1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite call/invoke instructions so as to make potential relocations 11 // performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/iterator_range.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/DomTreeUpdater.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/IR/InstIterator.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/Statepoint.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueHandle.h" 59 #include "llvm/Pass.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Compiler.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Transforms/Scalar.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstddef> 73 #include <cstdint> 74 #include <iterator> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 81 82 using namespace llvm; 83 84 // Print the liveset found at the insert location 85 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 86 cl::init(false)); 87 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 88 cl::init(false)); 89 90 // Print out the base pointers for debugging 91 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 92 cl::init(false)); 93 94 // Cost threshold measuring when it is profitable to rematerialize value instead 95 // of relocating it 96 static cl::opt<unsigned> 97 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 98 cl::init(6)); 99 100 #ifdef EXPENSIVE_CHECKS 101 static bool ClobberNonLive = true; 102 #else 103 static bool ClobberNonLive = false; 104 #endif 105 106 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 107 cl::location(ClobberNonLive), 108 cl::Hidden); 109 110 static cl::opt<bool> 111 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 112 cl::Hidden, cl::init(true)); 113 114 /// The IR fed into RewriteStatepointsForGC may have had attributes and 115 /// metadata implying dereferenceability that are no longer valid/correct after 116 /// RewriteStatepointsForGC has run. This is because semantically, after 117 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 118 /// heap. stripNonValidData (conservatively) restores 119 /// correctness by erasing all attributes in the module that externally imply 120 /// dereferenceability. Similar reasoning also applies to the noalias 121 /// attributes and metadata. gc.statepoint can touch the entire heap including 122 /// noalias objects. 123 /// Apart from attributes and metadata, we also remove instructions that imply 124 /// constant physical memory: llvm.invariant.start. 125 static void stripNonValidData(Module &M); 126 127 static bool shouldRewriteStatepointsIn(Function &F); 128 129 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 130 ModuleAnalysisManager &AM) { 131 bool Changed = false; 132 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 133 for (Function &F : M) { 134 // Nothing to do for declarations. 135 if (F.isDeclaration() || F.empty()) 136 continue; 137 138 // Policy choice says not to rewrite - the most common reason is that we're 139 // compiling code without a GCStrategy. 140 if (!shouldRewriteStatepointsIn(F)) 141 continue; 142 143 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 144 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 145 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 146 Changed |= runOnFunction(F, DT, TTI, TLI); 147 } 148 if (!Changed) 149 return PreservedAnalyses::all(); 150 151 // stripNonValidData asserts that shouldRewriteStatepointsIn 152 // returns true for at least one function in the module. Since at least 153 // one function changed, we know that the precondition is satisfied. 154 stripNonValidData(M); 155 156 PreservedAnalyses PA; 157 PA.preserve<TargetIRAnalysis>(); 158 PA.preserve<TargetLibraryAnalysis>(); 159 return PA; 160 } 161 162 namespace { 163 164 class RewriteStatepointsForGCLegacyPass : public ModulePass { 165 RewriteStatepointsForGC Impl; 166 167 public: 168 static char ID; // Pass identification, replacement for typeid 169 170 RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() { 171 initializeRewriteStatepointsForGCLegacyPassPass( 172 *PassRegistry::getPassRegistry()); 173 } 174 175 bool runOnModule(Module &M) override { 176 bool Changed = false; 177 const TargetLibraryInfo &TLI = 178 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 179 for (Function &F : M) { 180 // Nothing to do for declarations. 181 if (F.isDeclaration() || F.empty()) 182 continue; 183 184 // Policy choice says not to rewrite - the most common reason is that 185 // we're compiling code without a GCStrategy. 186 if (!shouldRewriteStatepointsIn(F)) 187 continue; 188 189 TargetTransformInfo &TTI = 190 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 191 auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 192 193 Changed |= Impl.runOnFunction(F, DT, TTI, TLI); 194 } 195 196 if (!Changed) 197 return false; 198 199 // stripNonValidData asserts that shouldRewriteStatepointsIn 200 // returns true for at least one function in the module. Since at least 201 // one function changed, we know that the precondition is satisfied. 