1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/Cloning.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 46 47 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 48 49 using namespace llvm; 50 51 // Print the liveset found at the insert location 52 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 53 cl::init(false)); 54 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 55 cl::init(false)); 56 // Print out the base pointers for debugging 57 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 58 cl::init(false)); 59 60 // Cost threshold measuring when it is profitable to rematerialize value instead 61 // of relocating it 62 static cl::opt<unsigned> 63 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 64 cl::init(6)); 65 66 #ifdef XDEBUG 67 static bool ClobberNonLive = true; 68 #else 69 static bool ClobberNonLive = false; 70 #endif 71 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 72 cl::location(ClobberNonLive), 73 cl::Hidden); 74 75 namespace { 76 struct RewriteStatepointsForGC : public ModulePass { 77 static char ID; // Pass identification, replacement for typeid 78 79 RewriteStatepointsForGC() : ModulePass(ID) { 80 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 81 } 82 bool runOnFunction(Function &F); 83 bool runOnModule(Module &M) override { 84 bool Changed = false; 85 for (Function &F : M) 86 Changed |= runOnFunction(F); 87 88 if (Changed) { 89 // stripDereferenceabilityInfo asserts that shouldRewriteStatepointsIn 90 // returns true for at least one function in the module. Since at least 91 // one function changed, we know that the precondition is satisfied. 92 stripDereferenceabilityInfo(M); 93 } 94 95 return Changed; 96 } 97 98 void getAnalysisUsage(AnalysisUsage &AU) const override { 99 // We add and rewrite a bunch of instructions, but don't really do much 100 // else. We could in theory preserve a lot more analyses here. 101 AU.addRequired<DominatorTreeWrapperPass>(); 102 AU.addRequired<TargetTransformInfoWrapperPass>(); 103 } 104 105 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 106 /// dereferenceability that are no longer valid/correct after 107 /// RewriteStatepointsForGC has run. This is because semantically, after 108 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 109 /// heap. stripDereferenceabilityInfo (conservatively) restores correctness 110 /// by erasing all attributes in the module that externally imply 111 /// dereferenceability. 112 /// 113 void stripDereferenceabilityInfo(Module &M); 114 115 // Helpers for stripDereferenceabilityInfo 116 void stripDereferenceabilityInfoFromBody(Function &F); 117 void stripDereferenceabilityInfoFromPrototype(Function &F); 118 }; 119 } // namespace 120 121 char RewriteStatepointsForGC::ID = 0; 122 123 ModulePass *llvm::createRewriteStatepointsForGCPass() { 124 return new RewriteStatepointsForGC(); 125 } 126 127 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 128 "Make relocations explicit at statepoints", false, false) 129 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 130 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 131 "Make relocations explicit at statepoints", false, false) 132 133 namespace { 134 struct GCPtrLivenessData { 135 /// Values defined in this block. 136 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 137 /// Values used in this block (and thus live); does not included values 138 /// killed within this block. 139 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 140 141 /// Values live into this basic block (i.e. used by any 142 /// instruction in this basic block or ones reachable from here) 143 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 144 145 /// Values live out of this basic block (i.e. live into 146 /// any successor block) 147 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 148 }; 149 150 // The type of the internal cache used inside the findBasePointers family 151 // of functions. From the callers perspective, this is an opaque type and 152 // should not be inspected. 153 // 154 // In the actual implementation this caches two relations: 155 // - The base relation itself (i.e. this pointer is based on that one) 156 // - The base defining value relation (i.e. before base_phi insertion) 157 // Generally, after the execution of a full findBasePointer call, only the 158 // base relation will remain. Internally, we add a mixture of the two 159 // types, then update all the second type to the first type 160 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 161 typedef DenseSet<Value *> StatepointLiveSetTy; 162 typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>> 163 RematerializedValueMapTy; 164 165 struct PartiallyConstructedSafepointRecord { 166 /// The set of values known to be live across this safepoint 167 StatepointLiveSetTy LiveSet; 168 169 /// Mapping from live pointers to a base-defining-value 170 DenseMap<Value *, Value *> PointerToBase; 171 172 /// The *new* gc.statepoint instruction itself. This produces the token 173 /// that normal path gc.relocates and the gc.result are tied to. 174 Instruction *StatepointToken; 175 176 /// Instruction to which exceptional gc relocates are attached 177 /// Makes it easier to iterate through them during relocationViaAlloca. 178 Instruction *UnwindToken; 179 180 /// Record live values we are rematerialized instead of relocating. 181 /// They are not included into 'LiveSet' field. 182 /// Maps rematerialized copy to it's original value. 183 RematerializedValueMapTy RematerializedValues; 184 }; 185 } 186 187 /// Compute the live-in set for every basic block in the function 188 static void computeLiveInValues(DominatorTree &DT, Function &F, 189 GCPtrLivenessData &Data); 190 191 /// Given results from the dataflow liveness computation, find the set of live 192 /// Values at a particular instruction. 193 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 194 StatepointLiveSetTy &out); 195 196 // TODO: Once we can get to the GCStrategy, this becomes 197 // Optional<bool> isGCManagedPointer(const Value *V) const override { 198 199 static bool isGCPointerType(Type *T) { 200 if (auto *PT = dyn_cast<PointerType>(T)) 201 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 202 // GC managed heap. We know that a pointer into this heap needs to be 203 // updated and that no other pointer does. 204 return (1 == PT->getAddressSpace()); 205 return false; 206 } 207 208 // Return true if this type is one which a) is a gc pointer or contains a GC 209 // pointer and b) is of a type this code expects to encounter as a live value. 210 // (The insertion code will assert that a type which matches (a) and not (b) 211 // is not encountered.) 212 static bool isHandledGCPointerType(Type *T) { 213 // We fully support gc pointers 214 if (isGCPointerType(T)) 215 return true; 216 // We partially support vectors of gc pointers. The code will assert if it 217 // can't handle something. 218 if (auto VT = dyn_cast<VectorType>(T)) 219 if (isGCPointerType(VT->getElementType())) 220 return true; 221 return false; 222 } 223 224 #ifndef NDEBUG 225 /// Returns true if this type contains a gc pointer whether we know how to 226 /// handle that type or not. 227 static bool containsGCPtrType(Type *Ty) { 228 if (isGCPointerType(Ty)) 229 return true; 230 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 231 return isGCPointerType(VT->getScalarType()); 232 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 233 return containsGCPtrType(AT->getElementType()); 234 if (StructType *ST = dyn_cast<StructType>(Ty)) 235 return std::any_of( 236 ST->subtypes().begin(), ST->subtypes().end(), 237 [](Type *SubType) { return containsGCPtrType(SubType); }); 238 return false; 239 } 240 241 // Returns true if this is a type which a) is a gc pointer or contains a GC 242 // pointer and b) is of a type which the code doesn't expect (i.e. first class 243 // aggregates). Used to trip assertions. 244 static bool isUnhandledGCPointerType(Type *Ty) { 245 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 246 } 247 #endif 248 249 static bool order_by_name(Value *a, Value *b) { 250 if (a->hasName() && b->hasName()) { 251 return -1 == a->getName().compare(b->getName()); 252 } else if (a->hasName() && !b->hasName()) { 253 return true; 254 } else if (!a->hasName() && b->hasName()) { 255 return false; 256 } else { 257 // Better than nothing, but not stable 258 return a < b; 259 } 260 } 261 262 // Return the name of the value suffixed with the provided value, or if the 263 // value didn't have a name, the default value specified. 264 static std::string suffixed_name_or(Value *V, StringRef Suffix, 265 StringRef DefaultName) { 266 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 267 } 268 269 // Conservatively identifies any definitions which might be live at the 270 // given instruction. The analysis is performed immediately before the 271 // given instruction. Values defined by that instruction are not considered 272 // live. Values used by that instruction are considered live. 273 static void analyzeParsePointLiveness( 274 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 275 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 276 Instruction *inst = CS.getInstruction(); 277 278 StatepointLiveSetTy LiveSet; 279 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet); 280 281 if (PrintLiveSet) { 282 // Note: This output is used by several of the test cases 283 // The order of elements in a set is not stable, put them in a vec and sort 284 // by name 285 SmallVector<Value *, 64> Temp; 286 Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end()); 287 std::sort(Temp.begin(), Temp.end(), order_by_name); 288 errs() << "Live Variables:\n"; 289 for (Value *V : Temp) 290 dbgs() << " " << V->getName() << " " << *V << "\n"; 291 } 292 if (PrintLiveSetSize) { 293 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 294 errs() << "Number live values: " << LiveSet.size() << "\n"; 295 } 296 result.LiveSet = LiveSet; 297 } 298 299 static bool isKnownBaseResult(Value *V); 300 namespace { 301 /// A single base defining value - An immediate base defining value for an 302 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 303 /// For instructions which have multiple pointer [vector] inputs or that 304 /// transition between vector and scalar types, there is no immediate base 305 /// defining value. The 'base defining value' for 'Def' is the transitive 306 /// closure of this relation stopping at the first instruction which has no 307 /// immediate base defining value. The b.d.v. might itself be a base pointer, 308 /// but it can also be an arbitrary derived pointer. 309 struct BaseDefiningValueResult { 310 /// Contains the value which is the base defining value. 311 Value * const BDV; 312 /// True if the base defining value is also known to be an actual base 313 /// pointer. 314 const bool IsKnownBase; 315 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 316 : BDV(BDV), IsKnownBase(IsKnownBase) { 317 #ifndef NDEBUG 318 // Check consistency between new and old means of checking whether a BDV is 319 // a base. 320 bool MustBeBase = isKnownBaseResult(BDV); 321 assert(!MustBeBase || MustBeBase == IsKnownBase); 322 #endif 323 } 324 }; 325 } 326 327 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 328 329 /// Return a base defining value for the 'Index' element of the given vector 330 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 331 /// 'I'. As an optimization, this method will try to determine when the 332 /// element is known to already be a base pointer. If this can be established, 333 /// the second value in the returned pair will be true. Note that either a 334 /// vector or a pointer typed value can be returned. For the former, the 335 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 336 /// If the later, the return pointer is a BDV (or possibly a base) for the 337 /// particular element in 'I'. 338 static BaseDefiningValueResult 339 findBaseDefiningValueOfVector(Value *I) { 340 assert(I->getType()->isVectorTy() && 341 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 342 "Illegal to ask for the base pointer of a non-pointer type"); 343 344 // Each case parallels findBaseDefiningValue below, see that code for 345 // detailed motivation. 346 347 if (isa<Argument>(I)) 348 // An incoming argument to the function is a base pointer 349 return BaseDefiningValueResult(I, true); 350 351 // We shouldn't see the address of a global as a vector value? 352 assert(!isa<GlobalVariable>(I) && 353 "unexpected global variable found in base of vector"); 354 355 // inlining could possibly introduce phi node that contains 356 // undef if callee has multiple returns 357 if (isa<UndefValue>(I)) 358 // utterly meaningless, but useful for dealing with partially optimized 359 // code. 360 return BaseDefiningValueResult(I, true); 361 362 // Due to inheritance, this must be _after_ the global variable and undef 363 // checks 364 if (Constant *Con = dyn_cast<Constant>(I)) { 365 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 366 "order of checks wrong!"); 367 assert(Con->isNullValue() && "null is the only case which makes sense"); 368 return BaseDefiningValueResult(Con, true); 369 } 370 371 if (isa<LoadInst>(I)) 372 return BaseDefiningValueResult(I, true); 373 374 if (isa<InsertElementInst>(I)) 375 // We don't know whether this vector contains entirely base pointers or 376 // not. To be conservatively correct, we treat it as a BDV and will 377 // duplicate code as needed to construct a parallel vector of bases. 