xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 19eb03106d6042a404f4943f3e9efc74da6865f6)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Rewrite an existing set of gc.statepoints such that they make potential
11 // relocations performed by the garbage collector explicit in the IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Pass.h"
16 #include "llvm/Analysis/CFG.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CallSite.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Statepoint.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/Verifier.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Transforms/Scalar.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/Cloning.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
46 
47 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
48 
49 using namespace llvm;
50 
51 // Print the liveset found at the insert location
52 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
53                                   cl::init(false));
54 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
55                                       cl::init(false));
56 // Print out the base pointers for debugging
57 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
58                                        cl::init(false));
59 
60 // Cost threshold measuring when it is profitable to rematerialize value instead
61 // of relocating it
62 static cl::opt<unsigned>
63 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
64                            cl::init(6));
65 
66 #ifdef XDEBUG
67 static bool ClobberNonLive = true;
68 #else
69 static bool ClobberNonLive = false;
70 #endif
71 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
72                                                   cl::location(ClobberNonLive),
73                                                   cl::Hidden);
74 
75 static cl::opt<bool> UseDeoptBundles("rs4gc-use-deopt-bundles", cl::Hidden,
76                                      cl::init(false));
77 static cl::opt<bool>
78     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
79                                    cl::Hidden, cl::init(true));
80 
81 /// Should we split vectors of pointers into their individual elements?  This
82 /// is known to be buggy, but the alternate implementation isn't yet ready.
83 /// This is purely to provide a debugging and dianostic hook until the vector
84 /// split is replaced with vector relocations.
85 static cl::opt<bool> UseVectorSplit("rs4gc-split-vector-values", cl::Hidden,
86                                     cl::init(false));
87 
88 namespace {
89 struct RewriteStatepointsForGC : public ModulePass {
90   static char ID; // Pass identification, replacement for typeid
91 
92   RewriteStatepointsForGC() : ModulePass(ID) {
93     initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
94   }
95   bool runOnFunction(Function &F);
96   bool runOnModule(Module &M) override {
97     bool Changed = false;
98     for (Function &F : M)
99       Changed |= runOnFunction(F);
100 
101     if (Changed) {
102       // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
103       // returns true for at least one function in the module.  Since at least
104       // one function changed, we know that the precondition is satisfied.
105       stripNonValidAttributes(M);
106     }
107 
108     return Changed;
109   }
110 
111   void getAnalysisUsage(AnalysisUsage &AU) const override {
112     // We add and rewrite a bunch of instructions, but don't really do much
113     // else.  We could in theory preserve a lot more analyses here.
114     AU.addRequired<DominatorTreeWrapperPass>();
115     AU.addRequired<TargetTransformInfoWrapperPass>();
116   }
117 
118   /// The IR fed into RewriteStatepointsForGC may have had attributes implying
119   /// dereferenceability that are no longer valid/correct after
120   /// RewriteStatepointsForGC has run.  This is because semantically, after
121   /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
122   /// heap.  stripNonValidAttributes (conservatively) restores correctness
123   /// by erasing all attributes in the module that externally imply
124   /// dereferenceability.
125   /// Similar reasoning also applies to the noalias attributes. gc.statepoint
126   /// can touch the entire heap including noalias objects.
127   void stripNonValidAttributes(Module &M);
128 
129   // Helpers for stripNonValidAttributes
130   void stripNonValidAttributesFromBody(Function &F);
131   void stripNonValidAttributesFromPrototype(Function &F);
132 };
133 } // namespace
134 
135 char RewriteStatepointsForGC::ID = 0;
136 
137 ModulePass *llvm::createRewriteStatepointsForGCPass() {
138   return new RewriteStatepointsForGC();
139 }
140 
141 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
142                       "Make relocations explicit at statepoints", false, false)
143 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
144 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
145                     "Make relocations explicit at statepoints", false, false)
146 
147 namespace {
148 struct GCPtrLivenessData {
149   /// Values defined in this block.
150   DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
151   /// Values used in this block (and thus live); does not included values
152   /// killed within this block.
153   DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;
154 
155   /// Values live into this basic block (i.e. used by any
156   /// instruction in this basic block or ones reachable from here)
157   DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;
158 
159   /// Values live out of this basic block (i.e. live into
160   /// any successor block)
161   DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
162 };
163 
164 // The type of the internal cache used inside the findBasePointers family
165 // of functions.  From the callers perspective, this is an opaque type and
166 // should not be inspected.
167 //
168 // In the actual implementation this caches two relations:
169 // - The base relation itself (i.e. this pointer is based on that one)
170 // - The base defining value relation (i.e. before base_phi insertion)
171 // Generally, after the execution of a full findBasePointer call, only the
172 // base relation will remain.  Internally, we add a mixture of the two
173 // types, then update all the second type to the first type
174 typedef DenseMap<Value *, Value *> DefiningValueMapTy;
175 typedef DenseSet<Value *> StatepointLiveSetTy;
176 typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>>
177   RematerializedValueMapTy;
178 
179 struct PartiallyConstructedSafepointRecord {
180   /// The set of values known to be live across this safepoint
181   StatepointLiveSetTy LiveSet;
182 
183   /// Mapping from live pointers to a base-defining-value
184   DenseMap<Value *, Value *> PointerToBase;
185 
186   /// The *new* gc.statepoint instruction itself.  This produces the token
187   /// that normal path gc.relocates and the gc.result are tied to.
188   Instruction *StatepointToken;
189 
190   /// Instruction to which exceptional gc relocates are attached
191   /// Makes it easier to iterate through them during relocationViaAlloca.
192   Instruction *UnwindToken;
193 
194   /// Record live values we are rematerialized instead of relocating.
195   /// They are not included into 'LiveSet' field.
196   /// Maps rematerialized copy to it's original value.
197   RematerializedValueMapTy RematerializedValues;
198 };
199 }
200 
201 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
202   assert(UseDeoptBundles && "Should not be called otherwise!");
203 
204   Optional<OperandBundleUse> DeoptBundle = CS.getOperandBundle("deopt");
205 
206   if (!DeoptBundle.hasValue()) {
207     assert(AllowStatepointWithNoDeoptInfo &&
208            "Found non-leaf call without deopt info!");
209     return None;
210   }
211 
212   return DeoptBundle.getValue().Inputs;
213 }
214 
215 /// Compute the live-in set for every basic block in the function
216 static void computeLiveInValues(DominatorTree &DT, Function &F,
217                                 GCPtrLivenessData &Data);
218 
219 /// Given results from the dataflow liveness computation, find the set of live
220 /// Values at a particular instruction.
221 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
222                               StatepointLiveSetTy &out);
223 
224 // TODO: Once we can get to the GCStrategy, this becomes
225 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
226 
227 static bool isGCPointerType(Type *T) {
228   if (auto *PT = dyn_cast<PointerType>(T))
229     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
230     // GC managed heap.  We know that a pointer into this heap needs to be
231     // updated and that no other pointer does.
232     return (1 == PT->getAddressSpace());
233   return false;
234 }
235 
236 // Return true if this type is one which a) is a gc pointer or contains a GC
237 // pointer and b) is of a type this code expects to encounter as a live value.
238 // (The insertion code will assert that a type which matches (a) and not (b)
239 // is not encountered.)
240 static bool isHandledGCPointerType(Type *T) {
241   // We fully support gc pointers
242   if (isGCPointerType(T))
243     return true;
244   // We partially support vectors of gc pointers. The code will assert if it
245   // can't handle something.
246   if (auto VT = dyn_cast<VectorType>(T))
247     if (isGCPointerType(VT->getElementType()))
248       return true;
249   return false;
250 }
251 
252 #ifndef NDEBUG
253 /// Returns true if this type contains a gc pointer whether we know how to
254 /// handle that type or not.
255 static bool containsGCPtrType(Type *Ty) {
256   if (isGCPointerType(Ty))
257     return true;
258   if (VectorType *VT = dyn_cast<VectorType>(Ty))
259     return isGCPointerType(VT->getScalarType());
260   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
261     return containsGCPtrType(AT->getElementType());
262   if (StructType *ST = dyn_cast<StructType>(Ty))
263     return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
264                        containsGCPtrType);
265   return false;
266 }
267 
268 // Returns true if this is a type which a) is a gc pointer or contains a GC
269 // pointer and b) is of a type which the code doesn't expect (i.e. first class
270 // aggregates).  Used to trip assertions.
271 static bool isUnhandledGCPointerType(Type *Ty) {
272   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
273 }
274 #endif
275 
276 static bool order_by_name(Value *a, Value *b) {
277   if (a->hasName() && b->hasName()) {
278     return -1 == a->getName().compare(b->getName());
279   } else if (a->hasName() && !b->hasName()) {
280     return true;
281   } else if (!a->hasName() && b->hasName()) {
282     return false;
283   } else {
284     // Better than nothing, but not stable
285     return a < b;
286   }
287 }
288 
289 // Return the name of the value suffixed with the provided value, or if the
290 // value didn't have a name, the default value specified.
291 static std::string suffixed_name_or(Value *V, StringRef Suffix,
292                                     StringRef DefaultName) {
293   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
294 }
295 
296 // Conservatively identifies any definitions which might be live at the
297 // given instruction. The  analysis is performed immediately before the
298 // given instruction. Values defined by that instruction are not considered
299 // live.  Values used by that instruction are considered live.
300 static void analyzeParsePointLiveness(
301     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
302     const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
303   Instruction *inst = CS.getInstruction();
304 
305   StatepointLiveSetTy LiveSet;
306   findLiveSetAtInst(inst, OriginalLivenessData, LiveSet);
307 
308   if (PrintLiveSet) {
309     // Note: This output is used by several of the test cases
310     // The order of elements in a set is not stable, put them in a vec and sort
311     // by name
312     SmallVector<Value *, 64> Temp;
313     Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end());
314     std::sort(Temp.begin(), Temp.end(), order_by_name);
315     errs() << "Live Variables:\n";
316     for (Value *V : Temp)
317       dbgs() << " " << V->getName() << " " << *V << "\n";
318   }
319   if (PrintLiveSetSize) {
320     errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
321     errs() << "Number live values: " << LiveSet.size() << "\n";
322   }
323   result.LiveSet = LiveSet;
324 }
325 
326 static bool isKnownBaseResult(Value *V);
327 namespace {
328 /// A single base defining value - An immediate base defining value for an
329 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
330 /// For instructions which have multiple pointer [vector] inputs or that
331 /// transition between vector and scalar types, there is no immediate base
332 /// defining value.  The 'base defining value' for 'Def' is the transitive
333 /// closure of this relation stopping at the first instruction which has no
334 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
335 /// but it can also be an arbitrary derived pointer.
336 struct BaseDefiningValueResult {
337   /// Contains the value which is the base defining value.
338   Value * const BDV;
339   /// True if the base defining value is also known to be an actual base
340   /// pointer.
341   const bool IsKnownBase;
342   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
343     : BDV(BDV), IsKnownBase(IsKnownBase) {
344 #ifndef NDEBUG
345     // Check consistency between new and old means of checking whether a BDV is
346     // a base.
347     bool MustBeBase = isKnownBaseResult(BDV);
348     assert(!MustBeBase || MustBeBase == IsKnownBase);
349 #endif
350   }
351 };
352 }
353 
354 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
355 
356 /// Return a base defining value for the 'Index' element of the given vector
357 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
358 /// 'I'.  As an optimization, this method will try to determine when the
359 /// element is known to already be a base pointer.  If this can be established,
360 /// the second value in the returned pair will be true.  Note that either a
361 /// vector or a pointer typed value can be returned.  For the former, the
362 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
363 /// If the later, the return pointer is a BDV (or possibly a base) for the
364 /// particular element in 'I'.
365 static BaseDefiningValueResult
366 findBaseDefiningValueOfVector(Value *I) {
367   // Each case parallels findBaseDefiningValue below, see that code for
368   // detailed motivation.
369 
370   if (isa<Argument>(I))
371     // An incoming argument to the function is a base pointer
372     return BaseDefiningValueResult(I, true);
373 
374   if (isa<Constant>(I))
375     // Constant vectors consist only of constant pointers.
376     return BaseDefiningValueResult(I, true);
377 
378   if (isa<LoadInst>(I))
379     return BaseDefiningValueResult(I, true);
380 
381   if (isa<InsertElementInst>(I))
382     // We don't know whether this vector contains entirely base pointers or
383     // not.  To be conservatively correct, we treat it as a BDV and will
384     // duplicate code as needed to construct a parallel vector of bases.
385     return BaseDefiningValueResult(I, false);
386 
387   if (isa<ShuffleVectorInst>(I))
388     // We don't know whether this vector contains entirely base pointers or
389     // not.  To be conservatively correct, we treat it as a BDV and will
390     // duplicate code as needed to construct a parallel vector of bases.
391     // TODO: There a number of local optimizations which could be applied here
392     // for particular sufflevector patterns.
393     return BaseDefiningValueResult(I, false);
394 
395   // A PHI or Select is a base defining value.  The outer findBasePointer
396   // algorithm is responsible for constructing a base value for this BDV.
397   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
398          "unknown vector instruction - no base found for vector element");
399   return BaseDefiningValueResult(I, false);
400 }
401 
402 /// Helper function for findBasePointer - Will return a value which either a)
403 /// defines the base pointer for the input, b) blocks the simple search
404 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
405 /// from pointer to vector type or back.
