xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 14359ef1b6a0610ac91df5f5a91c88a0b51c187c)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Rewrite call/invoke instructions so as to make potential relocations
10 // performed by the garbage collector explicit in the IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/DomTreeUpdater.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/InstIterator.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/Statepoint.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/IR/ValueHandle.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <set>
75 #include <string>
76 #include <utility>
77 #include <vector>
78 
79 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
80 
81 using namespace llvm;
82 
83 // Print the liveset found at the insert location
84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
85                                   cl::init(false));
86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
87                                       cl::init(false));
88 
89 // Print out the base pointers for debugging
90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
91                                        cl::init(false));
92 
93 // Cost threshold measuring when it is profitable to rematerialize value instead
94 // of relocating it
95 static cl::opt<unsigned>
96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
97                            cl::init(6));
98 
99 #ifdef EXPENSIVE_CHECKS
100 static bool ClobberNonLive = true;
101 #else
102 static bool ClobberNonLive = false;
103 #endif
104 
105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
106                                                   cl::location(ClobberNonLive),
107                                                   cl::Hidden);
108 
109 static cl::opt<bool>
110     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
111                                    cl::Hidden, cl::init(true));
112 
113 /// The IR fed into RewriteStatepointsForGC may have had attributes and
114 /// metadata implying dereferenceability that are no longer valid/correct after
115 /// RewriteStatepointsForGC has run. This is because semantically, after
116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
117 /// heap. stripNonValidData (conservatively) restores
118 /// correctness by erasing all attributes in the module that externally imply
119 /// dereferenceability. Similar reasoning also applies to the noalias
120 /// attributes and metadata. gc.statepoint can touch the entire heap including
121 /// noalias objects.
122 /// Apart from attributes and metadata, we also remove instructions that imply
123 /// constant physical memory: llvm.invariant.start.
124 static void stripNonValidData(Module &M);
125 
126 static bool shouldRewriteStatepointsIn(Function &F);
127 
128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
129                                                ModuleAnalysisManager &AM) {
130   bool Changed = false;
131   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
132   for (Function &F : M) {
133     // Nothing to do for declarations.
134     if (F.isDeclaration() || F.empty())
135       continue;
136 
137     // Policy choice says not to rewrite - the most common reason is that we're
138     // compiling code without a GCStrategy.
139     if (!shouldRewriteStatepointsIn(F))
140       continue;
141 
142     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
143     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
144     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
145     Changed |= runOnFunction(F, DT, TTI, TLI);
146   }
147   if (!Changed)
148     return PreservedAnalyses::all();
149 
150   // stripNonValidData asserts that shouldRewriteStatepointsIn
151   // returns true for at least one function in the module.  Since at least
152   // one function changed, we know that the precondition is satisfied.
153   stripNonValidData(M);
154 
155   PreservedAnalyses PA;
156   PA.preserve<TargetIRAnalysis>();
157   PA.preserve<TargetLibraryAnalysis>();
158   return PA;
159 }
160 
161 namespace {
162 
163 class RewriteStatepointsForGCLegacyPass : public ModulePass {
164   RewriteStatepointsForGC Impl;
165 
166 public:
167   static char ID; // Pass identification, replacement for typeid
168 
169   RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
170     initializeRewriteStatepointsForGCLegacyPassPass(
171         *PassRegistry::getPassRegistry());
172   }
173 
174   bool runOnModule(Module &M) override {
175     bool Changed = false;
176     const TargetLibraryInfo &TLI =
177         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
178     for (Function &F : M) {
179       // Nothing to do for declarations.
180       if (F.isDeclaration() || F.empty())
181         continue;
182 
183       // Policy choice says not to rewrite - the most common reason is that
184       // we're compiling code without a GCStrategy.
185       if (!shouldRewriteStatepointsIn(F))
186         continue;
187 
188       TargetTransformInfo &TTI =
189           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
190       auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
191 
192       Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
193     }
194 
195     if (!Changed)
196       return false;
197 
198     // stripNonValidData asserts that shouldRewriteStatepointsIn
199     // returns true for at least one function in the module.  Since at least
200     // one function changed, we know that the precondition is satisfied.
201     stripNonValidData(M);
202     return true;
203   }
204 
205   void getAnalysisUsage(AnalysisUsage &AU) const override {
206     // We add and rewrite a bunch of instructions, but don't really do much
207     // else.  We could in theory preserve a lot more analyses here.
208     AU.addRequired<DominatorTreeWrapperPass>();
209     AU.addRequired<TargetTransformInfoWrapperPass>();
210     AU.addRequired<TargetLibraryInfoWrapperPass>();
211   }
212 };
213 
214 } // end anonymous namespace
215 
216 char RewriteStatepointsForGCLegacyPass::ID = 0;
217 
218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
219   return new RewriteStatepointsForGCLegacyPass();
220 }
221 
222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
223                       "rewrite-statepoints-for-gc",
224                       "Make relocations explicit at statepoints", false, false)
225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
228                     "rewrite-statepoints-for-gc",
229                     "Make relocations explicit at statepoints", false, false)
230 
231 namespace {
232 
233 struct GCPtrLivenessData {
234   /// Values defined in this block.
235   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
236 
237   /// Values used in this block (and thus live); does not included values
238   /// killed within this block.
239   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
240 
241   /// Values live into this basic block (i.e. used by any
242   /// instruction in this basic block or ones reachable from here)
243   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
244 
245   /// Values live out of this basic block (i.e. live into
246   /// any successor block)
247   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
248 };
249 
250 // The type of the internal cache used inside the findBasePointers family
251 // of functions.  From the callers perspective, this is an opaque type and
252 // should not be inspected.
253 //
254 // In the actual implementation this caches two relations:
255 // - The base relation itself (i.e. this pointer is based on that one)
256 // - The base defining value relation (i.e. before base_phi insertion)
257 // Generally, after the execution of a full findBasePointer call, only the
258 // base relation will remain.  Internally, we add a mixture of the two
259 // types, then update all the second type to the first type
260 using DefiningValueMapTy = MapVector<Value *, Value *>;
261 using StatepointLiveSetTy = SetVector<Value *>;
262 using RematerializedValueMapTy =
263     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
264 
265 struct PartiallyConstructedSafepointRecord {
266   /// The set of values known to be live across this safepoint
267   StatepointLiveSetTy LiveSet;
268 
269   /// Mapping from live pointers to a base-defining-value
270   MapVector<Value *, Value *> PointerToBase;
271 
272   /// The *new* gc.statepoint instruction itself.  This produces the token
273   /// that normal path gc.relocates and the gc.result are tied to.
274   Instruction *StatepointToken;
275 
276   /// Instruction to which exceptional gc relocates are attached
277   /// Makes it easier to iterate through them during relocationViaAlloca.
278   Instruction *UnwindToken;
279 
280   /// Record live values we are rematerialized instead of relocating.
281   /// They are not included into 'LiveSet' field.
282   /// Maps rematerialized copy to it's original value.
283   RematerializedValueMapTy RematerializedValues;
284 };
285 
286 } // end anonymous namespace
287 
288 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
289   Optional<OperandBundleUse> DeoptBundle =
290       CS.getOperandBundle(LLVMContext::OB_deopt);
291 
292   if (!DeoptBundle.hasValue()) {
293     assert(AllowStatepointWithNoDeoptInfo &&
294            "Found non-leaf call without deopt info!");
295     return None;
296   }
297 
298   return DeoptBundle.getValue().Inputs;
299 }
300 
301 /// Compute the live-in set for every basic block in the function
302 static void computeLiveInValues(DominatorTree &DT, Function &F,
303                                 GCPtrLivenessData &Data);
304 
305 /// Given results from the dataflow liveness computation, find the set of live
306 /// Values at a particular instruction.
307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
308                               StatepointLiveSetTy &out);
309 
310 // TODO: Once we can get to the GCStrategy, this becomes
311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
312 
313 static bool isGCPointerType(Type *T) {
314   if (auto *PT = dyn_cast<PointerType>(T))
315     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
316     // GC managed heap.  We know that a pointer into this heap needs to be
317     // updated and that no other pointer does.
318     return PT->getAddressSpace() == 1;
319   return false;
320 }
321 
322 // Return true if this type is one which a) is a gc pointer or contains a GC
323 // pointer and b) is of a type this code expects to encounter as a live value.
324 // (The insertion code will assert that a type which matches (a) and not (b)
325 // is not encountered.)
326 static bool isHandledGCPointerType(Type *T) {
327   // We fully support gc pointers
328   if (isGCPointerType(T))
329     return true;
330   // We partially support vectors of gc pointers. The code will assert if it
331   // can't handle something.
332   if (auto VT = dyn_cast<VectorType>(T))
333     if (isGCPointerType(VT->getElementType()))
334       return true;
335   return false;
336 }
337 
338 #ifndef NDEBUG
339 /// Returns true if this type contains a gc pointer whether we know how to
340 /// handle that type or not.
341 static bool containsGCPtrType(Type *Ty) {
342   if (isGCPointerType(Ty))
343     return true;
344   if (VectorType *VT = dyn_cast<VectorType>(Ty))
345     return isGCPointerType(VT->getScalarType());
346   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
347     return containsGCPtrType(AT->getElementType());
348   if (StructType *ST = dyn_cast<StructType>(Ty))
349     return llvm::any_of(ST->elements(), containsGCPtrType);
350   return false;
351 }
352 
353 // Returns true if this is a type which a) is a gc pointer or contains a GC
354 // pointer and b) is of a type which the code doesn't expect (i.e. first class
355 // aggregates).  Used to trip assertions.
356 static bool isUnhandledGCPointerType(Type *Ty) {
357   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
358 }
359 #endif
360 
361 // Return the name of the value suffixed with the provided value, or if the
362 // value didn't have a name, the default value specified.
363 static std::string suffixed_name_or(Value *V, StringRef Suffix,
364                                     StringRef DefaultName) {
365   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
366 }
367 
368 // Conservatively identifies any definitions which might be live at the
369 // given instruction. The  analysis is performed immediately before the
370 // given instruction. Values defined by that instruction are not considered
371 // live.  Values used by that instruction are considered live.
372 static void
373 analyzeParsePointLiveness(DominatorTree &DT,
374                           GCPtrLivenessData &OriginalLivenessData, CallSite CS,
375                           PartiallyConstructedSafepointRecord &Result) {
376   Instruction *Inst = CS.getInstruction();
377 
378   StatepointLiveSetTy LiveSet;
379   findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet);
380 
381   if (PrintLiveSet) {
382     dbgs() << "Live Variables:\n";
383     for (Value *V : LiveSet)
384       dbgs() << " " << V->getName() << " " << *V << "\n";
385   }
386   if (PrintLiveSetSize) {
387     dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
388     dbgs() << "Number live values: " << LiveSet.size() << "\n";
389   }
390   Result.LiveSet = LiveSet;
391 }
392 
393 static bool isKnownBaseResult(Value *V);
394 
395 namespace {
396 
397 /// A single base defining value - An immediate base defining value for an
398 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
399 /// For instructions which have multiple pointer [vector] inputs or that
400 /// transition between vector and scalar types, there is no immediate base
401 /// defining value.  The 'base defining value' for 'Def' is the transitive
402 /// closure of this relation stopping at the first instruction which has no
403 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
404 /// but it can also be an arbitrary derived pointer.
405 struct BaseDefiningValueResult {
406   /// Contains the value which is the base defining value.
407   Value * const BDV;
408 
409   /// True if the base defining value is also known to be an actual base
410   /// pointer.
411   const bool IsKnownBase;
412 
413   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
414     : BDV(BDV), IsKnownBase(IsKnownBase) {
415 #ifndef NDEBUG
416     // Check consistency between new and old means of checking whether a BDV is
417     // a base.
418     bool MustBeBase = isKnownBaseResult(BDV);
419     assert(!MustBeBase || MustBeBase == IsKnownBase);
420 #endif
421   }
422 };
423 
424 } // end anonymous namespace
425 
426 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
427 
428 /// Return a base defining value for the 'Index' element of the given vector
429 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
430 /// 'I'.  As an optimization, this method will try to determine when the
431 /// element is known to already be a base pointer.  If this can be established,
432 /// the second value in the returned pair will be true.  Note that either a
433 /// vector or a pointer typed value can be returned.  For the former, the
434 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
435 /// If the later, the return pointer is a BDV (or possibly a base) for the
436 /// particular element in 'I'.
437 static BaseDefiningValueResult
438 findBaseDefiningValueOfVector(Value *I) {
439   // Each case parallels findBaseDefiningValue below, see that code for
440   // detailed motivation.
441 
442   if (isa<Argument>(I))
443     // An incoming argument to the function is a base pointer
444     return BaseDefiningValueResult(I, true);
445 
446   if (isa<Constant>(I))
447     // Base of constant vector consists only of constant null pointers.
