1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/IR/BasicBlock.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Statepoint.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/IR/Verifier.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 41 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 42 43 using namespace llvm; 44 45 // Print tracing output 46 static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, 47 cl::init(false)); 48 49 // Print the liveset found at the insert location 50 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 51 cl::init(false)); 52 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", 53 cl::Hidden, cl::init(false)); 54 // Print out the base pointers for debugging 55 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", 56 cl::Hidden, cl::init(false)); 57 58 namespace { 59 struct RewriteStatepointsForGC : public FunctionPass { 60 static char ID; // Pass identification, replacement for typeid 61 62 RewriteStatepointsForGC() : FunctionPass(ID) { 63 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 64 } 65 bool runOnFunction(Function &F) override; 66 67 void getAnalysisUsage(AnalysisUsage &AU) const override { 68 // We add and rewrite a bunch of instructions, but don't really do much 69 // else. We could in theory preserve a lot more analyses here. 70 AU.addRequired<DominatorTreeWrapperPass>(); 71 } 72 }; 73 } // namespace 74 75 char RewriteStatepointsForGC::ID = 0; 76 77 FunctionPass *llvm::createRewriteStatepointsForGCPass() { 78 return new RewriteStatepointsForGC(); 79 } 80 81 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 82 "Make relocations explicit at statepoints", false, false) 83 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 84 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 85 "Make relocations explicit at statepoints", false, false) 86 87 namespace { 88 // The type of the internal cache used inside the findBasePointers family 89 // of functions. From the callers perspective, this is an opaque type and 90 // should not be inspected. 91 // 92 // In the actual implementation this caches two relations: 93 // - The base relation itself (i.e. this pointer is based on that one) 94 // - The base defining value relation (i.e. before base_phi insertion) 95 // Generally, after the execution of a full findBasePointer call, only the 96 // base relation will remain. Internally, we add a mixture of the two 97 // types, then update all the second type to the first type 98 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 99 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 100 101 struct PartiallyConstructedSafepointRecord { 102 /// The set of values known to be live accross this safepoint 103 StatepointLiveSetTy liveset; 104 105 /// Mapping from live pointers to a base-defining-value 106 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 107 108 /// Any new values which were added to the IR during base pointer analysis 109 /// for this safepoint 110 DenseSet<llvm::Value *> NewInsertedDefs; 111 112 /// The *new* gc.statepoint instruction itself. This produces the token 113 /// that normal path gc.relocates and the gc.result are tied to. 114 Instruction *StatepointToken; 115 116 /// Instruction to which exceptional gc relocates are attached 117 /// Makes it easier to iterate through them during relocationViaAlloca. 118 Instruction *UnwindToken; 119 }; 120 } 121 122 // TODO: Once we can get to the GCStrategy, this becomes 123 // Optional<bool> isGCManagedPointer(const Value *V) const override { 124 125 static bool isGCPointerType(const Type *T) { 126 if (const PointerType *PT = dyn_cast<PointerType>(T)) 127 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 128 // GC managed heap. We know that a pointer into this heap needs to be 129 // updated and that no other pointer does. 130 return (1 == PT->getAddressSpace()); 131 return false; 132 } 133 134 /// Return true if the Value is a gc reference type which is potentially used 135 /// after the instruction 'loc'. This is only used with the edge reachability 136 /// liveness code. Note: It is assumed the V dominates loc. 137 static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT, 138 LoopInfo *LI) { 139 if (!isGCPointerType(V.getType())) 140 return false; 141 142 if (V.use_empty()) 143 return false; 144 145 // Given assumption that V dominates loc, this may be live 146 return true; 147 } 148 149 #ifndef NDEBUG 150 static bool isAggWhichContainsGCPtrType(Type *Ty) { 151 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 152 return isGCPointerType(VT->getScalarType()); 153 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 154 return isGCPointerType(AT->getElementType()) || 155 isAggWhichContainsGCPtrType(AT->getElementType()); 156 if (StructType *ST = dyn_cast<StructType>(Ty)) 157 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 158 [](Type *SubType) { 159 return isGCPointerType(SubType) || 160 isAggWhichContainsGCPtrType(SubType); 161 }); 162 return false; 163 } 164 #endif 165 166 // Conservatively identifies any definitions which might be live at the 167 // given instruction. The analysis is performed immediately before the 168 // given instruction. Values defined by that instruction are not considered 169 // live. Values used by that instruction are considered live. 170 // 171 // preconditions: valid IR graph, term is either a terminator instruction or 172 // a call instruction, pred is the basic block of term, DT, LI are valid 173 // 174 // side effects: none, does not mutate IR 175 // 176 // postconditions: populates liveValues as discussed above 177 static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred, 178 DominatorTree &DT, LoopInfo *LI, 179 StatepointLiveSetTy &liveValues) { 180 liveValues.clear(); 181 182 assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator()); 183 184 Function *F = pred->getParent(); 185 186 auto is_live_gc_reference = 187 [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); }; 188 189 // Are there any gc pointer arguments live over this point? This needs to be 190 // special cased since arguments aren't defined in basic blocks. 191 for (Argument &arg : F->args()) { 192 assert(!isAggWhichContainsGCPtrType(arg.getType()) && 193 "support for FCA unimplemented"); 194 195 if (is_live_gc_reference(arg)) { 196 liveValues.insert(&arg); 197 } 198 } 199 200 // Walk through all dominating blocks - the ones which can contain 201 // definitions used in this block - and check to see if any of the values 202 // they define are used in locations potentially reachable from the 203 // interesting instruction. 204 BasicBlock *BBI = pred; 205 while (true) { 206 if (TraceLSP) { 207 errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n"; 208 } 209 assert(DT.dominates(BBI, pred)); 210 assert(isPotentiallyReachable(BBI, pred, &DT) && 211 "dominated block must be reachable"); 212 213 // Walk through the instructions in dominating blocks and keep any 214 // that have a use potentially reachable from the block we're 215 // considering putting the safepoint in 216 for (Instruction &inst : *BBI) { 217 if (TraceLSP) { 218 errs() << "[LSP] Looking at instruction "; 219 inst.dump(); 220 } 221 222 if (pred == BBI && (&inst) == term) { 223 if (TraceLSP) { 224 errs() << "[LSP] stopped because we encountered the safepoint " 225 "instruction.\n"; 226 } 227 228 // If we're in the block which defines the interesting instruction, 229 // we don't want to include any values as live which are defined 230 // _after_ the interesting line or as part of the line itself 231 // i.e. "term" is the call instruction for a call safepoint, the 232 // results of the call should not be considered live in that stackmap 233 break; 234 } 235 236 assert(!isAggWhichContainsGCPtrType(inst.getType()) && 237 "support for FCA unimplemented"); 238 239 if (is_live_gc_reference(inst)) { 240 if (TraceLSP) { 241 errs() << "[LSP] found live value for this safepoint "; 242 inst.dump(); 243 term->dump(); 244 } 245 liveValues.insert(&inst); 246 } 247 } 248 if (!DT.getNode(BBI)->getIDom()) { 249 assert(BBI == &F->getEntryBlock() && 250 "failed to find a dominator for something other than " 251 "the entry block"); 252 break; 253 } 254 BBI = DT.getNode(BBI)->getIDom()->getBlock(); 255 } 256 } 257 258 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 259 if (a->hasName() && b->hasName()) { 260 return -1 == a->getName().compare(b->getName()); 261 } else if (a->hasName() && !b->hasName()) { 262 return true; 263 } else if (!a->hasName() && b->hasName()) { 264 return false; 265 } else { 266 // Better than nothing, but not stable 267 return a < b; 268 } 269 } 270 271 /// Find the initial live set. Note that due to base pointer 272 /// insertion, the live set may be incomplete. 