406 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
407   assert(I->getType()->isPtrOrPtrVectorTy() &&
408          "Illegal to ask for the base pointer of a non-pointer type");
409 
410   if (I->getType()->isVectorTy())
411     return findBaseDefiningValueOfVector(I);
412 
413   if (isa<Argument>(I))
414     // An incoming argument to the function is a base pointer
415     // We should have never reached here if this argument isn't an gc value
416     return BaseDefiningValueResult(I, true);
417 
418   if (isa<Constant>(I))
419     // We assume that objects with a constant base (e.g. a global) can't move
420     // and don't need to be reported to the collector because they are always
421     // live.  All constants have constant bases.  Besides global references, all
422     // kinds of constants (e.g. undef, constant expressions, null pointers) can
423     // be introduced by the inliner or the optimizer, especially on dynamically
424     // dead paths.  See e.g. test4 in constants.ll.
425     return BaseDefiningValueResult(I, true);
426 
427   if (CastInst *CI = dyn_cast<CastInst>(I)) {
428     Value *Def = CI->stripPointerCasts();
429     // If stripping pointer casts changes the address space there is an
430     // addrspacecast in between.
431     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
432                cast<PointerType>(CI->getType())->getAddressSpace() &&
433            "unsupported addrspacecast");
434     // If we find a cast instruction here, it means we've found a cast which is
435     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
436     // handle int->ptr conversion.
437     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
438     return findBaseDefiningValue(Def);
439   }
440 
441   if (isa<LoadInst>(I))
442     // The value loaded is an gc base itself
443     return BaseDefiningValueResult(I, true);
444 
445 
446   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
447     // The base of this GEP is the base
448     return findBaseDefiningValue(GEP->getPointerOperand());
449 
450   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
451     switch (II->getIntrinsicID()) {
452     default:
453       // fall through to general call handling
454       break;
455     case Intrinsic::experimental_gc_statepoint:
456       llvm_unreachable("statepoints don't produce pointers");
457     case Intrinsic::experimental_gc_relocate: {
458       // Rerunning safepoint insertion after safepoints are already
459       // inserted is not supported.  It could probably be made to work,
460       // but why are you doing this?  There's no good reason.
461       llvm_unreachable("repeat safepoint insertion is not supported");
462     }
463     case Intrinsic::gcroot:
464       // Currently, this mechanism hasn't been extended to work with gcroot.
465       // There's no reason it couldn't be, but I haven't thought about the
466       // implications much.
467       llvm_unreachable(
468           "interaction with the gcroot mechanism is not supported");
469     }
470   }
471   // We assume that functions in the source language only return base
472   // pointers.  This should probably be generalized via attributes to support
473   // both source language and internal functions.
474   if (isa<CallInst>(I) || isa<InvokeInst>(I))
475     return BaseDefiningValueResult(I, true);
476 
477   // I have absolutely no idea how to implement this part yet.  It's not
478   // necessarily hard, I just haven't really looked at it yet.
479   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
480 
481   if (isa<AtomicCmpXchgInst>(I))
482     // A CAS is effectively a atomic store and load combined under a
483     // predicate.  From the perspective of base pointers, we just treat it
484     // like a load.
485     return BaseDefiningValueResult(I, true);
486 
487   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
488                                    "binary ops which don't apply to pointers");
489 
490   // The aggregate ops.  Aggregates can either be in the heap or on the
491   // stack, but in either case, this is simply a field load.  As a result,
492   // this is a defining definition of the base just like a load is.
493   if (isa<ExtractValueInst>(I))
494     return BaseDefiningValueResult(I, true);
495 
496   // We should never see an insert vector since that would require we be
497   // tracing back a struct value not a pointer value.
498   assert(!isa<InsertValueInst>(I) &&
499          "Base pointer for a struct is meaningless");
500 
501   // An extractelement produces a base result exactly when it's input does.
502   // We may need to insert a parallel instruction to extract the appropriate
503   // element out of the base vector corresponding to the input. Given this,
504   // it's analogous to the phi and select case even though it's not a merge.
505   if (isa<ExtractElementInst>(I))
506     // Note: There a lot of obvious peephole cases here.  This are deliberately
507     // handled after the main base pointer inference algorithm to make writing
508     // test cases to exercise that code easier.
509     return BaseDefiningValueResult(I, false);
510 
511   // The last two cases here don't return a base pointer.  Instead, they
512   // return a value which dynamically selects from among several base
513   // derived pointers (each with it's own base potentially).  It's the job of
514   // the caller to resolve these.
515   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
516          "missing instruction case in findBaseDefiningValing");
517   return BaseDefiningValueResult(I, false);
518 }
519 
520 /// Returns the base defining value for this value.
521 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
522   Value *&Cached = Cache[I];
523   if (!Cached) {
524     Cached = findBaseDefiningValue(I).BDV;
525     DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
526                  << Cached->getName() << "\n");
527   }
528   assert(Cache[I] != nullptr);
529   return Cached;
530 }
531 
532 /// Return a base pointer for this value if known.  Otherwise, return it's
533 /// base defining value.
534 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
535   Value *Def = findBaseDefiningValueCached(I, Cache);
536   auto Found = Cache.find(Def);
537   if (Found != Cache.end()) {
538     // Either a base-of relation, or a self reference.  Caller must check.
539     return Found->second;
540   }
541   // Only a BDV available
542   return Def;
543 }
544 
545 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
546 /// is it known to be a base pointer?  Or do we need to continue searching.
547 static bool isKnownBaseResult(Value *V) {
548   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
549       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
550       !isa<ShuffleVectorInst>(V)) {
551     // no recursion possible
552     return true;
553   }
554   if (isa<Instruction>(V) &&
555       cast<Instruction>(V)->getMetadata("is_base_value")) {
556     // This is a previously inserted base phi or select.  We know
557     // that this is a base value.
558     return true;
559   }
560 
561   // We need to keep searching
562   return false;
563 }
564 
565 namespace {
566 /// Models the state of a single base defining value in the findBasePointer
567 /// algorithm for determining where a new instruction is needed to propagate
568 /// the base of this BDV.
569 class BDVState {
570 public:
571   enum Status { Unknown, Base, Conflict };
572 
573   BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
574     assert(status != Base || b);
575   }
576   explicit BDVState(Value *b) : status(Base), base(b) {}
577   BDVState() : status(Unknown), base(nullptr) {}
578 
579   Status getStatus() const { return status; }
580   Value *getBase() const { return base; }
581 
582   bool isBase() const { return getStatus() == Base; }
583   bool isUnknown() const { return getStatus() == Unknown; }
584   bool isConflict() const { return getStatus() == Conflict; }
585 
586   bool operator==(const BDVState &other) const {
587     return base == other.base && status == other.status;
588   }
589 
590   bool operator!=(const BDVState &other) const { return !(*this == other); }
591 
592   LLVM_DUMP_METHOD
593   void dump() const { print(dbgs()); dbgs() << '\n'; }
594 
595   void print(raw_ostream &OS) const {
596     switch (status) {
597     case Unknown:
598       OS << "U";
599       break;
600     case Base:
601       OS << "B";
602       break;
603     case Conflict:
604       OS << "C";
605       break;
606     };
607     OS << " (" << base << " - "
608        << (base ? base->getName() : "nullptr") << "): ";
609   }
610 
611 private:
612   Status status;
613   AssertingVH<Value> base; // non null only if status == base
614 };
615 }
616 
617 #ifndef NDEBUG
618 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
619   State.print(OS);
620   return OS;
621 }
622 #endif
623 
624 namespace {
625 // Values of type BDVState form a lattice, and this is a helper
626 // class that implementes the meet operation.  The meat of the meet
627 // operation is implemented in MeetBDVStates::pureMeet
628 class MeetBDVStates {
629 public:
630   /// Initializes the currentResult to the TOP state so that if can be met with
631   /// any other state to produce that state.
632   MeetBDVStates() {}
633 
634   // Destructively meet the current result with the given BDVState
635   void meetWith(BDVState otherState) {
636     currentResult = meet(otherState, currentResult);
637   }
638 
639   BDVState getResult() const { return currentResult; }
640 
641 private:
642   BDVState currentResult;
643 
644   /// Perform a meet operation on two elements of the BDVState lattice.
645   static BDVState meet(BDVState LHS, BDVState RHS) {
646     assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) &&
647            "math is wrong: meet does not commute!");
648     BDVState Result = pureMeet(LHS, RHS);
649     DEBUG(dbgs() << "meet of " << LHS << " with " << RHS
650                  << " produced " << Result << "\n");
651     return Result;
652   }
653 
654   static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) {
655     switch (stateA.getStatus()) {
656     case BDVState::Unknown:
657       return stateB;
658 
659     case BDVState::Base:
660       assert(stateA.getBase() && "can't be null");
661       if (stateB.isUnknown())
662         return stateA;
663 
664       if (stateB.isBase()) {
665         if (stateA.getBase() == stateB.getBase()) {
666           assert(stateA == stateB && "equality broken!");
667           return stateA;
668         }
669         return BDVState(BDVState::Conflict);
670       }
671       assert(stateB.isConflict() && "only three states!");
672       return BDVState(BDVState::Conflict);
673 
674     case BDVState::Conflict:
675       return stateA;
676     }
677     llvm_unreachable("only three states!");
678   }
679 };
680 }
681 
682 
683 /// For a given value or instruction, figure out what base ptr it's derived
684 /// from.  For gc objects, this is simply itself.  On success, returns a value
685 /// which is the base pointer.  (This is reliable and can be used for
686 /// relocation.)  On failure, returns nullptr.
687 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
688   Value *def = findBaseOrBDV(I, cache);
689 
690   if (isKnownBaseResult(def)) {
691     return def;
692   }
693 
694   // Here's the rough algorithm:
695   // - For every SSA value, construct a mapping to either an actual base
696   //   pointer or a PHI which obscures the base pointer.
697   // - Construct a mapping from PHI to unknown TOP state.  Use an
698   //   optimistic algorithm to propagate base pointer information.  Lattice
699   //   looks like:
700   //   UNKNOWN
701   //   b1 b2 b3 b4
702   //   CONFLICT
703   //   When algorithm terminates, all PHIs will either have a single concrete
704   //   base or be in a conflict state.
705   // - For every conflict, insert a dummy PHI node without arguments.  Add
706   //   these to the base[Instruction] = BasePtr mapping.  For every
707   //   non-conflict, add the actual base.
708   //  - For every conflict, add arguments for the base[a] of each input
709   //   arguments.
710   //
711   // Note: A simpler form of this would be to add the conflict form of all
712   // PHIs without running the optimistic algorithm.  This would be
713   // analogous to pessimistic data flow and would likely lead to an
714   // overall worse solution.
715 
716 #ifndef NDEBUG
717   auto isExpectedBDVType = [](Value *BDV) {
718     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
719            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
720   };
721 #endif
722 
723   // Once populated, will contain a mapping from each potentially non-base BDV
724   // to a lattice value (described above) which corresponds to that BDV.
725   // We use the order of insertion (DFS over the def/use graph) to provide a
726   // stable deterministic ordering for visiting DenseMaps (which are unordered)
727   // below.  This is important for deterministic compilation.
728   MapVector<Value *, BDVState> States;
729 
730   // Recursively fill in all base defining values reachable from the initial
731   // one for which we don't already know a definite base value for
732   /* scope */ {
733     SmallVector<Value*, 16> Worklist;
734     Worklist.push_back(def);
735     States.insert(std::make_pair(def, BDVState()));
736     while (!Worklist.empty()) {
737       Value *Current = Worklist.pop_back_val();
738       assert(!isKnownBaseResult(Current) && "why did it get added?");
739 
740       auto visitIncomingValue = [&](Value *InVal) {
741         Value *Base = findBaseOrBDV(InVal, cache);
742         if (isKnownBaseResult(Base))
743           // Known bases won't need new instructions introduced and can be
744           // ignored safely
745           return;
746         assert(isExpectedBDVType(Base) && "the only non-base values "
747                "we see should be base defining values");
748         if (States.insert(std::make_pair(Base, BDVState())).second)
749           Worklist.push_back(Base);
750       };
751       if (PHINode *Phi = dyn_cast<PHINode>(Current)) {
752         for (Value *InVal : Phi->incoming_values())
753           visitIncomingValue(InVal);
754       } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) {
755         visitIncomingValue(Sel->getTrueValue());
756         visitIncomingValue(Sel->getFalseValue());
757       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
758         visitIncomingValue(EE->getVectorOperand());
759       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
760         visitIncomingValue(IE->getOperand(0)); // vector operand
761         visitIncomingValue(IE->getOperand(1)); // scalar operand
762       } else {
763         // There is one known class of instructions we know we don't handle.
764         assert(isa<ShuffleVectorInst>(Current));
765         llvm_unreachable("unimplemented instruction case");
766       }
767     }
768   }
769 
770 #ifndef NDEBUG
771   DEBUG(dbgs() << "States after initialization:\n");
772   for (auto Pair : States) {
773     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
774   }
775 #endif
776 
777   // Return a phi state for a base defining value.  We'll generate a new
778   // base state for known bases and expect to find a cached state otherwise.
779   auto getStateForBDV = [&](Value *baseValue) {
780     if (isKnownBaseResult(baseValue))
781       return BDVState(baseValue);
782     auto I = States.find(baseValue);
783     assert(I != States.end() && "lookup failed!");
784     return I->second;
785   };
786 
787   bool progress = true;
788   while (progress) {
789 #ifndef NDEBUG
790     const size_t oldSize = States.size();
791 #endif
792     progress = false;
793     // We're only changing values in this loop, thus safe to keep iterators.
794     // Since this is computing a fixed point, the order of visit does not
795     // effect the result.  TODO: We could use a worklist here and make this run
796     // much faster.
