xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 1ee6ec2bf370fbd1d93f34c8b56741a9d3f22ed2)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Rewrite call/invoke instructions so as to make potential relocations
10 // performed by the garbage collector explicit in the IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueHandle.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <set>
75 #include <string>
76 #include <utility>
77 #include <vector>
78 
79 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
80 
81 using namespace llvm;
82 
83 // Print the liveset found at the insert location
84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
85                                   cl::init(false));
86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
87                                       cl::init(false));
88 
89 // Print out the base pointers for debugging
90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
91                                        cl::init(false));
92 
93 // Cost threshold measuring when it is profitable to rematerialize value instead
94 // of relocating it
95 static cl::opt<unsigned>
96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
97                            cl::init(6));
98 
99 #ifdef EXPENSIVE_CHECKS
100 static bool ClobberNonLive = true;
101 #else
102 static bool ClobberNonLive = false;
103 #endif
104 
105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
106                                                   cl::location(ClobberNonLive),
107                                                   cl::Hidden);
108 
109 static cl::opt<bool>
110     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
111                                    cl::Hidden, cl::init(true));
112 
113 /// The IR fed into RewriteStatepointsForGC may have had attributes and
114 /// metadata implying dereferenceability that are no longer valid/correct after
115 /// RewriteStatepointsForGC has run. This is because semantically, after
116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
117 /// heap. stripNonValidData (conservatively) restores
118 /// correctness by erasing all attributes in the module that externally imply
119 /// dereferenceability. Similar reasoning also applies to the noalias
120 /// attributes and metadata. gc.statepoint can touch the entire heap including
121 /// noalias objects.
122 /// Apart from attributes and metadata, we also remove instructions that imply
123 /// constant physical memory: llvm.invariant.start.
124 static void stripNonValidData(Module &M);
125 
126 static bool shouldRewriteStatepointsIn(Function &F);
127 
128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
129                                                ModuleAnalysisManager &AM) {
130   bool Changed = false;
131   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
132   for (Function &F : M) {
133     // Nothing to do for declarations.
134     if (F.isDeclaration() || F.empty())
135       continue;
136 
137     // Policy choice says not to rewrite - the most common reason is that we're
138     // compiling code without a GCStrategy.
139     if (!shouldRewriteStatepointsIn(F))
140       continue;
141 
142     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
143     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
144     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
145     Changed |= runOnFunction(F, DT, TTI, TLI);
146   }
147   if (!Changed)
148     return PreservedAnalyses::all();
149 
150   // stripNonValidData asserts that shouldRewriteStatepointsIn
151   // returns true for at least one function in the module.  Since at least
152   // one function changed, we know that the precondition is satisfied.
153   stripNonValidData(M);
154 
155   PreservedAnalyses PA;
156   PA.preserve<TargetIRAnalysis>();
157   PA.preserve<TargetLibraryAnalysis>();
158   return PA;
159 }
160 
161 namespace {
162 
163 class RewriteStatepointsForGCLegacyPass : public ModulePass {
164   RewriteStatepointsForGC Impl;
165 
166 public:
167   static char ID; // Pass identification, replacement for typeid
168 
169   RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
170     initializeRewriteStatepointsForGCLegacyPassPass(
171         *PassRegistry::getPassRegistry());
172   }
173 
174   bool runOnModule(Module &M) override {
175     bool Changed = false;
176     for (Function &F : M) {
177       // Nothing to do for declarations.
178       if (F.isDeclaration() || F.empty())
179         continue;
180 
181       // Policy choice says not to rewrite - the most common reason is that
182       // we're compiling code without a GCStrategy.
183       if (!shouldRewriteStatepointsIn(F))
184         continue;
185 
186       TargetTransformInfo &TTI =
187           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
188       const TargetLibraryInfo &TLI =
189           getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
190       auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
191 
192       Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
193     }
194 
195     if (!Changed)
196       return false;
197 
198     // stripNonValidData asserts that shouldRewriteStatepointsIn
199     // returns true for at least one function in the module.  Since at least
200     // one function changed, we know that the precondition is satisfied.
201     stripNonValidData(M);
202     return true;
203   }
204 
205   void getAnalysisUsage(AnalysisUsage &AU) const override {
206     // We add and rewrite a bunch of instructions, but don't really do much
207     // else.  We could in theory preserve a lot more analyses here.
208     AU.addRequired<DominatorTreeWrapperPass>();
209     AU.addRequired<TargetTransformInfoWrapperPass>();
210     AU.addRequired<TargetLibraryInfoWrapperPass>();
211   }
212 };
213 
214 } // end anonymous namespace
215 
216 char RewriteStatepointsForGCLegacyPass::ID = 0;
217 
218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
219   return new RewriteStatepointsForGCLegacyPass();
220 }
221 
222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
223                       "rewrite-statepoints-for-gc",
224                       "Make relocations explicit at statepoints", false, false)
225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
228                     "rewrite-statepoints-for-gc",
229                     "Make relocations explicit at statepoints", false, false)
230 
231 namespace {
232 
233 struct GCPtrLivenessData {
234   /// Values defined in this block.
235   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
236 
237   /// Values used in this block (and thus live); does not included values
238   /// killed within this block.
239   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
240 
241   /// Values live into this basic block (i.e. used by any
242   /// instruction in this basic block or ones reachable from here)
243   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
244 
245   /// Values live out of this basic block (i.e. live into
246   /// any successor block)
247   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
248 };
249 
250 // The type of the internal cache used inside the findBasePointers family
251 // of functions.  From the callers perspective, this is an opaque type and
252 // should not be inspected.
253 //
254 // In the actual implementation this caches two relations:
255 // - The base relation itself (i.e. this pointer is based on that one)
256 // - The base defining value relation (i.e. before base_phi insertion)
257 // Generally, after the execution of a full findBasePointer call, only the
258 // base relation will remain.  Internally, we add a mixture of the two
259 // types, then update all the second type to the first type
260 using DefiningValueMapTy = MapVector<Value *, Value *>;
261 using StatepointLiveSetTy = SetVector<Value *>;
262 using RematerializedValueMapTy =
263     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
264 
265 struct PartiallyConstructedSafepointRecord {
266   /// The set of values known to be live across this safepoint
267   StatepointLiveSetTy LiveSet;
268 
269   /// Mapping from live pointers to a base-defining-value
270   MapVector<Value *, Value *> PointerToBase;
271 
272   /// The *new* gc.statepoint instruction itself.  This produces the token
273   /// that normal path gc.relocates and the gc.result are tied to.
274   Instruction *StatepointToken;
275 
276   /// Instruction to which exceptional gc relocates are attached
277   /// Makes it easier to iterate through them during relocationViaAlloca.
278   Instruction *UnwindToken;
279 
280   /// Record live values we are rematerialized instead of relocating.
281   /// They are not included into 'LiveSet' field.
282   /// Maps rematerialized copy to it's original value.
283   RematerializedValueMapTy RematerializedValues;
284 };
285 
286 } // end anonymous namespace
287 
288 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
289   Optional<OperandBundleUse> DeoptBundle =
290       Call->getOperandBundle(LLVMContext::OB_deopt);
291 
292   if (!DeoptBundle.hasValue()) {
293     assert(AllowStatepointWithNoDeoptInfo &&
294            "Found non-leaf call without deopt info!");
295     return None;
296   }
297 
298   return DeoptBundle.getValue().Inputs;
299 }
300 
301 /// Compute the live-in set for every basic block in the function
302 static void computeLiveInValues(DominatorTree &DT, Function &F,
303                                 GCPtrLivenessData &Data);
304 
305 /// Given results from the dataflow liveness computation, find the set of live
306 /// Values at a particular instruction.
307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
308                               StatepointLiveSetTy &out);
309 
310 // TODO: Once we can get to the GCStrategy, this becomes
311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
312 
313 static bool isGCPointerType(Type *T) {
314   if (auto *PT = dyn_cast<PointerType>(T))
315     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
316     // GC managed heap.  We know that a pointer into this heap needs to be
317     // updated and that no other pointer does.
318     return PT->getAddressSpace() == 1;
319   return false;
320 }
321 
322 // Return true if this type is one which a) is a gc pointer or contains a GC
323 // pointer and b) is of a type this code expects to encounter as a live value.
324 // (The insertion code will assert that a type which matches (a) and not (b)
325 // is not encountered.)
326 static bool isHandledGCPointerType(Type *T) {
327   // We fully support gc pointers
328   if (isGCPointerType(T))
329     return true;
330   // We partially support vectors of gc pointers. The code will assert if it
331   // can't handle something.
332   if (auto VT = dyn_cast<VectorType>(T))
333     if (isGCPointerType(VT->getElementType()))
334       return true;
335   return false;
336 }
337 
338 #ifndef NDEBUG
339 /// Returns true if this type contains a gc pointer whether we know how to
340 /// handle that type or not.
341 static bool containsGCPtrType(Type *Ty) {
342   if (isGCPointerType(Ty))
343     return true;
344   if (VectorType *VT = dyn_cast<VectorType>(Ty))
345     return isGCPointerType(VT->getScalarType());
346   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
347     return containsGCPtrType(AT->getElementType());
348   if (StructType *ST = dyn_cast<StructType>(Ty))
349     return llvm::any_of(ST->elements(), containsGCPtrType);
350   return false;
351 }
352 
353 // Returns true if this is a type which a) is a gc pointer or contains a GC
354 // pointer and b) is of a type which the code doesn't expect (i.e. first class
355 // aggregates).  Used to trip assertions.
356 static bool isUnhandledGCPointerType(Type *Ty) {
357   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
358 }
359 #endif
360 
361 // Return the name of the value suffixed with the provided value, or if the
362 // value didn't have a name, the default value specified.
363 static std::string suffixed_name_or(Value *V, StringRef Suffix,
364                                     StringRef DefaultName) {
365   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
366 }
367 
368 // Conservatively identifies any definitions which might be live at the
369 // given instruction. The  analysis is performed immediately before the
370 // given instruction. Values defined by that instruction are not considered
371 // live.  Values used by that instruction are considered live.
372 static void analyzeParsePointLiveness(
373     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
374     PartiallyConstructedSafepointRecord &Result) {
375   StatepointLiveSetTy LiveSet;
376   findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
377 
378   if (PrintLiveSet) {
379     dbgs() << "Live Variables:\n";
380     for (Value *V : LiveSet)
381       dbgs() << " " << V->getName() << " " << *V << "\n";
382   }
383   if (PrintLiveSetSize) {
384     dbgs() << "Safepoint For: " << Call->getCalledValue()->getName() << "\n";
385     dbgs() << "Number live values: " << LiveSet.size() << "\n";
386   }
387   Result.LiveSet = LiveSet;
388 }
389 
390 static bool isKnownBaseResult(Value *V);
391 
392 namespace {
393 
394 /// A single base defining value - An immediate base defining value for an
395 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
396 /// For instructions which have multiple pointer [vector] inputs or that
397 /// transition between vector and scalar types, there is no immediate base
398 /// defining value.  The 'base defining value' for 'Def' is the transitive
399 /// closure of this relation stopping at the first instruction which has no
400 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
401 /// but it can also be an arbitrary derived pointer.
402 struct BaseDefiningValueResult {
403   /// Contains the value which is the base defining value.
404   Value * const BDV;
405 
406   /// True if the base defining value is also known to be an actual base
407   /// pointer.
408   const bool IsKnownBase;
409 
410   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
411     : BDV(BDV), IsKnownBase(IsKnownBase) {
412 #ifndef NDEBUG
413     // Check consistency between new and old means of checking whether a BDV is
414     // a base.
415     bool MustBeBase = isKnownBaseResult(BDV);
416     assert(!MustBeBase || MustBeBase == IsKnownBase);
417 #endif
418   }
419 };
420 
421 } // end anonymous namespace
422 
423 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
424 
425 /// Return a base defining value for the 'Index' element of the given vector
426 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
427 /// 'I'.  As an optimization, this method will try to determine when the
428 /// element is known to already be a base pointer.  If this can be established,
429 /// the second value in the returned pair will be true.  Note that either a
430 /// vector or a pointer typed value can be returned.  For the former, the
431 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
432 /// If the later, the return pointer is a BDV (or possibly a base) for the
433 /// particular element in 'I'.
434 static BaseDefiningValueResult
435 findBaseDefiningValueOfVector(Value *I) {
436   // Each case parallels findBaseDefiningValue below, see that code for
437   // detailed motivation.
438 
439   if (isa<Argument>(I))
440     // An incoming argument to the function is a base pointer
441     return BaseDefiningValueResult(I, true);
442 
443   if (isa<Constant>(I))
444     // Base of constant vector consists only of constant null pointers.
445     // For reasoning see similar case inside 'findBaseDefiningValue' function.