273 static void 274 analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS, 275 PartiallyConstructedSafepointRecord &result) { 276 Instruction *inst = CS.getInstruction(); 277 278 BasicBlock *BB = inst->getParent(); 279 StatepointLiveSetTy liveset; 280 findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset); 281 282 if (PrintLiveSet) { 283 // Note: This output is used by several of the test cases 284 // The order of elemtns in a set is not stable, put them in a vec and sort 285 // by name 286 SmallVector<Value *, 64> temp; 287 temp.insert(temp.end(), liveset.begin(), liveset.end()); 288 std::sort(temp.begin(), temp.end(), order_by_name); 289 errs() << "Live Variables:\n"; 290 for (Value *V : temp) { 291 errs() << " " << V->getName(); // no newline 292 V->dump(); 293 } 294 } 295 if (PrintLiveSetSize) { 296 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 297 errs() << "Number live values: " << liveset.size() << "\n"; 298 } 299 result.liveset = liveset; 300 } 301 302 /// True iff this value is the null pointer constant (of any pointer type) 303 static bool LLVM_ATTRIBUTE_UNUSED isNullConstant(Value *V) { 304 return isa<Constant>(V) && isa<PointerType>(V->getType()) && 305 cast<Constant>(V)->isNullValue(); 306 } 307 308 /// Helper function for findBasePointer - Will return a value which either a) 309 /// defines the base pointer for the input or b) blocks the simple search 310 /// (i.e. a PHI or Select of two derived pointers) 311 static Value *findBaseDefiningValue(Value *I) { 312 assert(I->getType()->isPointerTy() && 313 "Illegal to ask for the base pointer of a non-pointer type"); 314 315 // There are instructions which can never return gc pointer values. Sanity 316 // check that this is actually true. 317 assert(!isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) && 318 !isa<ShuffleVectorInst>(I) && "Vector types are not gc pointers"); 319 320 if (isa<Argument>(I)) 321 // An incoming argument to the function is a base pointer 322 // We should have never reached here if this argument isn't an gc value 323 return I; 324 325 if (isa<GlobalVariable>(I)) 326 // base case 327 return I; 328 329 // inlining could possibly introduce phi node that contains 330 // undef if callee has multiple returns 331 if (isa<UndefValue>(I)) 332 // utterly meaningless, but useful for dealing with 333 // partially optimized code. 334 return I; 335 336 // Due to inheritance, this must be _after_ the global variable and undef 337 // checks 338 if (Constant *Con = dyn_cast<Constant>(I)) { 339 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 340 "order of checks wrong!"); 341 // Note: Finding a constant base for something marked for relocation 342 // doesn't really make sense. The most likely case is either a) some 343 // screwed up the address space usage or b) your validating against 344 // compiled C++ code w/o the proper separation. The only real exception 345 // is a null pointer. You could have generic code written to index of 346 // off a potentially null value and have proven it null. We also use 347 // null pointers in dead paths of relocation phis (which we might later 348 // want to find a base pointer for). 349 assert(Con->getType()->isPointerTy() && 350 "Base for pointer must be another pointer"); 351 assert(Con->isNullValue() && "null is the only case which makes sense"); 352 return Con; 353 } 354 355 if (CastInst *CI = dyn_cast<CastInst>(I)) { 356 Value *Def = CI->stripPointerCasts(); 357 // If we find a cast instruction here, it means we've found a cast which is 358 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 359 // handle int->ptr conversion. 360 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 361 return findBaseDefiningValue(Def); 362 } 363 364 if (isa<LoadInst>(I)) 365 return I; // The value loaded is an gc base itself 366 367 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 368 // The base of this GEP is the base 369 return findBaseDefiningValue(GEP->getPointerOperand()); 370 371 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 372 switch (II->getIntrinsicID()) { 373 case Intrinsic::experimental_gc_result_ptr: 374 default: 375 // fall through to general call handling 376 break; 377 case Intrinsic::experimental_gc_statepoint: 378 case Intrinsic::experimental_gc_result_float: 379 case Intrinsic::experimental_gc_result_int: 380 llvm_unreachable("these don't produce pointers"); 381 case Intrinsic::experimental_gc_relocate: { 382 // Rerunning safepoint insertion after safepoints are already 383 // inserted is not supported. It could probably be made to work, 384 // but why are you doing this? There's no good reason. 385 llvm_unreachable("repeat safepoint insertion is not supported"); 386 } 387 case Intrinsic::gcroot: 388 // Currently, this mechanism hasn't been extended to work with gcroot. 389 // There's no reason it couldn't be, but I haven't thought about the 390 // implications much. 391 llvm_unreachable( 392 "interaction with the gcroot mechanism is not supported"); 393 } 394 } 395 // We assume that functions in the source language only return base 396 // pointers. This should probably be generalized via attributes to support 397 // both source language and internal functions. 398 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 399 return I; 400 401 // I have absolutely no idea how to implement this part yet. It's not 402 // neccessarily hard, I just haven't really looked at it yet. 403 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 404 405 if (isa<AtomicCmpXchgInst>(I)) 406 // A CAS is effectively a atomic store and load combined under a 407 // predicate. From the perspective of base pointers, we just treat it 408 // like a load. 409 return I; 410 411 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 412 "binary ops which don't apply to pointers"); 413 414 // The aggregate ops. Aggregates can either be in the heap or on the 415 // stack, but in either case, this is simply a field load. As a result, 416 // this is a defining definition of the base just like a load is. 417 if (isa<ExtractValueInst>(I)) 418 return I; 419 420 // We should never see an insert vector since that would require we be 421 // tracing back a struct value not a pointer value. 422 assert(!isa<InsertValueInst>(I) && 423 "Base pointer for a struct is meaningless"); 424 425 // The last two cases here don't return a base pointer. Instead, they 426 // return a value which dynamically selects from amoung several base 427 // derived pointers (each with it's own base potentially). It's the job of 428 // the caller to resolve these. 429 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 430 "missing instruction case in findBaseDefiningValing"); 431 return I; 432 } 433 434 /// Returns the base defining value for this value. 435 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 436 Value *&Cached = Cache[I]; 437 if (!Cached) { 438 Cached = findBaseDefiningValue(I); 439 } 440 assert(Cache[I] != nullptr); 441 442 if (TraceLSP) { 443 dbgs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() 444 << "\n"; 445 } 446 return Cached; 447 } 448 449 /// Return a base pointer for this value if known. Otherwise, return it's 450 /// base defining value. 451 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 452 Value *Def = findBaseDefiningValueCached(I, Cache); 453 auto Found = Cache.find(Def); 454 if (Found != Cache.end()) { 455 // Either a base-of relation, or a self reference. Caller must check. 456 return Found->second; 457 } 458 // Only a BDV available 459 return Def; 460 } 461 462 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 463 /// is it known to be a base pointer? Or do we need to continue searching. 464 static bool isKnownBaseResult(Value *V) { 465 if (!isa<PHINode>(V) && !isa<SelectInst>(V)) { 466 // no recursion possible 467 return true; 468 } 469 if (isa<Instruction>(V) && 470 cast<Instruction>(V)->getMetadata("is_base_value")) { 471 // This is a previously inserted base phi or select. We know 472 // that this is a base value. 473 return true; 474 } 475 476 // We need to keep searching 477 return false; 478 } 479 480 // TODO: find a better name for this 481 namespace { 482 class PhiState { 483 public: 484 enum Status { Unknown, Base, Conflict }; 485 486 PhiState(Status s, Value *b = nullptr) : status(s), base(b) { 487 assert(status != Base || b); 488 } 489 PhiState(Value *b) : status(Base), base(b) {} 490 PhiState() : status(Unknown), base(nullptr) {} 491 492 Status getStatus() const { return status; } 493 Value *getBase() const { return base; } 494 495 bool isBase() const { return getStatus() == Base; } 496 bool isUnknown() const { return getStatus() == Unknown; } 497 bool isConflict() const { return getStatus() == Conflict; } 498 499 bool operator==(const PhiState &other) const { 500 return base == other.base && status == other.status; 501 } 502 503 bool operator!=(const PhiState &other) const { return !