType(), NumPreds, Name, I); 867 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 868 // The undef will be replaced later 869 UndefValue *Undef = UndefValue::get(SI->getType()); 870 std::string Name = suffixed_name_or(I, ".base", "base_select"); 871 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); 872 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 873 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 874 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 875 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 876 EE); 877 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 878 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 879 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 880 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 881 return InsertElementInst::Create(VecUndef, ScalarUndef, 882 IE->getOperand(2), Name, IE); 883 } else { 884 auto *SV = cast<ShuffleVectorInst>(I); 885 UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType()); 886 std::string Name = suffixed_name_or(I, ".base", "base_sv"); 887 return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2), 888 Name, SV); 889 } 890 }; 891 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 892 // Add metadata marking this as a base value 893 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 894 States[I] = BDVState(BDVState::Conflict, BaseInst); 895 } 896 897 // Returns a instruction which produces the base pointer for a given 898 // instruction. The instruction is assumed to be an input to one of the BDVs 899 // seen in the inference algorithm above. As such, we must either already 900 // know it's base defining value is a base, or have inserted a new 901 // instruction to propagate the base of it's BDV and have entered that newly 902 // introduced instruction into the state table. In either case, we are 903 // assured to be able to determine an instruction which produces it's base 904 // pointer. 905 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 906 Value *BDV = findBaseOrBDV(Input, Cache); 907 Value *Base = nullptr; 908 if (isKnownBaseResult(BDV)) { 909 Base = BDV; 910 } else { 911 // Either conflict or base. 912 assert(States.count(BDV)); 913 Base = States[BDV].getBaseValue(); 914 } 915 assert(Base && "Can't be null"); 916 // The cast is needed since base traversal may strip away bitcasts 917 if (Base->getType() != Input->getType() && InsertPt) 918 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 919 return Base; 920 }; 921 922 // Fixup all the inputs of the new PHIs. Visit order needs to be 923 // deterministic and predictable because we're naming newly created 924 // instructions. 925 for (auto Pair : States) { 926 Instruction *BDV = cast<Instruction>(Pair.first); 927 BDVState State = Pair.second; 928 929 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 930 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 931 if (!State.isConflict()) 932 continue; 933 934 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 935 PHINode *PN = cast<PHINode>(BDV); 936 unsigned NumPHIValues = PN->getNumIncomingValues(); 937 for (unsigned i = 0; i < NumPHIValues; i++) { 938 Value *InVal = PN->getIncomingValue(i); 939 BasicBlock *InBB = PN->getIncomingBlock(i); 940 941 // If we've already seen InBB, add the same incoming value 942 // we added for it earlier. The IR verifier requires phi 943 // nodes with multiple entries from the same basic block 944 // to have the same incoming value for each of those 945 // entries. If we don't do this check here and basephi 946 // has a different type than base, we'll end up adding two 947 // bitcasts (and hence two distinct values) as incoming 948 // values for the same basic block. 949 950 int BlockIndex = BasePHI->getBasicBlockIndex(InBB); 951 if (BlockIndex != -1) { 952 Value *OldBase = BasePHI->getIncomingValue(BlockIndex); 953 BasePHI->addIncoming(OldBase, InBB); 954 955 #ifndef NDEBUG 956 Value *Base = getBaseForInput(InVal, nullptr); 957 // In essence this assert states: the only way two values 958 // incoming from the same basic block may be different is by 959 // being different bitcasts of the same value. A cleanup 960 // that remains TODO is changing findBaseOrBDV to return an 961 // llvm::Value of the correct type (and still remain pure). 962 // This will remove the need to add bitcasts. 963 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 964 "Sanity -- findBaseOrBDV should be pure!"); 965 #endif 966 continue; 967 } 968 969 // Find the instruction which produces the base for each input. We may 970 // need to insert a bitcast in the incoming block. 971 // TODO: Need to split critical edges if insertion is needed 972 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 973 BasePHI->addIncoming(Base, InBB); 974 } 975 assert(BasePHI->getNumIncomingValues() == NumPHIValues); 976 } else if (SelectInst *BaseSI = 977 dyn_cast<SelectInst>(State.getBaseValue())) { 978 SelectInst *SI = cast<SelectInst>(BDV); 979 980 // Find the instruction which produces the base for each input. 981 // We may need to insert a bitcast. 982 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 983 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 984 } else if (auto *BaseEE = 985 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 986 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 987 // Find the instruction which produces the base for each input. We may 988 // need to insert a bitcast. 989 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 990 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 991 auto *BdvIE = cast<InsertElementInst>(BDV); 992 auto UpdateOperand = [&](int OperandIdx) { 993 Value *InVal = BdvIE->getOperand(OperandIdx); 994 Value *Base = getBaseForInput(InVal, BaseIE); 995 BaseIE->setOperand(OperandIdx, Base); 996 }; 997 UpdateOperand(0); // vector operand 998 UpdateOperand(1); // scalar operand 999 } else { 1000 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1001 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1002 auto UpdateOperand = [&](int OperandIdx) { 1003 Value *InVal = BdvSV->getOperand(OperandIdx); 1004 Value *Base = getBaseForInput(InVal, BaseSV); 1005 BaseSV->setOperand(OperandIdx, Base); 1006 }; 1007 UpdateOperand(0); // vector operand 1008 UpdateOperand(1); // vector operand 1009 } 1010 } 1011 1012 // Cache all of our results so we can cheaply reuse them 1013 // NOTE: This is actually two caches: one of the base defining value 1014 // relation and one of the base pointer relation! FIXME 1015 for (auto Pair : States) { 1016 auto *BDV = Pair.first; 1017 Value *Base = Pair.second.getBaseValue(); 1018 assert(BDV && Base); 1019 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1020 1021 DEBUG(dbgs() << "Updating base value cache" 1022 << " for: " << BDV->getName() << " from: " 1023 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1024 << " to: " << Base->getName() << "\n"); 1025 1026 if (Cache.count(BDV)) { 1027 assert(isKnownBaseResult(Base) && 1028 "must be something we 'know' is a base pointer"); 1029 // Once we transition from the BDV relation being store in the Cache to 1030 // the base relation being stored, it must be stable 1031 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && 1032 "base relation should be stable"); 1033 } 1034 Cache[BDV] = Base; 1035 } 1036 assert(Cache.count(Def)); 1037 return Cache[Def]; 1038 } 1039 1040 // For a set of live pointers (base and/or derived), identify the base 1041 // pointer of the object which they are derived from. This routine will 1042 // mutate the IR graph as needed to make the 'base' pointer live at the 1043 // definition site of 'derived'. This ensures that any use of 'derived' can 1044 // also use 'base'. This may involve the insertion of a number of 1045 // additional PHI nodes. 1046 // 1047 // preconditions: live is a set of pointer type Values 1048 // 1049 // side effects: may insert PHI nodes into the existing CFG, will preserve 1050 // CFG, will not remove or mutate any existing nodes 1051 // 1052 // post condition: PointerToBase contains one (derived, base) pair for every 1053 // pointer in live. Note that derived can be equal to base if the original 1054 // pointer was a base pointer. 1055 static void 1056 findBasePointers(const StatepointLiveSetTy &live, 1057 MapVector<Value *, Value *> &PointerToBase, 1058 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1059 for (Value *ptr : live) { 1060 Value *base = findBasePointer(ptr, DVCache); 1061 assert(base && "failed to find base pointer"); 1062 PointerToBase[ptr] = base; 1063 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1064 DT->dominates(cast<Instruction>(base)->getParent(), 1065 cast<Instruction>(ptr)->getParent())) && 1066 "The base we found better dominate the derived pointer"); 1067 } 1068 } 1069 1070 /// Find the required based pointers (and adjust the live set) for the given 1071 /// parse point. 