446     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
447                                    true);
448 
449   if (isa<LoadInst>(I))
450     return BaseDefiningValueResult(I, true);
451 
452   if (isa<InsertElementInst>(I))
453     // We don't know whether this vector contains entirely base pointers or
454     // not.  To be conservatively correct, we treat it as a BDV and will
455     // duplicate code as needed to construct a parallel vector of bases.
456     return BaseDefiningValueResult(I, false);
457 
458   if (isa<ShuffleVectorInst>(I))
459     // We don't know whether this vector contains entirely base pointers or
460     // not.  To be conservatively correct, we treat it as a BDV and will
461     // duplicate code as needed to construct a parallel vector of bases.
462     // TODO: There a number of local optimizations which could be applied here
463     // for particular sufflevector patterns.
464     return BaseDefiningValueResult(I, false);
465 
466   // The behavior of getelementptr instructions is the same for vector and
467   // non-vector data types.
468   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
469     return findBaseDefiningValue(GEP->getPointerOperand());
470 
471   // If the pointer comes through a bitcast of a vector of pointers to
472   // a vector of another type of pointer, then look through the bitcast
473   if (auto *BC = dyn_cast<BitCastInst>(I))
474     return findBaseDefiningValue(BC->getOperand(0));
475 
476   // We assume that functions in the source language only return base
477   // pointers.  This should probably be generalized via attributes to support
478   // both source language and internal functions.
479   if (isa<CallInst>(I) || isa<InvokeInst>(I))
480     return BaseDefiningValueResult(I, true);
481 
482   // A PHI or Select is a base defining value.  The outer findBasePointer
483   // algorithm is responsible for constructing a base value for this BDV.
484   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
485          "unknown vector instruction - no base found for vector element");
486   return BaseDefiningValueResult(I, false);
487 }
488 
489 /// Helper function for findBasePointer - Will return a value which either a)
490 /// defines the base pointer for the input, b) blocks the simple search
491 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
492 /// from pointer to vector type or back.
493 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
494   assert(I->getType()->isPtrOrPtrVectorTy() &&
495          "Illegal to ask for the base pointer of a non-pointer type");
496 
497   if (I->getType()->isVectorTy())
498     return findBaseDefiningValueOfVector(I);
499 
500   if (isa<Argument>(I))
501     // An incoming argument to the function is a base pointer
502     // We should have never reached here if this argument isn't an gc value
503     return BaseDefiningValueResult(I, true);
504 
505   if (isa<Constant>(I)) {
506     // We assume that objects with a constant base (e.g. a global) can't move
507     // and don't need to be reported to the collector because they are always
508     // live. Besides global references, all kinds of constants (e.g. undef,
509     // constant expressions, null pointers) can be introduced by the inliner or
510     // the optimizer, especially on dynamically dead paths.
511     // Here we treat all of them as having single null base. By doing this we
512     // trying to avoid problems reporting various conflicts in a form of
513     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
514     // See constant.ll file for relevant test cases.
515 
516     return BaseDefiningValueResult(
517         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
518   }
519 
520   if (CastInst *CI = dyn_cast<CastInst>(I)) {
521     Value *Def = CI->stripPointerCasts();
522     // If stripping pointer casts changes the address space there is an
523     // addrspacecast in between.
524     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
525                cast<PointerType>(CI->getType())->getAddressSpace() &&
526            "unsupported addrspacecast");
527     // If we find a cast instruction here, it means we've found a cast which is
528     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
529     // handle int->ptr conversion.
530     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
531     return findBaseDefiningValue(Def);
532   }
533 
534   if (isa<LoadInst>(I))
535     // The value loaded is an gc base itself
536     return BaseDefiningValueResult(I, true);
537 
538   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
539     // The base of this GEP is the base
540     return findBaseDefiningValue(GEP->getPointerOperand());
541 
542   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
543     switch (II->getIntrinsicID()) {
544     default:
545       // fall through to general call handling
546       break;
547     case Intrinsic::experimental_gc_statepoint:
548       llvm_unreachable("statepoints don't produce pointers");
549     case Intrinsic::experimental_gc_relocate:
550       // Rerunning safepoint insertion after safepoints are already
551       // inserted is not supported.  It could probably be made to work,
552       // but why are you doing this?  There's no good reason.
553       llvm_unreachable("repeat safepoint insertion is not supported");
554     case Intrinsic::gcroot:
555       // Currently, this mechanism hasn't been extended to work with gcroot.
556       // There's no reason it couldn't be, but I haven't thought about the
557       // implications much.
558       llvm_unreachable(
559           "interaction with the gcroot mechanism is not supported");
560     }
561   }
562   // We assume that functions in the source language only return base
563   // pointers.  This should probably be generalized via attributes to support
564   // both source language and internal functions.
565   if (isa<CallInst>(I) || isa<InvokeInst>(I))
566     return BaseDefiningValueResult(I, true);
567 
568   // TODO: I have absolutely no idea how to implement this part yet.  It's not
569   // necessarily hard, I just haven't really looked at it yet.
570   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
571 
572   if (isa<AtomicCmpXchgInst>(I))
573     // A CAS is effectively a atomic store and load combined under a
574     // predicate.  From the perspective of base pointers, we just treat it
575     // like a load.
576     return BaseDefiningValueResult(I, true);
577 
578   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
579                                    "binary ops which don't apply to pointers");
580 
581   // The aggregate ops.  Aggregates can either be in the heap or on the
582   // stack, but in either case, this is simply a field load.  As a result,
583   // this is a defining definition of the base just like a load is.
584   if (isa<ExtractValueInst>(I))
585     return BaseDefiningValueResult(I, true);
586 
587   // We should never see an insert vector since that would require we be
588   // tracing back a struct value not a pointer value.
589   assert(!isa<InsertValueInst>(I) &&
590          "Base pointer for a struct is meaningless");
591 
592   // An extractelement produces a base result exactly when it's input does.
593   // We may need to insert a parallel instruction to extract the appropriate
594   // element out of the base vector corresponding to the input. Given this,
595   // it's analogous to the phi and select case even though it's not a merge.
596   if (isa<ExtractElementInst>(I))
597     // Note: There a lot of obvious peephole cases here.  This are deliberately
598     // handled after the main base pointer inference algorithm to make writing
599     // test cases to exercise that code easier.
600     return BaseDefiningValueResult(I, false);
601 
602   // The last two cases here don't return a base pointer.  Instead, they
603   // return a value which dynamically selects from among several base
604   // derived pointers (each with it's own base potentially).  It's the job of
605   // the caller to resolve these.
606   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
607          "missing instruction case in findBaseDefiningValing");
608   return BaseDefiningValueResult(I, false);
609 }
610 
611 /// Returns the base defining value for this value.
612 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
613   Value *&Cached = Cache[I];
614   if (!Cached) {
615     Cached = findBaseDefiningValue(I).BDV;
616     LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
617                       << Cached->getName() << "\n");
618   }
619   assert(Cache[I] != nullptr);
620   return Cached;
621 }
622 
623 /// Return a base pointer for this value if known.  Otherwise, return it's
624 /// base defining value.
625 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
626   Value *Def = findBaseDefiningValueCached(I, Cache);
627   auto Found = Cache.find(Def);
628   if (Found != Cache.end()) {
629     // Either a base-of relation, or a self reference.  Caller must check.
630     return Found->second;
631   }
632   // Only a BDV available
633   return Def;
634 }
635 
636 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
637 /// is it known to be a base pointer?  Or do we need to continue searching.
638 static bool isKnownBaseResult(Value *V) {
639   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
640       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
641       !isa<ShuffleVectorInst>(V)) {
642     // no recursion possible
643     return true;
644   }
645   if (isa<Instruction>(V) &&
646       cast<Instruction>(V)->getMetadata("is_base_value")) {
647     // This is a previously inserted base phi or select.  We know
648     // that this is a base value.
649     return true;
650   }
651 
652   // We need to keep searching
653   return false;
654 }
655 
656 namespace {
657 
658 /// Models the state of a single base defining value in the findBasePointer
659 /// algorithm for determining where a new instruction is needed to propagate
660 /// the base of this BDV.
661 class BDVState {
662 public:
663   enum Status { Unknown, Base, Conflict };
664 
665   BDVState() : BaseValue(nullptr) {}
666 
667   explicit BDVState(Status Status, Value *BaseValue = nullptr)
668       : Status(Status), BaseValue(BaseValue) {
669     assert(Status != Base || BaseValue);
670   }
671 
672   explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
673 
674   Status getStatus() const { return Status; }
675   Value *getBaseValue() const { return BaseValue; }
676 
677   bool isBase() const { return getStatus() == Base; }
678   bool isUnknown() const { return getStatus() == Unknown; }
679   bool isConflict() const { return getStatus() == Conflict; }
680 
681   bool operator==(const BDVState &Other) const {
682     return BaseValue == Other.BaseValue && Status == Other.Status;
683   }
684 
685   bool operator!=(const BDVState &other) const { return !(*this == other); }
686 
687   LLVM_DUMP_METHOD
688   void dump() const {
689     print(dbgs());
690     dbgs() << '\n';
691   }
692 
693   void print(raw_ostream &OS) const {
694     switch (getStatus()) {
695     case Unknown:
696       OS << "U";
697       break;
698     case Base:
699       OS << "B";
700       break;
701     case Conflict:
702       OS << "C";
703       break;
704     }
705     OS << " (" << getBaseValue() << " - "
706        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
707   }
708 
709 private:
710   Status Status = Unknown;
711   AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
712 };
713 
714 } // end anonymous namespace
715 
716 #ifndef NDEBUG
717 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
718   State.print(OS);
719   return OS;
720 }
721 #endif
722 
723 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
724   switch (LHS.getStatus()) {
725   case BDVState::Unknown:
726     return RHS;
727 
728   case BDVState::Base:
729     assert(LHS.getBaseValue() && "can't be null");
730     if (RHS.isUnknown())
731       return LHS;
732 
733     if (RHS.isBase()) {
734       if (LHS.getBaseValue() == RHS.getBaseValue()) {
735         assert(LHS == RHS && "equality broken!");
736         return LHS;
737       }
738       return BDVState(BDVState::Conflict);
739     }
740     assert(RHS.isConflict() && "only three states!");
741     return BDVState(BDVState::Conflict);
742 
743   case BDVState::Conflict:
744     return LHS;
745   }
746   llvm_unreachable("only three states!");
747 }
748 
749 // Values of type BDVState form a lattice, and this function implements the meet
750 // operation.
751 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
752   BDVState Result = meetBDVStateImpl(LHS, RHS);
753   assert(Result == meetBDVStateImpl(RHS, LHS) &&
754          "Math is wrong: meet does not commute!");
755   return Result;
756 }
757 
758 /// For a given value or instruction, figure out what base ptr its derived from.
759 /// For gc objects, this is simply itself.  On success, returns a value which is
760 /// the base pointer.  (This is reliable and can be used for relocation.)  On
761 /// failure, returns nullptr.
762 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
763   Value *Def = findBaseOrBDV(I, Cache);
764 
765   if (isKnownBaseResult(Def))
766     return Def;
767 
768   // Here's the rough algorithm:
769   // - For every SSA value, construct a mapping to either an actual base
770   //   pointer or a PHI which obscures the base pointer.
771   // - Construct a mapping from PHI to unknown TOP state.  Use an
772   //   optimistic algorithm to propagate base pointer information.  Lattice
773   //   looks like:
774   //   UNKNOWN
775   //   b1 b2 b3 b4
776   //   CONFLICT
777   //   When algorithm terminates, all PHIs will either have a single concrete
778   //   base or be in a conflict state.
779   // - For every conflict, insert a dummy PHI node without arguments.  Add
780   //   these to the base[Instruction] = BasePtr mapping.  For every
781   //   non-conflict, add the actual base.
782   //  - For every conflict, add arguments for the base[a] of each input
783   //   arguments.
784   //
785   // Note: A simpler form of this would be to add the conflict form of all
786   // PHIs without running the optimistic algorithm.  This would be
787   // analogous to pessimistic data flow and would likely lead to an
788   // overall worse solution.
789 
790 #ifndef NDEBUG
791   auto isExpectedBDVType = [](Value *BDV) {
792     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
793            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
794            isa<ShuffleVectorInst>(BDV);
795   };
796 #endif
797 
798   // Once populated, will contain a mapping from each potentially non-base BDV
799   // to a lattice value (described above) which corresponds to that BDV.
800   // We use the order of insertion (DFS over the def/use graph) to provide a
801   // stable deterministic ordering for visiting DenseMaps (which are unordered)
802   // below.  This is important for deterministic compilation.