797     for (auto Pair : States) {
798       Value *BDV = Pair.first;
799       assert(!isKnownBaseResult(BDV) && "why did it get added?");
800 
801       // Given an input value for the current instruction, return a BDVState
802       // instance which represents the BDV of that value.
803       auto getStateForInput = [&](Value *V) mutable {
804         Value *BDV = findBaseOrBDV(V, cache);
805         return getStateForBDV(BDV);
806       };
807 
808       MeetBDVStates calculateMeet;
809       if (SelectInst *select = dyn_cast<SelectInst>(BDV)) {
810         calculateMeet.meetWith(getStateForInput(select->getTrueValue()));
811         calculateMeet.meetWith(getStateForInput(select->getFalseValue()));
812       } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) {
813         for (Value *Val : Phi->incoming_values())
814           calculateMeet.meetWith(getStateForInput(Val));
815       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
816         // The 'meet' for an extractelement is slightly trivial, but it's still
817         // useful in that it drives us to conflict if our input is.
818         calculateMeet.meetWith(getStateForInput(EE->getVectorOperand()));
819       } else {
820         // Given there's a inherent type mismatch between the operands, will
821         // *always* produce Conflict.
822         auto *IE = cast<InsertElementInst>(BDV);
823         calculateMeet.meetWith(getStateForInput(IE->getOperand(0)));
824         calculateMeet.meetWith(getStateForInput(IE->getOperand(1)));
825       }
826 
827       BDVState oldState = States[BDV];
828       BDVState newState = calculateMeet.getResult();
829       if (oldState != newState) {
830         progress = true;
831         States[BDV] = newState;
832       }
833     }
834 
835     assert(oldSize == States.size() &&
836            "fixed point shouldn't be adding any new nodes to state");
837   }
838 
839 #ifndef NDEBUG
840   DEBUG(dbgs() << "States after meet iteration:\n");
841   for (auto Pair : States) {
842     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
843   }
844 #endif
845 
846   // Insert Phis for all conflicts
847   // TODO: adjust naming patterns to avoid this order of iteration dependency
848   for (auto Pair : States) {
849     Instruction *I = cast<Instruction>(Pair.first);
850     BDVState State = Pair.second;
851     assert(!isKnownBaseResult(I) && "why did it get added?");
852     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
853 
854     // extractelement instructions are a bit special in that we may need to
855     // insert an extract even when we know an exact base for the instruction.
856     // The problem is that we need to convert from a vector base to a scalar
857     // base for the particular indice we're interested in.
858     if (State.isBase() && isa<ExtractElementInst>(I) &&
859         isa<VectorType>(State.getBase()->getType())) {
860       auto *EE = cast<ExtractElementInst>(I);
861       // TODO: In many cases, the new instruction is just EE itself.  We should
862       // exploit this, but can't do it here since it would break the invariant
863       // about the BDV not being known to be a base.
864       auto *BaseInst = ExtractElementInst::Create(State.getBase(),
865                                                   EE->getIndexOperand(),
866                                                   "base_ee", EE);
867       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
868       States[I] = BDVState(BDVState::Base, BaseInst);
869     }
870 
871     // Since we're joining a vector and scalar base, they can never be the
872     // same.  As a result, we should always see insert element having reached
873     // the conflict state.
874     if (isa<InsertElementInst>(I)) {
875       assert(State.isConflict());
876     }
877 
878     if (!State.isConflict())
879       continue;
880 
881     /// Create and insert a new instruction which will represent the base of
882     /// the given instruction 'I'.
883     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
884       if (isa<PHINode>(I)) {
885         BasicBlock *BB = I->getParent();
886         int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
887         assert(NumPreds > 0 && "how did we reach here");
888         std::string Name = suffixed_name_or(I, ".base", "base_phi");
889         return PHINode::Create(I->getType(), NumPreds, Name, I);
890       } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) {
891         // The undef will be replaced later
892         UndefValue *Undef = UndefValue::get(Sel->getType());
893         std::string Name = suffixed_name_or(I, ".base", "base_select");
894         return SelectInst::Create(Sel->getCondition(), Undef,
895                                   Undef, Name, Sel);
896       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
897         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
898         std::string Name = suffixed_name_or(I, ".base", "base_ee");
899         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
900                                           EE);
901       } else {
902         auto *IE = cast<InsertElementInst>(I);
903         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
904         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
905         std::string Name = suffixed_name_or(I, ".base", "base_ie");
906         return InsertElementInst::Create(VecUndef, ScalarUndef,
907                                          IE->getOperand(2), Name, IE);
908       }
909 
910     };
911     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
912     // Add metadata marking this as a base value
913     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
914     States[I] = BDVState(BDVState::Conflict, BaseInst);
915   }
916 
917   // Returns a instruction which produces the base pointer for a given
918   // instruction.  The instruction is assumed to be an input to one of the BDVs
919   // seen in the inference algorithm above.  As such, we must either already
920   // know it's base defining value is a base, or have inserted a new
921   // instruction to propagate the base of it's BDV and have entered that newly
922   // introduced instruction into the state table.  In either case, we are
923   // assured to be able to determine an instruction which produces it's base
924   // pointer.
925   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
926     Value *BDV = findBaseOrBDV(Input, cache);
927     Value *Base = nullptr;
928     if (isKnownBaseResult(BDV)) {
929       Base = BDV;
930     } else {
931       // Either conflict or base.
932       assert(States.count(BDV));
933       Base = States[BDV].getBase();
934     }
935     assert(Base && "can't be null");
936     // The cast is needed since base traversal may strip away bitcasts
937     if (Base->getType() != Input->getType() &&
938         InsertPt) {
939       Base = new BitCastInst(Base, Input->getType(), "cast",
940                              InsertPt);
941     }
942     return Base;
943   };
944 
945   // Fixup all the inputs of the new PHIs.  Visit order needs to be
946   // deterministic and predictable because we're naming newly created
947   // instructions.
948   for (auto Pair : States) {
949     Instruction *BDV = cast<Instruction>(Pair.first);
950     BDVState State = Pair.second;
951 
952     assert(!isKnownBaseResult(BDV) && "why did it get added?");
953     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
954     if (!State.isConflict())
955       continue;
956 
957     if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) {
958       PHINode *phi = cast<PHINode>(BDV);
959       unsigned NumPHIValues = phi->getNumIncomingValues();
960       for (unsigned i = 0; i < NumPHIValues; i++) {
961         Value *InVal = phi->getIncomingValue(i);
962         BasicBlock *InBB = phi->getIncomingBlock(i);
963 
964         // If we've already seen InBB, add the same incoming value
965         // we added for it earlier.  The IR verifier requires phi
966         // nodes with multiple entries from the same basic block
967         // to have the same incoming value for each of those
968         // entries.  If we don't do this check here and basephi
969         // has a different type than base, we'll end up adding two
970         // bitcasts (and hence two distinct values) as incoming
971         // values for the same basic block.
972 
973         int blockIndex = basephi->getBasicBlockIndex(InBB);
974         if (blockIndex != -1) {
975           Value *oldBase = basephi->getIncomingValue(blockIndex);
976           basephi->addIncoming(oldBase, InBB);
977 
978 #ifndef NDEBUG
979           Value *Base = getBaseForInput(InVal, nullptr);
980           // In essence this assert states: the only way two
981           // values incoming from the same basic block may be
982           // different is by being different bitcasts of the same
983           // value.  A cleanup that remains TODO is changing
984           // findBaseOrBDV to return an llvm::Value of the correct
985           // type (and still remain pure).  This will remove the
986           // need to add bitcasts.
987           assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() &&
988                  "sanity -- findBaseOrBDV should be pure!");
989 #endif
990           continue;
991         }
992 
993         // Find the instruction which produces the base for each input.  We may
994         // need to insert a bitcast in the incoming block.
995         // TODO: Need to split critical edges if insertion is needed
996         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
997         basephi->addIncoming(Base, InBB);
998       }
999       assert(basephi->getNumIncomingValues() == NumPHIValues);
1000     } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) {
1001       SelectInst *Sel = cast<SelectInst>(BDV);
1002       // Operand 1 & 2 are true, false path respectively. TODO: refactor to
1003       // something more safe and less hacky.
1004       for (int i = 1; i <= 2; i++) {
1005         Value *InVal = Sel->getOperand(i);
1006         // Find the instruction which produces the base for each input.  We may
1007         // need to insert a bitcast.
1008         Value *Base = getBaseForInput(InVal, BaseSel);
1009         BaseSel->setOperand(i, Base);
1010       }
1011     } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) {
1012       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1013       // Find the instruction which produces the base for each input.  We may
1014       // need to insert a bitcast.
1015       Value *Base = getBaseForInput(InVal, BaseEE);
1016       BaseEE->setOperand(0, Base);
1017     } else {
1018       auto *BaseIE = cast<InsertElementInst>(State.getBase());
1019       auto *BdvIE = cast<InsertElementInst>(BDV);
1020       auto UpdateOperand = [&](int OperandIdx) {
1021         Value *InVal = BdvIE->getOperand(OperandIdx);
1022         Value *Base = getBaseForInput(InVal, BaseIE);
1023         BaseIE->setOperand(OperandIdx, Base);
1024       };
1025       UpdateOperand(0); // vector operand
1026       UpdateOperand(1); // scalar operand
1027     }
1028 
1029   }
1030 
1031   // Now that we're done with the algorithm, see if we can optimize the
1032   // results slightly by reducing the number of new instructions needed.
1033   // Arguably, this should be integrated into the algorithm above, but
1034   // doing as a post process step is easier to reason about for the moment.
1035   DenseMap<Value *, Value *> ReverseMap;
1036   SmallPtrSet<Instruction *, 16> NewInsts;
1037   SmallSetVector<AssertingVH<Instruction>, 16> Worklist;
1038   // Note: We need to visit the states in a deterministic order.  We uses the
1039   // Keys we sorted above for this purpose.  Note that we are papering over a
1040   // bigger problem with the algorithm above - it's visit order is not
1041   // deterministic.  A larger change is needed to fix this.
1042   for (auto Pair : States) {
1043     auto *BDV = Pair.first;
1044     auto State = Pair.second;
1045     Value *Base = State.getBase();
1046     assert(BDV && Base);
1047     assert(!isKnownBaseResult(BDV) && "why did it get added?");
1048     assert(isKnownBaseResult(Base) &&
1049            "must be something we 'know' is a base pointer");
1050     if (!State.isConflict())
1051       continue;
1052 
1053     ReverseMap[Base] = BDV;
1054     if (auto *BaseI = dyn_cast<Instruction>(Base)) {
1055       NewInsts.insert(BaseI);
1056       Worklist.insert(BaseI);
1057     }
1058   }
1059   auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI,
1060                                  Value *Replacement) {
1061     // Add users which are new instructions (excluding self references)
1062     for (User *U : BaseI->users())
1063       if (auto *UI = dyn_cast<Instruction>(U))
1064         if (NewInsts.count(UI) && UI != BaseI)
1065           Worklist.insert(UI);
1066     // Then do the actual replacement
1067     NewInsts.erase(BaseI);
1068     ReverseMap.erase(BaseI);
1069     BaseI->replaceAllUsesWith(Replacement);
1070     assert(States.count(BDV));
1071     assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI);
1072     States[BDV] = BDVState(BDVState::Conflict, Replacement);
1073     BaseI->eraseFromParent();
1074   };
1075   const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout();
1076   while (!Worklist.empty()) {
1077     Instruction *BaseI = Worklist.pop_back_val();
1078     assert(NewInsts.count(BaseI));
1079     Value *Bdv = ReverseMap[BaseI];
1080     if (auto *BdvI = dyn_cast<Instruction>(Bdv))
1081       if (BaseI->isIdenticalTo(BdvI)) {
1082         DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n");
1083         ReplaceBaseInstWith(Bdv, BaseI, Bdv);
1084         continue;
1085       }
1086     if (Value *V = SimplifyInstruction(BaseI, DL)) {
1087       DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n");
1088       ReplaceBaseInstWith(Bdv, BaseI, V);
1089       continue;
1090     }
1091   }
1092 
1093   // Cache all of our results so we can cheaply reuse them
1094   // NOTE: This is actually two caches: one of the base defining value
1095   // relation and one of the base pointer relation!  FIXME
1096   for (auto Pair : States) {
1097     auto *BDV = Pair.first;
1098     Value *base = Pair.second.getBase();
1099     assert(BDV && base);
1100 
1101     std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none";
1102     DEBUG(dbgs() << "Updating base value cache"
1103           << " for: " << BDV->getName()
1104           << " from: " << fromstr
1105           << " to: " << base->getName() << "\n");
1106 
1107     if (cache.count(BDV)) {
1108       // Once we transition from the BDV relation being store in the cache to
1109       // the base relation being stored, it must be stable
1110       assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) &&
1111              "base relation should be stable");
1112     }
1113     cache[BDV] = base;
1114   }
1115   assert(cache.count(def));
1116   return cache[def];
1117 }
1118 
1119 // For a set of live pointers (base and/or derived), identify the base
1120 // pointer of the object which they are derived from.  This routine will
1121 // mutate the IR graph as needed to make the 'base' pointer live at the
1122 // definition site of 'derived'.  This ensures that any use of 'derived' can
1123 // also use 'base'.  This may involve the insertion of a number of
1124 // additional PHI nodes.
