xref: /llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 0cac726a00a2be06a959a89efe6587dba28e5822)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Rewrite call/invoke instructions so as to make potential relocations
11 // performed by the garbage collector explicit in the IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/DomTreeUpdater.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InstIterator.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/Statepoint.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueHandle.h"
59 #include "llvm/Pass.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Transforms/Scalar.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstddef>
73 #include <cstdint>
74 #include <iterator>
75 #include <set>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
81 
82 using namespace llvm;
83 
84 // Print the liveset found at the insert location
85 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
86                                   cl::init(false));
87 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
88                                       cl::init(false));
89 
90 // Print out the base pointers for debugging
91 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
92                                        cl::init(false));
93 
94 // Cost threshold measuring when it is profitable to rematerialize value instead
95 // of relocating it
96 static cl::opt<unsigned>
97 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
98                            cl::init(6));
99 
100 #ifdef EXPENSIVE_CHECKS
101 static bool ClobberNonLive = true;
102 #else
103 static bool ClobberNonLive = false;
104 #endif
105 
106 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
107                                                   cl::location(ClobberNonLive),
108                                                   cl::Hidden);
109 
110 static cl::opt<bool>
111     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
112                                    cl::Hidden, cl::init(true));
113 
114 /// The IR fed into RewriteStatepointsForGC may have had attributes and
115 /// metadata implying dereferenceability that are no longer valid/correct after
116 /// RewriteStatepointsForGC has run. This is because semantically, after
117 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
118 /// heap. stripNonValidData (conservatively) restores
119 /// correctness by erasing all attributes in the module that externally imply
120 /// dereferenceability. Similar reasoning also applies to the noalias
121 /// attributes and metadata. gc.statepoint can touch the entire heap including
122 /// noalias objects.
123 /// Apart from attributes and metadata, we also remove instructions that imply
124 /// constant physical memory: llvm.invariant.start.
125 static void stripNonValidData(Module &M);
126 
127 static bool shouldRewriteStatepointsIn(Function &F);
128 
129 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
130                                                ModuleAnalysisManager &AM) {
131   bool Changed = false;
132   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
133   for (Function &F : M) {
134     // Nothing to do for declarations.
135     if (F.isDeclaration() || F.empty())
136       continue;
137 
138     // Policy choice says not to rewrite - the most common reason is that we're
139     // compiling code without a GCStrategy.
140     if (!shouldRewriteStatepointsIn(F))
141       continue;
142 
143     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
144     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
145     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
146     Changed |= runOnFunction(F, DT, TTI, TLI);
147   }
148   if (!Changed)
149     return PreservedAnalyses::all();
150 
151   // stripNonValidData asserts that shouldRewriteStatepointsIn
152   // returns true for at least one function in the module.  Since at least
153   // one function changed, we know that the precondition is satisfied.
154   stripNonValidData(M);
155 
156   PreservedAnalyses PA;
157   PA.preserve<TargetIRAnalysis>();
158   PA.preserve<TargetLibraryAnalysis>();
159   return PA;
160 }
161 
162 namespace {
163 
164 class RewriteStatepointsForGCLegacyPass : public ModulePass {
165   RewriteStatepointsForGC Impl;
166 
167 public:
168   static char ID; // Pass identification, replacement for typeid
169 
170   RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
171     initializeRewriteStatepointsForGCLegacyPassPass(
172         *PassRegistry::getPassRegistry());
173   }
174 
175   bool runOnModule(Module &M) override {
176     bool Changed = false;
177     const TargetLibraryInfo &TLI =
178         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
179     for (Function &F : M) {
180       // Nothing to do for declarations.
181       if (F.isDeclaration() || F.empty())
182         continue;
183 
184       // Policy choice says not to rewrite - the most common reason is that
185       // we're compiling code without a GCStrategy.
186       if (!shouldRewriteStatepointsIn(F))
187         continue;
188 
189       TargetTransformInfo &TTI =
190           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
191       auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
192 
193       Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
194     }
195 
196     if (!Changed)
197       return false;
198 
199     // stripNonValidData asserts that shouldRewriteStatepointsIn
200     // returns true for at least one function in the module.  Since at least
201     // one function changed, we know that the precondition is satisfied.
202     stripNonValidData(M);
203     return true;
204   }
205 
206   void getAnalysisUsage(AnalysisUsage &AU) const override {
207     // We add and rewrite a bunch of instructions, but don't really do much
208     // else.  We could in theory preserve a lot more analyses here.
209     AU.addRequired<DominatorTreeWrapperPass>();
210     AU.addRequired<TargetTransformInfoWrapperPass>();
211     AU.addRequired<TargetLibraryInfoWrapperPass>();
212   }
213 };
214 
215 } // end anonymous namespace
216 
217 char RewriteStatepointsForGCLegacyPass::ID = 0;
218 
219 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
220   return new RewriteStatepointsForGCLegacyPass();
221 }
222 
223 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
224                       "rewrite-statepoints-for-gc",
225                       "Make relocations explicit at statepoints", false, false)
226 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
227 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
228 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
229                     "rewrite-statepoints-for-gc",
230                     "Make relocations explicit at statepoints", false, false)
231 
232 namespace {
233 
234 struct GCPtrLivenessData {
235   /// Values defined in this block.
236   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
237 
238   /// Values used in this block (and thus live); does not included values
239   /// killed within this block.
240   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
241 
242   /// Values live into this basic block (i.e. used by any
243   /// instruction in this basic block or ones reachable from here)
244   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
245 
246   /// Values live out of this basic block (i.e. live into
247   /// any successor block)
248   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
249 };
250 
251 // The type of the internal cache used inside the findBasePointers family
252 // of functions.  From the callers perspective, this is an opaque type and
253 // should not be inspected.
254 //
255 // In the actual implementation this caches two relations:
256 // - The base relation itself (i.e. this pointer is based on that one)
257 // - The base defining value relation (i.e. before base_phi insertion)
258 // Generally, after the execution of a full findBasePointer call, only the
259 // base relation will remain.  Internally, we add a mixture of the two
260 // types, then update all the second type to the first type
261 using DefiningValueMapTy = MapVector<Value *, Value *>;
262 using StatepointLiveSetTy = SetVector<Value *>;
263 using RematerializedValueMapTy =
264     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
265 
266 struct PartiallyConstructedSafepointRecord {
267   /// The set of values known to be live across this safepoint
268   StatepointLiveSetTy LiveSet;
269 
270   /// Mapping from live pointers to a base-defining-value
271   MapVector<Value *, Value *> PointerToBase;
272 
273   /// The *new* gc.statepoint instruction itself.  This produces the token
274   /// that normal path gc.relocates and the gc.result are tied to.
275   Instruction *StatepointToken;
276 
277   /// Instruction to which exceptional gc relocates are attached
278   /// Makes it easier to iterate through them during relocationViaAlloca.
279   Instruction *UnwindToken;
280 
281   /// Record live values we are rematerialized instead of relocating.
282   /// They are not included into 'LiveSet' field.
283   /// Maps rematerialized copy to it's original value.
284   RematerializedValueMapTy RematerializedValues;
285 };
286 
287 } // end anonymous namespace
288 
289 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
290   Optional<OperandBundleUse> DeoptBundle =
291       CS.getOperandBundle(LLVMContext::OB_deopt);
292 
293   if (!DeoptBundle.hasValue()) {
294     assert(AllowStatepointWithNoDeoptInfo &&
295            "Found non-leaf call without deopt info!");
296     return None;
297   }
298 
299   return DeoptBundle.getValue().Inputs;
300 }
301 
302 /// Compute the live-in set for every basic block in the function
303 static void computeLiveInValues(DominatorTree &DT, Function &F,
304                                 GCPtrLivenessData &Data);
305 
306 /// Given results from the dataflow liveness computation, find the set of live
307 /// Values at a particular instruction.
308 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
309                               StatepointLiveSetTy &out);
310 
311 // TODO: Once we can get to the GCStrategy, this becomes
312 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
313 
314 static bool isGCPointerType(Type *T) {
315   if (auto *PT = dyn_cast<PointerType>(T))
316     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
317     // GC managed heap.  We know that a pointer into this heap needs to be
318     // updated and that no other pointer does.
319     return PT->getAddressSpace() == 1;
320   return false;
321 }
322 
323 // Return true if this type is one which a) is a gc pointer or contains a GC
324 // pointer and b) is of a type this code expects to encounter as a live value.
325 // (The insertion code will assert that a type which matches (a) and not (b)
326 // is not encountered.)
327 static bool isHandledGCPointerType(Type *T) {
328   // We fully support gc pointers
329   if (isGCPointerType(T))
330     return true;
331   // We partially support vectors of gc pointers. The code will assert if it
332   // can't handle something.
333   if (auto VT = dyn_cast<VectorType>(T))
334     if (isGCPointerType(VT->getElementType()))
335       return true;
336   return false;
337 }
338 
339 #ifndef NDEBUG
340 /// Returns true if this type contains a gc pointer whether we know how to
341 /// handle that type or not.
342 static bool containsGCPtrType(Type *Ty) {
343   if (isGCPointerType(Ty))
344     return true;
345   if (VectorType *VT = dyn_cast<VectorType>(Ty))
346     return isGCPointerType(VT->getScalarType());
347   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
348     return containsGCPtrType(AT->getElementType());
349   if (StructType *ST = dyn_cast<StructType>(Ty))
350     return llvm::any_of(ST->subtypes(), containsGCPtrType);
351   return false;
352 }
353 
354 // Returns true if this is a type which a) is a gc pointer or contains a GC
355 // pointer and b) is of a type which the code doesn't expect (i.e. first class
356 // aggregates).  Used to trip assertions.
357 static bool isUnhandledGCPointerType(Type *Ty) {
358   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
359 }
360 #endif
361 
362 // Return the name of the value suffixed with the provided value, or if the
363 // value didn't have a name, the default value specified.
364 static std::string suffixed_name_or(Value *V, StringRef Suffix,
365                                     StringRef DefaultName) {
366   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
367 }
368 
369 // Conservatively identifies any definitions which might be live at the
370 // given instruction. The  analysis is performed immediately before the
371 // given instruction. Values defined by that instruction are not considered
372 // live.  Values used by that instruction are considered live.
373 static void
374 analyzeParsePointLiveness(DominatorTree &DT,
375                           GCPtrLivenessData &OriginalLivenessData, CallSite CS,
376                           PartiallyConstructedSafepointRecord &Result) {
377   Instruction *Inst = CS.getInstruction();
378 
379   StatepointLiveSetTy LiveSet;
380   findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet);
381 
382   if (PrintLiveSet) {
383     dbgs() << "Live Variables:\n";
384     for (Value *V : LiveSet)
385       dbgs() << " " << V->getName() << " " << *V << "\n";
386   }
387   if (PrintLiveSetSize) {
388     dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
389     dbgs() << "Number live values: " << LiveSet.size() << "\n";
390   }
391   Result.LiveSet = LiveSet;
392 }
393 
394 static bool isKnownBaseResult(Value *V);
395 
396 namespace {
397 
398 /// A single base defining value - An immediate base defining value for an
399 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
400 /// For instructions which have multiple pointer [vector] inputs or that
401 /// transition between vector and scalar types, there is no immediate base
402 /// defining value.  The 'base defining value' for 'Def' is the transitive
403 /// closure of this relation stopping at the first instruction which has no
404 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
405 /// but it can also be an arbitrary derived pointer.
406 struct BaseDefiningValueResult {
407   /// Contains the value which is the base defining value.
408   Value * const BDV;
409 
410   /// True if the base defining value is also known to be an actual base
411   /// pointer.
412   const bool IsKnownBase;
413 
414   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
415     : BDV(BDV), IsKnownBase(IsKnownBase) {
416 #ifndef NDEBUG
417     // Check consistency between new and old means of checking whether a BDV is
418     // a base.
419     bool MustBeBase = isKnownBaseResult(BDV);
420     assert(!MustBeBase || MustBeBase == IsKnownBase);
421 #endif
422   }
423 };
424 
425 } // end anonymous namespace
426 
427 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
428 
429 /// Return a base defining value for the 'Index' element of the given vector
430 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
431 /// 'I'.  As an optimization, this method will try to determine when the
432 /// element is known to already be a base pointer.  If this can be established,
433 /// the second value in the returned pair will be true.  Note that either a
434 /// vector or a pointer typed value can be returned.  For the former, the
435 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
436 /// If the later, the return pointer is a BDV (or possibly a base) for the
437 /// particular element in 'I'.