1072 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1073 CallSite CS, 1074 PartiallyConstructedSafepointRecord &result) { 1075 MapVector<Value *, Value *> PointerToBase; 1076 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1077 1078 if (PrintBasePointers) { 1079 errs() << "Base Pairs (w/o Relocation):\n"; 1080 for (auto &Pair : PointerToBase) { 1081 errs() << " derived "; 1082 Pair.first->printAsOperand(errs(), false); 1083 errs() << " base "; 1084 Pair.second->printAsOperand(errs(), false); 1085 errs() << "\n";; 1086 } 1087 } 1088 1089 result.PointerToBase = PointerToBase; 1090 } 1091 1092 /// Given an updated version of the dataflow liveness results, update the 1093 /// liveset and base pointer maps for the call site CS. 1094 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1095 CallSite CS, 1096 PartiallyConstructedSafepointRecord &result); 1097 1098 static void recomputeLiveInValues( 1099 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1100 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1101 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1102 // again. The old values are still live and will help it stabilize quickly. 1103 GCPtrLivenessData RevisedLivenessData; 1104 computeLiveInValues(DT, F, RevisedLivenessData); 1105 for (size_t i = 0; i < records.size(); i++) { 1106 struct PartiallyConstructedSafepointRecord &info = records[i]; 1107 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1108 } 1109 } 1110 1111 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1112 // no uses of the original value / return value between the gc.statepoint and 1113 // the gc.relocate / gc.result call. One case which can arise is a phi node 1114 // starting one of the successor blocks. We also need to be able to insert the 1115 // gc.relocates only on the path which goes through the statepoint. We might 1116 // need to split an edge to make this possible. 1117 static BasicBlock * 1118 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1119 DominatorTree &DT) { 1120 BasicBlock *Ret = BB; 1121 if (!BB->getUniquePredecessor()) 1122 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1123 1124 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1125 // from it 1126 FoldSingleEntryPHINodes(Ret); 1127 assert(!isa<PHINode>(Ret->begin()) && 1128 "All PHI nodes should have been removed!"); 1129 1130 // At this point, we can safely insert a gc.relocate or gc.result as the first 1131 // instruction in Ret if needed. 1132 return Ret; 1133 } 1134 1135 // Create new attribute set containing only attributes which can be transferred 1136 // from original call to the safepoint. 1137 static AttributeList legalizeCallAttributes(AttributeList AL) { 1138 if (AL.isEmpty()) 1139 return AL; 1140 1141 // Remove the readonly, readnone, and statepoint function attributes. 1142 AttrBuilder FnAttrs = AL.getFnAttributes(); 1143 FnAttrs.removeAttribute(Attribute::ReadNone); 1144 FnAttrs.removeAttribute(Attribute::ReadOnly); 1145 for (Attribute A : AL.getFnAttributes()) { 1146 if (isStatepointDirectiveAttr(A)) 1147 FnAttrs.remove(A); 1148 } 1149 1150 // Just skip parameter and return attributes for now 1151 LLVMContext &Ctx = AL.getContext(); 1152 return AttributeList::get(Ctx, AttributeList::FunctionIndex, 1153 AttributeSet::get(Ctx, FnAttrs)); 1154 } 1155 1156 /// Helper function to place all gc relocates necessary for the given 1157 /// statepoint. 1158 /// Inputs: 1159 /// liveVariables - list of variables to be relocated. 1160 /// liveStart - index of the first live variable. 1161 /// basePtrs - base pointers. 1162 /// statepointToken - statepoint instruction to which relocates should be 1163 /// bound. 1164 /// Builder - Llvm IR builder to be used to construct new calls. 1165 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1166 const int LiveStart, 1167 ArrayRef<Value *> BasePtrs, 1168 Instruction *StatepointToken, 1169 IRBuilder<> Builder) { 1170 if (LiveVariables.empty()) 1171 return; 1172 1173 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1174 auto ValIt = find(LiveVec, Val); 1175 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1176 size_t Index = std::distance(LiveVec.begin(), ValIt); 1177 assert(Index < LiveVec.size() && "Bug in std::find?"); 1178 return Index; 1179 }; 1180 Module *M = StatepointToken->getModule(); 1181 1182 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1183 // element type is i8 addrspace(1)*). We originally generated unique 1184 // declarations for each pointer type, but this proved problematic because 1185 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1186 // towards a single unified pointer type anyways, we can just cast everything 1187 // to an i8* of the right address space. A bitcast is added later to convert 1188 // gc_relocate to the actual value's type. 1189 auto getGCRelocateDecl = [&] (Type *Ty) { 1190 assert(isHandledGCPointerType(Ty)); 1191 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1192 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1193 if (auto *VT = dyn_cast<VectorType>(Ty)) 1194 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1195 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1196 {NewTy}); 1197 }; 1198 1199 // Lazily populated map from input types to the canonicalized form mentioned 1200 // in the comment above. This should probably be cached somewhere more 1201 // broadly. 1202 DenseMap<Type*, Value*> TypeToDeclMap; 1203 1204 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1205 // Generate the gc.relocate call and save the result 1206 Value *BaseIdx = 1207 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1208 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1209 1210 Type *Ty = LiveVariables[i]->getType(); 1211 if (!TypeToDeclMap.count(Ty)) 1212 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1213 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1214 1215 // only specify a debug name if we can give a useful one 1216 CallInst *Reloc = Builder.CreateCall( 1217 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1218 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1219 // Trick CodeGen into thinking there are lots of free registers at this 1220 // fake call. 1221 Reloc->setCallingConv(CallingConv::Cold); 1222 } 1223 } 1224 1225 namespace { 1226 1227 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1228 /// avoids having to worry about keeping around dangling pointers to Values. 1229 class DeferredReplacement { 1230 AssertingVH<Instruction> Old; 1231 AssertingVH<Instruction> New; 1232 bool IsDeoptimize = false; 1233 1234 DeferredReplacement() {} 1235 1236 public: 1237 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1238 assert(Old != New && Old && New && 1239 "Cannot RAUW equal values or to / from null!"); 1240 1241 DeferredReplacement D; 1242 D.Old = Old; 1243 D.New = New; 1244 return D; 1245 } 1246 1247 static DeferredReplacement createDelete(Instruction *ToErase) { 1248 DeferredReplacement D; 1249 D.Old = ToErase; 1250 return D; 1251 } 1252 1253 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1254 #ifndef NDEBUG 1255 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1256 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1257 "Only way to construct a deoptimize deferred replacement"); 1258 #endif 1259 DeferredReplacement D; 1260 D.Old = Old; 1261 D.IsDeoptimize = true; 1262 return D; 1263 } 1264 1265 /// Does the task represented by this instance. 1266 void doReplacement() { 1267 Instruction *OldI = Old; 1268 Instruction *NewI = New; 1269 1270 assert(OldI != NewI && "Disallowed at construction?!"); 1271 assert((!IsDeoptimize || !New) && 1272 "Deoptimize instrinsics are not replaced!"); 1273 1274 Old = nullptr; 1275 New = nullptr; 1276 1277 if (NewI) 1278 OldI->replaceAllUsesWith(NewI); 1279 1280 if (IsDeoptimize) { 1281 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1282 // not necessarilly be followed by the matching return. 1283 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1284 new UnreachableInst(RI->getContext(), RI); 1285 RI->eraseFromParent(); 1286 } 1287 1288 OldI->eraseFromParent(); 1289 } 1290 }; 1291 } 1292 1293 static StringRef getDeoptLowering(CallSite CS) { 1294 const char *DeoptLowering = "deopt-lowering"; 1295 if (CS.hasFnAttr(DeoptLowering)) { 1296 // FIXME: CallSite has a *really* confusing interface around attributes 1297 // with values. 1298 const AttributeList &CSAS = CS.getAttributes(); 1299 if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering)) 1300 return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering) 1301 .getValueAsString(); 1302 Function *F = CS.getCalledFunction(); 1303 assert(F && F->hasFnAttribute(DeoptLowering)); 1304 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1305 } 1306 return "live-through"; 1307 } 1308 1309 1310 static void 1311 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1312 const SmallVectorImpl<Value *> &BasePtrs, 1313 const SmallVectorImpl<Value *> &LiveVariables, 1314 PartiallyConstructedSafepointRecord &Result, 1315 std::vector<DeferredReplacement> &Replacements) { 1316 assert(BasePtrs.size() == LiveVariables.size()); 1317 1318 // Then go ahead and use the builder do actually do the inserts. We insert 1319 // immediately before the previous instruction under the assumption that all 1320 // arguments will be available here. We can't insert afterwards since we may 1321 // be replacing a terminator. 