1125 //
1126 // preconditions: live is a set of pointer type Values
1127 //
1128 // side effects: may insert PHI nodes into the existing CFG, will preserve
1129 // CFG, will not remove or mutate any existing nodes
1130 //
1131 // post condition: PointerToBase contains one (derived, base) pair for every
1132 // pointer in live.  Note that derived can be equal to base if the original
1133 // pointer was a base pointer.
1134 static void
1135 findBasePointers(const StatepointLiveSetTy &live,
1136                  DenseMap<Value *, Value *> &PointerToBase,
1137                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1138   // For the naming of values inserted to be deterministic - which makes for
1139   // much cleaner and more stable tests - we need to assign an order to the
1140   // live values.  DenseSets do not provide a deterministic order across runs.
1141   SmallVector<Value *, 64> Temp;
1142   Temp.insert(Temp.end(), live.begin(), live.end());
1143   std::sort(Temp.begin(), Temp.end(), order_by_name);
1144   for (Value *ptr : Temp) {
1145     Value *base = findBasePointer(ptr, DVCache);
1146     assert(base && "failed to find base pointer");
1147     PointerToBase[ptr] = base;
1148     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1149             DT->dominates(cast<Instruction>(base)->getParent(),
1150                           cast<Instruction>(ptr)->getParent())) &&
1151            "The base we found better dominate the derived pointer");
1152 
1153     // If you see this trip and like to live really dangerously, the code should
1154     // be correct, just with idioms the verifier can't handle.  You can try
1155     // disabling the verifier at your own substantial risk.
1156     assert(!isa<ConstantPointerNull>(base) &&
1157            "the relocation code needs adjustment to handle the relocation of "
1158            "a null pointer constant without causing false positives in the "
1159            "safepoint ir verifier.");
1160   }
1161 }
1162 
1163 /// Find the required based pointers (and adjust the live set) for the given
1164 /// parse point.
1165 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1166                              const CallSite &CS,
1167                              PartiallyConstructedSafepointRecord &result) {
1168   DenseMap<Value *, Value *> PointerToBase;
1169   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1170 
1171   if (PrintBasePointers) {
1172     // Note: Need to print these in a stable order since this is checked in
1173     // some tests.
1174     errs() << "Base Pairs (w/o Relocation):\n";
1175     SmallVector<Value *, 64> Temp;
1176     Temp.reserve(PointerToBase.size());
1177     for (auto Pair : PointerToBase) {
1178       Temp.push_back(Pair.first);
1179     }
1180     std::sort(Temp.begin(), Temp.end(), order_by_name);
1181     for (Value *Ptr : Temp) {
1182       Value *Base = PointerToBase[Ptr];
1183       errs() << " derived ";
1184       Ptr->printAsOperand(errs(), false);
1185       errs() << " base ";
1186       Base->printAsOperand(errs(), false);
1187       errs() << "\n";;
1188     }
1189   }
1190 
1191   result.PointerToBase = PointerToBase;
1192 }
1193 
1194 /// Given an updated version of the dataflow liveness results, update the
1195 /// liveset and base pointer maps for the call site CS.
1196 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1197                                   const CallSite &CS,
1198                                   PartiallyConstructedSafepointRecord &result);
1199 
1200 static void recomputeLiveInValues(
1201     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1202     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1203   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1204   // again.  The old values are still live and will help it stabilize quickly.
1205   GCPtrLivenessData RevisedLivenessData;
1206   computeLiveInValues(DT, F, RevisedLivenessData);
1207   for (size_t i = 0; i < records.size(); i++) {
1208     struct PartiallyConstructedSafepointRecord &info = records[i];
1209     const CallSite &CS = toUpdate[i];
1210     recomputeLiveInValues(RevisedLivenessData, CS, info);
1211   }
1212 }
1213 
1214 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1215 // no uses of the original value / return value between the gc.statepoint and
1216 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1217 // starting one of the successor blocks.  We also need to be able to insert the
1218 // gc.relocates only on the path which goes through the statepoint.  We might
1219 // need to split an edge to make this possible.
1220 static BasicBlock *
1221 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1222                             DominatorTree &DT) {
1223   BasicBlock *Ret = BB;
1224   if (!BB->getUniquePredecessor())
1225     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1226 
1227   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1228   // from it
1229   FoldSingleEntryPHINodes(Ret);
1230   assert(!isa<PHINode>(Ret->begin()) &&
1231          "All PHI nodes should have been removed!");
1232 
1233   // At this point, we can safely insert a gc.relocate or gc.result as the first
1234   // instruction in Ret if needed.
1235   return Ret;
1236 }
1237 
1238 // Create new attribute set containing only attributes which can be transferred
1239 // from original call to the safepoint.
1240 static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1241   AttributeSet Ret;
1242 
1243   for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1244     unsigned Index = AS.getSlotIndex(Slot);
1245 
1246     if (Index == AttributeSet::ReturnIndex ||
1247         Index == AttributeSet::FunctionIndex) {
1248 
1249       for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
1250 
1251         // Do not allow certain attributes - just skip them
1252         // Safepoint can not be read only or read none.
1253         if (Attr.hasAttribute(Attribute::ReadNone) ||
1254             Attr.hasAttribute(Attribute::ReadOnly))
1255           continue;
1256 
1257         // These attributes control the generation of the gc.statepoint call /
1258         // invoke itself; and once the gc.statepoint is in place, they're of no
1259         // use.
1260         if (Attr.hasAttribute("statepoint-num-patch-bytes") ||
1261             Attr.hasAttribute("statepoint-id"))
1262           continue;
1263 
1264         Ret = Ret.addAttributes(
1265             AS.getContext(), Index,
1266             AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
1267       }
1268     }
1269 
1270     // Just skip parameter attributes for now
1271   }
1272 
1273   return Ret;
1274 }
1275 
1276 /// Helper function to place all gc relocates necessary for the given
1277 /// statepoint.
1278 /// Inputs:
1279 ///   liveVariables - list of variables to be relocated.
1280 ///   liveStart - index of the first live variable.
1281 ///   basePtrs - base pointers.
1282 ///   statepointToken - statepoint instruction to which relocates should be
1283 ///   bound.
1284 ///   Builder - Llvm IR builder to be used to construct new calls.
1285 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1286                               const int LiveStart,
1287                               ArrayRef<Value *> BasePtrs,
1288                               Instruction *StatepointToken,
1289                               IRBuilder<> Builder) {
1290   if (LiveVariables.empty())
1291     return;
1292 
1293   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1294     auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
1295     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1296     size_t Index = std::distance(LiveVec.begin(), ValIt);
1297     assert(Index < LiveVec.size() && "Bug in std::find?");
1298     return Index;
1299   };
1300   Module *M = StatepointToken->getModule();
1301 
1302   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1303   // element type is i8 addrspace(1)*). We originally generated unique
1304   // declarations for each pointer type, but this proved problematic because
1305   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1306   // towards a single unified pointer type anyways, we can just cast everything
1307   // to an i8* of the right address space.  A bitcast is added later to convert
1308   // gc_relocate to the actual value's type.
1309   auto getGCRelocateDecl = [&] (Type *Ty) {
1310     assert(isHandledGCPointerType(Ty));
1311     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1312     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1313     if (auto *VT = dyn_cast<VectorType>(Ty))
1314       NewTy = VectorType::get(NewTy, VT->getNumElements());
1315     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1316                                      {NewTy});
1317   };
1318 
1319   // Lazily populated map from input types to the canonicalized form mentioned
1320   // in the comment above.  This should probably be cached somewhere more
1321   // broadly.
1322   DenseMap<Type*, Value*> TypeToDeclMap;
1323 
1324   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1325     // Generate the gc.relocate call and save the result
1326     Value *BaseIdx =
1327       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1328     Value *LiveIdx = Builder.getInt32(LiveStart + i);
1329 
1330     Type *Ty = LiveVariables[i]->getType();
1331     if (!TypeToDeclMap.count(Ty))
1332       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1333     Value *GCRelocateDecl = TypeToDeclMap[Ty];
1334 
1335     // only specify a debug name if we can give a useful one
1336     CallInst *Reloc = Builder.CreateCall(
1337         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1338         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1339     // Trick CodeGen into thinking there are lots of free registers at this
1340     // fake call.
1341     Reloc->setCallingConv(CallingConv::Cold);
1342   }
1343 }
1344 
1345 namespace {
1346 
1347 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1348 /// avoids having to worry about keeping around dangling pointers to Values.
1349 class DeferredReplacement {
1350   AssertingVH<Instruction> Old;
1351   AssertingVH<Instruction> New;
1352 
1353 public:
1354   explicit DeferredReplacement(Instruction *Old, Instruction *New) :
1355     Old(Old), New(New) {
1356     assert(Old != New && "Not allowed!");
1357   }
1358 
1359   /// Does the task represented by this instance.
1360   void doReplacement() {
1361     Instruction *OldI = Old;
1362     Instruction *NewI = New;
1363 
1364     assert(OldI != NewI && "Disallowed at construction?!");
1365 
1366     Old = nullptr;
1367     New = nullptr;
1368 
1369     if (NewI)
1370       OldI->replaceAllUsesWith(NewI);
1371     OldI->eraseFromParent();
1372   }
1373 };
1374 }
1375 
1376 static void
1377 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1378                            const SmallVectorImpl<Value *> &BasePtrs,
1379                            const SmallVectorImpl<Value *> &LiveVariables,
1380                            PartiallyConstructedSafepointRecord &Result,
1381                            std::vector<DeferredReplacement> &Replacements) {
1382   assert(BasePtrs.size() == LiveVariables.size());
1383   assert((UseDeoptBundles || isStatepoint(CS)) &&
1384          "This method expects to be rewriting a statepoint");
1385 
1386   // Then go ahead and use the builder do actually do the inserts.  We insert
1387   // immediately before the previous instruction under the assumption that all
1388   // arguments will be available here.  We can't insert afterwards since we may
1389   // be replacing a terminator.
1390   Instruction *InsertBefore = CS.getInstruction();
1391   IRBuilder<> Builder(InsertBefore);
1392 
1393   ArrayRef<Value *> GCArgs(LiveVariables);
1394   uint64_t StatepointID = 0xABCDEF00;
1395   uint32_t NumPatchBytes = 0;
1396   uint32_t Flags = uint32_t(StatepointFlags::None);
1397 
1398   ArrayRef<Use> CallArgs;
1399   ArrayRef<Use> DeoptArgs;
1400   ArrayRef<Use> TransitionArgs;
1401 
1402   Value *CallTarget = nullptr;
1403 
1404   if (UseDeoptBundles) {
1405     CallArgs = {CS.arg_begin(), CS.arg_end()};
1406     DeoptArgs = GetDeoptBundleOperands(CS);
1407     // TODO: we don't fill in TransitionArgs or Flags in this branch, but we
1408     // could have an operand bundle for that too.
1409     AttributeSet OriginalAttrs = CS.getAttributes();
1410 
1411     Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex,
1412                                                   "statepoint-id");
1413     if (AttrID.isStringAttribute())
1414       AttrID.getValueAsString().getAsInteger(10, StatepointID);
1415 
1416     Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute(
1417         AttributeSet::FunctionIndex, "statepoint-num-patch-bytes");
1418     if (AttrNumPatchBytes.isStringAttribute())
1419       AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes);
1420 
1421     CallTarget = CS.getCalledValue();
1422   } else {
1423     // This branch will be gone soon, and we will soon only support the
1424     // UseDeoptBundles == true configuration.
1425     Statepoint OldSP(CS);
1426     StatepointID = OldSP.getID();
1427     NumPatchBytes = OldSP.getNumPatchBytes();
1428     Flags = OldSP.getFlags();
1429 
1430     CallArgs = {OldSP.arg_begin(), OldSP.arg_end()};
1431     DeoptArgs = {OldSP.vm_state_begin(), OldSP.vm_state_end()};
1432     TransitionArgs = {OldSP.gc_transition_args_begin(),
1433                       OldSP.gc_transition_args_end()};
1434     CallTarget = OldSP.getCalledValue();
1435   }
1436 
1437   // Create the statepoint given all the arguments
1438   Instruction *Token = nullptr;
1439   AttributeSet ReturnAttrs;
1440   if (CS.isCall()) {
1441     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1442     CallInst *Call = Builder.CreateGCStatepointCall(
1443         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1444         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1445 
1446     Call->setTailCall(ToReplace->isTailCall());
1447     Call->setCallingConv(ToReplace->getCallingConv());
1448 
1449     // Currently we will fail on parameter attributes and on certain
1450     // function attributes.
1451     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1452     // In case if we can handle this set of attributes - set up function attrs
1453     // directly on statepoint and return attrs later for gc_result intrinsic.
1454     Call->setAttributes(NewAttrs.getFnAttributes());
1455     ReturnAttrs = NewAttrs.getRetAttributes();
1456 
1457     Token = Call;
1458 
1459     // Put the following gc_result and gc_relocate calls immediately after the
1460     // the old call (which we're about to delete)
1461     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1462     Builder.SetInsertPoint(ToReplace->getNextNode());
1463     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1464   } else {
1465     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1466 
1467     // Insert the new invoke into the old block.  We'll remove the old one in a
1468     // moment at which point this will become the new terminator for the
1469     // original block.
1470     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1471         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1472         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1473         GCArgs, "statepoint_token");
1474 
1475     Invoke->setCallingConv(ToReplace->getCallingConv());
1476 
1477     // Currently we will fail on parameter attributes and on certain
1478     // function attributes.
1479     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1480     // In case if we can handle this set of attributes - set up function attrs
1481     // directly on statepoint and return attrs later for gc_result intrinsic.