378 return BaseDefiningValueResult(I, false); 379 380 if (isa<ShuffleVectorInst>(I)) 381 // We don't know whether this vector contains entirely base pointers or 382 // not. To be conservatively correct, we treat it as a BDV and will 383 // duplicate code as needed to construct a parallel vector of bases. 384 // TODO: There a number of local optimizations which could be applied here 385 // for particular sufflevector patterns. 386 return BaseDefiningValueResult(I, false); 387 388 // A PHI or Select is a base defining value. The outer findBasePointer 389 // algorithm is responsible for constructing a base value for this BDV. 390 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 391 "unknown vector instruction - no base found for vector element"); 392 return BaseDefiningValueResult(I, false); 393 } 394 395 /// Helper function for findBasePointer - Will return a value which either a) 396 /// defines the base pointer for the input, b) blocks the simple search 397 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 398 /// from pointer to vector type or back. 399 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 400 if (I->getType()->isVectorTy()) 401 return findBaseDefiningValueOfVector(I); 402 403 assert(I->getType()->isPointerTy() && 404 "Illegal to ask for the base pointer of a non-pointer type"); 405 406 if (isa<Argument>(I)) 407 // An incoming argument to the function is a base pointer 408 // We should have never reached here if this argument isn't an gc value 409 return BaseDefiningValueResult(I, true); 410 411 if (isa<GlobalVariable>(I)) 412 // base case 413 return BaseDefiningValueResult(I, true); 414 415 // inlining could possibly introduce phi node that contains 416 // undef if callee has multiple returns 417 if (isa<UndefValue>(I)) 418 // utterly meaningless, but useful for dealing with 419 // partially optimized code. 420 return BaseDefiningValueResult(I, true); 421 422 // Due to inheritance, this must be _after_ the global variable and undef 423 // checks 424 if (isa<Constant>(I)) { 425 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 426 "order of checks wrong!"); 427 // Note: Finding a constant base for something marked for relocation 428 // doesn't really make sense. The most likely case is either a) some 429 // screwed up the address space usage or b) your validating against 430 // compiled C++ code w/o the proper separation. The only real exception 431 // is a null pointer. You could have generic code written to index of 432 // off a potentially null value and have proven it null. We also use 433 // null pointers in dead paths of relocation phis (which we might later 434 // want to find a base pointer for). 435 assert(isa<ConstantPointerNull>(I) && 436 "null is the only case which makes sense"); 437 return BaseDefiningValueResult(I, true); 438 } 439 440 if (CastInst *CI = dyn_cast<CastInst>(I)) { 441 Value *Def = CI->stripPointerCasts(); 442 // If we find a cast instruction here, it means we've found a cast which is 443 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 444 // handle int->ptr conversion. 445 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 446 return findBaseDefiningValue(Def); 447 } 448 449 if (isa<LoadInst>(I)) 450 // The value loaded is an gc base itself 451 return BaseDefiningValueResult(I, true); 452 453 454 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 455 // The base of this GEP is the base 456 return findBaseDefiningValue(GEP->getPointerOperand()); 457 458 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 459 switch (II->getIntrinsicID()) { 460 case Intrinsic::experimental_gc_result_ptr: 461 default: 462 // fall through to general call handling 463 break; 464 case Intrinsic::experimental_gc_statepoint: 465 case Intrinsic::experimental_gc_result_float: 466 case Intrinsic::experimental_gc_result_int: 467 llvm_unreachable("these don't produce pointers"); 468 case Intrinsic::experimental_gc_relocate: { 469 // Rerunning safepoint insertion after safepoints are already 470 // inserted is not supported. It could probably be made to work, 471 // but why are you doing this? There's no good reason. 472 llvm_unreachable("repeat safepoint insertion is not supported"); 473 } 474 case Intrinsic::gcroot: 475 // Currently, this mechanism hasn't been extended to work with gcroot. 476 // There's no reason it couldn't be, but I haven't thought about the 477 // implications much. 478 llvm_unreachable( 479 "interaction with the gcroot mechanism is not supported"); 480 } 481 } 482 // We assume that functions in the source language only return base 483 // pointers. This should probably be generalized via attributes to support 484 // both source language and internal functions. 485 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 486 return BaseDefiningValueResult(I, true); 487 488 // I have absolutely no idea how to implement this part yet. It's not 489 // necessarily hard, I just haven't really looked at it yet. 490 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 491 492 if (isa<AtomicCmpXchgInst>(I)) 493 // A CAS is effectively a atomic store and load combined under a 494 // predicate. From the perspective of base pointers, we just treat it 495 // like a load. 496 return BaseDefiningValueResult(I, true); 497 498 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 499 "binary ops which don't apply to pointers"); 500 501 // The aggregate ops. Aggregates can either be in the heap or on the 502 // stack, but in either case, this is simply a field load. As a result, 503 // this is a defining definition of the base just like a load is. 504 if (isa<ExtractValueInst>(I)) 505 return BaseDefiningValueResult(I, true); 506 507 // We should never see an insert vector since that would require we be 508 // tracing back a struct value not a pointer value. 509 assert(!isa<InsertValueInst>(I) && 510 "Base pointer for a struct is meaningless"); 511 512 // An extractelement produces a base result exactly when it's input does. 513 // We may need to insert a parallel instruction to extract the appropriate 514 // element out of the base vector corresponding to the input. Given this, 515 // it's analogous to the phi and select case even though it's not a merge. 516 if (isa<ExtractElementInst>(I)) 517 // Note: There a lot of obvious peephole cases here. This are deliberately 518 // handled after the main base pointer inference algorithm to make writing 519 // test cases to exercise that code easier. 520 return BaseDefiningValueResult(I, false); 521 522 // The last two cases here don't return a base pointer. Instead, they 523 // return a value which dynamically selects from among several base 524 // derived pointers (each with it's own base potentially). It's the job of 525 // the caller to resolve these. 526 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 527 "missing instruction case in findBaseDefiningValing"); 528 return BaseDefiningValueResult(I, false); 529 } 530 531 /// Returns the base defining value for this value. 532 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 533 Value *&Cached = Cache[I]; 534 if (!Cached) { 535 Cached = findBaseDefiningValue(I).BDV; 536 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 537 << Cached->getName() << "\n"); 538 } 539 assert(Cache[I] != nullptr); 540 return Cached; 541 } 542 543 /// Return a base pointer for this value if known. Otherwise, return it's 544 /// base defining value. 545 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 546 Value *Def = findBaseDefiningValueCached(I, Cache); 547 auto Found = Cache.find(Def); 548 if (Found != Cache.end()) { 549 // Either a base-of relation, or a self reference. Caller must check. 550 return Found->second; 551 } 552 // Only a BDV available 553 return Def; 554 } 555 556 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 557 /// is it known to be a base pointer? Or do we need to continue searching. 558 static bool isKnownBaseResult(Value *V) { 559 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 560 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 561 !isa<ShuffleVectorInst>(V)) { 562 // no recursion possible 563 return true; 564 } 565 if (isa<Instruction>(V) && 566 cast<Instruction>(V)->getMetadata("is_base_value")) { 567 // This is a previously inserted base phi or select. We know 568 // that this is a base value. 569 return true; 570 } 571 572 // We need to keep searching 573 return false; 574 } 575 576 namespace { 577 /// Models the state of a single base defining value in the findBasePointer 578 /// algorithm for determining where a new instruction is needed to propagate 579 /// the base of this BDV. 580 class BDVState { 581 public: 582 enum Status { Unknown, Base, Conflict }; 583 584 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 585 assert(status != Base || b); 586 } 587 explicit BDVState(Value *b) : status(Base), base(b) {} 588 BDVState() : status(Unknown), base(nullptr) {} 589 590 Status getStatus() const { return status; } 591 Value *getBase() const { return base; } 592 593 bool isBase() const { return getStatus() == Base; } 594 bool isUnknown() const { return getStatus() == Unknown; } 595 bool isConflict() const { return getStatus() == Conflict; } 596 597 bool operator==(const BDVState &other) const { 598 return base == other.base && status == other.status; 599 } 600 601 bool operator!=(const BDVState &other) const { return !(*this == other); } 602 603 LLVM_DUMP_METHOD 604 void dump() const { print(dbgs()); dbgs() << '\n'; } 605 606 void print(raw_ostream &OS) const { 607 switch (status) { 608 case Unknown: 609 OS << "U"; 610 break; 611 case Base: 612 OS << "B"; 613 break; 614 case Conflict: 615 OS << "C"; 616 break; 617 }; 618 OS << " (" << base << " - " 619 << (base ? base->getName() : "nullptr") << "): "; 620 } 621 622 private: 623 Status status; 624 Value *base; // non null only if status == base 625 }; 626 } 627 628 #ifndef NDEBUG 629 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 630 State.print(OS); 631 return OS; 632 } 633 #endif 634 635 namespace { 636 // Values of type BDVState form a lattice, and this is a helper 637 // class that implementes the meet operation. The meat of the meet 638 // operation is implemented in MeetBDVStates::pureMeet 639 class MeetBDVStates { 640 public: 641 /// Initializes the currentResult to the TOP state so that if can be met with 642 /// any other state to produce that state. 643 MeetBDVStates() {} 644 645 // Destructively meet the current result with the given BDVState 646 void meetWith(BDVState otherState) { 647 currentResult = meet(otherState, currentResult); 648 } 649 650 BDVState getResult() const { return currentResult; } 651 652 private: 653 BDVState currentResult; 654 655 /// Perform a meet operation on two elements of the BDVState lattice. 656 static BDVState meet(BDVState LHS, BDVState RHS) { 657 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 658 "math is wrong: meet does not commute!"); 659 BDVState Result = pureMeet(LHS, RHS); 660 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 661 << " produced " << Result << "\n"); 662 return Result; 663 } 664 665 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 666 switch (stateA.getStatus()) { 667 case BDVState::Unknown: 668 return stateB; 669 670 case BDVState::Base: 671 assert(stateA.getBase() && "can't be null"); 672 if (stateB.isUnknown()) 673 return stateA; 674 675 if (stateB.isBase()) { 676 if (stateA.getBase() == stateB.getBase()) { 677 assert(stateA == stateB && "equality broken!"); 678 return stateA; 679 } 680 return BDVState(BDVState::Conflict); 681 } 682 assert(stateB.isConflict() && "only three states!"); 683 return BDVState(BDVState::Conflict); 684 685 case BDVState::Conflict: 686 return stateA; 687 } 688 llvm_unreachable("only three states!"); 689 } 690 }; 691 } 692 693 694 /// For a given value or instruction, figure out what base ptr it's derived 695 /// from. For gc objects, this is simply itself. On success, returns a value 696 /// which is the base pointer. (This is reliable and can be used for 697 /// relocation.) On failure, returns nullptr. 698 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 699 Value *def = findBaseOrBDV(I, cache); 700 701 if (isKnownBaseResult(def)) { 702 return def; 703 } 704 705 // Here's the rough algorithm: 706 // - For every SSA value, construct a mapping to either an actual base 707 // pointer or a PHI which obscures the base pointer. 708 // - Construct a mapping from PHI to unknown TOP state. Use an 709 // optimistic algorithm to propagate base pointer information. Lattice 710 // looks like: 711 // UNKNOWN 712 // b1 b2 b3 b4 713 // CONFLICT 714 // When algorithm terminates, all PHIs will either have a single concrete 715 // base or be in a conflict state. 716 // - For every conflict, insert a dummy PHI node without arguments. Add 717 // these to the base[Instruction] = BasePtr mapping. For every 718 // non-conflict, add the actual base. 719 // - For every conflict, add arguments for the base[a] of each input 720 // arguments. 721 // 722 // Note: A simpler form of this would be to add the conflict form of all 723 // PHIs without running the optimistic algorithm. This would be 724 // analogous to pessimistic data flow and would likely lead to an 725 // overall worse solution. 