1322 Instruction *InsertBefore = CS.getInstruction(); 1323 IRBuilder<> Builder(InsertBefore); 1324 1325 ArrayRef<Value *> GCArgs(LiveVariables); 1326 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1327 uint32_t NumPatchBytes = 0; 1328 uint32_t Flags = uint32_t(StatepointFlags::None); 1329 1330 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1331 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1332 ArrayRef<Use> TransitionArgs; 1333 if (auto TransitionBundle = 1334 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1335 Flags |= uint32_t(StatepointFlags::GCTransition); 1336 TransitionArgs = TransitionBundle->Inputs; 1337 } 1338 1339 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1340 // with a return value, we lower then as never returning calls to 1341 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1342 bool IsDeoptimize = false; 1343 1344 StatepointDirectives SD = 1345 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1346 if (SD.NumPatchBytes) 1347 NumPatchBytes = *SD.NumPatchBytes; 1348 if (SD.StatepointID) 1349 StatepointID = *SD.StatepointID; 1350 1351 // Pass through the requested lowering if any. The default is live-through. 1352 StringRef DeoptLowering = getDeoptLowering(CS); 1353 if (DeoptLowering.equals("live-in")) 1354 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1355 else { 1356 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1357 } 1358 1359 Value *CallTarget = CS.getCalledValue(); 1360 if (Function *F = dyn_cast<Function>(CallTarget)) { 1361 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1362 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1363 // __llvm_deoptimize symbol. We want to resolve this now, since the 1364 // verifier does not allow taking the address of an intrinsic function. 1365 1366 SmallVector<Type *, 8> DomainTy; 1367 for (Value *Arg : CallArgs) 1368 DomainTy.push_back(Arg->getType()); 1369 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1370 /* isVarArg = */ false); 1371 1372 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1373 // calls to @llvm.experimental.deoptimize with different argument types in 1374 // the same module. This is fine -- we assume the frontend knew what it 1375 // was doing when generating this kind of IR. 1376 CallTarget = 1377 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1378 1379 IsDeoptimize = true; 1380 } 1381 } 1382 1383 // Create the statepoint given all the arguments 1384 Instruction *Token = nullptr; 1385 if (CS.isCall()) { 1386 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1387 CallInst *Call = Builder.CreateGCStatepointCall( 1388 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1389 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1390 1391 Call->setTailCallKind(ToReplace->getTailCallKind()); 1392 Call->setCallingConv(ToReplace->getCallingConv()); 1393 1394 // Currently we will fail on parameter attributes and on certain 1395 // function attributes. In case if we can handle this set of attributes - 1396 // set up function attrs directly on statepoint and return attrs later for 1397 // gc_result intrinsic. 1398 Call->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1399 1400 Token = Call; 1401 1402 // Put the following gc_result and gc_relocate calls immediately after the 1403 // the old call (which we're about to delete) 1404 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1405 Builder.SetInsertPoint(ToReplace->getNextNode()); 1406 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1407 } else { 1408 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1409 1410 // Insert the new invoke into the old block. We'll remove the old one in a 1411 // moment at which point this will become the new terminator for the 1412 // original block. 1413 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1414 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1415 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1416 GCArgs, "statepoint_token"); 1417 1418 Invoke->setCallingConv(ToReplace->getCallingConv()); 1419 1420 // Currently we will fail on parameter attributes and on certain 1421 // function attributes. In case if we can handle this set of attributes - 1422 // set up function attrs directly on statepoint and return attrs later for 1423 // gc_result intrinsic. 1424 Invoke->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1425 1426 Token = Invoke; 1427 1428 // Generate gc relocates in exceptional path 1429 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1430 assert(!isa<PHINode>(UnwindBlock->begin()) && 1431 UnwindBlock->getUniquePredecessor() && 1432 "can't safely insert in this block!"); 1433 1434 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1435 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1436 1437 // Attach exceptional gc relocates to the landingpad. 1438 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1439 Result.UnwindToken = ExceptionalToken; 1440 1441 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1442 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1443 Builder); 1444 1445 // Generate gc relocates and returns for normal block 1446 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1447 assert(!isa<PHINode>(NormalDest->begin()) && 1448 NormalDest->getUniquePredecessor() && 1449 "can't safely insert in this block!"); 1450 1451 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1452 1453 // gc relocates will be generated later as if it were regular call 1454 // statepoint 1455 } 1456 assert(Token && "Should be set in one of the above branches!"); 1457 1458 if (IsDeoptimize) { 1459 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1460 // transform the tail-call like structure to a call to a void function 1461 // followed by unreachable to get better codegen. 1462 Replacements.push_back( 1463 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1464 } else { 1465 Token->setName("statepoint_token"); 1466 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1467 StringRef Name = 1468 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1469 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1470 GCResult->setAttributes( 1471 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1472 CS.getAttributes().getRetAttributes())); 1473 1474 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1475 // live set of some other safepoint, in which case that safepoint's 1476 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1477 // llvm::Instruction. Instead, we defer the replacement and deletion to 1478 // after the live sets have been made explicit in the IR, and we no longer 1479 // have raw pointers to worry about. 1480 Replacements.emplace_back( 1481 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1482 } else { 1483 Replacements.emplace_back( 1484 DeferredReplacement::createDelete(CS.getInstruction())); 1485 } 1486 } 1487 1488 Result.StatepointToken = Token; 1489 1490 // Second, create a gc.relocate for every live variable 1491 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1492 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1493 } 1494 1495 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1496 // which make the relocations happening at this safepoint explicit. 1497 // 1498 // WARNING: Does not do any fixup to adjust users of the original live 1499 // values. That's the callers responsibility. 1500 static void 1501 makeStatepointExplicit(DominatorTree &DT, CallSite CS, 1502 PartiallyConstructedSafepointRecord &Result, 1503 std::vector<DeferredReplacement> &Replacements) { 1504 const auto &LiveSet = Result.LiveSet; 1505 const auto &PointerToBase = Result.PointerToBase; 1506 1507 // Convert to vector for efficient cross referencing. 1508 SmallVector<Value *, 64> BaseVec, LiveVec; 1509 LiveVec.reserve(LiveSet.size()); 1510 BaseVec.reserve(LiveSet.size()); 1511 for (Value *L : LiveSet) { 1512 LiveVec.push_back(L); 1513 assert(PointerToBase.count(L)); 1514 Value *Base = PointerToBase.find(L)->second; 1515 BaseVec.push_back(Base); 1516 } 1517 assert(LiveVec.size() == BaseVec.size()); 1518 1519 // Do the actual rewriting and delete the old statepoint 1520 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1521 } 1522 1523 // Helper function for the relocationViaAlloca. 1524 // 1525 // It receives iterator to the statepoint gc relocates and emits a store to the 1526 // assigned location (via allocaMap) for the each one of them. It adds the 1527 // visited values into the visitedLiveValues set, which we will later use them 1528 // for sanity checking. 1529 static void 1530 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1531 DenseMap<Value *, Value *> &AllocaMap, 1532 DenseSet<Value *> &VisitedLiveValues) { 1533 1534 for (User *U : GCRelocs) { 1535 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1536 if (!Relocate) 1537 continue; 1538 1539 Value *OriginalValue = Relocate->getDerivedPtr(); 1540 assert(AllocaMap.count(OriginalValue)); 1541 Value *Alloca = AllocaMap[OriginalValue]; 1542 1543 // Emit store into the related alloca 1544 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1545 // the correct type according to alloca. 1546 assert(Relocate->getNextNode() && 1547 "Should always have one since it's not a terminator"); 1548 IRBuilder<> Builder(Relocate->getNextNode()); 1549 Value *CastedRelocatedValue = 1550 Builder.CreateBitCast(Relocate, 1551 cast<AllocaInst>(Alloca)->getAllocatedType(), 1552 suffixed_name_or(Relocate, ".casted", "")); 1553 1554 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1555 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1556 1557 #ifndef NDEBUG 1558 VisitedLiveValues.insert(OriginalValue); 1559 #endif 1560 } 1561 } 1562 1563 // Helper function for the "relocationViaAlloca". Similar to the 1564 // "insertRelocationStores" but works for rematerialized values. 