1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Rewrite call/invoke instructions so as to make potential relocations 10 // performed by the garbage collector explicit in the IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/iterator_range.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/DomTreeUpdater.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/IRBuilder.h" 43 #include "llvm/IR/InstIterator.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/Statepoint.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueHandle.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <set> 75 #include <string> 76 #include <utility> 77 #include <vector> 78 79 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 80 81 using namespace llvm; 82 83 // Print the liveset found at the insert location 84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 85 cl::init(false)); 86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 87 cl::init(false)); 88 89 // Print out the base pointers for debugging 90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 91 cl::init(false)); 92 93 // Cost threshold measuring when it is profitable to rematerialize value instead 94 // of relocating it 95 static cl::opt<unsigned> 96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 97 cl::init(6)); 98 99 #ifdef EXPENSIVE_CHECKS 100 static bool ClobberNonLive = true; 101 #else 102 static bool ClobberNonLive = false; 103 #endif 104 105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 106 cl::location(ClobberNonLive), 107 cl::Hidden); 108 109 static cl::opt<bool> 110 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 111 cl::Hidden, cl::init(true)); 112 113 /// The IR fed into RewriteStatepointsForGC may have had attributes and 114 /// metadata implying dereferenceability that are no longer valid/correct after 115 /// RewriteStatepointsForGC has run. This is because semantically, after 116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 117 /// heap. stripNonValidData (conservatively) restores 118 /// correctness by erasing all attributes in the module that externally imply 119 /// dereferenceability. Similar reasoning also applies to the noalias 120 /// attributes and metadata. gc.statepoint can touch the entire heap including 121 /// noalias objects. 122 /// Apart from attributes and metadata, we also remove instructions that imply 123 /// constant physical memory: llvm.invariant.start. 124 static void stripNonValidData(Module &M); 125 126 static bool shouldRewriteStatepointsIn(Function &F); 127 128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 129 ModuleAnalysisManager &AM) { 130 bool Changed = false; 131 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 132 for (Function &F : M) { 133 // Nothing to do for declarations. 134 if (F.isDeclaration() || F.empty()) 135 continue; 136 137 // Policy choice says not to rewrite - the most common reason is that we're 138 // compiling code without a GCStrategy. 139 if (!shouldRewriteStatepointsIn(F)) 140 continue; 141 142 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 143 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 144 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 145 Changed |= runOnFunction(F, DT, TTI, TLI); 146 } 147 if (!Changed) 148 return PreservedAnalyses::all(); 149 150 // stripNonValidData asserts that shouldRewriteStatepointsIn 151 // returns true for at least one function in the module. Since at least 152 // one function changed, we know that the precondition is satisfied. 153 stripNonValidData(M); 154 155 PreservedAnalyses PA; 156 PA.preserve<TargetIRAnalysis>(); 157 PA.preserve<TargetLibraryAnalysis>(); 158 return PA; 159 } 160 161 namespace { 162 163 class RewriteStatepointsForGCLegacyPass : public ModulePass { 164 RewriteStatepointsForGC Impl; 165 166 public: 167 static char ID; // Pass identification, replacement for typeid 168 169 RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() { 170 initializeRewriteStatepointsForGCLegacyPassPass( 171 *PassRegistry::getPassRegistry()); 172 } 173 174 bool runOnModule(Module &M) override { 175 bool Changed = false; 176 const TargetLibraryInfo &TLI = 177 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 178 for (Function &F : M) { 179 // Nothing to do for declarations. 180 if (F.isDeclaration() || F.empty()) 181 continue; 182 183 // Policy choice says not to rewrite - the most common reason is that 184 // we're compiling code without a GCStrategy. 185 if (!shouldRewriteStatepointsIn(F)) 186 continue; 187 188 TargetTransformInfo &TTI = 189 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 190 auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 191 192 Changed |= Impl.runOnFunction(F, DT, TTI, TLI); 193 } 194 195 if (!Changed) 196 return false; 197 198 // stripNonValidData asserts that shouldRewriteStatepointsIn 199 // returns true for at least one function in the module. Since at least 200 // one function changed, we know that the precondition is satisfied. 201 stripNonValidData(M); 202 return true; 203 } 204 205 void getAnalysisUsage(AnalysisUsage &AU) const override { 206 // We add and rewrite a bunch of instructions, but don't really do much 207 // else. We could in theory preserve a lot more analyses here. 208 AU.addRequired<DominatorTreeWrapperPass>(); 209 AU.addRequired<TargetTransformInfoWrapperPass>(); 210 AU.addRequired<TargetLibraryInfoWrapperPass>(); 211 } 212 }; 213 214 } // end anonymous namespace 215 216 char RewriteStatepointsForGCLegacyPass::ID = 0; 217 218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() { 219 return new RewriteStatepointsForGCLegacyPass(); 220 } 221 222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass, 223 "rewrite-statepoints-for-gc", 224 "Make relocations explicit at statepoints", false, false) 225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass, 228 "rewrite-statepoints-for-gc", 229 "Make relocations explicit at statepoints", false, false) 230 231 namespace { 232 233 struct GCPtrLivenessData { 234 /// Values defined in this block. 235 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 236 237 /// Values used in this block (and thus live); does not included values 238 /// killed within this block. 239 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 240 241 /// Values live into this basic block (i.e. used by any 242 /// instruction in this basic block or ones reachable from here) 243 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 244 245 /// Values live out of this basic block (i.e. live into 246 /// any successor block) 247 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 248 }; 249 250 // The type of the internal cache used inside the findBasePointers family 251 // of functions. From the callers perspective, this is an opaque type and 252 // should not be inspected. 253 // 254 // In the actual implementation this caches two relations: 255 // - The base relation itself (i.e. this pointer is based on that one) 256 // - The base defining value relation (i.e. before base_phi insertion) 257 // Generally, after the execution of a full findBasePointer call, only the 258 // base relation will remain. Internally, we add a mixture of the two 259 // types, then update all the second type to the first type 260 using DefiningValueMapTy = MapVector<Value *, Value *>; 261 using StatepointLiveSetTy = SetVector<Value *>; 262 using RematerializedValueMapTy = 263 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 264 265 struct PartiallyConstructedSafepointRecord { 266 /// The set of values known to be live across this safepoint 267 StatepointLiveSetTy LiveSet; 268 269 /// Mapping from live pointers to a base-defining-value 270 MapVector<Value *, Value *> PointerToBase; 271 272 /// The *new* gc.statepoint instruction itself. This produces the token 273 /// that normal path gc.relocates and the gc.result are tied to. 274 Instruction *StatepointToken; 275 276 /// Instruction to which exceptional gc relocates are attached 277 /// Makes it easier to iterate through them during relocationViaAlloca. 278 Instruction *UnwindToken; 279 280 /// Record live values we are rematerialized instead of relocating. 281 /// They are not included into 'LiveSet' field. 282 /// Maps rematerialized copy to it's original value. 283 RematerializedValueMapTy RematerializedValues; 284 }; 285 286 } // end anonymous namespace 287 288 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 289 Optional<OperandBundleUse> DeoptBundle = 290 CS.getOperandBundle(LLVMContext::OB_deopt); 291 292 if (!DeoptBundle.hasValue()) { 293 assert(AllowStatepointWithNoDeoptInfo && 294 "Found non-leaf call without deopt info!"); 295 return None; 296 } 297 298 return DeoptBundle.getValue().Inputs; 299 } 300 301 /// Compute the live-in set for every basic block in the function 302 static void computeLiveInValues(DominatorTree &DT, Function &F, 303 GCPtrLivenessData &Data); 304 305 /// Given results from the dataflow liveness computation, find the set of live 306 /// Values at a particular instruction. 307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 308 StatepointLiveSetTy &out); 309 310 // TODO: Once we can get to the GCStrategy, this becomes 311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 312 313 static bool isGCPointerType(Type *T) { 314 if (auto *PT = dyn_cast<PointerType>(T)) 315 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 316 // GC managed heap. We know that a pointer into this heap needs to be 317 // updated and that no other pointer does. 318 return PT->getAddressSpace() == 1; 319 return false; 320 } 321 322 // Return true if this type is one which a) is a gc pointer or contains a GC 323 // pointer and b) is of a type this code expects to encounter as a live value. 324 // (The insertion code will assert that a type which matches (a) and not (b) 325 // is not encountered.) 326 static bool isHandledGCPointerType(Type *T) { 327 // We fully support gc pointers 328 if (isGCPointerType(T)) 329 return true; 330 // We partially support vectors of gc pointers. The code will assert if it 331 // can't handle something. 332 if (auto VT = dyn_cast<VectorType>(T)) 333 if (isGCPointerType(VT->getElementType())) 334 return true; 335 return false; 336 } 337 338 #ifndef NDEBUG 339 /// Returns true if this type contains a gc pointer whether we know how to 340 /// handle that type or not. 341 static bool containsGCPtrType(Type *Ty) { 342 if (isGCPointerType(Ty)) 343 return true; 344 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 345 return isGCPointerType(VT->getScalarType()); 346 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 347 return containsGCPtrType(AT->getElementType()); 348 if (StructType *ST = dyn_cast<StructType>(Ty)) 349 return llvm::any_of(ST->elements(), containsGCPtrType); 350 return false; 351 } 352 353 // Returns true if this is a type which a) is a gc pointer or contains a GC 354 // pointer and b) is of a type which the code doesn't expect (i.e. first class 355 // aggregates). Used to trip assertions. 356 static bool isUnhandledGCPointerType(Type *Ty) { 357 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 358 } 359 #endif 360 361 // Return the name of the value suffixed with the provided value, or if the 362 // value didn't have a name, the default value specified. 363 static std::string suffixed_name_or(Value *V, StringRef Suffix, 364 StringRef DefaultName) { 365 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 366 } 367 368 // Conservatively identifies any definitions which might be live at the 369 // given instruction. The analysis is performed immediately before the 370 // given instruction. Values defined by that instruction are not considered 371 // live. Values used by that instruction are considered live. 372 static void 373 analyzeParsePointLiveness(DominatorTree &DT, 374 GCPtrLivenessData &OriginalLivenessData, CallSite CS, 375 PartiallyConstructedSafepointRecord &Result) { 376 Instruction *Inst = CS.getInstruction(); 377 378 StatepointLiveSetTy LiveSet; 379 findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet); 380 381 if (PrintLiveSet) { 382 dbgs() << "Live Variables:\n"; 383 for (Value *V : LiveSet) 384 dbgs() << " " << V->getName() << " " << *V << "\n"; 385 } 386 if (PrintLiveSetSize) { 387 dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 388 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 389 } 390 Result.LiveSet = LiveSet; 391 } 392 393 static bool isKnownBaseResult(Value *V); 394 395 namespace { 396 397 /// A single base defining value - An immediate base defining value for an 398 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 399 /// For instructions which have multiple pointer [vector] inputs or that 400 /// transition between vector and scalar types, there is no immediate base 401 /// defining value. The 'base defining value' for 'Def' is the transitive 402 /// closure of this relation stopping at the first instruction which has no 403 /// immediate base defining value. The b.d.v. might itself be a base pointer, 404 /// but it can also be an arbitrary derived pointer. 405 struct BaseDefiningValueResult { 406 /// Contains the value which is the base defining value. 407 Value * const BDV; 408 409 /// True if the base defining value is also known to be an actual base 410 /// pointer. 411 const bool IsKnownBase; 412 413 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 414 : BDV(BDV), IsKnownBase(IsKnownBase) { 415 #ifndef NDEBUG 416 // Check consistency between new and old means of checking whether a BDV is 417 // a base. 418 bool MustBeBase = isKnownBaseResult(BDV); 419 assert(!MustBeBase || MustBeBase == IsKnownBase); 420 #endif 421 } 422 }; 423 424 } // end anonymous namespace 425 426 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 427 428 /// Return a base defining value for the 'Index' element of the given vector 429 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 430 /// 'I'. As an optimization, this method will try to determine when the 431 /// element is known to already be a base pointer. If this can be established, 432 /// the second value in the returned pair will be true. Note that either a 433 /// vector or a pointer typed value can be returned. For the former, the 434 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 435 /// If the later, the return pointer is a BDV (or possibly a base) for the 436 /// particular element in 'I'. 