448     // For reasoning see similar case inside 'findBaseDefiningValue' function.
449     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
450                                    true);
451 
452   if (isa<LoadInst>(I))
453     return BaseDefiningValueResult(I, true);
454 
455   if (isa<InsertElementInst>(I))
456     // We don't know whether this vector contains entirely base pointers or
457     // not.  To be conservatively correct, we treat it as a BDV and will
458     // duplicate code as needed to construct a parallel vector of bases.
459     return BaseDefiningValueResult(I, false);
460 
461   if (isa<ShuffleVectorInst>(I))
462     // We don't know whether this vector contains entirely base pointers or
463     // not.  To be conservatively correct, we treat it as a BDV and will
464     // duplicate code as needed to construct a parallel vector of bases.
465     // TODO: There a number of local optimizations which could be applied here
466     // for particular sufflevector patterns.
467     return BaseDefiningValueResult(I, false);
468 
469   // The behavior of getelementptr instructions is the same for vector and
470   // non-vector data types.
471   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
472     return findBaseDefiningValue(GEP->getPointerOperand());
473 
474   // If the pointer comes through a bitcast of a vector of pointers to
475   // a vector of another type of pointer, then look through the bitcast
476   if (auto *BC = dyn_cast<BitCastInst>(I))
477     return findBaseDefiningValue(BC->getOperand(0));
478 
479   // We assume that functions in the source language only return base
480   // pointers.  This should probably be generalized via attributes to support
481   // both source language and internal functions.
482   if (isa<CallInst>(I) || isa<InvokeInst>(I))
483     return BaseDefiningValueResult(I, true);
484 
485   // A PHI or Select is a base defining value.  The outer findBasePointer
486   // algorithm is responsible for constructing a base value for this BDV.
487   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
488          "unknown vector instruction - no base found for vector element");
489   return BaseDefiningValueResult(I, false);
490 }
491 
492 /// Helper function for findBasePointer - Will return a value which either a)
493 /// defines the base pointer for the input, b) blocks the simple search
494 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
495 /// from pointer to vector type or back.
496 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
497   assert(I->getType()->isPtrOrPtrVectorTy() &&
498          "Illegal to ask for the base pointer of a non-pointer type");
499 
500   if (I->getType()->isVectorTy())
501     return findBaseDefiningValueOfVector(I);
502 
503   if (isa<Argument>(I))
504     // An incoming argument to the function is a base pointer
505     // We should have never reached here if this argument isn't an gc value
506     return BaseDefiningValueResult(I, true);
507 
508   if (isa<Constant>(I)) {
509     // We assume that objects with a constant base (e.g. a global) can't move
510     // and don't need to be reported to the collector because they are always
511     // live. Besides global references, all kinds of constants (e.g. undef,
512     // constant expressions, null pointers) can be introduced by the inliner or
513     // the optimizer, especially on dynamically dead paths.
514     // Here we treat all of them as having single null base. By doing this we
515     // trying to avoid problems reporting various conflicts in a form of
516     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
517     // See constant.ll file for relevant test cases.
518 
519     return BaseDefiningValueResult(
520         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
521   }
522 
523   if (CastInst *CI = dyn_cast<CastInst>(I)) {
524     Value *Def = CI->stripPointerCasts();
525     // If stripping pointer casts changes the address space there is an
526     // addrspacecast in between.
527     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
528                cast<PointerType>(CI->getType())->getAddressSpace() &&
529            "unsupported addrspacecast");
530     // If we find a cast instruction here, it means we've found a cast which is
531     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
532     // handle int->ptr conversion.
533     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
534     return findBaseDefiningValue(Def);
535   }
536 
537   if (isa<LoadInst>(I))
538     // The value loaded is an gc base itself
539     return BaseDefiningValueResult(I, true);
540 
541   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
542     // The base of this GEP is the base
543     return findBaseDefiningValue(GEP->getPointerOperand());
544 
545   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
546     switch (II->getIntrinsicID()) {
547     default:
548       // fall through to general call handling
549       break;
550     case Intrinsic::experimental_gc_statepoint:
551       llvm_unreachable("statepoints don't produce pointers");
552     case Intrinsic::experimental_gc_relocate:
553       // Rerunning safepoint insertion after safepoints are already
554       // inserted is not supported.  It could probably be made to work,
555       // but why are you doing this?  There's no good reason.
556       llvm_unreachable("repeat safepoint insertion is not supported");
557     case Intrinsic::gcroot:
558       // Currently, this mechanism hasn't been extended to work with gcroot.
559       // There's no reason it couldn't be, but I haven't thought about the
560       // implications much.
561       llvm_unreachable(
562           "interaction with the gcroot mechanism is not supported");
563     }
564   }
565   // We assume that functions in the source language only return base
566   // pointers.  This should probably be generalized via attributes to support
567   // both source language and internal functions.
568   if (isa<CallInst>(I) || isa<InvokeInst>(I))
569     return BaseDefiningValueResult(I, true);
570 
571   // TODO: I have absolutely no idea how to implement this part yet.  It's not
572   // necessarily hard, I just haven't really looked at it yet.
573   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
574 
575   if (isa<AtomicCmpXchgInst>(I))
576     // A CAS is effectively a atomic store and load combined under a
577     // predicate.  From the perspective of base pointers, we just treat it
578     // like a load.
579     return BaseDefiningValueResult(I, true);
580 
581   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
582                                    "binary ops which don't apply to pointers");
583 
584   // The aggregate ops.  Aggregates can either be in the heap or on the
585   // stack, but in either case, this is simply a field load.  As a result,
586   // this is a defining definition of the base just like a load is.
587   if (isa<ExtractValueInst>(I))
588     return BaseDefiningValueResult(I, true);
589 
590   // We should never see an insert vector since that would require we be
591   // tracing back a struct value not a pointer value.
592   assert(!isa<InsertValueInst>(I) &&
593          "Base pointer for a struct is meaningless");
594 
595   // An extractelement produces a base result exactly when it's input does.
596   // We may need to insert a parallel instruction to extract the appropriate
597   // element out of the base vector corresponding to the input. Given this,
598   // it's analogous to the phi and select case even though it's not a merge.
599   if (isa<ExtractElementInst>(I))
600     // Note: There a lot of obvious peephole cases here.  This are deliberately
601     // handled after the main base pointer inference algorithm to make writing
602     // test cases to exercise that code easier.
603     return BaseDefiningValueResult(I, false);
604 
605   // The last two cases here don't return a base pointer.  Instead, they
606   // return a value which dynamically selects from among several base
607   // derived pointers (each with it's own base potentially).  It's the job of
608   // the caller to resolve these.
609   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
610          "missing instruction case in findBaseDefiningValing");
611   return BaseDefiningValueResult(I, false);
612 }
613 
614 /// Returns the base defining value for this value.
615 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
616   Value *&Cached = Cache[I];
617   if (!Cached) {
618     Cached = findBaseDefiningValue(I).BDV;
619     LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
620                       << Cached->getName() << "\n");
621   }
622   assert(Cache[I] != nullptr);
623   return Cached;
624 }
625 
626 /// Return a base pointer for this value if known.  Otherwise, return it's
627 /// base defining value.
628 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
629   Value *Def = findBaseDefiningValueCached(I, Cache);
630   auto Found = Cache.find(Def);
631   if (Found != Cache.end()) {
632     // Either a base-of relation, or a self reference.  Caller must check.
633     return Found->second;
634   }
635   // Only a BDV available
636   return Def;
637 }
638 
639 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
640 /// is it known to be a base pointer?  Or do we need to continue searching.
641 static bool isKnownBaseResult(Value *V) {
642   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
643       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
644       !isa<ShuffleVectorInst>(V)) {
645     // no recursion possible
646     return true;
647   }
648   if (isa<Instruction>(V) &&
649       cast<Instruction>(V)->getMetadata("is_base_value")) {
650     // This is a previously inserted base phi or select.  We know
651     // that this is a base value.
652     return true;
653   }
654 
655   // We need to keep searching
656   return false;
657 }
658 
659 namespace {
660 
661 /// Models the state of a single base defining value in the findBasePointer
662 /// algorithm for determining where a new instruction is needed to propagate
663 /// the base of this BDV.
664 class BDVState {
665 public:
666   enum Status { Unknown, Base, Conflict };
667 
668   BDVState() : BaseValue(nullptr) {}
669 
670   explicit BDVState(Status Status, Value *BaseValue = nullptr)
671       : Status(Status), BaseValue(BaseValue) {
672     assert(Status != Base || BaseValue);
673   }
674 
675   explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
676 
677   Status getStatus() const { return Status; }
678   Value *getBaseValue() const { return BaseValue; }
679 
680   bool isBase() const { return getStatus() == Base; }
681   bool isUnknown() const { return getStatus() == Unknown; }
682   bool isConflict() const { return getStatus() == Conflict; }
683 
684   bool operator==(const BDVState &Other) const {
685     return BaseValue == Other.BaseValue && Status == Other.Status;
686   }
687 
688   bool operator!=(const BDVState &other) const { return !(*this == other); }
689 
690   LLVM_DUMP_METHOD
691   void dump() const {
692     print(dbgs());
693     dbgs() << '\n';
694   }
695 
696   void print(raw_ostream &OS) const {
697     switch (getStatus()) {
698     case Unknown:
699       OS << "U";
700       break;
701     case Base:
702       OS << "B";
703       break;
704     case Conflict:
705       OS << "C";
706       break;
707     }
708     OS << " (" << getBaseValue() << " - "
709        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
710   }
711 
712 private:
713   Status Status = Unknown;
714   AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
715 };
716 
717 } // end anonymous namespace
718 
719 #ifndef NDEBUG
720 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
721   State.print(OS);
722   return OS;
723 }
724 #endif
725 
726 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
727   switch (LHS.getStatus()) {
728   case BDVState::Unknown:
729     return RHS;
730 
731   case BDVState::Base:
732     assert(LHS.getBaseValue() && "can't be null");
733     if (RHS.isUnknown())
734       return LHS;
735 
736     if (RHS.isBase()) {
737       if (LHS.getBaseValue() == RHS.getBaseValue()) {
738         assert(LHS == RHS && "equality broken!");
739         return LHS;
740       }
741       return BDVState(BDVState::Conflict);
742     }
743     assert(RHS.isConflict() && "only three states!");
744     return BDVState(BDVState::Conflict);
745 
746   case BDVState::Conflict:
747     return LHS;
748   }
749   llvm_unreachable("only three states!");
750 }
751 
752 // Values of type BDVState form a lattice, and this function implements the meet
753 // operation.
754 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
755   BDVState Result = meetBDVStateImpl(LHS, RHS);
756   assert(Result == meetBDVStateImpl(RHS, LHS) &&
757          "Math is wrong: meet does not commute!");
758   return Result;
759 }
760 
761 /// For a given value or instruction, figure out what base ptr its derived from.
762 /// For gc objects, this is simply itself.  On success, returns a value which is
763 /// the base pointer.  (This is reliable and can be used for relocation.)  On
764 /// failure, returns nullptr.
765 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
766   Value *Def = findBaseOrBDV(I, Cache);
767 
768   if (isKnownBaseResult(Def))
769     return Def;
770 
771   // Here's the rough algorithm:
772   // - For every SSA value, construct a mapping to either an actual base
773   //   pointer or a PHI which obscures the base pointer.
774   // - Construct a mapping from PHI to unknown TOP state.  Use an
775   //   optimistic algorithm to propagate base pointer information.  Lattice
776   //   looks like:
777   //   UNKNOWN
778   //   b1 b2 b3 b4
779   //   CONFLICT
780   //   When algorithm terminates, all PHIs will either have a single concrete
781   //   base or be in a conflict state.
782   // - For every conflict, insert a dummy PHI node without arguments.  Add
783   //   these to the base[Instruction] = BasePtr mapping.  For every
784   //   non-conflict, add the actual base.
785   //  - For every conflict, add arguments for the base[a] of each input
786   //   arguments.
787   //
788   // Note: A simpler form of this would be to add the conflict form of all
789   // PHIs without running the optimistic algorithm.  This would be
790   // analogous to pessimistic data flow and would likely lead to an
791   // overall worse solution.
792 
793 #ifndef NDEBUG
794   auto isExpectedBDVType = [](Value *BDV) {
795     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
796            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
797            isa<ShuffleVectorInst>(BDV);
798   };
799 #endif
800 
801   // Once populated, will contain a mapping from each potentially non-base BDV
802   // to a lattice value (described above) which corresponds to that BDV.
803   // We use the order of insertion (DFS over the def/use graph) to provide a
804   // stable deterministic ordering for visiting DenseMaps (which are unordered)
805   // below.  This is important for deterministic compilation.