202 stripNonValidData(M); 203 return true; 204 } 205 206 void getAnalysisUsage(AnalysisUsage &AU) const override { 207 // We add and rewrite a bunch of instructions, but don't really do much 208 // else. We could in theory preserve a lot more analyses here. 209 AU.addRequired<DominatorTreeWrapperPass>(); 210 AU.addRequired<TargetTransformInfoWrapperPass>(); 211 AU.addRequired<TargetLibraryInfoWrapperPass>(); 212 } 213 }; 214 215 } // end anonymous namespace 216 217 char RewriteStatepointsForGCLegacyPass::ID = 0; 218 219 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() { 220 return new RewriteStatepointsForGCLegacyPass(); 221 } 222 223 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass, 224 "rewrite-statepoints-for-gc", 225 "Make relocations explicit at statepoints", false, false) 226 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 227 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 228 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass, 229 "rewrite-statepoints-for-gc", 230 "Make relocations explicit at statepoints", false, false) 231 232 namespace { 233 234 struct GCPtrLivenessData { 235 /// Values defined in this block. 236 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 237 238 /// Values used in this block (and thus live); does not included values 239 /// killed within this block. 240 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 241 242 /// Values live into this basic block (i.e. used by any 243 /// instruction in this basic block or ones reachable from here) 244 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 245 246 /// Values live out of this basic block (i.e. live into 247 /// any successor block) 248 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 249 }; 250 251 // The type of the internal cache used inside the findBasePointers family 252 // of functions. From the callers perspective, this is an opaque type and 253 // should not be inspected. 254 // 255 // In the actual implementation this caches two relations: 256 // - The base relation itself (i.e. this pointer is based on that one) 257 // - The base defining value relation (i.e. before base_phi insertion) 258 // Generally, after the execution of a full findBasePointer call, only the 259 // base relation will remain. Internally, we add a mixture of the two 260 // types, then update all the second type to the first type 261 using DefiningValueMapTy = MapVector<Value *, Value *>; 262 using StatepointLiveSetTy = SetVector<Value *>; 263 using RematerializedValueMapTy = 264 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 265 266 struct PartiallyConstructedSafepointRecord { 267 /// The set of values known to be live across this safepoint 268 StatepointLiveSetTy LiveSet; 269 270 /// Mapping from live pointers to a base-defining-value 271 MapVector<Value *, Value *> PointerToBase; 272 273 /// The *new* gc.statepoint instruction itself. This produces the token 274 /// that normal path gc.relocates and the gc.result are tied to. 275 Instruction *StatepointToken; 276 277 /// Instruction to which exceptional gc relocates are attached 278 /// Makes it easier to iterate through them during relocationViaAlloca. 279 Instruction *UnwindToken; 280 281 /// Record live values we are rematerialized instead of relocating. 282 /// They are not included into 'LiveSet' field. 283 /// Maps rematerialized copy to it's original value. 284 RematerializedValueMapTy RematerializedValues; 285 }; 286 287 } // end anonymous namespace 288 289 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 290 Optional<OperandBundleUse> DeoptBundle = 291 CS.getOperandBundle(LLVMContext::OB_deopt); 292 293 if (!DeoptBundle.hasValue()) { 294 assert(AllowStatepointWithNoDeoptInfo && 295 "Found non-leaf call without deopt info!"); 296 return None; 297 } 298 299 return DeoptBundle.getValue().Inputs; 300 } 301 302 /// Compute the live-in set for every basic block in the function 303 static void computeLiveInValues(DominatorTree &DT, Function &F, 304 GCPtrLivenessData &Data); 305 306 /// Given results from the dataflow liveness computation, find the set of live 307 /// Values at a particular instruction. 308 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 309 StatepointLiveSetTy &out); 310 311 // TODO: Once we can get to the GCStrategy, this becomes 312 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 313 314 static bool isGCPointerType(Type *T) { 315 if (auto *PT = dyn_cast<PointerType>(T)) 316 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 317 // GC managed heap. We know that a pointer into this heap needs to be 318 // updated and that no other pointer does. 319 return PT->getAddressSpace() == 1; 320 return false; 321 } 322 323 // Return true if this type is one which a) is a gc pointer or contains a GC 324 // pointer and b) is of a type this code expects to encounter as a live value. 325 // (The insertion code will assert that a type which matches (a) and not (b) 326 // is not encountered.) 327 static bool isHandledGCPointerType(Type *T) { 328 // We fully support gc pointers 329 if (isGCPointerType(T)) 330 return true; 331 // We partially support vectors of gc pointers. The code will assert if it 332 // can't handle something. 