437 static BaseDefiningValueResult 438 findBaseDefiningValueOfVector(Value *I) { 439 // Each case parallels findBaseDefiningValue below, see that code for 440 // detailed motivation. 441 442 if (isa<Argument>(I)) 443 // An incoming argument to the function is a base pointer 444 return BaseDefiningValueResult(I, true); 445 446 if (isa<Constant>(I)) 447 // Base of constant vector consists only of constant null pointers. 448 // For reasoning see similar case inside 'findBaseDefiningValue' function. 449 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 450 true); 451 452 if (isa<LoadInst>(I)) 453 return BaseDefiningValueResult(I, true); 454 455 if (isa<InsertElementInst>(I)) 456 // We don't know whether this vector contains entirely base pointers or 457 // not. To be conservatively correct, we treat it as a BDV and will 458 // duplicate code as needed to construct a parallel vector of bases. 459 return BaseDefiningValueResult(I, false); 460 461 if (isa<ShuffleVectorInst>(I)) 462 // We don't know whether this vector contains entirely base pointers or 463 // not. To be conservatively correct, we treat it as a BDV and will 464 // duplicate code as needed to construct a parallel vector of bases. 465 // TODO: There a number of local optimizations which could be applied here 466 // for particular sufflevector patterns. 467 return BaseDefiningValueResult(I, false); 468 469 // The behavior of getelementptr instructions is the same for vector and 470 // non-vector data types. 471 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 472 return findBaseDefiningValue(GEP->getPointerOperand()); 473 474 // If the pointer comes through a bitcast of a vector of pointers to 475 // a vector of another type of pointer, then look through the bitcast 476 if (auto *BC = dyn_cast<BitCastInst>(I)) 477 return findBaseDefiningValue(BC->getOperand(0)); 478 479 // We assume that functions in the source language only return base 480 // pointers. This should probably be generalized via attributes to support 481 // both source language and internal functions. 482 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 483 return BaseDefiningValueResult(I, true); 484 485 // A PHI or Select is a base defining value. The outer findBasePointer 486 // algorithm is responsible for constructing a base value for this BDV. 487 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 488 "unknown vector instruction - no base found for vector element"); 489 return BaseDefiningValueResult(I, false); 490 } 491 492 /// Helper function for findBasePointer - Will return a value which either a) 493 /// defines the base pointer for the input, b) blocks the simple search 494 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 495 /// from pointer to vector type or back. 496 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 497 assert(I->getType()->isPtrOrPtrVectorTy() && 498 "Illegal to ask for the base pointer of a non-pointer type"); 499 500 if (I->getType()->isVectorTy()) 501 return findBaseDefiningValueOfVector(I); 502 503 if (isa<Argument>(I)) 504 // An incoming argument to the function is a base pointer 505 // We should have never reached here if this argument isn't an gc value 506 return BaseDefiningValueResult(I, true); 507 508 if (isa<Constant>(I)) { 509 // We assume that objects with a constant base (e.g. a global) can't move 510 // and don't need to be reported to the collector because they are always 511 // live. Besides global references, all kinds of constants (e.g. undef, 512 // constant expressions, null pointers) can be introduced by the inliner or 513 // the optimizer, especially on dynamically dead paths. 514 // Here we treat all of them as having single null base. By doing this we 515 // trying to avoid problems reporting various conflicts in a form of 516 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 517 // See constant.ll file for relevant test cases. 518 519 return BaseDefiningValueResult( 520 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 521 } 522 523 if (CastInst *CI = dyn_cast<CastInst>(I)) { 524 Value *Def = CI->stripPointerCasts(); 525 // If stripping pointer casts changes the address space there is an 526 // addrspacecast in between. 527 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 528 cast<PointerType>(CI->getType())->getAddressSpace() && 529 "unsupported addrspacecast"); 530 // If we find a cast instruction here, it means we've found a cast which is 531 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 532 // handle int->ptr conversion. 533 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 534 return findBaseDefiningValue(Def); 535 } 536 537 if (isa<LoadInst>(I)) 538 // The value loaded is an gc base itself 539 return BaseDefiningValueResult(I, true); 540 541 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 542 // The base of this GEP is the base 543 return findBaseDefiningValue(GEP->getPointerOperand()); 544 545 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 546 switch (II->getIntrinsicID()) { 547 default: 548 // fall through to general call handling 549 break; 550 case Intrinsic::experimental_gc_statepoint: 551 llvm_unreachable("statepoints don't produce pointers"); 552 case Intrinsic::experimental_gc_relocate: 553 // Rerunning safepoint insertion after safepoints are already 554 // inserted is not supported. It could probably be made to work, 555 // but why are you doing this? There's no good reason. 556 llvm_unreachable("repeat safepoint insertion is not supported"); 557 case Intrinsic::gcroot: 558 // Currently, this mechanism hasn't been extended to work with gcroot. 559 // There's no reason it couldn't be, but I haven't thought about the 560 // implications much. 561 llvm_unreachable( 562 "interaction with the gcroot mechanism is not supported"); 563 } 564 } 565 // We assume that functions in the source language only return base 566 // pointers. This should probably be generalized via attributes to support 567 // both source language and internal functions. 568 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 569 return BaseDefiningValueResult(I, true); 570 571 // TODO: I have absolutely no idea how to implement this part yet. It's not 572 // necessarily hard, I just haven't really looked at it yet. 573 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 574 575 if (isa<AtomicCmpXchgInst>(I)) 576 // A CAS is effectively a atomic store and load combined under a 577 // predicate. From the perspective of base pointers, we just treat it 578 // like a load. 579 return BaseDefiningValueResult(I, true); 580 581 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 582 "binary ops which don't apply to pointers"); 583 584 // The aggregate ops. Aggregates can either be in the heap or on the 585 // stack, but in either case, this is simply a field load. As a result, 586 // this is a defining definition of the base just like a load is. 587 if (isa<ExtractValueInst>(I)) 588 return BaseDefiningValueResult(I, true); 589 590 // We should never see an insert vector since that would require we be 591 // tracing back a struct value not a pointer value. 592 assert(!isa<InsertValueInst>(I) && 593 "Base pointer for a struct is meaningless"); 594 595 // An extractelement produces a base result exactly when it's input does. 596 // We may need to insert a parallel instruction to extract the appropriate 597 // element out of the base vector corresponding to the input. Given this, 598 // it's analogous to the phi and select case even though it's not a merge. 599 if (isa<ExtractElementInst>(I)) 600 // Note: There a lot of obvious peephole cases here. This are deliberately 601 // handled after the main base pointer inference algorithm to make writing 602 // test cases to exercise that code easier. 603 return BaseDefiningValueResult(I, false); 604 605 // The last two cases here don't return a base pointer. Instead, they 606 // return a value which dynamically selects from among several base 607 // derived pointers (each with it's own base potentially). It's the job of 608 // the caller to resolve these. 609 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 610 "missing instruction case in findBaseDefiningValing"); 611 return BaseDefiningValueResult(I, false); 612 } 613 614 /// Returns the base defining value for this value. 615 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 616 Value *&Cached = Cache[I]; 617 if (!Cached) { 618 Cached = findBaseDefiningValue(I).BDV; 619 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 620 << Cached->getName() << "\n"); 621 } 622 assert(Cache[I] != nullptr); 623 return Cached; 624 } 625 626 /// Return a base pointer for this value if known. Otherwise, return it's 627 /// base defining value. 628 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 629 Value *Def = findBaseDefiningValueCached(I, Cache); 630 auto Found = Cache.find(Def); 631 if (Found != Cache.end()) { 632 // Either a base-of relation, or a self reference. Caller must check. 633 return Found->second; 634 } 635 // Only a BDV available 636 return Def; 637 } 638 639 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 640 /// is it known to be a base pointer? Or do we need to continue searching. 641 static bool isKnownBaseResult(Value *V) { 642 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 643 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 644 !isa<ShuffleVectorInst>(V)) { 645 // no recursion possible 646 return true; 647 } 648 if (isa<Instruction>(V) && 649 cast<Instruction>(V)->getMetadata("is_base_value")) { 650 // This is a previously inserted base phi or select. We know 651 // that this is a base value. 652 return true; 653 } 654 655 // We need to keep searching 656 return false; 657 } 658 659 namespace { 660 661 /// Models the state of a single base defining value in the findBasePointer 662 /// algorithm for determining where a new instruction is needed to propagate 663 /// the base of this BDV. 664 class BDVState { 665 public: 666 enum Status { Unknown, Base, Conflict }; 667 668 BDVState() : BaseValue(nullptr) {} 669 670 explicit BDVState(Status Status, Value *BaseValue = nullptr) 671 : Status(Status), BaseValue(BaseValue) { 672 assert(Status != Base || BaseValue); 673 } 674 675 explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {} 676 677 Status getStatus() const { return Status; } 678 Value *getBaseValue() const { return BaseValue; } 679 680 bool isBase() const { return getStatus() == Base; } 681 bool isUnknown() const { return getStatus() == Unknown; } 682 bool isConflict() const { return getStatus() == Conflict; } 683 684 bool operator==(const BDVState &Other) const { 685 return BaseValue == Other.BaseValue && Status == Other.Status; 686 } 687 688 bool operator!=(const BDVState &other) const { return !(*this == other); } 689 690 LLVM_DUMP_METHOD 691 void dump() const { 692 print(dbgs()); 693 dbgs() << '\n'; 694 } 695 696 void print(raw_ostream &OS) const { 697 switch (getStatus()) { 698 case Unknown: 699 OS << "U"; 700 break; 701 case Base: 702 OS << "B"; 703 break; 704 case Conflict: 705 OS << "C"; 706 break; 707 } 708 OS << " (" << getBaseValue() << " - " 709 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): "; 710 } 711 712 private: 713 Status Status = Unknown; 714 AssertingVH<Value> BaseValue; // Non-null only if Status == Base. 715 }; 716 717 } // end anonymous namespace 718 719 #ifndef NDEBUG 720 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 721 State.print(OS); 722 return OS; 723 } 724 #endif 725 726 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) { 727 switch (LHS.getStatus()) { 728 case BDVState::Unknown: 729 return RHS; 730 731 case BDVState::Base: 732 assert(LHS.getBaseValue() && "can't be null"); 733 if (RHS.isUnknown()) 734 return LHS; 735 736 if (RHS.isBase()) { 737 if (LHS.getBaseValue() == RHS.getBaseValue()) { 738 assert(LHS == RHS && "equality broken!"); 739 return LHS; 740 } 741 return BDVState(BDVState::Conflict); 742 } 743 assert(RHS.isConflict() && "only three states!"); 744 return BDVState(BDVState::Conflict); 745 746 case BDVState::Conflict: 747 return LHS; 748 } 749 llvm_unreachable("only three states!"); 750 } 751 752 // Values of type BDVState form a lattice, and this function implements the meet 753 // operation. 754 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) { 755 BDVState Result = meetBDVStateImpl(LHS, RHS); 756 assert(Result == meetBDVStateImpl(RHS, LHS) && 757 "Math is wrong: meet does not commute!"); 758 return Result; 759 } 760 761 /// For a given value or instruction, figure out what base ptr its derived from. 762 /// For gc objects, this is simply itself. On success, returns a value which is 763 /// the base pointer. (This is reliable and can be used for relocation.) On 764 /// failure, returns nullptr. 765 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 766 Value *Def = findBaseOrBDV(I, Cache); 767 768 if (isKnownBaseResult(Def)) 769 return Def; 770 771 // Here's the rough algorithm: 772 // - For every SSA value, construct a mapping to either an actual base 773 // pointer or a PHI which obscures the base pointer. 774 // - Construct a mapping from PHI to unknown TOP state. Use an 775 // optimistic algorithm to propagate base pointer information. Lattice 776 // looks like: 777 // UNKNOWN 778 // b1 b2 b3 b4 779 // CONFLICT 780 // When algorithm terminates, all PHIs will either have a single concrete 781 // base or be in a conflict state. 