1565 static void insertRematerializationStores( 1566 const RematerializedValueMapTy &RematerializedValues, 1567 DenseMap<Value *, Value *> &AllocaMap, 1568 DenseSet<Value *> &VisitedLiveValues) { 1569 1570 for (auto RematerializedValuePair: RematerializedValues) { 1571 Instruction *RematerializedValue = RematerializedValuePair.first; 1572 Value *OriginalValue = RematerializedValuePair.second; 1573 1574 assert(AllocaMap.count(OriginalValue) && 1575 "Can not find alloca for rematerialized value"); 1576 Value *Alloca = AllocaMap[OriginalValue]; 1577 1578 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1579 Store->insertAfter(RematerializedValue); 1580 1581 #ifndef NDEBUG 1582 VisitedLiveValues.insert(OriginalValue); 1583 #endif 1584 } 1585 } 1586 1587 /// Do all the relocation update via allocas and mem2reg 1588 static void relocationViaAlloca( 1589 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1590 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1591 #ifndef NDEBUG 1592 // record initial number of (static) allocas; we'll check we have the same 1593 // number when we get done. 1594 int InitialAllocaNum = 0; 1595 for (Instruction &I : F.getEntryBlock()) 1596 if (isa<AllocaInst>(I)) 1597 InitialAllocaNum++; 1598 #endif 1599 1600 // TODO-PERF: change data structures, reserve 1601 DenseMap<Value *, Value *> AllocaMap; 1602 SmallVector<AllocaInst *, 200> PromotableAllocas; 1603 // Used later to chack that we have enough allocas to store all values 1604 std::size_t NumRematerializedValues = 0; 1605 PromotableAllocas.reserve(Live.size()); 1606 1607 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1608 // "PromotableAllocas" 1609 const DataLayout &DL = F.getParent()->getDataLayout(); 1610 auto emitAllocaFor = [&](Value *LiveValue) { 1611 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 1612 DL.getAllocaAddrSpace(), "", 1613 F.getEntryBlock().getFirstNonPHI()); 1614 AllocaMap[LiveValue] = Alloca; 1615 PromotableAllocas.push_back(Alloca); 1616 }; 1617 1618 // Emit alloca for each live gc pointer 1619 for (Value *V : Live) 1620 emitAllocaFor(V); 1621 1622 // Emit allocas for rematerialized values 1623 for (const auto &Info : Records) 1624 for (auto RematerializedValuePair : Info.RematerializedValues) { 1625 Value *OriginalValue = RematerializedValuePair.second; 1626 if (AllocaMap.count(OriginalValue) != 0) 1627 continue; 1628 1629 emitAllocaFor(OriginalValue); 1630 ++NumRematerializedValues; 1631 } 1632 1633 // The next two loops are part of the same conceptual operation. We need to 1634 // insert a store to the alloca after the original def and at each 1635 // redefinition. We need to insert a load before each use. These are split 1636 // into distinct loops for performance reasons. 1637 1638 // Update gc pointer after each statepoint: either store a relocated value or 1639 // null (if no relocated value was found for this gc pointer and it is not a 1640 // gc_result). This must happen before we update the statepoint with load of 1641 // alloca otherwise we lose the link between statepoint and old def. 1642 for (const auto &Info : Records) { 1643 Value *Statepoint = Info.StatepointToken; 1644 1645 // This will be used for consistency check 1646 DenseSet<Value *> VisitedLiveValues; 1647 1648 // Insert stores for normal statepoint gc relocates 1649 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1650 1651 // In case if it was invoke statepoint 1652 // we will insert stores for exceptional path gc relocates. 1653 if (isa<InvokeInst>(Statepoint)) { 1654 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1655 VisitedLiveValues); 1656 } 1657 1658 // Do similar thing with rematerialized values 1659 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1660 VisitedLiveValues); 1661 1662 if (ClobberNonLive) { 1663 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1664 // the gc.statepoint. This will turn some subtle GC problems into 1665 // slightly easier to debug SEGVs. Note that on large IR files with 1666 // lots of gc.statepoints this is extremely costly both memory and time 1667 // wise. 1668 SmallVector<AllocaInst *, 64> ToClobber; 1669 for (auto Pair : AllocaMap) { 1670 Value *Def = Pair.first; 1671 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1672 1673 // This value was relocated 1674 if (VisitedLiveValues.count(Def)) { 1675 continue; 1676 } 1677 ToClobber.push_back(Alloca); 1678 } 1679 1680 auto InsertClobbersAt = [&](Instruction *IP) { 1681 for (auto *AI : ToClobber) { 1682 auto PT = cast<PointerType>(AI->getAllocatedType()); 1683 Constant *CPN = ConstantPointerNull::get(PT); 1684 StoreInst *Store = new StoreInst(CPN, AI); 1685 Store->insertBefore(IP); 1686 } 1687 }; 1688 1689 // Insert the clobbering stores. These may get intermixed with the 1690 // gc.results and gc.relocates, but that's fine. 1691 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1692 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1693 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1694 } else { 1695 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1696 } 1697 } 1698 } 1699 1700 // Update use with load allocas and add store for gc_relocated. 1701 for (auto Pair : AllocaMap) { 1702 Value *Def = Pair.first; 1703 Value *Alloca = Pair.second; 1704 1705 // We pre-record the uses of allocas so that we dont have to worry about 1706 // later update that changes the user information.. 1707 1708 SmallVector<Instruction *, 20> Uses; 1709 // PERF: trade a linear scan for repeated reallocation 1710 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1711 for (User *U : Def->users()) { 1712 if (!isa<ConstantExpr>(U)) { 1713 // If the def has a ConstantExpr use, then the def is either a 1714 // ConstantExpr use itself or null. In either case 1715 // (recursively in the first, directly in the second), the oop 1716 // it is ultimately dependent on is null and this particular 1717 // use does not need to be fixed up. 1718 Uses.push_back(cast<Instruction>(U)); 1719 } 1720 } 1721 1722 std::sort(Uses.begin(), Uses.end()); 1723 auto Last = std::unique(Uses.begin(), Uses.end()); 1724 Uses.erase(Last, Uses.end()); 1725 1726 for (Instruction *Use : Uses) { 1727 if (isa<PHINode>(Use)) { 1728 PHINode *Phi = cast<PHINode>(Use); 1729 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1730 if (Def == Phi->getIncomingValue(i)) { 1731 LoadInst *Load = new LoadInst( 1732 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1733 Phi->setIncomingValue(i, Load); 1734 } 1735 } 1736 } else { 1737 LoadInst *Load = new LoadInst(Alloca, "", Use); 1738 Use->replaceUsesOfWith(Def, Load); 1739 } 1740 } 1741 1742 // Emit store for the initial gc value. Store must be inserted after load, 1743 // otherwise store will be in alloca's use list and an extra load will be 1744 // inserted before it. 1745 StoreInst *Store = new StoreInst(Def, Alloca); 1746 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1747 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1748 // InvokeInst is a TerminatorInst so the store need to be inserted 1749 // into its normal destination block. 1750 BasicBlock *NormalDest = Invoke->getNormalDest(); 1751 Store->insertBefore(NormalDest->getFirstNonPHI()); 1752 } else { 1753 assert(!Inst->isTerminator() && 1754 "The only TerminatorInst that can produce a value is " 1755 "InvokeInst which is handled above."); 1756 Store->insertAfter(Inst); 1757 } 1758 } else { 1759 assert(isa<Argument>(Def)); 1760 Store->insertAfter(cast<Instruction>(Alloca)); 1761 } 1762 } 1763 1764 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1765 "we must have the same allocas with lives"); 1766 if (!PromotableAllocas.empty()) { 1767 // Apply mem2reg to promote alloca to SSA 1768 PromoteMemToReg(PromotableAllocas, DT); 1769 } 1770 1771 #ifndef NDEBUG 1772 for (auto &I : F.getEntryBlock()) 1773 if (isa<AllocaInst>(I)) 1774 InitialAllocaNum--; 1775 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1776 #endif 1777 } 1778 1779 /// Implement a unique function which doesn't require we sort the input 1780 /// vector. Doing so has the effect of changing the output of a couple of 1781 /// tests in ways which make them less useful in testing fused safepoints. 