438 static BaseDefiningValueResult
439 findBaseDefiningValueOfVector(Value *I) {
440   // Each case parallels findBaseDefiningValue below, see that code for
441   // detailed motivation.
442 
443   if (isa<Argument>(I))
444     // An incoming argument to the function is a base pointer
445     return BaseDefiningValueResult(I, true);
446 
447   if (isa<Constant>(I))
448     // Base of constant vector consists only of constant null pointers.
449     // For reasoning see similar case inside 'findBaseDefiningValue' function.
450     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
451                                    true);
452 
453   if (isa<LoadInst>(I))
454     return BaseDefiningValueResult(I, true);
455 
456   if (isa<InsertElementInst>(I))
457     // We don't know whether this vector contains entirely base pointers or
458     // not.  To be conservatively correct, we treat it as a BDV and will
459     // duplicate code as needed to construct a parallel vector of bases.
460     return BaseDefiningValueResult(I, false);
461 
462   if (isa<ShuffleVectorInst>(I))
463     // We don't know whether this vector contains entirely base pointers or
464     // not.  To be conservatively correct, we treat it as a BDV and will
465     // duplicate code as needed to construct a parallel vector of bases.
466     // TODO: There a number of local optimizations which could be applied here
467     // for particular sufflevector patterns.
468     return BaseDefiningValueResult(I, false);
469 
470   // The behavior of getelementptr instructions is the same for vector and
471   // non-vector data types.
472   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
473     return findBaseDefiningValue(GEP->getPointerOperand());
474 
475   // If the pointer comes through a bitcast of a vector of pointers to
476   // a vector of another type of pointer, then look through the bitcast
477   if (auto *BC = dyn_cast<BitCastInst>(I))
478     return findBaseDefiningValue(BC->getOperand(0));
479 
480   // We assume that functions in the source language only return base
481   // pointers.  This should probably be generalized via attributes to support
482   // both source language and internal functions.
483   if (isa<CallInst>(I) || isa<InvokeInst>(I))
484     return BaseDefiningValueResult(I, true);
485 
486   // A PHI or Select is a base defining value.  The outer findBasePointer
487   // algorithm is responsible for constructing a base value for this BDV.
488   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
489          "unknown vector instruction - no base found for vector element");
490   return BaseDefiningValueResult(I, false);
491 }
492 
493 /// Helper function for findBasePointer - Will return a value which either a)
494 /// defines the base pointer for the input, b) blocks the simple search
495 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
496 /// from pointer to vector type or back.
497 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
498   assert(I->getType()->isPtrOrPtrVectorTy() &&
499          "Illegal to ask for the base pointer of a non-pointer type");
500 
501   if (I->getType()->isVectorTy())
502     return findBaseDefiningValueOfVector(I);
503 
504   if (isa<Argument>(I))
505     // An incoming argument to the function is a base pointer
506     // We should have never reached here if this argument isn't an gc value
507     return BaseDefiningValueResult(I, true);
508 
509   if (isa<Constant>(I)) {
510     // We assume that objects with a constant base (e.g. a global) can't move
511     // and don't need to be reported to the collector because they are always
512     // live. Besides global references, all kinds of constants (e.g. undef,
513     // constant expressions, null pointers) can be introduced by the inliner or
514     // the optimizer, especially on dynamically dead paths.
515     // Here we treat all of them as having single null base. By doing this we
516     // trying to avoid problems reporting various conflicts in a form of
517     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
518     // See constant.ll file for relevant test cases.
519 
520     return BaseDefiningValueResult(
521         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
522   }
523 
524   if (CastInst *CI = dyn_cast<CastInst>(I)) {
525     Value *Def = CI->stripPointerCasts();
526     // If stripping pointer casts changes the address space there is an
527     // addrspacecast in between.
528     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
529                cast<PointerType>(CI->getType())->getAddressSpace() &&
530            "unsupported addrspacecast");
531     // If we find a cast instruction here, it means we've found a cast which is
532     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
533     // handle int->ptr conversion.
534     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
535     return findBaseDefiningValue(Def);
536   }
537 
538   if (isa<LoadInst>(I))
539     // The value loaded is an gc base itself
540     return BaseDefiningValueResult(I, true);
541 
542   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
543     // The base of this GEP is the base
544     return findBaseDefiningValue(GEP->getPointerOperand());
545 
546   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
547     switch (II->getIntrinsicID()) {
548     default:
549       // fall through to general call handling
550       break;
551     case Intrinsic::experimental_gc_statepoint:
552       llvm_unreachable("statepoints don't produce pointers");
553     case Intrinsic::experimental_gc_relocate:
554       // Rerunning safepoint insertion after safepoints are already
555       // inserted is not supported.  It could probably be made to work,
556       // but why are you doing this?  There's no good reason.
557       llvm_unreachable("repeat safepoint insertion is not supported");
558     case Intrinsic::gcroot:
559       // Currently, this mechanism hasn't been extended to work with gcroot.
560       // There's no reason it couldn't be, but I haven't thought about the
561       // implications much.
562       llvm_unreachable(
563           "interaction with the gcroot mechanism is not supported");
564     }
565   }
566   // We assume that functions in the source language only return base
567   // pointers.  This should probably be generalized via attributes to support
568   // both source language and internal functions.
569   if (isa<CallInst>(I) || isa<InvokeInst>(I))
570     return BaseDefiningValueResult(I, true);
571 
572   // TODO: I have absolutely no idea how to implement this part yet.  It's not
573   // necessarily hard, I just haven't really looked at it yet.
574   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
575 
576   if (isa<AtomicCmpXchgInst>(I))
577     // A CAS is effectively a atomic store and load combined under a
578     // predicate.  From the perspective of base pointers, we just treat it
579     // like a load.
580     return BaseDefiningValueResult(I, true);
581 
582   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
583                                    "binary ops which don't apply to pointers");
584 
585   // The aggregate ops.  Aggregates can either be in the heap or on the
586   // stack, but in either case, this is simply a field load.  As a result,
587   // this is a defining definition of the base just like a load is.
588   if (isa<ExtractValueInst>(I))
589     return BaseDefiningValueResult(I, true);
590 
591   // We should never see an insert vector since that would require we be
592   // tracing back a struct value not a pointer value.
593   assert(!isa<InsertValueInst>(I) &&
594          "Base pointer for a struct is meaningless");
595 
596   // An extractelement produces a base result exactly when it's input does.
597   // We may need to insert a parallel instruction to extract the appropriate
598   // element out of the base vector corresponding to the input. Given this,
599   // it's analogous to the phi and select case even though it's not a merge.
600   if (isa<ExtractElementInst>(I))
601     // Note: There a lot of obvious peephole cases here.  This are deliberately
602     // handled after the main base pointer inference algorithm to make writing
603     // test cases to exercise that code easier.
604     return BaseDefiningValueResult(I, false);
605 
606   // The last two cases here don't return a base pointer.  Instead, they
607   // return a value which dynamically selects from among several base
608   // derived pointers (each with it's own base potentially).  It's the job of
609   // the caller to resolve these.
610   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
611          "missing instruction case in findBaseDefiningValing");
612   return BaseDefiningValueResult(I, false);
613 }
614 
615 /// Returns the base defining value for this value.
616 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
617   Value *&Cached = Cache[I];
618   if (!Cached) {
619     Cached = findBaseDefiningValue(I).BDV;
620     LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
621                       << Cached->getName() << "\n");
622   }
623   assert(Cache[I] != nullptr);
624   return Cached;
625 }
626 
627 /// Return a base pointer for this value if known.  Otherwise, return it's
628 /// base defining value.
629 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
630   Value *Def = findBaseDefiningValueCached(I, Cache);
631   auto Found = Cache.find(Def);
632   if (Found != Cache.end()) {
633     // Either a base-of relation, or a self reference.  Caller must check.
634     return Found->second;
635   }
636   // Only a BDV available
637   return Def;
638 }
639 
640 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
641 /// is it known to be a base pointer?  Or do we need to continue searching.
642 static bool isKnownBaseResult(Value *V) {
643   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
644       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
645       !isa<ShuffleVectorInst>(V)) {
646     // no recursion possible
647     return true;
648   }
649   if (isa<Instruction>(V) &&
650       cast<Instruction>(V)->getMetadata("is_base_value")) {
651     // This is a previously inserted base phi or select.  We know
652     // that this is a base value.
653     return true;
654   }
655 
656   // We need to keep searching
657   return false;
658 }
659 
660 namespace {
661 
662 /// Models the state of a single base defining value in the findBasePointer
663 /// algorithm for determining where a new instruction is needed to propagate
664 /// the base of this BDV.
665 class BDVState {
666 public:
667   enum Status { Unknown, Base, Conflict };
668 
669   BDVState() : BaseValue(nullptr) {}
670 
671   explicit BDVState(Status Status, Value *BaseValue = nullptr)
672       : Status(Status), BaseValue(BaseValue) {
673     assert(Status != Base || BaseValue);
674   }
675 
676   explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
677 
678   Status getStatus() const { return Status; }
679   Value *getBaseValue() const { return BaseValue; }
680 
681   bool isBase() const { return getStatus() == Base; }
682   bool isUnknown() const { return getStatus() == Unknown; }
683   bool isConflict() const { return getStatus() == Conflict; }
684 
685   bool operator==(const BDVState &Other) const {
686     return BaseValue == Other.BaseValue && Status == Other.Status;
687   }
688 
689   bool operator!=(const BDVState &other) const { return !(*this == other); }
690 
691   LLVM_DUMP_METHOD
692   void dump() const {
693     print(dbgs());
694     dbgs() << '\n';
695   }
696 
697   void print(raw_ostream &OS) const {
698     switch (getStatus()) {
699     case Unknown:
700       OS << "U";
701       break;
702     case Base:
703       OS << "B";
704       break;
705     case Conflict:
706       OS << "C";
707       break;
708     }
709     OS << " (" << getBaseValue() << " - "
710        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
711   }
712 
713 private:
714   Status Status = Unknown;
715   AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
716 };
717 
718 } // end anonymous namespace
719 
720 #ifndef NDEBUG
721 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
722   State.print(OS);
723   return OS;
724 }
725 #endif
726 
727 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
728   switch (LHS.getStatus()) {
729   case BDVState::Unknown:
730     return RHS;
731 
732   case BDVState::Base:
733     assert(LHS.getBaseValue() && "can't be null");
734     if (RHS.isUnknown())
735       return LHS;
736 
737     if (RHS.isBase()) {
738       if (LHS.getBaseValue() == RHS.getBaseValue()) {
739         assert(LHS == RHS && "equality broken!");
740         return LHS;
741       }
742       return BDVState(BDVState::Conflict);
743     }
744     assert(RHS.isConflict() && "only three states!");
745     return BDVState(BDVState::Conflict);
746 
747   case BDVState::Conflict:
748     return LHS;
749   }
750   llvm_unreachable("only three states!");
751 }
752 
753 // Values of type BDVState form a lattice, and this function implements the meet
754 // operation.
755 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
756   BDVState Result = meetBDVStateImpl(LHS, RHS);
757   assert(Result == meetBDVStateImpl(RHS, LHS) &&
758          "Math is wrong: meet does not commute!");
759   return Result;
760 }
761 
762 /// For a given value or instruction, figure out what base ptr its derived from.
763 /// For gc objects, this is simply itself.  On success, returns a value which is
764 /// the base pointer.  (This is reliable and can be used for relocation.)  On
765 /// failure, returns nullptr.
766 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
767   Value *Def = findBaseOrBDV(I, Cache);
768 
769   if (isKnownBaseResult(Def))
770     return Def;
771 
772   // Here's the rough algorithm:
773   // - For every SSA value, construct a mapping to either an actual base
774   //   pointer or a PHI which obscures the base pointer.
775   // - Construct a mapping from PHI to unknown TOP state.  Use an
776   //   optimistic algorithm to propagate base pointer information.  Lattice
777   //   looks like:
778   //   UNKNOWN
779   //   b1 b2 b3 b4
780   //   CONFLICT
781   //   When algorithm terminates, all PHIs will either have a single concrete
782   //   base or be in a conflict state.
783   // - For every conflict, insert a dummy PHI node without arguments.  Add
784   //   these to the base[Instruction] = BasePtr mapping.  For every
785   //   non-conflict, add the actual base.
786   //  - For every conflict, add arguments for the base[a] of each input
787   //   arguments.
788   //
789   // Note: A simpler form of this would be to add the conflict form of all
790   // PHIs without running the optimistic algorithm.  This would be
791   // analogous to pessimistic data flow and would likely lead to an
792   // overall worse solution.