1482     Invoke->setAttributes(NewAttrs.getFnAttributes());
1483     ReturnAttrs = NewAttrs.getRetAttributes();
1484 
1485     Token = Invoke;
1486 
1487     // Generate gc relocates in exceptional path
1488     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1489     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1490            UnwindBlock->getUniquePredecessor() &&
1491            "can't safely insert in this block!");
1492 
1493     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1494     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1495 
1496     // Attach exceptional gc relocates to the landingpad.
1497     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1498     Result.UnwindToken = ExceptionalToken;
1499 
1500     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1501     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1502                       Builder);
1503 
1504     // Generate gc relocates and returns for normal block
1505     BasicBlock *NormalDest = ToReplace->getNormalDest();
1506     assert(!isa<PHINode>(NormalDest->begin()) &&
1507            NormalDest->getUniquePredecessor() &&
1508            "can't safely insert in this block!");
1509 
1510     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1511 
1512     // gc relocates will be generated later as if it were regular call
1513     // statepoint
1514   }
1515   assert(Token && "Should be set in one of the above branches!");
1516 
1517   if (UseDeoptBundles) {
1518     Token->setName("statepoint_token");
1519     if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1520       StringRef Name =
1521           CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1522       CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1523       GCResult->setAttributes(CS.getAttributes().getRetAttributes());
1524 
1525       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1526       // live set of some other safepoint, in which case that safepoint's
1527       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1528       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1529       // after the live sets have been made explicit in the IR, and we no longer
1530       // have raw pointers to worry about.
1531       Replacements.emplace_back(CS.getInstruction(), GCResult);
1532     } else {
1533       Replacements.emplace_back(CS.getInstruction(), nullptr);
1534     }
1535   } else {
1536     assert(!CS.getInstruction()->hasNUsesOrMore(2) &&
1537            "only valid use before rewrite is gc.result");
1538     assert(!CS.getInstruction()->hasOneUse() ||
1539            isGCResult(cast<Instruction>(*CS.getInstruction()->user_begin())));
1540 
1541     // Take the name of the original statepoint token if there was one.
1542     Token->takeName(CS.getInstruction());
1543 
1544     // Update the gc.result of the original statepoint (if any) to use the newly
1545     // inserted statepoint.  This is safe to do here since the token can't be
1546     // considered a live reference.
1547     CS.getInstruction()->replaceAllUsesWith(Token);
1548     CS.getInstruction()->eraseFromParent();
1549   }
1550 
1551   Result.StatepointToken = Token;
1552 
1553   // Second, create a gc.relocate for every live variable
1554   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1555   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1556 }
1557 
1558 namespace {
1559 struct NameOrdering {
1560   Value *Base;
1561   Value *Derived;
1562 
1563   bool operator()(NameOrdering const &a, NameOrdering const &b) {
1564     return -1 == a.Derived->getName().compare(b.Derived->getName());
1565   }
1566 };
1567 }
1568 
1569 static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec,
1570                            SmallVectorImpl<Value *> &LiveVec) {
1571   assert(BaseVec.size() == LiveVec.size());
1572 
1573   SmallVector<NameOrdering, 64> Temp;
1574   for (size_t i = 0; i < BaseVec.size(); i++) {
1575     NameOrdering v;
1576     v.Base = BaseVec[i];
1577     v.Derived = LiveVec[i];
1578     Temp.push_back(v);
1579   }
1580 
1581   std::sort(Temp.begin(), Temp.end(), NameOrdering());
1582   for (size_t i = 0; i < BaseVec.size(); i++) {
1583     BaseVec[i] = Temp[i].Base;
1584     LiveVec[i] = Temp[i].Derived;
1585   }
1586 }
1587 
1588 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1589 // which make the relocations happening at this safepoint explicit.
1590 //
1591 // WARNING: Does not do any fixup to adjust users of the original live
1592 // values.  That's the callers responsibility.
1593 static void
1594 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS,
1595                        PartiallyConstructedSafepointRecord &Result,
1596                        std::vector<DeferredReplacement> &Replacements) {
1597   const auto &LiveSet = Result.LiveSet;
1598   const auto &PointerToBase = Result.PointerToBase;
1599 
1600   // Convert to vector for efficient cross referencing.
1601   SmallVector<Value *, 64> BaseVec, LiveVec;
1602   LiveVec.reserve(LiveSet.size());
1603   BaseVec.reserve(LiveSet.size());
1604   for (Value *L : LiveSet) {
1605     LiveVec.push_back(L);
1606     assert(PointerToBase.count(L));
1607     Value *Base = PointerToBase.find(L)->second;
1608     BaseVec.push_back(Base);
1609   }
1610   assert(LiveVec.size() == BaseVec.size());
1611 
1612   // To make the output IR slightly more stable (for use in diffs), ensure a
1613   // fixed order of the values in the safepoint (by sorting the value name).
1614   // The order is otherwise meaningless.
1615   StabilizeOrder(BaseVec, LiveVec);
1616 
1617   // Do the actual rewriting and delete the old statepoint
1618   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1619 }
1620 
1621 // Helper function for the relocationViaAlloca.
1622 //
1623 // It receives iterator to the statepoint gc relocates and emits a store to the
1624 // assigned location (via allocaMap) for the each one of them.  It adds the
1625 // visited values into the visitedLiveValues set, which we will later use them
1626 // for sanity checking.
1627 static void
1628 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1629                        DenseMap<Value *, Value *> &AllocaMap,
1630                        DenseSet<Value *> &VisitedLiveValues) {
1631 
1632   for (User *U : GCRelocs) {
1633     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1634     if (!Relocate)
1635       continue;
1636 
1637     Value *OriginalValue = const_cast<Value *>(Relocate->getDerivedPtr());
1638     assert(AllocaMap.count(OriginalValue));
1639     Value *Alloca = AllocaMap[OriginalValue];
1640 
1641     // Emit store into the related alloca
1642     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1643     // the correct type according to alloca.
1644     assert(Relocate->getNextNode() &&
1645            "Should always have one since it's not a terminator");
1646     IRBuilder<> Builder(Relocate->getNextNode());
1647     Value *CastedRelocatedValue =
1648       Builder.CreateBitCast(Relocate,
1649                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1650                             suffixed_name_or(Relocate, ".casted", ""));
1651 
1652     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1653     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1654 
1655 #ifndef NDEBUG
1656     VisitedLiveValues.insert(OriginalValue);
1657 #endif
1658   }
1659 }
1660 
1661 // Helper function for the "relocationViaAlloca". Similar to the
1662 // "insertRelocationStores" but works for rematerialized values.
1663 static void
1664 insertRematerializationStores(
1665   RematerializedValueMapTy RematerializedValues,
1666   DenseMap<Value *, Value *> &AllocaMap,
1667   DenseSet<Value *> &VisitedLiveValues) {
1668 
1669   for (auto RematerializedValuePair: RematerializedValues) {
1670     Instruction *RematerializedValue = RematerializedValuePair.first;
1671     Value *OriginalValue = RematerializedValuePair.second;
1672 
1673     assert(AllocaMap.count(OriginalValue) &&
1674            "Can not find alloca for rematerialized value");
1675     Value *Alloca = AllocaMap[OriginalValue];
1676 
1677     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1678     Store->insertAfter(RematerializedValue);
1679 
1680 #ifndef NDEBUG
1681     VisitedLiveValues.insert(OriginalValue);
1682 #endif
1683   }
1684 }
1685 
1686 /// Do all the relocation update via allocas and mem2reg
1687 static void relocationViaAlloca(
1688     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1689     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1690 #ifndef NDEBUG
1691   // record initial number of (static) allocas; we'll check we have the same
1692   // number when we get done.
1693   int InitialAllocaNum = 0;
1694   for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1695        I++)
1696     if (isa<AllocaInst>(*I))
1697       InitialAllocaNum++;
1698 #endif
1699 
1700   // TODO-PERF: change data structures, reserve
1701   DenseMap<Value *, Value *> AllocaMap;
1702   SmallVector<AllocaInst *, 200> PromotableAllocas;
1703   // Used later to chack that we have enough allocas to store all values
1704   std::size_t NumRematerializedValues = 0;
1705   PromotableAllocas.reserve(Live.size());
1706 
1707   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1708   // "PromotableAllocas"
1709   auto emitAllocaFor = [&](Value *LiveValue) {
1710     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1711                                         F.getEntryBlock().getFirstNonPHI());
1712     AllocaMap[LiveValue] = Alloca;
1713     PromotableAllocas.push_back(Alloca);
1714   };
1715 
1716   // Emit alloca for each live gc pointer
1717   for (Value *V : Live)
1718     emitAllocaFor(V);
1719 
1720   // Emit allocas for rematerialized values
1721   for (const auto &Info : Records)
1722     for (auto RematerializedValuePair : Info.RematerializedValues) {
1723       Value *OriginalValue = RematerializedValuePair.second;
1724       if (AllocaMap.count(OriginalValue) != 0)
1725         continue;
1726 
1727       emitAllocaFor(OriginalValue);
1728       ++NumRematerializedValues;
1729     }
1730 
1731   // The next two loops are part of the same conceptual operation.  We need to
1732   // insert a store to the alloca after the original def and at each
1733   // redefinition.  We need to insert a load before each use.  These are split
1734   // into distinct loops for performance reasons.
1735 
1736   // Update gc pointer after each statepoint: either store a relocated value or
1737   // null (if no relocated value was found for this gc pointer and it is not a
1738   // gc_result).  This must happen before we update the statepoint with load of
1739   // alloca otherwise we lose the link between statepoint and old def.
1740   for (const auto &Info : Records) {
1741     Value *Statepoint = Info.StatepointToken;
1742 
1743     // This will be used for consistency check
1744     DenseSet<Value *> VisitedLiveValues;
1745 
1746     // Insert stores for normal statepoint gc relocates
1747     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1748 
1749     // In case if it was invoke statepoint
1750     // we will insert stores for exceptional path gc relocates.
1751     if (isa<InvokeInst>(Statepoint)) {
1752       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1753                              VisitedLiveValues);
1754     }
1755 
1756     // Do similar thing with rematerialized values
1757     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1758                                   VisitedLiveValues);
1759 
1760     if (ClobberNonLive) {
1761       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1762       // the gc.statepoint.  This will turn some subtle GC problems into
1763       // slightly easier to debug SEGVs.  Note that on large IR files with
1764       // lots of gc.statepoints this is extremely costly both memory and time
1765       // wise.
1766       SmallVector<AllocaInst *, 64> ToClobber;
1767       for (auto Pair : AllocaMap) {
1768         Value *Def = Pair.first;
1769         AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1770 
1771         // This value was relocated
1772         if (VisitedLiveValues.count(Def)) {
1773           continue;
1774         }
1775         ToClobber.push_back(Alloca);
1776       }
1777 
1778       auto InsertClobbersAt = [&](Instruction *IP) {
1779         for (auto *AI : ToClobber) {
1780           auto PT = cast<PointerType>(AI->getAllocatedType());
1781           Constant *CPN = ConstantPointerNull::get(PT);
1782           StoreInst *Store = new StoreInst(CPN, AI);
1783           Store->insertBefore(IP);
1784         }
1785       };
1786 
1787       // Insert the clobbering stores.  These may get intermixed with the
1788       // gc.results and gc.relocates, but that's fine.
1789       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1790         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1791         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1792       } else {
1793         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1794       }
1795     }
1796   }
1797 
1798   // Update use with load allocas and add store for gc_relocated.
1799   for (auto Pair : AllocaMap) {
1800     Value *Def = Pair.first;
1801     Value *Alloca = Pair.second;
1802 
1803     // We pre-record the uses of allocas so that we dont have to worry about
1804     // later update that changes the user information..
1805 
1806     SmallVector<Instruction *, 20> Uses;
1807     // PERF: trade a linear scan for repeated reallocation
1808     Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1809     for (User *U : Def->users()) {
1810       if (!isa<ConstantExpr>(U)) {
1811         // If the def has a ConstantExpr use, then the def is either a
1812         // ConstantExpr use itself or null.  In either case
1813         // (recursively in the first, directly in the second), the oop
1814         // it is ultimately dependent on is null and this particular
1815         // use does not need to be fixed up.
1816         Uses.push_back(cast<Instruction>(U));
1817       }
1818     }
1819 
1820     std::sort(Uses.begin(), Uses.end());
1821     auto Last = std::unique(Uses.begin(), Uses.end());
1822     Uses.erase(Last, Uses.end());
1823 
1824     for (Instruction *Use : Uses) {
1825       if (isa<PHINode>(Use)) {
1826         PHINode *Phi = cast<PHINode>(Use);
1827         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1828           if (Def == Phi->getIncomingValue(i)) {
1829             LoadInst *Load = new LoadInst(
1830                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1831             Phi->setIncomingValue(i, Load);
1832           }
1833         }
1834       } else {
1835         LoadInst *Load = new LoadInst(Alloca, "", Use);
1836         Use->replaceUsesOfWith(Def, Load);
1837       }
1838     }
1839 
1840     // Emit store for the initial gc value.  Store must be inserted after load,
1841     // otherwise store will be in alloca's use list and an extra load will be
1842     // inserted before it.
1843     StoreInst *Store = new StoreInst(Def, Alloca);
1844     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1845       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1846         // InvokeInst is a TerminatorInst so the store need to be inserted
1847         // into its normal destination block.