803   MapVector<Value *, BDVState> States;
804 
805   // Recursively fill in all base defining values reachable from the initial
806   // one for which we don't already know a definite base value for
807   /* scope */ {
808     SmallVector<Value*, 16> Worklist;
809     Worklist.push_back(Def);
810     States.insert({Def, BDVState()});
811     while (!Worklist.empty()) {
812       Value *Current = Worklist.pop_back_val();
813       assert(!isKnownBaseResult(Current) && "why did it get added?");
814 
815       auto visitIncomingValue = [&](Value *InVal) {
816         Value *Base = findBaseOrBDV(InVal, Cache);
817         if (isKnownBaseResult(Base))
818           // Known bases won't need new instructions introduced and can be
819           // ignored safely
820           return;
821         assert(isExpectedBDVType(Base) && "the only non-base values "
822                "we see should be base defining values");
823         if (States.insert(std::make_pair(Base, BDVState())).second)
824           Worklist.push_back(Base);
825       };
826       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
827         for (Value *InVal : PN->incoming_values())
828           visitIncomingValue(InVal);
829       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
830         visitIncomingValue(SI->getTrueValue());
831         visitIncomingValue(SI->getFalseValue());
832       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
833         visitIncomingValue(EE->getVectorOperand());
834       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
835         visitIncomingValue(IE->getOperand(0)); // vector operand
836         visitIncomingValue(IE->getOperand(1)); // scalar operand
837       } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
838         visitIncomingValue(SV->getOperand(0));
839         visitIncomingValue(SV->getOperand(1));
840       }
841       else {
842         llvm_unreachable("Unimplemented instruction case");
843       }
844     }
845   }
846 
847 #ifndef NDEBUG
848   LLVM_DEBUG(dbgs() << "States after initialization:\n");
849   for (auto Pair : States) {
850     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
851   }
852 #endif
853 
854   // Return a phi state for a base defining value.  We'll generate a new
855   // base state for known bases and expect to find a cached state otherwise.
856   auto getStateForBDV = [&](Value *baseValue) {
857     if (isKnownBaseResult(baseValue))
858       return BDVState(baseValue);
859     auto I = States.find(baseValue);
860     assert(I != States.end() && "lookup failed!");
861     return I->second;
862   };
863 
864   bool Progress = true;
865   while (Progress) {
866 #ifndef NDEBUG
867     const size_t OldSize = States.size();
868 #endif
869     Progress = false;
870     // We're only changing values in this loop, thus safe to keep iterators.
871     // Since this is computing a fixed point, the order of visit does not
872     // effect the result.  TODO: We could use a worklist here and make this run
873     // much faster.
874     for (auto Pair : States) {
875       Value *BDV = Pair.first;
876       assert(!isKnownBaseResult(BDV) && "why did it get added?");
877 
878       // Given an input value for the current instruction, return a BDVState
879       // instance which represents the BDV of that value.
880       auto getStateForInput = [&](Value *V) mutable {
881         Value *BDV = findBaseOrBDV(V, Cache);
882         return getStateForBDV(BDV);
883       };
884 
885       BDVState NewState;
886       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
887         NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
888         NewState =
889             meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
890       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
891         for (Value *Val : PN->incoming_values())
892           NewState = meetBDVState(NewState, getStateForInput(Val));
893       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
894         // The 'meet' for an extractelement is slightly trivial, but it's still
895         // useful in that it drives us to conflict if our input is.
896         NewState =
897             meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
898       } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
899         // Given there's a inherent type mismatch between the operands, will
900         // *always* produce Conflict.
901         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
902         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
903       } else {
904         // The only instance this does not return a Conflict is when both the
905         // vector operands are the same vector.
906         auto *SV = cast<ShuffleVectorInst>(BDV);
907         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
908         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
909       }
910 
911       BDVState OldState = States[BDV];
912       if (OldState != NewState) {
913         Progress = true;
914         States[BDV] = NewState;
915       }
916     }
917 
918     assert(OldSize == States.size() &&
919            "fixed point shouldn't be adding any new nodes to state");
920   }
921 
922 #ifndef NDEBUG
923   LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
924   for (auto Pair : States) {
925     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
926   }
927 #endif
928 
929   // Handle extractelement instructions and their uses.
930   for (auto Pair : States) {
931     Instruction *I = cast<Instruction>(Pair.first);
932     BDVState State = Pair.second;
933     assert(!isKnownBaseResult(I) && "why did it get added?");
934     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
935 
936     // extractelement instructions are a bit special in that we may need to
937     // insert an extract even when we know an exact base for the instruction.
938     // The problem is that we need to convert from a vector base to a scalar
939     // base for the particular indice we're interested in.
940     if (!State.isBase() || !isa<ExtractElementInst>(I) ||
941         !isa<VectorType>(State.getBaseValue()->getType()))
942       continue;
943     auto *EE = cast<ExtractElementInst>(I);
944     // TODO: In many cases, the new instruction is just EE itself.  We should
945     // exploit this, but can't do it here since it would break the invariant
946     // about the BDV not being known to be a base.
947     auto *BaseInst = ExtractElementInst::Create(
948         State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
949     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
950     States[I] = BDVState(BDVState::Base, BaseInst);
951 
952     // We need to handle uses of the extractelement that have the same vector
953     // base as well but the use is a scalar type. Since we cannot reuse the
954     // same BaseInst above (may not satisfy property that base pointer should
955     // always dominate derived pointer), we conservatively set this as conflict.
956     // Setting the base value for these conflicts is handled in the next loop
957     // which traverses States.
958     for (User *U : I->users()) {
959       auto *UseI = dyn_cast<Instruction>(U);
960       if (!UseI || !States.count(UseI))
961         continue;
962       if (!isa<VectorType>(UseI->getType()) && States[UseI] == State)
963         States[UseI] = BDVState(BDVState::Conflict);
964     }
965   }
966 
967   // Insert Phis for all conflicts
968   // TODO: adjust naming patterns to avoid this order of iteration dependency
969   for (auto Pair : States) {
970     Instruction *I = cast<Instruction>(Pair.first);
971     BDVState State = Pair.second;
972     assert(!isKnownBaseResult(I) && "why did it get added?");
973     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
974 
975     // Since we're joining a vector and scalar base, they can never be the
976     // same.  As a result, we should always see insert element having reached
977     // the conflict state.
978     assert(!isa<InsertElementInst>(I) || State.isConflict());
979 
980     if (!State.isConflict())
981       continue;
982 
983     /// Create and insert a new instruction which will represent the base of
984     /// the given instruction 'I'.
985     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
986       if (isa<PHINode>(I)) {
987         BasicBlock *BB = I->getParent();
988         int NumPreds = pred_size(BB);
989         assert(NumPreds > 0 && "how did we reach here");
990         std::string Name = suffixed_name_or(I, ".base", "base_phi");
991         return PHINode::Create(I->getType(), NumPreds, Name, I);
992       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
993         // The undef will be replaced later
994         UndefValue *Undef = UndefValue::get(SI->getType());
995         std::string Name = suffixed_name_or(I, ".base", "base_select");
996         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
997       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
998         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
999         std::string Name = suffixed_name_or(I, ".base", "base_ee");
1000         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
1001                                           EE);
1002       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
1003         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
1004         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
1005         std::string Name = suffixed_name_or(I, ".base", "base_ie");
1006         return InsertElementInst::Create(VecUndef, ScalarUndef,
1007                                          IE->getOperand(2), Name, IE);
1008       } else {
1009         auto *SV = cast<ShuffleVectorInst>(I);
1010         UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
1011         std::string Name = suffixed_name_or(I, ".base", "base_sv");
1012         return new ShuffleVectorInst(VecUndef, VecUndef, SV->getShuffleMask(),
1013                                      Name, SV);
1014       }
1015     };
1016     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
1017     // Add metadata marking this as a base value
1018     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1019     States[I] = BDVState(BDVState::Conflict, BaseInst);
1020   }
1021 
1022   // Returns a instruction which produces the base pointer for a given
1023   // instruction.  The instruction is assumed to be an input to one of the BDVs
1024   // seen in the inference algorithm above.  As such, we must either already
1025   // know it's base defining value is a base, or have inserted a new
1026   // instruction to propagate the base of it's BDV and have entered that newly
1027   // introduced instruction into the state table.  In either case, we are
1028   // assured to be able to determine an instruction which produces it's base
1029   // pointer.
1030   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1031     Value *BDV = findBaseOrBDV(Input, Cache);
1032     Value *Base = nullptr;
1033     if (isKnownBaseResult(BDV)) {
1034       Base = BDV;
1035     } else {
1036       // Either conflict or base.
1037       assert(States.count(BDV));
1038       Base = States[BDV].getBaseValue();
1039     }
1040     assert(Base && "Can't be null");
1041     // The cast is needed since base traversal may strip away bitcasts
1042     if (Base->getType() != Input->getType() && InsertPt)
1043       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1044     return Base;
1045   };
1046 
1047   // Fixup all the inputs of the new PHIs.  Visit order needs to be
1048   // deterministic and predictable because we're naming newly created
1049   // instructions.
1050   for (auto Pair : States) {
1051     Instruction *BDV = cast<Instruction>(Pair.first);
1052     BDVState State = Pair.second;
1053 
1054     assert(!isKnownBaseResult(BDV) && "why did it get added?");
1055     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1056     if (!State.isConflict())
1057       continue;
1058 
1059     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1060       PHINode *PN = cast<PHINode>(BDV);
1061       unsigned NumPHIValues = PN->getNumIncomingValues();
1062       for (unsigned i = 0; i < NumPHIValues; i++) {
1063         Value *InVal = PN->getIncomingValue(i);
1064         BasicBlock *InBB = PN->getIncomingBlock(i);
1065 
1066         // If we've already seen InBB, add the same incoming value
1067         // we added for it earlier.  The IR verifier requires phi
1068         // nodes with multiple entries from the same basic block
1069         // to have the same incoming value for each of those
1070         // entries.  If we don't do this check here and basephi
1071         // has a different type than base, we'll end up adding two
1072         // bitcasts (and hence two distinct values) as incoming
1073         // values for the same basic block.
1074 
1075         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
1076         if (BlockIndex != -1) {
1077           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
1078           BasePHI->addIncoming(OldBase, InBB);
1079 
1080 #ifndef NDEBUG
1081           Value *Base = getBaseForInput(InVal, nullptr);
1082           // In essence this assert states: the only way two values
1083           // incoming from the same basic block may be different is by
1084           // being different bitcasts of the same value.  A cleanup
1085           // that remains TODO is changing findBaseOrBDV to return an
1086           // llvm::Value of the correct type (and still remain pure).
1087           // This will remove the need to add bitcasts.
1088           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1089                  "Sanity -- findBaseOrBDV should be pure!");
1090 #endif
1091           continue;
1092         }
1093 
1094         // Find the instruction which produces the base for each input.  We may
1095         // need to insert a bitcast in the incoming block.
1096         // TODO: Need to split critical edges if insertion is needed
1097         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1098         BasePHI->addIncoming(Base, InBB);
1099       }
1100       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
1101     } else if (SelectInst *BaseSI =
1102                    dyn_cast<SelectInst>(State.getBaseValue())) {
1103       SelectInst *SI = cast<SelectInst>(BDV);
1104 
1105       // Find the instruction which produces the base for each input.
1106       // We may need to insert a bitcast.
1107       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1108       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1109     } else if (auto *BaseEE =
1110                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1111       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1112       // Find the instruction which produces the base for each input.  We may
1113       // need to insert a bitcast.
1114       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1115     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1116       auto *BdvIE = cast<InsertElementInst>(BDV);
1117       auto UpdateOperand = [&](int OperandIdx) {
1118         Value *InVal = BdvIE->getOperand(OperandIdx);
1119         Value *Base = getBaseForInput(InVal, BaseIE);
1120         BaseIE->setOperand(OperandIdx, Base);
1121       };
1122       UpdateOperand(0); // vector operand
1123       UpdateOperand(1); // scalar operand
1124     } else {
1125       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1126       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1127       auto UpdateOperand = [&](int OperandIdx) {
1128         Value *InVal = BdvSV->getOperand(OperandIdx);
1129         Value *Base = getBaseForInput(InVal, BaseSV);
1130         BaseSV->setOperand(OperandIdx, Base);
1131       };
1132       UpdateOperand(0); // vector operand
1133       UpdateOperand(1); // vector operand
1134     }
1135   }
1136 
1137   // Cache all of our results so we can cheaply reuse them
1138   // NOTE: This is actually two caches: one of the base defining value
1139   // relation and one of the base pointer relation!  FIXME
1140   for (auto Pair : States) {
1141     auto *BDV = Pair.first;
1142     Value *Base = Pair.second.getBaseValue();
1143     assert(BDV && Base);
1144     assert(!isKnownBaseResult(BDV) && "why did it get added?");
1145 
1146     LLVM_DEBUG(
1147         dbgs() << "Updating base value cache"
1148                << " for: " << BDV->getName() << " from: "
1149                << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1150                << " to: " << Base->getName() << "\n");
1151 
1152     if (Cache.count(BDV)) {
1153       assert(isKnownBaseResult(Base) &&
1154              "must be something we 'know' is a base pointer");
1155       // Once we transition from the BDV relation being store in the Cache to
1156       // the base relation being stored, it must be stable
1157       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
1158              "base relation should be stable");
1159     }
1160     Cache[BDV] = Base;
1161   }
1162   assert(Cache.count(Def));
1163   return Cache[Def];
1164 }
1165 
1166 // For a set of live pointers (base and/or derived), identify the base
1167 // pointer of the object which they are derived from.  This routine will
1168 // mutate the IR graph as needed to make the 'base' pointer live at the
1169 // definition site of 'derived'.  This ensures that any use of 'derived' can
1170 // also use 'base'.  This may involve the insertion of a number of
1171 // additional PHI nodes.