793 
794 #ifndef NDEBUG
795   auto isExpectedBDVType = [](Value *BDV) {
796     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
797            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
798            isa<ShuffleVectorInst>(BDV);
799   };
800 #endif
801 
802   // Once populated, will contain a mapping from each potentially non-base BDV
803   // to a lattice value (described above) which corresponds to that BDV.
804   // We use the order of insertion (DFS over the def/use graph) to provide a
805   // stable deterministic ordering for visiting DenseMaps (which are unordered)
806   // below.  This is important for deterministic compilation.
807   MapVector<Value *, BDVState> States;
808 
809   // Recursively fill in all base defining values reachable from the initial
810   // one for which we don't already know a definite base value for
811   /* scope */ {
812     SmallVector<Value*, 16> Worklist;
813     Worklist.push_back(Def);
814     States.insert({Def, BDVState()});
815     while (!Worklist.empty()) {
816       Value *Current = Worklist.pop_back_val();
817       assert(!isKnownBaseResult(Current) && "why did it get added?");
818 
819       auto visitIncomingValue = [&](Value *InVal) {
820         Value *Base = findBaseOrBDV(InVal, Cache);
821         if (isKnownBaseResult(Base))
822           // Known bases won't need new instructions introduced and can be
823           // ignored safely
824           return;
825         assert(isExpectedBDVType(Base) && "the only non-base values "
826                "we see should be base defining values");
827         if (States.insert(std::make_pair(Base, BDVState())).second)
828           Worklist.push_back(Base);
829       };
830       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
831         for (Value *InVal : PN->incoming_values())
832           visitIncomingValue(InVal);
833       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
834         visitIncomingValue(SI->getTrueValue());
835         visitIncomingValue(SI->getFalseValue());
836       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
837         visitIncomingValue(EE->getVectorOperand());
838       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
839         visitIncomingValue(IE->getOperand(0)); // vector operand
840         visitIncomingValue(IE->getOperand(1)); // scalar operand
841       } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
842         visitIncomingValue(SV->getOperand(0));
843         visitIncomingValue(SV->getOperand(1));
844       }
845       else {
846         llvm_unreachable("Unimplemented instruction case");
847       }
848     }
849   }
850 
851 #ifndef NDEBUG
852   LLVM_DEBUG(dbgs() << "States after initialization:\n");
853   for (auto Pair : States) {
854     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
855   }
856 #endif
857 
858   // Return a phi state for a base defining value.  We'll generate a new
859   // base state for known bases and expect to find a cached state otherwise.
860   auto getStateForBDV = [&](Value *baseValue) {
861     if (isKnownBaseResult(baseValue))
862       return BDVState(baseValue);
863     auto I = States.find(baseValue);
864     assert(I != States.end() && "lookup failed!");
865     return I->second;
866   };
867 
868   bool Progress = true;
869   while (Progress) {
870 #ifndef NDEBUG
871     const size_t OldSize = States.size();
872 #endif
873     Progress = false;
874     // We're only changing values in this loop, thus safe to keep iterators.
875     // Since this is computing a fixed point, the order of visit does not
876     // effect the result.  TODO: We could use a worklist here and make this run
877     // much faster.
878     for (auto Pair : States) {
879       Value *BDV = Pair.first;
880       assert(!isKnownBaseResult(BDV) && "why did it get added?");
881 
882       // Given an input value for the current instruction, return a BDVState
883       // instance which represents the BDV of that value.
884       auto getStateForInput = [&](Value *V) mutable {
885         Value *BDV = findBaseOrBDV(V, Cache);
886         return getStateForBDV(BDV);
887       };
888 
889       BDVState NewState;
890       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
891         NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
892         NewState =
893             meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
894       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
895         for (Value *Val : PN->incoming_values())
896           NewState = meetBDVState(NewState, getStateForInput(Val));
897       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
898         // The 'meet' for an extractelement is slightly trivial, but it's still
899         // useful in that it drives us to conflict if our input is.
900         NewState =
901             meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
902       } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
903         // Given there's a inherent type mismatch between the operands, will
904         // *always* produce Conflict.
905         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
906         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
907       } else {
908         // The only instance this does not return a Conflict is when both the
909         // vector operands are the same vector.
910         auto *SV = cast<ShuffleVectorInst>(BDV);
911         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
912         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
913       }
914 
915       BDVState OldState = States[BDV];
916       if (OldState != NewState) {
917         Progress = true;
918         States[BDV] = NewState;
919       }
920     }
921 
922     assert(OldSize == States.size() &&
923            "fixed point shouldn't be adding any new nodes to state");
924   }
925 
926 #ifndef NDEBUG
927   LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
928   for (auto Pair : States) {
929     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
930   }
931 #endif
932 
933   // Insert Phis for all conflicts
934   // TODO: adjust naming patterns to avoid this order of iteration dependency
935   for (auto Pair : States) {
936     Instruction *I = cast<Instruction>(Pair.first);
937     BDVState State = Pair.second;
938     assert(!isKnownBaseResult(I) && "why did it get added?");
939     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
940 
941     // extractelement instructions are a bit special in that we may need to
942     // insert an extract even when we know an exact base for the instruction.
943     // The problem is that we need to convert from a vector base to a scalar
944     // base for the particular indice we're interested in.
945     if (State.isBase() && isa<ExtractElementInst>(I) &&
946         isa<VectorType>(State.getBaseValue()->getType())) {
947       auto *EE = cast<ExtractElementInst>(I);
948       // TODO: In many cases, the new instruction is just EE itself.  We should
949       // exploit this, but can't do it here since it would break the invariant
950       // about the BDV not being known to be a base.
951       auto *BaseInst = ExtractElementInst::Create(
952           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
953       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
954       States[I] = BDVState(BDVState::Base, BaseInst);
955     }
956 
957     // Since we're joining a vector and scalar base, they can never be the
958     // same.  As a result, we should always see insert element having reached
959     // the conflict state.
960     assert(!isa<InsertElementInst>(I) || State.isConflict());
961 
962     if (!State.isConflict())
963       continue;
964 
965     /// Create and insert a new instruction which will represent the base of
966     /// the given instruction 'I'.
967     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
968       if (isa<PHINode>(I)) {
969         BasicBlock *BB = I->getParent();
970         int NumPreds = pred_size(BB);
971         assert(NumPreds > 0 && "how did we reach here");
972         std::string Name = suffixed_name_or(I, ".base", "base_phi");
973         return PHINode::Create(I->getType(), NumPreds, Name, I);
974       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
975         // The undef will be replaced later
976         UndefValue *Undef = UndefValue::get(SI->getType());
977         std::string Name = suffixed_name_or(I, ".base", "base_select");
978         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
979       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
980         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
981         std::string Name = suffixed_name_or(I, ".base", "base_ee");
982         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
983                                           EE);
984       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
985         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
986         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
987         std::string Name = suffixed_name_or(I, ".base", "base_ie");
988         return InsertElementInst::Create(VecUndef, ScalarUndef,
989                                          IE->getOperand(2), Name, IE);
990       } else {
991         auto *SV = cast<ShuffleVectorInst>(I);
992         UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
993         std::string Name = suffixed_name_or(I, ".base", "base_sv");
994         return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2),
995                                      Name, SV);
996       }
997     };
998     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
999     // Add metadata marking this as a base value
1000     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1001     States[I] = BDVState(BDVState::Conflict, BaseInst);
1002   }
1003 
1004   // Returns a instruction which produces the base pointer for a given
1005   // instruction.  The instruction is assumed to be an input to one of the BDVs
1006   // seen in the inference algorithm above.  As such, we must either already
1007   // know it's base defining value is a base, or have inserted a new
1008   // instruction to propagate the base of it's BDV and have entered that newly
1009   // introduced instruction into the state table.  In either case, we are
1010   // assured to be able to determine an instruction which produces it's base
1011   // pointer.
1012   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1013     Value *BDV = findBaseOrBDV(Input, Cache);
1014     Value *Base = nullptr;
1015     if (isKnownBaseResult(BDV)) {
1016       Base = BDV;
1017     } else {
1018       // Either conflict or base.
1019       assert(States.count(BDV));
1020       Base = States[BDV].getBaseValue();
1021     }
1022     assert(Base && "Can't be null");
1023     // The cast is needed since base traversal may strip away bitcasts
1024     if (Base->getType() != Input->getType() && InsertPt)
1025       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1026     return Base;
1027   };
1028 
1029   // Fixup all the inputs of the new PHIs.  Visit order needs to be
1030   // deterministic and predictable because we're naming newly created
1031   // instructions.
1032   for (auto Pair : States) {
1033     Instruction *BDV = cast<Instruction>(Pair.first);
1034     BDVState State = Pair.second;
1035 
1036     assert(!isKnownBaseResult(BDV) && "why did it get added?");
1037     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1038     if (!State.isConflict())
1039       continue;
1040 
1041     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1042       PHINode *PN = cast<PHINode>(BDV);
1043       unsigned NumPHIValues = PN->getNumIncomingValues();
1044       for (unsigned i = 0; i < NumPHIValues; i++) {
1045         Value *InVal = PN->getIncomingValue(i);
1046         BasicBlock *InBB = PN->getIncomingBlock(i);
1047 
1048         // If we've already seen InBB, add the same incoming value
1049         // we added for it earlier.  The IR verifier requires phi
1050         // nodes with multiple entries from the same basic block
1051         // to have the same incoming value for each of those
1052         // entries.  If we don't do this check here and basephi
1053         // has a different type than base, we'll end up adding two
1054         // bitcasts (and hence two distinct values) as incoming
1055         // values for the same basic block.
1056 
1057         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
1058         if (BlockIndex != -1) {
1059           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
1060           BasePHI->addIncoming(OldBase, InBB);
1061 
1062 #ifndef NDEBUG
1063           Value *Base = getBaseForInput(InVal, nullptr);
1064           // In essence this assert states: the only way two values
1065           // incoming from the same basic block may be different is by
1066           // being different bitcasts of the same value.  A cleanup
1067           // that remains TODO is changing findBaseOrBDV to return an
1068           // llvm::Value of the correct type (and still remain pure).
1069           // This will remove the need to add bitcasts.
1070           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1071                  "Sanity -- findBaseOrBDV should be pure!");
1072 #endif
1073           continue;
1074         }
1075 
1076         // Find the instruction which produces the base for each input.  We may
1077         // need to insert a bitcast in the incoming block.
1078         // TODO: Need to split critical edges if insertion is needed
1079         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1080         BasePHI->addIncoming(Base, InBB);
1081       }
1082       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
1083     } else if (SelectInst *BaseSI =
1084                    dyn_cast<SelectInst>(State.getBaseValue())) {
1085       SelectInst *SI = cast<SelectInst>(BDV);
1086 
1087       // Find the instruction which produces the base for each input.
1088       // We may need to insert a bitcast.
1089       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1090       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1091     } else if (auto *BaseEE =
1092                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1093       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1094       // Find the instruction which produces the base for each input.  We may
1095       // need to insert a bitcast.
1096       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1097     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1098       auto *BdvIE = cast<InsertElementInst>(BDV);
1099       auto UpdateOperand = [&](int OperandIdx) {
1100         Value *InVal = BdvIE->getOperand(OperandIdx);
1101         Value *Base = getBaseForInput(InVal, BaseIE);
1102         BaseIE->setOperand(OperandIdx, Base);
1103       };
1104       UpdateOperand(0); // vector operand
1105       UpdateOperand(1); // scalar operand
1106     } else {
1107       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1108       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1109       auto UpdateOperand = [&](int OperandIdx) {
1110         Value *InVal = BdvSV->getOperand(OperandIdx);
1111         Value *Base = getBaseForInput(InVal, BaseSV);
1112         BaseSV->setOperand(OperandIdx, Base);
1113       };
1114       UpdateOperand(0); // vector operand
1115       UpdateOperand(1); // vector operand
1116     }
1117   }
1118 
1119   // Cache all of our results so we can cheaply reuse them
1120   // NOTE: This is actually two caches: one of the base defining value
1121   // relation and one of the base pointer relation!  FIXME
1122   for (auto Pair : States) {
1123     auto *BDV = Pair.first;
1124     Value *Base = Pair.second.getBaseValue();
1125     assert(BDV && Base);
1126     assert(!isKnownBaseResult(BDV) && "why did it get added?");
1127 
1128     LLVM_DEBUG(
1129         dbgs() << "Updating base value cache"
1130                << " for: " << BDV->getName() << " from: "
1131                << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1132                << " to: " << Base->getName() << "\n");
1133 
1134     if (Cache.count(BDV)) {
1135       assert(isKnownBaseResult(Base) &&
1136              "must be something we 'know' is a base pointer");
1137       // Once we transition from the BDV relation being store in the Cache to
1138       // the base relation being stored, it must be stable
1139       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
1140              "base relation should be stable");
1141     }
1142     Cache[BDV] = Base;
1143   }
1144   assert(Cache.count(Def));
1145   return Cache[Def];
1146 }
1147 
1148 // For a set of live pointers (base and/or derived), identify the base
1149 // pointer of the object which they are derived from.  This routine will
1150 // mutate the IR graph as needed to make the 'base' pointer live at the
1151 // definition site of 'derived'.  This ensures that any use of 'derived' can
1152 // also use 'base'.  This may involve the insertion of a number of
1153 // additional PHI nodes.