782 // - For every conflict, insert a dummy PHI node without arguments. Add 783 // these to the base[Instruction] = BasePtr mapping. For every 784 // non-conflict, add the actual base. 785 // - For every conflict, add arguments for the base[a] of each input 786 // arguments. 787 // 788 // Note: A simpler form of this would be to add the conflict form of all 789 // PHIs without running the optimistic algorithm. This would be 790 // analogous to pessimistic data flow and would likely lead to an 791 // overall worse solution. 792 793 #ifndef NDEBUG 794 auto isExpectedBDVType = [](Value *BDV) { 795 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 796 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 797 isa<ShuffleVectorInst>(BDV); 798 }; 799 #endif 800 801 // Once populated, will contain a mapping from each potentially non-base BDV 802 // to a lattice value (described above) which corresponds to that BDV. 803 // We use the order of insertion (DFS over the def/use graph) to provide a 804 // stable deterministic ordering for visiting DenseMaps (which are unordered) 805 // below. This is important for deterministic compilation. 806 MapVector<Value *, BDVState> States; 807 808 // Recursively fill in all base defining values reachable from the initial 809 // one for which we don't already know a definite base value for 810 /* scope */ { 811 SmallVector<Value*, 16> Worklist; 812 Worklist.push_back(Def); 813 States.insert({Def, BDVState()}); 814 while (!Worklist.empty()) { 815 Value *Current = Worklist.pop_back_val(); 816 assert(!isKnownBaseResult(Current) && "why did it get added?"); 817 818 auto visitIncomingValue = [&](Value *InVal) { 819 Value *Base = findBaseOrBDV(InVal, Cache); 820 if (isKnownBaseResult(Base)) 821 // Known bases won't need new instructions introduced and can be 822 // ignored safely 823 return; 824 assert(isExpectedBDVType(Base) && "the only non-base values " 825 "we see should be base defining values"); 826 if (States.insert(std::make_pair(Base, BDVState())).second) 827 Worklist.push_back(Base); 828 }; 829 if (PHINode *PN = dyn_cast<PHINode>(Current)) { 830 for (Value *InVal : PN->incoming_values()) 831 visitIncomingValue(InVal); 832 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { 833 visitIncomingValue(SI->getTrueValue()); 834 visitIncomingValue(SI->getFalseValue()); 835 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 836 visitIncomingValue(EE->getVectorOperand()); 837 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 838 visitIncomingValue(IE->getOperand(0)); // vector operand 839 visitIncomingValue(IE->getOperand(1)); // scalar operand 840 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) { 841 visitIncomingValue(SV->getOperand(0)); 842 visitIncomingValue(SV->getOperand(1)); 843 } 844 else { 845 llvm_unreachable("Unimplemented instruction case"); 846 } 847 } 848 } 849 850 #ifndef NDEBUG 851 LLVM_DEBUG(dbgs() << "States after initialization:\n"); 852 for (auto Pair : States) { 853 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 854 } 855 #endif 856 857 // Return a phi state for a base defining value. We'll generate a new 858 // base state for known bases and expect to find a cached state otherwise. 859 auto getStateForBDV = [&](Value *baseValue) { 860 if (isKnownBaseResult(baseValue)) 861 return BDVState(baseValue); 862 auto I = States.find(baseValue); 863 assert(I != States.end() && "lookup failed!"); 864 return I->second; 865 }; 866 867 bool Progress = true; 868 while (Progress) { 869 #ifndef NDEBUG 870 const size_t OldSize = States.size(); 871 #endif 872 Progress = false; 873 // We're only changing values in this loop, thus safe to keep iterators. 874 // Since this is computing a fixed point, the order of visit does not 875 // effect the result. TODO: We could use a worklist here and make this run 876 // much faster. 877 for (auto Pair : States) { 878 Value *BDV = Pair.first; 879 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 880 881 // Given an input value for the current instruction, return a BDVState 882 // instance which represents the BDV of that value. 883 auto getStateForInput = [&](Value *V) mutable { 884 Value *BDV = findBaseOrBDV(V, Cache); 885 return getStateForBDV(BDV); 886 }; 887 888 BDVState NewState; 889 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 890 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); 891 NewState = 892 meetBDVState(NewState, getStateForInput(SI->getFalseValue())); 893 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 894 for (Value *Val : PN->incoming_values()) 895 NewState = meetBDVState(NewState, getStateForInput(Val)); 896 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 897 // The 'meet' for an extractelement is slightly trivial, but it's still 898 // useful in that it drives us to conflict if our input is. 899 NewState = 900 meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); 901 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){ 902 // Given there's a inherent type mismatch between the operands, will 903 // *always* produce Conflict. 904 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); 905 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); 906 } else { 907 // The only instance this does not return a Conflict is when both the 908 // vector operands are the same vector. 909 auto *SV = cast<ShuffleVectorInst>(BDV); 910 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0))); 911 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1))); 912 } 913 914 BDVState OldState = States[BDV]; 915 if (OldState != NewState) { 916 Progress = true; 917 States[BDV] = NewState; 918 } 919 } 920 921 assert(OldSize == States.size() && 922 "fixed point shouldn't be adding any new nodes to state"); 923 } 924 925 #ifndef NDEBUG 926 LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); 927 for (auto Pair : States) { 928 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 929 } 930 #endif 931 932 // Insert Phis for all conflicts 933 // TODO: adjust naming patterns to avoid this order of iteration dependency 934 for (auto Pair : States) { 935 Instruction *I = cast<Instruction>(Pair.first); 936 BDVState State = Pair.second; 937 assert(!isKnownBaseResult(I) && "why did it get added?"); 938 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 939 940 // extractelement instructions are a bit special in that we may need to 941 // insert an extract even when we know an exact base for the instruction. 942 // The problem is that we need to convert from a vector base to a scalar 943 // base for the particular indice we're interested in. 944 if (State.isBase() && isa<ExtractElementInst>(I) && 945 isa<VectorType>(State.getBaseValue()->getType())) { 946 auto *EE = cast<ExtractElementInst>(I); 947 // TODO: In many cases, the new instruction is just EE itself. We should 948 // exploit this, but can't do it here since it would break the invariant 949 // about the BDV not being known to be a base. 950 auto *BaseInst = ExtractElementInst::Create( 951 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 952 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 953 States[I] = BDVState(BDVState::Base, BaseInst); 954 } 955 956 // Since we're joining a vector and scalar base, they can never be the 957 // same. As a result, we should always see insert element having reached 958 // the conflict state. 959 assert(!isa<InsertElementInst>(I) || State.isConflict()); 960 961 if (!State.isConflict()) 962 continue; 963 964 /// Create and insert a new instruction which will represent the base of 965 /// the given instruction 'I'. 966 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 967 if (isa<PHINode>(I)) { 968 BasicBlock *BB = I->getParent(); 969 int NumPreds = pred_size(BB); 970 assert(NumPreds > 0 && "how did we reach here"); 971 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 972 return PHINode::Create(I->getType(), NumPreds, Name, I); 973 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 974 // The undef will be replaced later 975 UndefValue *Undef = UndefValue::get(SI->getType()); 976 std::string Name = suffixed_name_or(I, ".base", "base_select"); 977 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); 978 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 979 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 980 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 981 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 982 EE); 983 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 984 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 985 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 986 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 987 return InsertElementInst::Create(VecUndef, ScalarUndef, 988 IE->getOperand(2), Name, IE); 989 } else { 990 auto *SV = cast<ShuffleVectorInst>(I); 991 UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType()); 992 std::string Name = suffixed_name_or(I, ".base", "base_sv"); 993 return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2), 994 Name, SV); 995 } 996 }; 997 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 998 // Add metadata marking this as a base value 999 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1000 States[I] = BDVState(BDVState::Conflict, BaseInst); 1001 } 1002 1003 // Returns a instruction which produces the base pointer for a given 1004 // instruction. The instruction is assumed to be an input to one of the BDVs 1005 // seen in the inference algorithm above. As such, we must either already 1006 // know it's base defining value is a base, or have inserted a new 1007 // instruction to propagate the base of it's BDV and have entered that newly 1008 // introduced instruction into the state table. In either case, we are 1009 // assured to be able to determine an instruction which produces it's base 1010 // pointer. 1011 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1012 Value *BDV = findBaseOrBDV(Input, Cache); 1013 Value *Base = nullptr; 1014 if (isKnownBaseResult(BDV)) { 1015 Base = BDV; 1016 } else { 1017 // Either conflict or base. 1018 assert(States.count(BDV)); 1019 Base = States[BDV].getBaseValue(); 1020 } 1021 assert(Base && "Can't be null"); 1022 // The cast is needed since base traversal may strip away bitcasts 1023 if (Base->getType() != Input->getType() && InsertPt) 1024 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 1025 return Base; 1026 }; 1027 1028 // Fixup all the inputs of the new PHIs. Visit order needs to be 1029 // deterministic and predictable because we're naming newly created 1030 // instructions. 1031 for (auto Pair : States) { 1032 Instruction *BDV = cast<Instruction>(Pair.first); 1033 BDVState State = Pair.second; 1034 1035 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1036 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1037 if (!State.isConflict()) 1038 continue; 1039 1040 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1041 PHINode *PN = cast<PHINode>(BDV); 1042 unsigned NumPHIValues = PN->getNumIncomingValues(); 1043 for (unsigned i = 0; i < NumPHIValues; i++) { 1044 Value *InVal = PN->getIncomingValue(i); 1045 BasicBlock *InBB = PN->getIncomingBlock(i); 1046 1047 // If we've already seen InBB, add the same incoming value 1048 // we added for it earlier. The IR verifier requires phi 1049 // nodes with multiple entries from the same basic block 1050 // to have the same incoming value for each of those 1051 // entries. If we don't do this check here and basephi 1052 // has a different type than base, we'll end up adding two 1053 // bitcasts (and hence two distinct values) as incoming 1054 // values for the same basic block. 1055 1056 int BlockIndex = BasePHI->getBasicBlockIndex(InBB); 1057 if (BlockIndex != -1) { 1058 Value *OldBase = BasePHI->getIncomingValue(BlockIndex); 1059 BasePHI->addIncoming(OldBase, InBB); 1060 1061 #ifndef NDEBUG 1062 Value *Base = getBaseForInput(InVal, nullptr); 1063 // In essence this assert states: the only way two values 1064 // incoming from the same basic block may be different is by 1065 // being different bitcasts of the same value. A cleanup 1066 // that remains TODO is changing findBaseOrBDV to return an 1067 // llvm::Value of the correct type (and still remain pure). 1068 // This will remove the need to add bitcasts. 1069 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 1070 "Sanity -- findBaseOrBDV should be pure!"); 1071 #endif 1072 continue; 1073 } 1074 1075 // Find the instruction which produces the base for each input. We may 1076 // need to insert a bitcast in the incoming block. 1077 // TODO: Need to split critical edges if insertion is needed 1078 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1079 BasePHI->addIncoming(Base, InBB); 1080 } 1081 assert(BasePHI->getNumIncomingValues() == NumPHIValues); 1082 } else if (SelectInst *BaseSI = 1083 dyn_cast<SelectInst>(State.getBaseValue())) { 1084 SelectInst *SI = cast<SelectInst>(BDV); 1085 1086 // Find the instruction which produces the base for each input. 1087 // We may need to insert a bitcast. 1088 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1089 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1090 } else if (auto *BaseEE = 1091 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1092 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1093 // Find the instruction which produces the base for each input. We may 1094 // need to insert a bitcast. 