806   MapVector<Value *, BDVState> States;
807 
808   // Recursively fill in all base defining values reachable from the initial
809   // one for which we don't already know a definite base value for
810   /* scope */ {
811     SmallVector<Value*, 16> Worklist;
812     Worklist.push_back(Def);
813     States.insert({Def, BDVState()});
814     while (!Worklist.empty()) {
815       Value *Current = Worklist.pop_back_val();
816       assert(!isKnownBaseResult(Current) && "why did it get added?");
817 
818       auto visitIncomingValue = [&](Value *InVal) {
819         Value *Base = findBaseOrBDV(InVal, Cache);
820         if (isKnownBaseResult(Base))
821           // Known bases won't need new instructions introduced and can be
822           // ignored safely
823           return;
824         assert(isExpectedBDVType(Base) && "the only non-base values "
825                "we see should be base defining values");
826         if (States.insert(std::make_pair(Base, BDVState())).second)
827           Worklist.push_back(Base);
828       };
829       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
830         for (Value *InVal : PN->incoming_values())
831           visitIncomingValue(InVal);
832       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
833         visitIncomingValue(SI->getTrueValue());
834         visitIncomingValue(SI->getFalseValue());
835       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
836         visitIncomingValue(EE->getVectorOperand());
837       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
838         visitIncomingValue(IE->getOperand(0)); // vector operand
839         visitIncomingValue(IE->getOperand(1)); // scalar operand
840       } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
841         visitIncomingValue(SV->getOperand(0));
842         visitIncomingValue(SV->getOperand(1));
843       }
844       else {
845         llvm_unreachable("Unimplemented instruction case");
846       }
847     }
848   }
849 
850 #ifndef NDEBUG
851   LLVM_DEBUG(dbgs() << "States after initialization:\n");
852   for (auto Pair : States) {
853     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
854   }
855 #endif
856 
857   // Return a phi state for a base defining value.  We'll generate a new
858   // base state for known bases and expect to find a cached state otherwise.
859   auto getStateForBDV = [&](Value *baseValue) {
860     if (isKnownBaseResult(baseValue))
861       return BDVState(baseValue);
862     auto I = States.find(baseValue);
863     assert(I != States.end() && "lookup failed!");
864     return I->second;
865   };
866 
867   bool Progress = true;
868   while (Progress) {
869 #ifndef NDEBUG
870     const size_t OldSize = States.size();
871 #endif
872     Progress = false;
873     // We're only changing values in this loop, thus safe to keep iterators.
874     // Since this is computing a fixed point, the order of visit does not
875     // effect the result.  TODO: We could use a worklist here and make this run
876     // much faster.
877     for (auto Pair : States) {
878       Value *BDV = Pair.first;
879       assert(!isKnownBaseResult(BDV) && "why did it get added?");
880 
881       // Given an input value for the current instruction, return a BDVState
882       // instance which represents the BDV of that value.
883       auto getStateForInput = [&](Value *V) mutable {
884         Value *BDV = findBaseOrBDV(V, Cache);
885         return getStateForBDV(BDV);
886       };
887 
888       BDVState NewState;
889       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
890         NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
891         NewState =
892             meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
893       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
894         for (Value *Val : PN->incoming_values())
895           NewState = meetBDVState(NewState, getStateForInput(Val));
896       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
897         // The 'meet' for an extractelement is slightly trivial, but it's still
898         // useful in that it drives us to conflict if our input is.
899         NewState =
900             meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
901       } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
902         // Given there's a inherent type mismatch between the operands, will
903         // *always* produce Conflict.
904         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
905         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
906       } else {
907         // The only instance this does not return a Conflict is when both the
908         // vector operands are the same vector.
909         auto *SV = cast<ShuffleVectorInst>(BDV);
910         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
911         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
912       }
913 
914       BDVState OldState = States[BDV];
915       if (OldState != NewState) {
916         Progress = true;
917         States[BDV] = NewState;
918       }
919     }
920 
921     assert(OldSize == States.size() &&
922            "fixed point shouldn't be adding any new nodes to state");
923   }
924 
925 #ifndef NDEBUG
926   LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
927   for (auto Pair : States) {
928     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
929   }
930 #endif
931 
932   // Insert Phis for all conflicts
933   // TODO: adjust naming patterns to avoid this order of iteration dependency
934   for (auto Pair : States) {
935     Instruction *I = cast<Instruction>(Pair.first);
936     BDVState State = Pair.second;
937     assert(!isKnownBaseResult(I) && "why did it get added?");
938     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
939 
940     // extractelement instructions are a bit special in that we may need to
941     // insert an extract even when we know an exact base for the instruction.
942     // The problem is that we need to convert from a vector base to a scalar
943     // base for the particular indice we're interested in.
944     if (State.isBase() && isa<ExtractElementInst>(I) &&
945         isa<VectorType>(State.getBaseValue()->getType())) {
946       auto *EE = cast<ExtractElementInst>(I);
947       // TODO: In many cases, the new instruction is just EE itself.  We should
948       // exploit this, but can't do it here since it would break the invariant
949       // about the BDV not being known to be a base.
950       auto *BaseInst = ExtractElementInst::Create(
951           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
952       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
953       States[I] = BDVState(BDVState::Base, BaseInst);
954     }
955 
956     // Since we're joining a vector and scalar base, they can never be the
957     // same.  As a result, we should always see insert element having reached
958     // the conflict state.
959     assert(!isa<InsertElementInst>(I) || State.isConflict());
960 
961     if (!State.isConflict())
962       continue;
963 
964     /// Create and insert a new instruction which will represent the base of
965     /// the given instruction 'I'.
966     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
967       if (isa<PHINode>(I)) {
968         BasicBlock *BB = I->getParent();
969         int NumPreds = pred_size(BB);
970         assert(NumPreds > 0 && "how did we reach here");
971         std::string Name = suffixed_name_or(I, ".base", "base_phi");
972         return PHINode::Create(I->getType(), NumPreds, Name, I);
973       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
974         // The undef will be replaced later
975         UndefValue *Undef = UndefValue::get(SI->getType());
976         std::string Name = suffixed_name_or(I, ".base", "base_select");
977         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
978       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
979         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
980         std::string Name = suffixed_name_or(I, ".base", "base_ee");
981         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
982                                           EE);
983       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
984         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
985         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
986         std::string Name = suffixed_name_or(I, ".base", "base_ie");
987         return InsertElementInst::Create(VecUndef, ScalarUndef,
988                                          IE->getOperand(2), Name, IE);
989       } else {
990         auto *SV = cast<ShuffleVectorInst>(I);
991         UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
992         std::string Name = suffixed_name_or(I, ".base", "base_sv");
993         return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2),
994                                      Name, SV);
995       }
996     };
997     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
998     // Add metadata marking this as a base value
999     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1000     States[I] = BDVState(BDVState::Conflict, BaseInst);
1001   }
1002 
1003   // Returns a instruction which produces the base pointer for a given
1004   // instruction.  The instruction is assumed to be an input to one of the BDVs
1005   // seen in the inference algorithm above.  As such, we must either already
1006   // know it's base defining value is a base, or have inserted a new
1007   // instruction to propagate the base of it's BDV and have entered that newly
1008   // introduced instruction into the state table.  In either case, we are
1009   // assured to be able to determine an instruction which produces it's base
1010   // pointer.
1011   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1012     Value *BDV = findBaseOrBDV(Input, Cache);
1013     Value *Base = nullptr;
1014     if (isKnownBaseResult(BDV)) {
1015       Base = BDV;
1016     } else {
1017       // Either conflict or base.
1018       assert(States.count(BDV));
1019       Base = States[BDV].getBaseValue();
1020     }
1021     assert(Base && "Can't be null");
1022     // The cast is needed since base traversal may strip away bitcasts
1023     if (Base->getType() != Input->getType() && InsertPt)
1024       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1025     return Base;
1026   };
1027 
1028   // Fixup all the inputs of the new PHIs.  Visit order needs to be
1029   // deterministic and predictable because we're naming newly created
1030   // instructions.
1031   for (auto Pair : States) {
1032     Instruction *BDV = cast<Instruction>(Pair.first);
1033     BDVState State = Pair.second;
1034 
1035     assert(!isKnownBaseResult(BDV) && "why did it get added?");
1036     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1037     if (!State.isConflict())
1038       continue;
1039 
1040     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1041       PHINode *PN = cast<PHINode>(BDV);
1042       unsigned NumPHIValues = PN->getNumIncomingValues();
1043       for (unsigned i = 0; i < NumPHIValues; i++) {
1044         Value *InVal = PN->getIncomingValue(i);
1045         BasicBlock *InBB = PN->getIncomingBlock(i);
1046 
1047         // If we've already seen InBB, add the same incoming value
1048         // we added for it earlier.  The IR verifier requires phi
1049         // nodes with multiple entries from the same basic block
1050         // to have the same incoming value for each of those
1051         // entries.  If we don't do this check here and basephi
1052         // has a different type than base, we'll end up adding two
1053         // bitcasts (and hence two distinct values) as incoming
1054         // values for the same basic block.
1055 
1056         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
1057         if (BlockIndex != -1) {
1058           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
1059           BasePHI->addIncoming(OldBase, InBB);
1060 
1061 #ifndef NDEBUG
1062           Value *Base = getBaseForInput(InVal, nullptr);
1063           // In essence this assert states: the only way two values
1064           // incoming from the same basic block may be different is by
1065           // being different bitcasts of the same value.  A cleanup
1066           // that remains TODO is changing findBaseOrBDV to return an
1067           // llvm::Value of the correct type (and still remain pure).
1068           // This will remove the need to add bitcasts.
1069           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1070                  "Sanity -- findBaseOrBDV should be pure!");
1071 #endif
1072           continue;
1073         }
1074 
1075         // Find the instruction which produces the base for each input.  We may
1076         // need to insert a bitcast in the incoming block.
1077         // TODO: Need to split critical edges if insertion is needed
1078         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1079         BasePHI->addIncoming(Base, InBB);
1080       }
1081       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
1082     } else if (SelectInst *BaseSI =
1083                    dyn_cast<SelectInst>(State.getBaseValue())) {
1084       SelectInst *SI = cast<SelectInst>(BDV);
1085 
1086       // Find the instruction which produces the base for each input.
1087       // We may need to insert a bitcast.
1088       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1089       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1090     } else if (auto *BaseEE =
1091                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1092       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1093       // Find the instruction which produces the base for each input.  We may
1094       // need to insert a bitcast.
1095       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1096     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1097       auto *BdvIE = cast<InsertElementInst>(BDV);
1098       auto UpdateOperand = [&](int OperandIdx) {
1099         Value *InVal = BdvIE->getOperand(OperandIdx);
1100         Value *Base = getBaseForInput(InVal, BaseIE);
1101         BaseIE->setOperand(OperandIdx, Base);
1102       };
1103       UpdateOperand(0); // vector operand
1104       UpdateOperand(1); // scalar operand
1105     } else {
1106       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1107       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1108       auto UpdateOperand = [&](int OperandIdx) {
1109         Value *InVal = BdvSV->getOperand(OperandIdx);
1110         Value *Base = getBaseForInput(InVal, BaseSV);
1111         BaseSV->setOperand(OperandIdx, Base);
1112       };
1113       UpdateOperand(0); // vector operand
1114       UpdateOperand(1); // vector operand
1115     }
1116   }
1117 
1118   // Cache all of our results so we can cheaply reuse them
1119   // NOTE: This is actually two caches: one of the base defining value
1120   // relation and one of the base pointer relation!  FIXME
1121   for (auto Pair : States) {
1122     auto *BDV = Pair.first;
1123     Value *Base = Pair.second.getBaseValue();
1124     assert(BDV && Base);
1125     assert(!isKnownBaseResult(BDV) && "why did it get added?");
1126 
1127     LLVM_DEBUG(
1128         dbgs() << "Updating base value cache"
1129                << " for: " << BDV->getName() << " from: "
1130                << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1131                << " to: " << Base->getName() << "\n");
1132 
1133     if (Cache.count(BDV)) {
1134       assert(isKnownBaseResult(Base) &&
1135              "must be something we 'know' is a base pointer");
1136       // Once we transition from the BDV relation being store in the Cache to
1137       // the base relation being stored, it must be stable
1138       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
1139              "base relation should be stable");
1140     }
1141     Cache[BDV] = Base;
1142   }
1143   assert(Cache.count(Def));
1144   return Cache[Def];
1145 }
1146 
1147 // For a set of live pointers (base and/or derived), identify the base
1148 // pointer of the object which they are derived from.  This routine will
1149 // mutate the IR graph as needed to make the 'base' pointer live at the
1150 // definition site of 'derived'.  This ensures that any use of 'derived' can
1151 // also use 'base'.  This may involve the insertion of a number of
1152 // additional PHI nodes.