1848         BasicBlock *NormalDest = Invoke->getNormalDest();
1849         Store->insertBefore(NormalDest->getFirstNonPHI());
1850       } else {
1851         assert(!Inst->isTerminator() &&
1852                "The only TerminatorInst that can produce a value is "
1853                "InvokeInst which is handled above.");
1854         Store->insertAfter(Inst);
1855       }
1856     } else {
1857       assert(isa<Argument>(Def));
1858       Store->insertAfter(cast<Instruction>(Alloca));
1859     }
1860   }
1861 
1862   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1863          "we must have the same allocas with lives");
1864   if (!PromotableAllocas.empty()) {
1865     // Apply mem2reg to promote alloca to SSA
1866     PromoteMemToReg(PromotableAllocas, DT);
1867   }
1868 
1869 #ifndef NDEBUG
1870   for (auto &I : F.getEntryBlock())
1871     if (isa<AllocaInst>(I))
1872       InitialAllocaNum--;
1873   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1874 #endif
1875 }
1876 
1877 /// Implement a unique function which doesn't require we sort the input
1878 /// vector.  Doing so has the effect of changing the output of a couple of
1879 /// tests in ways which make them less useful in testing fused safepoints.
1880 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1881   SmallSet<T, 8> Seen;
1882   Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1883               return !Seen.insert(V).second;
1884             }), Vec.end());
1885 }
1886 
1887 /// Insert holders so that each Value is obviously live through the entire
1888 /// lifetime of the call.
1889 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1890                                  SmallVectorImpl<CallInst *> &Holders) {
1891   if (Values.empty())
1892     // No values to hold live, might as well not insert the empty holder
1893     return;
1894 
1895   Module *M = CS.getInstruction()->getModule();
1896   // Use a dummy vararg function to actually hold the values live
1897   Function *Func = cast<Function>(M->getOrInsertFunction(
1898       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1899   if (CS.isCall()) {
1900     // For call safepoints insert dummy calls right after safepoint
1901     Holders.push_back(CallInst::Create(Func, Values, "",
1902                                        &*++CS.getInstruction()->getIterator()));
1903     return;
1904   }
1905   // For invoke safepooints insert dummy calls both in normal and
1906   // exceptional destination blocks
1907   auto *II = cast<InvokeInst>(CS.getInstruction());
1908   Holders.push_back(CallInst::Create(
1909       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1910   Holders.push_back(CallInst::Create(
1911       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1912 }
1913 
1914 static void findLiveReferences(
1915     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1916     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1917   GCPtrLivenessData OriginalLivenessData;
1918   computeLiveInValues(DT, F, OriginalLivenessData);
1919   for (size_t i = 0; i < records.size(); i++) {
1920     struct PartiallyConstructedSafepointRecord &info = records[i];
1921     const CallSite &CS = toUpdate[i];
1922     analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
1923   }
1924 }
1925 
1926 /// Remove any vector of pointers from the live set by scalarizing them over the
1927 /// statepoint instruction.  Adds the scalarized pieces to the live set.  It
1928 /// would be preferable to include the vector in the statepoint itself, but
1929 /// the lowering code currently does not handle that.  Extending it would be
1930 /// slightly non-trivial since it requires a format change.  Given how rare
1931 /// such cases are (for the moment?) scalarizing is an acceptable compromise.
1932 static void splitVectorValues(Instruction *StatepointInst,
1933                               StatepointLiveSetTy &LiveSet,
1934                               DenseMap<Value *, Value *>& PointerToBase,
1935                               DominatorTree &DT) {
1936   SmallVector<Value *, 16> ToSplit;
1937   for (Value *V : LiveSet)
1938     if (isa<VectorType>(V->getType()))
1939       ToSplit.push_back(V);
1940 
1941   if (ToSplit.empty())
1942     return;
1943 
1944   DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping;
1945 
1946   Function &F = *(StatepointInst->getParent()->getParent());
1947 
1948   DenseMap<Value *, AllocaInst *> AllocaMap;
1949   // First is normal return, second is exceptional return (invoke only)
1950   DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
1951   for (Value *V : ToSplit) {
1952     AllocaInst *Alloca =
1953         new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
1954     AllocaMap[V] = Alloca;
1955 
1956     VectorType *VT = cast<VectorType>(V->getType());
1957     IRBuilder<> Builder(StatepointInst);
1958     SmallVector<Value *, 16> Elements;
1959     for (unsigned i = 0; i < VT->getNumElements(); i++)
1960       Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
1961     ElementMapping[V] = Elements;
1962 
1963     auto InsertVectorReform = [&](Instruction *IP) {
1964       Builder.SetInsertPoint(IP);
1965       Builder.SetCurrentDebugLocation(IP->getDebugLoc());
1966       Value *ResultVec = UndefValue::get(VT);
1967       for (unsigned i = 0; i < VT->getNumElements(); i++)
1968         ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
1969                                                 Builder.getInt32(i));
1970       return ResultVec;
1971     };
1972 
1973     if (isa<CallInst>(StatepointInst)) {
1974       BasicBlock::iterator Next(StatepointInst);
1975       Next++;
1976       Instruction *IP = &*(Next);
1977       Replacements[V].first = InsertVectorReform(IP);
1978       Replacements[V].second = nullptr;
1979     } else {
1980       InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
1981       // We've already normalized - check that we don't have shared destination
1982       // blocks
1983       BasicBlock *NormalDest = Invoke->getNormalDest();
1984       assert(!isa<PHINode>(NormalDest->begin()));
1985       BasicBlock *UnwindDest = Invoke->getUnwindDest();
1986       assert(!isa<PHINode>(UnwindDest->begin()));
1987       // Insert insert element sequences in both successors
1988       Instruction *IP = &*(NormalDest->getFirstInsertionPt());
1989       Replacements[V].first = InsertVectorReform(IP);
1990       IP = &*(UnwindDest->getFirstInsertionPt());
1991       Replacements[V].second = InsertVectorReform(IP);
1992     }
1993   }
1994 
1995   for (Value *V : ToSplit) {
1996     AllocaInst *Alloca = AllocaMap[V];
1997 
1998     // Capture all users before we start mutating use lists
1999     SmallVector<Instruction *, 16> Users;
2000     for (User *U : V->users())
2001       Users.push_back(cast<Instruction>(U));
2002 
2003     for (Instruction *I : Users) {
2004       if (auto Phi = dyn_cast<PHINode>(I)) {
2005         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
2006           if (V == Phi->getIncomingValue(i)) {
2007             LoadInst *Load = new LoadInst(
2008                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
2009             Phi->setIncomingValue(i, Load);
2010           }
2011       } else {
2012         LoadInst *Load = new LoadInst(Alloca, "", I);
2013         I->replaceUsesOfWith(V, Load);
2014       }
2015     }
2016 
2017     // Store the original value and the replacement value into the alloca
2018     StoreInst *Store = new StoreInst(V, Alloca);
2019     if (auto I = dyn_cast<Instruction>(V))
2020       Store->insertAfter(I);
2021     else
2022       Store->insertAfter(Alloca);
2023 
2024     // Normal return for invoke, or call return
2025     Instruction *Replacement = cast<Instruction>(Replacements[V].first);
2026     (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
2027     // Unwind return for invoke only
2028     Replacement = cast_or_null<Instruction>(Replacements[V].second);
2029     if (Replacement)
2030       (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
2031   }
2032 
2033   // apply mem2reg to promote alloca to SSA
2034   SmallVector<AllocaInst *, 16> Allocas;
2035   for (Value *V : ToSplit)
2036     Allocas.push_back(AllocaMap[V]);
2037   PromoteMemToReg(Allocas, DT);
2038 
2039   // Update our tracking of live pointers and base mappings to account for the
2040   // changes we just made.
2041   for (Value *V : ToSplit) {
2042     auto &Elements = ElementMapping[V];
2043 
2044     LiveSet.erase(V);
2045     LiveSet.insert(Elements.begin(), Elements.end());
2046     // We need to update the base mapping as well.
2047     assert(PointerToBase.count(V));
2048     Value *OldBase = PointerToBase[V];
2049     auto &BaseElements = ElementMapping[OldBase];
2050     PointerToBase.erase(V);
2051     assert(Elements.size() == BaseElements.size());
2052     for (unsigned i = 0; i < Elements.size(); i++) {
2053       Value *Elem = Elements[i];
2054       PointerToBase[Elem] = BaseElements[i];
2055     }
2056   }
2057 }
2058 
2059 // Helper function for the "rematerializeLiveValues". It walks use chain
2060 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
2061 // values are visited (currently it is GEP's and casts). Returns true if it
2062 // successfully reached "BaseValue" and false otherwise.
2063 // Fills "ChainToBase" array with all visited values. "BaseValue" is not
2064 // recorded.
2065 static bool findRematerializableChainToBasePointer(
2066   SmallVectorImpl<Instruction*> &ChainToBase,
2067   Value *CurrentValue, Value *BaseValue) {
2068 
2069   // We have found a base value
2070   if (CurrentValue == BaseValue) {
2071     return true;
2072   }
2073 
2074   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2075     ChainToBase.push_back(GEP);
2076     return findRematerializableChainToBasePointer(ChainToBase,
2077                                                   GEP->getPointerOperand(),
2078                                                   BaseValue);
2079   }
2080 
2081   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2082     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2083       return false;
2084 
2085     ChainToBase.push_back(CI);
2086     return findRematerializableChainToBasePointer(ChainToBase,
2087                                                   CI->getOperand(0), BaseValue);
2088   }
2089 
2090   // Not supported instruction in the chain
2091   return false;
2092 }
2093 
2094 // Helper function for the "rematerializeLiveValues". Compute cost of the use
2095 // chain we are going to rematerialize.
2096 static unsigned
2097 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
2098                        TargetTransformInfo &TTI) {
2099   unsigned Cost = 0;
2100 
2101   for (Instruction *Instr : Chain) {
2102     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2103       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2104              "non noop cast is found during rematerialization");
2105 
2106       Type *SrcTy = CI->getOperand(0)->getType();
2107       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
2108 
2109     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2110       // Cost of the address calculation
2111       Type *ValTy = GEP->getSourceElementType();
2112       Cost += TTI.getAddressComputationCost(ValTy);
2113 
2114       // And cost of the GEP itself
2115       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2116       //       allowed for the external usage)
2117       if (!GEP->hasAllConstantIndices())
2118         Cost += 2;
2119 
2120     } else {
2121       llvm_unreachable("unsupported instruciton type during rematerialization");
2122     }
2123   }
2124 
2125   return Cost;
2126 }
2127 
2128 // From the statepoint live set pick values that are cheaper to recompute then
2129 // to relocate. Remove this values from the live set, rematerialize them after
2130 // statepoint and record them in "Info" structure. Note that similar to
2131 // relocated values we don't do any user adjustments here.
2132 static void rematerializeLiveValues(CallSite CS,
2133                                     PartiallyConstructedSafepointRecord &Info,
2134                                     TargetTransformInfo &TTI) {
2135   const unsigned int ChainLengthThreshold = 10;
2136 
2137   // Record values we are going to delete from this statepoint live set.
2138   // We can not di this in following loop due to iterator invalidation.
2139   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2140 
2141   for (Value *LiveValue: Info.LiveSet) {
2142     // For each live pointer find it's defining chain
2143     SmallVector<Instruction *, 3> ChainToBase;
2144     assert(Info.PointerToBase.count(LiveValue));
2145     bool FoundChain =
2146       findRematerializableChainToBasePointer(ChainToBase,
2147                                              LiveValue,
2148                                              Info.PointerToBase[LiveValue]);
2149     // Nothing to do, or chain is too long
2150     if (!FoundChain ||
2151         ChainToBase.size() == 0 ||
2152         ChainToBase.size() > ChainLengthThreshold)
2153       continue;
2154 
2155     // Compute cost of this chain
2156     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
2157     // TODO: We can also account for cases when we will be able to remove some
2158     //       of the rematerialized values by later optimization passes. I.e if
2159     //       we rematerialized several intersecting chains. Or if original values
2160     //       don't have any uses besides this statepoint.
2161 
2162     // For invokes we need to rematerialize each chain twice - for normal and
2163     // for unwind basic blocks. Model this by multiplying cost by two.
2164     if (CS.isInvoke()) {
2165       Cost *= 2;
2166     }
2167     // If it's too expensive - skip it
2168     if (Cost >= RematerializationThreshold)
2169       continue;
2170 
2171     // Remove value from the live set
2172     LiveValuesToBeDeleted.push_back(LiveValue);
2173 
2174     // Clone instructions and record them inside "Info" structure
2175 
2176     // Walk backwards to visit top-most instructions first
2177     std::reverse(ChainToBase.begin(), ChainToBase.end());
2178 
2179     // Utility function which clones all instructions from "ChainToBase"
2180     // and inserts them before "InsertBefore". Returns rematerialized value
2181     // which should be used after statepoint.
2182     auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
2183       Instruction *LastClonedValue = nullptr;
2184       Instruction *LastValue = nullptr;
2185       for (Instruction *Instr: ChainToBase) {
2186         // Only GEP's and casts are suported as we need to be careful to not
2187         // introduce any new uses of pointers not in the liveset.
2188         // Note that it's fine to introduce new uses of pointers which were
2189         // otherwise not used after this statepoint.
2190         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2191 
2192         Instruction *ClonedValue = Instr->clone();
2193         ClonedValue->insertBefore(InsertBefore);
2194         ClonedValue->setName(Instr->getName() + ".remat");
2195 
2196         // If it is not first instruction in the chain then it uses previously
2197         // cloned value. We should update it to use cloned value.