1154 //
1155 // preconditions: live is a set of pointer type Values
1156 //
1157 // side effects: may insert PHI nodes into the existing CFG, will preserve
1158 // CFG, will not remove or mutate any existing nodes
1159 //
1160 // post condition: PointerToBase contains one (derived, base) pair for every
1161 // pointer in live.  Note that derived can be equal to base if the original
1162 // pointer was a base pointer.
1163 static void
1164 findBasePointers(const StatepointLiveSetTy &live,
1165                  MapVector<Value *, Value *> &PointerToBase,
1166                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1167   for (Value *ptr : live) {
1168     Value *base = findBasePointer(ptr, DVCache);
1169     assert(base && "failed to find base pointer");
1170     PointerToBase[ptr] = base;
1171     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1172             DT->dominates(cast<Instruction>(base)->getParent(),
1173                           cast<Instruction>(ptr)->getParent())) &&
1174            "The base we found better dominate the derived pointer");
1175   }
1176 }
1177 
1178 /// Find the required based pointers (and adjust the live set) for the given
1179 /// parse point.
1180 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1181                              CallSite CS,
1182                              PartiallyConstructedSafepointRecord &result) {
1183   MapVector<Value *, Value *> PointerToBase;
1184   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1185 
1186   if (PrintBasePointers) {
1187     errs() << "Base Pairs (w/o Relocation):\n";
1188     for (auto &Pair : PointerToBase) {
1189       errs() << " derived ";
1190       Pair.first->printAsOperand(errs(), false);
1191       errs() << " base ";
1192       Pair.second->printAsOperand(errs(), false);
1193       errs() << "\n";;
1194     }
1195   }
1196 
1197   result.PointerToBase = PointerToBase;
1198 }
1199 
1200 /// Given an updated version of the dataflow liveness results, update the
1201 /// liveset and base pointer maps for the call site CS.
1202 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1203                                   CallSite CS,
1204                                   PartiallyConstructedSafepointRecord &result);
1205 
1206 static void recomputeLiveInValues(
1207     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1208     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1209   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1210   // again.  The old values are still live and will help it stabilize quickly.
1211   GCPtrLivenessData RevisedLivenessData;
1212   computeLiveInValues(DT, F, RevisedLivenessData);
1213   for (size_t i = 0; i < records.size(); i++) {
1214     struct PartiallyConstructedSafepointRecord &info = records[i];
1215     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1216   }
1217 }
1218 
1219 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1220 // no uses of the original value / return value between the gc.statepoint and
1221 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1222 // starting one of the successor blocks.  We also need to be able to insert the
1223 // gc.relocates only on the path which goes through the statepoint.  We might
1224 // need to split an edge to make this possible.
1225 static BasicBlock *
1226 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1227                             DominatorTree &DT) {
1228   BasicBlock *Ret = BB;
1229   if (!BB->getUniquePredecessor())
1230     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1231 
1232   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1233   // from it
1234   FoldSingleEntryPHINodes(Ret);
1235   assert(!isa<PHINode>(Ret->begin()) &&
1236          "All PHI nodes should have been removed!");
1237 
1238   // At this point, we can safely insert a gc.relocate or gc.result as the first
1239   // instruction in Ret if needed.
1240   return Ret;
1241 }
1242 
1243 // Create new attribute set containing only attributes which can be transferred
1244 // from original call to the safepoint.
1245 static AttributeList legalizeCallAttributes(AttributeList AL) {
1246   if (AL.isEmpty())
1247     return AL;
1248 
1249   // Remove the readonly, readnone, and statepoint function attributes.
1250   AttrBuilder FnAttrs = AL.getFnAttributes();
1251   FnAttrs.removeAttribute(Attribute::ReadNone);
1252   FnAttrs.removeAttribute(Attribute::ReadOnly);
1253   for (Attribute A : AL.getFnAttributes()) {
1254     if (isStatepointDirectiveAttr(A))
1255       FnAttrs.remove(A);
1256   }
1257 
1258   // Just skip parameter and return attributes for now
1259   LLVMContext &Ctx = AL.getContext();
1260   return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1261                             AttributeSet::get(Ctx, FnAttrs));
1262 }
1263 
1264 /// Helper function to place all gc relocates necessary for the given
1265 /// statepoint.
1266 /// Inputs:
1267 ///   liveVariables - list of variables to be relocated.
1268 ///   liveStart - index of the first live variable.
1269 ///   basePtrs - base pointers.
1270 ///   statepointToken - statepoint instruction to which relocates should be
1271 ///   bound.
1272 ///   Builder - Llvm IR builder to be used to construct new calls.
1273 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1274                               const int LiveStart,
1275                               ArrayRef<Value *> BasePtrs,
1276                               Instruction *StatepointToken,
1277                               IRBuilder<> Builder) {
1278   if (LiveVariables.empty())
1279     return;
1280 
1281   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1282     auto ValIt = llvm::find(LiveVec, Val);
1283     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1284     size_t Index = std::distance(LiveVec.begin(), ValIt);
1285     assert(Index < LiveVec.size() && "Bug in std::find?");
1286     return Index;
1287   };
1288   Module *M = StatepointToken->getModule();
1289 
1290   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1291   // element type is i8 addrspace(1)*). We originally generated unique
1292   // declarations for each pointer type, but this proved problematic because
1293   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1294   // towards a single unified pointer type anyways, we can just cast everything
1295   // to an i8* of the right address space.  A bitcast is added later to convert
1296   // gc_relocate to the actual value's type.
1297   auto getGCRelocateDecl = [&] (Type *Ty) {
1298     assert(isHandledGCPointerType(Ty));
1299     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1300     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1301     if (auto *VT = dyn_cast<VectorType>(Ty))
1302       NewTy = VectorType::get(NewTy, VT->getNumElements());
1303     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1304                                      {NewTy});
1305   };
1306 
1307   // Lazily populated map from input types to the canonicalized form mentioned
1308   // in the comment above.  This should probably be cached somewhere more
1309   // broadly.
1310   DenseMap<Type*, Value*> TypeToDeclMap;
1311 
1312   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1313     // Generate the gc.relocate call and save the result
1314     Value *BaseIdx =
1315       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1316     Value *LiveIdx = Builder.getInt32(LiveStart + i);
1317 
1318     Type *Ty = LiveVariables[i]->getType();
1319     if (!TypeToDeclMap.count(Ty))
1320       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1321     Value *GCRelocateDecl = TypeToDeclMap[Ty];
1322 
1323     // only specify a debug name if we can give a useful one
1324     CallInst *Reloc = Builder.CreateCall(
1325         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1326         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1327     // Trick CodeGen into thinking there are lots of free registers at this
1328     // fake call.
1329     Reloc->setCallingConv(CallingConv::Cold);
1330   }
1331 }
1332 
1333 namespace {
1334 
1335 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1336 /// avoids having to worry about keeping around dangling pointers to Values.
1337 class DeferredReplacement {
1338   AssertingVH<Instruction> Old;
1339   AssertingVH<Instruction> New;
1340   bool IsDeoptimize = false;
1341 
1342   DeferredReplacement() = default;
1343 
1344 public:
1345   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1346     assert(Old != New && Old && New &&
1347            "Cannot RAUW equal values or to / from null!");
1348 
1349     DeferredReplacement D;
1350     D.Old = Old;
1351     D.New = New;
1352     return D;
1353   }
1354 
1355   static DeferredReplacement createDelete(Instruction *ToErase) {
1356     DeferredReplacement D;
1357     D.Old = ToErase;
1358     return D;
1359   }
1360 
1361   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1362 #ifndef NDEBUG
1363     auto *F = cast<CallInst>(Old)->getCalledFunction();
1364     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1365            "Only way to construct a deoptimize deferred replacement");
1366 #endif
1367     DeferredReplacement D;
1368     D.Old = Old;
1369     D.IsDeoptimize = true;
1370     return D;
1371   }
1372 
1373   /// Does the task represented by this instance.
1374   void doReplacement() {
1375     Instruction *OldI = Old;
1376     Instruction *NewI = New;
1377 
1378     assert(OldI != NewI && "Disallowed at construction?!");
1379     assert((!IsDeoptimize || !New) &&
1380            "Deoptimize intrinsics are not replaced!");
1381 
1382     Old = nullptr;
1383     New = nullptr;
1384 
1385     if (NewI)
1386       OldI->replaceAllUsesWith(NewI);
1387 
1388     if (IsDeoptimize) {
1389       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1390       // not necessarily be followed by the matching return.
1391       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1392       new UnreachableInst(RI->getContext(), RI);
1393       RI->eraseFromParent();
1394     }
1395 
1396     OldI->eraseFromParent();
1397   }
1398 };
1399 
1400 } // end anonymous namespace
1401 
1402 static StringRef getDeoptLowering(CallSite CS) {
1403   const char *DeoptLowering = "deopt-lowering";
1404   if (CS.hasFnAttr(DeoptLowering)) {
1405     // FIXME: CallSite has a *really* confusing interface around attributes
1406     // with values.
1407     const AttributeList &CSAS = CS.getAttributes();
1408     if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1409       return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1410           .getValueAsString();
1411     Function *F = CS.getCalledFunction();
1412     assert(F && F->hasFnAttribute(DeoptLowering));
1413     return F->getFnAttribute(DeoptLowering).getValueAsString();
1414   }
1415   return "live-through";
1416 }
1417 
1418 static void
1419 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1420                            const SmallVectorImpl<Value *> &BasePtrs,
1421                            const SmallVectorImpl<Value *> &LiveVariables,
1422                            PartiallyConstructedSafepointRecord &Result,
1423                            std::vector<DeferredReplacement> &Replacements) {
1424   assert(BasePtrs.size() == LiveVariables.size());
1425 
1426   // Then go ahead and use the builder do actually do the inserts.  We insert
1427   // immediately before the previous instruction under the assumption that all
1428   // arguments will be available here.  We can't insert afterwards since we may
1429   // be replacing a terminator.
1430   Instruction *InsertBefore = CS.getInstruction();
1431   IRBuilder<> Builder(InsertBefore);
1432 
1433   ArrayRef<Value *> GCArgs(LiveVariables);
1434   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1435   uint32_t NumPatchBytes = 0;
1436   uint32_t Flags = uint32_t(StatepointFlags::None);
1437 
1438   ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
1439   ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
1440   ArrayRef<Use> TransitionArgs;
1441   if (auto TransitionBundle =
1442       CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
1443     Flags |= uint32_t(StatepointFlags::GCTransition);
1444     TransitionArgs = TransitionBundle->Inputs;
1445   }
1446 
1447   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1448   // with a return value, we lower then as never returning calls to
1449   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1450   bool IsDeoptimize = false;
1451 
1452   StatepointDirectives SD =
1453       parseStatepointDirectivesFromAttrs(CS.getAttributes());
1454   if (SD.NumPatchBytes)
1455     NumPatchBytes = *SD.NumPatchBytes;
1456   if (SD.StatepointID)
1457     StatepointID = *SD.StatepointID;
1458 
1459   // Pass through the requested lowering if any.  The default is live-through.
1460   StringRef DeoptLowering = getDeoptLowering(CS);
1461   if (DeoptLowering.equals("live-in"))
1462     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1463   else {
1464     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1465   }
1466 
1467   Value *CallTarget = CS.getCalledValue();
1468   if (Function *F = dyn_cast<Function>(CallTarget)) {
1469     if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1470       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1471       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1472       // verifier does not allow taking the address of an intrinsic function.
1473 
1474       SmallVector<Type *, 8> DomainTy;
1475       for (Value *Arg : CallArgs)
1476         DomainTy.push_back(Arg->getType());
1477       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1478                                     /* isVarArg = */ false);
1479 
1480       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1481       // calls to @llvm.experimental.deoptimize with different argument types in
1482       // the same module.  This is fine -- we assume the frontend knew what it
1483       // was doing when generating this kind of IR.