(*this == other); } 504 505 void dump() { 506 errs() << status << " (" << base << " - " 507 << (base ? base->getName() : "nullptr") << "): "; 508 } 509 510 private: 511 Status status; 512 Value *base; // non null only if status == base 513 }; 514 515 typedef DenseMap<Value *, PhiState> ConflictStateMapTy; 516 // Values of type PhiState form a lattice, and this is a helper 517 // class that implementes the meet operation. The meat of the meet 518 // operation is implemented in MeetPhiStates::pureMeet 519 class MeetPhiStates { 520 public: 521 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. 522 explicit MeetPhiStates(const ConflictStateMapTy &phiStates) 523 : phiStates(phiStates) {} 524 525 // Destructively meet the current result with the base V. V can 526 // either be a merge instruction (SelectInst / PHINode), in which 527 // case its status is looked up in the phiStates map; or a regular 528 // SSA value, in which case it is assumed to be a base. 529 void meetWith(Value *V) { 530 PhiState otherState = getStateForBDV(V); 531 assert((MeetPhiStates::pureMeet(otherState, currentResult) == 532 MeetPhiStates::pureMeet(currentResult, otherState)) && 533 "math is wrong: meet does not commute!"); 534 currentResult = MeetPhiStates::pureMeet(otherState, currentResult); 535 } 536 537 PhiState getResult() const { return currentResult; } 538 539 private: 540 const ConflictStateMapTy &phiStates; 541 PhiState currentResult; 542 543 /// Return a phi state for a base defining value. We'll generate a new 544 /// base state for known bases and expect to find a cached state otherwise 545 PhiState getStateForBDV(Value *baseValue) { 546 if (isKnownBaseResult(baseValue)) { 547 return PhiState(baseValue); 548 } else { 549 return lookupFromMap(baseValue); 550 } 551 } 552 553 PhiState lookupFromMap(Value *V) { 554 auto I = phiStates.find(V); 555 assert(I != phiStates.end() && "lookup failed!"); 556 return I->second; 557 } 558 559 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { 560 switch (stateA.getStatus()) { 561 case PhiState::Unknown: 562 return stateB; 563 564 case PhiState::Base: 565 assert(stateA.getBase() && "can't be null"); 566 if (stateB.isUnknown()) 567 return stateA; 568 569 if (stateB.isBase()) { 570 if (stateA.getBase() == stateB.getBase()) { 571 assert(stateA == stateB && "equality broken!"); 572 return stateA; 573 } 574 return PhiState(PhiState::Conflict); 575 } 576 assert(stateB.isConflict() && "only three states!"); 577 return PhiState(PhiState::Conflict); 578 579 case PhiState::Conflict: 580 return stateA; 581 } 582 llvm_unreachable("only three states!"); 583 } 584 }; 585 } 586 /// For a given value or instruction, figure out what base ptr it's derived 587 /// from. For gc objects, this is simply itself. On success, returns a value 588 /// which is the base pointer. (This is reliable and can be used for 589 /// relocation.) On failure, returns nullptr. 590 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache, 591 DenseSet<llvm::Value *> &NewInsertedDefs) { 592 Value *def = findBaseOrBDV(I, cache); 593 594 if (isKnownBaseResult(def)) { 595 return def; 596 } 597 598 // Here's the rough algorithm: 599 // - For every SSA value, construct a mapping to either an actual base 600 // pointer or a PHI which obscures the base pointer. 601 // - Construct a mapping from PHI to unknown TOP state. Use an 602 // optimistic algorithm to propagate base pointer information. Lattice 603 // looks like: 604 // UNKNOWN 605 // b1 b2 b3 b4 606 // CONFLICT 607 // When algorithm terminates, all PHIs will either have a single concrete 608 // base or be in a conflict state. 609 // - For every conflict, insert a dummy PHI node without arguments. Add 610 // these to the base[Instruction] = BasePtr mapping. For every 611 // non-conflict, add the actual base. 612 // - For every conflict, add arguments for the base[a] of each input 613 // arguments. 614 // 615 // Note: A simpler form of this would be to add the conflict form of all 616 // PHIs without running the optimistic algorithm. This would be 617 // analougous to pessimistic data flow and would likely lead to an 618 // overall worse solution. 619 620 ConflictStateMapTy states; 621 states[def] = PhiState(); 622 // Recursively fill in all phis & selects reachable from the initial one 623 // for which we don't already know a definite base value for 624 // TODO: This should be rewritten with a worklist 625 bool done = false; 626 while (!done) { 627 done = true; 628 // Since we're adding elements to 'states' as we run, we can't keep 629 // iterators into the set. 630 SmallVector<Value*, 16> Keys; 631 Keys.reserve(states.size()); 632 for (auto Pair : states) { 633 Value *V = Pair.first; 634 Keys.push_back(V); 635 } 636 for (Value *v : Keys) { 637 assert(!isKnownBaseResult(v) && "why did it get added?"); 638 if (PHINode *phi = dyn_cast<PHINode>(v)) { 639 assert(phi->getNumIncomingValues() > 0 && 640 "zero input phis are illegal"); 641 for (Value *InVal : phi->incoming_values()) { 642 Value *local = findBaseOrBDV(InVal, cache); 643 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 644 states[local] = PhiState(); 645 done = false; 646 } 647 } 648 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { 649 Value *local = findBaseOrBDV(sel->getTrueValue(), cache); 650 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 651 states[local] = PhiState(); 652 done = false; 653 } 654 local = findBaseOrBDV(sel->getFalseValue(), cache); 655 if (!isKnownBaseResult(local) && states.find(local) == states.end()) { 656 states[local] = PhiState(); 657 done = false; 658 } 659 } 660 } 661 } 662 663 if (TraceLSP) { 664 errs() << "States after initialization:\n"; 665 for (auto Pair : states) { 666 Instruction *v = cast<Instruction>(Pair.first); 667 PhiState state = Pair.second; 668 state.dump(); 669 v->dump(); 670 } 671 } 672 673 // TODO: come back and revisit the state transitions around inputs which 674 // have reached conflict state. The current version seems too conservative. 675 676 bool progress = true; 677 while (progress) { 678 #ifndef NDEBUG 679 size_t oldSize = states.size(); 680 #endif 681 progress = false; 682 // We're only changing keys in this loop, thus safe to keep iterators 683 for (auto Pair : states) { 684 MeetPhiStates calculateMeet(states); 685 Value *v = Pair.first; 686 assert(!isKnownBaseResult(v) && "why did it get added?"); 687 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 688 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); 689 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); 690 } else 691 for (Value *Val : cast<PHINode>(v)->incoming_values()) 692 calculateMeet.meetWith(findBaseOrBDV(Val, cache)); 693 694 PhiState oldState = states[v]; 695 PhiState newState = calculateMeet.getResult(); 696 if (oldState != newState) { 697 progress = true; 698 states[v] = newState; 699 } 700 } 701 702 assert(oldSize <= states.size()); 703 assert(oldSize == states.size() || progress); 704 } 705 706 if (TraceLSP) { 707 errs() << "States after meet iteration:\n"; 708 for (auto Pair : states) { 709 Instruction *v = cast<Instruction>(Pair.first); 710 PhiState state = Pair.second; 711 state.dump(); 712 v->dump(); 713 } 714 } 715 716 // Insert Phis for all conflicts 717 // We want to keep naming deterministic in the loop that follows, so 718 // sort the keys before iteration. This is useful in allowing us to 719 // write stable tests. Note that there is no invalidation issue here. 720 SmallVector<Value*, 16> Keys; 721 Keys.reserve(states.size()); 722 for (auto Pair : states) { 723 Value *V = Pair.first; 724 Keys.push_back(V); 725 } 726 std::sort(Keys.begin(), Keys.end(), order_by_name); 727 // TODO: adjust naming patterns to avoid this order of iteration dependency 728 for (Value *V : Keys) { 729 Instruction *v = cast<Instruction>(V); 730 PhiState state = states[V]; 731 assert(!isKnownBaseResult(v) && "why did it get added?"); 732 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 733 if (!state.isConflict()) 734 continue; 735 736 if (isa<PHINode>(v)) { 737 int num_preds = 738 std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); 739 assert(num_preds > 0 && "how did we reach here"); 740 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); 741 NewInsertedDefs.insert(phi); 742 // Add metadata marking this as a base value 743 auto *const_1 = ConstantInt::get( 744 Type::getInt32Ty( 745 v->getParent()->getParent()->getParent()->getContext()), 746 1); 747 auto MDConst = ConstantAsMetadata::get(const_1); 748 MDNode *md = MDNode::get( 749 v->getParent()->getParent()->getParent()->getContext(), MDConst); 750 phi->setMetadata("is_base_value", md); 751 states[v] = PhiState(PhiState::Conflict, phi); 752 } else { 753 SelectInst *sel = cast<SelectInst>(v); 754 // The undef will be replaced later 755 UndefValue *undef = UndefValue::get(sel->getType()); 756 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, 757 undef, "base_select", sel); 758 NewInsertedDefs.insert(basesel); 759 // Add metadata marking this as a base value 760 auto *const_1 = ConstantInt::get( 761 Type::getInt32Ty( 762 v->getParent()->getParent()->getParent()->getContext()), 763 1); 764 auto MDConst = ConstantAsMetadata::get(const_1); 765 MDNode *md = MDNode::get( 766 v->getParent()->getParent()->getParent()->getContext(), MDConst); 767 basesel->setMetadata("is_base_value", md); 768 states[v] = PhiState(PhiState::Conflict, basesel); 769 } 770 } 771 772 // Fixup all the inputs of the new PHIs 773 for (auto Pair : states) { 774 Instruction *v = cast<Instruction>(Pair.first); 775 PhiState state = Pair.second; 776 777 assert(!isKnownBaseResult(v) && "why did it get added?"); 778 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 779 if (!state.isConflict()) 780 continue; 781 782 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 783 PHINode *phi = cast<PHINode>(v); 784 unsigned NumPHIValues = phi->getNumIncomingValues(); 785 for (unsigned i = 0; i < NumPHIValues; i++) { 786 Value *InVal = phi->getIncomingValue(i); 787 BasicBlock *InBB = phi->getIncomingBlock(i); 788 789 // If we've already seen InBB, add the same incoming value 790 // we added for it earlier. The IR verifier requires phi 791 // nodes with multiple entries from the same basic block 792 // to have the same incoming value for each of those 793 // entries. If we don't do this check here and basephi 794 // has a different type than base, we'll end up adding two 795 // bitcasts (and hence two distinct values) as incoming 796 // values for the same basic block. 797 798 int blockIndex = basephi->getBasicBlockIndex(InBB); 799 if (blockIndex != -1) { 800 Value *oldBase = basephi->getIncomingValue(blockIndex); 801 basephi->addIncoming(oldBase, InBB); 802 #ifndef NDEBUG 803 Value *base = findBaseOrBDV(InVal, cache); 804 if (!isKnownBaseResult(base)) { 805 // Either conflict or base. 806 assert(states.count(base)); 807 base = states[base].getBase(); 808 assert(base != nullptr && "unknown PhiState!"); 809 assert(NewInsertedDefs.count(base) && 810 "should have already added this in a prev. iteration!"); 811 } 812 813 // In essense this assert states: the only way two 814 // values incoming from the same basic block may be 815 // different is by being different bitcasts of the same 816 // value. A cleanup that remains TODO is changing 817 // findBaseOrBDV to return an llvm::Value of the correct 818 // type (and still remain pure). This will remove the 819 // need to add bitcasts. 820 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 821 "sanity -- findBaseOrBDV should be pure!"); 822 #endif 823 continue; 824 } 825 826 // Find either the defining value for the PHI or the normal base for 827 // a non-phi node 828 Value *base = findBaseOrBDV(InVal, cache); 829 if (!isKnownBaseResult(base)) { 830 // Either conflict or base. 831 assert(states.count(base)); 832 base = states[base].getBase(); 833 assert(base != nullptr && "unknown PhiState!"); 834 } 835 assert(base && "can't be null"); 836 // Must use original input BB since base may not be Instruction 837 // The cast is needed since base traversal may strip away bitcasts 838 if (base->getType() != basephi->getType()) { 839 base = new BitCastInst(base, basephi->getType(), "cast", 840 InBB->getTerminator()); 841 NewInsertedDefs.insert(base); 842 } 843 basephi->addIncoming(base, InBB); 844 } 845 assert(basephi->getNumIncomingValues() == NumPHIValues); 846 } else { 847 SelectInst *basesel = cast<SelectInst>(state.getBase()); 848 SelectInst *sel = cast<SelectInst>(v); 849 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 850 // something more safe and less hacky. 851 for (int i = 1; i <= 2; i++) { 852 Value *InVal = sel->getOperand(i); 853 // Find either the defining value for the PHI or the normal base for 854 // a non-phi node 855 Value *base = findBaseOrBDV(InVal, cache); 856 if (!isKnownBaseResult(base)) { 857 // Either conflict or base. 858 assert(states.count(base)); 859 base = states[base].getBase(); 860 assert(base != nullptr && "unknown PhiState!"); 861 } 862 assert(base && "can't be null"); 863 // Must use original input BB since base may not be Instruction 864 // The cast is needed since base traversal may strip away bitcasts 865 if (base->getType() != basesel->getType()) { 866 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 867 NewInsertedDefs.insert(base); 868 } 869 basesel->setOperand(i, base); 870 } 871 } 872 } 873 874 // Cache all of our results so we can cheaply reuse them 875 // NOTE: This is actually two caches: one of the base defining value 876 // relation and one of the base pointer relation! FIXME 877 for (auto item : states) { 878 Value *v = item.first; 879 Value *base = item.second.getBase(); 880 assert(v && base); 881 assert(!isKnownBaseResult(v) && "why did it get added?"); 882 883 if (TraceLSP) { 884 std::string fromstr = 885 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 886 : "none"; 887 errs() << "Updating base value cache" 888 << " for: " << (v->hasName() ? v->getName() : "") 889 << " from: " << fromstr 890 << " to: " << (base->hasName() ? base->getName() : "") << "\n"; 891 } 892 893 assert(isKnownBaseResult(base) && 894 "must be something we 'know' is a base pointer"); 895 if (cache.count(v)) { 896 // Once we transition from the BDV relation being store in the cache to 897 // the base relation being stored, it must be stable 898 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 899 "base relation should be stable"); 900 } 901 cache[v] = base; 902 } 903 assert(cache.find(def) != cache.end()); 904 return cache[def]; 905 } 906 907 // For a set of live pointers (base and/or derived), identify the base 908 // pointer of the object which they are derived from. This routine will 909 // mutate the IR graph as needed to make the 'base' pointer live at the 910 // definition site of 'derived'. This ensures that any use of 'derived' can 911 // also use 'base'. This may involve the insertion of a number of 912 // additional PHI nodes. 913 // 914 // preconditions: live is a set of pointer type Values 915 // 916 // side effects: may insert PHI nodes into the existing CFG, will preserve 917 // CFG, will not remove or mutate any existing nodes 918 // 919 // post condition: PointerToBase contains one (derived, base) pair for every 920 // pointer in live. Note that derived can be equal to base if the original 921 // pointer was a base pointer. 922 static void findBasePointers(const StatepointLiveSetTy &live, 923 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 924 DominatorTree *DT, DefiningValueMapTy &DVCache, 925 DenseSet<llvm::Value *> &NewInsertedDefs) { 926 // For the naming of values inserted to be deterministic - which makes for 927 // much cleaner and more stable tests - we need to assign an order to the 928 // live values. DenseSets do not provide a deterministic order across runs. 929 SmallVector<Value*, 64> Temp; 930 Temp.insert(Temp.end(), live.begin(), live.end()); 931 std::sort(Temp.begin(), Temp.end(), order_by_name); 932 for (Value *ptr : Temp) { 933 Value *base = findBasePointer(ptr, DVCache, NewInsertedDefs); 934 assert(base && "failed to find base pointer"); 935 PointerToBase[ptr] = base; 936 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 937 DT->dominates(cast<Instruction>(base)->getParent(), 938 cast<Instruction>(ptr)->getParent())) && 939 "The base we found better dominate the derived pointer"); 940 941 // If you see this trip and like to live really dangerously, the code should 942 // be correct, just with idioms the verifier can't handle. You can try 943 // disabling the verifier at your own substaintial risk. 944 assert(!isNullConstant(base) && "the relocation code needs adjustment to " 945 "handle the relocation of a null pointer " 946 "constant without causing false positives " 947 "in the safepoint ir verifier."); 948 } 949 } 950 951 /// Find the required based pointers (and adjust the live set) for the given 952 /// parse point. 953 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 954 const CallSite &CS, 955 PartiallyConstructedSafepointRecord &result) { 956 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 957 DenseSet<llvm::Value *> NewInsertedDefs; 958 findBasePointers(result.liveset, PointerToBase, &DT, DVCache, NewInsertedDefs); 959 960 if (PrintBasePointers) { 961 // Note: Need to print these in a stable order since this is checked in 962 // some tests. 