726 727 #ifndef NDEBUG 728 auto isExpectedBDVType = [](Value *BDV) { 729 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 730 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 731 }; 732 #endif 733 734 // Once populated, will contain a mapping from each potentially non-base BDV 735 // to a lattice value (described above) which corresponds to that BDV. 736 // We use the order of insertion (DFS over the def/use graph) to provide a 737 // stable deterministic ordering for visiting DenseMaps (which are unordered) 738 // below. This is important for deterministic compilation. 739 MapVector<Value *, BDVState> States; 740 741 // Recursively fill in all base defining values reachable from the initial 742 // one for which we don't already know a definite base value for 743 /* scope */ { 744 SmallVector<Value*, 16> Worklist; 745 Worklist.push_back(def); 746 States.insert(std::make_pair(def, BDVState())); 747 while (!Worklist.empty()) { 748 Value *Current = Worklist.pop_back_val(); 749 assert(!isKnownBaseResult(Current) && "why did it get added?"); 750 751 auto visitIncomingValue = [&](Value *InVal) { 752 Value *Base = findBaseOrBDV(InVal, cache); 753 if (isKnownBaseResult(Base)) 754 // Known bases won't need new instructions introduced and can be 755 // ignored safely 756 return; 757 assert(isExpectedBDVType(Base) && "the only non-base values " 758 "we see should be base defining values"); 759 if (States.insert(std::make_pair(Base, BDVState())).second) 760 Worklist.push_back(Base); 761 }; 762 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 763 for (Value *InVal : Phi->incoming_values()) 764 visitIncomingValue(InVal); 765 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 766 visitIncomingValue(Sel->getTrueValue()); 767 visitIncomingValue(Sel->getFalseValue()); 768 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 769 visitIncomingValue(EE->getVectorOperand()); 770 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 771 visitIncomingValue(IE->getOperand(0)); // vector operand 772 visitIncomingValue(IE->getOperand(1)); // scalar operand 773 } else { 774 // There is one known class of instructions we know we don't handle. 775 assert(isa<ShuffleVectorInst>(Current)); 776 llvm_unreachable("unimplemented instruction case"); 777 } 778 } 779 } 780 781 #ifndef NDEBUG 782 DEBUG(dbgs() << "States after initialization:\n"); 783 for (auto Pair : States) { 784 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 785 } 786 #endif 787 788 // Return a phi state for a base defining value. We'll generate a new 789 // base state for known bases and expect to find a cached state otherwise. 790 auto getStateForBDV = [&](Value *baseValue) { 791 if (isKnownBaseResult(baseValue)) 792 return BDVState(baseValue); 793 auto I = States.find(baseValue); 794 assert(I != States.end() && "lookup failed!"); 795 return I->second; 796 }; 797 798 bool progress = true; 799 while (progress) { 800 #ifndef NDEBUG 801 const size_t oldSize = States.size(); 802 #endif 803 progress = false; 804 // We're only changing values in this loop, thus safe to keep iterators. 805 // Since this is computing a fixed point, the order of visit does not 806 // effect the result. TODO: We could use a worklist here and make this run 807 // much faster. 808 for (auto Pair : States) { 809 Value *BDV = Pair.first; 810 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 811 812 // Given an input value for the current instruction, return a BDVState 813 // instance which represents the BDV of that value. 814 auto getStateForInput = [&](Value *V) mutable { 815 Value *BDV = findBaseOrBDV(V, cache); 816 return getStateForBDV(BDV); 817 }; 818 819 MeetBDVStates calculateMeet; 820 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) { 821 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 822 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 823 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) { 824 for (Value *Val : Phi->incoming_values()) 825 calculateMeet.meetWith(getStateForInput(Val)); 826 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 827 // The 'meet' for an extractelement is slightly trivial, but it's still 828 // useful in that it drives us to conflict if our input is. 829 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 830 } else { 831 // Given there's a inherent type mismatch between the operands, will 832 // *always* produce Conflict. 833 auto *IE = cast<InsertElementInst>(BDV); 834 calculateMeet.meetWith(getStateForInput(IE->getOperand(0))); 835 calculateMeet.meetWith(getStateForInput(IE->getOperand(1))); 836 } 837 838 BDVState oldState = States[BDV]; 839 BDVState newState = calculateMeet.getResult(); 840 if (oldState != newState) { 841 progress = true; 842 States[BDV] = newState; 843 } 844 } 845 846 assert(oldSize == States.size() && 847 "fixed point shouldn't be adding any new nodes to state"); 848 } 849 850 #ifndef NDEBUG 851 DEBUG(dbgs() << "States after meet iteration:\n"); 852 for (auto Pair : States) { 853 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 854 } 855 #endif 856 857 // Insert Phis for all conflicts 858 // TODO: adjust naming patterns to avoid this order of iteration dependency 859 for (auto Pair : States) { 860 Instruction *I = cast<Instruction>(Pair.first); 861 BDVState State = Pair.second; 862 assert(!isKnownBaseResult(I) && "why did it get added?"); 863 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 864 865 // extractelement instructions are a bit special in that we may need to 866 // insert an extract even when we know an exact base for the instruction. 867 // The problem is that we need to convert from a vector base to a scalar 868 // base for the particular indice we're interested in. 869 if (State.isBase() && isa<ExtractElementInst>(I) && 870 isa<VectorType>(State.getBase()->getType())) { 871 auto *EE = cast<ExtractElementInst>(I); 872 // TODO: In many cases, the new instruction is just EE itself. We should 873 // exploit this, but can't do it here since it would break the invariant 874 // about the BDV not being known to be a base. 875 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 876 EE->getIndexOperand(), 877 "base_ee", EE); 878 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 879 States[I] = BDVState(BDVState::Base, BaseInst); 880 } 881 882 // Since we're joining a vector and scalar base, they can never be the 883 // same. As a result, we should always see insert element having reached 884 // the conflict state. 885 if (isa<InsertElementInst>(I)) { 886 assert(State.isConflict()); 887 } 888 889 if (!State.isConflict()) 890 continue; 891 892 /// Create and insert a new instruction which will represent the base of 893 /// the given instruction 'I'. 894 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 895 if (isa<PHINode>(I)) { 896 BasicBlock *BB = I->getParent(); 897 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 898 assert(NumPreds > 0 && "how did we reach here"); 899 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 900 return PHINode::Create(I->getType(), NumPreds, Name, I); 901 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 902 // The undef will be replaced later 903 UndefValue *Undef = UndefValue::get(Sel->getType()); 904 std::string Name = suffixed_name_or(I, ".base", "base_select"); 905 return SelectInst::Create(Sel->getCondition(), Undef, 906 Undef, Name, Sel); 907 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 908 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 909 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 910 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 911 EE); 912 } else { 913 auto *IE = cast<InsertElementInst>(I); 914 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 915 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 916 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 917 return InsertElementInst::Create(VecUndef, ScalarUndef, 918 IE->getOperand(2), Name, IE); 919 } 920 921 }; 922 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 923 // Add metadata marking this as a base value 924 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 925 States[I] = BDVState(BDVState::Conflict, BaseInst); 926 } 927 928 // Returns a instruction which produces the base pointer for a given 929 // instruction. The instruction is assumed to be an input to one of the BDVs 930 // seen in the inference algorithm above. As such, we must either already 931 // know it's base defining value is a base, or have inserted a new 932 // instruction to propagate the base of it's BDV and have entered that newly 933 // introduced instruction into the state table. In either case, we are 934 // assured to be able to determine an instruction which produces it's base 935 // pointer. 936 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 937 Value *BDV = findBaseOrBDV(Input, cache); 938 Value *Base = nullptr; 939 if (isKnownBaseResult(BDV)) { 940 Base = BDV; 941 } else { 942 // Either conflict or base. 943 assert(States.count(BDV)); 944 Base = States[BDV].getBase(); 945 } 946 assert(Base && "can't be null"); 947 // The cast is needed since base traversal may strip away bitcasts 948 if (Base->getType() != Input->getType() && 949 InsertPt) { 950 Base = new BitCastInst(Base, Input->getType(), "cast", 951 InsertPt); 952 } 953 return Base; 954 }; 955 956 // Fixup all the inputs of the new PHIs. Visit order needs to be 957 // deterministic and predictable because we're naming newly created 958 // instructions. 959 for (auto Pair : States) { 960 Instruction *BDV = cast<Instruction>(Pair.first); 961 BDVState State = Pair.second; 962 963 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 964 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 965 if (!State.isConflict()) 966 continue; 967 968 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) { 969 PHINode *phi = cast<PHINode>(BDV); 970 unsigned NumPHIValues = phi->getNumIncomingValues(); 971 for (unsigned i = 0; i < NumPHIValues; i++) { 972 Value *InVal = phi->getIncomingValue(i); 973 BasicBlock *InBB = phi->getIncomingBlock(i); 974 975 // If we've already seen InBB, add the same incoming value 976 // we added for it earlier. The IR verifier requires phi 977 // nodes with multiple entries from the same basic block 978 // to have the same incoming value for each of those 979 // entries. If we don't do this check here and basephi 980 // has a different type than base, we'll end up adding two 981 // bitcasts (and hence two distinct values) as incoming 982 // values for the same basic block. 983 984 int blockIndex = basephi->getBasicBlockIndex(InBB); 985 if (blockIndex != -1) { 986 Value *oldBase = basephi->getIncomingValue(blockIndex); 987 basephi->addIncoming(oldBase, InBB); 988 989 #ifndef NDEBUG 990 Value *Base = getBaseForInput(InVal, nullptr); 991 // In essence this assert states: the only way two 992 // values incoming from the same basic block may be 993 // different is by being different bitcasts of the same 994 // value. A cleanup that remains TODO is changing 995 // findBaseOrBDV to return an llvm::Value of the correct 996 // type (and still remain pure). This will remove the 997 // need to add bitcasts. 998 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() && 999 "sanity -- findBaseOrBDV should be pure!"); 1000 #endif 1001 continue; 1002 } 1003 1004 // Find the instruction which produces the base for each input. We may 1005 // need to insert a bitcast in the incoming block. 1006 // TODO: Need to split critical edges if insertion is needed 1007 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1008 basephi->addIncoming(Base, InBB); 1009 } 1010 assert(basephi->getNumIncomingValues() == NumPHIValues); 1011 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) { 1012 SelectInst *Sel = cast<SelectInst>(BDV); 1013 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 1014 // something more safe and less hacky. 1015 for (int i = 1; i <= 2; i++) { 1016 Value *InVal = Sel->getOperand(i); 1017 // Find the instruction which produces the base for each input. We may 1018 // need to insert a bitcast. 1019 Value *Base = getBaseForInput(InVal, BaseSel); 1020 BaseSel->setOperand(i, Base); 1021 } 1022 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 1023 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1024 // Find the instruction which produces the base for each input. We may 1025 // need to insert a bitcast. 1026 Value *Base = getBaseForInput(InVal, BaseEE); 1027 BaseEE->setOperand(0, Base); 1028 } else { 1029 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 1030 auto *BdvIE = cast<InsertElementInst>(BDV); 1031 auto UpdateOperand = [&](int OperandIdx) { 1032 Value *InVal = BdvIE->getOperand(OperandIdx); 1033 Value *Base = getBaseForInput(InVal, BaseIE); 1034 BaseIE->setOperand(OperandIdx, Base); 1035 }; 1036 UpdateOperand(0); // vector operand 1037 UpdateOperand(1); // scalar operand 1038 } 1039 1040 } 1041 1042 // Now that we're done with the algorithm, see if we can optimize the 1043 // results slightly by reducing the number of new instructions needed. 1044 // Arguably, this should be integrated into the algorithm above, but 1045 // doing as a post process step is easier to reason about for the moment. 