1484       CallTarget =
1485           F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
1486 
1487       IsDeoptimize = true;
1488     }
1489   }
1490 
1491   // Create the statepoint given all the arguments
1492   Instruction *Token = nullptr;
1493   if (CS.isCall()) {
1494     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1495     CallInst *Call = Builder.CreateGCStatepointCall(
1496         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1497         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1498 
1499     Call->setTailCallKind(ToReplace->getTailCallKind());
1500     Call->setCallingConv(ToReplace->getCallingConv());
1501 
1502     // Currently we will fail on parameter attributes and on certain
1503     // function attributes.  In case if we can handle this set of attributes -
1504     // set up function attrs directly on statepoint and return attrs later for
1505     // gc_result intrinsic.
1506     Call->setAttributes(legalizeCallAttributes(ToReplace->getAttributes()));
1507 
1508     Token = Call;
1509 
1510     // Put the following gc_result and gc_relocate calls immediately after the
1511     // the old call (which we're about to delete)
1512     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1513     Builder.SetInsertPoint(ToReplace->getNextNode());
1514     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1515   } else {
1516     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1517 
1518     // Insert the new invoke into the old block.  We'll remove the old one in a
1519     // moment at which point this will become the new terminator for the
1520     // original block.
1521     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1522         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1523         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1524         GCArgs, "statepoint_token");
1525 
1526     Invoke->setCallingConv(ToReplace->getCallingConv());
1527 
1528     // Currently we will fail on parameter attributes and on certain
1529     // function attributes.  In case if we can handle this set of attributes -
1530     // set up function attrs directly on statepoint and return attrs later for
1531     // gc_result intrinsic.
1532     Invoke->setAttributes(legalizeCallAttributes(ToReplace->getAttributes()));
1533 
1534     Token = Invoke;
1535 
1536     // Generate gc relocates in exceptional path
1537     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1538     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1539            UnwindBlock->getUniquePredecessor() &&
1540            "can't safely insert in this block!");
1541 
1542     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1543     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1544 
1545     // Attach exceptional gc relocates to the landingpad.
1546     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1547     Result.UnwindToken = ExceptionalToken;
1548 
1549     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1550     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1551                       Builder);
1552 
1553     // Generate gc relocates and returns for normal block
1554     BasicBlock *NormalDest = ToReplace->getNormalDest();
1555     assert(!isa<PHINode>(NormalDest->begin()) &&
1556            NormalDest->getUniquePredecessor() &&
1557            "can't safely insert in this block!");
1558 
1559     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1560 
1561     // gc relocates will be generated later as if it were regular call
1562     // statepoint
1563   }
1564   assert(Token && "Should be set in one of the above branches!");
1565 
1566   if (IsDeoptimize) {
1567     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1568     // transform the tail-call like structure to a call to a void function
1569     // followed by unreachable to get better codegen.
1570     Replacements.push_back(
1571         DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
1572   } else {
1573     Token->setName("statepoint_token");
1574     if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1575       StringRef Name =
1576           CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1577       CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1578       GCResult->setAttributes(
1579           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1580                              CS.getAttributes().getRetAttributes()));
1581 
1582       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1583       // live set of some other safepoint, in which case that safepoint's
1584       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1585       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1586       // after the live sets have been made explicit in the IR, and we no longer
1587       // have raw pointers to worry about.
1588       Replacements.emplace_back(
1589           DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
1590     } else {
1591       Replacements.emplace_back(
1592           DeferredReplacement::createDelete(CS.getInstruction()));
1593     }
1594   }
1595 
1596   Result.StatepointToken = Token;
1597 
1598   // Second, create a gc.relocate for every live variable
1599   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1600   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1601 }
1602 
1603 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1604 // which make the relocations happening at this safepoint explicit.
1605 //
1606 // WARNING: Does not do any fixup to adjust users of the original live
1607 // values.  That's the callers responsibility.
1608 static void
1609 makeStatepointExplicit(DominatorTree &DT, CallSite CS,
1610                        PartiallyConstructedSafepointRecord &Result,
1611                        std::vector<DeferredReplacement> &Replacements) {
1612   const auto &LiveSet = Result.LiveSet;
1613   const auto &PointerToBase = Result.PointerToBase;
1614 
1615   // Convert to vector for efficient cross referencing.
1616   SmallVector<Value *, 64> BaseVec, LiveVec;
1617   LiveVec.reserve(LiveSet.size());
1618   BaseVec.reserve(LiveSet.size());
1619   for (Value *L : LiveSet) {
1620     LiveVec.push_back(L);
1621     assert(PointerToBase.count(L));
1622     Value *Base = PointerToBase.find(L)->second;
1623     BaseVec.push_back(Base);
1624   }
1625   assert(LiveVec.size() == BaseVec.size());
1626 
1627   // Do the actual rewriting and delete the old statepoint
1628   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1629 }
1630 
1631 // Helper function for the relocationViaAlloca.
1632 //
1633 // It receives iterator to the statepoint gc relocates and emits a store to the
1634 // assigned location (via allocaMap) for the each one of them.  It adds the
1635 // visited values into the visitedLiveValues set, which we will later use them
1636 // for sanity checking.
1637 static void
1638 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1639                        DenseMap<Value *, Value *> &AllocaMap,
1640                        DenseSet<Value *> &VisitedLiveValues) {
1641   for (User *U : GCRelocs) {
1642     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1643     if (!Relocate)
1644       continue;
1645 
1646     Value *OriginalValue = Relocate->getDerivedPtr();
1647     assert(AllocaMap.count(OriginalValue));
1648     Value *Alloca = AllocaMap[OriginalValue];
1649 
1650     // Emit store into the related alloca
1651     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1652     // the correct type according to alloca.
1653     assert(Relocate->getNextNode() &&
1654            "Should always have one since it's not a terminator");
1655     IRBuilder<> Builder(Relocate->getNextNode());
1656     Value *CastedRelocatedValue =
1657       Builder.CreateBitCast(Relocate,
1658                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1659                             suffixed_name_or(Relocate, ".casted", ""));
1660 
1661     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1662     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1663 
1664 #ifndef NDEBUG
1665     VisitedLiveValues.insert(OriginalValue);
1666 #endif
1667   }
1668 }
1669 
1670 // Helper function for the "relocationViaAlloca". Similar to the
1671 // "insertRelocationStores" but works for rematerialized values.
1672 static void insertRematerializationStores(
1673     const RematerializedValueMapTy &RematerializedValues,
1674     DenseMap<Value *, Value *> &AllocaMap,
1675     DenseSet<Value *> &VisitedLiveValues) {
1676   for (auto RematerializedValuePair: RematerializedValues) {
1677     Instruction *RematerializedValue = RematerializedValuePair.first;
1678     Value *OriginalValue = RematerializedValuePair.second;
1679 
1680     assert(AllocaMap.count(OriginalValue) &&
1681            "Can not find alloca for rematerialized value");
1682     Value *Alloca = AllocaMap[OriginalValue];
1683 
1684     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1685     Store->insertAfter(RematerializedValue);
1686 
1687 #ifndef NDEBUG
1688     VisitedLiveValues.insert(OriginalValue);
1689 #endif
1690   }
1691 }
1692 
1693 /// Do all the relocation update via allocas and mem2reg
1694 static void relocationViaAlloca(
1695     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1696     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1697 #ifndef NDEBUG
1698   // record initial number of (static) allocas; we'll check we have the same
1699   // number when we get done.
1700   int InitialAllocaNum = 0;
1701   for (Instruction &I : F.getEntryBlock())
1702     if (isa<AllocaInst>(I))
1703       InitialAllocaNum++;
1704 #endif
1705 
1706   // TODO-PERF: change data structures, reserve
1707   DenseMap<Value *, Value *> AllocaMap;
1708   SmallVector<AllocaInst *, 200> PromotableAllocas;
1709   // Used later to chack that we have enough allocas to store all values
1710   std::size_t NumRematerializedValues = 0;
1711   PromotableAllocas.reserve(Live.size());
1712 
1713   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1714   // "PromotableAllocas"
1715   const DataLayout &DL = F.getParent()->getDataLayout();
1716   auto emitAllocaFor = [&](Value *LiveValue) {
1717     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1718                                         DL.getAllocaAddrSpace(), "",
1719                                         F.getEntryBlock().getFirstNonPHI());
1720     AllocaMap[LiveValue] = Alloca;
1721     PromotableAllocas.push_back(Alloca);
1722   };
1723 
1724   // Emit alloca for each live gc pointer
1725   for (Value *V : Live)
1726     emitAllocaFor(V);
1727 
1728   // Emit allocas for rematerialized values
1729   for (const auto &Info : Records)
1730     for (auto RematerializedValuePair : Info.RematerializedValues) {
1731       Value *OriginalValue = RematerializedValuePair.second;
1732       if (AllocaMap.count(OriginalValue) != 0)
1733         continue;
1734 
1735       emitAllocaFor(OriginalValue);
1736       ++NumRematerializedValues;
1737     }
1738 
1739   // The next two loops are part of the same conceptual operation.  We need to
1740   // insert a store to the alloca after the original def and at each
1741   // redefinition.  We need to insert a load before each use.  These are split
1742   // into distinct loops for performance reasons.
1743 
1744   // Update gc pointer after each statepoint: either store a relocated value or
1745   // null (if no relocated value was found for this gc pointer and it is not a
1746   // gc_result).  This must happen before we update the statepoint with load of
1747   // alloca otherwise we lose the link between statepoint and old def.
1748   for (const auto &Info : Records) {
1749     Value *Statepoint = Info.StatepointToken;
1750 
1751     // This will be used for consistency check
1752     DenseSet<Value *> VisitedLiveValues;
1753 
1754     // Insert stores for normal statepoint gc relocates
1755     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1756 
1757     // In case if it was invoke statepoint
1758     // we will insert stores for exceptional path gc relocates.
1759     if (isa<InvokeInst>(Statepoint)) {
1760       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1761                              VisitedLiveValues);
1762     }
1763 
1764     // Do similar thing with rematerialized values
1765     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1766                                   VisitedLiveValues);
1767 
1768     if (ClobberNonLive) {
1769       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1770       // the gc.statepoint.  This will turn some subtle GC problems into
1771       // slightly easier to debug SEGVs.  Note that on large IR files with
1772       // lots of gc.statepoints this is extremely costly both memory and time
1773       // wise.
1774       SmallVector<AllocaInst *, 64> ToClobber;
1775       for (auto Pair : AllocaMap) {
1776         Value *Def = Pair.first;
1777         AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1778 
1779         // This value was relocated
1780         if (VisitedLiveValues.count(Def)) {
1781           continue;
1782         }
1783         ToClobber.push_back(Alloca);
1784       }
1785 
1786       auto InsertClobbersAt = [&](Instruction *IP) {
1787         for (auto *AI : ToClobber) {
1788           auto PT = cast<PointerType>(AI->getAllocatedType());
1789           Constant *CPN = ConstantPointerNull::get(PT);
1790           StoreInst *Store = new StoreInst(CPN, AI);
1791           Store->insertBefore(IP);
1792         }
1793       };
1794 
1795       // Insert the clobbering stores.  These may get intermixed with the
1796       // gc.results and gc.relocates, but that's fine.
1797       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1798         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1799         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1800       } else {
1801         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1802       }
1803     }
1804   }
1805 
1806   // Update use with load allocas and add store for gc_relocated.
1807   for (auto Pair : AllocaMap) {
1808     Value *Def = Pair.first;
1809     Value *Alloca = Pair.second;
1810 
1811     // We pre-record the uses of allocas so that we dont have to worry about
1812     // later update that changes the user information..
1813 
1814     SmallVector<Instruction *, 20> Uses;
1815     // PERF: trade a linear scan for repeated reallocation
1816     Uses.reserve(Def->getNumUses());
1817     for (User *U : Def->users()) {
1818       if (!isa<ConstantExpr>(U)) {
1819         // If the def has a ConstantExpr use, then the def is either a
1820         // ConstantExpr use itself or null.  In either case
1821         // (recursively in the first, directly in the second), the oop
1822         // it is ultimately dependent on is null and this particular
1823         // use does not need to be fixed up.