1153 //
1154 // preconditions: live is a set of pointer type Values
1155 //
1156 // side effects: may insert PHI nodes into the existing CFG, will preserve
1157 // CFG, will not remove or mutate any existing nodes
1158 //
1159 // post condition: PointerToBase contains one (derived, base) pair for every
1160 // pointer in live.  Note that derived can be equal to base if the original
1161 // pointer was a base pointer.
1162 static void
1163 findBasePointers(const StatepointLiveSetTy &live,
1164                  MapVector<Value *, Value *> &PointerToBase,
1165                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1166   for (Value *ptr : live) {
1167     Value *base = findBasePointer(ptr, DVCache);
1168     assert(base && "failed to find base pointer");
1169     PointerToBase[ptr] = base;
1170     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1171             DT->dominates(cast<Instruction>(base)->getParent(),
1172                           cast<Instruction>(ptr)->getParent())) &&
1173            "The base we found better dominate the derived pointer");
1174   }
1175 }
1176 
1177 /// Find the required based pointers (and adjust the live set) for the given
1178 /// parse point.
1179 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1180                              CallSite CS,
1181                              PartiallyConstructedSafepointRecord &result) {
1182   MapVector<Value *, Value *> PointerToBase;
1183   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1184 
1185   if (PrintBasePointers) {
1186     errs() << "Base Pairs (w/o Relocation):\n";
1187     for (auto &Pair : PointerToBase) {
1188       errs() << " derived ";
1189       Pair.first->printAsOperand(errs(), false);
1190       errs() << " base ";
1191       Pair.second->printAsOperand(errs(), false);
1192       errs() << "\n";;
1193     }
1194   }
1195 
1196   result.PointerToBase = PointerToBase;
1197 }
1198 
1199 /// Given an updated version of the dataflow liveness results, update the
1200 /// liveset and base pointer maps for the call site CS.
1201 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1202                                   CallSite CS,
1203                                   PartiallyConstructedSafepointRecord &result);
1204 
1205 static void recomputeLiveInValues(
1206     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1207     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1208   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1209   // again.  The old values are still live and will help it stabilize quickly.
1210   GCPtrLivenessData RevisedLivenessData;
1211   computeLiveInValues(DT, F, RevisedLivenessData);
1212   for (size_t i = 0; i < records.size(); i++) {
1213     struct PartiallyConstructedSafepointRecord &info = records[i];
1214     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1215   }
1216 }
1217 
1218 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1219 // no uses of the original value / return value between the gc.statepoint and
1220 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1221 // starting one of the successor blocks.  We also need to be able to insert the
1222 // gc.relocates only on the path which goes through the statepoint.  We might
1223 // need to split an edge to make this possible.
1224 static BasicBlock *
1225 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1226                             DominatorTree &DT) {
1227   BasicBlock *Ret = BB;
1228   if (!BB->getUniquePredecessor())
1229     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1230 
1231   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1232   // from it
1233   FoldSingleEntryPHINodes(Ret);
1234   assert(!isa<PHINode>(Ret->begin()) &&
1235          "All PHI nodes should have been removed!");
1236 
1237   // At this point, we can safely insert a gc.relocate or gc.result as the first
1238   // instruction in Ret if needed.
1239   return Ret;
1240 }
1241 
1242 // Create new attribute set containing only attributes which can be transferred
1243 // from original call to the safepoint.
1244 static AttributeList legalizeCallAttributes(AttributeList AL) {
1245   if (AL.isEmpty())
1246     return AL;
1247 
1248   // Remove the readonly, readnone, and statepoint function attributes.
1249   AttrBuilder FnAttrs = AL.getFnAttributes();
1250   FnAttrs.removeAttribute(Attribute::ReadNone);
1251   FnAttrs.removeAttribute(Attribute::ReadOnly);
1252   for (Attribute A : AL.getFnAttributes()) {
1253     if (isStatepointDirectiveAttr(A))
1254       FnAttrs.remove(A);
1255   }
1256 
1257   // Just skip parameter and return attributes for now
1258   LLVMContext &Ctx = AL.getContext();
1259   return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1260                             AttributeSet::get(Ctx, FnAttrs));
1261 }
1262 
1263 /// Helper function to place all gc relocates necessary for the given
1264 /// statepoint.
1265 /// Inputs:
1266 ///   liveVariables - list of variables to be relocated.
1267 ///   liveStart - index of the first live variable.
1268 ///   basePtrs - base pointers.
1269 ///   statepointToken - statepoint instruction to which relocates should be
1270 ///   bound.
1271 ///   Builder - Llvm IR builder to be used to construct new calls.
1272 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1273                               const int LiveStart,
1274                               ArrayRef<Value *> BasePtrs,
1275                               Instruction *StatepointToken,
1276                               IRBuilder<> Builder) {
1277   if (LiveVariables.empty())
1278     return;
1279 
1280   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1281     auto ValIt = llvm::find(LiveVec, Val);
1282     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1283     size_t Index = std::distance(LiveVec.begin(), ValIt);
1284     assert(Index < LiveVec.size() && "Bug in std::find?");
1285     return Index;
1286   };
1287   Module *M = StatepointToken->getModule();
1288 
1289   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1290   // element type is i8 addrspace(1)*). We originally generated unique
1291   // declarations for each pointer type, but this proved problematic because
1292   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1293   // towards a single unified pointer type anyways, we can just cast everything
1294   // to an i8* of the right address space.  A bitcast is added later to convert
1295   // gc_relocate to the actual value's type.
1296   auto getGCRelocateDecl = [&] (Type *Ty) {
1297     assert(isHandledGCPointerType(Ty));
1298     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1299     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1300     if (auto *VT = dyn_cast<VectorType>(Ty))
1301       NewTy = VectorType::get(NewTy, VT->getNumElements());
1302     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1303                                      {NewTy});
1304   };
1305 
1306   // Lazily populated map from input types to the canonicalized form mentioned
1307   // in the comment above.  This should probably be cached somewhere more
1308   // broadly.
1309   DenseMap<Type *, Function *> TypeToDeclMap;
1310 
1311   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1312     // Generate the gc.relocate call and save the result
1313     Value *BaseIdx =
1314       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1315     Value *LiveIdx = Builder.getInt32(LiveStart + i);
1316 
1317     Type *Ty = LiveVariables[i]->getType();
1318     if (!TypeToDeclMap.count(Ty))
1319       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1320     Function *GCRelocateDecl = TypeToDeclMap[Ty];
1321 
1322     // only specify a debug name if we can give a useful one
1323     CallInst *Reloc = Builder.CreateCall(
1324         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1325         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1326     // Trick CodeGen into thinking there are lots of free registers at this
1327     // fake call.
1328     Reloc->setCallingConv(CallingConv::Cold);
1329   }
1330 }
1331 
1332 namespace {
1333 
1334 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1335 /// avoids having to worry about keeping around dangling pointers to Values.
1336 class DeferredReplacement {
1337   AssertingVH<Instruction> Old;
1338   AssertingVH<Instruction> New;
1339   bool IsDeoptimize = false;
1340 
1341   DeferredReplacement() = default;
1342 
1343 public:
1344   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1345     assert(Old != New && Old && New &&
1346            "Cannot RAUW equal values or to / from null!");
1347 
1348     DeferredReplacement D;
1349     D.Old = Old;
1350     D.New = New;
1351     return D;
1352   }
1353 
1354   static DeferredReplacement createDelete(Instruction *ToErase) {
1355     DeferredReplacement D;
1356     D.Old = ToErase;
1357     return D;
1358   }
1359 
1360   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1361 #ifndef NDEBUG
1362     auto *F = cast<CallInst>(Old)->getCalledFunction();
1363     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1364            "Only way to construct a deoptimize deferred replacement");
1365 #endif
1366     DeferredReplacement D;
1367     D.Old = Old;
1368     D.IsDeoptimize = true;
1369     return D;
1370   }
1371 
1372   /// Does the task represented by this instance.
1373   void doReplacement() {
1374     Instruction *OldI = Old;
1375     Instruction *NewI = New;
1376 
1377     assert(OldI != NewI && "Disallowed at construction?!");
1378     assert((!IsDeoptimize || !New) &&
1379            "Deoptimize intrinsics are not replaced!");
1380 
1381     Old = nullptr;
1382     New = nullptr;
1383 
1384     if (NewI)
1385       OldI->replaceAllUsesWith(NewI);
1386 
1387     if (IsDeoptimize) {
1388       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1389       // not necessarily be followed by the matching return.
1390       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1391       new UnreachableInst(RI->getContext(), RI);
1392       RI->eraseFromParent();
1393     }
1394 
1395     OldI->eraseFromParent();
1396   }
1397 };
1398 
1399 } // end anonymous namespace
1400 
1401 static StringRef getDeoptLowering(CallSite CS) {
1402   const char *DeoptLowering = "deopt-lowering";
1403   if (CS.hasFnAttr(DeoptLowering)) {
1404     // FIXME: CallSite has a *really* confusing interface around attributes
1405     // with values.
1406     const AttributeList &CSAS = CS.getAttributes();
1407     if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1408       return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1409           .getValueAsString();
1410     Function *F = CS.getCalledFunction();
1411     assert(F && F->hasFnAttribute(DeoptLowering));
1412     return F->getFnAttribute(DeoptLowering).getValueAsString();
1413   }
1414   return "live-through";
1415 }
1416 
1417 static void
1418 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1419                            const SmallVectorImpl<Value *> &BasePtrs,
1420                            const SmallVectorImpl<Value *> &LiveVariables,
1421                            PartiallyConstructedSafepointRecord &Result,
1422                            std::vector<DeferredReplacement> &Replacements) {
1423   assert(BasePtrs.size() == LiveVariables.size());
1424 
1425   // Then go ahead and use the builder do actually do the inserts.  We insert
1426   // immediately before the previous instruction under the assumption that all
1427   // arguments will be available here.  We can't insert afterwards since we may
1428   // be replacing a terminator.
1429   Instruction *InsertBefore = CS.getInstruction();
1430   IRBuilder<> Builder(InsertBefore);
1431 
1432   ArrayRef<Value *> GCArgs(LiveVariables);
1433   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1434   uint32_t NumPatchBytes = 0;
1435   uint32_t Flags = uint32_t(StatepointFlags::None);
1436 
1437   ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
1438   ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
1439   ArrayRef<Use> TransitionArgs;
1440   if (auto TransitionBundle =
1441       CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
1442     Flags |= uint32_t(StatepointFlags::GCTransition);
1443     TransitionArgs = TransitionBundle->Inputs;
1444   }
1445 
1446   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1447   // with a return value, we lower then as never returning calls to
1448   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1449   bool IsDeoptimize = false;
1450 
1451   StatepointDirectives SD =
1452       parseStatepointDirectivesFromAttrs(CS.getAttributes());
1453   if (SD.NumPatchBytes)
1454     NumPatchBytes = *SD.NumPatchBytes;
1455   if (SD.StatepointID)
1456     StatepointID = *SD.StatepointID;
1457 
1458   // Pass through the requested lowering if any.  The default is live-through.
1459   StringRef DeoptLowering = getDeoptLowering(CS);
1460   if (DeoptLowering.equals("live-in"))
1461     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1462   else {
1463     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1464   }
1465 
1466   Value *CallTarget = CS.getCalledValue();
1467   if (Function *F = dyn_cast<Function>(CallTarget)) {
1468     if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1469       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1470       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1471       // verifier does not allow taking the address of an intrinsic function.
1472 
1473       SmallVector<Type *, 8> DomainTy;
1474       for (Value *Arg : CallArgs)
1475         DomainTy.push_back(Arg->getType());
1476       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1477                                     /* isVarArg = */ false);
1478 
1479       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1480       // calls to @llvm.experimental.deoptimize with different argument types in
1481       // the same module.  This is fine -- we assume the frontend knew what it
1482       // was doing when generating this kind of IR.
1483       CallTarget = F->getParent()
1484                        ->getOrInsertFunction("__llvm_deoptimize", FTy)
1485                        .getCallee();
1486 
1487       IsDeoptimize = true;
1488     }
1489   }
1490 
1491   // Create the statepoint given all the arguments
1492   Instruction *Token = nullptr;
1493   if (CS.isCall()) {
1494     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1495     CallInst *Call = Builder.CreateGCStatepointCall(
1496         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1497         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1498 
1499     Call->setTailCallKind(ToReplace->getTailCallKind());
1500     Call->setCallingConv(ToReplace->getCallingConv());
1501 
1502     // Currently we will fail on parameter attributes and on certain
1503     // function attributes.  In case if we can handle this set of attributes -
1504     // set up function attrs directly on statepoint and return attrs later for
1505     // gc_result intrinsic.