963 errs() << "Base Pairs (w/o Relocation):\n"; 964 SmallVector<Value*, 64> Temp; 965 Temp.reserve(PointerToBase.size()); 966 for (auto Pair : PointerToBase) { 967 Temp.push_back(Pair.first); 968 } 969 std::sort(Temp.begin(), Temp.end(), order_by_name); 970 for (Value *Ptr : Temp) { 971 Value *Base = PointerToBase[Ptr]; 972 errs() << " derived %" << Ptr->getName() << " base %" 973 << Base->getName() << "\n"; 974 } 975 } 976 977 result.PointerToBase = PointerToBase; 978 result.NewInsertedDefs = NewInsertedDefs; 979 } 980 981 /// Check for liveness of items in the insert defs and add them to the live 982 /// and base pointer sets 983 static void fixupLiveness(DominatorTree &DT, const CallSite &CS, 984 const DenseSet<Value *> &allInsertedDefs, 985 PartiallyConstructedSafepointRecord &result) { 986 Instruction *inst = CS.getInstruction(); 987 988 auto liveset = result.liveset; 989 auto PointerToBase = result.PointerToBase; 990 991 auto is_live_gc_reference = 992 [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); }; 993 994 // For each new definition, check to see if a) the definition dominates the 995 // instruction we're interested in, and b) one of the uses of that definition 996 // is edge-reachable from the instruction we're interested in. This is the 997 // same definition of liveness we used in the intial liveness analysis 998 for (Value *newDef : allInsertedDefs) { 999 if (liveset.count(newDef)) { 1000 // already live, no action needed 1001 continue; 1002 } 1003 1004 // PERF: Use DT to check instruction domination might not be good for 1005 // compilation time, and we could change to optimal solution if this 1006 // turn to be a issue 1007 if (!DT.dominates(cast<Instruction>(newDef), inst)) { 1008 // can't possibly be live at inst 1009 continue; 1010 } 1011 1012 if (is_live_gc_reference(*newDef)) { 1013 // Add the live new defs into liveset and PointerToBase 1014 liveset.insert(newDef); 1015 PointerToBase[newDef] = newDef; 1016 } 1017 } 1018 1019 result.liveset = liveset; 1020 result.PointerToBase = PointerToBase; 1021 } 1022 1023 static void fixupLiveReferences( 1024 Function &F, DominatorTree &DT, Pass *P, 1025 const DenseSet<llvm::Value *> &allInsertedDefs, 1026 ArrayRef<CallSite> toUpdate, 1027 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1028 for (size_t i = 0; i < records.size(); i++) { 1029 struct PartiallyConstructedSafepointRecord &info = records[i]; 1030 const CallSite &CS = toUpdate[i]; 1031 fixupLiveness(DT, CS, allInsertedDefs, info); 1032 } 1033 } 1034 1035 // Normalize basic block to make it ready to be target of invoke statepoint. 1036 // It means spliting it to have single predecessor. Return newly created BB 1037 // ready to be successor of invoke statepoint. 1038 static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB, 1039 BasicBlock *InvokeParent, 1040 Pass *P) { 1041 BasicBlock *ret = BB; 1042 1043 if (!BB->getUniquePredecessor()) { 1044 ret = SplitBlockPredecessors(BB, InvokeParent, ""); 1045 } 1046 1047 // Another requirement for such basic blocks is to not have any phi nodes. 1048 // Since we just ensured that new BB will have single predecessor, 1049 // all phi nodes in it will have one value. Here it would be naturall place 1050 // to 1051 // remove them all. But we can not do this because we are risking to remove 1052 // one of the values stored in liveset of another statepoint. We will do it 1053 // later after placing all safepoints. 1054 1055 return ret; 1056 } 1057 1058 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1059 auto itr = std::find(livevec.begin(), livevec.end(), val); 1060 assert(livevec.end() != itr); 1061 size_t index = std::distance(livevec.begin(), itr); 1062 assert(index < livevec.size()); 1063 return index; 1064 } 1065 1066 // Create new attribute set containing only attributes which can be transfered 1067 // from original call to the safepoint. 1068 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1069 AttributeSet ret; 1070 1071 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1072 unsigned index = AS.getSlotIndex(Slot); 1073 1074 if (index == AttributeSet::ReturnIndex || 1075 index == AttributeSet::FunctionIndex) { 1076 1077 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1078 ++it) { 1079 Attribute attr = *it; 1080 1081 // Do not allow certain attributes - just skip them 1082 // Safepoint can not be read only or read none. 1083 if (attr.hasAttribute(Attribute::ReadNone) || 1084 attr.hasAttribute(Attribute::ReadOnly)) 1085 continue; 1086 1087 ret = ret.addAttributes( 1088 AS.getContext(), index, 1089 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1090 } 1091 } 1092 1093 // Just skip parameter attributes for now 1094 } 1095 1096 return ret; 1097 } 1098 1099 /// Helper function to place all gc relocates necessary for the given 1100 /// statepoint. 1101 /// Inputs: 1102 /// liveVariables - list of variables to be relocated. 1103 /// liveStart - index of the first live variable. 1104 /// basePtrs - base pointers. 1105 /// statepointToken - statepoint instruction to which relocates should be 1106 /// bound. 1107 /// Builder - Llvm IR builder to be used to construct new calls. 1108 static void CreateGCRelocates(ArrayRef<llvm::Value *> liveVariables, 1109 const int liveStart, 1110 ArrayRef<llvm::Value *> basePtrs, 1111 Instruction *statepointToken, 1112 IRBuilder<> Builder) { 1113 SmallVector<Instruction *, 64> NewDefs; 1114 NewDefs.reserve(liveVariables.size()); 1115 1116 Module *M = statepointToken->getParent()->getParent()->getParent(); 1117 1118 for (unsigned i = 0; i < liveVariables.size(); i++) { 1119 // We generate a (potentially) unique declaration for every pointer type 1120 // combination. This results is some blow up the function declarations in 1121 // the IR, but removes the need for argument bitcasts which shrinks the IR 1122 // greatly and makes it much more readable. 1123 SmallVector<Type *, 1> types; // one per 'any' type 1124 types.push_back(liveVariables[i]->getType()); // result type 1125 Value *gc_relocate_decl = Intrinsic::getDeclaration( 1126 M, Intrinsic::experimental_gc_relocate, types); 1127 1128 // Generate the gc.relocate call and save the result 1129 Value *baseIdx = 1130 ConstantInt::get(Type::getInt32Ty(M->getContext()), 1131 liveStart + find_index(liveVariables, basePtrs[i])); 1132 Value *liveIdx = ConstantInt::get( 1133 Type::getInt32Ty(M->getContext()), 1134 liveStart + find_index(liveVariables, liveVariables[i])); 1135 1136 // only specify a debug name if we can give a useful one 1137 Value *reloc = Builder.CreateCall3( 1138 gc_relocate_decl, statepointToken, baseIdx, liveIdx, 1139 liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" 1140 : ""); 1141 // Trick CodeGen into thinking there are lots of free registers at this 1142 // fake call. 1143 cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold); 1144 1145 NewDefs.push_back(cast<Instruction>(reloc)); 1146 } 1147 assert(NewDefs.size() == liveVariables.size() && 1148 "missing or extra redefinition at safepoint"); 1149 } 1150 1151 static void 1152 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1153 const SmallVectorImpl<llvm::Value *> &basePtrs, 1154 const SmallVectorImpl<llvm::Value *> &liveVariables, 1155 Pass *P, 1156 PartiallyConstructedSafepointRecord &result) { 1157 assert(basePtrs.size() == liveVariables.size()); 1158 assert(isStatepoint(CS) && 1159 "This method expects to be rewriting a statepoint"); 1160 1161 BasicBlock *BB = CS.getInstruction()->getParent(); 1162 assert(BB); 1163 Function *F = BB->getParent(); 1164 assert(F && "must be set"); 1165 Module *M = F->getParent(); 1166 (void)M; 1167 assert(M && "must be set"); 1168 1169 // We're not changing the function signature of the statepoint since the gc 1170 // arguments go into the var args section. 1171 Function *gc_statepoint_decl = CS.getCalledFunction(); 1172 1173 // Then go ahead and use the builder do actually do the inserts. We insert 1174 // immediately before the previous instruction under the assumption that all 1175 // arguments will be available here. We can't insert afterwards since we may 1176 // be replacing a terminator. 1177 Instruction *insertBefore = CS.getInstruction(); 1178 IRBuilder<> Builder(insertBefore); 1179 // Copy all of the arguments from the original statepoint - this includes the 1180 // target, call args, and deopt args 1181 SmallVector<llvm::Value *, 64> args; 1182 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1183 // TODO: Clear the 'needs rewrite' flag 1184 1185 // add all the pointers to be relocated (gc arguments) 1186 // Capture the start of the live variable list for use in the gc_relocates 1187 const int live_start = args.size(); 1188 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1189 1190 // Create the statepoint given all the arguments 1191 Instruction *token = nullptr; 1192 AttributeSet return_attributes; 1193 if (CS.isCall()) { 1194 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1195 CallInst *call = 1196 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1197 call->setTailCall(toReplace->isTailCall()); 1198 call->setCallingConv(toReplace->getCallingConv()); 1199 1200 // Currently we will fail on parameter attributes and on certain 1201 // function attributes. 