1046 DenseMap<Value *, Value *> ReverseMap; 1047 SmallPtrSet<Instruction *, 16> NewInsts; 1048 SmallSetVector<AssertingVH<Instruction>, 16> Worklist; 1049 // Note: We need to visit the states in a deterministic order. We uses the 1050 // Keys we sorted above for this purpose. Note that we are papering over a 1051 // bigger problem with the algorithm above - it's visit order is not 1052 // deterministic. A larger change is needed to fix this. 1053 for (auto Pair : States) { 1054 auto *BDV = Pair.first; 1055 auto State = Pair.second; 1056 Value *Base = State.getBase(); 1057 assert(BDV && Base); 1058 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1059 assert(isKnownBaseResult(Base) && 1060 "must be something we 'know' is a base pointer"); 1061 if (!State.isConflict()) 1062 continue; 1063 1064 ReverseMap[Base] = BDV; 1065 if (auto *BaseI = dyn_cast<Instruction>(Base)) { 1066 NewInsts.insert(BaseI); 1067 Worklist.insert(BaseI); 1068 } 1069 } 1070 auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI, 1071 Value *Replacement) { 1072 // Add users which are new instructions (excluding self references) 1073 for (User *U : BaseI->users()) 1074 if (auto *UI = dyn_cast<Instruction>(U)) 1075 if (NewInsts.count(UI) && UI != BaseI) 1076 Worklist.insert(UI); 1077 // Then do the actual replacement 1078 NewInsts.erase(BaseI); 1079 ReverseMap.erase(BaseI); 1080 BaseI->replaceAllUsesWith(Replacement); 1081 BaseI->eraseFromParent(); 1082 assert(States.count(BDV)); 1083 assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI); 1084 States[BDV] = BDVState(BDVState::Conflict, Replacement); 1085 }; 1086 const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout(); 1087 while (!Worklist.empty()) { 1088 Instruction *BaseI = Worklist.pop_back_val(); 1089 assert(NewInsts.count(BaseI)); 1090 Value *Bdv = ReverseMap[BaseI]; 1091 if (auto *BdvI = dyn_cast<Instruction>(Bdv)) 1092 if (BaseI->isIdenticalTo(BdvI)) { 1093 DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n"); 1094 ReplaceBaseInstWith(Bdv, BaseI, Bdv); 1095 continue; 1096 } 1097 if (Value *V = SimplifyInstruction(BaseI, DL)) { 1098 DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n"); 1099 ReplaceBaseInstWith(Bdv, BaseI, V); 1100 continue; 1101 } 1102 } 1103 1104 // Cache all of our results so we can cheaply reuse them 1105 // NOTE: This is actually two caches: one of the base defining value 1106 // relation and one of the base pointer relation! FIXME 1107 for (auto Pair : States) { 1108 auto *BDV = Pair.first; 1109 Value *base = Pair.second.getBase(); 1110 assert(BDV && base); 1111 1112 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none"; 1113 DEBUG(dbgs() << "Updating base value cache" 1114 << " for: " << BDV->getName() 1115 << " from: " << fromstr 1116 << " to: " << base->getName() << "\n"); 1117 1118 if (cache.count(BDV)) { 1119 // Once we transition from the BDV relation being store in the cache to 1120 // the base relation being stored, it must be stable 1121 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) && 1122 "base relation should be stable"); 1123 } 1124 cache[BDV] = base; 1125 } 1126 assert(cache.find(def) != cache.end()); 1127 return cache[def]; 1128 } 1129 1130 // For a set of live pointers (base and/or derived), identify the base 1131 // pointer of the object which they are derived from. This routine will 1132 // mutate the IR graph as needed to make the 'base' pointer live at the 1133 // definition site of 'derived'. This ensures that any use of 'derived' can 1134 // also use 'base'. This may involve the insertion of a number of 1135 // additional PHI nodes. 1136 // 1137 // preconditions: live is a set of pointer type Values 1138 // 1139 // side effects: may insert PHI nodes into the existing CFG, will preserve 1140 // CFG, will not remove or mutate any existing nodes 1141 // 1142 // post condition: PointerToBase contains one (derived, base) pair for every 1143 // pointer in live. Note that derived can be equal to base if the original 1144 // pointer was a base pointer. 1145 static void 1146 findBasePointers(const StatepointLiveSetTy &live, 1147 DenseMap<Value *, Value *> &PointerToBase, 1148 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1149 // For the naming of values inserted to be deterministic - which makes for 1150 // much cleaner and more stable tests - we need to assign an order to the 1151 // live values. DenseSets do not provide a deterministic order across runs. 1152 SmallVector<Value *, 64> Temp; 1153 Temp.insert(Temp.end(), live.begin(), live.end()); 1154 std::sort(Temp.begin(), Temp.end(), order_by_name); 1155 for (Value *ptr : Temp) { 1156 Value *base = findBasePointer(ptr, DVCache); 1157 assert(base && "failed to find base pointer"); 1158 PointerToBase[ptr] = base; 1159 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1160 DT->dominates(cast<Instruction>(base)->getParent(), 1161 cast<Instruction>(ptr)->getParent())) && 1162 "The base we found better dominate the derived pointer"); 1163 1164 // If you see this trip and like to live really dangerously, the code should 1165 // be correct, just with idioms the verifier can't handle. You can try 1166 // disabling the verifier at your own substantial risk. 1167 assert(!isa<ConstantPointerNull>(base) && 1168 "the relocation code needs adjustment to handle the relocation of " 1169 "a null pointer constant without causing false positives in the " 1170 "safepoint ir verifier."); 1171 } 1172 } 1173 1174 /// Find the required based pointers (and adjust the live set) for the given 1175 /// parse point. 1176 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1177 const CallSite &CS, 1178 PartiallyConstructedSafepointRecord &result) { 1179 DenseMap<Value *, Value *> PointerToBase; 1180 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1181 1182 if (PrintBasePointers) { 1183 // Note: Need to print these in a stable order since this is checked in 1184 // some tests. 1185 errs() << "Base Pairs (w/o Relocation):\n"; 1186 SmallVector<Value *, 64> Temp; 1187 Temp.reserve(PointerToBase.size()); 1188 for (auto Pair : PointerToBase) { 1189 Temp.push_back(Pair.first); 1190 } 1191 std::sort(Temp.begin(), Temp.end(), order_by_name); 1192 for (Value *Ptr : Temp) { 1193 Value *Base = PointerToBase[Ptr]; 1194 errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() 1195 << "\n"; 1196 } 1197 } 1198 1199 result.PointerToBase = PointerToBase; 1200 } 1201 1202 /// Given an updated version of the dataflow liveness results, update the 1203 /// liveset and base pointer maps for the call site CS. 1204 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1205 const CallSite &CS, 1206 PartiallyConstructedSafepointRecord &result); 1207 1208 static void recomputeLiveInValues( 1209 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1210 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1211 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1212 // again. The old values are still live and will help it stabilize quickly. 1213 GCPtrLivenessData RevisedLivenessData; 1214 computeLiveInValues(DT, F, RevisedLivenessData); 1215 for (size_t i = 0; i < records.size(); i++) { 1216 struct PartiallyConstructedSafepointRecord &info = records[i]; 1217 const CallSite &CS = toUpdate[i]; 1218 recomputeLiveInValues(RevisedLivenessData, CS, info); 1219 } 1220 } 1221 1222 // When inserting gc.relocate calls, we need to ensure there are no uses 1223 // of the original value between the gc.statepoint and the gc.relocate call. 1224 // One case which can arise is a phi node starting one of the successor blocks. 1225 // We also need to be able to insert the gc.relocates only on the path which 1226 // goes through the statepoint. We might need to split an edge to make this 1227 // possible. 1228 static BasicBlock * 1229 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1230 DominatorTree &DT) { 1231 BasicBlock *Ret = BB; 1232 if (!BB->getUniquePredecessor()) { 1233 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1234 } 1235 1236 // Now that 'ret' has unique predecessor we can safely remove all phi nodes 1237 // from it 1238 FoldSingleEntryPHINodes(Ret); 1239 assert(!isa<PHINode>(Ret->begin())); 1240 1241 // At this point, we can safely insert a gc.relocate as the first instruction 1242 // in Ret if needed. 1243 return Ret; 1244 } 1245 1246 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1247 auto itr = std::find(livevec.begin(), livevec.end(), val); 1248 assert(livevec.end() != itr); 1249 size_t index = std::distance(livevec.begin(), itr); 1250 assert(index < livevec.size()); 1251 return index; 1252 } 1253 1254 // Create new attribute set containing only attributes which can be transferred 1255 // from original call to the safepoint. 1256 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1257 AttributeSet ret; 1258 1259 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1260 unsigned index = AS.getSlotIndex(Slot); 1261 1262 if (index == AttributeSet::ReturnIndex || 1263 index == AttributeSet::FunctionIndex) { 1264 1265 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1266 ++it) { 1267 Attribute attr = *it; 1268 1269 // Do not allow certain attributes - just skip them 1270 // Safepoint can not be read only or read none. 1271 if (attr.hasAttribute(Attribute::ReadNone) || 1272 attr.hasAttribute(Attribute::ReadOnly)) 1273 continue; 1274 1275 ret = ret.addAttributes( 1276 AS.getContext(), index, 1277 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1278 } 1279 } 1280 1281 // Just skip parameter attributes for now 1282 } 1283 1284 return ret; 1285 } 1286 1287 /// Helper function to place all gc relocates necessary for the given 1288 /// statepoint. 1289 /// Inputs: 1290 /// liveVariables - list of variables to be relocated. 1291 /// liveStart - index of the first live variable. 1292 /// basePtrs - base pointers. 1293 /// statepointToken - statepoint instruction to which relocates should be 1294 /// bound. 1295 /// Builder - Llvm IR builder to be used to construct new calls. 1296 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1297 const int LiveStart, 1298 ArrayRef<Value *> BasePtrs, 1299 Instruction *StatepointToken, 1300 IRBuilder<> Builder) { 1301 if (LiveVariables.empty()) 1302 return; 1303 1304 // All gc_relocate are set to i8 addrspace(1)* type. We originally generated 1305 // unique declarations for each pointer type, but this proved problematic 1306 // because the intrinsic mangling code is incomplete and fragile. Since 1307 // we're moving towards a single unified pointer type anyways, we can just 1308 // cast everything to an i8* of the right address space. A bitcast is added 1309 // later to convert gc_relocate to the actual value's type. 1310 Module *M = StatepointToken->getModule(); 1311 auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace(); 1312 Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)}; 1313 Value *GCRelocateDecl = 1314 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); 1315 1316 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1317 // Generate the gc.relocate call and save the result 1318 Value *BaseIdx = 1319 Builder.getInt32(LiveStart + find_index(LiveVariables, BasePtrs[i])); 1320 Value *LiveIdx = 1321 Builder.getInt32(LiveStart + find_index(LiveVariables, LiveVariables[i])); 1322 1323 // only specify a debug name if we can give a useful one 1324 CallInst *Reloc = Builder.CreateCall( 1325 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1326 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1327 // Trick CodeGen into thinking there are lots of free registers at this 1328 // fake call. 1329 Reloc->setCallingConv(CallingConv::Cold); 1330 } 1331 } 1332 1333 static void 1334 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1335 const SmallVectorImpl<Value *> &BasePtrs, 1336 const SmallVectorImpl<Value *> &LiveVariables, 1337 PartiallyConstructedSafepointRecord &Result) { 1338 assert(BasePtrs.size() == LiveVariables.size()); 1339 assert(isStatepoint(CS) && 1340 "This method expects to be rewriting a statepoint"); 1341 1342 // We're not changing the function signature of the statepoint since the gc 1343 // arguments go into the var args section. 1344 Function *GCStatepointDecl = CS.getCalledFunction(); 1345 1346 // Then go ahead and use the builder do actually do the inserts. We insert 1347 // immediately before the previous instruction under the assumption that all 1348 // arguments will be available here. We can't insert afterwards since we may 1349 // be replacing a terminator. 1350 Instruction *InsertBefore = CS.getInstruction(); 1351 IRBuilder<> Builder(InsertBefore); 1352 1353 // Copy all of the arguments from the original statepoint - this includes the 1354 // target, call args, and deopt args 1355 SmallVector<llvm::Value *, 64> Args; 1356 Args.insert(Args.end(), CS.arg_begin(), CS.arg_end()); 1357 // TODO: Clear the 'needs rewrite' flag 1358 1359 // Add all the pointers to be relocated (gc arguments) and capture the start 1360 // of the live variable list for use in the gc_relocates 1361 const int LiveStartIdx = Args.size(); 1362 Args.insert(Args.end(), LiveVariables.begin(), LiveVariables.end()); 1363 1364 // Create the statepoint given all the arguments 1365 Instruction *Token = nullptr; 1366 AttributeSet ReturnAttrs; 1367 if (CS.isCall()) { 1368 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1369 CallInst *Call = 1370 Builder.CreateCall(GCStatepointDecl, Args, "safepoint_token"); 1371 Call->setTailCall(ToReplace->isTailCall()); 1372 Call->setCallingConv(ToReplace->getCallingConv()); 1373 1374 // Currently we will fail on parameter attributes and on certain 1375 // function attributes. 1376 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1377 // In case if we can handle this set of attributes - set up function attrs 1378 // directly on statepoint and return attrs later for gc_result intrinsic. 