333 if (auto VT = dyn_cast<VectorType>(T)) 334 if (isGCPointerType(VT->getElementType())) 335 return true; 336 return false; 337 } 338 339 #ifndef NDEBUG 340 /// Returns true if this type contains a gc pointer whether we know how to 341 /// handle that type or not. 342 static bool containsGCPtrType(Type *Ty) { 343 if (isGCPointerType(Ty)) 344 return true; 345 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 346 return isGCPointerType(VT->getScalarType()); 347 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 348 return containsGCPtrType(AT->getElementType()); 349 if (StructType *ST = dyn_cast<StructType>(Ty)) 350 return llvm::any_of(ST->subtypes(), containsGCPtrType); 351 return false; 352 } 353 354 // Returns true if this is a type which a) is a gc pointer or contains a GC 355 // pointer and b) is of a type which the code doesn't expect (i.e. first class 356 // aggregates). Used to trip assertions. 357 static bool isUnhandledGCPointerType(Type *Ty) { 358 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 359 } 360 #endif 361 362 // Return the name of the value suffixed with the provided value, or if the 363 // value didn't have a name, the default value specified. 364 static std::string suffixed_name_or(Value *V, StringRef Suffix, 365 StringRef DefaultName) { 366 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 367 } 368 369 // Conservatively identifies any definitions which might be live at the 370 // given instruction. The analysis is performed immediately before the 371 // given instruction. Values defined by that instruction are not considered 372 // live. Values used by that instruction are considered live. 373 static void 374 analyzeParsePointLiveness(DominatorTree &DT, 375 GCPtrLivenessData &OriginalLivenessData, CallSite CS, 376 PartiallyConstructedSafepointRecord &Result) { 377 Instruction *Inst = CS.getInstruction(); 378 379 StatepointLiveSetTy LiveSet; 380 findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet); 381 382 if (PrintLiveSet) { 383 dbgs() << "Live Variables:\n"; 384 for (Value *V : LiveSet) 385 dbgs() << " " << V->getName() << " " << *V << "\n"; 386 } 387 if (PrintLiveSetSize) { 388 dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 389 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 390 } 391 Result.LiveSet = LiveSet; 392 } 393 394 static bool isKnownBaseResult(Value *V); 395 396 namespace { 397 398 /// A single base defining value - An immediate base defining value for an 399 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 400 /// For instructions which have multiple pointer [vector] inputs or that 401 /// transition between vector and scalar types, there is no immediate base 402 /// defining value. The 'base defining value' for 'Def' is the transitive 403 /// closure of this relation stopping at the first instruction which has no 404 /// immediate base defining value. The b.d.v. might itself be a base pointer, 405 /// but it can also be an arbitrary derived pointer. 406 struct BaseDefiningValueResult { 407 /// Contains the value which is the base defining value. 408 Value * const BDV; 409 410 /// True if the base defining value is also known to be an actual base 411 /// pointer. 412 const bool IsKnownBase; 413 414 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 415 : BDV(BDV), IsKnownBase(IsKnownBase) { 416 #ifndef NDEBUG 417 // Check consistency between new and old means of checking whether a BDV is 418 // a base. 419 bool MustBeBase = isKnownBaseResult(BDV); 420 assert(!MustBeBase || MustBeBase == IsKnownBase); 421 #endif 422 } 423 }; 424 425 } // end anonymous namespace 426 427 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 428 429 /// Return a base defining value for the 'Index' element of the given vector 430 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 431 /// 'I'. As an optimization, this method will try to determine when the 432 /// element is known to already be a base pointer. If this can be established, 433 /// the second value in the returned pair will be true. Note that either a 434 /// vector or a pointer typed value can be returned. For the former, the 435 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 436 /// If the later, the return pointer is a BDV (or possibly a base) for the 437 /// particular element in 'I'. 438 static BaseDefiningValueResult 439 findBaseDefiningValueOfVector(Value *I) { 440 // Each case parallels findBaseDefiningValue below, see that code for 441 // detailed motivation. 442 443 if (isa<Argument>(I)) 444 // An incoming argument to the function is a base pointer 445 return BaseDefiningValueResult(I, true); 446 447 if (isa<Constant>(I)) 448 // Base of constant vector consists only of constant null pointers. 449 // For reasoning see similar case inside 'findBaseDefiningValue' function. 450 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 451 true); 452 453 if (isa<LoadInst>(I)) 454 return BaseDefiningValueResult(I, true); 455 456 if (isa<InsertElementInst>(I)) 457 // We don't know whether this vector contains entirely base pointers or 458 // not. To be conservatively correct, we treat it as a BDV and will 459 // duplicate code as needed to construct a parallel vector of bases. 460 return BaseDefiningValueResult(I, false); 461 462 if (isa<ShuffleVectorInst>(I)) 463 // We don't know whether this vector contains entirely base pointers or 464 // not. To be conservatively correct, we treat it as a BDV and will 465 // duplicate code as needed to construct a parallel vector of bases. 466 // TODO: There a number of local optimizations which could be applied here 467 // for particular sufflevector patterns. 468 return BaseDefiningValueResult(I, false); 469 470 // The behavior of getelementptr instructions is the same for vector and 471 // non-vector data types. 