1202 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1203 // In case if we can handle this set of sttributes - set up function attrs 1204 // directly on statepoint and return attrs later for gc_result intrinsic. 1205 call->setAttributes(new_attrs.getFnAttributes()); 1206 return_attributes = new_attrs.getRetAttributes(); 1207 1208 token = call; 1209 1210 // Put the following gc_result and gc_relocate calls immediately after the 1211 // the old call (which we're about to delete) 1212 BasicBlock::iterator next(toReplace); 1213 assert(BB->end() != next && "not a terminator, must have next"); 1214 next++; 1215 Instruction *IP = &*(next); 1216 Builder.SetInsertPoint(IP); 1217 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1218 1219 } else { 1220 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1221 1222 // Insert the new invoke into the old block. We'll remove the old one in a 1223 // moment at which point this will become the new terminator for the 1224 // original block. 1225 InvokeInst *invoke = InvokeInst::Create( 1226 gc_statepoint_decl, toReplace->getNormalDest(), 1227 toReplace->getUnwindDest(), args, "", toReplace->getParent()); 1228 invoke->setCallingConv(toReplace->getCallingConv()); 1229 1230 // Currently we will fail on parameter attributes and on certain 1231 // function attributes. 1232 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1233 // In case if we can handle this set of sttributes - set up function attrs 1234 // directly on statepoint and return attrs later for gc_result intrinsic. 1235 invoke->setAttributes(new_attrs.getFnAttributes()); 1236 return_attributes = new_attrs.getRetAttributes(); 1237 1238 token = invoke; 1239 1240 // Generate gc relocates in exceptional path 1241 BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint( 1242 toReplace->getUnwindDest(), invoke->getParent(), P); 1243 1244 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1245 Builder.SetInsertPoint(IP); 1246 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1247 1248 // Extract second element from landingpad return value. We will attach 1249 // exceptional gc relocates to it. 1250 const unsigned idx = 1; 1251 Instruction *exceptional_token = 1252 cast<Instruction>(Builder.CreateExtractValue( 1253 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1254 result.UnwindToken = exceptional_token; 1255 1256 // Just throw away return value. We will use the one we got for normal 1257 // block. 1258 (void)CreateGCRelocates(liveVariables, live_start, basePtrs, 1259 exceptional_token, Builder); 1260 1261 // Generate gc relocates and returns for normal block 1262 BasicBlock *normalDest = normalizeBBForInvokeSafepoint( 1263 toReplace->getNormalDest(), invoke->getParent(), P); 1264 1265 IP = &*(normalDest->getFirstInsertionPt()); 1266 Builder.SetInsertPoint(IP); 1267 1268 // gc relocates will be generated later as if it were regular call 1269 // statepoint 1270 } 1271 assert(token); 1272 1273 // Take the name of the original value call if it had one. 1274 token->takeName(CS.getInstruction()); 1275 1276 // The GCResult is already inserted, we just need to find it 1277 #ifndef NDEBUG 1278 Instruction *toReplace = CS.getInstruction(); 1279 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1280 "only valid use before rewrite is gc.result"); 1281 assert(!toReplace->hasOneUse() || 1282 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1283 #endif 1284 1285 // Update the gc.result of the original statepoint (if any) to use the newly 1286 // inserted statepoint. This is safe to do here since the token can't be 1287 // considered a live reference. 1288 CS.getInstruction()->replaceAllUsesWith(token); 1289 1290 result.StatepointToken = token; 1291 1292 // Second, create a gc.relocate for every live variable 1293 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1294 1295 } 1296 1297 namespace { 1298 struct name_ordering { 1299 Value *base; 1300 Value *derived; 1301 bool operator()(name_ordering const &a, name_ordering const &b) { 1302 return -1 == a.derived->getName().compare(b.derived->getName()); 1303 } 1304 }; 1305 } 1306 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1307 SmallVectorImpl<Value *> &livevec) { 1308 assert(basevec.size() == livevec.size()); 1309 1310 SmallVector<name_ordering, 64> temp; 1311 for (size_t i = 0; i < basevec.size(); i++) { 1312 name_ordering v; 1313 v.base = basevec[i]; 1314 v.derived = livevec[i]; 1315 temp.push_back(v); 1316 } 1317 std::sort(temp.begin(), temp.end(), name_ordering()); 1318 for (size_t i = 0; i < basevec.size(); i++) { 1319 basevec[i] = temp[i].base; 1320 livevec[i] = temp[i].derived; 1321 } 1322 } 1323 1324 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1325 // which make the relocations happening at this safepoint explicit. 1326 // 1327 // WARNING: Does not do any fixup to adjust users of the original live 1328 // values. That's the callers responsibility. 1329 static void 1330 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1331 PartiallyConstructedSafepointRecord &result) { 1332 auto liveset = result.liveset; 1333 auto PointerToBase = result.PointerToBase; 1334 1335 // Convert to vector for efficient cross referencing. 1336 SmallVector<Value *, 64> basevec, livevec; 1337 livevec.reserve(liveset.size()); 1338 basevec.reserve(liveset.size()); 1339 for (Value *L : liveset) { 1340 livevec.push_back(L); 1341 1342 assert(PointerToBase.find(L) != PointerToBase.end()); 1343 Value *base = PointerToBase[L]; 1344 basevec.push_back(base); 1345 } 1346 assert(livevec.size() == basevec.size()); 1347 1348 // To make the output IR slightly more stable (for use in diffs), ensure a 1349 // fixed order of the values in the safepoint (by sorting the value name). 1350 // The order is otherwise meaningless. 1351 stablize_order(basevec, livevec); 1352 1353 // Do the actual rewriting and delete the old statepoint 1354 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1355 CS.getInstruction()->eraseFromParent(); 1356 } 1357 1358 // Helper function for the relocationViaAlloca. 1359 // It receives iterator to the statepoint gc relocates and emits store to the 1360 // assigned 1361 // location (via allocaMap) for the each one of them. 1362 // Add visited values into the visitedLiveValues set we will later use them 1363 // for sanity check. 1364 static void 1365 insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs, 1366 DenseMap<Value *, Value *> &allocaMap, 1367 DenseSet<Value *> &visitedLiveValues) { 1368 1369 for (User *U : gcRelocs) { 1370 if (!isa<IntrinsicInst>(U)) 1371 continue; 1372 1373 IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U); 1374 1375 // We only care about relocates 1376 if (relocatedValue->getIntrinsicID() != 1377 Intrinsic::experimental_gc_relocate) { 1378 continue; 1379 } 1380 1381 GCRelocateOperands relocateOperands(relocatedValue); 1382 Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr()); 1383 assert(allocaMap.count(originalValue)); 1384 Value *alloca = allocaMap[originalValue]; 1385 1386 // Emit store into the related alloca 1387 StoreInst *store = new StoreInst(relocatedValue, alloca); 1388 store->insertAfter(relocatedValue); 1389 1390 #ifndef NDEBUG 1391 visitedLiveValues.insert(originalValue); 1392 #endif 1393 } 1394 } 1395 1396 /// do all the relocation update via allocas and mem2reg 1397 static void relocationViaAlloca( 1398 Function &F, DominatorTree &DT, ArrayRef<Value *> live, 1399 ArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1400 #ifndef NDEBUG 1401 int initialAllocaNum = 0; 1402 1403 // record initial number of allocas 1404 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1405 itr++) { 1406 if (isa<AllocaInst>(*itr)) 1407 initialAllocaNum++; 1408 } 1409 #endif 1410 1411 // TODO-PERF: change data structures, reserve 1412 DenseMap<Value *, Value *> allocaMap; 1413 SmallVector<AllocaInst *, 200> PromotableAllocas; 1414 PromotableAllocas.reserve(live.size()); 1415 1416 // emit alloca for each live gc pointer 1417 for (unsigned i = 0; i < live.size(); i++) { 1418 Value *liveValue = live[i]; 1419 AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", 1420 F.getEntryBlock().getFirstNonPHI()); 1421 allocaMap[liveValue] = alloca; 1422 PromotableAllocas.push_back(alloca); 1423 } 1424 1425 // The next two loops are part of the same conceptual operation. We need to 1426 // insert a store to the alloca after the original def and at each 1427 // redefinition. We need to insert a load before each use. These are split 1428 // into distinct loops for performance reasons. 