1172 //
1173 // preconditions: live is a set of pointer type Values
1174 //
1175 // side effects: may insert PHI nodes into the existing CFG, will preserve
1176 // CFG, will not remove or mutate any existing nodes
1177 //
1178 // post condition: PointerToBase contains one (derived, base) pair for every
1179 // pointer in live.  Note that derived can be equal to base if the original
1180 // pointer was a base pointer.
1181 static void
1182 findBasePointers(const StatepointLiveSetTy &live,
1183                  MapVector<Value *, Value *> &PointerToBase,
1184                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1185   for (Value *ptr : live) {
1186     Value *base = findBasePointer(ptr, DVCache);
1187     assert(base && "failed to find base pointer");
1188     PointerToBase[ptr] = base;
1189     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1190             DT->dominates(cast<Instruction>(base)->getParent(),
1191                           cast<Instruction>(ptr)->getParent())) &&
1192            "The base we found better dominate the derived pointer");
1193   }
1194 }
1195 
1196 /// Find the required based pointers (and adjust the live set) for the given
1197 /// parse point.
1198 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1199                              CallBase *Call,
1200                              PartiallyConstructedSafepointRecord &result) {
1201   MapVector<Value *, Value *> PointerToBase;
1202   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1203 
1204   if (PrintBasePointers) {
1205     errs() << "Base Pairs (w/o Relocation):\n";
1206     for (auto &Pair : PointerToBase) {
1207       errs() << " derived ";
1208       Pair.first->printAsOperand(errs(), false);
1209       errs() << " base ";
1210       Pair.second->printAsOperand(errs(), false);
1211       errs() << "\n";;
1212     }
1213   }
1214 
1215   result.PointerToBase = PointerToBase;
1216 }
1217 
1218 /// Given an updated version of the dataflow liveness results, update the
1219 /// liveset and base pointer maps for the call site CS.
1220 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1221                                   CallBase *Call,
1222                                   PartiallyConstructedSafepointRecord &result);
1223 
1224 static void recomputeLiveInValues(
1225     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1226     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1227   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1228   // again.  The old values are still live and will help it stabilize quickly.
1229   GCPtrLivenessData RevisedLivenessData;
1230   computeLiveInValues(DT, F, RevisedLivenessData);
1231   for (size_t i = 0; i < records.size(); i++) {
1232     struct PartiallyConstructedSafepointRecord &info = records[i];
1233     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1234   }
1235 }
1236 
1237 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1238 // no uses of the original value / return value between the gc.statepoint and
1239 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1240 // starting one of the successor blocks.  We also need to be able to insert the
1241 // gc.relocates only on the path which goes through the statepoint.  We might
1242 // need to split an edge to make this possible.
1243 static BasicBlock *
1244 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1245                             DominatorTree &DT) {
1246   BasicBlock *Ret = BB;
1247   if (!BB->getUniquePredecessor())
1248     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1249 
1250   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1251   // from it
1252   FoldSingleEntryPHINodes(Ret);
1253   assert(!isa<PHINode>(Ret->begin()) &&
1254          "All PHI nodes should have been removed!");
1255 
1256   // At this point, we can safely insert a gc.relocate or gc.result as the first
1257   // instruction in Ret if needed.
1258   return Ret;
1259 }
1260 
1261 // Create new attribute set containing only attributes which can be transferred
1262 // from original call to the safepoint.
1263 static AttributeList legalizeCallAttributes(AttributeList AL) {
1264   if (AL.isEmpty())
1265     return AL;
1266 
1267   // Remove the readonly, readnone, and statepoint function attributes.
1268   AttrBuilder FnAttrs = AL.getFnAttributes();
1269   FnAttrs.removeAttribute(Attribute::ReadNone);
1270   FnAttrs.removeAttribute(Attribute::ReadOnly);
1271   for (Attribute A : AL.getFnAttributes()) {
1272     if (isStatepointDirectiveAttr(A))
1273       FnAttrs.remove(A);
1274   }
1275 
1276   // Just skip parameter and return attributes for now
1277   LLVMContext &Ctx = AL.getContext();
1278   return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1279                             AttributeSet::get(Ctx, FnAttrs));
1280 }
1281 
1282 /// Helper function to place all gc relocates necessary for the given
1283 /// statepoint.
1284 /// Inputs:
1285 ///   liveVariables - list of variables to be relocated.
1286 ///   liveStart - index of the first live variable.
1287 ///   basePtrs - base pointers.
1288 ///   statepointToken - statepoint instruction to which relocates should be
1289 ///   bound.
1290 ///   Builder - Llvm IR builder to be used to construct new calls.
1291 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1292                               const int LiveStart,
1293                               ArrayRef<Value *> BasePtrs,
1294                               Instruction *StatepointToken,
1295                               IRBuilder<> &Builder) {
1296   if (LiveVariables.empty())
1297     return;
1298 
1299   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1300     auto ValIt = llvm::find(LiveVec, Val);
1301     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1302     size_t Index = std::distance(LiveVec.begin(), ValIt);
1303     assert(Index < LiveVec.size() && "Bug in std::find?");
1304     return Index;
1305   };
1306   Module *M = StatepointToken->getModule();
1307 
1308   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1309   // element type is i8 addrspace(1)*). We originally generated unique
1310   // declarations for each pointer type, but this proved problematic because
1311   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1312   // towards a single unified pointer type anyways, we can just cast everything
1313   // to an i8* of the right address space.  A bitcast is added later to convert
1314   // gc_relocate to the actual value's type.
1315   auto getGCRelocateDecl = [&] (Type *Ty) {
1316     assert(isHandledGCPointerType(Ty));
1317     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1318     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1319     if (auto *VT = dyn_cast<VectorType>(Ty))
1320       NewTy = VectorType::get(NewTy, VT->getNumElements());
1321     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1322                                      {NewTy});
1323   };
1324 
1325   // Lazily populated map from input types to the canonicalized form mentioned
1326   // in the comment above.  This should probably be cached somewhere more
1327   // broadly.
1328   DenseMap<Type *, Function *> TypeToDeclMap;
1329 
1330   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1331     // Generate the gc.relocate call and save the result
1332     Value *BaseIdx =
1333       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1334     Value *LiveIdx = Builder.getInt32(LiveStart + i);
1335 
1336     Type *Ty = LiveVariables[i]->getType();
1337     if (!TypeToDeclMap.count(Ty))
1338       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1339     Function *GCRelocateDecl = TypeToDeclMap[Ty];
1340 
1341     // only specify a debug name if we can give a useful one
1342     CallInst *Reloc = Builder.CreateCall(
1343         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1344         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1345     // Trick CodeGen into thinking there are lots of free registers at this
1346     // fake call.
1347     Reloc->setCallingConv(CallingConv::Cold);
1348   }
1349 }
1350 
1351 namespace {
1352 
1353 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1354 /// avoids having to worry about keeping around dangling pointers to Values.
1355 class DeferredReplacement {
1356   AssertingVH<Instruction> Old;
1357   AssertingVH<Instruction> New;
1358   bool IsDeoptimize = false;
1359 
1360   DeferredReplacement() = default;
1361 
1362 public:
1363   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1364     assert(Old != New && Old && New &&
1365            "Cannot RAUW equal values or to / from null!");
1366 
1367     DeferredReplacement D;
1368     D.Old = Old;
1369     D.New = New;
1370     return D;
1371   }
1372 
1373   static DeferredReplacement createDelete(Instruction *ToErase) {
1374     DeferredReplacement D;
1375     D.Old = ToErase;
1376     return D;
1377   }
1378 
1379   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1380 #ifndef NDEBUG
1381     auto *F = cast<CallInst>(Old)->getCalledFunction();
1382     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1383            "Only way to construct a deoptimize deferred replacement");
1384 #endif
1385     DeferredReplacement D;
1386     D.Old = Old;
1387     D.IsDeoptimize = true;
1388     return D;
1389   }
1390 
1391   /// Does the task represented by this instance.
1392   void doReplacement() {
1393     Instruction *OldI = Old;
1394     Instruction *NewI = New;
1395 
1396     assert(OldI != NewI && "Disallowed at construction?!");
1397     assert((!IsDeoptimize || !New) &&
1398            "Deoptimize intrinsics are not replaced!");
1399 
1400     Old = nullptr;
1401     New = nullptr;
1402 
1403     if (NewI)
1404       OldI->replaceAllUsesWith(NewI);
1405 
1406     if (IsDeoptimize) {
1407       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1408       // not necessarily be followed by the matching return.
1409       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1410       new UnreachableInst(RI->getContext(), RI);
1411       RI->eraseFromParent();
1412     }
1413 
1414     OldI->eraseFromParent();
1415   }
1416 };
1417 
1418 } // end anonymous namespace
1419 
1420 static StringRef getDeoptLowering(CallBase *Call) {
1421   const char *DeoptLowering = "deopt-lowering";
1422   if (Call->hasFnAttr(DeoptLowering)) {
1423     // FIXME: Calls have a *really* confusing interface around attributes
1424     // with values.
1425     const AttributeList &CSAS = Call->getAttributes();
1426     if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1427       return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1428           .getValueAsString();
1429     Function *F = Call->getCalledFunction();
1430     assert(F && F->hasFnAttribute(DeoptLowering));
1431     return F->getFnAttribute(DeoptLowering).getValueAsString();
1432   }
1433   return "live-through";
1434 }
1435 
1436 static void
1437 makeStatepointExplicitImpl(CallBase *Call, /* to replace */
1438                            const SmallVectorImpl<Value *> &BasePtrs,
1439                            const SmallVectorImpl<Value *> &LiveVariables,
1440                            PartiallyConstructedSafepointRecord &Result,
1441                            std::vector<DeferredReplacement> &Replacements) {
1442   assert(BasePtrs.size() == LiveVariables.size());
1443 
1444   // Then go ahead and use the builder do actually do the inserts.  We insert
1445   // immediately before the previous instruction under the assumption that all
1446   // arguments will be available here.  We can't insert afterwards since we may
1447   // be replacing a terminator.
1448   IRBuilder<> Builder(Call);
1449 
1450   ArrayRef<Value *> GCArgs(LiveVariables);
1451   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1452   uint32_t NumPatchBytes = 0;
1453   uint32_t Flags = uint32_t(StatepointFlags::None);
1454 
1455   ArrayRef<Use> CallArgs(Call->arg_begin(), Call->arg_end());
1456   ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(Call);
1457   ArrayRef<Use> TransitionArgs;
1458   if (auto TransitionBundle =
1459           Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
1460     Flags |= uint32_t(StatepointFlags::GCTransition);
1461     TransitionArgs = TransitionBundle->Inputs;
1462   }
1463 
1464   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1465   // with a return value, we lower then as never returning calls to
1466   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1467   bool IsDeoptimize = false;
1468 
1469   StatepointDirectives SD =
1470       parseStatepointDirectivesFromAttrs(Call->getAttributes());
1471   if (SD.NumPatchBytes)
1472     NumPatchBytes = *SD.NumPatchBytes;
1473   if (SD.StatepointID)
1474     StatepointID = *SD.StatepointID;
1475 
1476   // Pass through the requested lowering if any.  The default is live-through.
1477   StringRef DeoptLowering = getDeoptLowering(Call);
1478   if (DeoptLowering.equals("live-in"))
1479     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1480   else {
1481     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1482   }
1483 
1484   Value *CallTarget = Call->getCalledValue();
1485   if (Function *F = dyn_cast<Function>(CallTarget)) {
1486     if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1487       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1488       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1489       // verifier does not allow taking the address of an intrinsic function.
1490 
1491       SmallVector<Type *, 8> DomainTy;
1492       for (Value *Arg : CallArgs)
1493         DomainTy.push_back(Arg->getType());
1494       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1495                                     /* isVarArg = */ false);
1496 
1497       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1498       // calls to @llvm.experimental.deoptimize with different argument types in
1499       // the same module.  This is fine -- we assume the frontend knew what it
1500       // was doing when generating this kind of IR.