1506     Call->setAttributes(legalizeCallAttributes(ToReplace->getAttributes()));
1507 
1508     Token = Call;
1509 
1510     // Put the following gc_result and gc_relocate calls immediately after the
1511     // the old call (which we're about to delete)
1512     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1513     Builder.SetInsertPoint(ToReplace->getNextNode());
1514     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1515   } else {
1516     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1517 
1518     // Insert the new invoke into the old block.  We'll remove the old one in a
1519     // moment at which point this will become the new terminator for the
1520     // original block.
1521     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1522         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1523         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1524         GCArgs, "statepoint_token");
1525 
1526     Invoke->setCallingConv(ToReplace->getCallingConv());
1527 
1528     // Currently we will fail on parameter attributes and on certain
1529     // function attributes.  In case if we can handle this set of attributes -
1530     // set up function attrs directly on statepoint and return attrs later for
1531     // gc_result intrinsic.
1532     Invoke->setAttributes(legalizeCallAttributes(ToReplace->getAttributes()));
1533 
1534     Token = Invoke;
1535 
1536     // Generate gc relocates in exceptional path
1537     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1538     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1539            UnwindBlock->getUniquePredecessor() &&
1540            "can't safely insert in this block!");
1541 
1542     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1543     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1544 
1545     // Attach exceptional gc relocates to the landingpad.
1546     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1547     Result.UnwindToken = ExceptionalToken;
1548 
1549     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1550     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1551                       Builder);
1552 
1553     // Generate gc relocates and returns for normal block
1554     BasicBlock *NormalDest = ToReplace->getNormalDest();
1555     assert(!isa<PHINode>(NormalDest->begin()) &&
1556            NormalDest->getUniquePredecessor() &&
1557            "can't safely insert in this block!");
1558 
1559     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1560 
1561     // gc relocates will be generated later as if it were regular call
1562     // statepoint
1563   }
1564   assert(Token && "Should be set in one of the above branches!");
1565 
1566   if (IsDeoptimize) {
1567     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1568     // transform the tail-call like structure to a call to a void function
1569     // followed by unreachable to get better codegen.
1570     Replacements.push_back(
1571         DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
1572   } else {
1573     Token->setName("statepoint_token");
1574     if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1575       StringRef Name =
1576           CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1577       CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1578       GCResult->setAttributes(
1579           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1580                              CS.getAttributes().getRetAttributes()));
1581 
1582       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1583       // live set of some other safepoint, in which case that safepoint's
1584       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1585       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1586       // after the live sets have been made explicit in the IR, and we no longer
1587       // have raw pointers to worry about.
1588       Replacements.emplace_back(
1589           DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
1590     } else {
1591       Replacements.emplace_back(
1592           DeferredReplacement::createDelete(CS.getInstruction()));
1593     }
1594   }
1595 
1596   Result.StatepointToken = Token;
1597 
1598   // Second, create a gc.relocate for every live variable
1599   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1600   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1601 }
1602 
1603 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1604 // which make the relocations happening at this safepoint explicit.
1605 //
1606 // WARNING: Does not do any fixup to adjust users of the original live
1607 // values.  That's the callers responsibility.
1608 static void
1609 makeStatepointExplicit(DominatorTree &DT, CallSite CS,
1610                        PartiallyConstructedSafepointRecord &Result,
1611                        std::vector<DeferredReplacement> &Replacements) {
1612   const auto &LiveSet = Result.LiveSet;
1613   const auto &PointerToBase = Result.PointerToBase;
1614 
1615   // Convert to vector for efficient cross referencing.
1616   SmallVector<Value *, 64> BaseVec, LiveVec;
1617   LiveVec.reserve(LiveSet.size());
1618   BaseVec.reserve(LiveSet.size());
1619   for (Value *L : LiveSet) {
1620     LiveVec.push_back(L);
1621     assert(PointerToBase.count(L));
1622     Value *Base = PointerToBase.find(L)->second;
1623     BaseVec.push_back(Base);
1624   }
1625   assert(LiveVec.size() == BaseVec.size());
1626 
1627   // Do the actual rewriting and delete the old statepoint
1628   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1629 }
1630 
1631 // Helper function for the relocationViaAlloca.
1632 //
1633 // It receives iterator to the statepoint gc relocates and emits a store to the
1634 // assigned location (via allocaMap) for the each one of them.  It adds the
1635 // visited values into the visitedLiveValues set, which we will later use them
1636 // for sanity checking.
1637 static void
1638 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1639                        DenseMap<Value *, AllocaInst *> &AllocaMap,
1640                        DenseSet<Value *> &VisitedLiveValues) {
1641   for (User *U : GCRelocs) {
1642     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1643     if (!Relocate)
1644       continue;
1645 
1646     Value *OriginalValue = Relocate->getDerivedPtr();
1647     assert(AllocaMap.count(OriginalValue));
1648     Value *Alloca = AllocaMap[OriginalValue];
1649 
1650     // Emit store into the related alloca
1651     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1652     // the correct type according to alloca.
1653     assert(Relocate->getNextNode() &&
1654            "Should always have one since it's not a terminator");
1655     IRBuilder<> Builder(Relocate->getNextNode());
1656     Value *CastedRelocatedValue =
1657       Builder.CreateBitCast(Relocate,
1658                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1659                             suffixed_name_or(Relocate, ".casted", ""));
1660 
1661     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1662     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1663 
1664 #ifndef NDEBUG
1665     VisitedLiveValues.insert(OriginalValue);
1666 #endif
1667   }
1668 }
1669 
1670 // Helper function for the "relocationViaAlloca". Similar to the
1671 // "insertRelocationStores" but works for rematerialized values.
1672 static void insertRematerializationStores(
1673     const RematerializedValueMapTy &RematerializedValues,
1674     DenseMap<Value *, AllocaInst *> &AllocaMap,
1675     DenseSet<Value *> &VisitedLiveValues) {
1676   for (auto RematerializedValuePair: RematerializedValues) {
1677     Instruction *RematerializedValue = RematerializedValuePair.first;
1678     Value *OriginalValue = RematerializedValuePair.second;
1679 
1680     assert(AllocaMap.count(OriginalValue) &&
1681            "Can not find alloca for rematerialized value");
1682     Value *Alloca = AllocaMap[OriginalValue];
1683 
1684     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1685     Store->insertAfter(RematerializedValue);
1686 
1687 #ifndef NDEBUG
1688     VisitedLiveValues.insert(OriginalValue);
1689 #endif
1690   }
1691 }
1692 
1693 /// Do all the relocation update via allocas and mem2reg
1694 static void relocationViaAlloca(
1695     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1696     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1697 #ifndef NDEBUG
1698   // record initial number of (static) allocas; we'll check we have the same
1699   // number when we get done.
1700   int InitialAllocaNum = 0;
1701   for (Instruction &I : F.getEntryBlock())
1702     if (isa<AllocaInst>(I))
1703       InitialAllocaNum++;
1704 #endif
1705 
1706   // TODO-PERF: change data structures, reserve
1707   DenseMap<Value *, AllocaInst *> AllocaMap;
1708   SmallVector<AllocaInst *, 200> PromotableAllocas;
1709   // Used later to chack that we have enough allocas to store all values
1710   std::size_t NumRematerializedValues = 0;
1711   PromotableAllocas.reserve(Live.size());
1712 
1713   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1714   // "PromotableAllocas"
1715   const DataLayout &DL = F.getParent()->getDataLayout();
1716   auto emitAllocaFor = [&](Value *LiveValue) {
1717     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1718                                         DL.getAllocaAddrSpace(), "",
1719                                         F.getEntryBlock().getFirstNonPHI());
1720     AllocaMap[LiveValue] = Alloca;
1721     PromotableAllocas.push_back(Alloca);
1722   };
1723 
1724   // Emit alloca for each live gc pointer
1725   for (Value *V : Live)
1726     emitAllocaFor(V);
1727 
1728   // Emit allocas for rematerialized values
1729   for (const auto &Info : Records)
1730     for (auto RematerializedValuePair : Info.RematerializedValues) {
1731       Value *OriginalValue = RematerializedValuePair.second;
1732       if (AllocaMap.count(OriginalValue) != 0)
1733         continue;
1734 
1735       emitAllocaFor(OriginalValue);
1736       ++NumRematerializedValues;
1737     }
1738 
1739   // The next two loops are part of the same conceptual operation.  We need to
1740   // insert a store to the alloca after the original def and at each
1741   // redefinition.  We need to insert a load before each use.  These are split
1742   // into distinct loops for performance reasons.
1743 
1744   // Update gc pointer after each statepoint: either store a relocated value or
1745   // null (if no relocated value was found for this gc pointer and it is not a
1746   // gc_result).  This must happen before we update the statepoint with load of
1747   // alloca otherwise we lose the link between statepoint and old def.
1748   for (const auto &Info : Records) {
1749     Value *Statepoint = Info.StatepointToken;
1750 
1751     // This will be used for consistency check
1752     DenseSet<Value *> VisitedLiveValues;
1753 
1754     // Insert stores for normal statepoint gc relocates
1755     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1756 
1757     // In case if it was invoke statepoint
1758     // we will insert stores for exceptional path gc relocates.
1759     if (isa<InvokeInst>(Statepoint)) {
1760       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1761                              VisitedLiveValues);
1762     }
1763 
1764     // Do similar thing with rematerialized values
1765     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1766                                   VisitedLiveValues);
1767 
1768     if (ClobberNonLive) {
1769       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1770       // the gc.statepoint.  This will turn some subtle GC problems into
1771       // slightly easier to debug SEGVs.  Note that on large IR files with
1772       // lots of gc.statepoints this is extremely costly both memory and time
1773       // wise.
1774       SmallVector<AllocaInst *, 64> ToClobber;
1775       for (auto Pair : AllocaMap) {
1776         Value *Def = Pair.first;
1777         AllocaInst *Alloca = Pair.second;
1778 
1779         // This value was relocated
1780         if (VisitedLiveValues.count(Def)) {
1781           continue;
1782         }
1783         ToClobber.push_back(Alloca);
1784       }
1785 
1786       auto InsertClobbersAt = [&](Instruction *IP) {
1787         for (auto *AI : ToClobber) {
1788           auto PT = cast<PointerType>(AI->getAllocatedType());
1789           Constant *CPN = ConstantPointerNull::get(PT);
1790           StoreInst *Store = new StoreInst(CPN, AI);
1791           Store->insertBefore(IP);
1792         }
1793       };
1794 
1795       // Insert the clobbering stores.  These may get intermixed with the
1796       // gc.results and gc.relocates, but that's fine.
1797       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1798         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1799         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1800       } else {
1801         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1802       }
1803     }
1804   }
1805 
1806   // Update use with load allocas and add store for gc_relocated.
1807   for (auto Pair : AllocaMap) {
1808     Value *Def = Pair.first;
1809     AllocaInst *Alloca = Pair.second;
1810 
1811     // We pre-record the uses of allocas so that we dont have to worry about
1812     // later update that changes the user information..
1813 
1814     SmallVector<Instruction *, 20> Uses;
1815     // PERF: trade a linear scan for repeated reallocation
1816     Uses.reserve(Def->getNumUses());
1817     for (User *U : Def->users()) {
1818       if (!isa<ConstantExpr>(U)) {
1819         // If the def has a ConstantExpr use, then the def is either a
1820         // ConstantExpr use itself or null.  In either case
1821         // (recursively in the first, directly in the second), the oop
1822         // it is ultimately dependent on is null and this particular
1823         // use does not need to be fixed up.
1824         Uses.push_back(cast<Instruction>(U));
1825       }
1826     }
1827 
1828     llvm::sort(Uses);
1829     auto Last = std::unique(Uses.begin(), Uses.end());
1830     Uses.erase(Last, Uses.end());
1831 
1832     for (Instruction *Use : Uses) {
1833       if (isa<PHINode>(Use)) {
1834         PHINode *Phi = cast<PHINode>(Use);
1835         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1836           if (Def == Phi->getIncomingValue(i)) {
1837             LoadInst *Load =
1838                 new LoadInst(Alloca->getAllocatedType(), Alloca, "",
1839                              Phi->getIncomingBlock(i)->getTerminator());
1840             Phi->setIncomingValue(i, Load);
1841           }
1842         }
1843       } else {
1844         LoadInst *Load =
1845             new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
1846         Use->replaceUsesOfWith(Def, Load);
1847       }
1848     }
1849 
1850     // Emit store for the initial gc value.  Store must be inserted after load,
1851     // otherwise store will be in alloca's use list and an extra load will be
1852     // inserted before it.