1429 1430 // update gc pointer after each statepoint 1431 // either store a relocated value or null (if no relocated value found for 1432 // this gc pointer and it is not a gc_result) 1433 // this must happen before we update the statepoint with load of alloca 1434 // otherwise we lose the link between statepoint and old def 1435 for (size_t i = 0; i < records.size(); i++) { 1436 const struct PartiallyConstructedSafepointRecord &info = records[i]; 1437 Value *Statepoint = info.StatepointToken; 1438 1439 // This will be used for consistency check 1440 DenseSet<Value *> visitedLiveValues; 1441 1442 // Insert stores for normal statepoint gc relocates 1443 insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues); 1444 1445 // In case if it was invoke statepoint 1446 // we will insert stores for exceptional path gc relocates. 1447 if (isa<InvokeInst>(Statepoint)) { 1448 insertRelocationStores(info.UnwindToken->users(), 1449 allocaMap, visitedLiveValues); 1450 } 1451 1452 #ifndef NDEBUG 1453 // As a debuging aid, pretend that an unrelocated pointer becomes null at 1454 // the gc.statepoint. This will turn some subtle GC problems into slightly 1455 // easier to debug SEGVs 1456 SmallVector<AllocaInst *, 64> ToClobber; 1457 for (auto Pair : allocaMap) { 1458 Value *Def = Pair.first; 1459 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1460 1461 // This value was relocated 1462 if (visitedLiveValues.count(Def)) { 1463 continue; 1464 } 1465 ToClobber.push_back(Alloca); 1466 } 1467 1468 auto InsertClobbersAt = [&](Instruction *IP) { 1469 for (auto *AI : ToClobber) { 1470 auto AIType = cast<PointerType>(AI->getType()); 1471 auto PT = cast<PointerType>(AIType->getElementType()); 1472 Constant *CPN = ConstantPointerNull::get(PT); 1473 StoreInst *store = new StoreInst(CPN, AI); 1474 store->insertBefore(IP); 1475 } 1476 }; 1477 1478 // Insert the clobbering stores. These may get intermixed with the 1479 // gc.results and gc.relocates, but that's fine. 1480 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1481 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1482 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1483 } else { 1484 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1485 Next++; 1486 InsertClobbersAt(Next); 1487 } 1488 #endif 1489 } 1490 // update use with load allocas and add store for gc_relocated 1491 for (auto Pair : allocaMap) { 1492 Value *def = Pair.first; 1493 Value *alloca = Pair.second; 1494 1495 // we pre-record the uses of allocas so that we dont have to worry about 1496 // later update 1497 // that change the user information. 1498 SmallVector<Instruction *, 20> uses; 1499 // PERF: trade a linear scan for repeated reallocation 1500 uses.reserve(std::distance(def->user_begin(), def->user_end())); 1501 for (User *U : def->users()) { 1502 if (!isa<ConstantExpr>(U)) { 1503 // If the def has a ConstantExpr use, then the def is either a 1504 // ConstantExpr use itself or null. In either case 1505 // (recursively in the first, directly in the second), the oop 1506 // it is ultimately dependent on is null and this particular 1507 // use does not need to be fixed up. 1508 uses.push_back(cast<Instruction>(U)); 1509 } 1510 } 1511 1512 std::sort(uses.begin(), uses.end()); 1513 auto last = std::unique(uses.begin(), uses.end()); 1514 uses.erase(last, uses.end()); 1515 1516 for (Instruction *use : uses) { 1517 if (isa<PHINode>(use)) { 1518 PHINode *phi = cast<PHINode>(use); 1519 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { 1520 if (def == phi->getIncomingValue(i)) { 1521 LoadInst *load = new LoadInst( 1522 alloca, "", phi->getIncomingBlock(i)->getTerminator()); 1523 phi->setIncomingValue(i, load); 1524 } 1525 } 1526 } else { 1527 LoadInst *load = new LoadInst(alloca, "", use); 1528 use->replaceUsesOfWith(def, load); 1529 } 1530 } 1531 1532 // emit store for the initial gc value 1533 // store must be inserted after load, otherwise store will be in alloca's 1534 // use list and an extra load will be inserted before it 1535 StoreInst *store = new StoreInst(def, alloca); 1536 if (Instruction *inst = dyn_cast<Instruction>(def)) { 1537 if (InvokeInst *invoke = dyn_cast<InvokeInst>(inst)) { 1538 // InvokeInst is a TerminatorInst so the store need to be inserted 1539 // into its normal destination block. 1540 BasicBlock *normalDest = invoke->getNormalDest(); 1541 store->insertBefore(normalDest->getFirstNonPHI()); 1542 } else { 1543 assert(!inst->isTerminator() && 1544 "The only TerminatorInst that can produce a value is " 1545 "InvokeInst which is handled above."); 1546 store->insertAfter(inst); 1547 } 1548 } else { 1549 assert((isa<Argument>(def) || isa<GlobalVariable>(def) || 1550 (isa<Constant>(def) && cast<Constant>(def)->isNullValue())) && 1551 "Must be argument or global"); 1552 store->insertAfter(cast<Instruction>(alloca)); 1553 } 1554 } 1555 1556 assert(PromotableAllocas.size() == live.size() && 1557 "we must have the same allocas with lives"); 1558 if (!PromotableAllocas.empty()) { 1559 // apply mem2reg to promote alloca to SSA 1560 PromoteMemToReg(PromotableAllocas, DT); 1561 } 1562 1563 #ifndef NDEBUG 1564 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; 1565 itr++) { 1566 if (isa<AllocaInst>(*itr)) 1567 initialAllocaNum--; 1568 } 1569 assert(initialAllocaNum == 0 && "We must not introduce any extra allocas"); 1570 #endif 1571 } 1572 1573 /// Implement a unique function which doesn't require we sort the input 1574 /// vector. Doing so has the effect of changing the output of a couple of 1575 /// tests in ways which make them less useful in testing fused safepoints. 1576 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1577 DenseSet<T> Seen; 1578 SmallVector<T, 128> TempVec; 1579 TempVec.reserve(Vec.size()); 1580 for (auto Element : Vec) 1581 TempVec.push_back(Element); 1582 Vec.clear(); 1583 for (auto V : TempVec) { 1584 if (Seen.insert(V).second) { 1585 Vec.push_back(V); 1586 } 1587 } 1588 } 1589 1590 static Function *getUseHolder(Module &M) { 1591 FunctionType *ftype = 1592 FunctionType::get(Type::getVoidTy(M.getContext()), true); 1593 Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype)); 1594 return Func; 1595 } 1596 1597 /// Insert holders so that each Value is obviously live through the entire 1598 /// liftetime of the call. 1599 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1600 SmallVectorImpl<CallInst *> &holders) { 1601 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1602 Function *Func = getUseHolder(*M); 1603 if (CS.isCall()) { 1604 // For call safepoints insert dummy calls right after safepoint 1605 BasicBlock::iterator next(CS.getInstruction()); 1606 next++; 1607 CallInst *base_holder = CallInst::Create(Func, Values, "", next); 1608 holders.push_back(base_holder); 1609 } else if (CS.isInvoke()) { 1610 // For invoke safepooints insert dummy calls both in normal and 1611 // exceptional destination blocks 1612 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 1613 CallInst *normal_holder = CallInst::Create( 1614 Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt()); 1615 CallInst *unwind_holder = CallInst::Create( 1616 Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt()); 1617 holders.push_back(normal_holder); 1618 holders.push_back(unwind_holder); 1619 } else 1620 llvm_unreachable("unsupported call type"); 1621 } 1622 1623 static void findLiveReferences( 1624 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1625 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1626 for (size_t i = 0; i < records.size(); i++) { 1627 struct PartiallyConstructedSafepointRecord &info = records[i]; 1628 const CallSite &CS = toUpdate[i]; 1629 analyzeParsePointLiveness(DT, CS, info); 1630 } 1631 } 1632 1633 static void addBasesAsLiveValues(StatepointLiveSetTy &liveset, 1634 DenseMap<Value *, Value *> &PointerToBase) { 1635 // Identify any base pointers which are used in this safepoint, but not 1636 // themselves relocated. We need to relocate them so that later inserted 1637 // safepoints can get the properly relocated base register. 1638 DenseSet<Value *> missing; 1639 for (Value *L : liveset) { 1640 assert(PointerToBase.find(L) != PointerToBase.end()); 1641 Value *base = PointerToBase[L]; 1642 assert(base); 1643 if (liveset.find(base) == liveset.end()) { 1644 assert(PointerToBase.find(base) == PointerToBase.end()); 1645 // uniqued by set insert 1646 missing.insert(base); 1647 } 1648 } 1649 1650 // Note that we want these at the end of the list, otherwise 1651 // register placement gets screwed up once we lower to STATEPOINT 1652 // instructions. This is an utter hack, but there doesn't seem to be a 1653 // better one. 1654 for (Value *base : missing) { 1655 assert(base); 1656 liveset.insert(base); 1657 PointerToBase[base] = base; 1658 } 1659 assert(liveset.size() == PointerToBase.size()); 1660 } 1661 1662 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 1663 SmallVectorImpl<CallSite> &toUpdate) { 1664 #ifndef NDEBUG 1665 // sanity check the input 1666 std::set<CallSite> uniqued; 1667 uniqued.insert(toUpdate.begin(), toUpdate.end()); 1668 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 1669 1670 for (size_t i = 0; i < toUpdate.size(); i++) { 1671 CallSite &CS = toUpdate[i]; 1672 assert(CS.getInstruction()->getParent()->getParent() == &F); 1673 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 1674 } 1675 #endif 1676 1677 // A list of dummy calls added to the IR to keep various values obviously 1678 // live in the IR. We'll remove all of these when done. 1679 SmallVector<CallInst *, 64> holders; 1680 1681 // Insert a dummy call with all of the arguments to the vm_state we'll need 1682 // for the actual safepoint insertion. This ensures reference arguments in 1683 // the deopt argument list are considered live through the safepoint (and 1684 // thus makes sure they get relocated.) 