1501       CallTarget = F->getParent()
1502                        ->getOrInsertFunction("__llvm_deoptimize", FTy)
1503                        .getCallee();
1504 
1505       IsDeoptimize = true;
1506     }
1507   }
1508 
1509   // Create the statepoint given all the arguments
1510   Instruction *Token = nullptr;
1511   if (auto *CI = dyn_cast<CallInst>(Call)) {
1512     CallInst *SPCall = Builder.CreateGCStatepointCall(
1513         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1514         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1515 
1516     SPCall->setTailCallKind(CI->getTailCallKind());
1517     SPCall->setCallingConv(CI->getCallingConv());
1518 
1519     // Currently we will fail on parameter attributes and on certain
1520     // function attributes.  In case if we can handle this set of attributes -
1521     // set up function attrs directly on statepoint and return attrs later for
1522     // gc_result intrinsic.
1523     SPCall->setAttributes(legalizeCallAttributes(CI->getAttributes()));
1524 
1525     Token = SPCall;
1526 
1527     // Put the following gc_result and gc_relocate calls immediately after the
1528     // the old call (which we're about to delete)
1529     assert(CI->getNextNode() && "Not a terminator, must have next!");
1530     Builder.SetInsertPoint(CI->getNextNode());
1531     Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
1532   } else {
1533     auto *II = cast<InvokeInst>(Call);
1534 
1535     // Insert the new invoke into the old block.  We'll remove the old one in a
1536     // moment at which point this will become the new terminator for the
1537     // original block.
1538     InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
1539         StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
1540         II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
1541         "statepoint_token");
1542 
1543     SPInvoke->setCallingConv(II->getCallingConv());
1544 
1545     // Currently we will fail on parameter attributes and on certain
1546     // function attributes.  In case if we can handle this set of attributes -
1547     // set up function attrs directly on statepoint and return attrs later for
1548     // gc_result intrinsic.
1549     SPInvoke->setAttributes(legalizeCallAttributes(II->getAttributes()));
1550 
1551     Token = SPInvoke;
1552 
1553     // Generate gc relocates in exceptional path
1554     BasicBlock *UnwindBlock = II->getUnwindDest();
1555     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1556            UnwindBlock->getUniquePredecessor() &&
1557            "can't safely insert in this block!");
1558 
1559     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1560     Builder.SetCurrentDebugLocation(II->getDebugLoc());
1561 
1562     // Attach exceptional gc relocates to the landingpad.
1563     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1564     Result.UnwindToken = ExceptionalToken;
1565 
1566     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1567     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1568                       Builder);
1569 
1570     // Generate gc relocates and returns for normal block
1571     BasicBlock *NormalDest = II->getNormalDest();
1572     assert(!isa<PHINode>(NormalDest->begin()) &&
1573            NormalDest->getUniquePredecessor() &&
1574            "can't safely insert in this block!");
1575 
1576     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1577 
1578     // gc relocates will be generated later as if it were regular call
1579     // statepoint
1580   }
1581   assert(Token && "Should be set in one of the above branches!");
1582 
1583   if (IsDeoptimize) {
1584     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1585     // transform the tail-call like structure to a call to a void function
1586     // followed by unreachable to get better codegen.
1587     Replacements.push_back(
1588         DeferredReplacement::createDeoptimizeReplacement(Call));
1589   } else {
1590     Token->setName("statepoint_token");
1591     if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
1592       StringRef Name = Call->hasName() ? Call->getName() : "";
1593       CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
1594       GCResult->setAttributes(
1595           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1596                              Call->getAttributes().getRetAttributes()));
1597 
1598       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1599       // live set of some other safepoint, in which case that safepoint's
1600       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1601       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1602       // after the live sets have been made explicit in the IR, and we no longer
1603       // have raw pointers to worry about.
1604       Replacements.emplace_back(
1605           DeferredReplacement::createRAUW(Call, GCResult));
1606     } else {
1607       Replacements.emplace_back(DeferredReplacement::createDelete(Call));
1608     }
1609   }
1610 
1611   Result.StatepointToken = Token;
1612 
1613   // Second, create a gc.relocate for every live variable
1614   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1615   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1616 }
1617 
1618 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1619 // which make the relocations happening at this safepoint explicit.
1620 //
1621 // WARNING: Does not do any fixup to adjust users of the original live
1622 // values.  That's the callers responsibility.
1623 static void
1624 makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
1625                        PartiallyConstructedSafepointRecord &Result,
1626                        std::vector<DeferredReplacement> &Replacements) {
1627   const auto &LiveSet = Result.LiveSet;
1628   const auto &PointerToBase = Result.PointerToBase;
1629 
1630   // Convert to vector for efficient cross referencing.
1631   SmallVector<Value *, 64> BaseVec, LiveVec;
1632   LiveVec.reserve(LiveSet.size());
1633   BaseVec.reserve(LiveSet.size());
1634   for (Value *L : LiveSet) {
1635     LiveVec.push_back(L);
1636     assert(PointerToBase.count(L));
1637     Value *Base = PointerToBase.find(L)->second;
1638     BaseVec.push_back(Base);
1639   }
1640   assert(LiveVec.size() == BaseVec.size());
1641 
1642   // Do the actual rewriting and delete the old statepoint
1643   makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
1644 }
1645 
1646 // Helper function for the relocationViaAlloca.
1647 //
1648 // It receives iterator to the statepoint gc relocates and emits a store to the
1649 // assigned location (via allocaMap) for the each one of them.  It adds the
1650 // visited values into the visitedLiveValues set, which we will later use them
1651 // for sanity checking.
1652 static void
1653 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1654                        DenseMap<Value *, AllocaInst *> &AllocaMap,
1655                        DenseSet<Value *> &VisitedLiveValues) {
1656   for (User *U : GCRelocs) {
1657     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1658     if (!Relocate)
1659       continue;
1660 
1661     Value *OriginalValue = Relocate->getDerivedPtr();
1662     assert(AllocaMap.count(OriginalValue));
1663     Value *Alloca = AllocaMap[OriginalValue];
1664 
1665     // Emit store into the related alloca
1666     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1667     // the correct type according to alloca.
1668     assert(Relocate->getNextNode() &&
1669            "Should always have one since it's not a terminator");
1670     IRBuilder<> Builder(Relocate->getNextNode());
1671     Value *CastedRelocatedValue =
1672       Builder.CreateBitCast(Relocate,
1673                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1674                             suffixed_name_or(Relocate, ".casted", ""));
1675 
1676     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1677     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1678 
1679 #ifndef NDEBUG
1680     VisitedLiveValues.insert(OriginalValue);
1681 #endif
1682   }
1683 }
1684 
1685 // Helper function for the "relocationViaAlloca". Similar to the
1686 // "insertRelocationStores" but works for rematerialized values.
1687 static void insertRematerializationStores(
1688     const RematerializedValueMapTy &RematerializedValues,
1689     DenseMap<Value *, AllocaInst *> &AllocaMap,
1690     DenseSet<Value *> &VisitedLiveValues) {
1691   for (auto RematerializedValuePair: RematerializedValues) {
1692     Instruction *RematerializedValue = RematerializedValuePair.first;
1693     Value *OriginalValue = RematerializedValuePair.second;
1694 
1695     assert(AllocaMap.count(OriginalValue) &&
1696            "Can not find alloca for rematerialized value");
1697     Value *Alloca = AllocaMap[OriginalValue];
1698 
1699     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1700     Store->insertAfter(RematerializedValue);
1701 
1702 #ifndef NDEBUG
1703     VisitedLiveValues.insert(OriginalValue);
1704 #endif
1705   }
1706 }
1707 
1708 /// Do all the relocation update via allocas and mem2reg
1709 static void relocationViaAlloca(
1710     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1711     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1712 #ifndef NDEBUG
1713   // record initial number of (static) allocas; we'll check we have the same
1714   // number when we get done.
1715   int InitialAllocaNum = 0;
1716   for (Instruction &I : F.getEntryBlock())
1717     if (isa<AllocaInst>(I))
1718       InitialAllocaNum++;
1719 #endif
1720 
1721   // TODO-PERF: change data structures, reserve
1722   DenseMap<Value *, AllocaInst *> AllocaMap;
1723   SmallVector<AllocaInst *, 200> PromotableAllocas;
1724   // Used later to chack that we have enough allocas to store all values
1725   std::size_t NumRematerializedValues = 0;
1726   PromotableAllocas.reserve(Live.size());
1727 
1728   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1729   // "PromotableAllocas"
1730   const DataLayout &DL = F.getParent()->getDataLayout();
1731   auto emitAllocaFor = [&](Value *LiveValue) {
1732     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1733                                         DL.getAllocaAddrSpace(), "",
1734                                         F.getEntryBlock().getFirstNonPHI());
1735     AllocaMap[LiveValue] = Alloca;
1736     PromotableAllocas.push_back(Alloca);
1737   };
1738 
1739   // Emit alloca for each live gc pointer
1740   for (Value *V : Live)
1741     emitAllocaFor(V);
1742 
1743   // Emit allocas for rematerialized values
1744   for (const auto &Info : Records)
1745     for (auto RematerializedValuePair : Info.RematerializedValues) {
1746       Value *OriginalValue = RematerializedValuePair.second;
1747       if (AllocaMap.count(OriginalValue) != 0)
1748         continue;
1749 
1750       emitAllocaFor(OriginalValue);
1751       ++NumRematerializedValues;
1752     }
1753 
1754   // The next two loops are part of the same conceptual operation.  We need to
1755   // insert a store to the alloca after the original def and at each
1756   // redefinition.  We need to insert a load before each use.  These are split
1757   // into distinct loops for performance reasons.
1758 
1759   // Update gc pointer after each statepoint: either store a relocated value or
1760   // null (if no relocated value was found for this gc pointer and it is not a
1761   // gc_result).  This must happen before we update the statepoint with load of
1762   // alloca otherwise we lose the link between statepoint and old def.
1763   for (const auto &Info : Records) {
1764     Value *Statepoint = Info.StatepointToken;
1765 
1766     // This will be used for consistency check
1767     DenseSet<Value *> VisitedLiveValues;
1768 
1769     // Insert stores for normal statepoint gc relocates
1770     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1771 
1772     // In case if it was invoke statepoint
1773     // we will insert stores for exceptional path gc relocates.
1774     if (isa<InvokeInst>(Statepoint)) {
1775       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1776                              VisitedLiveValues);
1777     }
1778 
1779     // Do similar thing with rematerialized values
1780     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1781                                   VisitedLiveValues);
1782 
1783     if (ClobberNonLive) {
1784       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1785       // the gc.statepoint.  This will turn some subtle GC problems into
1786       // slightly easier to debug SEGVs.  Note that on large IR files with
1787       // lots of gc.statepoints this is extremely costly both memory and time
1788       // wise.
1789       SmallVector<AllocaInst *, 64> ToClobber;
1790       for (auto Pair : AllocaMap) {
1791         Value *Def = Pair.first;
1792         AllocaInst *Alloca = Pair.second;
1793 
1794         // This value was relocated
1795         if (VisitedLiveValues.count(Def)) {
1796           continue;
1797         }
1798         ToClobber.push_back(Alloca);
1799       }
1800 
1801       auto InsertClobbersAt = [&](Instruction *IP) {
1802         for (auto *AI : ToClobber) {
1803           auto PT = cast<PointerType>(AI->getAllocatedType());
1804           Constant *CPN = ConstantPointerNull::get(PT);
1805           StoreInst *Store = new StoreInst(CPN, AI);
1806           Store->insertBefore(IP);
1807         }
1808       };
1809 
1810       // Insert the clobbering stores.  These may get intermixed with the
1811       // gc.results and gc.relocates, but that's fine.
1812       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1813         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1814         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1815       } else {
1816         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1817       }
1818     }
1819   }
1820 
1821   // Update use with load allocas and add store for gc_relocated.
1822   for (auto Pair : AllocaMap) {
1823     Value *Def = Pair.first;
1824     AllocaInst *Alloca = Pair.second;
1825 
1826     // We pre-record the uses of allocas so that we dont have to worry about
1827     // later update that changes the user information..
1828 
1829     SmallVector<Instruction *, 20> Uses;
1830     // PERF: trade a linear scan for repeated reallocation
1831     Uses.reserve(Def->getNumUses());
1832     for (User *U : Def->users()) {
1833       if (!isa<ConstantExpr>(U)) {
1834         // If the def has a ConstantExpr use, then the def is either a
1835         // ConstantExpr use itself or null.  In either case
1836         // (recursively in the first, directly in the second), the oop
1837         // it is ultimately dependent on is null and this particular
1838         // use does not need to be fixed up.
1839         Uses.push_back(cast<Instruction>(U));
1840       }
1841     }
1842 
1843     llvm::sort(Uses);
1844     auto Last = std::unique(Uses.begin(), Uses.end());
1845     Uses.erase(Last, Uses.end());
1846 
1847     for (Instruction *Use : Uses) {
1848       if (isa<PHINode>(Use)) {
1849         PHINode *Phi = cast<PHINode>(Use);
1850         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1851           if (Def == Phi->getIncomingValue(i)) {
1852             LoadInst *Load =
1853                 new LoadInst(Alloca->getAllocatedType(), Alloca, "",
1854                              Phi->getIncomingBlock(i)->getTerminator());
1855             Phi->setIncomingValue(i, Load);
1856           }
1857         }
1858       } else {
1859         LoadInst *Load =
1860             new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
1861         Use->replaceUsesOfWith(Def, Load);
1862       }
1863     }
1864 
1865     // Emit store for the initial gc value.  Store must be inserted after load,
1866     // otherwise store will be in alloca's use list and an extra load will be
1867     // inserted before it.