1782 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1783 SmallSet<T, 8> Seen; 1784 Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }), 1785 Vec.end()); 1786 } 1787 1788 /// Insert holders so that each Value is obviously live through the entire 1789 /// lifetime of the call. 1790 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1791 SmallVectorImpl<CallInst *> &Holders) { 1792 if (Values.empty()) 1793 // No values to hold live, might as well not insert the empty holder 1794 return; 1795 1796 Module *M = CS.getInstruction()->getModule(); 1797 // Use a dummy vararg function to actually hold the values live 1798 Function *Func = cast<Function>(M->getOrInsertFunction( 1799 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1800 if (CS.isCall()) { 1801 // For call safepoints insert dummy calls right after safepoint 1802 Holders.push_back(CallInst::Create(Func, Values, "", 1803 &*++CS.getInstruction()->getIterator())); 1804 return; 1805 } 1806 // For invoke safepooints insert dummy calls both in normal and 1807 // exceptional destination blocks 1808 auto *II = cast<InvokeInst>(CS.getInstruction()); 1809 Holders.push_back(CallInst::Create( 1810 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1811 Holders.push_back(CallInst::Create( 1812 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1813 } 1814 1815 static void findLiveReferences( 1816 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1817 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1818 GCPtrLivenessData OriginalLivenessData; 1819 computeLiveInValues(DT, F, OriginalLivenessData); 1820 for (size_t i = 0; i < records.size(); i++) { 1821 struct PartiallyConstructedSafepointRecord &info = records[i]; 1822 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1823 } 1824 } 1825 1826 // Helper function for the "rematerializeLiveValues". It walks use chain 1827 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 1828 // the base or a value it cannot process. Only "simple" values are processed 1829 // (currently it is GEP's and casts). The returned root is examined by the 1830 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 1831 // with all visited values. 1832 static Value* findRematerializableChainToBasePointer( 1833 SmallVectorImpl<Instruction*> &ChainToBase, 1834 Value *CurrentValue) { 1835 1836 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1837 ChainToBase.push_back(GEP); 1838 return findRematerializableChainToBasePointer(ChainToBase, 1839 GEP->getPointerOperand()); 1840 } 1841 1842 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1843 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1844 return CI; 1845 1846 ChainToBase.push_back(CI); 1847 return findRematerializableChainToBasePointer(ChainToBase, 1848 CI->getOperand(0)); 1849 } 1850 1851 // We have reached the root of the chain, which is either equal to the base or 1852 // is the first unsupported value along the use chain. 1853 return CurrentValue; 1854 } 1855 1856 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1857 // chain we are going to rematerialize. 1858 static unsigned 1859 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1860 TargetTransformInfo &TTI) { 1861 unsigned Cost = 0; 1862 1863 for (Instruction *Instr : Chain) { 1864 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1865 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1866 "non noop cast is found during rematerialization"); 1867 1868 Type *SrcTy = CI->getOperand(0)->getType(); 1869 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI); 1870 1871 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1872 // Cost of the address calculation 1873 Type *ValTy = GEP->getSourceElementType(); 1874 Cost += TTI.getAddressComputationCost(ValTy); 1875 1876 // And cost of the GEP itself 1877 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1878 // allowed for the external usage) 1879 if (!GEP->hasAllConstantIndices()) 1880 Cost += 2; 1881 1882 } else { 1883 llvm_unreachable("unsupported instruciton type during rematerialization"); 1884 } 1885 } 1886 1887 return Cost; 1888 } 1889 1890 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 1891 1892 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 1893 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 1894 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 1895 return false; 1896 // Map of incoming values and their corresponding basic blocks of 1897 // OrigRootPhi. 1898 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 1899 for (unsigned i = 0; i < PhiNum; i++) 1900 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 1901 OrigRootPhi.getIncomingBlock(i); 1902 1903 // Both current and base PHIs should have same incoming values and 1904 // the same basic blocks corresponding to the incoming values. 1905 for (unsigned i = 0; i < PhiNum; i++) { 1906 auto CIVI = 1907 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 1908 if (CIVI == CurrentIncomingValues.end()) 1909 return false; 1910 BasicBlock *CurrentIncomingBB = CIVI->second; 1911 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 1912 return false; 1913 } 1914 return true; 1915 1916 } 1917 1918 // From the statepoint live set pick values that are cheaper to recompute then 1919 // to relocate. Remove this values from the live set, rematerialize them after 1920 // statepoint and record them in "Info" structure. Note that similar to 1921 // relocated values we don't do any user adjustments here. 1922 static void rematerializeLiveValues(CallSite CS, 1923 PartiallyConstructedSafepointRecord &Info, 1924 TargetTransformInfo &TTI) { 1925 const unsigned int ChainLengthThreshold = 10; 1926 1927 // Record values we are going to delete from this statepoint live set. 1928 // We can not di this in following loop due to iterator invalidation. 1929 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1930 1931 for (Value *LiveValue: Info.LiveSet) { 1932 // For each live pointer find it's defining chain 1933 SmallVector<Instruction *, 3> ChainToBase; 1934 assert(Info.PointerToBase.count(LiveValue)); 1935 Value *RootOfChain = 1936 findRematerializableChainToBasePointer(ChainToBase, 1937 LiveValue); 1938 1939 // Nothing to do, or chain is too long 1940 if ( ChainToBase.size() == 0 || 1941 ChainToBase.size() > ChainLengthThreshold) 1942 continue; 1943 1944 // Handle the scenario where the RootOfChain is not equal to the 1945 // Base Value, but they are essentially the same phi values. 1946 if (RootOfChain != Info.PointerToBase[LiveValue]) { 1947 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 1948 PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]); 1949 if (!OrigRootPhi || !AlternateRootPhi) 1950 continue; 1951 // PHI nodes that have the same incoming values, and belonging to the same 1952 // basic blocks are essentially the same SSA value. When the original phi 1953 // has incoming values with different base pointers, the original phi is 1954 // marked as conflict, and an additional `AlternateRootPhi` with the same 1955 // incoming values get generated by the findBasePointer function. We need 1956 // to identify the newly generated AlternateRootPhi (.base version of phi) 1957 // and RootOfChain (the original phi node itself) are the same, so that we 1958 // can rematerialize the gep and casts. This is a workaround for the 1959 // deficiency in the findBasePointer algorithm. 1960 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 1961 continue; 1962 // Now that the phi nodes are proved to be the same, assert that 1963 // findBasePointer's newly generated AlternateRootPhi is present in the 1964 // liveset of the call. 1965 assert(Info.LiveSet.count(AlternateRootPhi)); 1966 } 1967 // Compute cost of this chain 1968 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1969 // TODO: We can also account for cases when we will be able to remove some 1970 // of the rematerialized values by later optimization passes. I.e if 1971 // we rematerialized several intersecting chains. Or if original values 1972 // don't have any uses besides this statepoint. 1973 1974 // For invokes we need to rematerialize each chain twice - for normal and 1975 // for unwind basic blocks. Model this by multiplying cost by two. 1976 if (CS.isInvoke()) { 1977 Cost *= 2; 1978 } 1979 // If it's too expensive - skip it 1980 if (Cost >= RematerializationThreshold) 1981 continue; 1982 1983 // Remove value from the live set 1984 LiveValuesToBeDeleted.push_back(LiveValue); 1985 1986 // Clone instructions and record them inside "Info" structure 1987 1988 // Walk backwards to visit top-most instructions first 1989 std::reverse(ChainToBase.begin(), ChainToBase.end()); 1990 1991 // Utility function which clones all instructions from "ChainToBase" 1992 // and inserts them before "InsertBefore". Returns rematerialized value 1993 // which should be used after statepoint. 1994 auto rematerializeChain = [&ChainToBase]( 1995 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 1996 Instruction *LastClonedValue = nullptr; 1997 Instruction *LastValue = nullptr; 1998 for (Instruction *Instr: ChainToBase) { 1999 // Only GEP's and casts are supported as we need to be careful to not 2000 // introduce any new uses of pointers not in the liveset. 2001 // Note that it's fine to introduce new uses of pointers which were 2002 // otherwise not used after this statepoint. 2003 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2004 2005 Instruction *ClonedValue = Instr->clone(); 2006 ClonedValue->insertBefore(InsertBefore); 2007 ClonedValue->setName(Instr->getName() + ".remat"); 2008 2009 // If it is not first instruction in the chain then it uses previously 2010 // cloned value. We should update it to use cloned value. 2011 if (LastClonedValue) { 2012 assert(LastValue); 2013 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2014 #ifndef NDEBUG 2015 for (auto OpValue : ClonedValue->operand_values()) { 2016 // Assert that cloned instruction does not use any instructions from 2017 // this chain other than LastClonedValue 2018 assert(!is_contained(ChainToBase, OpValue) && 2019 "incorrect use in rematerialization chain"); 2020 // Assert that the cloned instruction does not use the RootOfChain 2021 // or the AlternateLiveBase. 