1685 for (size_t i = 0; i < toUpdate.size(); i++) { 1686 CallSite &CS = toUpdate[i]; 1687 Statepoint StatepointCS(CS); 1688 1689 SmallVector<Value *, 64> DeoptValues; 1690 for (Use &U : StatepointCS.vm_state_args()) { 1691 Value *Arg = cast<Value>(&U); 1692 if (isGCPointerType(Arg->getType())) 1693 DeoptValues.push_back(Arg); 1694 } 1695 insertUseHolderAfter(CS, DeoptValues, holders); 1696 } 1697 1698 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 1699 records.reserve(toUpdate.size()); 1700 for (size_t i = 0; i < toUpdate.size(); i++) { 1701 struct PartiallyConstructedSafepointRecord info; 1702 records.push_back(info); 1703 } 1704 assert(records.size() == toUpdate.size()); 1705 1706 // A) Identify all gc pointers which are staticly live at the given call 1707 // site. 1708 findLiveReferences(F, DT, P, toUpdate, records); 1709 1710 // B) Find the base pointers for each live pointer 1711 /* scope for caching */ { 1712 // Cache the 'defining value' relation used in the computation and 1713 // insertion of base phis and selects. This ensures that we don't insert 1714 // large numbers of duplicate base_phis. 1715 DefiningValueMapTy DVCache; 1716 1717 for (size_t i = 0; i < records.size(); i++) { 1718 struct PartiallyConstructedSafepointRecord &info = records[i]; 1719 CallSite &CS = toUpdate[i]; 1720 findBasePointers(DT, DVCache, CS, info); 1721 } 1722 } // end of cache scope 1723 1724 // The base phi insertion logic (for any safepoint) may have inserted new 1725 // instructions which are now live at some safepoint. The simplest such 1726 // example is: 1727 // loop: 1728 // phi a <-- will be a new base_phi here 1729 // safepoint 1 <-- that needs to be live here 1730 // gep a + 1 1731 // safepoint 2 1732 // br loop 1733 DenseSet<llvm::Value *> allInsertedDefs; 1734 for (size_t i = 0; i < records.size(); i++) { 1735 struct PartiallyConstructedSafepointRecord &info = records[i]; 1736 allInsertedDefs.insert(info.NewInsertedDefs.begin(), 1737 info.NewInsertedDefs.end()); 1738 } 1739 1740 // We insert some dummy calls after each safepoint to definitely hold live 1741 // the base pointers which were identified for that safepoint. We'll then 1742 // ask liveness for _every_ base inserted to see what is now live. Then we 1743 // remove the dummy calls. 1744 holders.reserve(holders.size() + records.size()); 1745 for (size_t i = 0; i < records.size(); i++) { 1746 struct PartiallyConstructedSafepointRecord &info = records[i]; 1747 CallSite &CS = toUpdate[i]; 1748 1749 SmallVector<Value *, 128> Bases; 1750 for (auto Pair : info.PointerToBase) { 1751 Bases.push_back(Pair.second); 1752 } 1753 insertUseHolderAfter(CS, Bases, holders); 1754 } 1755 1756 // Add the bases explicitly to the live vector set. This may result in a few 1757 // extra relocations, but the base has to be available whenever a pointer 1758 // derived from it is used. Thus, we need it to be part of the statepoint's 1759 // gc arguments list. TODO: Introduce an explicit notion (in the following 1760 // code) of the GC argument list as seperate from the live Values at a 1761 // given statepoint. 1762 for (size_t i = 0; i < records.size(); i++) { 1763 struct PartiallyConstructedSafepointRecord &info = records[i]; 1764 addBasesAsLiveValues(info.liveset, info.PointerToBase); 1765 } 1766 1767 // If we inserted any new values, we need to adjust our notion of what is 1768 // live at a particular safepoint. 1769 if (!allInsertedDefs.empty()) { 1770 fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records); 1771 } 1772 if (PrintBasePointers) { 1773 for (size_t i = 0; i < records.size(); i++) { 1774 struct PartiallyConstructedSafepointRecord &info = records[i]; 1775 errs() << "Base Pairs: (w/Relocation)\n"; 1776 for (auto Pair : info.PointerToBase) { 1777 errs() << " derived %" << Pair.first->getName() << " base %" 1778 << Pair.second->getName() << "\n"; 1779 } 1780 } 1781 } 1782 for (size_t i = 0; i < holders.size(); i++) { 1783 holders[i]->eraseFromParent(); 1784 holders[i] = nullptr; 1785 } 1786 holders.clear(); 1787 1788 // Now run through and replace the existing statepoints with new ones with 1789 // the live variables listed. We do not yet update uses of the values being 1790 // relocated. We have references to live variables that need to 1791 // survive to the last iteration of this loop. (By construction, the 1792 // previous statepoint can not be a live variable, thus we can and remove 1793 // the old statepoint calls as we go.) 1794 for (size_t i = 0; i < records.size(); i++) { 1795 struct PartiallyConstructedSafepointRecord &info = records[i]; 1796 CallSite &CS = toUpdate[i]; 1797 makeStatepointExplicit(DT, CS, P, info); 1798 } 1799 toUpdate.clear(); // prevent accident use of invalid CallSites 1800 1801 // In case if we inserted relocates in a different basic block than the 1802 // original safepoint (this can happen for invokes). We need to be sure that 1803 // original values were not used in any of the phi nodes at the 1804 // beginning of basic block containing them. Because we know that all such 1805 // blocks will have single predecessor we can safely assume that all phi 1806 // nodes have single entry (because of normalizeBBForInvokeSafepoint). 1807 // Just remove them all here. 1808 for (size_t i = 0; i < records.size(); i++) { 1809 Instruction *I = records[i].StatepointToken; 1810 1811 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { 1812 FoldSingleEntryPHINodes(invoke->getNormalDest()); 1813 assert(!isa<PHINode>(invoke->getNormalDest()->begin())); 1814 1815 FoldSingleEntryPHINodes(invoke->getUnwindDest()); 1816 assert(!isa<PHINode>(invoke->getUnwindDest()->begin())); 1817 } 1818 } 1819 1820 // Do all the fixups of the original live variables to their relocated selves 1821 SmallVector<Value *, 128> live; 1822 for (size_t i = 0; i < records.size(); i++) { 1823 struct PartiallyConstructedSafepointRecord &info = records[i]; 1824 // We can't simply save the live set from the original insertion. One of 1825 // the live values might be the result of a call which needs a safepoint. 1826 // That Value* no longer exists and we need to use the new gc_result. 1827 // Thankfully, the liveset is embedded in the statepoint (and updated), so 1828 // we just grab that. 1829 Statepoint statepoint(info.StatepointToken); 1830 live.insert(live.end(), statepoint.gc_args_begin(), 1831 statepoint.gc_args_end()); 1832 } 1833 unique_unsorted(live); 1834 1835 #ifndef NDEBUG 1836 // sanity check 1837 for (auto ptr : live) { 1838 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 1839 } 1840 #endif 1841 1842 relocationViaAlloca(F, DT, live, records); 1843 return !records.empty(); 1844 } 1845 1846 /// Returns true if this function should be rewritten by this pass. The main 1847 /// point of this function is as an extension point for custom logic. 1848 static bool shouldRewriteStatepointsIn(Function &F) { 1849 // TODO: This should check the GCStrategy 1850 if (F.hasGC()) { 1851 const std::string StatepointExampleName("statepoint-example"); 1852 return StatepointExampleName == F.getGC(); 1853 } else 1854 return false; 1855 } 1856 1857 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 1858 // Nothing to do for declarations. 1859 if (F.isDeclaration() || F.empty()) 1860 return false; 1861 1862 // Policy choice says not to rewrite - the most common reason is that we're 1863 // compiling code without a GCStrategy. 1864 if (!shouldRewriteStatepointsIn(F)) 1865 return false; 1866 1867 // Gather all the statepoints which need rewritten. 1868 SmallVector<CallSite, 64> ParsePointNeeded; 1869 for (Instruction &I : inst_range(F)) { 1870 // TODO: only the ones with the flag set! 1871 if (isStatepoint(I)) 1872 ParsePointNeeded.push_back(CallSite(&I)); 1873 } 1874 1875 // Return early if no work to do. 1876 if (ParsePointNeeded.empty()) 1877 return false; 1878 1879 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1880 return insertParsePoints(F, DT, this, ParsePointNeeded); 1881 } 1882