1868     StoreInst *Store = new StoreInst(Def, Alloca);
1869     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1870       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1871         // InvokeInst is a terminator so the store need to be inserted into its
1872         // normal destination block.
1873         BasicBlock *NormalDest = Invoke->getNormalDest();
1874         Store->insertBefore(NormalDest->getFirstNonPHI());
1875       } else {
1876         assert(!Inst->isTerminator() &&
1877                "The only terminator that can produce a value is "
1878                "InvokeInst which is handled above.");
1879         Store->insertAfter(Inst);
1880       }
1881     } else {
1882       assert(isa<Argument>(Def));
1883       Store->insertAfter(cast<Instruction>(Alloca));
1884     }
1885   }
1886 
1887   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1888          "we must have the same allocas with lives");
1889   if (!PromotableAllocas.empty()) {
1890     // Apply mem2reg to promote alloca to SSA
1891     PromoteMemToReg(PromotableAllocas, DT);
1892   }
1893 
1894 #ifndef NDEBUG
1895   for (auto &I : F.getEntryBlock())
1896     if (isa<AllocaInst>(I))
1897       InitialAllocaNum--;
1898   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1899 #endif
1900 }
1901 
1902 /// Implement a unique function which doesn't require we sort the input
1903 /// vector.  Doing so has the effect of changing the output of a couple of
1904 /// tests in ways which make them less useful in testing fused safepoints.
1905 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1906   SmallSet<T, 8> Seen;
1907   Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }),
1908             Vec.end());
1909 }
1910 
1911 /// Insert holders so that each Value is obviously live through the entire
1912 /// lifetime of the call.
1913 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
1914                                  SmallVectorImpl<CallInst *> &Holders) {
1915   if (Values.empty())
1916     // No values to hold live, might as well not insert the empty holder
1917     return;
1918 
1919   Module *M = Call->getModule();
1920   // Use a dummy vararg function to actually hold the values live
1921   FunctionCallee Func = M->getOrInsertFunction(
1922       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
1923   if (isa<CallInst>(Call)) {
1924     // For call safepoints insert dummy calls right after safepoint
1925     Holders.push_back(
1926         CallInst::Create(Func, Values, "", &*++Call->getIterator()));
1927     return;
1928   }
1929   // For invoke safepooints insert dummy calls both in normal and
1930   // exceptional destination blocks
1931   auto *II = cast<InvokeInst>(Call);
1932   Holders.push_back(CallInst::Create(
1933       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1934   Holders.push_back(CallInst::Create(
1935       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1936 }
1937 
1938 static void findLiveReferences(
1939     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1940     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1941   GCPtrLivenessData OriginalLivenessData;
1942   computeLiveInValues(DT, F, OriginalLivenessData);
1943   for (size_t i = 0; i < records.size(); i++) {
1944     struct PartiallyConstructedSafepointRecord &info = records[i];
1945     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
1946   }
1947 }
1948 
1949 // Helper function for the "rematerializeLiveValues". It walks use chain
1950 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
1951 // the base or a value it cannot process. Only "simple" values are processed
1952 // (currently it is GEP's and casts). The returned root is  examined by the
1953 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
1954 // with all visited values.
1955 static Value* findRematerializableChainToBasePointer(
1956   SmallVectorImpl<Instruction*> &ChainToBase,
1957   Value *CurrentValue) {
1958   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1959     ChainToBase.push_back(GEP);
1960     return findRematerializableChainToBasePointer(ChainToBase,
1961                                                   GEP->getPointerOperand());
1962   }
1963 
1964   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1965     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1966       return CI;
1967 
1968     ChainToBase.push_back(CI);
1969     return findRematerializableChainToBasePointer(ChainToBase,
1970                                                   CI->getOperand(0));
1971   }
1972 
1973   // We have reached the root of the chain, which is either equal to the base or
1974   // is the first unsupported value along the use chain.
1975   return CurrentValue;
1976 }
1977 
1978 // Helper function for the "rematerializeLiveValues". Compute cost of the use
1979 // chain we are going to rematerialize.
1980 static unsigned
1981 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1982                        TargetTransformInfo &TTI) {
1983   unsigned Cost = 0;
1984 
1985   for (Instruction *Instr : Chain) {
1986     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1987       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1988              "non noop cast is found during rematerialization");
1989 
1990       Type *SrcTy = CI->getOperand(0)->getType();
1991       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI);
1992 
1993     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1994       // Cost of the address calculation
1995       Type *ValTy = GEP->getSourceElementType();
1996       Cost += TTI.getAddressComputationCost(ValTy);
1997 
1998       // And cost of the GEP itself
1999       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2000       //       allowed for the external usage)
2001       if (!GEP->hasAllConstantIndices())
2002         Cost += 2;
2003 
2004     } else {
2005       llvm_unreachable("unsupported instruction type during rematerialization");
2006     }
2007   }
2008 
2009   return Cost;
2010 }
2011 
2012 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
2013   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
2014   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
2015       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
2016     return false;
2017   // Map of incoming values and their corresponding basic blocks of
2018   // OrigRootPhi.
2019   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
2020   for (unsigned i = 0; i < PhiNum; i++)
2021     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2022         OrigRootPhi.getIncomingBlock(i);
2023 
2024   // Both current and base PHIs should have same incoming values and
2025   // the same basic blocks corresponding to the incoming values.
2026   for (unsigned i = 0; i < PhiNum; i++) {
2027     auto CIVI =
2028         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2029     if (CIVI == CurrentIncomingValues.end())
2030       return false;
2031     BasicBlock *CurrentIncomingBB = CIVI->second;
2032     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2033       return false;
2034   }
2035   return true;
2036 }
2037 
2038 // From the statepoint live set pick values that are cheaper to recompute then
2039 // to relocate. Remove this values from the live set, rematerialize them after
2040 // statepoint and record them in "Info" structure. Note that similar to
2041 // relocated values we don't do any user adjustments here.
2042 static void rematerializeLiveValues(CallBase *Call,
2043                                     PartiallyConstructedSafepointRecord &Info,
2044                                     TargetTransformInfo &TTI) {
2045   const unsigned int ChainLengthThreshold = 10;
2046 
2047   // Record values we are going to delete from this statepoint live set.
2048   // We can not di this in following loop due to iterator invalidation.
2049   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2050 
2051   for (Value *LiveValue: Info.LiveSet) {
2052     // For each live pointer find its defining chain
2053     SmallVector<Instruction *, 3> ChainToBase;
2054     assert(Info.PointerToBase.count(LiveValue));
2055     Value *RootOfChain =
2056       findRematerializableChainToBasePointer(ChainToBase,
2057                                              LiveValue);
2058 
2059     // Nothing to do, or chain is too long
2060     if ( ChainToBase.size() == 0 ||
2061         ChainToBase.size() > ChainLengthThreshold)
2062       continue;
2063 
2064     // Handle the scenario where the RootOfChain is not equal to the
2065     // Base Value, but they are essentially the same phi values.
2066     if (RootOfChain != Info.PointerToBase[LiveValue]) {
2067       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2068       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2069       if (!OrigRootPhi || !AlternateRootPhi)
2070         continue;
2071       // PHI nodes that have the same incoming values, and belonging to the same
2072       // basic blocks are essentially the same SSA value.  When the original phi
2073       // has incoming values with different base pointers, the original phi is
2074       // marked as conflict, and an additional `AlternateRootPhi` with the same
2075       // incoming values get generated by the findBasePointer function. We need
2076       // to identify the newly generated AlternateRootPhi (.base version of phi)
2077       // and RootOfChain (the original phi node itself) are the same, so that we
2078       // can rematerialize the gep and casts. This is a workaround for the
2079       // deficiency in the findBasePointer algorithm.
2080       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2081         continue;
2082       // Now that the phi nodes are proved to be the same, assert that
2083       // findBasePointer's newly generated AlternateRootPhi is present in the
2084       // liveset of the call.
2085       assert(Info.LiveSet.count(AlternateRootPhi));
2086     }
2087     // Compute cost of this chain
2088     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
2089     // TODO: We can also account for cases when we will be able to remove some
2090     //       of the rematerialized values by later optimization passes. I.e if
2091     //       we rematerialized several intersecting chains. Or if original values
2092     //       don't have any uses besides this statepoint.
2093 
2094     // For invokes we need to rematerialize each chain twice - for normal and
2095     // for unwind basic blocks. Model this by multiplying cost by two.
2096     if (isa<InvokeInst>(Call)) {
2097       Cost *= 2;
2098     }
2099     // If it's too expensive - skip it
2100     if (Cost >= RematerializationThreshold)
2101       continue;
2102 
2103     // Remove value from the live set
2104     LiveValuesToBeDeleted.push_back(LiveValue);
2105 
2106     // Clone instructions and record them inside "Info" structure
2107 
2108     // Walk backwards to visit top-most instructions first
2109     std::reverse(ChainToBase.begin(), ChainToBase.end());
2110 
2111     // Utility function which clones all instructions from "ChainToBase"
2112     // and inserts them before "InsertBefore". Returns rematerialized value
2113     // which should be used after statepoint.
2114     auto rematerializeChain = [&ChainToBase](
2115         Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2116       Instruction *LastClonedValue = nullptr;
2117       Instruction *LastValue = nullptr;
2118       for (Instruction *Instr: ChainToBase) {
2119         // Only GEP's and casts are supported as we need to be careful to not
2120         // introduce any new uses of pointers not in the liveset.
2121         // Note that it's fine to introduce new uses of pointers which were
2122         // otherwise not used after this statepoint.
2123         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2124 
2125         Instruction *ClonedValue = Instr->clone();
2126         ClonedValue->insertBefore(InsertBefore);
2127         ClonedValue->setName(Instr->getName() + ".remat");
2128 
2129         // If it is not first instruction in the chain then it uses previously
2130         // cloned value. We should update it to use cloned value.
2131         if (LastClonedValue) {
2132           assert(LastValue);
2133           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2134 #ifndef NDEBUG
2135           for (auto OpValue : ClonedValue->operand_values()) {
2136             // Assert that cloned instruction does not use any instructions from
2137             // this chain other than LastClonedValue
2138             assert(!is_contained(ChainToBase, OpValue) &&
2139                    "incorrect use in rematerialization chain");
2140             // Assert that the cloned instruction does not use the RootOfChain
2141             // or the AlternateLiveBase.
2142             assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2143           }
2144 #endif
2145         } else {
2146           // For the first instruction, replace the use of unrelocated base i.e.
2147           // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2148           // live set. They have been proved to be the same PHI nodes.  Note
2149           // that the *only* use of the RootOfChain in the ChainToBase list is
2150           // the first Value in the list.
2151           if (RootOfChain != AlternateLiveBase)
2152             ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2153         }
2154 
2155         LastClonedValue = ClonedValue;
2156         LastValue = Instr;
2157       }
2158       assert(LastClonedValue);
2159       return LastClonedValue;
2160     };
2161 
2162     // Different cases for calls and invokes. For invokes we need to clone
2163     // instructions both on normal and unwind path.
2164     if (isa<CallInst>(Call)) {
2165       Instruction *InsertBefore = Call->getNextNode();
2166       assert(InsertBefore);
2167       Instruction *RematerializedValue = rematerializeChain(
2168           InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2169       Info.RematerializedValues[RematerializedValue] = LiveValue;
2170     } else {
2171       auto *Invoke = cast<InvokeInst>(Call);
2172 
2173       Instruction *NormalInsertBefore =
2174           &*Invoke->getNormalDest()->getFirstInsertionPt();
2175       Instruction *UnwindInsertBefore =
2176           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2177 
2178       Instruction *NormalRematerializedValue = rematerializeChain(
2179           NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2180       Instruction *UnwindRematerializedValue = rematerializeChain(
2181           UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2182 
2183       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2184       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2185     }
2186   }
2187 
2188   // Remove rematerializaed values from the live set
2189   for (auto LiveValue: LiveValuesToBeDeleted) {
2190     Info.LiveSet.remove(LiveValue);
2191   }
2192 }
2193 
2194 static bool insertParsePoints(Function &F, DominatorTree &DT,
2195                               TargetTransformInfo &TTI,
2196                               SmallVectorImpl<CallBase *> &ToUpdate) {
2197 #ifndef NDEBUG
2198   // sanity check the input
2199   std::set<CallBase *> Uniqued;
2200   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2201   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2202 
2203   for (CallBase *Call : ToUpdate)
2204     assert(Call->getFunction() == &F);
2205 #endif
2206 
2207   // When inserting gc.relocates for invokes, we need to be able to insert at
2208   // the top of the successor blocks.  See the comment on
2209   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2210   // may restructure the CFG.