2198         if (LastClonedValue) {
2199           assert(LastValue);
2200           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2201 #ifndef NDEBUG
2202           // Assert that cloned instruction does not use any instructions from
2203           // this chain other than LastClonedValue
2204           for (auto OpValue : ClonedValue->operand_values()) {
2205             assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
2206                        ChainToBase.end() &&
2207                    "incorrect use in rematerialization chain");
2208           }
2209 #endif
2210         }
2211 
2212         LastClonedValue = ClonedValue;
2213         LastValue = Instr;
2214       }
2215       assert(LastClonedValue);
2216       return LastClonedValue;
2217     };
2218 
2219     // Different cases for calls and invokes. For invokes we need to clone
2220     // instructions both on normal and unwind path.
2221     if (CS.isCall()) {
2222       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
2223       assert(InsertBefore);
2224       Instruction *RematerializedValue = rematerializeChain(InsertBefore);
2225       Info.RematerializedValues[RematerializedValue] = LiveValue;
2226     } else {
2227       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
2228 
2229       Instruction *NormalInsertBefore =
2230           &*Invoke->getNormalDest()->getFirstInsertionPt();
2231       Instruction *UnwindInsertBefore =
2232           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2233 
2234       Instruction *NormalRematerializedValue =
2235           rematerializeChain(NormalInsertBefore);
2236       Instruction *UnwindRematerializedValue =
2237           rematerializeChain(UnwindInsertBefore);
2238 
2239       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2240       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2241     }
2242   }
2243 
2244   // Remove rematerializaed values from the live set
2245   for (auto LiveValue: LiveValuesToBeDeleted) {
2246     Info.LiveSet.erase(LiveValue);
2247   }
2248 }
2249 
2250 static bool insertParsePoints(Function &F, DominatorTree &DT,
2251                               TargetTransformInfo &TTI,
2252                               SmallVectorImpl<CallSite> &ToUpdate) {
2253 #ifndef NDEBUG
2254   // sanity check the input
2255   std::set<CallSite> Uniqued;
2256   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2257   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2258 
2259   for (CallSite CS : ToUpdate) {
2260     assert(CS.getInstruction()->getParent()->getParent() == &F);
2261     assert((UseDeoptBundles || isStatepoint(CS)) &&
2262            "expected to already be a deopt statepoint");
2263   }
2264 #endif
2265 
2266   // When inserting gc.relocates for invokes, we need to be able to insert at
2267   // the top of the successor blocks.  See the comment on
2268   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2269   // may restructure the CFG.
2270   for (CallSite CS : ToUpdate) {
2271     if (!CS.isInvoke())
2272       continue;
2273     auto *II = cast<InvokeInst>(CS.getInstruction());
2274     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2275     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2276   }
2277 
2278   // A list of dummy calls added to the IR to keep various values obviously
2279   // live in the IR.  We'll remove all of these when done.
2280   SmallVector<CallInst *, 64> Holders;
2281 
2282   // Insert a dummy call with all of the arguments to the vm_state we'll need
2283   // for the actual safepoint insertion.  This ensures reference arguments in
2284   // the deopt argument list are considered live through the safepoint (and
2285   // thus makes sure they get relocated.)
2286   for (CallSite CS : ToUpdate) {
2287     SmallVector<Value *, 64> DeoptValues;
2288 
2289     iterator_range<const Use *> DeoptStateRange =
2290         UseDeoptBundles
2291             ? iterator_range<const Use *>(GetDeoptBundleOperands(CS))
2292             : iterator_range<const Use *>(Statepoint(CS).vm_state_args());
2293 
2294     for (Value *Arg : DeoptStateRange) {
2295       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2296              "support for FCA unimplemented");
2297       if (isHandledGCPointerType(Arg->getType()))
2298         DeoptValues.push_back(Arg);
2299     }
2300 
2301     insertUseHolderAfter(CS, DeoptValues, Holders);
2302   }
2303 
2304   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2305 
2306   // A) Identify all gc pointers which are statically live at the given call
2307   // site.
2308   findLiveReferences(F, DT, ToUpdate, Records);
2309 
2310   // B) Find the base pointers for each live pointer
2311   /* scope for caching */ {
2312     // Cache the 'defining value' relation used in the computation and
2313     // insertion of base phis and selects.  This ensures that we don't insert
2314     // large numbers of duplicate base_phis.
2315     DefiningValueMapTy DVCache;
2316 
2317     for (size_t i = 0; i < Records.size(); i++) {
2318       PartiallyConstructedSafepointRecord &info = Records[i];
2319       findBasePointers(DT, DVCache, ToUpdate[i], info);
2320     }
2321   } // end of cache scope
2322 
2323   // The base phi insertion logic (for any safepoint) may have inserted new
2324   // instructions which are now live at some safepoint.  The simplest such
2325   // example is:
2326   // loop:
2327   //   phi a  <-- will be a new base_phi here
2328   //   safepoint 1 <-- that needs to be live here
2329   //   gep a + 1
2330   //   safepoint 2
2331   //   br loop
2332   // We insert some dummy calls after each safepoint to definitely hold live
2333   // the base pointers which were identified for that safepoint.  We'll then
2334   // ask liveness for _every_ base inserted to see what is now live.  Then we
2335   // remove the dummy calls.
2336   Holders.reserve(Holders.size() + Records.size());
2337   for (size_t i = 0; i < Records.size(); i++) {
2338     PartiallyConstructedSafepointRecord &Info = Records[i];
2339 
2340     SmallVector<Value *, 128> Bases;
2341     for (auto Pair : Info.PointerToBase)
2342       Bases.push_back(Pair.second);
2343 
2344     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2345   }
2346 
2347   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2348   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2349   // not the key issue.
2350   recomputeLiveInValues(F, DT, ToUpdate, Records);
2351 
2352   if (PrintBasePointers) {
2353     for (auto &Info : Records) {
2354       errs() << "Base Pairs: (w/Relocation)\n";
2355       for (auto Pair : Info.PointerToBase) {
2356         errs() << " derived ";
2357         Pair.first->printAsOperand(errs(), false);
2358         errs() << " base ";
2359         Pair.second->printAsOperand(errs(), false);
2360         errs() << "\n";
2361       }
2362     }
2363   }
2364 
2365   // It is possible that non-constant live variables have a constant base.  For
2366   // example, a GEP with a variable offset from a global.  In this case we can
2367   // remove it from the liveset.  We already don't add constants to the liveset
2368   // because we assume they won't move at runtime and the GC doesn't need to be
2369   // informed about them.  The same reasoning applies if the base is constant.
2370   // Note that the relocation placement code relies on this filtering for
2371   // correctness as it expects the base to be in the liveset, which isn't true
2372   // if the base is constant.
2373   for (auto &Info : Records)
2374     for (auto &BasePair : Info.PointerToBase)
2375       if (isa<Constant>(BasePair.second))
2376         Info.LiveSet.erase(BasePair.first);
2377 
2378   for (CallInst *CI : Holders)
2379     CI->eraseFromParent();
2380 
2381   Holders.clear();
2382 
2383   // Do a limited scalarization of any live at safepoint vector values which
2384   // contain pointers.  This enables this pass to run after vectorization at
2385   // the cost of some possible performance loss.  Note: This is known to not
2386   // handle updating of the side tables correctly which can lead to relocation
2387   // bugs when the same vector is live at multiple statepoints.  We're in the
2388   // process of implementing the alternate lowering - relocating the
2389   // vector-of-pointers as first class item and updating the backend to
2390   // understand that - but that's not yet complete.
2391   if (UseVectorSplit)
2392     for (size_t i = 0; i < Records.size(); i++) {
2393       PartiallyConstructedSafepointRecord &Info = Records[i];
2394       Instruction *Statepoint = ToUpdate[i].getInstruction();
2395       splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet,
2396                         Info.PointerToBase, DT);
2397     }
2398 
2399   // In order to reduce live set of statepoint we might choose to rematerialize
2400   // some values instead of relocating them. This is purely an optimization and
2401   // does not influence correctness.
2402   for (size_t i = 0; i < Records.size(); i++)
2403     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2404 
2405   // We need this to safely RAUW and delete call or invoke return values that
2406   // may themselves be live over a statepoint.  For details, please see usage in
2407   // makeStatepointExplicitImpl.
2408   std::vector<DeferredReplacement> Replacements;
2409 
2410   // Now run through and replace the existing statepoints with new ones with
2411   // the live variables listed.  We do not yet update uses of the values being
2412   // relocated. We have references to live variables that need to
2413   // survive to the last iteration of this loop.  (By construction, the
2414   // previous statepoint can not be a live variable, thus we can and remove
2415   // the old statepoint calls as we go.)
2416   for (size_t i = 0; i < Records.size(); i++)
2417     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2418 
2419   ToUpdate.clear(); // prevent accident use of invalid CallSites
2420 
2421   for (auto &PR : Replacements)
2422     PR.doReplacement();
2423 
2424   Replacements.clear();
2425 
2426   for (auto &Info : Records) {
2427     // These live sets may contain state Value pointers, since we replaced calls
2428     // with operand bundles with calls wrapped in gc.statepoint, and some of
2429     // those calls may have been def'ing live gc pointers.  Clear these out to
2430     // avoid accidentally using them.
2431     //
2432     // TODO: We should create a separate data structure that does not contain
2433     // these live sets, and migrate to using that data structure from this point
2434     // onward.
2435     Info.LiveSet.clear();
2436     Info.PointerToBase.clear();
2437   }
2438 
2439   // Do all the fixups of the original live variables to their relocated selves
2440   SmallVector<Value *, 128> Live;
2441   for (size_t i = 0; i < Records.size(); i++) {
2442     PartiallyConstructedSafepointRecord &Info = Records[i];
2443 
2444     // We can't simply save the live set from the original insertion.  One of
2445     // the live values might be the result of a call which needs a safepoint.
2446     // That Value* no longer exists and we need to use the new gc_result.
2447     // Thankfully, the live set is embedded in the statepoint (and updated), so
2448     // we just grab that.
2449     Statepoint Statepoint(Info.StatepointToken);
2450     Live.insert(Live.end(), Statepoint.gc_args_begin(),
2451                 Statepoint.gc_args_end());
2452 #ifndef NDEBUG
2453     // Do some basic sanity checks on our liveness results before performing
2454     // relocation.  Relocation can and will turn mistakes in liveness results
2455     // into non-sensical code which is must harder to debug.
2456     // TODO: It would be nice to test consistency as well
2457     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2458            "statepoint must be reachable or liveness is meaningless");
2459     for (Value *V : Statepoint.gc_args()) {
2460       if (!isa<Instruction>(V))
2461         // Non-instruction values trivial dominate all possible uses
2462         continue;
2463       auto *LiveInst = cast<Instruction>(V);
2464       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2465              "unreachable values should never be live");
2466       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2467              "basic SSA liveness expectation violated by liveness analysis");
2468     }
2469 #endif
2470   }
2471   unique_unsorted(Live);
2472 
2473 #ifndef NDEBUG
2474   // sanity check
2475   for (auto *Ptr : Live)
2476     assert(isHandledGCPointerType(Ptr->getType()) &&
2477            "must be a gc pointer type");
2478 #endif
2479 
2480   relocationViaAlloca(F, DT, Live, Records);
2481   return !Records.empty();
2482 }
2483 
2484 // Handles both return values and arguments for Functions and CallSites.
2485 template <typename AttrHolder>
2486 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2487                                       unsigned Index) {
2488   AttrBuilder R;
2489   if (AH.getDereferenceableBytes(Index))
2490     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2491                                   AH.getDereferenceableBytes(Index)));
2492   if (AH.getDereferenceableOrNullBytes(Index))
2493     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2494                                   AH.getDereferenceableOrNullBytes(Index)));
2495   if (AH.doesNotAlias(Index))
2496     R.addAttribute(Attribute::NoAlias);
2497 
2498   if (!R.empty())
2499     AH.setAttributes(AH.getAttributes().removeAttributes(
2500         Ctx, Index, AttributeSet::get(Ctx, Index, R)));
2501 }
2502 
2503 void
2504 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
2505   LLVMContext &Ctx = F.getContext();
2506 
2507   for (Argument &A : F.args())
2508     if (isa<PointerType>(A.getType()))
2509       RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
2510 
2511   if (isa<PointerType>(F.getReturnType()))
2512     RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
2513 }
2514 
2515 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
2516   if (F.empty())
2517     return;
2518 
2519   LLVMContext &Ctx = F.getContext();
2520   MDBuilder Builder(Ctx);
2521 
2522   for (Instruction &I : instructions(F)) {
2523     if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2524       assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2525       bool IsImmutableTBAA =
2526           MD->getNumOperands() == 4 &&
2527           mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2528 
2529       if (!IsImmutableTBAA)
2530         continue; // no work to do, MD_tbaa is already marked mutable
2531 
2532       MDNode *Base = cast<MDNode>(MD->getOperand(0));
2533       MDNode *Access = cast<MDNode>(MD->getOperand(1));
2534       uint64_t Offset =
2535           mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2536 
2537       MDNode *MutableTBAA =
2538           Builder.createTBAAStructTagNode(Base, Access, Offset);
2539       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2540     }
2541 
2542     if (CallSite CS = CallSite(&I)) {
2543       for (int i = 0, e = CS.arg_size(); i != e; i++)
2544         if (isa<PointerType>(CS.getArgument(i)->getType()))
2545           RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
2546       if (isa<PointerType>(CS.getType()))
2547         RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
2548     }
2549   }
2550 }
2551 
2552 /// Returns true if this function should be rewritten by this pass.  The main
2553 /// point of this function is as an extension point for custom logic.