1379 Call->setAttributes(NewAttrs.getFnAttributes()); 1380 ReturnAttrs = NewAttrs.getRetAttributes(); 1381 1382 Token = Call; 1383 1384 // Put the following gc_result and gc_relocate calls immediately after the 1385 // the old call (which we're about to delete) 1386 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1387 Builder.SetInsertPoint(ToReplace->getNextNode()); 1388 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1389 } else { 1390 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1391 1392 // Insert the new invoke into the old block. We'll remove the old one in a 1393 // moment at which point this will become the new terminator for the 1394 // original block. 1395 InvokeInst *Invoke = 1396 InvokeInst::Create(GCStatepointDecl, ToReplace->getNormalDest(), 1397 ToReplace->getUnwindDest(), Args, "statepoint_token", 1398 ToReplace->getParent()); 1399 Invoke->setCallingConv(ToReplace->getCallingConv()); 1400 1401 // Currently we will fail on parameter attributes and on certain 1402 // function attributes. 1403 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1404 // In case if we can handle this set of attributes - set up function attrs 1405 // directly on statepoint and return attrs later for gc_result intrinsic. 1406 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1407 ReturnAttrs = NewAttrs.getRetAttributes(); 1408 1409 Token = Invoke; 1410 1411 // Generate gc relocates in exceptional path 1412 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1413 assert(!isa<PHINode>(UnwindBlock->begin()) && 1414 UnwindBlock->getUniquePredecessor() && 1415 "can't safely insert in this block!"); 1416 1417 Builder.SetInsertPoint(UnwindBlock->getFirstInsertionPt()); 1418 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1419 1420 // Extract second element from landingpad return value. We will attach 1421 // exceptional gc relocates to it. 1422 Instruction *ExceptionalToken = 1423 cast<Instruction>(Builder.CreateExtractValue( 1424 UnwindBlock->getLandingPadInst(), 1, "relocate_token")); 1425 Result.UnwindToken = ExceptionalToken; 1426 1427 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1428 Builder); 1429 1430 // Generate gc relocates and returns for normal block 1431 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1432 assert(!isa<PHINode>(NormalDest->begin()) && 1433 NormalDest->getUniquePredecessor() && 1434 "can't safely insert in this block!"); 1435 1436 Builder.SetInsertPoint(NormalDest->getFirstInsertionPt()); 1437 1438 // gc relocates will be generated later as if it were regular call 1439 // statepoint 1440 } 1441 assert(Token && "Should be set in one of the above branches!"); 1442 1443 // Take the name of the original value call if it had one. 1444 Token->takeName(CS.getInstruction()); 1445 1446 // The GCResult is already inserted, we just need to find it 1447 #ifndef NDEBUG 1448 Instruction *ToReplace = CS.getInstruction(); 1449 assert(!ToReplace->hasNUsesOrMore(2) && 1450 "only valid use before rewrite is gc.result"); 1451 assert(!ToReplace->hasOneUse() || 1452 isGCResult(cast<Instruction>(*ToReplace->user_begin()))); 1453 #endif 1454 1455 // Update the gc.result of the original statepoint (if any) to use the newly 1456 // inserted statepoint. This is safe to do here since the token can't be 1457 // considered a live reference. 1458 CS.getInstruction()->replaceAllUsesWith(Token); 1459 1460 Result.StatepointToken = Token; 1461 1462 // Second, create a gc.relocate for every live variable 1463 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1464 } 1465 1466 namespace { 1467 struct NameOrdering { 1468 Value *Base; 1469 Value *Derived; 1470 1471 bool operator()(NameOrdering const &a, NameOrdering const &b) { 1472 return -1 == a.Derived->getName().compare(b.Derived->getName()); 1473 } 1474 }; 1475 } 1476 1477 static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec, 1478 SmallVectorImpl<Value *> &LiveVec) { 1479 assert(BaseVec.size() == LiveVec.size()); 1480 1481 SmallVector<NameOrdering, 64> Temp; 1482 for (size_t i = 0; i < BaseVec.size(); i++) { 1483 NameOrdering v; 1484 v.Base = BaseVec[i]; 1485 v.Derived = LiveVec[i]; 1486 Temp.push_back(v); 1487 } 1488 1489 std::sort(Temp.begin(), Temp.end(), NameOrdering()); 1490 for (size_t i = 0; i < BaseVec.size(); i++) { 1491 BaseVec[i] = Temp[i].Base; 1492 LiveVec[i] = Temp[i].Derived; 1493 } 1494 } 1495 1496 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1497 // which make the relocations happening at this safepoint explicit. 1498 // 1499 // WARNING: Does not do any fixup to adjust users of the original live 1500 // values. That's the callers responsibility. 1501 static void 1502 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, 1503 PartiallyConstructedSafepointRecord &Result) { 1504 const auto &LiveSet = Result.LiveSet; 1505 const auto &PointerToBase = Result.PointerToBase; 1506 1507 // Convert to vector for efficient cross referencing. 1508 SmallVector<Value *, 64> BaseVec, LiveVec; 1509 LiveVec.reserve(LiveSet.size()); 1510 BaseVec.reserve(LiveSet.size()); 1511 for (Value *L : LiveSet) { 1512 LiveVec.push_back(L); 1513 assert(PointerToBase.count(L)); 1514 Value *Base = PointerToBase.find(L)->second; 1515 BaseVec.push_back(Base); 1516 } 1517 assert(LiveVec.size() == BaseVec.size()); 1518 1519 // To make the output IR slightly more stable (for use in diffs), ensure a 1520 // fixed order of the values in the safepoint (by sorting the value name). 1521 // The order is otherwise meaningless. 1522 StabilizeOrder(BaseVec, LiveVec); 1523 1524 // Do the actual rewriting and delete the old statepoint 1525 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result); 1526 CS.getInstruction()->eraseFromParent(); 1527 } 1528 1529 // Helper function for the relocationViaAlloca. 1530 // 1531 // It receives iterator to the statepoint gc relocates and emits a store to the 1532 // assigned location (via allocaMap) for the each one of them. It adds the 1533 // visited values into the visitedLiveValues set, which we will later use them 1534 // for sanity checking. 1535 static void 1536 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1537 DenseMap<Value *, Value *> &AllocaMap, 1538 DenseSet<Value *> &VisitedLiveValues) { 1539 1540 for (User *U : GCRelocs) { 1541 if (!isa<IntrinsicInst>(U)) 1542 continue; 1543 1544 IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U); 1545 1546 // We only care about relocates 1547 if (RelocatedValue->getIntrinsicID() != 1548 Intrinsic::experimental_gc_relocate) { 1549 continue; 1550 } 1551 1552 GCRelocateOperands RelocateOperands(RelocatedValue); 1553 Value *OriginalValue = 1554 const_cast<Value *>(RelocateOperands.getDerivedPtr()); 1555 assert(AllocaMap.count(OriginalValue)); 1556 Value *Alloca = AllocaMap[OriginalValue]; 1557 1558 // Emit store into the related alloca 1559 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1560 // the correct type according to alloca. 1561 assert(RelocatedValue->getNextNode() && 1562 "Should always have one since it's not a terminator"); 1563 IRBuilder<> Builder(RelocatedValue->getNextNode()); 1564 Value *CastedRelocatedValue = 1565 Builder.CreateBitCast(RelocatedValue, 1566 cast<AllocaInst>(Alloca)->getAllocatedType(), 1567 suffixed_name_or(RelocatedValue, ".casted", "")); 1568 1569 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1570 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1571 1572 #ifndef NDEBUG 1573 VisitedLiveValues.insert(OriginalValue); 1574 #endif 1575 } 1576 } 1577 1578 // Helper function for the "relocationViaAlloca". Similar to the 1579 // "insertRelocationStores" but works for rematerialized values. 1580 static void 1581 insertRematerializationStores( 1582 RematerializedValueMapTy RematerializedValues, 1583 DenseMap<Value *, Value *> &AllocaMap, 1584 DenseSet<Value *> &VisitedLiveValues) { 1585 1586 for (auto RematerializedValuePair: RematerializedValues) { 1587 Instruction *RematerializedValue = RematerializedValuePair.first; 1588 Value *OriginalValue = RematerializedValuePair.second; 1589 1590 assert(AllocaMap.count(OriginalValue) && 1591 "Can not find alloca for rematerialized value"); 1592 Value *Alloca = AllocaMap[OriginalValue]; 1593 1594 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1595 Store->insertAfter(RematerializedValue); 1596 1597 #ifndef NDEBUG 1598 VisitedLiveValues.insert(OriginalValue); 1599 #endif 1600 } 1601 } 1602 1603 /// Do all the relocation update via allocas and mem2reg 1604 static void relocationViaAlloca( 1605 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1606 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1607 #ifndef NDEBUG 1608 // record initial number of (static) allocas; we'll check we have the same 1609 // number when we get done. 1610 int InitialAllocaNum = 0; 1611 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1612 I++) 1613 if (isa<AllocaInst>(*I)) 1614 InitialAllocaNum++; 1615 #endif 1616 1617 // TODO-PERF: change data structures, reserve 1618 DenseMap<Value *, Value *> AllocaMap; 1619 SmallVector<AllocaInst *, 200> PromotableAllocas; 1620 // Used later to chack that we have enough allocas to store all values 1621 std::size_t NumRematerializedValues = 0; 1622 PromotableAllocas.reserve(Live.size()); 1623 1624 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1625 // "PromotableAllocas" 1626 auto emitAllocaFor = [&](Value *LiveValue) { 1627 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1628 F.getEntryBlock().getFirstNonPHI()); 1629 AllocaMap[LiveValue] = Alloca; 1630 PromotableAllocas.push_back(Alloca); 1631 }; 1632 1633 // Emit alloca for each live gc pointer 1634 for (Value *V : Live) 1635 emitAllocaFor(V); 1636 1637 // Emit allocas for rematerialized values 1638 for (const auto &Info : Records) 1639 for (auto RematerializedValuePair : Info.RematerializedValues) { 1640 Value *OriginalValue = RematerializedValuePair.second; 1641 if (AllocaMap.count(OriginalValue) != 0) 1642 continue; 1643 1644 emitAllocaFor(OriginalValue); 1645 ++NumRematerializedValues; 1646 } 1647 1648 // The next two loops are part of the same conceptual operation. We need to 1649 // insert a store to the alloca after the original def and at each 1650 // redefinition. We need to insert a load before each use. These are split 1651 // into distinct loops for performance reasons. 1652 1653 // Update gc pointer after each statepoint: either store a relocated value or 1654 // null (if no relocated value was found for this gc pointer and it is not a 1655 // gc_result). This must happen before we update the statepoint with load of 1656 // alloca otherwise we lose the link between statepoint and old def. 1657 for (const auto &Info : Records) { 1658 Value *Statepoint = Info.StatepointToken; 1659 1660 // This will be used for consistency check 1661 DenseSet<Value *> VisitedLiveValues; 1662 1663 // Insert stores for normal statepoint gc relocates 1664 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1665 1666 // In case if it was invoke statepoint 1667 // we will insert stores for exceptional path gc relocates. 1668 if (isa<InvokeInst>(Statepoint)) { 1669 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1670 VisitedLiveValues); 1671 } 1672 1673 // Do similar thing with rematerialized values 1674 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1675 VisitedLiveValues); 1676 1677 if (ClobberNonLive) { 1678 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1679 // the gc.statepoint. This will turn some subtle GC problems into 1680 // slightly easier to debug SEGVs. Note that on large IR files with 1681 // lots of gc.statepoints this is extremely costly both memory and time 1682 // wise. 1683 SmallVector<AllocaInst *, 64> ToClobber; 1684 for (auto Pair : AllocaMap) { 1685 Value *Def = Pair.first; 1686 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1687 1688 // This value was relocated 1689 if (VisitedLiveValues.count(Def)) { 1690 continue; 1691 } 1692 ToClobber.push_back(Alloca); 1693 } 1694 1695 auto InsertClobbersAt = [&](Instruction *IP) { 1696 for (auto *AI : ToClobber) { 1697 auto AIType = cast<PointerType>(AI->getType()); 1698 auto PT = cast<PointerType>(AIType->getElementType()); 1699 Constant *CPN = ConstantPointerNull::get(PT); 1700 StoreInst *Store = new StoreInst(CPN, AI); 1701 Store->insertBefore(IP); 1702 } 1703 }; 1704 1705 // Insert the clobbering stores. These may get intermixed with the 1706 // gc.results and gc.relocates, but that's fine. 1707 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1708 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1709 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1710 } else { 1711 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1712 } 1713 } 1714 } 1715 1716 // Update use with load allocas and add store for gc_relocated. 1717 for (auto Pair : AllocaMap) { 1718 Value *Def = Pair.first; 1719 Value *Alloca = Pair.second; 1720 1721 // We pre-record the uses of allocas so that we dont have to worry about 1722 // later update that changes the user information.. 