1853     StoreInst *Store = new StoreInst(Def, Alloca);
1854     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1855       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1856         // InvokeInst is a terminator so the store need to be inserted into its
1857         // normal destination block.
1858         BasicBlock *NormalDest = Invoke->getNormalDest();
1859         Store->insertBefore(NormalDest->getFirstNonPHI());
1860       } else {
1861         assert(!Inst->isTerminator() &&
1862                "The only terminator that can produce a value is "
1863                "InvokeInst which is handled above.");
1864         Store->insertAfter(Inst);
1865       }
1866     } else {
1867       assert(isa<Argument>(Def));
1868       Store->insertAfter(cast<Instruction>(Alloca));
1869     }
1870   }
1871 
1872   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1873          "we must have the same allocas with lives");
1874   if (!PromotableAllocas.empty()) {
1875     // Apply mem2reg to promote alloca to SSA
1876     PromoteMemToReg(PromotableAllocas, DT);
1877   }
1878 
1879 #ifndef NDEBUG
1880   for (auto &I : F.getEntryBlock())
1881     if (isa<AllocaInst>(I))
1882       InitialAllocaNum--;
1883   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1884 #endif
1885 }
1886 
1887 /// Implement a unique function which doesn't require we sort the input
1888 /// vector.  Doing so has the effect of changing the output of a couple of
1889 /// tests in ways which make them less useful in testing fused safepoints.
1890 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1891   SmallSet<T, 8> Seen;
1892   Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }),
1893             Vec.end());
1894 }
1895 
1896 /// Insert holders so that each Value is obviously live through the entire
1897 /// lifetime of the call.
1898 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1899                                  SmallVectorImpl<CallInst *> &Holders) {
1900   if (Values.empty())
1901     // No values to hold live, might as well not insert the empty holder
1902     return;
1903 
1904   Module *M = CS.getInstruction()->getModule();
1905   // Use a dummy vararg function to actually hold the values live
1906   FunctionCallee Func = M->getOrInsertFunction(
1907       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
1908   if (CS.isCall()) {
1909     // For call safepoints insert dummy calls right after safepoint
1910     Holders.push_back(CallInst::Create(Func, Values, "",
1911                                        &*++CS.getInstruction()->getIterator()));
1912     return;
1913   }
1914   // For invoke safepooints insert dummy calls both in normal and
1915   // exceptional destination blocks
1916   auto *II = cast<InvokeInst>(CS.getInstruction());
1917   Holders.push_back(CallInst::Create(
1918       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1919   Holders.push_back(CallInst::Create(
1920       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1921 }
1922 
1923 static void findLiveReferences(
1924     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1925     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1926   GCPtrLivenessData OriginalLivenessData;
1927   computeLiveInValues(DT, F, OriginalLivenessData);
1928   for (size_t i = 0; i < records.size(); i++) {
1929     struct PartiallyConstructedSafepointRecord &info = records[i];
1930     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
1931   }
1932 }
1933 
1934 // Helper function for the "rematerializeLiveValues". It walks use chain
1935 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
1936 // the base or a value it cannot process. Only "simple" values are processed
1937 // (currently it is GEP's and casts). The returned root is  examined by the
1938 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
1939 // with all visited values.
1940 static Value* findRematerializableChainToBasePointer(
1941   SmallVectorImpl<Instruction*> &ChainToBase,
1942   Value *CurrentValue) {
1943   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1944     ChainToBase.push_back(GEP);
1945     return findRematerializableChainToBasePointer(ChainToBase,
1946                                                   GEP->getPointerOperand());
1947   }
1948 
1949   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1950     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1951       return CI;
1952 
1953     ChainToBase.push_back(CI);
1954     return findRematerializableChainToBasePointer(ChainToBase,
1955                                                   CI->getOperand(0));
1956   }
1957 
1958   // We have reached the root of the chain, which is either equal to the base or
1959   // is the first unsupported value along the use chain.
1960   return CurrentValue;
1961 }
1962 
1963 // Helper function for the "rematerializeLiveValues". Compute cost of the use
1964 // chain we are going to rematerialize.
1965 static unsigned
1966 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1967                        TargetTransformInfo &TTI) {
1968   unsigned Cost = 0;
1969 
1970   for (Instruction *Instr : Chain) {
1971     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1972       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1973              "non noop cast is found during rematerialization");
1974 
1975       Type *SrcTy = CI->getOperand(0)->getType();
1976       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI);
1977 
1978     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1979       // Cost of the address calculation
1980       Type *ValTy = GEP->getSourceElementType();
1981       Cost += TTI.getAddressComputationCost(ValTy);
1982 
1983       // And cost of the GEP itself
1984       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1985       //       allowed for the external usage)
1986       if (!GEP->hasAllConstantIndices())
1987         Cost += 2;
1988 
1989     } else {
1990       llvm_unreachable("unsupported instruction type during rematerialization");
1991     }
1992   }
1993 
1994   return Cost;
1995 }
1996 
1997 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
1998   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
1999   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
2000       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
2001     return false;
2002   // Map of incoming values and their corresponding basic blocks of
2003   // OrigRootPhi.
2004   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
2005   for (unsigned i = 0; i < PhiNum; i++)
2006     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2007         OrigRootPhi.getIncomingBlock(i);
2008 
2009   // Both current and base PHIs should have same incoming values and
2010   // the same basic blocks corresponding to the incoming values.
2011   for (unsigned i = 0; i < PhiNum; i++) {
2012     auto CIVI =
2013         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2014     if (CIVI == CurrentIncomingValues.end())
2015       return false;
2016     BasicBlock *CurrentIncomingBB = CIVI->second;
2017     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2018       return false;
2019   }
2020   return true;
2021 }
2022 
2023 // From the statepoint live set pick values that are cheaper to recompute then
2024 // to relocate. Remove this values from the live set, rematerialize them after
2025 // statepoint and record them in "Info" structure. Note that similar to
2026 // relocated values we don't do any user adjustments here.
2027 static void rematerializeLiveValues(CallSite CS,
2028                                     PartiallyConstructedSafepointRecord &Info,
2029                                     TargetTransformInfo &TTI) {
2030   const unsigned int ChainLengthThreshold = 10;
2031 
2032   // Record values we are going to delete from this statepoint live set.
2033   // We can not di this in following loop due to iterator invalidation.
2034   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2035 
2036   for (Value *LiveValue: Info.LiveSet) {
2037     // For each live pointer find its defining chain
2038     SmallVector<Instruction *, 3> ChainToBase;
2039     assert(Info.PointerToBase.count(LiveValue));
2040     Value *RootOfChain =
2041       findRematerializableChainToBasePointer(ChainToBase,
2042                                              LiveValue);
2043 
2044     // Nothing to do, or chain is too long
2045     if ( ChainToBase.size() == 0 ||
2046         ChainToBase.size() > ChainLengthThreshold)
2047       continue;
2048 
2049     // Handle the scenario where the RootOfChain is not equal to the
2050     // Base Value, but they are essentially the same phi values.
2051     if (RootOfChain != Info.PointerToBase[LiveValue]) {
2052       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2053       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2054       if (!OrigRootPhi || !AlternateRootPhi)
2055         continue;
2056       // PHI nodes that have the same incoming values, and belonging to the same
2057       // basic blocks are essentially the same SSA value.  When the original phi
2058       // has incoming values with different base pointers, the original phi is
2059       // marked as conflict, and an additional `AlternateRootPhi` with the same
2060       // incoming values get generated by the findBasePointer function. We need
2061       // to identify the newly generated AlternateRootPhi (.base version of phi)
2062       // and RootOfChain (the original phi node itself) are the same, so that we
2063       // can rematerialize the gep and casts. This is a workaround for the
2064       // deficiency in the findBasePointer algorithm.
2065       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2066         continue;
2067       // Now that the phi nodes are proved to be the same, assert that
2068       // findBasePointer's newly generated AlternateRootPhi is present in the
2069       // liveset of the call.
2070       assert(Info.LiveSet.count(AlternateRootPhi));
2071     }
2072     // Compute cost of this chain
2073     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
2074     // TODO: We can also account for cases when we will be able to remove some
2075     //       of the rematerialized values by later optimization passes. I.e if
2076     //       we rematerialized several intersecting chains. Or if original values
2077     //       don't have any uses besides this statepoint.
2078 
2079     // For invokes we need to rematerialize each chain twice - for normal and
2080     // for unwind basic blocks. Model this by multiplying cost by two.
2081     if (CS.isInvoke()) {
2082       Cost *= 2;
2083     }
2084     // If it's too expensive - skip it
2085     if (Cost >= RematerializationThreshold)
2086       continue;
2087 
2088     // Remove value from the live set
2089     LiveValuesToBeDeleted.push_back(LiveValue);
2090 
2091     // Clone instructions and record them inside "Info" structure
2092 
2093     // Walk backwards to visit top-most instructions first
2094     std::reverse(ChainToBase.begin(), ChainToBase.end());
2095 
2096     // Utility function which clones all instructions from "ChainToBase"
2097     // and inserts them before "InsertBefore". Returns rematerialized value
2098     // which should be used after statepoint.
2099     auto rematerializeChain = [&ChainToBase](
2100         Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2101       Instruction *LastClonedValue = nullptr;
2102       Instruction *LastValue = nullptr;
2103       for (Instruction *Instr: ChainToBase) {
2104         // Only GEP's and casts are supported as we need to be careful to not
2105         // introduce any new uses of pointers not in the liveset.
2106         // Note that it's fine to introduce new uses of pointers which were
2107         // otherwise not used after this statepoint.
2108         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2109 
2110         Instruction *ClonedValue = Instr->clone();
2111         ClonedValue->insertBefore(InsertBefore);
2112         ClonedValue->setName(Instr->getName() + ".remat");
2113 
2114         // If it is not first instruction in the chain then it uses previously
2115         // cloned value. We should update it to use cloned value.
2116         if (LastClonedValue) {
2117           assert(LastValue);
2118           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2119 #ifndef NDEBUG
2120           for (auto OpValue : ClonedValue->operand_values()) {
2121             // Assert that cloned instruction does not use any instructions from
2122             // this chain other than LastClonedValue
2123             assert(!is_contained(ChainToBase, OpValue) &&
2124                    "incorrect use in rematerialization chain");
2125             // Assert that the cloned instruction does not use the RootOfChain
2126             // or the AlternateLiveBase.
2127             assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2128           }
2129 #endif
2130         } else {
2131           // For the first instruction, replace the use of unrelocated base i.e.
2132           // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2133           // live set. They have been proved to be the same PHI nodes.  Note
2134           // that the *only* use of the RootOfChain in the ChainToBase list is
2135           // the first Value in the list.
2136           if (RootOfChain != AlternateLiveBase)
2137             ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2138         }
2139 
2140         LastClonedValue = ClonedValue;
2141         LastValue = Instr;
2142       }
2143       assert(LastClonedValue);
2144       return LastClonedValue;
2145     };
2146 
2147     // Different cases for calls and invokes. For invokes we need to clone
2148     // instructions both on normal and unwind path.
2149     if (CS.isCall()) {
2150       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
2151       assert(InsertBefore);
2152       Instruction *RematerializedValue = rematerializeChain(
2153           InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2154       Info.RematerializedValues[RematerializedValue] = LiveValue;
2155     } else {
2156       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
2157 
2158       Instruction *NormalInsertBefore =
2159           &*Invoke->getNormalDest()->getFirstInsertionPt();
2160       Instruction *UnwindInsertBefore =
2161           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2162 
2163       Instruction *NormalRematerializedValue = rematerializeChain(
2164           NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2165       Instruction *UnwindRematerializedValue = rematerializeChain(
2166           UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2167 
2168       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2169       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2170     }
2171   }
2172 
2173   // Remove rematerializaed values from the live set
2174   for (auto LiveValue: LiveValuesToBeDeleted) {
2175     Info.LiveSet.remove(LiveValue);
2176   }
2177 }
2178 
2179 static bool insertParsePoints(Function &F, DominatorTree &DT,
2180                               TargetTransformInfo &TTI,
2181                               SmallVectorImpl<CallSite> &ToUpdate) {
2182 #ifndef NDEBUG
2183   // sanity check the input
2184   std::set<CallSite> Uniqued;
2185   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2186   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2187 
2188   for (CallSite CS : ToUpdate)
2189     assert(CS.getInstruction()->getFunction() == &F);
2190 #endif
2191 
2192   // When inserting gc.relocates for invokes, we need to be able to insert at
2193   // the top of the successor blocks.  See the comment on
2194   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2195   // may restructure the CFG.
2196   for (CallSite CS : ToUpdate) {
2197     if (!CS.isInvoke())
2198       continue;
2199     auto *II = cast<InvokeInst>(CS.getInstruction());
2200     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2201     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2202   }
2203 
2204   // A list of dummy calls added to the IR to keep various values obviously
2205   // live in the IR.  We'll remove all of these when done.