472 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 473 return findBaseDefiningValue(GEP->getPointerOperand()); 474 475 // If the pointer comes through a bitcast of a vector of pointers to 476 // a vector of another type of pointer, then look through the bitcast 477 if (auto *BC = dyn_cast<BitCastInst>(I)) 478 return findBaseDefiningValue(BC->getOperand(0)); 479 480 // We assume that functions in the source language only return base 481 // pointers. This should probably be generalized via attributes to support 482 // both source language and internal functions. 483 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 484 return BaseDefiningValueResult(I, true); 485 486 // A PHI or Select is a base defining value. The outer findBasePointer 487 // algorithm is responsible for constructing a base value for this BDV. 488 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 489 "unknown vector instruction - no base found for vector element"); 490 return BaseDefiningValueResult(I, false); 491 } 492 493 /// Helper function for findBasePointer - Will return a value which either a) 494 /// defines the base pointer for the input, b) blocks the simple search 495 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 496 /// from pointer to vector type or back. 497 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 498 assert(I->getType()->isPtrOrPtrVectorTy() && 499 "Illegal to ask for the base pointer of a non-pointer type"); 500 501 if (I->getType()->isVectorTy()) 502 return findBaseDefiningValueOfVector(I); 503 504 if (isa<Argument>(I)) 505 // An incoming argument to the function is a base pointer 506 // We should have never reached here if this argument isn't an gc value 507 return BaseDefiningValueResult(I, true); 508 509 if (isa<Constant>(I)) { 510 // We assume that objects with a constant base (e.g. a global) can't move 511 // and don't need to be reported to the collector because they are always 512 // live. Besides global references, all kinds of constants (e.g. undef, 513 // constant expressions, null pointers) can be introduced by the inliner or 514 // the optimizer, especially on dynamically dead paths. 515 // Here we treat all of them as having single null base. By doing this we 516 // trying to avoid problems reporting various conflicts in a form of 517 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 518 // See constant.ll file for relevant test cases. 519 520 return BaseDefiningValueResult( 521 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 522 } 523 524 if (CastInst *CI = dyn_cast<CastInst>(I)) { 525 Value *Def = CI->stripPointerCasts(); 526 // If stripping pointer casts changes the address space there is an 527 // addrspacecast in between. 528 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 529 cast<PointerType>(CI->getType())->getAddressSpace() && 530 "unsupported addrspacecast"); 531 // If we find a cast instruction here, it means we've found a cast which is 532 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 533 // handle int->ptr conversion. 534 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 535 return findBaseDefiningValue(Def); 536 } 537 538 if (isa<LoadInst>(I)) 539 // The value loaded is an gc base itself 540 return BaseDefiningValueResult(I, true); 541 542 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 543 // The base of this GEP is the base 544 return findBaseDefiningValue(GEP->getPointerOperand()); 545 546 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 547 switch (II->getIntrinsicID()) { 548 default: 549 // fall through to general call handling 550 break; 551 case Intrinsic::experimental_gc_statepoint: 552 llvm_unreachable("statepoints don't produce pointers"); 553 case Intrinsic::experimental_gc_relocate: 554 // Rerunning safepoint insertion after safepoints are already 555 // inserted is not supported. It could probably be made to work, 556 // but why are you doing this? There's no good reason. 557 llvm_unreachable("repeat safepoint insertion is not supported"); 558 case Intrinsic::gcroot: 559 // Currently, this mechanism hasn't been extended to work with gcroot. 560 // There's no reason it couldn't be, but I haven't thought about the 561 // implications much. 562 llvm_unreachable( 563 "interaction with the gcroot mechanism is not supported"); 564 } 565 } 566 // We assume that functions in the source language only return base 567 // pointers. This should probably be generalized via attributes to support 568 // both source language and internal functions. 569 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 570 return BaseDefiningValueResult(I, true); 571 572 // TODO: I have absolutely no idea how to implement this part yet. It's not 573 // necessarily hard, I just haven't really looked at it yet. 574 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 575 576 if (isa<AtomicCmpXchgInst>(I)) 577 // A CAS is effectively a atomic store and load combined under a 578 // predicate. From the perspective of base pointers, we just treat it 579 // like a load. 580 return BaseDefiningValueResult(I, true); 581 582 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 583 "binary ops which don't apply to pointers"); 584 585 // The aggregate ops. Aggregates can either be in the heap or on the 586 // stack, but in either case, this is simply a field load. As a result, 587 // this is a defining definition of the base just like a load is. 588 if (isa<ExtractValueInst>(I)) 589 return BaseDefiningValueResult(I, true); 590 591 // We should never see an insert vector since that would require we be 592 // tracing back a struct value not a pointer value. 