2211   for (CallBase *Call : ToUpdate) {
2212     auto *II = dyn_cast<InvokeInst>(Call);
2213     if (!II)
2214       continue;
2215     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2216     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2217   }
2218 
2219   // A list of dummy calls added to the IR to keep various values obviously
2220   // live in the IR.  We'll remove all of these when done.
2221   SmallVector<CallInst *, 64> Holders;
2222 
2223   // Insert a dummy call with all of the deopt operands we'll need for the
2224   // actual safepoint insertion as arguments.  This ensures reference operands
2225   // in the deopt argument list are considered live through the safepoint (and
2226   // thus makes sure they get relocated.)
2227   for (CallBase *Call : ToUpdate) {
2228     SmallVector<Value *, 64> DeoptValues;
2229 
2230     for (Value *Arg : GetDeoptBundleOperands(Call)) {
2231       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2232              "support for FCA unimplemented");
2233       if (isHandledGCPointerType(Arg->getType()))
2234         DeoptValues.push_back(Arg);
2235     }
2236 
2237     insertUseHolderAfter(Call, DeoptValues, Holders);
2238   }
2239 
2240   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2241 
2242   // A) Identify all gc pointers which are statically live at the given call
2243   // site.
2244   findLiveReferences(F, DT, ToUpdate, Records);
2245 
2246   // B) Find the base pointers for each live pointer
2247   /* scope for caching */ {
2248     // Cache the 'defining value' relation used in the computation and
2249     // insertion of base phis and selects.  This ensures that we don't insert
2250     // large numbers of duplicate base_phis.
2251     DefiningValueMapTy DVCache;
2252 
2253     for (size_t i = 0; i < Records.size(); i++) {
2254       PartiallyConstructedSafepointRecord &info = Records[i];
2255       findBasePointers(DT, DVCache, ToUpdate[i], info);
2256     }
2257   } // end of cache scope
2258 
2259   // The base phi insertion logic (for any safepoint) may have inserted new
2260   // instructions which are now live at some safepoint.  The simplest such
2261   // example is:
2262   // loop:
2263   //   phi a  <-- will be a new base_phi here
2264   //   safepoint 1 <-- that needs to be live here
2265   //   gep a + 1
2266   //   safepoint 2
2267   //   br loop
2268   // We insert some dummy calls after each safepoint to definitely hold live
2269   // the base pointers which were identified for that safepoint.  We'll then
2270   // ask liveness for _every_ base inserted to see what is now live.  Then we
2271   // remove the dummy calls.
2272   Holders.reserve(Holders.size() + Records.size());
2273   for (size_t i = 0; i < Records.size(); i++) {
2274     PartiallyConstructedSafepointRecord &Info = Records[i];
2275 
2276     SmallVector<Value *, 128> Bases;
2277     for (auto Pair : Info.PointerToBase)
2278       Bases.push_back(Pair.second);
2279 
2280     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2281   }
2282 
2283   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2284   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2285   // not the key issue.
2286   recomputeLiveInValues(F, DT, ToUpdate, Records);
2287 
2288   if (PrintBasePointers) {
2289     for (auto &Info : Records) {
2290       errs() << "Base Pairs: (w/Relocation)\n";
2291       for (auto Pair : Info.PointerToBase) {
2292         errs() << " derived ";
2293         Pair.first->printAsOperand(errs(), false);
2294         errs() << " base ";
2295         Pair.second->printAsOperand(errs(), false);
2296         errs() << "\n";
2297       }
2298     }
2299   }
2300 
2301   // It is possible that non-constant live variables have a constant base.  For
2302   // example, a GEP with a variable offset from a global.  In this case we can
2303   // remove it from the liveset.  We already don't add constants to the liveset
2304   // because we assume they won't move at runtime and the GC doesn't need to be
2305   // informed about them.  The same reasoning applies if the base is constant.
2306   // Note that the relocation placement code relies on this filtering for
2307   // correctness as it expects the base to be in the liveset, which isn't true
2308   // if the base is constant.
2309   for (auto &Info : Records)
2310     for (auto &BasePair : Info.PointerToBase)
2311       if (isa<Constant>(BasePair.second))
2312         Info.LiveSet.remove(BasePair.first);
2313 
2314   for (CallInst *CI : Holders)
2315     CI->eraseFromParent();
2316 
2317   Holders.clear();
2318 
2319   // In order to reduce live set of statepoint we might choose to rematerialize
2320   // some values instead of relocating them. This is purely an optimization and
2321   // does not influence correctness.
2322   for (size_t i = 0; i < Records.size(); i++)
2323     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2324 
2325   // We need this to safely RAUW and delete call or invoke return values that
2326   // may themselves be live over a statepoint.  For details, please see usage in
2327   // makeStatepointExplicitImpl.
2328   std::vector<DeferredReplacement> Replacements;
2329 
2330   // Now run through and replace the existing statepoints with new ones with
2331   // the live variables listed.  We do not yet update uses of the values being
2332   // relocated. We have references to live variables that need to
2333   // survive to the last iteration of this loop.  (By construction, the
2334   // previous statepoint can not be a live variable, thus we can and remove
2335   // the old statepoint calls as we go.)
2336   for (size_t i = 0; i < Records.size(); i++)
2337     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2338 
2339   ToUpdate.clear(); // prevent accident use of invalid calls.
2340 
2341   for (auto &PR : Replacements)
2342     PR.doReplacement();
2343 
2344   Replacements.clear();
2345 
2346   for (auto &Info : Records) {
2347     // These live sets may contain state Value pointers, since we replaced calls
2348     // with operand bundles with calls wrapped in gc.statepoint, and some of
2349     // those calls may have been def'ing live gc pointers.  Clear these out to
2350     // avoid accidentally using them.
2351     //
2352     // TODO: We should create a separate data structure that does not contain
2353     // these live sets, and migrate to using that data structure from this point
2354     // onward.
2355     Info.LiveSet.clear();
2356     Info.PointerToBase.clear();
2357   }
2358 
2359   // Do all the fixups of the original live variables to their relocated selves
2360   SmallVector<Value *, 128> Live;
2361   for (size_t i = 0; i < Records.size(); i++) {
2362     PartiallyConstructedSafepointRecord &Info = Records[i];
2363 
2364     // We can't simply save the live set from the original insertion.  One of
2365     // the live values might be the result of a call which needs a safepoint.
2366     // That Value* no longer exists and we need to use the new gc_result.
2367     // Thankfully, the live set is embedded in the statepoint (and updated), so
2368     // we just grab that.
2369     Statepoint Statepoint(Info.StatepointToken);
2370     Live.insert(Live.end(), Statepoint.gc_args_begin(),
2371                 Statepoint.gc_args_end());
2372 #ifndef NDEBUG
2373     // Do some basic sanity checks on our liveness results before performing
2374     // relocation.  Relocation can and will turn mistakes in liveness results
2375     // into non-sensical code which is must harder to debug.
2376     // TODO: It would be nice to test consistency as well
2377     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2378            "statepoint must be reachable or liveness is meaningless");
2379     for (Value *V : Statepoint.gc_args()) {
2380       if (!isa<Instruction>(V))
2381         // Non-instruction values trivial dominate all possible uses
2382         continue;
2383       auto *LiveInst = cast<Instruction>(V);
2384       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2385              "unreachable values should never be live");
2386       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2387              "basic SSA liveness expectation violated by liveness analysis");
2388     }
2389 #endif
2390   }
2391   unique_unsorted(Live);
2392 
2393 #ifndef NDEBUG
2394   // sanity check
2395   for (auto *Ptr : Live)
2396     assert(isHandledGCPointerType(Ptr->getType()) &&
2397            "must be a gc pointer type");
2398 #endif
2399 
2400   relocationViaAlloca(F, DT, Live, Records);
2401   return !Records.empty();
2402 }
2403 
2404 // Handles both return values and arguments for Functions and calls.
2405 template <typename AttrHolder>
2406 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2407                                       unsigned Index) {
2408   AttrBuilder R;
2409   if (AH.getDereferenceableBytes(Index))
2410     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2411                                   AH.getDereferenceableBytes(Index)));
2412   if (AH.getDereferenceableOrNullBytes(Index))
2413     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2414                                   AH.getDereferenceableOrNullBytes(Index)));
2415   if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
2416     R.addAttribute(Attribute::NoAlias);
2417 
2418   if (!R.empty())
2419     AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2420 }
2421 
2422 static void stripNonValidAttributesFromPrototype(Function &F) {
2423   LLVMContext &Ctx = F.getContext();
2424 
2425   for (Argument &A : F.args())
2426     if (isa<PointerType>(A.getType()))
2427       RemoveNonValidAttrAtIndex(Ctx, F,
2428                                 A.getArgNo() + AttributeList::FirstArgIndex);
2429 
2430   if (isa<PointerType>(F.getReturnType()))
2431     RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2432 }
2433 
2434 /// Certain metadata on instructions are invalid after running RS4GC.
2435 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2436 /// optimize functions. We drop such metadata on the instruction.
2437 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2438   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2439     return;
2440   // These are the attributes that are still valid on loads and stores after
2441   // RS4GC.
2442   // The metadata implying dereferenceability and noalias are (conservatively)
2443   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2444   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2445   // touch the entire heap including noalias objects. Note: The reasoning is
2446   // same as stripping the dereferenceability and noalias attributes that are
2447   // analogous to the metadata counterparts.
2448   // We also drop the invariant.load metadata on the load because that metadata
2449   // implies the address operand to the load points to memory that is never
2450   // changed once it became dereferenceable. This is no longer true after RS4GC.
2451   // Similar reasoning applies to invariant.group metadata, which applies to
2452   // loads within a group.
2453   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2454                          LLVMContext::MD_range,
2455                          LLVMContext::MD_alias_scope,
2456                          LLVMContext::MD_nontemporal,
2457                          LLVMContext::MD_nonnull,
2458                          LLVMContext::MD_align,
2459                          LLVMContext::MD_type};
2460 
2461   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2462   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2463 }
2464 
2465 static void stripNonValidDataFromBody(Function &F) {
2466   if (F.empty())
2467     return;
2468 
2469   LLVMContext &Ctx = F.getContext();
2470   MDBuilder Builder(Ctx);
2471 
2472   // Set of invariantstart instructions that we need to remove.
2473   // Use this to avoid invalidating the instruction iterator.
2474   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2475 
2476   for (Instruction &I : instructions(F)) {
2477     // invariant.start on memory location implies that the referenced memory
2478     // location is constant and unchanging. This is no longer true after
2479     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2480     // which frees the entire heap and the presence of invariant.start allows
2481     // the optimizer to sink the load of a memory location past a statepoint,
2482     // which is incorrect.
2483     if (auto *II = dyn_cast<IntrinsicInst>(&I))
2484       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2485         InvariantStartInstructions.push_back(II);
2486         continue;
2487       }
2488 
2489     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2490       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2491       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2492     }
2493 
2494     stripInvalidMetadataFromInstruction(I);
2495 
2496     if (auto *Call = dyn_cast<CallBase>(&I)) {
2497       for (int i = 0, e = Call->arg_size(); i != e; i++)
2498         if (isa<PointerType>(Call->getArgOperand(i)->getType()))
2499           RemoveNonValidAttrAtIndex(Ctx, *Call,
2500                                     i + AttributeList::FirstArgIndex);
2501       if (isa<PointerType>(Call->getType()))
2502         RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
2503     }
2504   }
2505 
2506   // Delete the invariant.start instructions and RAUW undef.
2507   for (auto *II : InvariantStartInstructions) {
2508     II->replaceAllUsesWith(UndefValue::get(II->getType()));
2509     II->eraseFromParent();
2510   }
2511 }
2512 
2513 /// Returns true if this function should be rewritten by this pass.  The main
2514 /// point of this function is as an extension point for custom logic.
2515 static bool shouldRewriteStatepointsIn(Function &F) {
2516   // TODO: This should check the GCStrategy
2517   if (F.hasGC()) {
2518     const auto &FunctionGCName = F.getGC();
2519     const StringRef StatepointExampleName("statepoint-example");
2520     const StringRef CoreCLRName("coreclr");
2521     return (StatepointExampleName == FunctionGCName) ||
2522            (CoreCLRName == FunctionGCName);
2523   } else
2524     return false;
2525 }
2526 
2527 static void stripNonValidData(Module &M) {
2528 #ifndef NDEBUG
2529   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2530 #endif
2531 
2532   for (Function &F : M)
2533     stripNonValidAttributesFromPrototype(F);
2534 
2535   for (Function &F : M)
2536     stripNonValidDataFromBody(F);
2537 }
2538 
2539 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2540                                             TargetTransformInfo &TTI,
2541                                             const TargetLibraryInfo &TLI) {
2542   assert(!F.isDeclaration() && !F.empty() &&
2543          "need function body to rewrite statepoints in");
2544   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2545 
2546   auto NeedsRewrite = [&TLI](Instruction &I) {
2547     if (const auto *Call = dyn_cast<CallBase>(&I))
2548       return !callsGCLeafFunction(Call, TLI) && !isStatepoint(Call);
2549     return false;
2550   };
2551 
2552   // Delete any unreachable statepoints so that we don't have unrewritten
2553   // statepoints surviving this pass.  This makes testing easier and the
2554   // resulting IR less confusing to human readers.