1095 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1096 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1097 auto *BdvIE = cast<InsertElementInst>(BDV); 1098 auto UpdateOperand = [&](int OperandIdx) { 1099 Value *InVal = BdvIE->getOperand(OperandIdx); 1100 Value *Base = getBaseForInput(InVal, BaseIE); 1101 BaseIE->setOperand(OperandIdx, Base); 1102 }; 1103 UpdateOperand(0); // vector operand 1104 UpdateOperand(1); // scalar operand 1105 } else { 1106 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1107 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1108 auto UpdateOperand = [&](int OperandIdx) { 1109 Value *InVal = BdvSV->getOperand(OperandIdx); 1110 Value *Base = getBaseForInput(InVal, BaseSV); 1111 BaseSV->setOperand(OperandIdx, Base); 1112 }; 1113 UpdateOperand(0); // vector operand 1114 UpdateOperand(1); // vector operand 1115 } 1116 } 1117 1118 // Cache all of our results so we can cheaply reuse them 1119 // NOTE: This is actually two caches: one of the base defining value 1120 // relation and one of the base pointer relation! FIXME 1121 for (auto Pair : States) { 1122 auto *BDV = Pair.first; 1123 Value *Base = Pair.second.getBaseValue(); 1124 assert(BDV && Base); 1125 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1126 1127 LLVM_DEBUG( 1128 dbgs() << "Updating base value cache" 1129 << " for: " << BDV->getName() << " from: " 1130 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1131 << " to: " << Base->getName() << "\n"); 1132 1133 if (Cache.count(BDV)) { 1134 assert(isKnownBaseResult(Base) && 1135 "must be something we 'know' is a base pointer"); 1136 // Once we transition from the BDV relation being store in the Cache to 1137 // the base relation being stored, it must be stable 1138 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && 1139 "base relation should be stable"); 1140 } 1141 Cache[BDV] = Base; 1142 } 1143 assert(Cache.count(Def)); 1144 return Cache[Def]; 1145 } 1146 1147 // For a set of live pointers (base and/or derived), identify the base 1148 // pointer of the object which they are derived from. This routine will 1149 // mutate the IR graph as needed to make the 'base' pointer live at the 1150 // definition site of 'derived'. This ensures that any use of 'derived' can 1151 // also use 'base'. This may involve the insertion of a number of 1152 // additional PHI nodes. 1153 // 1154 // preconditions: live is a set of pointer type Values 1155 // 1156 // side effects: may insert PHI nodes into the existing CFG, will preserve 1157 // CFG, will not remove or mutate any existing nodes 1158 // 1159 // post condition: PointerToBase contains one (derived, base) pair for every 1160 // pointer in live. Note that derived can be equal to base if the original 1161 // pointer was a base pointer. 1162 static void 1163 findBasePointers(const StatepointLiveSetTy &live, 1164 MapVector<Value *, Value *> &PointerToBase, 1165 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1166 for (Value *ptr : live) { 1167 Value *base = findBasePointer(ptr, DVCache); 1168 assert(base && "failed to find base pointer"); 1169 PointerToBase[ptr] = base; 1170 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1171 DT->dominates(cast<Instruction>(base)->getParent(), 1172 cast<Instruction>(ptr)->getParent())) && 1173 "The base we found better dominate the derived pointer"); 1174 } 1175 } 1176 1177 /// Find the required based pointers (and adjust the live set) for the given 1178 /// parse point. 1179 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1180 CallSite CS, 1181 PartiallyConstructedSafepointRecord &result) { 1182 MapVector<Value *, Value *> PointerToBase; 1183 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1184 1185 if (PrintBasePointers) { 1186 errs() << "Base Pairs (w/o Relocation):\n"; 1187 for (auto &Pair : PointerToBase) { 1188 errs() << " derived "; 1189 Pair.first->printAsOperand(errs(), false); 1190 errs() << " base "; 1191 Pair.second->printAsOperand(errs(), false); 1192 errs() << "\n";; 1193 } 1194 } 1195 1196 result.PointerToBase = PointerToBase; 1197 } 1198 1199 /// Given an updated version of the dataflow liveness results, update the 1200 /// liveset and base pointer maps for the call site CS. 1201 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1202 CallSite CS, 1203 PartiallyConstructedSafepointRecord &result); 1204 1205 static void recomputeLiveInValues( 1206 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1207 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1208 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1209 // again. The old values are still live and will help it stabilize quickly. 1210 GCPtrLivenessData RevisedLivenessData; 1211 computeLiveInValues(DT, F, RevisedLivenessData); 1212 for (size_t i = 0; i < records.size(); i++) { 1213 struct PartiallyConstructedSafepointRecord &info = records[i]; 1214 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1215 } 1216 } 1217 1218 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1219 // no uses of the original value / return value between the gc.statepoint and 1220 // the gc.relocate / gc.result call. One case which can arise is a phi node 1221 // starting one of the successor blocks. We also need to be able to insert the 1222 // gc.relocates only on the path which goes through the statepoint. We might 1223 // need to split an edge to make this possible. 1224 static BasicBlock * 1225 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1226 DominatorTree &DT) { 1227 BasicBlock *Ret = BB; 1228 if (!BB->getUniquePredecessor()) 1229 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1230 1231 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1232 // from it 1233 FoldSingleEntryPHINodes(Ret); 1234 assert(!isa<PHINode>(Ret->begin()) && 1235 "All PHI nodes should have been removed!"); 1236 1237 // At this point, we can safely insert a gc.relocate or gc.result as the first 1238 // instruction in Ret if needed. 1239 return Ret; 1240 } 1241 1242 // Create new attribute set containing only attributes which can be transferred 1243 // from original call to the safepoint. 1244 static AttributeList legalizeCallAttributes(AttributeList AL) { 1245 if (AL.isEmpty()) 1246 return AL; 1247 1248 // Remove the readonly, readnone, and statepoint function attributes. 1249 AttrBuilder FnAttrs = AL.getFnAttributes(); 1250 FnAttrs.removeAttribute(Attribute::ReadNone); 1251 FnAttrs.removeAttribute(Attribute::ReadOnly); 1252 for (Attribute A : AL.getFnAttributes()) { 1253 if (isStatepointDirectiveAttr(A)) 1254 FnAttrs.remove(A); 1255 } 1256 1257 // Just skip parameter and return attributes for now 1258 LLVMContext &Ctx = AL.getContext(); 1259 return AttributeList::get(Ctx, AttributeList::FunctionIndex, 1260 AttributeSet::get(Ctx, FnAttrs)); 1261 } 1262 1263 /// Helper function to place all gc relocates necessary for the given 1264 /// statepoint. 1265 /// Inputs: 1266 /// liveVariables - list of variables to be relocated. 1267 /// liveStart - index of the first live variable. 1268 /// basePtrs - base pointers. 1269 /// statepointToken - statepoint instruction to which relocates should be 1270 /// bound. 1271 /// Builder - Llvm IR builder to be used to construct new calls. 1272 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1273 const int LiveStart, 1274 ArrayRef<Value *> BasePtrs, 1275 Instruction *StatepointToken, 1276 IRBuilder<> Builder) { 1277 if (LiveVariables.empty()) 1278 return; 1279 1280 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1281 auto ValIt = llvm::find(LiveVec, Val); 1282 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1283 size_t Index = std::distance(LiveVec.begin(), ValIt); 1284 assert(Index < LiveVec.size() && "Bug in std::find?"); 1285 return Index; 1286 }; 1287 Module *M = StatepointToken->getModule(); 1288 1289 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1290 // element type is i8 addrspace(1)*). We originally generated unique 1291 // declarations for each pointer type, but this proved problematic because 1292 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1293 // towards a single unified pointer type anyways, we can just cast everything 1294 // to an i8* of the right address space. A bitcast is added later to convert 1295 // gc_relocate to the actual value's type. 1296 auto getGCRelocateDecl = [&] (Type *Ty) { 1297 assert(isHandledGCPointerType(Ty)); 1298 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1299 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1300 if (auto *VT = dyn_cast<VectorType>(Ty)) 1301 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1302 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1303 {NewTy}); 1304 }; 1305 1306 // Lazily populated map from input types to the canonicalized form mentioned 1307 // in the comment above. This should probably be cached somewhere more 1308 // broadly. 1309 DenseMap<Type *, Function *> TypeToDeclMap; 1310 1311 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1312 // Generate the gc.relocate call and save the result 1313 Value *BaseIdx = 1314 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1315 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1316 1317 Type *Ty = LiveVariables[i]->getType(); 1318 if (!TypeToDeclMap.count(Ty)) 1319 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1320 Function *GCRelocateDecl = TypeToDeclMap[Ty]; 1321 1322 // only specify a debug name if we can give a useful one 1323 CallInst *Reloc = Builder.CreateCall( 1324 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1325 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1326 // Trick CodeGen into thinking there are lots of free registers at this 1327 // fake call. 1328 Reloc->setCallingConv(CallingConv::Cold); 1329 } 1330 } 1331 1332 namespace { 1333 1334 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1335 /// avoids having to worry about keeping around dangling pointers to Values. 1336 class DeferredReplacement { 1337 AssertingVH<Instruction> Old; 1338 AssertingVH<Instruction> New; 1339 bool IsDeoptimize = false; 1340 1341 DeferredReplacement() = default; 1342 1343 public: 1344 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1345 assert(Old != New && Old && New && 1346 "Cannot RAUW equal values or to / from null!"); 1347 1348 DeferredReplacement D; 1349 D.Old = Old; 1350 D.New = New; 1351 return D; 1352 } 1353 1354 static DeferredReplacement createDelete(Instruction *ToErase) { 1355 DeferredReplacement D; 1356 D.Old = ToErase; 1357 return D; 1358 } 1359 1360 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1361 #ifndef NDEBUG 1362 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1363 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1364 "Only way to construct a deoptimize deferred replacement"); 1365 #endif 1366 DeferredReplacement D; 1367 D.Old = Old; 1368 D.IsDeoptimize = true; 1369 return D; 1370 } 1371 1372 /// Does the task represented by this instance. 1373 void doReplacement() { 1374 Instruction *OldI = Old; 1375 Instruction *NewI = New; 1376 1377 assert(OldI != NewI && "Disallowed at construction?!"); 1378 assert((!IsDeoptimize || !New) && 1379 "Deoptimize intrinsics are not replaced!"); 1380 1381 Old = nullptr; 1382 New = nullptr; 1383 1384 if (NewI) 1385 OldI->replaceAllUsesWith(NewI); 1386 1387 if (IsDeoptimize) { 1388 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1389 // not necessarily be followed by the matching return. 1390 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1391 new UnreachableInst(RI->getContext(), RI); 1392 RI->eraseFromParent(); 1393 } 1394 1395 OldI->eraseFromParent(); 1396 } 1397 }; 1398 1399 } // end anonymous namespace 1400 1401 static StringRef getDeoptLowering(CallSite CS) { 1402 const char *DeoptLowering = "deopt-lowering"; 1403 if (CS.hasFnAttr(DeoptLowering)) { 1404 // FIXME: CallSite has a *really* confusing interface around attributes 1405 // with values. 1406 const AttributeList &CSAS = CS.getAttributes(); 1407 if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering)) 1408 return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering) 1409 .getValueAsString(); 1410 Function *F = CS.getCalledFunction(); 1411 assert(F && F->hasFnAttribute(DeoptLowering)); 1412 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1413 } 1414 return "live-through"; 1415 } 1416 1417 static void 1418 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1419 const SmallVectorImpl<Value *> &BasePtrs, 1420 const SmallVectorImpl<Value *> &LiveVariables, 1421 PartiallyConstructedSafepointRecord &Result, 1422 std::vector<DeferredReplacement> &Replacements) { 1423 assert(BasePtrs.size() == LiveVariables.size()); 1424 1425 // Then go ahead and use the builder do actually do the inserts. We insert 1426 // immediately before the previous instruction under the assumption that all 1427 // arguments will be available here. We can't insert afterwards since we may 1428 // be replacing a terminator. 1429 Instruction *InsertBefore = CS.getInstruction(); 1430 IRBuilder<> Builder(InsertBefore); 1431 1432 ArrayRef<Value *> GCArgs(LiveVariables); 1433 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1434 uint32_t NumPatchBytes = 0; 1435 uint32_t Flags = uint32_t(StatepointFlags::None); 1436 1437 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1438 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1439 ArrayRef<Use> TransitionArgs; 1440 if (auto TransitionBundle = 1441 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1442 Flags |= uint32_t(StatepointFlags::GCTransition); 1443 TransitionArgs = TransitionBundle->Inputs; 1444 } 1445 1446 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1447 // with a return value, we lower then as never returning calls to 1448 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1449 bool IsDeoptimize = false; 1450 1451 StatepointDirectives SD = 1452 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1453 if (SD.NumPatchBytes) 1454 NumPatchBytes = *SD.NumPatchBytes; 1455 if (SD.StatepointID) 1456 StatepointID = *SD.StatepointID; 1457 1458 // Pass through the requested lowering if any. The default is live-through. 1459 StringRef DeoptLowering = getDeoptLowering(CS); 1460 if (DeoptLowering.equals("live-in")) 1461 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1462 else { 1463 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1464 } 1465 1466 Value *CallTarget = CS.getCalledValue(); 1467 if (Function *F = dyn_cast<Function>(CallTarget)) { 1468 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1469 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1470 // __llvm_deoptimize symbol. We want to resolve this now, since the 1471 // verifier does not allow taking the address of an intrinsic function. 