593 assert(!isa<InsertValueInst>(I) && 594 "Base pointer for a struct is meaningless"); 595 596 // An extractelement produces a base result exactly when it's input does. 597 // We may need to insert a parallel instruction to extract the appropriate 598 // element out of the base vector corresponding to the input. Given this, 599 // it's analogous to the phi and select case even though it's not a merge. 600 if (isa<ExtractElementInst>(I)) 601 // Note: There a lot of obvious peephole cases here. This are deliberately 602 // handled after the main base pointer inference algorithm to make writing 603 // test cases to exercise that code easier. 604 return BaseDefiningValueResult(I, false); 605 606 // The last two cases here don't return a base pointer. Instead, they 607 // return a value which dynamically selects from among several base 608 // derived pointers (each with it's own base potentially). It's the job of 609 // the caller to resolve these. 610 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 611 "missing instruction case in findBaseDefiningValing"); 612 return BaseDefiningValueResult(I, false); 613 } 614 615 /// Returns the base defining value for this value. 616 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 617 Value *&Cached = Cache[I]; 618 if (!Cached) { 619 Cached = findBaseDefiningValue(I).BDV; 620 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 621 << Cached->getName() << "\n"); 622 } 623 assert(Cache[I] != nullptr); 624 return Cached; 625 } 626 627 /// Return a base pointer for this value if known. Otherwise, return it's 628 /// base defining value. 629 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 630 Value *Def = findBaseDefiningValueCached(I, Cache); 631 auto Found = Cache.find(Def); 632 if (Found != Cache.end()) { 633 // Either a base-of relation, or a self reference. Caller must check. 634 return Found->second; 635 } 636 // Only a BDV available 637 return Def; 638 } 639 640 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 641 /// is it known to be a base pointer? Or do we need to continue searching. 642 static bool isKnownBaseResult(Value *V) { 643 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 644 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 645 !isa<ShuffleVectorInst>(V)) { 646 // no recursion possible 647 return true; 648 } 649 if (isa<Instruction>(V) && 650 cast<Instruction>(V)->getMetadata("is_base_value")) { 651 // This is a previously inserted base phi or select. We know 652 // that this is a base value. 653 return true; 654 } 655 656 // We need to keep searching 657 return false; 658 } 659 660 namespace { 661 662 /// Models the state of a single base defining value in the findBasePointer 663 /// algorithm for determining where a new instruction is needed to propagate 664 /// the base of this BDV. 665 class BDVState { 666 public: 667 enum Status { Unknown, Base, Conflict }; 668 669 BDVState() : BaseValue(nullptr) {} 670 671 explicit BDVState(Status Status, Value *BaseValue = nullptr) 672 : Status(Status), BaseValue(BaseValue) { 673 assert(Status != Base || BaseValue); 674 } 675 676 explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {} 677 678 Status getStatus() const { return Status; } 679 Value *getBaseValue() const { return BaseValue; } 680 681 bool isBase() const { return getStatus() == Base; } 682 bool isUnknown() const { return getStatus() == Unknown; } 683 bool isConflict() const { return getStatus() == Conflict; } 684 685 bool operator==(const BDVState &Other) const { 686 return BaseValue == Other.BaseValue && Status == Other.Status; 687 } 688 689 bool operator!=(const BDVState &other) const { return !(*this == other); } 690 691 LLVM_DUMP_METHOD 692 void dump() const { 693 print(dbgs()); 694 dbgs() << '\n'; 695 } 696 697 void print(raw_ostream &OS) const { 698 switch (getStatus()) { 699 case Unknown: 700 OS << "U"; 701 break; 702 case Base: 703 OS << "B"; 704 break; 705 case Conflict: 706 OS << "C"; 707 break; 708 } 709 OS << " (" << getBaseValue() << " - " 710 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): "; 711 } 712 713 private: 714 Status Status = Unknown; 715 AssertingVH<Value> BaseValue; // Non-null only if Status == Base. 716 }; 717 718 } // end anonymous namespace 719 720 #ifndef NDEBUG 721 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 722 State.print(OS); 723 return OS; 724 } 725 #endif 726 727 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) { 728 switch (LHS.getStatus()) { 729 case BDVState::Unknown: 730 return RHS; 731 732 case BDVState::Base: 733 assert(LHS.getBaseValue() && "can't be null"); 734 if (RHS.isUnknown()) 735 return LHS; 736 737 if (RHS.isBase()) { 738 if (LHS.getBaseValue() == RHS.getBaseValue()) { 739 assert(LHS == RHS && "equality broken!"); 740 return LHS; 741 } 742 return BDVState(BDVState::Conflict); 743 } 744 assert(RHS.isConflict() && "only three states!"); 745 return BDVState(BDVState::Conflict); 746 747 case BDVState::Conflict: 748 return LHS; 749 } 750 llvm_unreachable("only three states!"); 751 } 752 753 // Values of type BDVState form a lattice, and this function implements the meet 754 // operation. 