2206   SmallVector<CallInst *, 64> Holders;
2207 
2208   // Insert a dummy call with all of the deopt operands we'll need for the
2209   // actual safepoint insertion as arguments.  This ensures reference operands
2210   // in the deopt argument list are considered live through the safepoint (and
2211   // thus makes sure they get relocated.)
2212   for (CallSite CS : ToUpdate) {
2213     SmallVector<Value *, 64> DeoptValues;
2214 
2215     for (Value *Arg : GetDeoptBundleOperands(CS)) {
2216       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2217              "support for FCA unimplemented");
2218       if (isHandledGCPointerType(Arg->getType()))
2219         DeoptValues.push_back(Arg);
2220     }
2221 
2222     insertUseHolderAfter(CS, DeoptValues, Holders);
2223   }
2224 
2225   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2226 
2227   // A) Identify all gc pointers which are statically live at the given call
2228   // site.
2229   findLiveReferences(F, DT, ToUpdate, Records);
2230 
2231   // B) Find the base pointers for each live pointer
2232   /* scope for caching */ {
2233     // Cache the 'defining value' relation used in the computation and
2234     // insertion of base phis and selects.  This ensures that we don't insert
2235     // large numbers of duplicate base_phis.
2236     DefiningValueMapTy DVCache;
2237 
2238     for (size_t i = 0; i < Records.size(); i++) {
2239       PartiallyConstructedSafepointRecord &info = Records[i];
2240       findBasePointers(DT, DVCache, ToUpdate[i], info);
2241     }
2242   } // end of cache scope
2243 
2244   // The base phi insertion logic (for any safepoint) may have inserted new
2245   // instructions which are now live at some safepoint.  The simplest such
2246   // example is:
2247   // loop:
2248   //   phi a  <-- will be a new base_phi here
2249   //   safepoint 1 <-- that needs to be live here
2250   //   gep a + 1
2251   //   safepoint 2
2252   //   br loop
2253   // We insert some dummy calls after each safepoint to definitely hold live
2254   // the base pointers which were identified for that safepoint.  We'll then
2255   // ask liveness for _every_ base inserted to see what is now live.  Then we
2256   // remove the dummy calls.
2257   Holders.reserve(Holders.size() + Records.size());
2258   for (size_t i = 0; i < Records.size(); i++) {
2259     PartiallyConstructedSafepointRecord &Info = Records[i];
2260 
2261     SmallVector<Value *, 128> Bases;
2262     for (auto Pair : Info.PointerToBase)
2263       Bases.push_back(Pair.second);
2264 
2265     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2266   }
2267 
2268   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2269   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2270   // not the key issue.
2271   recomputeLiveInValues(F, DT, ToUpdate, Records);
2272 
2273   if (PrintBasePointers) {
2274     for (auto &Info : Records) {
2275       errs() << "Base Pairs: (w/Relocation)\n";
2276       for (auto Pair : Info.PointerToBase) {
2277         errs() << " derived ";
2278         Pair.first->printAsOperand(errs(), false);
2279         errs() << " base ";
2280         Pair.second->printAsOperand(errs(), false);
2281         errs() << "\n";
2282       }
2283     }
2284   }
2285 
2286   // It is possible that non-constant live variables have a constant base.  For
2287   // example, a GEP with a variable offset from a global.  In this case we can
2288   // remove it from the liveset.  We already don't add constants to the liveset
2289   // because we assume they won't move at runtime and the GC doesn't need to be
2290   // informed about them.  The same reasoning applies if the base is constant.
2291   // Note that the relocation placement code relies on this filtering for
2292   // correctness as it expects the base to be in the liveset, which isn't true
2293   // if the base is constant.
2294   for (auto &Info : Records)
2295     for (auto &BasePair : Info.PointerToBase)
2296       if (isa<Constant>(BasePair.second))
2297         Info.LiveSet.remove(BasePair.first);
2298 
2299   for (CallInst *CI : Holders)
2300     CI->eraseFromParent();
2301 
2302   Holders.clear();
2303 
2304   // In order to reduce live set of statepoint we might choose to rematerialize
2305   // some values instead of relocating them. This is purely an optimization and
2306   // does not influence correctness.
2307   for (size_t i = 0; i < Records.size(); i++)
2308     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2309 
2310   // We need this to safely RAUW and delete call or invoke return values that
2311   // may themselves be live over a statepoint.  For details, please see usage in
2312   // makeStatepointExplicitImpl.
2313   std::vector<DeferredReplacement> Replacements;
2314 
2315   // Now run through and replace the existing statepoints with new ones with
2316   // the live variables listed.  We do not yet update uses of the values being
2317   // relocated. We have references to live variables that need to
2318   // survive to the last iteration of this loop.  (By construction, the
2319   // previous statepoint can not be a live variable, thus we can and remove
2320   // the old statepoint calls as we go.)
2321   for (size_t i = 0; i < Records.size(); i++)
2322     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2323 
2324   ToUpdate.clear(); // prevent accident use of invalid CallSites
2325 
2326   for (auto &PR : Replacements)
2327     PR.doReplacement();
2328 
2329   Replacements.clear();
2330 
2331   for (auto &Info : Records) {
2332     // These live sets may contain state Value pointers, since we replaced calls
2333     // with operand bundles with calls wrapped in gc.statepoint, and some of
2334     // those calls may have been def'ing live gc pointers.  Clear these out to
2335     // avoid accidentally using them.
2336     //
2337     // TODO: We should create a separate data structure that does not contain
2338     // these live sets, and migrate to using that data structure from this point
2339     // onward.
2340     Info.LiveSet.clear();
2341     Info.PointerToBase.clear();
2342   }
2343 
2344   // Do all the fixups of the original live variables to their relocated selves
2345   SmallVector<Value *, 128> Live;
2346   for (size_t i = 0; i < Records.size(); i++) {
2347     PartiallyConstructedSafepointRecord &Info = Records[i];
2348 
2349     // We can't simply save the live set from the original insertion.  One of
2350     // the live values might be the result of a call which needs a safepoint.
2351     // That Value* no longer exists and we need to use the new gc_result.
2352     // Thankfully, the live set is embedded in the statepoint (and updated), so
2353     // we just grab that.
2354     Statepoint Statepoint(Info.StatepointToken);
2355     Live.insert(Live.end(), Statepoint.gc_args_begin(),
2356                 Statepoint.gc_args_end());
2357 #ifndef NDEBUG
2358     // Do some basic sanity checks on our liveness results before performing
2359     // relocation.  Relocation can and will turn mistakes in liveness results
2360     // into non-sensical code which is must harder to debug.
2361     // TODO: It would be nice to test consistency as well
2362     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2363            "statepoint must be reachable or liveness is meaningless");
2364     for (Value *V : Statepoint.gc_args()) {
2365       if (!isa<Instruction>(V))
2366         // Non-instruction values trivial dominate all possible uses
2367         continue;
2368       auto *LiveInst = cast<Instruction>(V);
2369       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2370              "unreachable values should never be live");
2371       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2372              "basic SSA liveness expectation violated by liveness analysis");
2373     }
2374 #endif
2375   }
2376   unique_unsorted(Live);
2377 
2378 #ifndef NDEBUG
2379   // sanity check
2380   for (auto *Ptr : Live)
2381     assert(isHandledGCPointerType(Ptr->getType()) &&
2382            "must be a gc pointer type");
2383 #endif
2384 
2385   relocationViaAlloca(F, DT, Live, Records);
2386   return !Records.empty();
2387 }
2388 
2389 // Handles both return values and arguments for Functions and CallSites.
2390 template <typename AttrHolder>
2391 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2392                                       unsigned Index) {
2393   AttrBuilder R;
2394   if (AH.getDereferenceableBytes(Index))
2395     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2396                                   AH.getDereferenceableBytes(Index)));
2397   if (AH.getDereferenceableOrNullBytes(Index))
2398     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2399                                   AH.getDereferenceableOrNullBytes(Index)));
2400   if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
2401     R.addAttribute(Attribute::NoAlias);
2402 
2403   if (!R.empty())
2404     AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2405 }
2406 
2407 static void stripNonValidAttributesFromPrototype(Function &F) {
2408   LLVMContext &Ctx = F.getContext();
2409 
2410   for (Argument &A : F.args())
2411     if (isa<PointerType>(A.getType()))
2412       RemoveNonValidAttrAtIndex(Ctx, F,
2413                                 A.getArgNo() + AttributeList::FirstArgIndex);
2414 
2415   if (isa<PointerType>(F.getReturnType()))
2416     RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2417 }
2418 
2419 /// Certain metadata on instructions are invalid after running RS4GC.
2420 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2421 /// optimize functions. We drop such metadata on the instruction.
2422 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2423   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2424     return;
2425   // These are the attributes that are still valid on loads and stores after
2426   // RS4GC.
2427   // The metadata implying dereferenceability and noalias are (conservatively)
2428   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2429   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2430   // touch the entire heap including noalias objects. Note: The reasoning is
2431   // same as stripping the dereferenceability and noalias attributes that are
2432   // analogous to the metadata counterparts.
2433   // We also drop the invariant.load metadata on the load because that metadata
2434   // implies the address operand to the load points to memory that is never
2435   // changed once it became dereferenceable. This is no longer true after RS4GC.
2436   // Similar reasoning applies to invariant.group metadata, which applies to
2437   // loads within a group.
2438   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2439                          LLVMContext::MD_range,
2440                          LLVMContext::MD_alias_scope,
2441                          LLVMContext::MD_nontemporal,
2442                          LLVMContext::MD_nonnull,
2443                          LLVMContext::MD_align,
2444                          LLVMContext::MD_type};
2445 
2446   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2447   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2448 }
2449 
2450 static void stripNonValidDataFromBody(Function &F) {
2451   if (F.empty())
2452     return;
2453 
2454   LLVMContext &Ctx = F.getContext();
2455   MDBuilder Builder(Ctx);
2456 
2457   // Set of invariantstart instructions that we need to remove.
2458   // Use this to avoid invalidating the instruction iterator.
2459   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2460 
2461   for (Instruction &I : instructions(F)) {
2462     // invariant.start on memory location implies that the referenced memory
2463     // location is constant and unchanging. This is no longer true after
2464     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2465     // which frees the entire heap and the presence of invariant.start allows
2466     // the optimizer to sink the load of a memory location past a statepoint,
2467     // which is incorrect.
2468     if (auto *II = dyn_cast<IntrinsicInst>(&I))
2469       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2470         InvariantStartInstructions.push_back(II);
2471         continue;
2472       }
2473 
2474     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2475       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2476       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2477     }
2478 
2479     stripInvalidMetadataFromInstruction(I);
2480 
2481     if (CallSite CS = CallSite(&I)) {
2482       for (int i = 0, e = CS.arg_size(); i != e; i++)
2483         if (isa<PointerType>(CS.getArgument(i)->getType()))
2484           RemoveNonValidAttrAtIndex(Ctx, CS, i + AttributeList::FirstArgIndex);
2485       if (isa<PointerType>(CS.getType()))
2486         RemoveNonValidAttrAtIndex(Ctx, CS, AttributeList::ReturnIndex);
2487     }
2488   }
2489 
2490   // Delete the invariant.start instructions and RAUW undef.
2491   for (auto *II : InvariantStartInstructions) {
2492     II->replaceAllUsesWith(UndefValue::get(II->getType()));
2493     II->eraseFromParent();
2494   }
2495 }
2496 
2497 /// Returns true if this function should be rewritten by this pass.  The main
2498 /// point of this function is as an extension point for custom logic.
2499 static bool shouldRewriteStatepointsIn(Function &F) {
2500   // TODO: This should check the GCStrategy
2501   if (F.hasGC()) {
2502     const auto &FunctionGCName = F.getGC();
2503     const StringRef StatepointExampleName("statepoint-example");
2504     const StringRef CoreCLRName("coreclr");
2505     return (StatepointExampleName == FunctionGCName) ||
2506            (CoreCLRName == FunctionGCName);
2507   } else
2508     return false;
2509 }
2510 
2511 static void stripNonValidData(Module &M) {
2512 #ifndef NDEBUG
2513   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2514 #endif
2515 
2516   for (Function &F : M)
2517     stripNonValidAttributesFromPrototype(F);
2518 
2519   for (Function &F : M)
2520     stripNonValidDataFromBody(F);
2521 }
2522 
2523 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2524                                             TargetTransformInfo &TTI,
2525                                             const TargetLibraryInfo &TLI) {
2526   assert(!F.isDeclaration() && !F.empty() &&
2527          "need function body to rewrite statepoints in");
2528   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2529 
2530   auto NeedsRewrite = [&TLI](Instruction &I) {
2531     if (ImmutableCallSite CS = ImmutableCallSite(&I))
2532       return !callsGCLeafFunction(CS, TLI) && !isStatepoint(CS);
2533     return false;
2534   };
2535 
2536 
2537   // Delete any unreachable statepoints so that we don't have unrewritten
2538   // statepoints surviving this pass.  This makes testing easier and the
2539   // resulting IR less confusing to human readers.