1723 1724 SmallVector<Instruction *, 20> Uses; 1725 // PERF: trade a linear scan for repeated reallocation 1726 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1727 for (User *U : Def->users()) { 1728 if (!isa<ConstantExpr>(U)) { 1729 // If the def has a ConstantExpr use, then the def is either a 1730 // ConstantExpr use itself or null. In either case 1731 // (recursively in the first, directly in the second), the oop 1732 // it is ultimately dependent on is null and this particular 1733 // use does not need to be fixed up. 1734 Uses.push_back(cast<Instruction>(U)); 1735 } 1736 } 1737 1738 std::sort(Uses.begin(), Uses.end()); 1739 auto Last = std::unique(Uses.begin(), Uses.end()); 1740 Uses.erase(Last, Uses.end()); 1741 1742 for (Instruction *Use : Uses) { 1743 if (isa<PHINode>(Use)) { 1744 PHINode *Phi = cast<PHINode>(Use); 1745 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1746 if (Def == Phi->getIncomingValue(i)) { 1747 LoadInst *Load = new LoadInst( 1748 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1749 Phi->setIncomingValue(i, Load); 1750 } 1751 } 1752 } else { 1753 LoadInst *Load = new LoadInst(Alloca, "", Use); 1754 Use->replaceUsesOfWith(Def, Load); 1755 } 1756 } 1757 1758 // Emit store for the initial gc value. Store must be inserted after load, 1759 // otherwise store will be in alloca's use list and an extra load will be 1760 // inserted before it. 1761 StoreInst *Store = new StoreInst(Def, Alloca); 1762 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1763 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1764 // InvokeInst is a TerminatorInst so the store need to be inserted 1765 // into its normal destination block. 1766 BasicBlock *NormalDest = Invoke->getNormalDest(); 1767 Store->insertBefore(NormalDest->getFirstNonPHI()); 1768 } else { 1769 assert(!Inst->isTerminator() && 1770 "The only TerminatorInst that can produce a value is " 1771 "InvokeInst which is handled above."); 1772 Store->insertAfter(Inst); 1773 } 1774 } else { 1775 assert(isa<Argument>(Def)); 1776 Store->insertAfter(cast<Instruction>(Alloca)); 1777 } 1778 } 1779 1780 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1781 "we must have the same allocas with lives"); 1782 if (!PromotableAllocas.empty()) { 1783 // Apply mem2reg to promote alloca to SSA 1784 PromoteMemToReg(PromotableAllocas, DT); 1785 } 1786 1787 #ifndef NDEBUG 1788 for (auto &I : F.getEntryBlock()) 1789 if (isa<AllocaInst>(I)) 1790 InitialAllocaNum--; 1791 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1792 #endif 1793 } 1794 1795 /// Implement a unique function which doesn't require we sort the input 1796 /// vector. Doing so has the effect of changing the output of a couple of 1797 /// tests in ways which make them less useful in testing fused safepoints. 1798 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1799 SmallSet<T, 8> Seen; 1800 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1801 return !Seen.insert(V).second; 1802 }), Vec.end()); 1803 } 1804 1805 /// Insert holders so that each Value is obviously live through the entire 1806 /// lifetime of the call. 1807 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1808 SmallVectorImpl<CallInst *> &Holders) { 1809 if (Values.empty()) 1810 // No values to hold live, might as well not insert the empty holder 1811 return; 1812 1813 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1814 // Use a dummy vararg function to actually hold the values live 1815 Function *Func = cast<Function>(M->getOrInsertFunction( 1816 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1817 if (CS.isCall()) { 1818 // For call safepoints insert dummy calls right after safepoint 1819 BasicBlock::iterator Next(CS.getInstruction()); 1820 Next++; 1821 Holders.push_back(CallInst::Create(Func, Values, "", Next)); 1822 return; 1823 } 1824 // For invoke safepooints insert dummy calls both in normal and 1825 // exceptional destination blocks 1826 auto *II = cast<InvokeInst>(CS.getInstruction()); 1827 Holders.push_back(CallInst::Create( 1828 Func, Values, "", II->getNormalDest()->getFirstInsertionPt())); 1829 Holders.push_back(CallInst::Create( 1830 Func, Values, "", II->getUnwindDest()->getFirstInsertionPt())); 1831 } 1832 1833 static void findLiveReferences( 1834 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1835 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1836 GCPtrLivenessData OriginalLivenessData; 1837 computeLiveInValues(DT, F, OriginalLivenessData); 1838 for (size_t i = 0; i < records.size(); i++) { 1839 struct PartiallyConstructedSafepointRecord &info = records[i]; 1840 const CallSite &CS = toUpdate[i]; 1841 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1842 } 1843 } 1844 1845 /// Remove any vector of pointers from the live set by scalarizing them over the 1846 /// statepoint instruction. Adds the scalarized pieces to the live set. It 1847 /// would be preferable to include the vector in the statepoint itself, but 1848 /// the lowering code currently does not handle that. Extending it would be 1849 /// slightly non-trivial since it requires a format change. Given how rare 1850 /// such cases are (for the moment?) scalarizing is an acceptable compromise. 1851 static void splitVectorValues(Instruction *StatepointInst, 1852 StatepointLiveSetTy &LiveSet, 1853 DenseMap<Value *, Value *>& PointerToBase, 1854 DominatorTree &DT) { 1855 SmallVector<Value *, 16> ToSplit; 1856 for (Value *V : LiveSet) 1857 if (isa<VectorType>(V->getType())) 1858 ToSplit.push_back(V); 1859 1860 if (ToSplit.empty()) 1861 return; 1862 1863 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1864 1865 Function &F = *(StatepointInst->getParent()->getParent()); 1866 1867 DenseMap<Value *, AllocaInst *> AllocaMap; 1868 // First is normal return, second is exceptional return (invoke only) 1869 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1870 for (Value *V : ToSplit) { 1871 AllocaInst *Alloca = 1872 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1873 AllocaMap[V] = Alloca; 1874 1875 VectorType *VT = cast<VectorType>(V->getType()); 1876 IRBuilder<> Builder(StatepointInst); 1877 SmallVector<Value *, 16> Elements; 1878 for (unsigned i = 0; i < VT->getNumElements(); i++) 1879 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1880 ElementMapping[V] = Elements; 1881 1882 auto InsertVectorReform = [&](Instruction *IP) { 1883 Builder.SetInsertPoint(IP); 1884 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1885 Value *ResultVec = UndefValue::get(VT); 1886 for (unsigned i = 0; i < VT->getNumElements(); i++) 1887 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1888 Builder.getInt32(i)); 1889 return ResultVec; 1890 }; 1891 1892 if (isa<CallInst>(StatepointInst)) { 1893 BasicBlock::iterator Next(StatepointInst); 1894 Next++; 1895 Instruction *IP = &*(Next); 1896 Replacements[V].first = InsertVectorReform(IP); 1897 Replacements[V].second = nullptr; 1898 } else { 1899 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 1900 // We've already normalized - check that we don't have shared destination 1901 // blocks 1902 BasicBlock *NormalDest = Invoke->getNormalDest(); 1903 assert(!isa<PHINode>(NormalDest->begin())); 1904 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 1905 assert(!isa<PHINode>(UnwindDest->begin())); 1906 // Insert insert element sequences in both successors 1907 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 1908 Replacements[V].first = InsertVectorReform(IP); 1909 IP = &*(UnwindDest->getFirstInsertionPt()); 1910 Replacements[V].second = InsertVectorReform(IP); 1911 } 1912 } 1913 1914 for (Value *V : ToSplit) { 1915 AllocaInst *Alloca = AllocaMap[V]; 1916 1917 // Capture all users before we start mutating use lists 1918 SmallVector<Instruction *, 16> Users; 1919 for (User *U : V->users()) 1920 Users.push_back(cast<Instruction>(U)); 1921 1922 for (Instruction *I : Users) { 1923 if (auto Phi = dyn_cast<PHINode>(I)) { 1924 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 1925 if (V == Phi->getIncomingValue(i)) { 1926 LoadInst *Load = new LoadInst( 1927 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1928 Phi->setIncomingValue(i, Load); 1929 } 1930 } else { 1931 LoadInst *Load = new LoadInst(Alloca, "", I); 1932 I->replaceUsesOfWith(V, Load); 1933 } 1934 } 1935 1936 // Store the original value and the replacement value into the alloca 1937 StoreInst *Store = new StoreInst(V, Alloca); 1938 if (auto I = dyn_cast<Instruction>(V)) 1939 Store->insertAfter(I); 1940 else 1941 Store->insertAfter(Alloca); 1942 1943 // Normal return for invoke, or call return 1944 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 1945 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1946 // Unwind return for invoke only 1947 Replacement = cast_or_null<Instruction>(Replacements[V].second); 1948 if (Replacement) 1949 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1950 } 1951 1952 // apply mem2reg to promote alloca to SSA 1953 SmallVector<AllocaInst *, 16> Allocas; 1954 for (Value *V : ToSplit) 1955 Allocas.push_back(AllocaMap[V]); 1956 PromoteMemToReg(Allocas, DT); 1957 1958 // Update our tracking of live pointers and base mappings to account for the 1959 // changes we just made. 1960 for (Value *V : ToSplit) { 1961 auto &Elements = ElementMapping[V]; 1962 1963 LiveSet.erase(V); 1964 LiveSet.insert(Elements.begin(), Elements.end()); 1965 // We need to update the base mapping as well. 1966 assert(PointerToBase.count(V)); 1967 Value *OldBase = PointerToBase[V]; 1968 auto &BaseElements = ElementMapping[OldBase]; 1969 PointerToBase.erase(V); 1970 assert(Elements.size() == BaseElements.size()); 1971 for (unsigned i = 0; i < Elements.size(); i++) { 1972 Value *Elem = Elements[i]; 1973 PointerToBase[Elem] = BaseElements[i]; 1974 } 1975 } 1976 } 1977 1978 // Helper function for the "rematerializeLiveValues". It walks use chain 1979 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1980 // values are visited (currently it is GEP's and casts). Returns true if it 1981 // successfully reached "BaseValue" and false otherwise. 1982 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1983 // recorded. 1984 static bool findRematerializableChainToBasePointer( 1985 SmallVectorImpl<Instruction*> &ChainToBase, 1986 Value *CurrentValue, Value *BaseValue) { 1987 1988 // We have found a base value 1989 if (CurrentValue == BaseValue) { 1990 return true; 1991 } 1992 1993 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1994 ChainToBase.push_back(GEP); 1995 return findRematerializableChainToBasePointer(ChainToBase, 1996 GEP->getPointerOperand(), 1997 BaseValue); 1998 } 1999 2000 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2001 Value *Def = CI->stripPointerCasts(); 2002 2003 // This two checks are basically similar. First one is here for the 2004 // consistency with findBasePointers logic. 2005 assert(!isa<CastInst>(Def) && "not a pointer cast found"); 2006 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2007 return false; 2008 2009 ChainToBase.push_back(CI); 2010 return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue); 2011 } 2012 2013 // Not supported instruction in the chain 2014 return false; 2015 } 2016 2017 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2018 // chain we are going to rematerialize. 2019 static unsigned 2020 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 2021 TargetTransformInfo &TTI) { 2022 unsigned Cost = 0; 2023 2024 for (Instruction *Instr : Chain) { 2025 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2026 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2027 "non noop cast is found during rematerialization"); 2028 2029 Type *SrcTy = CI->getOperand(0)->getType(); 2030 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 2031 2032 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2033 // Cost of the address calculation 2034 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); 2035 Cost += TTI.getAddressComputationCost(ValTy); 2036 2037 // And cost of the GEP itself 2038 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2039 // allowed for the external usage) 2040 if (!GEP->hasAllConstantIndices()) 2041 Cost += 2; 2042 2043 } else { 2044 llvm_unreachable("unsupported instruciton type during rematerialization"); 2045 } 2046 } 2047 2048 return Cost; 2049 } 2050 2051 // From the statepoint live set pick values that are cheaper to recompute then 2052 // to relocate. Remove this values from the live set, rematerialize them after 2053 // statepoint and record them in "Info" structure. Note that similar to 2054 // relocated values we don't do any user adjustments here. 2055 static void rematerializeLiveValues(CallSite CS, 2056 PartiallyConstructedSafepointRecord &Info, 2057 TargetTransformInfo &TTI) { 2058 const unsigned int ChainLengthThreshold = 10; 2059 2060 // Record values we are going to delete from this statepoint live set. 2061 // We can not di this in following loop due to iterator invalidation. 2062 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2063 2064 for (Value *LiveValue: Info.LiveSet) { 2065 // For each live pointer find it's defining chain 2066 SmallVector<Instruction *, 3> ChainToBase; 2067 assert(Info.PointerToBase.count(LiveValue)); 2068 bool FoundChain = 2069 findRematerializableChainToBasePointer(ChainToBase, 2070 LiveValue, 2071 Info.PointerToBase[LiveValue]); 2072 // Nothing to do, or chain is too long 2073 if (!FoundChain || 2074 ChainToBase.size() == 0 || 2075 ChainToBase.size() > ChainLengthThreshold) 2076 continue; 2077 2078 // Compute cost of this chain 2079 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2080 // TODO: We can also account for cases when we will be able to remove some 2081 // of the rematerialized values by later optimization passes. I.e if 2082 // we rematerialized several intersecting chains. Or if original values 2083 // don't have any uses besides this statepoint. 