755 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) { 756 BDVState Result = meetBDVStateImpl(LHS, RHS); 757 assert(Result == meetBDVStateImpl(RHS, LHS) && 758 "Math is wrong: meet does not commute!"); 759 return Result; 760 } 761 762 /// For a given value or instruction, figure out what base ptr its derived from. 763 /// For gc objects, this is simply itself. On success, returns a value which is 764 /// the base pointer. (This is reliable and can be used for relocation.) On 765 /// failure, returns nullptr. 766 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 767 Value *Def = findBaseOrBDV(I, Cache); 768 769 if (isKnownBaseResult(Def)) 770 return Def; 771 772 // Here's the rough algorithm: 773 // - For every SSA value, construct a mapping to either an actual base 774 // pointer or a PHI which obscures the base pointer. 775 // - Construct a mapping from PHI to unknown TOP state. Use an 776 // optimistic algorithm to propagate base pointer information. Lattice 777 // looks like: 778 // UNKNOWN 779 // b1 b2 b3 b4 780 // CONFLICT 781 // When algorithm terminates, all PHIs will either have a single concrete 782 // base or be in a conflict state. 783 // - For every conflict, insert a dummy PHI node without arguments. Add 784 // these to the base[Instruction] = BasePtr mapping. For every 785 // non-conflict, add the actual base. 786 // - For every conflict, add arguments for the base[a] of each input 787 // arguments. 788 // 789 // Note: A simpler form of this would be to add the conflict form of all 790 // PHIs without running the optimistic algorithm. This would be 791 // analogous to pessimistic data flow and would likely lead to an 792 // overall worse solution. 793 794 #ifndef NDEBUG 795 auto isExpectedBDVType = [](Value *BDV) { 796 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 797 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 798 isa<ShuffleVectorInst>(BDV); 799 }; 800 #endif 801 802 // Once populated, will contain a mapping from each potentially non-base BDV 803 // to a lattice value (described above) which corresponds to that BDV. 804 // We use the order of insertion (DFS over the def/use graph) to provide a 805 // stable deterministic ordering for visiting DenseMaps (which are unordered) 806 // below. This is important for deterministic compilation. 807 MapVector<Value *, BDVState> States; 808 809 // Recursively fill in all base defining values reachable from the initial 810 // one for which we don't already know a definite base value for 811 /* scope */ { 812 SmallVector<Value*, 16> Worklist; 813 Worklist.push_back(Def); 814 States.insert({Def, BDVState()}); 815 while (!Worklist.empty()) { 816 Value *Current = Worklist.pop_back_val(); 817 assert(!isKnownBaseResult(Current) && "why did it get added?"); 818 819 auto visitIncomingValue = [&](Value *InVal) { 820 Value *Base = findBaseOrBDV(InVal, Cache); 821 if (isKnownBaseResult(Base)) 822 // Known bases won't need new instructions introduced and can be 823 // ignored safely 824 return; 825 assert(isExpectedBDVType(Base) && "the only non-base values " 826 "we see should be base defining values"); 827 if (States.insert(std::make_pair(Base, BDVState())).second) 828 Worklist.push_back(Base); 829 }; 830 if (PHINode *PN = dyn_cast<PHINode>(Current)) { 831 for (Value *InVal : PN->incoming_values()) 832 visitIncomingValue(InVal); 833 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { 834 visitIncomingValue(SI->getTrueValue()); 835 visitIncomingValue(SI->getFalseValue()); 836 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 837 visitIncomingValue(EE->getVectorOperand()); 838 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 839 visitIncomingValue(IE->getOperand(0)); // vector operand 840 visitIncomingValue(IE->getOperand(1)); // scalar operand 841 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) { 842 visitIncomingValue(SV->getOperand(0)); 843 visitIncomingValue(SV->getOperand(1)); 844 } 845 else { 846 llvm_unreachable("Unimplemented instruction case"); 847 } 848 } 849 } 850 851 #ifndef NDEBUG 852 LLVM_DEBUG(dbgs() << "States after initialization:\n"); 853 for (auto Pair : States) { 854 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 855 } 856 #endif 857 858 // Return a phi state for a base defining value. We'll generate a new 859 // base state for known bases and expect to find a cached state otherwise. 860 auto getStateForBDV = [&](Value *baseValue) { 861 if (isKnownBaseResult(baseValue)) 862 return BDVState(baseValue); 863 auto I = States.find(baseValue); 864 assert(I != States.end() && "lookup failed!"); 865 return I->second; 866 }; 867 868 bool Progress = true; 869 while (Progress) { 870 #ifndef NDEBUG 871 const size_t OldSize = States.size(); 872 #endif 873 Progress = false; 874 // We're only changing values in this loop, thus safe to keep iterators. 875 // Since this is computing a fixed point, the order of visit does not 876 // effect the result. TODO: We could use a worklist here and make this run 877 // much faster. 878 for (auto Pair : States) { 879 Value *BDV = Pair.first; 880 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 881 882 // Given an input value for the current instruction, return a BDVState 883 // instance which represents the BDV of that value. 