1824         Uses.push_back(cast<Instruction>(U));
1825       }
1826     }
1827 
1828     llvm::sort(Uses);
1829     auto Last = std::unique(Uses.begin(), Uses.end());
1830     Uses.erase(Last, Uses.end());
1831 
1832     for (Instruction *Use : Uses) {
1833       if (isa<PHINode>(Use)) {
1834         PHINode *Phi = cast<PHINode>(Use);
1835         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1836           if (Def == Phi->getIncomingValue(i)) {
1837             LoadInst *Load = new LoadInst(
1838                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1839             Phi->setIncomingValue(i, Load);
1840           }
1841         }
1842       } else {
1843         LoadInst *Load = new LoadInst(Alloca, "", Use);
1844         Use->replaceUsesOfWith(Def, Load);
1845       }
1846     }
1847 
1848     // Emit store for the initial gc value.  Store must be inserted after load,
1849     // otherwise store will be in alloca's use list and an extra load will be
1850     // inserted before it.
1851     StoreInst *Store = new StoreInst(Def, Alloca);
1852     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1853       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1854         // InvokeInst is a TerminatorInst so the store need to be inserted
1855         // into its normal destination block.
1856         BasicBlock *NormalDest = Invoke->getNormalDest();
1857         Store->insertBefore(NormalDest->getFirstNonPHI());
1858       } else {
1859         assert(!Inst->isTerminator() &&
1860                "The only TerminatorInst that can produce a value is "
1861                "InvokeInst which is handled above.");
1862         Store->insertAfter(Inst);
1863       }
1864     } else {
1865       assert(isa<Argument>(Def));
1866       Store->insertAfter(cast<Instruction>(Alloca));
1867     }
1868   }
1869 
1870   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1871          "we must have the same allocas with lives");
1872   if (!PromotableAllocas.empty()) {
1873     // Apply mem2reg to promote alloca to SSA
1874     PromoteMemToReg(PromotableAllocas, DT);
1875   }
1876 
1877 #ifndef NDEBUG
1878   for (auto &I : F.getEntryBlock())
1879     if (isa<AllocaInst>(I))
1880       InitialAllocaNum--;
1881   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1882 #endif
1883 }
1884 
1885 /// Implement a unique function which doesn't require we sort the input
1886 /// vector.  Doing so has the effect of changing the output of a couple of
1887 /// tests in ways which make them less useful in testing fused safepoints.
1888 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1889   SmallSet<T, 8> Seen;
1890   Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }),
1891             Vec.end());
1892 }
1893 
1894 /// Insert holders so that each Value is obviously live through the entire
1895 /// lifetime of the call.
1896 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1897                                  SmallVectorImpl<CallInst *> &Holders) {
1898   if (Values.empty())
1899     // No values to hold live, might as well not insert the empty holder
1900     return;
1901 
1902   Module *M = CS.getInstruction()->getModule();
1903   // Use a dummy vararg function to actually hold the values live
1904   Function *Func = cast<Function>(M->getOrInsertFunction(
1905       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1906   if (CS.isCall()) {
1907     // For call safepoints insert dummy calls right after safepoint
1908     Holders.push_back(CallInst::Create(Func, Values, "",
1909                                        &*++CS.getInstruction()->getIterator()));
1910     return;
1911   }
1912   // For invoke safepooints insert dummy calls both in normal and
1913   // exceptional destination blocks
1914   auto *II = cast<InvokeInst>(CS.getInstruction());
1915   Holders.push_back(CallInst::Create(
1916       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1917   Holders.push_back(CallInst::Create(
1918       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1919 }
1920 
1921 static void findLiveReferences(
1922     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1923     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1924   GCPtrLivenessData OriginalLivenessData;
1925   computeLiveInValues(DT, F, OriginalLivenessData);
1926   for (size_t i = 0; i < records.size(); i++) {
1927     struct PartiallyConstructedSafepointRecord &info = records[i];
1928     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
1929   }
1930 }
1931 
1932 // Helper function for the "rematerializeLiveValues". It walks use chain
1933 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
1934 // the base or a value it cannot process. Only "simple" values are processed
1935 // (currently it is GEP's and casts). The returned root is  examined by the
1936 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
1937 // with all visited values.
1938 static Value* findRematerializableChainToBasePointer(
1939   SmallVectorImpl<Instruction*> &ChainToBase,
1940   Value *CurrentValue) {
1941   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1942     ChainToBase.push_back(GEP);
1943     return findRematerializableChainToBasePointer(ChainToBase,
1944                                                   GEP->getPointerOperand());
1945   }
1946 
1947   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1948     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1949       return CI;
1950 
1951     ChainToBase.push_back(CI);
1952     return findRematerializableChainToBasePointer(ChainToBase,
1953                                                   CI->getOperand(0));
1954   }
1955 
1956   // We have reached the root of the chain, which is either equal to the base or
1957   // is the first unsupported value along the use chain.
1958   return CurrentValue;
1959 }
1960 
1961 // Helper function for the "rematerializeLiveValues". Compute cost of the use
1962 // chain we are going to rematerialize.
1963 static unsigned
1964 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1965                        TargetTransformInfo &TTI) {
1966   unsigned Cost = 0;
1967 
1968   for (Instruction *Instr : Chain) {
1969     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1970       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1971              "non noop cast is found during rematerialization");
1972 
1973       Type *SrcTy = CI->getOperand(0)->getType();
1974       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI);
1975 
1976     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1977       // Cost of the address calculation
1978       Type *ValTy = GEP->getSourceElementType();
1979       Cost += TTI.getAddressComputationCost(ValTy);
1980 
1981       // And cost of the GEP itself
1982       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1983       //       allowed for the external usage)
1984       if (!GEP->hasAllConstantIndices())
1985         Cost += 2;
1986 
1987     } else {
1988       llvm_unreachable("unsupported instruction type during rematerialization");
1989     }
1990   }
1991 
1992   return Cost;
1993 }
1994 
1995 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
1996   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
1997   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
1998       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
1999     return false;
2000   // Map of incoming values and their corresponding basic blocks of
2001   // OrigRootPhi.
2002   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
2003   for (unsigned i = 0; i < PhiNum; i++)
2004     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2005         OrigRootPhi.getIncomingBlock(i);
2006 
2007   // Both current and base PHIs should have same incoming values and
2008   // the same basic blocks corresponding to the incoming values.
2009   for (unsigned i = 0; i < PhiNum; i++) {
2010     auto CIVI =
2011         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2012     if (CIVI == CurrentIncomingValues.end())
2013       return false;
2014     BasicBlock *CurrentIncomingBB = CIVI->second;
2015     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2016       return false;
2017   }
2018   return true;
2019 }
2020 
2021 // From the statepoint live set pick values that are cheaper to recompute then
2022 // to relocate. Remove this values from the live set, rematerialize them after
2023 // statepoint and record them in "Info" structure. Note that similar to
2024 // relocated values we don't do any user adjustments here.
2025 static void rematerializeLiveValues(CallSite CS,
2026                                     PartiallyConstructedSafepointRecord &Info,
2027                                     TargetTransformInfo &TTI) {
2028   const unsigned int ChainLengthThreshold = 10;
2029 
2030   // Record values we are going to delete from this statepoint live set.
2031   // We can not di this in following loop due to iterator invalidation.
2032   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2033 
2034   for (Value *LiveValue: Info.LiveSet) {
2035     // For each live pointer find its defining chain
2036     SmallVector<Instruction *, 3> ChainToBase;
2037     assert(Info.PointerToBase.count(LiveValue));
2038     Value *RootOfChain =
2039       findRematerializableChainToBasePointer(ChainToBase,
2040                                              LiveValue);
2041 
2042     // Nothing to do, or chain is too long
2043     if ( ChainToBase.size() == 0 ||
2044         ChainToBase.size() > ChainLengthThreshold)
2045       continue;
2046 
2047     // Handle the scenario where the RootOfChain is not equal to the
2048     // Base Value, but they are essentially the same phi values.
2049     if (RootOfChain != Info.PointerToBase[LiveValue]) {
2050       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2051       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2052       if (!OrigRootPhi || !AlternateRootPhi)
2053         continue;
2054       // PHI nodes that have the same incoming values, and belonging to the same
2055       // basic blocks are essentially the same SSA value.  When the original phi
2056       // has incoming values with different base pointers, the original phi is
2057       // marked as conflict, and an additional `AlternateRootPhi` with the same
2058       // incoming values get generated by the findBasePointer function. We need
2059       // to identify the newly generated AlternateRootPhi (.base version of phi)
2060       // and RootOfChain (the original phi node itself) are the same, so that we
2061       // can rematerialize the gep and casts. This is a workaround for the
2062       // deficiency in the findBasePointer algorithm.
2063       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2064         continue;
2065       // Now that the phi nodes are proved to be the same, assert that
2066       // findBasePointer's newly generated AlternateRootPhi is present in the
2067       // liveset of the call.
2068       assert(Info.LiveSet.count(AlternateRootPhi));
2069     }
2070     // Compute cost of this chain
2071     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
2072     // TODO: We can also account for cases when we will be able to remove some
2073     //       of the rematerialized values by later optimization passes. I.e if
2074     //       we rematerialized several intersecting chains. Or if original values
2075     //       don't have any uses besides this statepoint.
2076 
2077     // For invokes we need to rematerialize each chain twice - for normal and
2078     // for unwind basic blocks. Model this by multiplying cost by two.
2079     if (CS.isInvoke()) {
2080       Cost *= 2;
2081     }
2082     // If it's too expensive - skip it
2083     if (Cost >= RematerializationThreshold)
2084       continue;
2085 
2086     // Remove value from the live set
2087     LiveValuesToBeDeleted.push_back(LiveValue);
2088 
2089     // Clone instructions and record them inside "Info" structure
2090 
2091     // Walk backwards to visit top-most instructions first
2092     std::reverse(ChainToBase.begin(), ChainToBase.end());
2093 
2094     // Utility function which clones all instructions from "ChainToBase"
2095     // and inserts them before "InsertBefore". Returns rematerialized value
2096     // which should be used after statepoint.
2097     auto rematerializeChain = [&ChainToBase](
2098         Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2099       Instruction *LastClonedValue = nullptr;
2100       Instruction *LastValue = nullptr;
2101       for (Instruction *Instr: ChainToBase) {
2102         // Only GEP's and casts are supported as we need to be careful to not
2103         // introduce any new uses of pointers not in the liveset.
2104         // Note that it's fine to introduce new uses of pointers which were
2105         // otherwise not used after this statepoint.
2106         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2107 
2108         Instruction *ClonedValue = Instr->clone();
2109         ClonedValue->insertBefore(InsertBefore);
2110         ClonedValue->setName(Instr->getName() + ".remat");
2111 
2112         // If it is not first instruction in the chain then it uses previously
2113         // cloned value. We should update it to use cloned value.
2114         if (LastClonedValue) {
2115           assert(LastValue);
2116           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2117 #ifndef NDEBUG
2118           for (auto OpValue : ClonedValue->operand_values()) {
2119             // Assert that cloned instruction does not use any instructions from
2120             // this chain other than LastClonedValue
2121             assert(!is_contained(ChainToBase, OpValue) &&
2122                    "incorrect use in rematerialization chain");
2123             // Assert that the cloned instruction does not use the RootOfChain
2124             // or the AlternateLiveBase.
2125             assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2126           }
2127 #endif
2128         } else {
2129           // For the first instruction, replace the use of unrelocated base i.e.
2130           // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2131           // live set. They have been proved to be the same PHI nodes.  Note
2132           // that the *only* use of the RootOfChain in the ChainToBase list is
2133           // the first Value in the list.
2134           if (RootOfChain != AlternateLiveBase)
2135             ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2136         }
2137 
2138         LastClonedValue = ClonedValue;
2139         LastValue = Instr;
2140       }
2141       assert(LastClonedValue);
2142       return LastClonedValue;
2143     };
2144 
2145     // Different cases for calls and invokes. For invokes we need to clone
2146     // instructions both on normal and unwind path.
2147     if (CS.isCall()) {
2148       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
2149       assert(InsertBefore);
2150       Instruction *RematerializedValue = rematerializeChain(
2151           InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2152       Info.RematerializedValues[RematerializedValue] = LiveValue;
2153     } else {
2154       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
2155 
2156       Instruction *NormalInsertBefore =
2157           &*Invoke->getNormalDest()->getFirstInsertionPt();
2158       Instruction *UnwindInsertBefore =
2159           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2160 
2161       Instruction *NormalRematerializedValue = rematerializeChain(
2162           NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2163       Instruction *UnwindRematerializedValue = rematerializeChain(
2164           UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2165 
2166       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2167       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2168     }
2169   }
2170 
2171   // Remove rematerializaed values from the live set
2172   for (auto LiveValue: LiveValuesToBeDeleted) {
2173     Info.LiveSet.remove(LiveValue);
2174   }
2175 }
2176 
2177 static bool insertParsePoints(Function &F, DominatorTree &DT,
2178                               TargetTransformInfo &TTI,
2179                               SmallVectorImpl<CallSite> &ToUpdate) {
2180 #ifndef NDEBUG
2181   // sanity check the input
2182   std::set<CallSite> Uniqued;
2183   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2184   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2185 
2186   for (CallSite CS : ToUpdate)
2187     assert(CS.getInstruction()->getFunction() == &F);
2188 #endif
2189 
2190   // When inserting gc.relocates for invokes, we need to be able to insert at
2191   // the top of the successor blocks.  See the comment on
2192   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2193   // may restructure the CFG.