2084 2085 // For invokes we need to rematerialize each chain twice - for normal and 2086 // for unwind basic blocks. Model this by multiplying cost by two. 2087 if (CS.isInvoke()) { 2088 Cost *= 2; 2089 } 2090 // If it's too expensive - skip it 2091 if (Cost >= RematerializationThreshold) 2092 continue; 2093 2094 // Remove value from the live set 2095 LiveValuesToBeDeleted.push_back(LiveValue); 2096 2097 // Clone instructions and record them inside "Info" structure 2098 2099 // Walk backwards to visit top-most instructions first 2100 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2101 2102 // Utility function which clones all instructions from "ChainToBase" 2103 // and inserts them before "InsertBefore". Returns rematerialized value 2104 // which should be used after statepoint. 2105 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 2106 Instruction *LastClonedValue = nullptr; 2107 Instruction *LastValue = nullptr; 2108 for (Instruction *Instr: ChainToBase) { 2109 // Only GEP's and casts are suported as we need to be careful to not 2110 // introduce any new uses of pointers not in the liveset. 2111 // Note that it's fine to introduce new uses of pointers which were 2112 // otherwise not used after this statepoint. 2113 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2114 2115 Instruction *ClonedValue = Instr->clone(); 2116 ClonedValue->insertBefore(InsertBefore); 2117 ClonedValue->setName(Instr->getName() + ".remat"); 2118 2119 // If it is not first instruction in the chain then it uses previously 2120 // cloned value. We should update it to use cloned value. 2121 if (LastClonedValue) { 2122 assert(LastValue); 2123 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2124 #ifndef NDEBUG 2125 // Assert that cloned instruction does not use any instructions from 2126 // this chain other than LastClonedValue 2127 for (auto OpValue : ClonedValue->operand_values()) { 2128 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2129 ChainToBase.end() && 2130 "incorrect use in rematerialization chain"); 2131 } 2132 #endif 2133 } 2134 2135 LastClonedValue = ClonedValue; 2136 LastValue = Instr; 2137 } 2138 assert(LastClonedValue); 2139 return LastClonedValue; 2140 }; 2141 2142 // Different cases for calls and invokes. For invokes we need to clone 2143 // instructions both on normal and unwind path. 2144 if (CS.isCall()) { 2145 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2146 assert(InsertBefore); 2147 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2148 Info.RematerializedValues[RematerializedValue] = LiveValue; 2149 } else { 2150 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2151 2152 Instruction *NormalInsertBefore = 2153 Invoke->getNormalDest()->getFirstInsertionPt(); 2154 Instruction *UnwindInsertBefore = 2155 Invoke->getUnwindDest()->getFirstInsertionPt(); 2156 2157 Instruction *NormalRematerializedValue = 2158 rematerializeChain(NormalInsertBefore); 2159 Instruction *UnwindRematerializedValue = 2160 rematerializeChain(UnwindInsertBefore); 2161 2162 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2163 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2164 } 2165 } 2166 2167 // Remove rematerializaed values from the live set 2168 for (auto LiveValue: LiveValuesToBeDeleted) { 2169 Info.LiveSet.erase(LiveValue); 2170 } 2171 } 2172 2173 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 2174 SmallVectorImpl<CallSite> &ToUpdate) { 2175 #ifndef NDEBUG 2176 // sanity check the input 2177 std::set<CallSite> Uniqued; 2178 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2179 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2180 2181 for (CallSite CS : ToUpdate) { 2182 assert(CS.getInstruction()->getParent()->getParent() == &F); 2183 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 2184 } 2185 #endif 2186 2187 // When inserting gc.relocates for invokes, we need to be able to insert at 2188 // the top of the successor blocks. See the comment on 2189 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2190 // may restructure the CFG. 2191 for (CallSite CS : ToUpdate) { 2192 if (!CS.isInvoke()) 2193 continue; 2194 auto *II = cast<InvokeInst>(CS.getInstruction()); 2195 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2196 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2197 } 2198 2199 // A list of dummy calls added to the IR to keep various values obviously 2200 // live in the IR. We'll remove all of these when done. 2201 SmallVector<CallInst *, 64> Holders; 2202 2203 // Insert a dummy call with all of the arguments to the vm_state we'll need 2204 // for the actual safepoint insertion. This ensures reference arguments in 2205 // the deopt argument list are considered live through the safepoint (and 2206 // thus makes sure they get relocated.) 2207 for (CallSite CS : ToUpdate) { 2208 Statepoint StatepointCS(CS); 2209 2210 SmallVector<Value *, 64> DeoptValues; 2211 for (Use &U : StatepointCS.vm_state_args()) { 2212 Value *Arg = cast<Value>(&U); 2213 assert(!isUnhandledGCPointerType(Arg->getType()) && 2214 "support for FCA unimplemented"); 2215 if (isHandledGCPointerType(Arg->getType())) 2216 DeoptValues.push_back(Arg); 2217 } 2218 insertUseHolderAfter(CS, DeoptValues, Holders); 2219 } 2220 2221 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2222 2223 // A) Identify all gc pointers which are statically live at the given call 2224 // site. 2225 findLiveReferences(F, DT, P, ToUpdate, Records); 2226 2227 // B) Find the base pointers for each live pointer 2228 /* scope for caching */ { 2229 // Cache the 'defining value' relation used in the computation and 2230 // insertion of base phis and selects. This ensures that we don't insert 2231 // large numbers of duplicate base_phis. 2232 DefiningValueMapTy DVCache; 2233 2234 for (size_t i = 0; i < Records.size(); i++) { 2235 PartiallyConstructedSafepointRecord &info = Records[i]; 2236 findBasePointers(DT, DVCache, ToUpdate[i], info); 2237 } 2238 } // end of cache scope 2239 2240 // The base phi insertion logic (for any safepoint) may have inserted new 2241 // instructions which are now live at some safepoint. The simplest such 2242 // example is: 2243 // loop: 2244 // phi a <-- will be a new base_phi here 2245 // safepoint 1 <-- that needs to be live here 2246 // gep a + 1 2247 // safepoint 2 2248 // br loop 2249 // We insert some dummy calls after each safepoint to definitely hold live 2250 // the base pointers which were identified for that safepoint. We'll then 2251 // ask liveness for _every_ base inserted to see what is now live. Then we 2252 // remove the dummy calls. 2253 Holders.reserve(Holders.size() + Records.size()); 2254 for (size_t i = 0; i < Records.size(); i++) { 2255 PartiallyConstructedSafepointRecord &Info = Records[i]; 2256 2257 SmallVector<Value *, 128> Bases; 2258 for (auto Pair : Info.PointerToBase) 2259 Bases.push_back(Pair.second); 2260 2261 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2262 } 2263 2264 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2265 // need to rerun liveness. We may *also* have inserted new defs, but that's 2266 // not the key issue. 2267 recomputeLiveInValues(F, DT, P, ToUpdate, Records); 2268 2269 if (PrintBasePointers) { 2270 for (auto &Info : Records) { 2271 errs() << "Base Pairs: (w/Relocation)\n"; 2272 for (auto Pair : Info.PointerToBase) 2273 errs() << " derived %" << Pair.first->getName() << " base %" 2274 << Pair.second->getName() << "\n"; 2275 } 2276 } 2277 2278 for (CallInst *CI : Holders) 2279 CI->eraseFromParent(); 2280 2281 Holders.clear(); 2282 2283 // Do a limited scalarization of any live at safepoint vector values which 2284 // contain pointers. This enables this pass to run after vectorization at 2285 // the cost of some possible performance loss. TODO: it would be nice to 2286 // natively support vectors all the way through the backend so we don't need 2287 // to scalarize here. 2288 for (size_t i = 0; i < Records.size(); i++) { 2289 PartiallyConstructedSafepointRecord &Info = Records[i]; 2290 Instruction *Statepoint = ToUpdate[i].getInstruction(); 2291 splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet, 2292 Info.PointerToBase, DT); 2293 } 2294 2295 // In order to reduce live set of statepoint we might choose to rematerialize 2296 // some values instead of relocating them. This is purely an optimization and 2297 // does not influence correctness. 2298 TargetTransformInfo &TTI = 2299 P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2300 2301 for (size_t i = 0; i < Records.size(); i++) 2302 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2303 2304 // Now run through and replace the existing statepoints with new ones with 2305 // the live variables listed. We do not yet update uses of the values being 2306 // relocated. We have references to live variables that need to 2307 // survive to the last iteration of this loop. (By construction, the 2308 // previous statepoint can not be a live variable, thus we can and remove 2309 // the old statepoint calls as we go.) 2310 for (size_t i = 0; i < Records.size(); i++) 2311 makeStatepointExplicit(DT, ToUpdate[i], Records[i]); 2312 2313 ToUpdate.clear(); // prevent accident use of invalid CallSites 2314 2315 // Do all the fixups of the original live variables to their relocated selves 2316 SmallVector<Value *, 128> Live; 2317 for (size_t i = 0; i < Records.size(); i++) { 2318 PartiallyConstructedSafepointRecord &Info = Records[i]; 2319 // We can't simply save the live set from the original insertion. One of 2320 // the live values might be the result of a call which needs a safepoint. 2321 // That Value* no longer exists and we need to use the new gc_result. 2322 // Thankfully, the live set is embedded in the statepoint (and updated), so 2323 // we just grab that. 2324 Statepoint Statepoint(Info.StatepointToken); 2325 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2326 Statepoint.gc_args_end()); 2327 #ifndef NDEBUG 2328 // Do some basic sanity checks on our liveness results before performing 2329 // relocation. Relocation can and will turn mistakes in liveness results 2330 // into non-sensical code which is must harder to debug. 2331 // TODO: It would be nice to test consistency as well 2332 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2333 "statepoint must be reachable or liveness is meaningless"); 2334 for (Value *V : Statepoint.gc_args()) { 2335 if (!isa<Instruction>(V)) 2336 // Non-instruction values trivial dominate all possible uses 2337 continue; 2338 auto *LiveInst = cast<Instruction>(V); 2339 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2340 "unreachable values should never be live"); 2341 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2342 "basic SSA liveness expectation violated by liveness analysis"); 2343 } 2344 #endif 2345 } 2346 unique_unsorted(Live); 2347 2348 #ifndef NDEBUG 2349 // sanity check 2350 for (auto *Ptr : Live) 2351 assert(isGCPointerType(Ptr->getType()) && "must be a gc pointer type"); 2352 #endif 2353 2354 relocationViaAlloca(F, DT, Live, Records); 2355 return !Records.empty(); 2356 } 2357 2358 // Handles both return values and arguments for Functions and CallSites. 2359 template <typename AttrHolder> 2360 static void RemoveDerefAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2361 unsigned Index) { 2362 AttrBuilder R; 2363 if (AH.getDereferenceableBytes(Index)) 2364 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2365 AH.getDereferenceableBytes(Index))); 2366 if (AH.getDereferenceableOrNullBytes(Index)) 2367 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2368 AH.getDereferenceableOrNullBytes(Index))); 2369 2370 if (!R.empty()) 2371 AH.setAttributes(AH.getAttributes().removeAttributes( 2372 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2373 } 2374 2375 void 2376 RewriteStatepointsForGC::stripDereferenceabilityInfoFromPrototype(Function &F) { 2377 LLVMContext &Ctx = F.getContext(); 2378 2379 for (Argument &A : F.args()) 2380 if (isa<PointerType>(A.getType())) 2381 RemoveDerefAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2382 2383 if (isa<PointerType>(F.getReturnType())) 2384 RemoveDerefAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2385 } 2386 2387 void RewriteStatepointsForGC::stripDereferenceabilityInfoFromBody(Function &F) { 2388 if (F.empty()) 2389 return; 2390 2391 LLVMContext &Ctx = F.getContext(); 2392 MDBuilder Builder(Ctx); 2393 2394 for (Instruction &I : instructions(F)) { 2395 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2396 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2397 bool IsImmutableTBAA = 2398 MD->getNumOperands() == 4 && 2399 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2400 2401 if (!IsImmutableTBAA) 2402 continue; // no work to do, MD_tbaa is already marked mutable 2403 2404 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2405 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2406 uint64_t Offset = 2407 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2408 2409 MDNode *MutableTBAA = 2410 Builder.createTBAAStructTagNode(Base, Access, Offset); 2411 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2412 } 2413 2414 if (CallSite CS = CallSite(&I)) { 2415 for (int i = 0, e = CS.arg_size(); i != e; i++) 2416 if (isa<PointerType>(CS.getArgument(i)->getType())) 2417 RemoveDerefAttrAtIndex(Ctx, CS, i + 1); 2418 if (isa<PointerType>(CS.getType())) 2419 RemoveDerefAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2420 } 2421 } 2422 } 2423 2424 /// Returns true if this function should be rewritten by this pass. The main 2425 /// point of this function is as an extension point for custom logic. 