2022 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2023 } 2024 #endif 2025 } else { 2026 // For the first instruction, replace the use of unrelocated base i.e. 2027 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2028 // live set. They have been proved to be the same PHI nodes. Note 2029 // that the *only* use of the RootOfChain in the ChainToBase list is 2030 // the first Value in the list. 2031 if (RootOfChain != AlternateLiveBase) 2032 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2033 } 2034 2035 LastClonedValue = ClonedValue; 2036 LastValue = Instr; 2037 } 2038 assert(LastClonedValue); 2039 return LastClonedValue; 2040 }; 2041 2042 // Different cases for calls and invokes. For invokes we need to clone 2043 // instructions both on normal and unwind path. 2044 if (CS.isCall()) { 2045 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2046 assert(InsertBefore); 2047 Instruction *RematerializedValue = rematerializeChain( 2048 InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2049 Info.RematerializedValues[RematerializedValue] = LiveValue; 2050 } else { 2051 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2052 2053 Instruction *NormalInsertBefore = 2054 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2055 Instruction *UnwindInsertBefore = 2056 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2057 2058 Instruction *NormalRematerializedValue = rematerializeChain( 2059 NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2060 Instruction *UnwindRematerializedValue = rematerializeChain( 2061 UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2062 2063 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2064 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2065 } 2066 } 2067 2068 // Remove rematerializaed values from the live set 2069 for (auto LiveValue: LiveValuesToBeDeleted) { 2070 Info.LiveSet.remove(LiveValue); 2071 } 2072 } 2073 2074 static bool insertParsePoints(Function &F, DominatorTree &DT, 2075 TargetTransformInfo &TTI, 2076 SmallVectorImpl<CallSite> &ToUpdate) { 2077 #ifndef NDEBUG 2078 // sanity check the input 2079 std::set<CallSite> Uniqued; 2080 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2081 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2082 2083 for (CallSite CS : ToUpdate) 2084 assert(CS.getInstruction()->getFunction() == &F); 2085 #endif 2086 2087 // When inserting gc.relocates for invokes, we need to be able to insert at 2088 // the top of the successor blocks. See the comment on 2089 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2090 // may restructure the CFG. 2091 for (CallSite CS : ToUpdate) { 2092 if (!CS.isInvoke()) 2093 continue; 2094 auto *II = cast<InvokeInst>(CS.getInstruction()); 2095 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2096 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2097 } 2098 2099 // A list of dummy calls added to the IR to keep various values obviously 2100 // live in the IR. We'll remove all of these when done. 2101 SmallVector<CallInst *, 64> Holders; 2102 2103 // Insert a dummy call with all of the deopt operands we'll need for the 2104 // actual safepoint insertion as arguments. This ensures reference operands 2105 // in the deopt argument list are considered live through the safepoint (and 2106 // thus makes sure they get relocated.) 2107 for (CallSite CS : ToUpdate) { 2108 SmallVector<Value *, 64> DeoptValues; 2109 2110 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2111 assert(!isUnhandledGCPointerType(Arg->getType()) && 2112 "support for FCA unimplemented"); 2113 if (isHandledGCPointerType(Arg->getType())) 2114 DeoptValues.push_back(Arg); 2115 } 2116 2117 insertUseHolderAfter(CS, DeoptValues, Holders); 2118 } 2119 2120 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2121 2122 // A) Identify all gc pointers which are statically live at the given call 2123 // site. 2124 findLiveReferences(F, DT, ToUpdate, Records); 2125 2126 // B) Find the base pointers for each live pointer 2127 /* scope for caching */ { 2128 // Cache the 'defining value' relation used in the computation and 2129 // insertion of base phis and selects. This ensures that we don't insert 2130 // large numbers of duplicate base_phis. 2131 DefiningValueMapTy DVCache; 2132 2133 for (size_t i = 0; i < Records.size(); i++) { 2134 PartiallyConstructedSafepointRecord &info = Records[i]; 2135 findBasePointers(DT, DVCache, ToUpdate[i], info); 2136 } 2137 } // end of cache scope 2138 2139 // The base phi insertion logic (for any safepoint) may have inserted new 2140 // instructions which are now live at some safepoint. The simplest such 2141 // example is: 2142 // loop: 2143 // phi a <-- will be a new base_phi here 2144 // safepoint 1 <-- that needs to be live here 2145 // gep a + 1 2146 // safepoint 2 2147 // br loop 2148 // We insert some dummy calls after each safepoint to definitely hold live 2149 // the base pointers which were identified for that safepoint. We'll then 2150 // ask liveness for _every_ base inserted to see what is now live. Then we 2151 // remove the dummy calls. 2152 Holders.reserve(Holders.size() + Records.size()); 2153 for (size_t i = 0; i < Records.size(); i++) { 2154 PartiallyConstructedSafepointRecord &Info = Records[i]; 2155 2156 SmallVector<Value *, 128> Bases; 2157 for (auto Pair : Info.PointerToBase) 2158 Bases.push_back(Pair.second); 2159 2160 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2161 } 2162 2163 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2164 // need to rerun liveness. We may *also* have inserted new defs, but that's 2165 // not the key issue. 2166 recomputeLiveInValues(F, DT, ToUpdate, Records); 2167 2168 if (PrintBasePointers) { 2169 for (auto &Info : Records) { 2170 errs() << "Base Pairs: (w/Relocation)\n"; 2171 for (auto Pair : Info.PointerToBase) { 2172 errs() << " derived "; 2173 Pair.first->printAsOperand(errs(), false); 2174 errs() << " base "; 2175 Pair.second->printAsOperand(errs(), false); 2176 errs() << "\n"; 2177 } 2178 } 2179 } 2180 2181 // It is possible that non-constant live variables have a constant base. For 2182 // example, a GEP with a variable offset from a global. In this case we can 2183 // remove it from the liveset. We already don't add constants to the liveset 2184 // because we assume they won't move at runtime and the GC doesn't need to be 2185 // informed about them. The same reasoning applies if the base is constant. 2186 // Note that the relocation placement code relies on this filtering for 2187 // correctness as it expects the base to be in the liveset, which isn't true 2188 // if the base is constant. 2189 for (auto &Info : Records) 2190 for (auto &BasePair : Info.PointerToBase) 2191 if (isa<Constant>(BasePair.second)) 2192 Info.LiveSet.remove(BasePair.first); 2193 2194 for (CallInst *CI : Holders) 2195 CI->eraseFromParent(); 2196 2197 Holders.clear(); 2198 2199 // In order to reduce live set of statepoint we might choose to rematerialize 2200 // some values instead of relocating them. This is purely an optimization and 2201 // does not influence correctness. 2202 for (size_t i = 0; i < Records.size(); i++) 2203 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2204 2205 // We need this to safely RAUW and delete call or invoke return values that 2206 // may themselves be live over a statepoint. For details, please see usage in 2207 // makeStatepointExplicitImpl. 2208 std::vector<DeferredReplacement> Replacements; 2209 2210 // Now run through and replace the existing statepoints with new ones with 2211 // the live variables listed. We do not yet update uses of the values being 2212 // relocated. We have references to live variables that need to 2213 // survive to the last iteration of this loop. (By construction, the 2214 // previous statepoint can not be a live variable, thus we can and remove 2215 // the old statepoint calls as we go.) 2216 for (size_t i = 0; i < Records.size(); i++) 2217 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2218 2219 ToUpdate.clear(); // prevent accident use of invalid CallSites 2220 2221 for (auto &PR : Replacements) 2222 PR.doReplacement(); 2223 2224 Replacements.clear(); 2225 2226 for (auto &Info : Records) { 2227 // These live sets may contain state Value pointers, since we replaced calls 2228 // with operand bundles with calls wrapped in gc.statepoint, and some of 2229 // those calls may have been def'ing live gc pointers. Clear these out to 2230 // avoid accidentally using them. 2231 // 2232 // TODO: We should create a separate data structure that does not contain 2233 // these live sets, and migrate to using that data structure from this point 2234 // onward. 2235 Info.LiveSet.clear(); 2236 Info.PointerToBase.clear(); 2237 } 2238 2239 // Do all the fixups of the original live variables to their relocated selves 2240 SmallVector<Value *, 128> Live; 2241 for (size_t i = 0; i < Records.size(); i++) { 2242 PartiallyConstructedSafepointRecord &Info = Records[i]; 2243 2244 // We can't simply save the live set from the original insertion. One of 2245 // the live values might be the result of a call which needs a safepoint. 2246 // That Value* no longer exists and we need to use the new gc_result. 