1472 1473 SmallVector<Type *, 8> DomainTy; 1474 for (Value *Arg : CallArgs) 1475 DomainTy.push_back(Arg->getType()); 1476 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1477 /* isVarArg = */ false); 1478 1479 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1480 // calls to @llvm.experimental.deoptimize with different argument types in 1481 // the same module. This is fine -- we assume the frontend knew what it 1482 // was doing when generating this kind of IR. 1483 CallTarget = F->getParent() 1484 ->getOrInsertFunction("__llvm_deoptimize", FTy) 1485 .getCallee(); 1486 1487 IsDeoptimize = true; 1488 } 1489 } 1490 1491 // Create the statepoint given all the arguments 1492 Instruction *Token = nullptr; 1493 if (CS.isCall()) { 1494 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1495 CallInst *Call = Builder.CreateGCStatepointCall( 1496 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1497 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1498 1499 Call->setTailCallKind(ToReplace->getTailCallKind()); 1500 Call->setCallingConv(ToReplace->getCallingConv()); 1501 1502 // Currently we will fail on parameter attributes and on certain 1503 // function attributes. In case if we can handle this set of attributes - 1504 // set up function attrs directly on statepoint and return attrs later for 1505 // gc_result intrinsic. 1506 Call->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1507 1508 Token = Call; 1509 1510 // Put the following gc_result and gc_relocate calls immediately after the 1511 // the old call (which we're about to delete) 1512 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1513 Builder.SetInsertPoint(ToReplace->getNextNode()); 1514 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1515 } else { 1516 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1517 1518 // Insert the new invoke into the old block. We'll remove the old one in a 1519 // moment at which point this will become the new terminator for the 1520 // original block. 1521 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1522 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1523 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1524 GCArgs, "statepoint_token"); 1525 1526 Invoke->setCallingConv(ToReplace->getCallingConv()); 1527 1528 // Currently we will fail on parameter attributes and on certain 1529 // function attributes. In case if we can handle this set of attributes - 1530 // set up function attrs directly on statepoint and return attrs later for 1531 // gc_result intrinsic. 1532 Invoke->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1533 1534 Token = Invoke; 1535 1536 // Generate gc relocates in exceptional path 1537 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1538 assert(!isa<PHINode>(UnwindBlock->begin()) && 1539 UnwindBlock->getUniquePredecessor() && 1540 "can't safely insert in this block!"); 1541 1542 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1543 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1544 1545 // Attach exceptional gc relocates to the landingpad. 1546 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1547 Result.UnwindToken = ExceptionalToken; 1548 1549 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1550 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1551 Builder); 1552 1553 // Generate gc relocates and returns for normal block 1554 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1555 assert(!isa<PHINode>(NormalDest->begin()) && 1556 NormalDest->getUniquePredecessor() && 1557 "can't safely insert in this block!"); 1558 1559 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1560 1561 // gc relocates will be generated later as if it were regular call 1562 // statepoint 1563 } 1564 assert(Token && "Should be set in one of the above branches!"); 1565 1566 if (IsDeoptimize) { 1567 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1568 // transform the tail-call like structure to a call to a void function 1569 // followed by unreachable to get better codegen. 1570 Replacements.push_back( 1571 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1572 } else { 1573 Token->setName("statepoint_token"); 1574 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1575 StringRef Name = 1576 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1577 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1578 GCResult->setAttributes( 1579 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1580 CS.getAttributes().getRetAttributes())); 1581 1582 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1583 // live set of some other safepoint, in which case that safepoint's 1584 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1585 // llvm::Instruction. Instead, we defer the replacement and deletion to 1586 // after the live sets have been made explicit in the IR, and we no longer 1587 // have raw pointers to worry about. 1588 Replacements.emplace_back( 1589 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1590 } else { 1591 Replacements.emplace_back( 1592 DeferredReplacement::createDelete(CS.getInstruction())); 1593 } 1594 } 1595 1596 Result.StatepointToken = Token; 1597 1598 // Second, create a gc.relocate for every live variable 1599 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1600 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1601 } 1602 1603 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1604 // which make the relocations happening at this safepoint explicit. 1605 // 1606 // WARNING: Does not do any fixup to adjust users of the original live 1607 // values. That's the callers responsibility. 1608 static void 1609 makeStatepointExplicit(DominatorTree &DT, CallSite CS, 1610 PartiallyConstructedSafepointRecord &Result, 1611 std::vector<DeferredReplacement> &Replacements) { 1612 const auto &LiveSet = Result.LiveSet; 1613 const auto &PointerToBase = Result.PointerToBase; 1614 1615 // Convert to vector for efficient cross referencing. 1616 SmallVector<Value *, 64> BaseVec, LiveVec; 1617 LiveVec.reserve(LiveSet.size()); 1618 BaseVec.reserve(LiveSet.size()); 1619 for (Value *L : LiveSet) { 1620 LiveVec.push_back(L); 1621 assert(PointerToBase.count(L)); 1622 Value *Base = PointerToBase.find(L)->second; 1623 BaseVec.push_back(Base); 1624 } 1625 assert(LiveVec.size() == BaseVec.size()); 1626 1627 // Do the actual rewriting and delete the old statepoint 1628 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1629 } 1630 1631 // Helper function for the relocationViaAlloca. 1632 // 1633 // It receives iterator to the statepoint gc relocates and emits a store to the 1634 // assigned location (via allocaMap) for the each one of them. It adds the 1635 // visited values into the visitedLiveValues set, which we will later use them 1636 // for sanity checking. 1637 static void 1638 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1639 DenseMap<Value *, AllocaInst *> &AllocaMap, 1640 DenseSet<Value *> &VisitedLiveValues) { 1641 for (User *U : GCRelocs) { 1642 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1643 if (!Relocate) 1644 continue; 1645 1646 Value *OriginalValue = Relocate->getDerivedPtr(); 1647 assert(AllocaMap.count(OriginalValue)); 1648 Value *Alloca = AllocaMap[OriginalValue]; 1649 1650 // Emit store into the related alloca 1651 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1652 // the correct type according to alloca. 1653 assert(Relocate->getNextNode() && 1654 "Should always have one since it's not a terminator"); 1655 IRBuilder<> Builder(Relocate->getNextNode()); 1656 Value *CastedRelocatedValue = 1657 Builder.CreateBitCast(Relocate, 1658 cast<AllocaInst>(Alloca)->getAllocatedType(), 1659 suffixed_name_or(Relocate, ".casted", "")); 1660 1661 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1662 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1663 1664 #ifndef NDEBUG 1665 VisitedLiveValues.insert(OriginalValue); 1666 #endif 1667 } 1668 } 1669 1670 // Helper function for the "relocationViaAlloca". Similar to the 1671 // "insertRelocationStores" but works for rematerialized values. 1672 static void insertRematerializationStores( 1673 const RematerializedValueMapTy &RematerializedValues, 1674 DenseMap<Value *, AllocaInst *> &AllocaMap, 1675 DenseSet<Value *> &VisitedLiveValues) { 1676 for (auto RematerializedValuePair: RematerializedValues) { 1677 Instruction *RematerializedValue = RematerializedValuePair.first; 1678 Value *OriginalValue = RematerializedValuePair.second; 1679 1680 assert(AllocaMap.count(OriginalValue) && 1681 "Can not find alloca for rematerialized value"); 1682 Value *Alloca = AllocaMap[OriginalValue]; 1683 1684 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1685 Store->insertAfter(RematerializedValue); 1686 1687 #ifndef NDEBUG 1688 VisitedLiveValues.insert(OriginalValue); 1689 #endif 1690 } 1691 } 1692 1693 /// Do all the relocation update via allocas and mem2reg 1694 static void relocationViaAlloca( 1695 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1696 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1697 #ifndef NDEBUG 1698 // record initial number of (static) allocas; we'll check we have the same 1699 // number when we get done. 1700 int InitialAllocaNum = 0; 1701 for (Instruction &I : F.getEntryBlock()) 1702 if (isa<AllocaInst>(I)) 1703 InitialAllocaNum++; 1704 #endif 1705 1706 // TODO-PERF: change data structures, reserve 1707 DenseMap<Value *, AllocaInst *> AllocaMap; 1708 SmallVector<AllocaInst *, 200> PromotableAllocas; 1709 // Used later to chack that we have enough allocas to store all values 1710 std::size_t NumRematerializedValues = 0; 1711 PromotableAllocas.reserve(Live.size()); 1712 1713 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1714 // "PromotableAllocas" 1715 const DataLayout &DL = F.getParent()->getDataLayout(); 1716 auto emitAllocaFor = [&](Value *LiveValue) { 1717 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 1718 DL.getAllocaAddrSpace(), "", 1719 F.getEntryBlock().getFirstNonPHI()); 1720 AllocaMap[LiveValue] = Alloca; 1721 PromotableAllocas.push_back(Alloca); 1722 }; 1723 1724 // Emit alloca for each live gc pointer 1725 for (Value *V : Live) 1726 emitAllocaFor(V); 1727 1728 // Emit allocas for rematerialized values 1729 for (const auto &Info : Records) 1730 for (auto RematerializedValuePair : Info.RematerializedValues) { 1731 Value *OriginalValue = RematerializedValuePair.second; 1732 if (AllocaMap.count(OriginalValue) != 0) 1733 continue; 1734 1735 emitAllocaFor(OriginalValue); 1736 ++NumRematerializedValues; 1737 } 1738 1739 // The next two loops are part of the same conceptual operation. We need to 1740 // insert a store to the alloca after the original def and at each 1741 // redefinition. We need to insert a load before each use. These are split 1742 // into distinct loops for performance reasons. 1743 1744 // Update gc pointer after each statepoint: either store a relocated value or 1745 // null (if no relocated value was found for this gc pointer and it is not a 1746 // gc_result). This must happen before we update the statepoint with load of 1747 // alloca otherwise we lose the link between statepoint and old def. 1748 for (const auto &Info : Records) { 1749 Value *Statepoint = Info.StatepointToken; 1750 1751 // This will be used for consistency check 1752 DenseSet<Value *> VisitedLiveValues; 1753 1754 // Insert stores for normal statepoint gc relocates 1755 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1756 1757 // In case if it was invoke statepoint 1758 // we will insert stores for exceptional path gc relocates. 1759 if (isa<InvokeInst>(Statepoint)) { 1760 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1761 VisitedLiveValues); 1762 } 1763 1764 // Do similar thing with rematerialized values 1765 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1766 VisitedLiveValues); 1767 1768 if (ClobberNonLive) { 1769 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1770 // the gc.statepoint. This will turn some subtle GC problems into 1771 // slightly easier to debug SEGVs. Note that on large IR files with 1772 // lots of gc.statepoints this is extremely costly both memory and time 1773 // wise. 1774 SmallVector<AllocaInst *, 64> ToClobber; 1775 for (auto Pair : AllocaMap) { 1776 Value *Def = Pair.first; 1777 AllocaInst *Alloca = Pair.second; 1778 1779 // This value was relocated 1780 if (VisitedLiveValues.count(Def)) { 1781 continue; 1782 } 1783 ToClobber.push_back(Alloca); 1784 } 1785 1786 auto InsertClobbersAt = [&](Instruction *IP) { 1787 for (auto *AI : ToClobber) { 1788 auto PT = cast<PointerType>(AI->getAllocatedType()); 1789 Constant *CPN = ConstantPointerNull::get(PT); 1790 StoreInst *Store = new StoreInst(CPN, AI); 1791 Store->insertBefore(IP); 1792 } 1793 }; 1794 1795 // Insert the clobbering stores. These may get intermixed with the 1796 // gc.results and gc.relocates, but that's fine. 1797 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1798 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1799 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1800 } else { 1801 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1802 } 1803 } 1804 } 1805 1806 // Update use with load allocas and add store for gc_relocated. 1807 for (auto Pair : AllocaMap) { 1808 Value *Def = Pair.first; 1809 AllocaInst *Alloca = Pair.second; 1810 1811 // We pre-record the uses of allocas so that we dont have to worry about 1812 // later update that changes the user information.. 