2426 static bool shouldRewriteStatepointsIn(Function &F) { 2427 // TODO: This should check the GCStrategy 2428 if (F.hasGC()) { 2429 const char *FunctionGCName = F.getGC(); 2430 const StringRef StatepointExampleName("statepoint-example"); 2431 const StringRef CoreCLRName("coreclr"); 2432 return (StatepointExampleName == FunctionGCName) || 2433 (CoreCLRName == FunctionGCName); 2434 } else 2435 return false; 2436 } 2437 2438 void RewriteStatepointsForGC::stripDereferenceabilityInfo(Module &M) { 2439 #ifndef NDEBUG 2440 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2441 "precondition!"); 2442 #endif 2443 2444 for (Function &F : M) 2445 stripDereferenceabilityInfoFromPrototype(F); 2446 2447 for (Function &F : M) 2448 stripDereferenceabilityInfoFromBody(F); 2449 } 2450 2451 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2452 // Nothing to do for declarations. 2453 if (F.isDeclaration() || F.empty()) 2454 return false; 2455 2456 // Policy choice says not to rewrite - the most common reason is that we're 2457 // compiling code without a GCStrategy. 2458 if (!shouldRewriteStatepointsIn(F)) 2459 return false; 2460 2461 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2462 2463 // Gather all the statepoints which need rewritten. Be careful to only 2464 // consider those in reachable code since we need to ask dominance queries 2465 // when rewriting. We'll delete the unreachable ones in a moment. 2466 SmallVector<CallSite, 64> ParsePointNeeded; 2467 bool HasUnreachableStatepoint = false; 2468 for (Instruction &I : instructions(F)) { 2469 // TODO: only the ones with the flag set! 2470 if (isStatepoint(I)) { 2471 if (DT.isReachableFromEntry(I.getParent())) 2472 ParsePointNeeded.push_back(CallSite(&I)); 2473 else 2474 HasUnreachableStatepoint = true; 2475 } 2476 } 2477 2478 bool MadeChange = false; 2479 2480 // Delete any unreachable statepoints so that we don't have unrewritten 2481 // statepoints surviving this pass. This makes testing easier and the 2482 // resulting IR less confusing to human readers. Rather than be fancy, we 2483 // just reuse a utility function which removes the unreachable blocks. 2484 if (HasUnreachableStatepoint) 2485 MadeChange |= removeUnreachableBlocks(F); 2486 2487 // Return early if no work to do. 2488 if (ParsePointNeeded.empty()) 2489 return MadeChange; 2490 2491 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2492 // These are created by LCSSA. They have the effect of increasing the size 2493 // of liveness sets for no good reason. It may be harder to do this post 2494 // insertion since relocations and base phis can confuse things. 2495 for (BasicBlock &BB : F) 2496 if (BB.getUniquePredecessor()) { 2497 MadeChange = true; 2498 FoldSingleEntryPHINodes(&BB); 2499 } 2500 2501 // Before we start introducing relocations, we want to tweak the IR a bit to 2502 // avoid unfortunate code generation effects. The main example is that we 2503 // want to try to make sure the comparison feeding a branch is after any 2504 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2505 // values feeding a branch after relocation. This is semantically correct, 2506 // but results in extra register pressure since both the pre-relocation and 2507 // post-relocation copies must be available in registers. For code without 2508 // relocations this is handled elsewhere, but teaching the scheduler to 2509 // reverse the transform we're about to do would be slightly complex. 2510 // Note: This may extend the live range of the inputs to the icmp and thus 2511 // increase the liveset of any statepoint we move over. This is profitable 2512 // as long as all statepoints are in rare blocks. If we had in-register 2513 // lowering for live values this would be a much safer transform. 2514 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2515 if (auto *BI = dyn_cast<BranchInst>(TI)) 2516 if (BI->isConditional()) 2517 return dyn_cast<Instruction>(BI->getCondition()); 2518 // TODO: Extend this to handle switches 2519 return nullptr; 2520 }; 2521 for (BasicBlock &BB : F) { 2522 TerminatorInst *TI = BB.getTerminator(); 2523 if (auto *Cond = getConditionInst(TI)) 2524 // TODO: Handle more than just ICmps here. We should be able to move 2525 // most instructions without side effects or memory access. 2526 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2527 MadeChange = true; 2528 Cond->moveBefore(TI); 2529 } 2530 } 2531 2532 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); 2533 return MadeChange; 2534 } 2535 2536 // liveness computation via standard dataflow 2537 // ------------------------------------------------------------------- 2538 2539 // TODO: Consider using bitvectors for liveness, the set of potentially 2540 // interesting values should be small and easy to pre-compute. 2541 2542 /// Compute the live-in set for the location rbegin starting from 2543 /// the live-out set of the basic block 2544 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2545 BasicBlock::reverse_iterator rend, 2546 DenseSet<Value *> &LiveTmp) { 2547 2548 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2549 Instruction *I = &*ritr; 2550 2551 // KILL/Def - Remove this definition from LiveIn 2552 LiveTmp.erase(I); 2553 2554 // Don't consider *uses* in PHI nodes, we handle their contribution to 2555 // predecessor blocks when we seed the LiveOut sets 2556 if (isa<PHINode>(I)) 2557 continue; 2558 2559 // USE - Add to the LiveIn set for this instruction 2560 for (Value *V : I->operands()) { 2561 assert(!isUnhandledGCPointerType(V->getType()) && 2562 "support for FCA unimplemented"); 2563 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2564 // The choice to exclude all things constant here is slightly subtle. 2565 // There are two independent reasons: 2566 // - We assume that things which are constant (from LLVM's definition) 2567 // do not move at runtime. For example, the address of a global 2568 // variable is fixed, even though it's contents may not be. 2569 // - Second, we can't disallow arbitrary inttoptr constants even 2570 // if the language frontend does. Optimization passes are free to 2571 // locally exploit facts without respect to global reachability. This 2572 // can create sections of code which are dynamically unreachable and 2573 // contain just about anything. (see constants.ll in tests) 2574 LiveTmp.insert(V); 2575 } 2576 } 2577 } 2578 } 2579 2580 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2581 2582 for (BasicBlock *Succ : successors(BB)) { 2583 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2584 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2585 PHINode *Phi = cast<PHINode>(&*I); 2586 Value *V = Phi->getIncomingValueForBlock(BB); 2587 assert(!isUnhandledGCPointerType(V->getType()) && 2588 "support for FCA unimplemented"); 2589 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2590 LiveTmp.insert(V); 2591 } 2592 } 2593 } 2594 } 2595 2596 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2597 DenseSet<Value *> KillSet; 2598 for (Instruction &I : *BB) 2599 if (isHandledGCPointerType(I.getType())) 2600 KillSet.insert(&I); 2601 return KillSet; 2602 } 2603 2604 #ifndef NDEBUG 2605 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2606 /// sanity check for the liveness computation. 2607 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2608 TerminatorInst *TI, bool TermOkay = false) { 2609 for (Value *V : Live) { 2610 if (auto *I = dyn_cast<Instruction>(V)) { 2611 // The terminator can be a member of the LiveOut set. LLVM's definition 2612 // of instruction dominance states that V does not dominate itself. As 2613 // such, we need to special case this to allow it. 2614 if (TermOkay && TI == I) 2615 continue; 2616 assert(DT.dominates(I, TI) && 2617 "basic SSA liveness expectation violated by liveness analysis"); 2618 } 2619 } 2620 } 2621 2622 /// Check that all the liveness sets used during the computation of liveness 2623 /// obey basic SSA properties. This is useful for finding cases where we miss 2624 /// a def. 2625 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2626 BasicBlock &BB) { 2627 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2628 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2629 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2630 } 2631 #endif 2632 2633 static void computeLiveInValues(DominatorTree &DT, Function &F, 2634 GCPtrLivenessData &Data) { 2635 2636 SmallSetVector<BasicBlock *, 200> Worklist; 2637 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2638 // We use a SetVector so that we don't have duplicates in the worklist. 2639 Worklist.insert(pred_begin(BB), pred_end(BB)); 2640 }; 2641 auto NextItem = [&]() { 2642 BasicBlock *BB = Worklist.back(); 2643 Worklist.pop_back(); 2644 return BB; 2645 }; 2646 2647 // Seed the liveness for each individual block 2648 for (BasicBlock &BB : F) { 2649 Data.KillSet[&BB] = computeKillSet(&BB); 2650 Data.LiveSet[&BB].clear(); 2651 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2652 2653 #ifndef NDEBUG 2654 for (Value *Kill : Data.KillSet[&BB]) 2655 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2656 #endif 2657 2658 Data.LiveOut[&BB] = DenseSet<Value *>(); 2659 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2660 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2661 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2662 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2663 if (!Data.LiveIn[&BB].empty()) 2664 AddPredsToWorklist(&BB); 2665 } 2666 2667 // Propagate that liveness until stable 2668 while (!Worklist.empty()) { 2669 BasicBlock *BB = NextItem(); 2670 2671 // Compute our new liveout set, then exit early if it hasn't changed 2672 // despite the contribution of our successor. 2673 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2674 const auto OldLiveOutSize = LiveOut.size(); 2675 for (BasicBlock *Succ : successors(BB)) { 2676 assert(Data.LiveIn.count(Succ)); 2677 set_union(LiveOut, Data.LiveIn[Succ]); 2678 } 2679 // assert OutLiveOut is a subset of LiveOut 2680 if (OldLiveOutSize == LiveOut.size()) { 2681 // If the sets are the same size, then we didn't actually add anything 2682 // when unioning our successors LiveIn Thus, the LiveIn of this block 2683 // hasn't changed. 2684 continue; 2685 } 2686 Data.LiveOut[BB] = LiveOut; 2687 2688 // Apply the effects of this basic block 2689 DenseSet<Value *> LiveTmp = LiveOut; 2690 set_union(LiveTmp, Data.LiveSet[BB]); 2691 set_subtract(LiveTmp, Data.KillSet[BB]); 2692 2693 assert(Data.LiveIn.count(BB)); 2694 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2695 // assert: OldLiveIn is a subset of LiveTmp 2696 if (OldLiveIn.size() != LiveTmp.size()) { 2697 Data.LiveIn[BB] = LiveTmp; 2698 AddPredsToWorklist(BB); 2699 } 2700 } // while( !worklist.empty() ) 2701 2702 #ifndef NDEBUG 2703 // Sanity check our output against SSA properties. This helps catch any 2704 // missing kills during the above iteration. 2705 for (BasicBlock &BB : F) { 2706 checkBasicSSA(DT, Data, BB); 2707 } 2708 #endif 2709 } 2710 2711 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2712 StatepointLiveSetTy &Out) { 2713 2714 BasicBlock *BB = Inst->getParent(); 2715 2716 // Note: The copy is intentional and required 2717 assert(Data.LiveOut.count(BB)); 2718 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2719 2720 // We want to handle the statepoint itself oddly. It's 2721 // call result is not live (normal), nor are it's arguments 2722 // (unless they're used again later). This adjustment is 2723 // specifically what we need to relocate 2724 BasicBlock::reverse_iterator rend(Inst); 2725 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2726 LiveOut.erase(Inst); 2727 Out.insert(LiveOut.begin(), LiveOut.end()); 2728 } 2729 2730 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2731 const CallSite &CS, 2732 PartiallyConstructedSafepointRecord &Info) { 2733 Instruction *Inst = CS.getInstruction(); 2734 StatepointLiveSetTy Updated; 2735 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2736 2737 #ifndef NDEBUG 2738 DenseSet<Value *> Bases; 2739 for (auto KVPair : Info.PointerToBase) { 2740 Bases.insert(KVPair.second); 2741 } 2742 #endif 2743 // We may have base pointers which are now live that weren't before. We need 2744 // to update the PointerToBase structure to reflect this. 2745 for (auto V : Updated) 2746 if (!Info.PointerToBase.count(V)) { 2747 assert(Bases.count(V) && "can't find base for unexpected live value"); 2748 Info.PointerToBase[V] = V; 2749 continue; 2750 } 2751 2752 #ifndef NDEBUG 2753 for (auto V : Updated) { 2754 assert(Info.PointerToBase.count(V) && 2755 "must be able to find base for live value"); 2756 } 2757 #endif 2758 2759 // Remove any stale base mappings - this can happen since our liveness is 2760 // more precise then the one inherent in the base pointer analysis 2761 DenseSet<Value *> ToErase; 2762 for (auto KVPair : Info.PointerToBase) 2763 if (!Updated.count(KVPair.first)) 2764 ToErase.insert(KVPair.first); 2765 for (auto V : ToErase) 2766 Info.PointerToBase.erase(V); 2767 2768 #ifndef NDEBUG 2769 for (auto KVPair : Info.PointerToBase) 2770 assert(Updated.count(KVPair.first) && "record for non-live value"); 2771 #endif 2772 2773 Info.LiveSet = Updated; 2774 } 2775