2555   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2556   bool MadeChange = removeUnreachableBlocks(F, &DTU);
2557   // Flush the Dominator Tree.
2558   DTU.getDomTree();
2559 
2560   // Gather all the statepoints which need rewritten.  Be careful to only
2561   // consider those in reachable code since we need to ask dominance queries
2562   // when rewriting.  We'll delete the unreachable ones in a moment.
2563   SmallVector<CallBase *, 64> ParsePointNeeded;
2564   for (Instruction &I : instructions(F)) {
2565     // TODO: only the ones with the flag set!
2566     if (NeedsRewrite(I)) {
2567       // NOTE removeUnreachableBlocks() is stronger than
2568       // DominatorTree::isReachableFromEntry(). In other words
2569       // removeUnreachableBlocks can remove some blocks for which
2570       // isReachableFromEntry() returns true.
2571       assert(DT.isReachableFromEntry(I.getParent()) &&
2572             "no unreachable blocks expected");
2573       ParsePointNeeded.push_back(cast<CallBase>(&I));
2574     }
2575   }
2576 
2577   // Return early if no work to do.
2578   if (ParsePointNeeded.empty())
2579     return MadeChange;
2580 
2581   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2582   // These are created by LCSSA.  They have the effect of increasing the size
2583   // of liveness sets for no good reason.  It may be harder to do this post
2584   // insertion since relocations and base phis can confuse things.
2585   for (BasicBlock &BB : F)
2586     if (BB.getUniquePredecessor()) {
2587       MadeChange = true;
2588       FoldSingleEntryPHINodes(&BB);
2589     }
2590 
2591   // Before we start introducing relocations, we want to tweak the IR a bit to
2592   // avoid unfortunate code generation effects.  The main example is that we
2593   // want to try to make sure the comparison feeding a branch is after any
2594   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2595   // values feeding a branch after relocation.  This is semantically correct,
2596   // but results in extra register pressure since both the pre-relocation and
2597   // post-relocation copies must be available in registers.  For code without
2598   // relocations this is handled elsewhere, but teaching the scheduler to
2599   // reverse the transform we're about to do would be slightly complex.
2600   // Note: This may extend the live range of the inputs to the icmp and thus
2601   // increase the liveset of any statepoint we move over.  This is profitable
2602   // as long as all statepoints are in rare blocks.  If we had in-register
2603   // lowering for live values this would be a much safer transform.
2604   auto getConditionInst = [](Instruction *TI) -> Instruction * {
2605     if (auto *BI = dyn_cast<BranchInst>(TI))
2606       if (BI->isConditional())
2607         return dyn_cast<Instruction>(BI->getCondition());
2608     // TODO: Extend this to handle switches
2609     return nullptr;
2610   };
2611   for (BasicBlock &BB : F) {
2612     Instruction *TI = BB.getTerminator();
2613     if (auto *Cond = getConditionInst(TI))
2614       // TODO: Handle more than just ICmps here.  We should be able to move
2615       // most instructions without side effects or memory access.
2616       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2617         MadeChange = true;
2618         Cond->moveBefore(TI);
2619       }
2620   }
2621 
2622   // Nasty workaround - The base computation code in the main algorithm doesn't
2623   // consider the fact that a GEP can be used to convert a scalar to a vector.
2624   // The right fix for this is to integrate GEPs into the base rewriting
2625   // algorithm properly, this is just a short term workaround to prevent
2626   // crashes by canonicalizing such GEPs into fully vector GEPs.
2627   for (Instruction &I : instructions(F)) {
2628     if (!isa<GetElementPtrInst>(I))
2629       continue;
2630 
2631     unsigned VF = 0;
2632     for (unsigned i = 0; i < I.getNumOperands(); i++)
2633       if (I.getOperand(i)->getType()->isVectorTy()) {
2634         assert(VF == 0 ||
2635                VF == I.getOperand(i)->getType()->getVectorNumElements());
2636         VF = I.getOperand(i)->getType()->getVectorNumElements();
2637       }
2638 
2639     // It's the vector to scalar traversal through the pointer operand which
2640     // confuses base pointer rewriting, so limit ourselves to that case.
2641     if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
2642       IRBuilder<> B(&I);
2643       auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
2644       I.setOperand(0, Splat);
2645       MadeChange = true;
2646     }
2647   }
2648 
2649   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2650   return MadeChange;
2651 }
2652 
2653 // liveness computation via standard dataflow
2654 // -------------------------------------------------------------------
2655 
2656 // TODO: Consider using bitvectors for liveness, the set of potentially
2657 // interesting values should be small and easy to pre-compute.
2658 
2659 /// Compute the live-in set for the location rbegin starting from
2660 /// the live-out set of the basic block
2661 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2662                                 BasicBlock::reverse_iterator End,
2663                                 SetVector<Value *> &LiveTmp) {
2664   for (auto &I : make_range(Begin, End)) {
2665     // KILL/Def - Remove this definition from LiveIn
2666     LiveTmp.remove(&I);
2667 
2668     // Don't consider *uses* in PHI nodes, we handle their contribution to
2669     // predecessor blocks when we seed the LiveOut sets
2670     if (isa<PHINode>(I))
2671       continue;
2672 
2673     // USE - Add to the LiveIn set for this instruction
2674     for (Value *V : I.operands()) {
2675       assert(!isUnhandledGCPointerType(V->getType()) &&
2676              "support for FCA unimplemented");
2677       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2678         // The choice to exclude all things constant here is slightly subtle.
2679         // There are two independent reasons:
2680         // - We assume that things which are constant (from LLVM's definition)
2681         // do not move at runtime.  For example, the address of a global
2682         // variable is fixed, even though it's contents may not be.
2683         // - Second, we can't disallow arbitrary inttoptr constants even
2684         // if the language frontend does.  Optimization passes are free to
2685         // locally exploit facts without respect to global reachability.  This
2686         // can create sections of code which are dynamically unreachable and
2687         // contain just about anything.  (see constants.ll in tests)
2688         LiveTmp.insert(V);
2689       }
2690     }
2691   }
2692 }
2693 
2694 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2695   for (BasicBlock *Succ : successors(BB)) {
2696     for (auto &I : *Succ) {
2697       PHINode *PN = dyn_cast<PHINode>(&I);
2698       if (!PN)
2699         break;
2700 
2701       Value *V = PN->getIncomingValueForBlock(BB);
2702       assert(!isUnhandledGCPointerType(V->getType()) &&
2703              "support for FCA unimplemented");
2704       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2705         LiveTmp.insert(V);
2706     }
2707   }
2708 }
2709 
2710 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2711   SetVector<Value *> KillSet;
2712   for (Instruction &I : *BB)
2713     if (isHandledGCPointerType(I.getType()))
2714       KillSet.insert(&I);
2715   return KillSet;
2716 }
2717 
2718 #ifndef NDEBUG
2719 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2720 /// sanity check for the liveness computation.
2721 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2722                           Instruction *TI, bool TermOkay = false) {
2723   for (Value *V : Live) {
2724     if (auto *I = dyn_cast<Instruction>(V)) {
2725       // The terminator can be a member of the LiveOut set.  LLVM's definition
2726       // of instruction dominance states that V does not dominate itself.  As
2727       // such, we need to special case this to allow it.
2728       if (TermOkay && TI == I)
2729         continue;
2730       assert(DT.dominates(I, TI) &&
2731              "basic SSA liveness expectation violated by liveness analysis");
2732     }
2733   }
2734 }
2735 
2736 /// Check that all the liveness sets used during the computation of liveness
2737 /// obey basic SSA properties.  This is useful for finding cases where we miss
2738 /// a def.
2739 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2740                           BasicBlock &BB) {
2741   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2742   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2743   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2744 }
2745 #endif
2746 
2747 static void computeLiveInValues(DominatorTree &DT, Function &F,
2748                                 GCPtrLivenessData &Data) {
2749   SmallSetVector<BasicBlock *, 32> Worklist;
2750 
2751   // Seed the liveness for each individual block
2752   for (BasicBlock &BB : F) {
2753     Data.KillSet[&BB] = computeKillSet(&BB);
2754     Data.LiveSet[&BB].clear();
2755     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2756 
2757 #ifndef NDEBUG
2758     for (Value *Kill : Data.KillSet[&BB])
2759       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2760 #endif
2761 
2762     Data.LiveOut[&BB] = SetVector<Value *>();
2763     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2764     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2765     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2766     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2767     if (!Data.LiveIn[&BB].empty())
2768       Worklist.insert(pred_begin(&BB), pred_end(&BB));
2769   }
2770 
2771   // Propagate that liveness until stable
2772   while (!Worklist.empty()) {
2773     BasicBlock *BB = Worklist.pop_back_val();
2774 
2775     // Compute our new liveout set, then exit early if it hasn't changed despite
2776     // the contribution of our successor.
2777     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2778     const auto OldLiveOutSize = LiveOut.size();
2779     for (BasicBlock *Succ : successors(BB)) {
2780       assert(Data.LiveIn.count(Succ));
2781       LiveOut.set_union(Data.LiveIn[Succ]);
2782     }
2783     // assert OutLiveOut is a subset of LiveOut
2784     if (OldLiveOutSize == LiveOut.size()) {
2785       // If the sets are the same size, then we didn't actually add anything
2786       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
2787       // hasn't changed.
2788       continue;
2789     }
2790     Data.LiveOut[BB] = LiveOut;
2791 
2792     // Apply the effects of this basic block
2793     SetVector<Value *> LiveTmp = LiveOut;
2794     LiveTmp.set_union(Data.LiveSet[BB]);
2795     LiveTmp.set_subtract(Data.KillSet[BB]);
2796 
2797     assert(Data.LiveIn.count(BB));
2798     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2799     // assert: OldLiveIn is a subset of LiveTmp
2800     if (OldLiveIn.size() != LiveTmp.size()) {
2801       Data.LiveIn[BB] = LiveTmp;
2802       Worklist.insert(pred_begin(BB), pred_end(BB));
2803     }
2804   } // while (!Worklist.empty())
2805 
2806 #ifndef NDEBUG
2807   // Sanity check our output against SSA properties.  This helps catch any
2808   // missing kills during the above iteration.
2809   for (BasicBlock &BB : F)
2810     checkBasicSSA(DT, Data, BB);
2811 #endif
2812 }
2813 
2814 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2815                               StatepointLiveSetTy &Out) {
2816   BasicBlock *BB = Inst->getParent();
2817 
2818   // Note: The copy is intentional and required
2819   assert(Data.LiveOut.count(BB));
2820   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2821 
2822   // We want to handle the statepoint itself oddly.  It's
2823   // call result is not live (normal), nor are it's arguments
2824   // (unless they're used again later).  This adjustment is
2825   // specifically what we need to relocate
2826   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
2827                       LiveOut);
2828   LiveOut.remove(Inst);
2829   Out.insert(LiveOut.begin(), LiveOut.end());
2830 }
2831 
2832 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2833                                   CallBase *Call,
2834                                   PartiallyConstructedSafepointRecord &Info) {
2835   StatepointLiveSetTy Updated;
2836   findLiveSetAtInst(Call, RevisedLivenessData, Updated);
2837 
2838   // We may have base pointers which are now live that weren't before.  We need
2839   // to update the PointerToBase structure to reflect this.
2840   for (auto V : Updated)
2841     if (Info.PointerToBase.insert({V, V}).second) {
2842       assert(isKnownBaseResult(V) &&
2843              "Can't find base for unexpected live value!");
2844       continue;
2845     }
2846 
2847 #ifndef NDEBUG
2848   for (auto V : Updated)
2849     assert(Info.PointerToBase.count(V) &&
2850            "Must be able to find base for live value!");
2851 #endif
2852 
2853   // Remove any stale base mappings - this can happen since our liveness is
2854   // more precise then the one inherent in the base pointer analysis.
2855   DenseSet<Value *> ToErase;
2856   for (auto KVPair : Info.PointerToBase)
2857     if (!Updated.count(KVPair.first))
2858       ToErase.insert(KVPair.first);
2859 
2860   for (auto *V : ToErase)
2861     Info.PointerToBase.erase(V);
2862 
2863 #ifndef NDEBUG
2864   for (auto KVPair : Info.PointerToBase)
2865     assert(Updated.count(KVPair.first) && "record for non-live value");
2866 #endif
2867 
2868   Info.LiveSet = Updated;
2869 }
2870