1813 1814 SmallVector<Instruction *, 20> Uses; 1815 // PERF: trade a linear scan for repeated reallocation 1816 Uses.reserve(Def->getNumUses()); 1817 for (User *U : Def->users()) { 1818 if (!isa<ConstantExpr>(U)) { 1819 // If the def has a ConstantExpr use, then the def is either a 1820 // ConstantExpr use itself or null. In either case 1821 // (recursively in the first, directly in the second), the oop 1822 // it is ultimately dependent on is null and this particular 1823 // use does not need to be fixed up. 1824 Uses.push_back(cast<Instruction>(U)); 1825 } 1826 } 1827 1828 llvm::sort(Uses); 1829 auto Last = std::unique(Uses.begin(), Uses.end()); 1830 Uses.erase(Last, Uses.end()); 1831 1832 for (Instruction *Use : Uses) { 1833 if (isa<PHINode>(Use)) { 1834 PHINode *Phi = cast<PHINode>(Use); 1835 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1836 if (Def == Phi->getIncomingValue(i)) { 1837 LoadInst *Load = 1838 new LoadInst(Alloca->getAllocatedType(), Alloca, "", 1839 Phi->getIncomingBlock(i)->getTerminator()); 1840 Phi->setIncomingValue(i, Load); 1841 } 1842 } 1843 } else { 1844 LoadInst *Load = 1845 new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use); 1846 Use->replaceUsesOfWith(Def, Load); 1847 } 1848 } 1849 1850 // Emit store for the initial gc value. Store must be inserted after load, 1851 // otherwise store will be in alloca's use list and an extra load will be 1852 // inserted before it. 1853 StoreInst *Store = new StoreInst(Def, Alloca); 1854 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1855 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1856 // InvokeInst is a terminator so the store need to be inserted into its 1857 // normal destination block. 1858 BasicBlock *NormalDest = Invoke->getNormalDest(); 1859 Store->insertBefore(NormalDest->getFirstNonPHI()); 1860 } else { 1861 assert(!Inst->isTerminator() && 1862 "The only terminator that can produce a value is " 1863 "InvokeInst which is handled above."); 1864 Store->insertAfter(Inst); 1865 } 1866 } else { 1867 assert(isa<Argument>(Def)); 1868 Store->insertAfter(cast<Instruction>(Alloca)); 1869 } 1870 } 1871 1872 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1873 "we must have the same allocas with lives"); 1874 if (!PromotableAllocas.empty()) { 1875 // Apply mem2reg to promote alloca to SSA 1876 PromoteMemToReg(PromotableAllocas, DT); 1877 } 1878 1879 #ifndef NDEBUG 1880 for (auto &I : F.getEntryBlock()) 1881 if (isa<AllocaInst>(I)) 1882 InitialAllocaNum--; 1883 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1884 #endif 1885 } 1886 1887 /// Implement a unique function which doesn't require we sort the input 1888 /// vector. Doing so has the effect of changing the output of a couple of 1889 /// tests in ways which make them less useful in testing fused safepoints. 1890 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1891 SmallSet<T, 8> Seen; 1892 Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }), 1893 Vec.end()); 1894 } 1895 1896 /// Insert holders so that each Value is obviously live through the entire 1897 /// lifetime of the call. 1898 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1899 SmallVectorImpl<CallInst *> &Holders) { 1900 if (Values.empty()) 1901 // No values to hold live, might as well not insert the empty holder 1902 return; 1903 1904 Module *M = CS.getInstruction()->getModule(); 1905 // Use a dummy vararg function to actually hold the values live 1906 FunctionCallee Func = M->getOrInsertFunction( 1907 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); 1908 if (CS.isCall()) { 1909 // For call safepoints insert dummy calls right after safepoint 1910 Holders.push_back(CallInst::Create(Func, Values, "", 1911 &*++CS.getInstruction()->getIterator())); 1912 return; 1913 } 1914 // For invoke safepooints insert dummy calls both in normal and 1915 // exceptional destination blocks 1916 auto *II = cast<InvokeInst>(CS.getInstruction()); 1917 Holders.push_back(CallInst::Create( 1918 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1919 Holders.push_back(CallInst::Create( 1920 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1921 } 1922 1923 static void findLiveReferences( 1924 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1925 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1926 GCPtrLivenessData OriginalLivenessData; 1927 computeLiveInValues(DT, F, OriginalLivenessData); 1928 for (size_t i = 0; i < records.size(); i++) { 1929 struct PartiallyConstructedSafepointRecord &info = records[i]; 1930 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1931 } 1932 } 1933 1934 // Helper function for the "rematerializeLiveValues". It walks use chain 1935 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 1936 // the base or a value it cannot process. Only "simple" values are processed 1937 // (currently it is GEP's and casts). The returned root is examined by the 1938 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 1939 // with all visited values. 1940 static Value* findRematerializableChainToBasePointer( 1941 SmallVectorImpl<Instruction*> &ChainToBase, 1942 Value *CurrentValue) { 1943 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1944 ChainToBase.push_back(GEP); 1945 return findRematerializableChainToBasePointer(ChainToBase, 1946 GEP->getPointerOperand()); 1947 } 1948 1949 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1950 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1951 return CI; 1952 1953 ChainToBase.push_back(CI); 1954 return findRematerializableChainToBasePointer(ChainToBase, 1955 CI->getOperand(0)); 1956 } 1957 1958 // We have reached the root of the chain, which is either equal to the base or 1959 // is the first unsupported value along the use chain. 1960 return CurrentValue; 1961 } 1962 1963 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1964 // chain we are going to rematerialize. 1965 static unsigned 1966 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1967 TargetTransformInfo &TTI) { 1968 unsigned Cost = 0; 1969 1970 for (Instruction *Instr : Chain) { 1971 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1972 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1973 "non noop cast is found during rematerialization"); 1974 1975 Type *SrcTy = CI->getOperand(0)->getType(); 1976 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI); 1977 1978 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1979 // Cost of the address calculation 1980 Type *ValTy = GEP->getSourceElementType(); 1981 Cost += TTI.getAddressComputationCost(ValTy); 1982 1983 // And cost of the GEP itself 1984 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1985 // allowed for the external usage) 1986 if (!GEP->hasAllConstantIndices()) 1987 Cost += 2; 1988 1989 } else { 1990 llvm_unreachable("unsupported instruction type during rematerialization"); 1991 } 1992 } 1993 1994 return Cost; 1995 } 1996 1997 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 1998 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 1999 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 2000 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 2001 return false; 2002 // Map of incoming values and their corresponding basic blocks of 2003 // OrigRootPhi. 2004 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 2005 for (unsigned i = 0; i < PhiNum; i++) 2006 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 2007 OrigRootPhi.getIncomingBlock(i); 2008 2009 // Both current and base PHIs should have same incoming values and 2010 // the same basic blocks corresponding to the incoming values. 2011 for (unsigned i = 0; i < PhiNum; i++) { 2012 auto CIVI = 2013 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2014 if (CIVI == CurrentIncomingValues.end()) 2015 return false; 2016 BasicBlock *CurrentIncomingBB = CIVI->second; 2017 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2018 return false; 2019 } 2020 return true; 2021 } 2022 2023 // From the statepoint live set pick values that are cheaper to recompute then 2024 // to relocate. Remove this values from the live set, rematerialize them after 2025 // statepoint and record them in "Info" structure. Note that similar to 2026 // relocated values we don't do any user adjustments here. 2027 static void rematerializeLiveValues(CallSite CS, 2028 PartiallyConstructedSafepointRecord &Info, 2029 TargetTransformInfo &TTI) { 2030 const unsigned int ChainLengthThreshold = 10; 2031 2032 // Record values we are going to delete from this statepoint live set. 2033 // We can not di this in following loop due to iterator invalidation. 2034 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2035 2036 for (Value *LiveValue: Info.LiveSet) { 2037 // For each live pointer find its defining chain 2038 SmallVector<Instruction *, 3> ChainToBase; 2039 assert(Info.PointerToBase.count(LiveValue)); 2040 Value *RootOfChain = 2041 findRematerializableChainToBasePointer(ChainToBase, 2042 LiveValue); 2043 2044 // Nothing to do, or chain is too long 2045 if ( ChainToBase.size() == 0 || 2046 ChainToBase.size() > ChainLengthThreshold) 2047 continue; 2048 2049 // Handle the scenario where the RootOfChain is not equal to the 2050 // Base Value, but they are essentially the same phi values. 2051 if (RootOfChain != Info.PointerToBase[LiveValue]) { 2052 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2053 PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]); 2054 if (!OrigRootPhi || !AlternateRootPhi) 2055 continue; 2056 // PHI nodes that have the same incoming values, and belonging to the same 2057 // basic blocks are essentially the same SSA value. When the original phi 2058 // has incoming values with different base pointers, the original phi is 2059 // marked as conflict, and an additional `AlternateRootPhi` with the same 2060 // incoming values get generated by the findBasePointer function. We need 2061 // to identify the newly generated AlternateRootPhi (.base version of phi) 2062 // and RootOfChain (the original phi node itself) are the same, so that we 2063 // can rematerialize the gep and casts. This is a workaround for the 2064 // deficiency in the findBasePointer algorithm. 2065 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2066 continue; 2067 // Now that the phi nodes are proved to be the same, assert that 2068 // findBasePointer's newly generated AlternateRootPhi is present in the 2069 // liveset of the call. 2070 assert(Info.LiveSet.count(AlternateRootPhi)); 2071 } 2072 // Compute cost of this chain 2073 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2074 // TODO: We can also account for cases when we will be able to remove some 2075 // of the rematerialized values by later optimization passes. I.e if 2076 // we rematerialized several intersecting chains. Or if original values 2077 // don't have any uses besides this statepoint. 2078 2079 // For invokes we need to rematerialize each chain twice - for normal and 2080 // for unwind basic blocks. Model this by multiplying cost by two. 2081 if (CS.isInvoke()) { 2082 Cost *= 2; 2083 } 2084 // If it's too expensive - skip it 2085 if (Cost >= RematerializationThreshold) 2086 continue; 2087 2088 // Remove value from the live set 2089 LiveValuesToBeDeleted.push_back(LiveValue); 2090 2091 // Clone instructions and record them inside "Info" structure 2092 2093 // Walk backwards to visit top-most instructions first 2094 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2095 2096 // Utility function which clones all instructions from "ChainToBase" 2097 // and inserts them before "InsertBefore". Returns rematerialized value 2098 // which should be used after statepoint. 2099 auto rematerializeChain = [&ChainToBase]( 2100 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 2101 Instruction *LastClonedValue = nullptr; 2102 Instruction *LastValue = nullptr; 2103 for (Instruction *Instr: ChainToBase) { 2104 // Only GEP's and casts are supported as we need to be careful to not 2105 // introduce any new uses of pointers not in the liveset. 2106 // Note that it's fine to introduce new uses of pointers which were 2107 // otherwise not used after this statepoint. 2108 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2109 2110 Instruction *ClonedValue = Instr->clone(); 2111 ClonedValue->insertBefore(InsertBefore); 2112 ClonedValue->setName(Instr->getName() + ".remat"); 2113 2114 // If it is not first instruction in the chain then it uses previously 2115 // cloned value. We should update it to use cloned value. 2116 if (LastClonedValue) { 2117 assert(LastValue); 2118 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2119 #ifndef NDEBUG 2120 for (auto OpValue : ClonedValue->operand_values()) { 2121 // Assert that cloned instruction does not use any instructions from 2122 // this chain other than LastClonedValue 2123 assert(!is_contained(ChainToBase, OpValue) && 2124 "incorrect use in rematerialization chain"); 2125 // Assert that the cloned instruction does not use the RootOfChain 2126 // or the AlternateLiveBase. 