2194   for (CallSite CS : ToUpdate) {
2195     if (!CS.isInvoke())
2196       continue;
2197     auto *II = cast<InvokeInst>(CS.getInstruction());
2198     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2199     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2200   }
2201 
2202   // A list of dummy calls added to the IR to keep various values obviously
2203   // live in the IR.  We'll remove all of these when done.
2204   SmallVector<CallInst *, 64> Holders;
2205 
2206   // Insert a dummy call with all of the deopt operands we'll need for the
2207   // actual safepoint insertion as arguments.  This ensures reference operands
2208   // in the deopt argument list are considered live through the safepoint (and
2209   // thus makes sure they get relocated.)
2210   for (CallSite CS : ToUpdate) {
2211     SmallVector<Value *, 64> DeoptValues;
2212 
2213     for (Value *Arg : GetDeoptBundleOperands(CS)) {
2214       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2215              "support for FCA unimplemented");
2216       if (isHandledGCPointerType(Arg->getType()))
2217         DeoptValues.push_back(Arg);
2218     }
2219 
2220     insertUseHolderAfter(CS, DeoptValues, Holders);
2221   }
2222 
2223   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2224 
2225   // A) Identify all gc pointers which are statically live at the given call
2226   // site.
2227   findLiveReferences(F, DT, ToUpdate, Records);
2228 
2229   // B) Find the base pointers for each live pointer
2230   /* scope for caching */ {
2231     // Cache the 'defining value' relation used in the computation and
2232     // insertion of base phis and selects.  This ensures that we don't insert
2233     // large numbers of duplicate base_phis.
2234     DefiningValueMapTy DVCache;
2235 
2236     for (size_t i = 0; i < Records.size(); i++) {
2237       PartiallyConstructedSafepointRecord &info = Records[i];
2238       findBasePointers(DT, DVCache, ToUpdate[i], info);
2239     }
2240   } // end of cache scope
2241 
2242   // The base phi insertion logic (for any safepoint) may have inserted new
2243   // instructions which are now live at some safepoint.  The simplest such
2244   // example is:
2245   // loop:
2246   //   phi a  <-- will be a new base_phi here
2247   //   safepoint 1 <-- that needs to be live here
2248   //   gep a + 1
2249   //   safepoint 2
2250   //   br loop
2251   // We insert some dummy calls after each safepoint to definitely hold live
2252   // the base pointers which were identified for that safepoint.  We'll then
2253   // ask liveness for _every_ base inserted to see what is now live.  Then we
2254   // remove the dummy calls.
2255   Holders.reserve(Holders.size() + Records.size());
2256   for (size_t i = 0; i < Records.size(); i++) {
2257     PartiallyConstructedSafepointRecord &Info = Records[i];
2258 
2259     SmallVector<Value *, 128> Bases;
2260     for (auto Pair : Info.PointerToBase)
2261       Bases.push_back(Pair.second);
2262 
2263     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2264   }
2265 
2266   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2267   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2268   // not the key issue.
2269   recomputeLiveInValues(F, DT, ToUpdate, Records);
2270 
2271   if (PrintBasePointers) {
2272     for (auto &Info : Records) {
2273       errs() << "Base Pairs: (w/Relocation)\n";
2274       for (auto Pair : Info.PointerToBase) {
2275         errs() << " derived ";
2276         Pair.first->printAsOperand(errs(), false);
2277         errs() << " base ";
2278         Pair.second->printAsOperand(errs(), false);
2279         errs() << "\n";
2280       }
2281     }
2282   }
2283 
2284   // It is possible that non-constant live variables have a constant base.  For
2285   // example, a GEP with a variable offset from a global.  In this case we can
2286   // remove it from the liveset.  We already don't add constants to the liveset
2287   // because we assume they won't move at runtime and the GC doesn't need to be
2288   // informed about them.  The same reasoning applies if the base is constant.
2289   // Note that the relocation placement code relies on this filtering for
2290   // correctness as it expects the base to be in the liveset, which isn't true
2291   // if the base is constant.
2292   for (auto &Info : Records)
2293     for (auto &BasePair : Info.PointerToBase)
2294       if (isa<Constant>(BasePair.second))
2295         Info.LiveSet.remove(BasePair.first);
2296 
2297   for (CallInst *CI : Holders)
2298     CI->eraseFromParent();
2299 
2300   Holders.clear();
2301 
2302   // In order to reduce live set of statepoint we might choose to rematerialize
2303   // some values instead of relocating them. This is purely an optimization and
2304   // does not influence correctness.
2305   for (size_t i = 0; i < Records.size(); i++)
2306     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2307 
2308   // We need this to safely RAUW and delete call or invoke return values that
2309   // may themselves be live over a statepoint.  For details, please see usage in
2310   // makeStatepointExplicitImpl.
2311   std::vector<DeferredReplacement> Replacements;
2312 
2313   // Now run through and replace the existing statepoints with new ones with
2314   // the live variables listed.  We do not yet update uses of the values being
2315   // relocated. We have references to live variables that need to
2316   // survive to the last iteration of this loop.  (By construction, the
2317   // previous statepoint can not be a live variable, thus we can and remove
2318   // the old statepoint calls as we go.)
2319   for (size_t i = 0; i < Records.size(); i++)
2320     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2321 
2322   ToUpdate.clear(); // prevent accident use of invalid CallSites
2323 
2324   for (auto &PR : Replacements)
2325     PR.doReplacement();
2326 
2327   Replacements.clear();
2328 
2329   for (auto &Info : Records) {
2330     // These live sets may contain state Value pointers, since we replaced calls
2331     // with operand bundles with calls wrapped in gc.statepoint, and some of
2332     // those calls may have been def'ing live gc pointers.  Clear these out to
2333     // avoid accidentally using them.
2334     //
2335     // TODO: We should create a separate data structure that does not contain
2336     // these live sets, and migrate to using that data structure from this point
2337     // onward.
2338     Info.LiveSet.clear();
2339     Info.PointerToBase.clear();
2340   }
2341 
2342   // Do all the fixups of the original live variables to their relocated selves
2343   SmallVector<Value *, 128> Live;
2344   for (size_t i = 0; i < Records.size(); i++) {
2345     PartiallyConstructedSafepointRecord &Info = Records[i];
2346 
2347     // We can't simply save the live set from the original insertion.  One of
2348     // the live values might be the result of a call which needs a safepoint.
2349     // That Value* no longer exists and we need to use the new gc_result.
2350     // Thankfully, the live set is embedded in the statepoint (and updated), so
2351     // we just grab that.
2352     Statepoint Statepoint(Info.StatepointToken);
2353     Live.insert(Live.end(), Statepoint.gc_args_begin(),
2354                 Statepoint.gc_args_end());
2355 #ifndef NDEBUG
2356     // Do some basic sanity checks on our liveness results before performing
2357     // relocation.  Relocation can and will turn mistakes in liveness results
2358     // into non-sensical code which is must harder to debug.
2359     // TODO: It would be nice to test consistency as well
2360     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2361            "statepoint must be reachable or liveness is meaningless");
2362     for (Value *V : Statepoint.gc_args()) {
2363       if (!isa<Instruction>(V))
2364         // Non-instruction values trivial dominate all possible uses
2365         continue;
2366       auto *LiveInst = cast<Instruction>(V);
2367       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2368              "unreachable values should never be live");
2369       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2370              "basic SSA liveness expectation violated by liveness analysis");
2371     }
2372 #endif
2373   }
2374   unique_unsorted(Live);
2375 
2376 #ifndef NDEBUG
2377   // sanity check
2378   for (auto *Ptr : Live)
2379     assert(isHandledGCPointerType(Ptr->getType()) &&
2380            "must be a gc pointer type");
2381 #endif
2382 
2383   relocationViaAlloca(F, DT, Live, Records);
2384   return !Records.empty();
2385 }
2386 
2387 // Handles both return values and arguments for Functions and CallSites.
2388 template <typename AttrHolder>
2389 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2390                                       unsigned Index) {
2391   AttrBuilder R;
2392   if (AH.getDereferenceableBytes(Index))
2393     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2394                                   AH.getDereferenceableBytes(Index)));
2395   if (AH.getDereferenceableOrNullBytes(Index))
2396     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2397                                   AH.getDereferenceableOrNullBytes(Index)));
2398   if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
2399     R.addAttribute(Attribute::NoAlias);
2400 
2401   if (!R.empty())
2402     AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2403 }
2404 
2405 static void stripNonValidAttributesFromPrototype(Function &F) {
2406   LLVMContext &Ctx = F.getContext();
2407 
2408   for (Argument &A : F.args())
2409     if (isa<PointerType>(A.getType()))
2410       RemoveNonValidAttrAtIndex(Ctx, F,
2411                                 A.getArgNo() + AttributeList::FirstArgIndex);
2412 
2413   if (isa<PointerType>(F.getReturnType()))
2414     RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2415 }
2416 
2417 /// Certain metadata on instructions are invalid after running RS4GC.
2418 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2419 /// optimize functions. We drop such metadata on the instruction.
2420 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2421   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2422     return;
2423   // These are the attributes that are still valid on loads and stores after
2424   // RS4GC.
2425   // The metadata implying dereferenceability and noalias are (conservatively)
2426   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2427   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2428   // touch the entire heap including noalias objects. Note: The reasoning is
2429   // same as stripping the dereferenceability and noalias attributes that are
2430   // analogous to the metadata counterparts.
2431   // We also drop the invariant.load metadata on the load because that metadata
2432   // implies the address operand to the load points to memory that is never
2433   // changed once it became dereferenceable. This is no longer true after RS4GC.
2434   // Similar reasoning applies to invariant.group metadata, which applies to
2435   // loads within a group.
2436   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2437                          LLVMContext::MD_range,
2438                          LLVMContext::MD_alias_scope,
2439                          LLVMContext::MD_nontemporal,
2440                          LLVMContext::MD_nonnull,
2441                          LLVMContext::MD_align,
2442                          LLVMContext::MD_type};
2443 
2444   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2445   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2446 }
2447 
2448 static void stripNonValidDataFromBody(Function &F) {
2449   if (F.empty())
2450     return;
2451 
2452   LLVMContext &Ctx = F.getContext();
2453   MDBuilder Builder(Ctx);
2454 
2455   // Set of invariantstart instructions that we need to remove.
2456   // Use this to avoid invalidating the instruction iterator.
2457   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2458 
2459   for (Instruction &I : instructions(F)) {
2460     // invariant.start on memory location implies that the referenced memory
2461     // location is constant and unchanging. This is no longer true after
2462     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2463     // which frees the entire heap and the presence of invariant.start allows
2464     // the optimizer to sink the load of a memory location past a statepoint,
2465     // which is incorrect.
2466     if (auto *II = dyn_cast<IntrinsicInst>(&I))
2467       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2468         InvariantStartInstructions.push_back(II);
2469         continue;
2470       }
2471 
2472     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2473       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2474       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2475     }
2476 
2477     stripInvalidMetadataFromInstruction(I);
2478 
2479     if (CallSite CS = CallSite(&I)) {
2480       for (int i = 0, e = CS.arg_size(); i != e; i++)
2481         if (isa<PointerType>(CS.getArgument(i)->getType()))
2482           RemoveNonValidAttrAtIndex(Ctx, CS, i + AttributeList::FirstArgIndex);
2483       if (isa<PointerType>(CS.getType()))
2484         RemoveNonValidAttrAtIndex(Ctx, CS, AttributeList::ReturnIndex);
2485     }
2486   }
2487 
2488   // Delete the invariant.start instructions and RAUW undef.
2489   for (auto *II : InvariantStartInstructions) {
2490     II->replaceAllUsesWith(UndefValue::get(II->getType()));
2491     II->eraseFromParent();
2492   }
2493 }
2494 
2495 /// Returns true if this function should be rewritten by this pass.  The main
2496 /// point of this function is as an extension point for custom logic.