884 auto getStateForInput = [&](Value *V) mutable { 885 Value *BDV = findBaseOrBDV(V, Cache); 886 return getStateForBDV(BDV); 887 }; 888 889 BDVState NewState; 890 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 891 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); 892 NewState = 893 meetBDVState(NewState, getStateForInput(SI->getFalseValue())); 894 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 895 for (Value *Val : PN->incoming_values()) 896 NewState = meetBDVState(NewState, getStateForInput(Val)); 897 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 898 // The 'meet' for an extractelement is slightly trivial, but it's still 899 // useful in that it drives us to conflict if our input is. 900 NewState = 901 meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); 902 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){ 903 // Given there's a inherent type mismatch between the operands, will 904 // *always* produce Conflict. 905 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); 906 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); 907 } else { 908 // The only instance this does not return a Conflict is when both the 909 // vector operands are the same vector. 910 auto *SV = cast<ShuffleVectorInst>(BDV); 911 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0))); 912 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1))); 913 } 914 915 BDVState OldState = States[BDV]; 916 if (OldState != NewState) { 917 Progress = true; 918 States[BDV] = NewState; 919 } 920 } 921 922 assert(OldSize == States.size() && 923 "fixed point shouldn't be adding any new nodes to state"); 924 } 925 926 #ifndef NDEBUG 927 LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); 928 for (auto Pair : States) { 929 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 930 } 931 #endif 932 933 // Insert Phis for all conflicts 934 // TODO: adjust naming patterns to avoid this order of iteration dependency 935 for (auto Pair : States) { 936 Instruction *I = cast<Instruction>(Pair.first); 937 BDVState State = Pair.second; 938 assert(!isKnownBaseResult(I) && "why did it get added?"); 939 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 940 941 // extractelement instructions are a bit special in that we may need to 942 // insert an extract even when we know an exact base for the instruction. 943 // The problem is that we need to convert from a vector base to a scalar 944 // base for the particular indice we're interested in. 945 if (State.isBase() && isa<ExtractElementInst>(I) && 946 isa<VectorType>(State.getBaseValue()->getType())) { 947 auto *EE = cast<ExtractElementInst>(I); 948 // TODO: In many cases, the new instruction is just EE itself. We should 949 // exploit this, but can't do it here since it would break the invariant 950 // about the BDV not being known to be a base. 951 auto *BaseInst = ExtractElementInst::Create( 952 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 953 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 954 States[I] = BDVState(BDVState::Base, BaseInst); 955 } 956 957 // Since we're joining a vector and scalar base, they can never be the 958 // same. As a result, we should always see insert element having reached 959 // the conflict state. 960 assert(!isa<InsertElementInst>(I) || State.isConflict()); 961 962 if (!State.isConflict()) 963 continue; 964 965 /// Create and insert a new instruction which will represent the base of 966 /// the given instruction 'I'. 967 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 968 if (isa<PHINode>(I)) { 969 BasicBlock *BB = I->getParent(); 970 int NumPreds = pred_size(BB); 971 assert(NumPreds > 0 && "how did we reach here"); 972 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 973 return PHINode::Create(I->getType(), NumPreds, Name, I); 974 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 975 // The undef will be replaced later 976 UndefValue *Undef = UndefValue::get(SI->getType()); 977 std::string Name = suffixed_name_or(I, ".base", "base_select"); 978 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); 979 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 980 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 981 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 982 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 983 EE); 984 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 985 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 986 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 987 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 988 return InsertElementInst::Create(VecUndef, ScalarUndef, 989 IE->getOperand(2), Name, IE); 990 } else { 991 auto *SV = cast<ShuffleVectorInst>(I); 992 UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType()); 993 std::string Name = suffixed_name_or(I, ".base", "base_sv"); 994 return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2), 995 Name, SV); 996 } 997 }; 998 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 999 // Add metadata marking this as a base value 1000 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1001 States[I] = BDVState(BDVState::Conflict, BaseInst); 1002 } 1003 1004 // Returns a instruction which produces the base pointer for a given 1005 // instruction. The instruction is assumed to be an input to one of the BDVs 1006 // seen in the inference algorithm above. As such, we must either already 1007 // know it's base defining value is a base, or have inserted a new 1008 // instruction to propagate the base of it's BDV and have entered that newly 1009 // introduced instruction into the state table. In either case, we are 1010 // assured to be able to determine an instruction which produces it's base 1011 // pointer. 