2247 // Thankfully, the live set is embedded in the statepoint (and updated), so 2248 // we just grab that. 2249 Statepoint Statepoint(Info.StatepointToken); 2250 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2251 Statepoint.gc_args_end()); 2252 #ifndef NDEBUG 2253 // Do some basic sanity checks on our liveness results before performing 2254 // relocation. Relocation can and will turn mistakes in liveness results 2255 // into non-sensical code which is must harder to debug. 2256 // TODO: It would be nice to test consistency as well 2257 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2258 "statepoint must be reachable or liveness is meaningless"); 2259 for (Value *V : Statepoint.gc_args()) { 2260 if (!isa<Instruction>(V)) 2261 // Non-instruction values trivial dominate all possible uses 2262 continue; 2263 auto *LiveInst = cast<Instruction>(V); 2264 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2265 "unreachable values should never be live"); 2266 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2267 "basic SSA liveness expectation violated by liveness analysis"); 2268 } 2269 #endif 2270 } 2271 unique_unsorted(Live); 2272 2273 #ifndef NDEBUG 2274 // sanity check 2275 for (auto *Ptr : Live) 2276 assert(isHandledGCPointerType(Ptr->getType()) && 2277 "must be a gc pointer type"); 2278 #endif 2279 2280 relocationViaAlloca(F, DT, Live, Records); 2281 return !Records.empty(); 2282 } 2283 2284 // Handles both return values and arguments for Functions and CallSites. 2285 template <typename AttrHolder> 2286 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2287 unsigned Index) { 2288 AttrBuilder R; 2289 if (AH.getDereferenceableBytes(Index)) 2290 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2291 AH.getDereferenceableBytes(Index))); 2292 if (AH.getDereferenceableOrNullBytes(Index)) 2293 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2294 AH.getDereferenceableOrNullBytes(Index))); 2295 if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias)) 2296 R.addAttribute(Attribute::NoAlias); 2297 2298 if (!R.empty()) 2299 AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R)); 2300 } 2301 2302 void 2303 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2304 LLVMContext &Ctx = F.getContext(); 2305 2306 for (Argument &A : F.args()) 2307 if (isa<PointerType>(A.getType())) 2308 RemoveNonValidAttrAtIndex(Ctx, F, 2309 A.getArgNo() + AttributeList::FirstArgIndex); 2310 2311 if (isa<PointerType>(F.getReturnType())) 2312 RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex); 2313 } 2314 2315 void RewriteStatepointsForGC::stripInvalidMetadataFromInstruction(Instruction &I) { 2316 2317 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2318 return; 2319 // These are the attributes that are still valid on loads and stores after 2320 // RS4GC. 2321 // The metadata implying dereferenceability and noalias are (conservatively) 2322 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2323 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2324 // touch the entire heap including noalias objects. Note: The reasoning is 2325 // same as stripping the dereferenceability and noalias attributes that are 2326 // analogous to the metadata counterparts. 2327 // We also drop the invariant.load metadata on the load because that metadata 2328 // implies the address operand to the load points to memory that is never 2329 // changed once it became dereferenceable. This is no longer true after RS4GC. 2330 // Similar reasoning applies to invariant.group metadata, which applies to 2331 // loads within a group. 2332 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2333 LLVMContext::MD_range, 2334 LLVMContext::MD_alias_scope, 2335 LLVMContext::MD_nontemporal, 2336 LLVMContext::MD_nonnull, 2337 LLVMContext::MD_align, 2338 LLVMContext::MD_type}; 2339 2340 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2341 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2342 2343 } 2344 2345 void RewriteStatepointsForGC::stripNonValidAttributesAndMetadataFromBody(Function &F) { 2346 if (F.empty()) 2347 return; 2348 2349 LLVMContext &Ctx = F.getContext(); 2350 MDBuilder Builder(Ctx); 2351 2352 2353 for (Instruction &I : instructions(F)) { 2354 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2355 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2356 bool IsImmutableTBAA = 2357 MD->getNumOperands() == 4 && 2358 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2359 2360 if (!IsImmutableTBAA) 2361 continue; // no work to do, MD_tbaa is already marked mutable 2362 2363 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2364 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2365 uint64_t Offset = 2366 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2367 2368 MDNode *MutableTBAA = 2369 Builder.createTBAAStructTagNode(Base, Access, Offset); 2370 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2371 } 2372 2373 stripInvalidMetadataFromInstruction(I); 2374 2375 if (CallSite CS = CallSite(&I)) { 2376 for (int i = 0, e = CS.arg_size(); i != e; i++) 2377 if (isa<PointerType>(CS.getArgument(i)->getType())) 2378 RemoveNonValidAttrAtIndex(Ctx, CS, i + AttributeList::FirstArgIndex); 2379 if (isa<PointerType>(CS.getType())) 2380 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeList::ReturnIndex); 2381 } 2382 } 2383 } 2384 2385 /// Returns true if this function should be rewritten by this pass. The main 2386 /// point of this function is as an extension point for custom logic. 2387 static bool shouldRewriteStatepointsIn(Function &F) { 2388 // TODO: This should check the GCStrategy 2389 if (F.hasGC()) { 2390 const auto &FunctionGCName = F.getGC(); 2391 const StringRef StatepointExampleName("statepoint-example"); 2392 const StringRef CoreCLRName("coreclr"); 2393 return (StatepointExampleName == FunctionGCName) || 2394 (CoreCLRName == FunctionGCName); 2395 } else 2396 return false; 2397 } 2398 2399 void RewriteStatepointsForGC::stripNonValidAttributesAndMetadata(Module &M) { 2400 #ifndef NDEBUG 2401 assert(any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2402 #endif 2403 2404 for (Function &F : M) 2405 stripNonValidAttributesFromPrototype(F); 2406 2407 for (Function &F : M) 2408 stripNonValidAttributesAndMetadataFromBody(F); 2409 } 2410 2411 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2412 // Nothing to do for declarations. 2413 if (F.isDeclaration() || F.empty()) 2414 return false; 2415 2416 // Policy choice says not to rewrite - the most common reason is that we're 2417 // compiling code without a GCStrategy. 2418 if (!shouldRewriteStatepointsIn(F)) 2419 return false; 2420 2421 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2422 TargetTransformInfo &TTI = 2423 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2424 const TargetLibraryInfo &TLI = 2425 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2426 2427 auto NeedsRewrite = [&TLI](Instruction &I) { 2428 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2429 return !callsGCLeafFunction(CS, TLI) && !isStatepoint(CS); 2430 return false; 2431 }; 2432 2433 // Gather all the statepoints which need rewritten. Be careful to only 2434 // consider those in reachable code since we need to ask dominance queries 2435 // when rewriting. We'll delete the unreachable ones in a moment. 2436 SmallVector<CallSite, 64> ParsePointNeeded; 2437 bool HasUnreachableStatepoint = false; 2438 for (Instruction &I : instructions(F)) { 2439 // TODO: only the ones with the flag set! 2440 if (NeedsRewrite(I)) { 2441 if (DT.isReachableFromEntry(I.getParent())) 2442 ParsePointNeeded.push_back(CallSite(&I)); 2443 else 2444 HasUnreachableStatepoint = true; 2445 } 2446 } 2447 2448 bool MadeChange = false; 2449 2450 // Delete any unreachable statepoints so that we don't have unrewritten 2451 // statepoints surviving this pass. This makes testing easier and the 2452 // resulting IR less confusing to human readers. Rather than be fancy, we 2453 // just reuse a utility function which removes the unreachable blocks. 2454 if (HasUnreachableStatepoint) 2455 MadeChange |= removeUnreachableBlocks(F); 2456 2457 // Return early if no work to do. 2458 if (ParsePointNeeded.empty()) 2459 return MadeChange; 2460 2461 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2462 // These are created by LCSSA. They have the effect of increasing the size 2463 // of liveness sets for no good reason. It may be harder to do this post 2464 // insertion since relocations and base phis can confuse things. 2465 for (BasicBlock &BB : F) 2466 if (BB.getUniquePredecessor()) { 2467 MadeChange = true; 2468 FoldSingleEntryPHINodes(&BB); 2469 } 2470 2471 // Before we start introducing relocations, we want to tweak the IR a bit to 2472 // avoid unfortunate code generation effects. The main example is that we 2473 // want to try to make sure the comparison feeding a branch is after any 2474 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2475 // values feeding a branch after relocation. This is semantically correct, 2476 // but results in extra register pressure since both the pre-relocation and 2477 // post-relocation copies must be available in registers. For code without 2478 // relocations this is handled elsewhere, but teaching the scheduler to 2479 // reverse the transform we're about to do would be slightly complex. 