2554 static bool shouldRewriteStatepointsIn(Function &F) {
2555   // TODO: This should check the GCStrategy
2556   if (F.hasGC()) {
2557     const auto &FunctionGCName = F.getGC();
2558     const StringRef StatepointExampleName("statepoint-example");
2559     const StringRef CoreCLRName("coreclr");
2560     return (StatepointExampleName == FunctionGCName) ||
2561            (CoreCLRName == FunctionGCName);
2562   } else
2563     return false;
2564 }
2565 
2566 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
2567 #ifndef NDEBUG
2568   assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2569          "precondition!");
2570 #endif
2571 
2572   for (Function &F : M)
2573     stripNonValidAttributesFromPrototype(F);
2574 
2575   for (Function &F : M)
2576     stripNonValidAttributesFromBody(F);
2577 }
2578 
2579 bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2580   // Nothing to do for declarations.
2581   if (F.isDeclaration() || F.empty())
2582     return false;
2583 
2584   // Policy choice says not to rewrite - the most common reason is that we're
2585   // compiling code without a GCStrategy.
2586   if (!shouldRewriteStatepointsIn(F))
2587     return false;
2588 
2589   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2590   TargetTransformInfo &TTI =
2591       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2592 
2593   auto NeedsRewrite = [](Instruction &I) {
2594     if (UseDeoptBundles) {
2595       if (ImmutableCallSite CS = ImmutableCallSite(&I))
2596         return !callsGCLeafFunction(CS);
2597       return false;
2598     }
2599 
2600     return isStatepoint(I);
2601   };
2602 
2603   // Gather all the statepoints which need rewritten.  Be careful to only
2604   // consider those in reachable code since we need to ask dominance queries
2605   // when rewriting.  We'll delete the unreachable ones in a moment.
2606   SmallVector<CallSite, 64> ParsePointNeeded;
2607   bool HasUnreachableStatepoint = false;
2608   for (Instruction &I : instructions(F)) {
2609     // TODO: only the ones with the flag set!
2610     if (NeedsRewrite(I)) {
2611       if (DT.isReachableFromEntry(I.getParent()))
2612         ParsePointNeeded.push_back(CallSite(&I));
2613       else
2614         HasUnreachableStatepoint = true;
2615     }
2616   }
2617 
2618   bool MadeChange = false;
2619 
2620   // Delete any unreachable statepoints so that we don't have unrewritten
2621   // statepoints surviving this pass.  This makes testing easier and the
2622   // resulting IR less confusing to human readers.  Rather than be fancy, we
2623   // just reuse a utility function which removes the unreachable blocks.
2624   if (HasUnreachableStatepoint)
2625     MadeChange |= removeUnreachableBlocks(F);
2626 
2627   // Return early if no work to do.
2628   if (ParsePointNeeded.empty())
2629     return MadeChange;
2630 
2631   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2632   // These are created by LCSSA.  They have the effect of increasing the size
2633   // of liveness sets for no good reason.  It may be harder to do this post
2634   // insertion since relocations and base phis can confuse things.
2635   for (BasicBlock &BB : F)
2636     if (BB.getUniquePredecessor()) {
2637       MadeChange = true;
2638       FoldSingleEntryPHINodes(&BB);
2639     }
2640 
2641   // Before we start introducing relocations, we want to tweak the IR a bit to
2642   // avoid unfortunate code generation effects.  The main example is that we
2643   // want to try to make sure the comparison feeding a branch is after any
2644   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2645   // values feeding a branch after relocation.  This is semantically correct,
2646   // but results in extra register pressure since both the pre-relocation and
2647   // post-relocation copies must be available in registers.  For code without
2648   // relocations this is handled elsewhere, but teaching the scheduler to
2649   // reverse the transform we're about to do would be slightly complex.
2650   // Note: This may extend the live range of the inputs to the icmp and thus
2651   // increase the liveset of any statepoint we move over.  This is profitable
2652   // as long as all statepoints are in rare blocks.  If we had in-register
2653   // lowering for live values this would be a much safer transform.
2654   auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2655     if (auto *BI = dyn_cast<BranchInst>(TI))
2656       if (BI->isConditional())
2657         return dyn_cast<Instruction>(BI->getCondition());
2658     // TODO: Extend this to handle switches
2659     return nullptr;
2660   };
2661   for (BasicBlock &BB : F) {
2662     TerminatorInst *TI = BB.getTerminator();
2663     if (auto *Cond = getConditionInst(TI))
2664       // TODO: Handle more than just ICmps here.  We should be able to move
2665       // most instructions without side effects or memory access.
2666       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2667         MadeChange = true;
2668         Cond->moveBefore(TI);
2669       }
2670   }
2671 
2672   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2673   return MadeChange;
2674 }
2675 
2676 // liveness computation via standard dataflow
2677 // -------------------------------------------------------------------
2678 
2679 // TODO: Consider using bitvectors for liveness, the set of potentially
2680 // interesting values should be small and easy to pre-compute.
2681 
2682 /// Compute the live-in set for the location rbegin starting from
2683 /// the live-out set of the basic block
2684 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
2685                                 BasicBlock::reverse_iterator rend,
2686                                 DenseSet<Value *> &LiveTmp) {
2687 
2688   for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
2689     Instruction *I = &*ritr;
2690 
2691     // KILL/Def - Remove this definition from LiveIn
2692     LiveTmp.erase(I);
2693 
2694     // Don't consider *uses* in PHI nodes, we handle their contribution to
2695     // predecessor blocks when we seed the LiveOut sets
2696     if (isa<PHINode>(I))
2697       continue;
2698 
2699     // USE - Add to the LiveIn set for this instruction
2700     for (Value *V : I->operands()) {
2701       assert(!isUnhandledGCPointerType(V->getType()) &&
2702              "support for FCA unimplemented");
2703       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2704         // The choice to exclude all things constant here is slightly subtle.
2705         // There are two independent reasons:
2706         // - We assume that things which are constant (from LLVM's definition)
2707         // do not move at runtime.  For example, the address of a global
2708         // variable is fixed, even though it's contents may not be.
2709         // - Second, we can't disallow arbitrary inttoptr constants even
2710         // if the language frontend does.  Optimization passes are free to
2711         // locally exploit facts without respect to global reachability.  This
2712         // can create sections of code which are dynamically unreachable and
2713         // contain just about anything.  (see constants.ll in tests)
2714         LiveTmp.insert(V);
2715       }
2716     }
2717   }
2718 }
2719 
2720 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {
2721 
2722   for (BasicBlock *Succ : successors(BB)) {
2723     const BasicBlock::iterator E(Succ->getFirstNonPHI());
2724     for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
2725       PHINode *Phi = cast<PHINode>(&*I);
2726       Value *V = Phi->getIncomingValueForBlock(BB);
2727       assert(!isUnhandledGCPointerType(V->getType()) &&
2728              "support for FCA unimplemented");
2729       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2730         LiveTmp.insert(V);
2731       }
2732     }
2733   }
2734 }
2735 
2736 static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
2737   DenseSet<Value *> KillSet;
2738   for (Instruction &I : *BB)
2739     if (isHandledGCPointerType(I.getType()))
2740       KillSet.insert(&I);
2741   return KillSet;
2742 }
2743 
2744 #ifndef NDEBUG
2745 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2746 /// sanity check for the liveness computation.
2747 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
2748                           TerminatorInst *TI, bool TermOkay = false) {
2749   for (Value *V : Live) {
2750     if (auto *I = dyn_cast<Instruction>(V)) {
2751       // The terminator can be a member of the LiveOut set.  LLVM's definition
2752       // of instruction dominance states that V does not dominate itself.  As
2753       // such, we need to special case this to allow it.
2754       if (TermOkay && TI == I)
2755         continue;
2756       assert(DT.dominates(I, TI) &&
2757              "basic SSA liveness expectation violated by liveness analysis");
2758     }
2759   }
2760 }
2761 
2762 /// Check that all the liveness sets used during the computation of liveness
2763 /// obey basic SSA properties.  This is useful for finding cases where we miss
2764 /// a def.
2765 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2766                           BasicBlock &BB) {
2767   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2768   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2769   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2770 }
2771 #endif
2772 
2773 static void computeLiveInValues(DominatorTree &DT, Function &F,
2774                                 GCPtrLivenessData &Data) {
2775 
2776   SmallSetVector<BasicBlock *, 200> Worklist;
2777   auto AddPredsToWorklist = [&](BasicBlock *BB) {
2778     // We use a SetVector so that we don't have duplicates in the worklist.
2779     Worklist.insert(pred_begin(BB), pred_end(BB));
2780   };
2781   auto NextItem = [&]() {
2782     BasicBlock *BB = Worklist.back();
2783     Worklist.pop_back();
2784     return BB;
2785   };
2786 
2787   // Seed the liveness for each individual block
2788   for (BasicBlock &BB : F) {
2789     Data.KillSet[&BB] = computeKillSet(&BB);
2790     Data.LiveSet[&BB].clear();
2791     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2792 
2793 #ifndef NDEBUG
2794     for (Value *Kill : Data.KillSet[&BB])
2795       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2796 #endif
2797 
2798     Data.LiveOut[&BB] = DenseSet<Value *>();
2799     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2800     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2801     set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
2802     set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
2803     if (!Data.LiveIn[&BB].empty())
2804       AddPredsToWorklist(&BB);
2805   }
2806 
2807   // Propagate that liveness until stable
2808   while (!Worklist.empty()) {
2809     BasicBlock *BB = NextItem();
2810 
2811     // Compute our new liveout set, then exit early if it hasn't changed
2812     // despite the contribution of our successor.
2813     DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2814     const auto OldLiveOutSize = LiveOut.size();
2815     for (BasicBlock *Succ : successors(BB)) {
2816       assert(Data.LiveIn.count(Succ));
2817       set_union(LiveOut, Data.LiveIn[Succ]);
2818     }
2819     // assert OutLiveOut is a subset of LiveOut
2820     if (OldLiveOutSize == LiveOut.size()) {
2821       // If the sets are the same size, then we didn't actually add anything
2822       // when unioning our successors LiveIn  Thus, the LiveIn of this block
2823       // hasn't changed.
2824       continue;
2825     }
2826     Data.LiveOut[BB] = LiveOut;
2827 
2828     // Apply the effects of this basic block
2829     DenseSet<Value *> LiveTmp = LiveOut;
2830     set_union(LiveTmp, Data.LiveSet[BB]);
2831     set_subtract(LiveTmp, Data.KillSet[BB]);
2832 
2833     assert(Data.LiveIn.count(BB));
2834     const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
2835     // assert: OldLiveIn is a subset of LiveTmp
2836     if (OldLiveIn.size() != LiveTmp.size()) {
2837       Data.LiveIn[BB] = LiveTmp;
2838       AddPredsToWorklist(BB);
2839     }
2840   } // while( !worklist.empty() )
2841 
2842 #ifndef NDEBUG
2843   // Sanity check our output against SSA properties.  This helps catch any
2844   // missing kills during the above iteration.
2845   for (BasicBlock &BB : F) {
2846     checkBasicSSA(DT, Data, BB);
2847   }
2848 #endif
2849 }
2850 
2851 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2852                               StatepointLiveSetTy &Out) {
2853 
2854   BasicBlock *BB = Inst->getParent();
2855 
2856   // Note: The copy is intentional and required
2857   assert(Data.LiveOut.count(BB));
2858   DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2859 
2860   // We want to handle the statepoint itself oddly.  It's
2861   // call result is not live (normal), nor are it's arguments
2862   // (unless they're used again later).  This adjustment is
2863   // specifically what we need to relocate
2864   BasicBlock::reverse_iterator rend(Inst->getIterator());
2865   computeLiveInValues(BB->rbegin(), rend, LiveOut);
2866   LiveOut.erase(Inst);
2867   Out.insert(LiveOut.begin(), LiveOut.end());
2868 }
2869 
2870 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2871                                   const CallSite &CS,
2872                                   PartiallyConstructedSafepointRecord &Info) {
2873   Instruction *Inst = CS.getInstruction();
2874   StatepointLiveSetTy Updated;
2875   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2876 
2877 #ifndef NDEBUG
2878   DenseSet<Value *> Bases;
2879   for (auto KVPair : Info.PointerToBase) {
2880     Bases.insert(KVPair.second);
2881   }
2882 #endif
2883   // We may have base pointers which are now live that weren't before.  We need
2884   // to update the PointerToBase structure to reflect this.
2885   for (auto V : Updated)
2886     if (!Info.PointerToBase.count(V)) {
2887       assert(Bases.count(V) && "can't find base for unexpected live value");
2888       Info.PointerToBase[V] = V;
2889       continue;
2890     }
2891 
2892 #ifndef NDEBUG
2893   for (auto V : Updated) {
2894     assert(Info.PointerToBase.count(V) &&
2895            "must be able to find base for live value");
2896   }
2897 #endif
2898 
2899   // Remove any stale base mappings - this can happen since our liveness is
2900   // more precise then the one inherent in the base pointer analysis
2901   DenseSet<Value *> ToErase;
2902   for (auto KVPair : Info.PointerToBase)
2903     if (!Updated.count(KVPair.first))
2904       ToErase.insert(KVPair.first);
2905   for (auto V : ToErase)
2906     Info.PointerToBase.erase(V);
2907 
2908 #ifndef NDEBUG
2909   for (auto KVPair : Info.PointerToBase)
2910     assert(Updated.count(KVPair.first) && "record for non-live value");
2911 #endif
2912 
2913   Info.LiveSet = Updated;
2914 }
2915