2497 static bool shouldRewriteStatepointsIn(Function &F) {
2498   // TODO: This should check the GCStrategy
2499   if (F.hasGC()) {
2500     const auto &FunctionGCName = F.getGC();
2501     const StringRef StatepointExampleName("statepoint-example");
2502     const StringRef CoreCLRName("coreclr");
2503     return (StatepointExampleName == FunctionGCName) ||
2504            (CoreCLRName == FunctionGCName);
2505   } else
2506     return false;
2507 }
2508 
2509 static void stripNonValidData(Module &M) {
2510 #ifndef NDEBUG
2511   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2512 #endif
2513 
2514   for (Function &F : M)
2515     stripNonValidAttributesFromPrototype(F);
2516 
2517   for (Function &F : M)
2518     stripNonValidDataFromBody(F);
2519 }
2520 
2521 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2522                                             TargetTransformInfo &TTI,
2523                                             const TargetLibraryInfo &TLI) {
2524   assert(!F.isDeclaration() && !F.empty() &&
2525          "need function body to rewrite statepoints in");
2526   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2527 
2528   auto NeedsRewrite = [&TLI](Instruction &I) {
2529     if (ImmutableCallSite CS = ImmutableCallSite(&I))
2530       return !callsGCLeafFunction(CS, TLI) && !isStatepoint(CS);
2531     return false;
2532   };
2533 
2534 
2535   // Delete any unreachable statepoints so that we don't have unrewritten
2536   // statepoints surviving this pass.  This makes testing easier and the
2537   // resulting IR less confusing to human readers.
2538   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2539   bool MadeChange = removeUnreachableBlocks(F, nullptr, &DTU);
2540   // Flush the Dominator Tree.
2541   DTU.getDomTree();
2542 
2543   // Gather all the statepoints which need rewritten.  Be careful to only
2544   // consider those in reachable code since we need to ask dominance queries
2545   // when rewriting.  We'll delete the unreachable ones in a moment.
2546   SmallVector<CallSite, 64> ParsePointNeeded;
2547   for (Instruction &I : instructions(F)) {
2548     // TODO: only the ones with the flag set!
2549     if (NeedsRewrite(I)) {
2550       // NOTE removeUnreachableBlocks() is stronger than
2551       // DominatorTree::isReachableFromEntry(). In other words
2552       // removeUnreachableBlocks can remove some blocks for which
2553       // isReachableFromEntry() returns true.
2554       assert(DT.isReachableFromEntry(I.getParent()) &&
2555             "no unreachable blocks expected");
2556       ParsePointNeeded.push_back(CallSite(&I));
2557     }
2558   }
2559 
2560   // Return early if no work to do.
2561   if (ParsePointNeeded.empty())
2562     return MadeChange;
2563 
2564   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2565   // These are created by LCSSA.  They have the effect of increasing the size
2566   // of liveness sets for no good reason.  It may be harder to do this post
2567   // insertion since relocations and base phis can confuse things.
2568   for (BasicBlock &BB : F)
2569     if (BB.getUniquePredecessor()) {
2570       MadeChange = true;
2571       FoldSingleEntryPHINodes(&BB);
2572     }
2573 
2574   // Before we start introducing relocations, we want to tweak the IR a bit to
2575   // avoid unfortunate code generation effects.  The main example is that we
2576   // want to try to make sure the comparison feeding a branch is after any
2577   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2578   // values feeding a branch after relocation.  This is semantically correct,
2579   // but results in extra register pressure since both the pre-relocation and
2580   // post-relocation copies must be available in registers.  For code without
2581   // relocations this is handled elsewhere, but teaching the scheduler to
2582   // reverse the transform we're about to do would be slightly complex.
2583   // Note: This may extend the live range of the inputs to the icmp and thus
2584   // increase the liveset of any statepoint we move over.  This is profitable
2585   // as long as all statepoints are in rare blocks.  If we had in-register
2586   // lowering for live values this would be a much safer transform.
2587   auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2588     if (auto *BI = dyn_cast<BranchInst>(TI))
2589       if (BI->isConditional())
2590         return dyn_cast<Instruction>(BI->getCondition());
2591     // TODO: Extend this to handle switches
2592     return nullptr;
2593   };
2594   for (BasicBlock &BB : F) {
2595     TerminatorInst *TI = BB.getTerminator();
2596     if (auto *Cond = getConditionInst(TI))
2597       // TODO: Handle more than just ICmps here.  We should be able to move
2598       // most instructions without side effects or memory access.
2599       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2600         MadeChange = true;
2601         Cond->moveBefore(TI);
2602       }
2603   }
2604 
2605   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2606   return MadeChange;
2607 }
2608 
2609 // liveness computation via standard dataflow
2610 // -------------------------------------------------------------------
2611 
2612 // TODO: Consider using bitvectors for liveness, the set of potentially
2613 // interesting values should be small and easy to pre-compute.
2614 
2615 /// Compute the live-in set for the location rbegin starting from
2616 /// the live-out set of the basic block
2617 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2618                                 BasicBlock::reverse_iterator End,
2619                                 SetVector<Value *> &LiveTmp) {
2620   for (auto &I : make_range(Begin, End)) {
2621     // KILL/Def - Remove this definition from LiveIn
2622     LiveTmp.remove(&I);
2623 
2624     // Don't consider *uses* in PHI nodes, we handle their contribution to
2625     // predecessor blocks when we seed the LiveOut sets
2626     if (isa<PHINode>(I))
2627       continue;
2628 
2629     // USE - Add to the LiveIn set for this instruction
2630     for (Value *V : I.operands()) {
2631       assert(!isUnhandledGCPointerType(V->getType()) &&
2632              "support for FCA unimplemented");
2633       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2634         // The choice to exclude all things constant here is slightly subtle.
2635         // There are two independent reasons:
2636         // - We assume that things which are constant (from LLVM's definition)
2637         // do not move at runtime.  For example, the address of a global
2638         // variable is fixed, even though it's contents may not be.
2639         // - Second, we can't disallow arbitrary inttoptr constants even
2640         // if the language frontend does.  Optimization passes are free to
2641         // locally exploit facts without respect to global reachability.  This
2642         // can create sections of code which are dynamically unreachable and
2643         // contain just about anything.  (see constants.ll in tests)
2644         LiveTmp.insert(V);
2645       }
2646     }
2647   }
2648 }
2649 
2650 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2651   for (BasicBlock *Succ : successors(BB)) {
2652     for (auto &I : *Succ) {
2653       PHINode *PN = dyn_cast<PHINode>(&I);
2654       if (!PN)
2655         break;
2656 
2657       Value *V = PN->getIncomingValueForBlock(BB);
2658       assert(!isUnhandledGCPointerType(V->getType()) &&
2659              "support for FCA unimplemented");
2660       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2661         LiveTmp.insert(V);
2662     }
2663   }
2664 }
2665 
2666 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2667   SetVector<Value *> KillSet;
2668   for (Instruction &I : *BB)
2669     if (isHandledGCPointerType(I.getType()))
2670       KillSet.insert(&I);
2671   return KillSet;
2672 }
2673 
2674 #ifndef NDEBUG
2675 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2676 /// sanity check for the liveness computation.
2677 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2678                           TerminatorInst *TI, bool TermOkay = false) {
2679   for (Value *V : Live) {
2680     if (auto *I = dyn_cast<Instruction>(V)) {
2681       // The terminator can be a member of the LiveOut set.  LLVM's definition
2682       // of instruction dominance states that V does not dominate itself.  As
2683       // such, we need to special case this to allow it.
2684       if (TermOkay && TI == I)
2685         continue;
2686       assert(DT.dominates(I, TI) &&
2687              "basic SSA liveness expectation violated by liveness analysis");
2688     }
2689   }
2690 }
2691 
2692 /// Check that all the liveness sets used during the computation of liveness
2693 /// obey basic SSA properties.  This is useful for finding cases where we miss
2694 /// a def.
2695 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2696                           BasicBlock &BB) {
2697   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2698   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2699   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2700 }
2701 #endif
2702 
2703 static void computeLiveInValues(DominatorTree &DT, Function &F,
2704                                 GCPtrLivenessData &Data) {
2705   SmallSetVector<BasicBlock *, 32> Worklist;
2706 
2707   // Seed the liveness for each individual block
2708   for (BasicBlock &BB : F) {
2709     Data.KillSet[&BB] = computeKillSet(&BB);
2710     Data.LiveSet[&BB].clear();
2711     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2712 
2713 #ifndef NDEBUG
2714     for (Value *Kill : Data.KillSet[&BB])
2715       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2716 #endif
2717 
2718     Data.LiveOut[&BB] = SetVector<Value *>();
2719     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2720     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2721     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2722     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2723     if (!Data.LiveIn[&BB].empty())
2724       Worklist.insert(pred_begin(&BB), pred_end(&BB));
2725   }
2726 
2727   // Propagate that liveness until stable
2728   while (!Worklist.empty()) {
2729     BasicBlock *BB = Worklist.pop_back_val();
2730 
2731     // Compute our new liveout set, then exit early if it hasn't changed despite
2732     // the contribution of our successor.
2733     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2734     const auto OldLiveOutSize = LiveOut.size();
2735     for (BasicBlock *Succ : successors(BB)) {
2736       assert(Data.LiveIn.count(Succ));
2737       LiveOut.set_union(Data.LiveIn[Succ]);
2738     }
2739     // assert OutLiveOut is a subset of LiveOut
2740     if (OldLiveOutSize == LiveOut.size()) {
2741       // If the sets are the same size, then we didn't actually add anything
2742       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
2743       // hasn't changed.
2744       continue;
2745     }
2746     Data.LiveOut[BB] = LiveOut;
2747 
2748     // Apply the effects of this basic block
2749     SetVector<Value *> LiveTmp = LiveOut;
2750     LiveTmp.set_union(Data.LiveSet[BB]);
2751     LiveTmp.set_subtract(Data.KillSet[BB]);
2752 
2753     assert(Data.LiveIn.count(BB));
2754     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2755     // assert: OldLiveIn is a subset of LiveTmp
2756     if (OldLiveIn.size() != LiveTmp.size()) {
2757       Data.LiveIn[BB] = LiveTmp;
2758       Worklist.insert(pred_begin(BB), pred_end(BB));
2759     }
2760   } // while (!Worklist.empty())
2761 
2762 #ifndef NDEBUG
2763   // Sanity check our output against SSA properties.  This helps catch any
2764   // missing kills during the above iteration.
2765   for (BasicBlock &BB : F)
2766     checkBasicSSA(DT, Data, BB);
2767 #endif
2768 }
2769 
2770 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2771                               StatepointLiveSetTy &Out) {
2772   BasicBlock *BB = Inst->getParent();
2773 
2774   // Note: The copy is intentional and required
2775   assert(Data.LiveOut.count(BB));
2776   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2777 
2778   // We want to handle the statepoint itself oddly.  It's
2779   // call result is not live (normal), nor are it's arguments
2780   // (unless they're used again later).  This adjustment is
2781   // specifically what we need to relocate
2782   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
2783                       LiveOut);
2784   LiveOut.remove(Inst);
2785   Out.insert(LiveOut.begin(), LiveOut.end());
2786 }
2787 
2788 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2789                                   CallSite CS,
2790                                   PartiallyConstructedSafepointRecord &Info) {
2791   Instruction *Inst = CS.getInstruction();
2792   StatepointLiveSetTy Updated;
2793   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2794 
2795   // We may have base pointers which are now live that weren't before.  We need
2796   // to update the PointerToBase structure to reflect this.
2797   for (auto V : Updated)
2798     if (Info.PointerToBase.insert({V, V}).second) {
2799       assert(isKnownBaseResult(V) &&
2800              "Can't find base for unexpected live value!");
2801       continue;
2802     }
2803 
2804 #ifndef NDEBUG
2805   for (auto V : Updated)
2806     assert(Info.PointerToBase.count(V) &&
2807            "Must be able to find base for live value!");
2808 #endif
2809 
2810   // Remove any stale base mappings - this can happen since our liveness is
2811   // more precise then the one inherent in the base pointer analysis.
2812   DenseSet<Value *> ToErase;
2813   for (auto KVPair : Info.PointerToBase)
2814     if (!Updated.count(KVPair.first))
2815       ToErase.insert(KVPair.first);
2816 
2817   for (auto *V : ToErase)
2818     Info.PointerToBase.erase(V);
2819 
2820 #ifndef NDEBUG
2821   for (auto KVPair : Info.PointerToBase)
2822     assert(Updated.count(KVPair.first) && "record for non-live value");
2823 #endif
2824 
2825   Info.LiveSet = Updated;
2826 }
2827