2540   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2541   bool MadeChange = removeUnreachableBlocks(F, nullptr, &DTU);
2542   // Flush the Dominator Tree.
2543   DTU.getDomTree();
2544 
2545   // Gather all the statepoints which need rewritten.  Be careful to only
2546   // consider those in reachable code since we need to ask dominance queries
2547   // when rewriting.  We'll delete the unreachable ones in a moment.
2548   SmallVector<CallSite, 64> ParsePointNeeded;
2549   for (Instruction &I : instructions(F)) {
2550     // TODO: only the ones with the flag set!
2551     if (NeedsRewrite(I)) {
2552       // NOTE removeUnreachableBlocks() is stronger than
2553       // DominatorTree::isReachableFromEntry(). In other words
2554       // removeUnreachableBlocks can remove some blocks for which
2555       // isReachableFromEntry() returns true.
2556       assert(DT.isReachableFromEntry(I.getParent()) &&
2557             "no unreachable blocks expected");
2558       ParsePointNeeded.push_back(CallSite(&I));
2559     }
2560   }
2561 
2562   // Return early if no work to do.
2563   if (ParsePointNeeded.empty())
2564     return MadeChange;
2565 
2566   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2567   // These are created by LCSSA.  They have the effect of increasing the size
2568   // of liveness sets for no good reason.  It may be harder to do this post
2569   // insertion since relocations and base phis can confuse things.
2570   for (BasicBlock &BB : F)
2571     if (BB.getUniquePredecessor()) {
2572       MadeChange = true;
2573       FoldSingleEntryPHINodes(&BB);
2574     }
2575 
2576   // Before we start introducing relocations, we want to tweak the IR a bit to
2577   // avoid unfortunate code generation effects.  The main example is that we
2578   // want to try to make sure the comparison feeding a branch is after any
2579   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2580   // values feeding a branch after relocation.  This is semantically correct,
2581   // but results in extra register pressure since both the pre-relocation and
2582   // post-relocation copies must be available in registers.  For code without
2583   // relocations this is handled elsewhere, but teaching the scheduler to
2584   // reverse the transform we're about to do would be slightly complex.
2585   // Note: This may extend the live range of the inputs to the icmp and thus
2586   // increase the liveset of any statepoint we move over.  This is profitable
2587   // as long as all statepoints are in rare blocks.  If we had in-register
2588   // lowering for live values this would be a much safer transform.
2589   auto getConditionInst = [](Instruction *TI) -> Instruction * {
2590     if (auto *BI = dyn_cast<BranchInst>(TI))
2591       if (BI->isConditional())
2592         return dyn_cast<Instruction>(BI->getCondition());
2593     // TODO: Extend this to handle switches
2594     return nullptr;
2595   };
2596   for (BasicBlock &BB : F) {
2597     Instruction *TI = BB.getTerminator();
2598     if (auto *Cond = getConditionInst(TI))
2599       // TODO: Handle more than just ICmps here.  We should be able to move
2600       // most instructions without side effects or memory access.
2601       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2602         MadeChange = true;
2603         Cond->moveBefore(TI);
2604       }
2605   }
2606 
2607   // Nasty workaround - The base computation code in the main algorithm doesn't
2608   // consider the fact that a GEP can be used to convert a scalar to a vector.
2609   // The right fix for this is to integrate GEPs into the base rewriting
2610   // algorithm properly, this is just a short term workaround to prevent
2611   // crashes by canonicalizing such GEPs into fully vector GEPs.
2612   for (Instruction &I : instructions(F)) {
2613     if (!isa<GetElementPtrInst>(I))
2614       continue;
2615 
2616     unsigned VF = 0;
2617     for (unsigned i = 0; i < I.getNumOperands(); i++)
2618       if (I.getOperand(i)->getType()->isVectorTy()) {
2619         assert(VF == 0 ||
2620                VF == I.getOperand(i)->getType()->getVectorNumElements());
2621         VF = I.getOperand(i)->getType()->getVectorNumElements();
2622       }
2623 
2624     // It's the vector to scalar traversal through the pointer operand which
2625     // confuses base pointer rewriting, so limit ourselves to that case.
2626     if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
2627       IRBuilder<> B(&I);
2628       auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
2629       I.setOperand(0, Splat);
2630       MadeChange = true;
2631     }
2632   }
2633 
2634   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2635   return MadeChange;
2636 }
2637 
2638 // liveness computation via standard dataflow
2639 // -------------------------------------------------------------------
2640 
2641 // TODO: Consider using bitvectors for liveness, the set of potentially
2642 // interesting values should be small and easy to pre-compute.
2643 
2644 /// Compute the live-in set for the location rbegin starting from
2645 /// the live-out set of the basic block
2646 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2647                                 BasicBlock::reverse_iterator End,
2648                                 SetVector<Value *> &LiveTmp) {
2649   for (auto &I : make_range(Begin, End)) {
2650     // KILL/Def - Remove this definition from LiveIn
2651     LiveTmp.remove(&I);
2652 
2653     // Don't consider *uses* in PHI nodes, we handle their contribution to
2654     // predecessor blocks when we seed the LiveOut sets
2655     if (isa<PHINode>(I))
2656       continue;
2657 
2658     // USE - Add to the LiveIn set for this instruction
2659     for (Value *V : I.operands()) {
2660       assert(!isUnhandledGCPointerType(V->getType()) &&
2661              "support for FCA unimplemented");
2662       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2663         // The choice to exclude all things constant here is slightly subtle.
2664         // There are two independent reasons:
2665         // - We assume that things which are constant (from LLVM's definition)
2666         // do not move at runtime.  For example, the address of a global
2667         // variable is fixed, even though it's contents may not be.
2668         // - Second, we can't disallow arbitrary inttoptr constants even
2669         // if the language frontend does.  Optimization passes are free to
2670         // locally exploit facts without respect to global reachability.  This
2671         // can create sections of code which are dynamically unreachable and
2672         // contain just about anything.  (see constants.ll in tests)
2673         LiveTmp.insert(V);
2674       }
2675     }
2676   }
2677 }
2678 
2679 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2680   for (BasicBlock *Succ : successors(BB)) {
2681     for (auto &I : *Succ) {
2682       PHINode *PN = dyn_cast<PHINode>(&I);
2683       if (!PN)
2684         break;
2685 
2686       Value *V = PN->getIncomingValueForBlock(BB);
2687       assert(!isUnhandledGCPointerType(V->getType()) &&
2688              "support for FCA unimplemented");
2689       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2690         LiveTmp.insert(V);
2691     }
2692   }
2693 }
2694 
2695 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2696   SetVector<Value *> KillSet;
2697   for (Instruction &I : *BB)
2698     if (isHandledGCPointerType(I.getType()))
2699       KillSet.insert(&I);
2700   return KillSet;
2701 }
2702 
2703 #ifndef NDEBUG
2704 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2705 /// sanity check for the liveness computation.
2706 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2707                           Instruction *TI, bool TermOkay = false) {
2708   for (Value *V : Live) {
2709     if (auto *I = dyn_cast<Instruction>(V)) {
2710       // The terminator can be a member of the LiveOut set.  LLVM's definition
2711       // of instruction dominance states that V does not dominate itself.  As
2712       // such, we need to special case this to allow it.
2713       if (TermOkay && TI == I)
2714         continue;
2715       assert(DT.dominates(I, TI) &&
2716              "basic SSA liveness expectation violated by liveness analysis");
2717     }
2718   }
2719 }
2720 
2721 /// Check that all the liveness sets used during the computation of liveness
2722 /// obey basic SSA properties.  This is useful for finding cases where we miss
2723 /// a def.
2724 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2725                           BasicBlock &BB) {
2726   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2727   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2728   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2729 }
2730 #endif
2731 
2732 static void computeLiveInValues(DominatorTree &DT, Function &F,
2733                                 GCPtrLivenessData &Data) {
2734   SmallSetVector<BasicBlock *, 32> Worklist;
2735 
2736   // Seed the liveness for each individual block
2737   for (BasicBlock &BB : F) {
2738     Data.KillSet[&BB] = computeKillSet(&BB);
2739     Data.LiveSet[&BB].clear();
2740     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2741 
2742 #ifndef NDEBUG
2743     for (Value *Kill : Data.KillSet[&BB])
2744       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2745 #endif
2746 
2747     Data.LiveOut[&BB] = SetVector<Value *>();
2748     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2749     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2750     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2751     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2752     if (!Data.LiveIn[&BB].empty())
2753       Worklist.insert(pred_begin(&BB), pred_end(&BB));
2754   }
2755 
2756   // Propagate that liveness until stable
2757   while (!Worklist.empty()) {
2758     BasicBlock *BB = Worklist.pop_back_val();
2759 
2760     // Compute our new liveout set, then exit early if it hasn't changed despite
2761     // the contribution of our successor.
2762     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2763     const auto OldLiveOutSize = LiveOut.size();
2764     for (BasicBlock *Succ : successors(BB)) {
2765       assert(Data.LiveIn.count(Succ));
2766       LiveOut.set_union(Data.LiveIn[Succ]);
2767     }
2768     // assert OutLiveOut is a subset of LiveOut
2769     if (OldLiveOutSize == LiveOut.size()) {
2770       // If the sets are the same size, then we didn't actually add anything
2771       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
2772       // hasn't changed.
2773       continue;
2774     }
2775     Data.LiveOut[BB] = LiveOut;
2776 
2777     // Apply the effects of this basic block
2778     SetVector<Value *> LiveTmp = LiveOut;
2779     LiveTmp.set_union(Data.LiveSet[BB]);
2780     LiveTmp.set_subtract(Data.KillSet[BB]);
2781 
2782     assert(Data.LiveIn.count(BB));
2783     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2784     // assert: OldLiveIn is a subset of LiveTmp
2785     if (OldLiveIn.size() != LiveTmp.size()) {
2786       Data.LiveIn[BB] = LiveTmp;
2787       Worklist.insert(pred_begin(BB), pred_end(BB));
2788     }
2789   } // while (!Worklist.empty())
2790 
2791 #ifndef NDEBUG
2792   // Sanity check our output against SSA properties.  This helps catch any
2793   // missing kills during the above iteration.
2794   for (BasicBlock &BB : F)
2795     checkBasicSSA(DT, Data, BB);
2796 #endif
2797 }
2798 
2799 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2800                               StatepointLiveSetTy &Out) {
2801   BasicBlock *BB = Inst->getParent();
2802 
2803   // Note: The copy is intentional and required
2804   assert(Data.LiveOut.count(BB));
2805   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2806 
2807   // We want to handle the statepoint itself oddly.  It's
2808   // call result is not live (normal), nor are it's arguments
2809   // (unless they're used again later).  This adjustment is
2810   // specifically what we need to relocate
2811   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
2812                       LiveOut);
2813   LiveOut.remove(Inst);
2814   Out.insert(LiveOut.begin(), LiveOut.end());
2815 }
2816 
2817 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2818                                   CallSite CS,
2819                                   PartiallyConstructedSafepointRecord &Info) {
2820   Instruction *Inst = CS.getInstruction();
2821   StatepointLiveSetTy Updated;
2822   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2823 
2824   // We may have base pointers which are now live that weren't before.  We need
2825   // to update the PointerToBase structure to reflect this.
2826   for (auto V : Updated)
2827     if (Info.PointerToBase.insert({V, V}).second) {
2828       assert(isKnownBaseResult(V) &&
2829              "Can't find base for unexpected live value!");
2830       continue;
2831     }
2832 
2833 #ifndef NDEBUG
2834   for (auto V : Updated)
2835     assert(Info.PointerToBase.count(V) &&
2836            "Must be able to find base for live value!");
2837 #endif
2838 
2839   // Remove any stale base mappings - this can happen since our liveness is
2840   // more precise then the one inherent in the base pointer analysis.
2841   DenseSet<Value *> ToErase;
2842   for (auto KVPair : Info.PointerToBase)
2843     if (!Updated.count(KVPair.first))
2844       ToErase.insert(KVPair.first);
2845 
2846   for (auto *V : ToErase)
2847     Info.PointerToBase.erase(V);
2848 
2849 #ifndef NDEBUG
2850   for (auto KVPair : Info.PointerToBase)
2851     assert(Updated.count(KVPair.first) && "record for non-live value");
2852 #endif
2853 
2854   Info.LiveSet = Updated;
2855 }
2856