2480 // Note: This may extend the live range of the inputs to the icmp and thus 2481 // increase the liveset of any statepoint we move over. This is profitable 2482 // as long as all statepoints are in rare blocks. If we had in-register 2483 // lowering for live values this would be a much safer transform. 2484 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2485 if (auto *BI = dyn_cast<BranchInst>(TI)) 2486 if (BI->isConditional()) 2487 return dyn_cast<Instruction>(BI->getCondition()); 2488 // TODO: Extend this to handle switches 2489 return nullptr; 2490 }; 2491 for (BasicBlock &BB : F) { 2492 TerminatorInst *TI = BB.getTerminator(); 2493 if (auto *Cond = getConditionInst(TI)) 2494 // TODO: Handle more than just ICmps here. We should be able to move 2495 // most instructions without side effects or memory access. 2496 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2497 MadeChange = true; 2498 Cond->moveBefore(TI); 2499 } 2500 } 2501 2502 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2503 return MadeChange; 2504 } 2505 2506 // liveness computation via standard dataflow 2507 // ------------------------------------------------------------------- 2508 2509 // TODO: Consider using bitvectors for liveness, the set of potentially 2510 // interesting values should be small and easy to pre-compute. 2511 2512 /// Compute the live-in set for the location rbegin starting from 2513 /// the live-out set of the basic block 2514 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 2515 BasicBlock::reverse_iterator End, 2516 SetVector<Value *> &LiveTmp) { 2517 for (auto &I : make_range(Begin, End)) { 2518 // KILL/Def - Remove this definition from LiveIn 2519 LiveTmp.remove(&I); 2520 2521 // Don't consider *uses* in PHI nodes, we handle their contribution to 2522 // predecessor blocks when we seed the LiveOut sets 2523 if (isa<PHINode>(I)) 2524 continue; 2525 2526 // USE - Add to the LiveIn set for this instruction 2527 for (Value *V : I.operands()) { 2528 assert(!isUnhandledGCPointerType(V->getType()) && 2529 "support for FCA unimplemented"); 2530 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2531 // The choice to exclude all things constant here is slightly subtle. 2532 // There are two independent reasons: 2533 // - We assume that things which are constant (from LLVM's definition) 2534 // do not move at runtime. For example, the address of a global 2535 // variable is fixed, even though it's contents may not be. 2536 // - Second, we can't disallow arbitrary inttoptr constants even 2537 // if the language frontend does. Optimization passes are free to 2538 // locally exploit facts without respect to global reachability. This 2539 // can create sections of code which are dynamically unreachable and 2540 // contain just about anything. (see constants.ll in tests) 2541 LiveTmp.insert(V); 2542 } 2543 } 2544 } 2545 } 2546 2547 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2548 for (BasicBlock *Succ : successors(BB)) { 2549 for (auto &I : *Succ) { 2550 PHINode *PN = dyn_cast<PHINode>(&I); 2551 if (!PN) 2552 break; 2553 2554 Value *V = PN->getIncomingValueForBlock(BB); 2555 assert(!isUnhandledGCPointerType(V->getType()) && 2556 "support for FCA unimplemented"); 2557 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 2558 LiveTmp.insert(V); 2559 } 2560 } 2561 } 2562 2563 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2564 SetVector<Value *> KillSet; 2565 for (Instruction &I : *BB) 2566 if (isHandledGCPointerType(I.getType())) 2567 KillSet.insert(&I); 2568 return KillSet; 2569 } 2570 2571 #ifndef NDEBUG 2572 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2573 /// sanity check for the liveness computation. 2574 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2575 TerminatorInst *TI, bool TermOkay = false) { 2576 for (Value *V : Live) { 2577 if (auto *I = dyn_cast<Instruction>(V)) { 2578 // The terminator can be a member of the LiveOut set. LLVM's definition 2579 // of instruction dominance states that V does not dominate itself. As 2580 // such, we need to special case this to allow it. 2581 if (TermOkay && TI == I) 2582 continue; 2583 assert(DT.dominates(I, TI) && 2584 "basic SSA liveness expectation violated by liveness analysis"); 2585 } 2586 } 2587 } 2588 2589 /// Check that all the liveness sets used during the computation of liveness 2590 /// obey basic SSA properties. This is useful for finding cases where we miss 2591 /// a def. 2592 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2593 BasicBlock &BB) { 2594 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2595 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2596 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2597 } 2598 #endif 2599 2600 static void computeLiveInValues(DominatorTree &DT, Function &F, 2601 GCPtrLivenessData &Data) { 2602 SmallSetVector<BasicBlock *, 32> Worklist; 2603 2604 // Seed the liveness for each individual block 2605 for (BasicBlock &BB : F) { 2606 Data.KillSet[&BB] = computeKillSet(&BB); 2607 Data.LiveSet[&BB].clear(); 2608 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2609 2610 #ifndef NDEBUG 2611 for (Value *Kill : Data.KillSet[&BB]) 2612 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2613 #endif 2614 2615 Data.LiveOut[&BB] = SetVector<Value *>(); 2616 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2617 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2618 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2619 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2620 if (!Data.LiveIn[&BB].empty()) 2621 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 2622 } 2623 2624 // Propagate that liveness until stable 2625 while (!Worklist.empty()) { 2626 BasicBlock *BB = Worklist.pop_back_val(); 2627 2628 // Compute our new liveout set, then exit early if it hasn't changed despite 2629 // the contribution of our successor. 2630 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2631 const auto OldLiveOutSize = LiveOut.size(); 2632 for (BasicBlock *Succ : successors(BB)) { 2633 assert(Data.LiveIn.count(Succ)); 2634 LiveOut.set_union(Data.LiveIn[Succ]); 2635 } 2636 // assert OutLiveOut is a subset of LiveOut 2637 if (OldLiveOutSize == LiveOut.size()) { 2638 // If the sets are the same size, then we didn't actually add anything 2639 // when unioning our successors LiveIn. Thus, the LiveIn of this block 2640 // hasn't changed. 2641 continue; 2642 } 2643 Data.LiveOut[BB] = LiveOut; 2644 2645 // Apply the effects of this basic block 2646 SetVector<Value *> LiveTmp = LiveOut; 2647 LiveTmp.set_union(Data.LiveSet[BB]); 2648 LiveTmp.set_subtract(Data.KillSet[BB]); 2649 2650 assert(Data.LiveIn.count(BB)); 2651 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2652 // assert: OldLiveIn is a subset of LiveTmp 2653 if (OldLiveIn.size() != LiveTmp.size()) { 2654 Data.LiveIn[BB] = LiveTmp; 2655 Worklist.insert(pred_begin(BB), pred_end(BB)); 2656 } 2657 } // while (!Worklist.empty()) 2658 2659 #ifndef NDEBUG 2660 // Sanity check our output against SSA properties. This helps catch any 2661 // missing kills during the above iteration. 2662 for (BasicBlock &BB : F) 2663 checkBasicSSA(DT, Data, BB); 2664 #endif 2665 } 2666 2667 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2668 StatepointLiveSetTy &Out) { 2669 2670 BasicBlock *BB = Inst->getParent(); 2671 2672 // Note: The copy is intentional and required 2673 assert(Data.LiveOut.count(BB)); 2674 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2675 2676 // We want to handle the statepoint itself oddly. It's 2677 // call result is not live (normal), nor are it's arguments 2678 // (unless they're used again later). This adjustment is 2679 // specifically what we need to relocate 2680 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 2681 LiveOut); 2682 LiveOut.remove(Inst); 2683 Out.insert(LiveOut.begin(), LiveOut.end()); 2684 } 2685 2686 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2687 CallSite CS, 2688 PartiallyConstructedSafepointRecord &Info) { 2689 Instruction *Inst = CS.getInstruction(); 2690 StatepointLiveSetTy Updated; 2691 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2692 2693 #ifndef NDEBUG 2694 DenseSet<Value *> Bases; 2695 for (auto KVPair : Info.PointerToBase) 2696 Bases.insert(KVPair.second); 2697 #endif 2698 2699 // We may have base pointers which are now live that weren't before. We need 2700 // to update the PointerToBase structure to reflect this. 2701 for (auto V : Updated) 2702 if (Info.PointerToBase.insert({V, V}).second) { 2703 assert(Bases.count(V) && "Can't find base for unexpected live value!"); 2704 continue; 2705 } 2706 2707 #ifndef NDEBUG 2708 for (auto V : Updated) 2709 assert(Info.PointerToBase.count(V) && 2710 "Must be able to find base for live value!"); 2711 #endif 2712 2713 // Remove any stale base mappings - this can happen since our liveness is 2714 // more precise then the one inherent in the base pointer analysis. 2715 DenseSet<Value *> ToErase; 2716 for (auto KVPair : Info.PointerToBase) 2717 if (!Updated.count(KVPair.first)) 2718 ToErase.insert(KVPair.first); 2719 2720 for (auto *V : ToErase) 2721 Info.PointerToBase.erase(V); 2722 2723 #ifndef NDEBUG 2724 for (auto KVPair : Info.PointerToBase) 2725 assert(Updated.count(KVPair.first) && "record for non-live value"); 2726 #endif 2727 2728 Info.LiveSet = Updated; 2729 } 2730