2127 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2128 } 2129 #endif 2130 } else { 2131 // For the first instruction, replace the use of unrelocated base i.e. 2132 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2133 // live set. They have been proved to be the same PHI nodes. Note 2134 // that the *only* use of the RootOfChain in the ChainToBase list is 2135 // the first Value in the list. 2136 if (RootOfChain != AlternateLiveBase) 2137 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2138 } 2139 2140 LastClonedValue = ClonedValue; 2141 LastValue = Instr; 2142 } 2143 assert(LastClonedValue); 2144 return LastClonedValue; 2145 }; 2146 2147 // Different cases for calls and invokes. For invokes we need to clone 2148 // instructions both on normal and unwind path. 2149 if (CS.isCall()) { 2150 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2151 assert(InsertBefore); 2152 Instruction *RematerializedValue = rematerializeChain( 2153 InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2154 Info.RematerializedValues[RematerializedValue] = LiveValue; 2155 } else { 2156 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2157 2158 Instruction *NormalInsertBefore = 2159 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2160 Instruction *UnwindInsertBefore = 2161 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2162 2163 Instruction *NormalRematerializedValue = rematerializeChain( 2164 NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2165 Instruction *UnwindRematerializedValue = rematerializeChain( 2166 UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2167 2168 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2169 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2170 } 2171 } 2172 2173 // Remove rematerializaed values from the live set 2174 for (auto LiveValue: LiveValuesToBeDeleted) { 2175 Info.LiveSet.remove(LiveValue); 2176 } 2177 } 2178 2179 static bool insertParsePoints(Function &F, DominatorTree &DT, 2180 TargetTransformInfo &TTI, 2181 SmallVectorImpl<CallSite> &ToUpdate) { 2182 #ifndef NDEBUG 2183 // sanity check the input 2184 std::set<CallSite> Uniqued; 2185 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2186 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2187 2188 for (CallSite CS : ToUpdate) 2189 assert(CS.getInstruction()->getFunction() == &F); 2190 #endif 2191 2192 // When inserting gc.relocates for invokes, we need to be able to insert at 2193 // the top of the successor blocks. See the comment on 2194 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2195 // may restructure the CFG. 2196 for (CallSite CS : ToUpdate) { 2197 if (!CS.isInvoke()) 2198 continue; 2199 auto *II = cast<InvokeInst>(CS.getInstruction()); 2200 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2201 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2202 } 2203 2204 // A list of dummy calls added to the IR to keep various values obviously 2205 // live in the IR. We'll remove all of these when done. 2206 SmallVector<CallInst *, 64> Holders; 2207 2208 // Insert a dummy call with all of the deopt operands we'll need for the 2209 // actual safepoint insertion as arguments. This ensures reference operands 2210 // in the deopt argument list are considered live through the safepoint (and 2211 // thus makes sure they get relocated.) 2212 for (CallSite CS : ToUpdate) { 2213 SmallVector<Value *, 64> DeoptValues; 2214 2215 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2216 assert(!isUnhandledGCPointerType(Arg->getType()) && 2217 "support for FCA unimplemented"); 2218 if (isHandledGCPointerType(Arg->getType())) 2219 DeoptValues.push_back(Arg); 2220 } 2221 2222 insertUseHolderAfter(CS, DeoptValues, Holders); 2223 } 2224 2225 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2226 2227 // A) Identify all gc pointers which are statically live at the given call 2228 // site. 2229 findLiveReferences(F, DT, ToUpdate, Records); 2230 2231 // B) Find the base pointers for each live pointer 2232 /* scope for caching */ { 2233 // Cache the 'defining value' relation used in the computation and 2234 // insertion of base phis and selects. This ensures that we don't insert 2235 // large numbers of duplicate base_phis. 2236 DefiningValueMapTy DVCache; 2237 2238 for (size_t i = 0; i < Records.size(); i++) { 2239 PartiallyConstructedSafepointRecord &info = Records[i]; 2240 findBasePointers(DT, DVCache, ToUpdate[i], info); 2241 } 2242 } // end of cache scope 2243 2244 // The base phi insertion logic (for any safepoint) may have inserted new 2245 // instructions which are now live at some safepoint. The simplest such 2246 // example is: 2247 // loop: 2248 // phi a <-- will be a new base_phi here 2249 // safepoint 1 <-- that needs to be live here 2250 // gep a + 1 2251 // safepoint 2 2252 // br loop 2253 // We insert some dummy calls after each safepoint to definitely hold live 2254 // the base pointers which were identified for that safepoint. We'll then 2255 // ask liveness for _every_ base inserted to see what is now live. Then we 2256 // remove the dummy calls. 2257 Holders.reserve(Holders.size() + Records.size()); 2258 for (size_t i = 0; i < Records.size(); i++) { 2259 PartiallyConstructedSafepointRecord &Info = Records[i]; 2260 2261 SmallVector<Value *, 128> Bases; 2262 for (auto Pair : Info.PointerToBase) 2263 Bases.push_back(Pair.second); 2264 2265 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2266 } 2267 2268 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2269 // need to rerun liveness. We may *also* have inserted new defs, but that's 2270 // not the key issue. 2271 recomputeLiveInValues(F, DT, ToUpdate, Records); 2272 2273 if (PrintBasePointers) { 2274 for (auto &Info : Records) { 2275 errs() << "Base Pairs: (w/Relocation)\n"; 2276 for (auto Pair : Info.PointerToBase) { 2277 errs() << " derived "; 2278 Pair.first->printAsOperand(errs(), false); 2279 errs() << " base "; 2280 Pair.second->printAsOperand(errs(), false); 2281 errs() << "\n"; 2282 } 2283 } 2284 } 2285 2286 // It is possible that non-constant live variables have a constant base. For 2287 // example, a GEP with a variable offset from a global. In this case we can 2288 // remove it from the liveset. We already don't add constants to the liveset 2289 // because we assume they won't move at runtime and the GC doesn't need to be 2290 // informed about them. The same reasoning applies if the base is constant. 2291 // Note that the relocation placement code relies on this filtering for 2292 // correctness as it expects the base to be in the liveset, which isn't true 2293 // if the base is constant. 2294 for (auto &Info : Records) 2295 for (auto &BasePair : Info.PointerToBase) 2296 if (isa<Constant>(BasePair.second)) 2297 Info.LiveSet.remove(BasePair.first); 2298 2299 for (CallInst *CI : Holders) 2300 CI->eraseFromParent(); 2301 2302 Holders.clear(); 2303 2304 // In order to reduce live set of statepoint we might choose to rematerialize 2305 // some values instead of relocating them. This is purely an optimization and 2306 // does not influence correctness. 2307 for (size_t i = 0; i < Records.size(); i++) 2308 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2309 2310 // We need this to safely RAUW and delete call or invoke return values that 2311 // may themselves be live over a statepoint. For details, please see usage in 2312 // makeStatepointExplicitImpl. 2313 std::vector<DeferredReplacement> Replacements; 2314 2315 // Now run through and replace the existing statepoints with new ones with 2316 // the live variables listed. We do not yet update uses of the values being 2317 // relocated. We have references to live variables that need to 2318 // survive to the last iteration of this loop. (By construction, the 2319 // previous statepoint can not be a live variable, thus we can and remove 2320 // the old statepoint calls as we go.) 2321 for (size_t i = 0; i < Records.size(); i++) 2322 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2323 2324 ToUpdate.clear(); // prevent accident use of invalid CallSites 2325 2326 for (auto &PR : Replacements) 2327 PR.doReplacement(); 2328 2329 Replacements.clear(); 2330 2331 for (auto &Info : Records) { 2332 // These live sets may contain state Value pointers, since we replaced calls 2333 // with operand bundles with calls wrapped in gc.statepoint, and some of 2334 // those calls may have been def'ing live gc pointers. Clear these out to 2335 // avoid accidentally using them. 2336 // 2337 // TODO: We should create a separate data structure that does not contain 2338 // these live sets, and migrate to using that data structure from this point 2339 // onward. 2340 Info.LiveSet.clear(); 2341 Info.PointerToBase.clear(); 2342 } 2343 2344 // Do all the fixups of the original live variables to their relocated selves 2345 SmallVector<Value *, 128> Live; 2346 for (size_t i = 0; i < Records.size(); i++) { 2347 PartiallyConstructedSafepointRecord &Info = Records[i]; 2348 2349 // We can't simply save the live set from the original insertion. One of 2350 // the live values might be the result of a call which needs a safepoint. 2351 // That Value* no longer exists and we need to use the new gc_result. 2352 // Thankfully, the live set is embedded in the statepoint (and updated), so 2353 // we just grab that. 2354 Statepoint Statepoint(Info.StatepointToken); 2355 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2356 Statepoint.gc_args_end()); 2357 #ifndef NDEBUG 2358 // Do some basic sanity checks on our liveness results before performing 2359 // relocation. Relocation can and will turn mistakes in liveness results 2360 // into non-sensical code which is must harder to debug. 2361 // TODO: It would be nice to test consistency as well 2362 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2363 "statepoint must be reachable or liveness is meaningless"); 2364 for (Value *V : Statepoint.gc_args()) { 2365 if (!isa<Instruction>(V)) 2366 // Non-instruction values trivial dominate all possible uses 2367 continue; 2368 auto *LiveInst = cast<Instruction>(V); 2369 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2370 "unreachable values should never be live"); 2371 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2372 "basic SSA liveness expectation violated by liveness analysis"); 2373 } 2374 #endif 2375 } 2376 unique_unsorted(Live); 2377 2378 #ifndef NDEBUG 2379 // sanity check 2380 for (auto *Ptr : Live) 2381 assert(isHandledGCPointerType(Ptr->getType()) && 2382 "must be a gc pointer type"); 2383 #endif 2384 2385 relocationViaAlloca(F, DT, Live, Records); 2386 return !Records.empty(); 2387 } 2388 2389 // Handles both return values and arguments for Functions and CallSites. 2390 template <typename AttrHolder> 2391 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2392 unsigned Index) { 2393 AttrBuilder R; 2394 if (AH.getDereferenceableBytes(Index)) 2395 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2396 AH.getDereferenceableBytes(Index))); 2397 if (AH.getDereferenceableOrNullBytes(Index)) 2398 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2399 AH.getDereferenceableOrNullBytes(Index))); 2400 if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias)) 2401 R.addAttribute(Attribute::NoAlias); 2402 2403 if (!R.empty()) 2404 AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R)); 2405 } 2406 2407 static void stripNonValidAttributesFromPrototype(Function &F) { 2408 LLVMContext &Ctx = F.getContext(); 2409 2410 for (Argument &A : F.args()) 2411 if (isa<PointerType>(A.getType())) 2412 RemoveNonValidAttrAtIndex(Ctx, F, 2413 A.getArgNo() + AttributeList::FirstArgIndex); 2414 2415 if (isa<PointerType>(F.getReturnType())) 2416 RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex); 2417 } 2418 2419 /// Certain metadata on instructions are invalid after running RS4GC. 2420 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2421 /// optimize functions. We drop such metadata on the instruction. 2422 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2423 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2424 return; 2425 // These are the attributes that are still valid on loads and stores after 2426 // RS4GC. 2427 // The metadata implying dereferenceability and noalias are (conservatively) 2428 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2429 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2430 // touch the entire heap including noalias objects. Note: The reasoning is 2431 // same as stripping the dereferenceability and noalias attributes that are 2432 // analogous to the metadata counterparts. 2433 // We also drop the invariant.load metadata on the load because that metadata 2434 // implies the address operand to the load points to memory that is never 2435 // changed once it became dereferenceable. This is no longer true after RS4GC. 2436 // Similar reasoning applies to invariant.group metadata, which applies to 2437 // loads within a group. 2438 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2439 LLVMContext::MD_range, 2440 LLVMContext::MD_alias_scope, 2441 LLVMContext::MD_nontemporal, 2442 LLVMContext::MD_nonnull, 2443 LLVMContext::MD_align, 2444 LLVMContext::MD_type}; 2445 2446 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2447 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2448 } 2449 2450 static void stripNonValidDataFromBody(Function &F) { 2451 if (F.empty()) 2452 return; 2453 2454 LLVMContext &Ctx = F.getContext(); 2455 MDBuilder Builder(Ctx); 2456 2457 // Set of invariantstart instructions that we need to remove. 2458 // Use this to avoid invalidating the instruction iterator. 2459 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2460 2461 for (Instruction &I : instructions(F)) { 2462 // invariant.start on memory location implies that the referenced memory 2463 // location is constant and unchanging. This is no longer true after 2464 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2465 // which frees the entire heap and the presence of invariant.start allows 2466 // the optimizer to sink the load of a memory location past a statepoint, 2467 // which is incorrect. 2468 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2469 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2470 InvariantStartInstructions.push_back(II); 2471 continue; 2472 } 2473 2474 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2475 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2476 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2477 } 2478 2479 stripInvalidMetadataFromInstruction(I); 2480 2481 if (CallSite CS = CallSite(&I)) { 2482 for (int i = 0, e = CS.arg_size(); i != e; i++) 2483 if (isa<PointerType>(CS.getArgument(i)->getType())) 2484 RemoveNonValidAttrAtIndex(Ctx, CS, i + AttributeList::FirstArgIndex); 2485 if (isa<PointerType>(CS.getType())) 2486 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeList::ReturnIndex); 2487 } 2488 } 2489 2490 // Delete the invariant.start instructions and RAUW undef. 2491 for (auto *II : InvariantStartInstructions) { 2492 II->replaceAllUsesWith(UndefValue::get(II->getType())); 2493 II->eraseFromParent(); 2494 } 2495 } 2496 2497 /// Returns true if this function should be rewritten by this pass. The main 2498 /// point of this function is as an extension point for custom logic. 2499 static bool shouldRewriteStatepointsIn(Function &F) { 2500 // TODO: This should check the GCStrategy 2501 if (F.hasGC()) { 2502 const auto &FunctionGCName = F.getGC(); 2503 const StringRef StatepointExampleName("statepoint-example"); 2504 const StringRef CoreCLRName("coreclr"); 2505 return (StatepointExampleName == FunctionGCName) || 2506 (CoreCLRName == FunctionGCName); 2507 } else 2508 return false; 2509 } 2510 2511 static void stripNonValidData(Module &M) { 2512 #ifndef NDEBUG 2513 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2514 #endif 2515 2516 for (Function &F : M) 2517 stripNonValidAttributesFromPrototype(F); 2518 2519 for (Function &F : M) 2520 stripNonValidDataFromBody(F); 2521 } 2522 2523 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 2524 TargetTransformInfo &TTI, 2525 const TargetLibraryInfo &TLI) { 2526 assert(!F.isDeclaration() && !F.empty() && 2527 "need function body to rewrite statepoints in"); 2528 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 2529 2530 auto NeedsRewrite = [&TLI](Instruction &I) { 2531 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2532 return !callsGCLeafFunction(CS, TLI) && !isStatepoint(CS); 2533 return false; 2534 }; 2535 2536 2537 // Delete any unreachable statepoints so that we don't have unrewritten 2538 // statepoints surviving this pass. This makes testing easier and the 2539 // resulting IR less confusing to human readers. 2540 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 2541 bool MadeChange = removeUnreachableBlocks(F, nullptr, &DTU); 2542 // Flush the Dominator Tree. 2543 DTU.getDomTree(); 2544 2545 // Gather all the statepoints which need rewritten. Be careful to only 2546 // consider those in reachable code since we need to ask dominance queries 2547 // when rewriting. We'll delete the unreachable ones in a moment. 2548 SmallVector<CallSite, 64> ParsePointNeeded; 2549 for (Instruction &I : instructions(F)) { 2550 // TODO: only the ones with the flag set! 2551 if (NeedsRewrite(I)) { 2552 // NOTE removeUnreachableBlocks() is stronger than 2553 // DominatorTree::isReachableFromEntry(). In other words 2554 // removeUnreachableBlocks can remove some blocks for which 2555 // isReachableFromEntry() returns true. 2556 assert(DT.isReachableFromEntry(I.getParent()) && 2557 "no unreachable blocks expected"); 2558 ParsePointNeeded.push_back(CallSite(&I)); 2559 } 2560 } 2561 2562 // Return early if no work to do. 2563 if (ParsePointNeeded.empty()) 2564 return MadeChange; 2565 2566 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2567 // These are created by LCSSA. They have the effect of increasing the size 2568 // of liveness sets for no good reason. It may be harder to do this post 2569 // insertion since relocations and base phis can confuse things. 2570 for (BasicBlock &BB : F) 2571 if (BB.getUniquePredecessor()) { 2572 MadeChange = true; 2573 FoldSingleEntryPHINodes(&BB); 2574 } 2575 2576 // Before we start introducing relocations, we want to tweak the IR a bit to 2577 // avoid unfortunate code generation effects. The main example is that we 2578 // want to try to make sure the comparison feeding a branch is after any 2579 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2580 // values feeding a branch after relocation. This is semantically correct, 2581 // but results in extra register pressure since both the pre-relocation and 2582 // post-relocation copies must be available in registers. For code without 2583 // relocations this is handled elsewhere, but teaching the scheduler to 2584 // reverse the transform we're about to do would be slightly complex. 2585 // Note: This may extend the live range of the inputs to the icmp and thus 2586 // increase the liveset of any statepoint we move over. This is profitable 2587 // as long as all statepoints are in rare blocks. If we had in-register 2588 // lowering for live values this would be a much safer transform. 2589 auto getConditionInst = [](Instruction *TI) -> Instruction * { 2590 if (auto *BI = dyn_cast<BranchInst>(TI)) 2591 if (BI->isConditional()) 2592 return dyn_cast<Instruction>(BI->getCondition()); 2593 // TODO: Extend this to handle switches 2594 return nullptr; 2595 }; 2596 for (BasicBlock &BB : F) { 2597 Instruction *TI = BB.getTerminator(); 2598 if (auto *Cond = getConditionInst(TI)) 2599 // TODO: Handle more than just ICmps here. We should be able to move 2600 // most instructions without side effects or memory access. 2601 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2602 MadeChange = true; 2603 Cond->moveBefore(TI); 2604 } 2605 } 2606 2607 // Nasty workaround - The base computation code in the main algorithm doesn't 2608 // consider the fact that a GEP can be used to convert a scalar to a vector. 2609 // The right fix for this is to integrate GEPs into the base rewriting 2610 // algorithm properly, this is just a short term workaround to prevent 2611 // crashes by canonicalizing such GEPs into fully vector GEPs. 2612 for (Instruction &I : instructions(F)) { 2613 if (!isa<GetElementPtrInst>(I)) 2614 continue; 2615 2616 unsigned VF = 0; 2617 for (unsigned i = 0; i < I.getNumOperands(); i++) 2618 if (I.getOperand(i)->getType()->isVectorTy()) { 2619 assert(VF == 0 || 2620 VF == I.getOperand(i)->getType()->getVectorNumElements()); 2621 VF = I.getOperand(i)->getType()->getVectorNumElements(); 2622 } 2623 2624 // It's the vector to scalar traversal through the pointer operand which 2625 // confuses base pointer rewriting, so limit ourselves to that case. 2626 if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { 2627 IRBuilder<> B(&I); 2628 auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); 2629 I.setOperand(0, Splat); 2630 MadeChange = true; 2631 } 2632 } 2633 2634 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2635 return MadeChange; 2636 } 2637 2638 // liveness computation via standard dataflow 2639 // ------------------------------------------------------------------- 2640 2641 // TODO: Consider using bitvectors for liveness, the set of potentially 2642 // interesting values should be small and easy to pre-compute. 2643 2644 /// Compute the live-in set for the location rbegin starting from 2645 /// the live-out set of the basic block 2646 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 2647 BasicBlock::reverse_iterator End, 2648 SetVector<Value *> &LiveTmp) { 2649 for (auto &I : make_range(Begin, End)) { 2650 // KILL/Def - Remove this definition from LiveIn 2651 LiveTmp.remove(&I); 2652 2653 // Don't consider *uses* in PHI nodes, we handle their contribution to 2654 // predecessor blocks when we seed the LiveOut sets 2655 if (isa<PHINode>(I)) 2656 continue; 2657 2658 // USE - Add to the LiveIn set for this instruction 2659 for (Value *V : I.operands()) { 2660 assert(!isUnhandledGCPointerType(V->getType()) && 2661 "support for FCA unimplemented"); 2662 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2663 // The choice to exclude all things constant here is slightly subtle. 2664 // There are two independent reasons: 2665 // - We assume that things which are constant (from LLVM's definition) 2666 // do not move at runtime. For example, the address of a global 2667 // variable is fixed, even though it's contents may not be. 2668 // - Second, we can't disallow arbitrary inttoptr constants even 2669 // if the language frontend does. Optimization passes are free to 2670 // locally exploit facts without respect to global reachability. This 2671 // can create sections of code which are dynamically unreachable and 2672 // contain just about anything. (see constants.ll in tests) 2673 LiveTmp.insert(V); 2674 } 2675 } 2676 } 2677 } 2678 2679 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2680 for (BasicBlock *Succ : successors(BB)) { 2681 for (auto &I : *Succ) { 2682 PHINode *PN = dyn_cast<PHINode>(&I); 2683 if (!PN) 2684 break; 2685 2686 Value *V = PN->getIncomingValueForBlock(BB); 2687 assert(!isUnhandledGCPointerType(V->getType()) && 2688 "support for FCA unimplemented"); 2689 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 2690 LiveTmp.insert(V); 2691 } 2692 } 2693 } 2694 2695 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2696 SetVector<Value *> KillSet; 2697 for (Instruction &I : *BB) 2698 if (isHandledGCPointerType(I.getType())) 2699 KillSet.insert(&I); 2700 return KillSet; 2701 } 2702 2703 #ifndef NDEBUG 2704 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2705 /// sanity check for the liveness computation. 2706 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2707 Instruction *TI, bool TermOkay = false) { 2708 for (Value *V : Live) { 2709 if (auto *I = dyn_cast<Instruction>(V)) { 2710 // The terminator can be a member of the LiveOut set. LLVM's definition 2711 // of instruction dominance states that V does not dominate itself. As 2712 // such, we need to special case this to allow it. 2713 if (TermOkay && TI == I) 2714 continue; 2715 assert(DT.dominates(I, TI) && 2716 "basic SSA liveness expectation violated by liveness analysis"); 2717 } 2718 } 2719 } 2720 2721 /// Check that all the liveness sets used during the computation of liveness 2722 /// obey basic SSA properties. This is useful for finding cases where we miss 2723 /// a def. 2724 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2725 BasicBlock &BB) { 2726 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2727 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2728 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2729 } 2730 #endif 2731 2732 static void computeLiveInValues(DominatorTree &DT, Function &F, 2733 GCPtrLivenessData &Data) { 2734 SmallSetVector<BasicBlock *, 32> Worklist; 2735 2736 // Seed the liveness for each individual block 2737 for (BasicBlock &BB : F) { 2738 Data.KillSet[&BB] = computeKillSet(&BB); 2739 Data.LiveSet[&BB].clear(); 2740 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2741 2742 #ifndef NDEBUG 2743 for (Value *Kill : Data.KillSet[&BB]) 2744 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2745 #endif 2746 2747 Data.LiveOut[&BB] = SetVector<Value *>(); 2748 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2749 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2750 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2751 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2752 if (!Data.LiveIn[&BB].empty()) 2753 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 2754 } 2755 2756 // Propagate that liveness until stable 2757 while (!Worklist.empty()) { 2758 BasicBlock *BB = Worklist.pop_back_val(); 2759 2760 // Compute our new liveout set, then exit early if it hasn't changed despite 2761 // the contribution of our successor. 2762 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2763 const auto OldLiveOutSize = LiveOut.size(); 2764 for (BasicBlock *Succ : successors(BB)) { 2765 assert(Data.LiveIn.count(Succ)); 2766 LiveOut.set_union(Data.LiveIn[Succ]); 2767 } 2768 // assert OutLiveOut is a subset of LiveOut 2769 if (OldLiveOutSize == LiveOut.size()) { 2770 // If the sets are the same size, then we didn't actually add anything 2771 // when unioning our successors LiveIn. Thus, the LiveIn of this block 2772 // hasn't changed. 2773 continue; 2774 } 2775 Data.LiveOut[BB] = LiveOut; 2776 2777 // Apply the effects of this basic block 2778 SetVector<Value *> LiveTmp = LiveOut; 2779 LiveTmp.set_union(Data.LiveSet[BB]); 2780 LiveTmp.set_subtract(Data.KillSet[BB]); 2781 2782 assert(Data.LiveIn.count(BB)); 2783 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2784 // assert: OldLiveIn is a subset of LiveTmp 2785 if (OldLiveIn.size() != LiveTmp.size()) { 2786 Data.LiveIn[BB] = LiveTmp; 2787 Worklist.insert(pred_begin(BB), pred_end(BB)); 2788 } 2789 } // while (!Worklist.empty()) 2790 2791 #ifndef NDEBUG 2792 // Sanity check our output against SSA properties. This helps catch any 2793 // missing kills during the above iteration. 2794 for (BasicBlock &BB : F) 2795 checkBasicSSA(DT, Data, BB); 2796 #endif 2797 } 2798 2799 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2800 StatepointLiveSetTy &Out) { 2801 BasicBlock *BB = Inst->getParent(); 2802 2803 // Note: The copy is intentional and required 2804 assert(Data.LiveOut.count(BB)); 2805 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2806 2807 // We want to handle the statepoint itself oddly. It's 2808 // call result is not live (normal), nor are it's arguments 2809 // (unless they're used again later). This adjustment is 2810 // specifically what we need to relocate 2811 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 2812 LiveOut); 2813 LiveOut.remove(Inst); 2814 Out.insert(LiveOut.begin(), LiveOut.end()); 2815 } 2816 2817 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2818 CallSite CS, 2819 PartiallyConstructedSafepointRecord &Info) { 2820 Instruction *Inst = CS.getInstruction(); 2821 StatepointLiveSetTy Updated; 2822 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2823 2824 // We may have base pointers which are now live that weren't before. We need 2825 // to update the PointerToBase structure to reflect this. 2826 for (auto V : Updated) 2827 if (Info.PointerToBase.insert({V, V}).second) { 2828 assert(isKnownBaseResult(V) && 2829 "Can't find base for unexpected live value!"); 2830 continue; 2831 } 2832 2833 #ifndef NDEBUG 2834 for (auto V : Updated) 2835 assert(Info.PointerToBase.count(V) && 2836 "Must be able to find base for live value!"); 2837 #endif 2838 2839 // Remove any stale base mappings - this can happen since our liveness is 2840 // more precise then the one inherent in the base pointer analysis. 2841 DenseSet<Value *> ToErase; 2842 for (auto KVPair : Info.PointerToBase) 2843 if (!Updated.count(KVPair.first)) 2844 ToErase.insert(KVPair.first); 2845 2846 for (auto *V : ToErase) 2847 Info.PointerToBase.erase(V); 2848 2849 #ifndef NDEBUG 2850 for (auto KVPair : Info.PointerToBase) 2851 assert(Updated.count(KVPair.first) && "record for non-live value"); 2852 #endif 2853 2854 Info.LiveSet = Updated; 2855 } 2856