1012 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1013 Value *BDV = findBaseOrBDV(Input, Cache); 1014 Value *Base = nullptr; 1015 if (isKnownBaseResult(BDV)) { 1016 Base = BDV; 1017 } else { 1018 // Either conflict or base. 1019 assert(States.count(BDV)); 1020 Base = States[BDV].getBaseValue(); 1021 } 1022 assert(Base && "Can't be null"); 1023 // The cast is needed since base traversal may strip away bitcasts 1024 if (Base->getType() != Input->getType() && InsertPt) 1025 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 1026 return Base; 1027 }; 1028 1029 // Fixup all the inputs of the new PHIs. Visit order needs to be 1030 // deterministic and predictable because we're naming newly created 1031 // instructions. 1032 for (auto Pair : States) { 1033 Instruction *BDV = cast<Instruction>(Pair.first); 1034 BDVState State = Pair.second; 1035 1036 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1037 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1038 if (!State.isConflict()) 1039 continue; 1040 1041 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1042 PHINode *PN = cast<PHINode>(BDV); 1043 unsigned NumPHIValues = PN->getNumIncomingValues(); 1044 for (unsigned i = 0; i < NumPHIValues; i++) { 1045 Value *InVal = PN->getIncomingValue(i); 1046 BasicBlock *InBB = PN->getIncomingBlock(i); 1047 1048 // If we've already seen InBB, add the same incoming value 1049 // we added for it earlier. The IR verifier requires phi 1050 // nodes with multiple entries from the same basic block 1051 // to have the same incoming value for each of those 1052 // entries. If we don't do this check here and basephi 1053 // has a different type than base, we'll end up adding two 1054 // bitcasts (and hence two distinct values) as incoming 1055 // values for the same basic block. 1056 1057 int BlockIndex = BasePHI->getBasicBlockIndex(InBB); 1058 if (BlockIndex != -1) { 1059 Value *OldBase = BasePHI->getIncomingValue(BlockIndex); 1060 BasePHI->addIncoming(OldBase, InBB); 1061 1062 #ifndef NDEBUG 1063 Value *Base = getBaseForInput(InVal, nullptr); 1064 // In essence this assert states: the only way two values 1065 // incoming from the same basic block may be different is by 1066 // being different bitcasts of the same value. A cleanup 1067 // that remains TODO is changing findBaseOrBDV to return an 1068 // llvm::Value of the correct type (and still remain pure). 1069 // This will remove the need to add bitcasts. 1070 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 1071 "Sanity -- findBaseOrBDV should be pure!"); 1072 #endif 1073 continue; 1074 } 1075 1076 // Find the instruction which produces the base for each input. We may 1077 // need to insert a bitcast in the incoming block. 1078 // TODO: Need to split critical edges if insertion is needed 1079 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1080 BasePHI->addIncoming(Base, InBB); 1081 } 1082 assert(BasePHI->getNumIncomingValues() == NumPHIValues); 1083 } else if (SelectInst *BaseSI = 1084 dyn_cast<SelectInst>(State.getBaseValue())) { 1085 SelectInst *SI = cast<SelectInst>(BDV); 1086 1087 // Find the instruction which produces the base for each input. 1088 // We may need to insert a bitcast. 1089 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1090 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1091 } else if (auto *BaseEE = 1092 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1093 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1094 // Find the instruction which produces the base for each input. We may 1095 // need to insert a bitcast. 1096 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1097 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1098 auto *BdvIE = cast<InsertElementInst>(BDV); 1099 auto UpdateOperand = [&](int OperandIdx) { 1100 Value *InVal = BdvIE->getOperand(OperandIdx); 1101 Value *Base = getBaseForInput(InVal, BaseIE); 1102 BaseIE->setOperand(OperandIdx, Base); 1103 }; 1104 UpdateOperand(0); // vector operand 1105 UpdateOperand(1); // scalar operand 1106 } else { 1107 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1108 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1109 auto UpdateOperand = [&](int OperandIdx) { 1110 Value *InVal = BdvSV->getOperand(OperandIdx); 1111 Value *Base = getBaseForInput(InVal, BaseSV); 1112 BaseSV->setOperand(OperandIdx, Base); 1113 }; 1114 UpdateOperand(0); // vector operand 1115 UpdateOperand(1); // vector operand 1116 } 1117 } 1118 1119 // Cache all of our results so we can cheaply reuse them 1120 // NOTE: This is actually two caches: one of the base defining value 1121 // relation and one of the base pointer relation! FIXME 1122 for (auto Pair : States) { 1123 auto *BDV = Pair.first; 1124 Value *Base = Pair.second.getBaseValue(); 1125 assert(BDV && Base); 1126 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1127 1128 LLVM_DEBUG( 1129 dbgs() << "Updating base value cache" 1130 << " for: " << BDV->getName() << " from: " 1131 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1132 << " to: " << Base->getName() << "\n"); 1133 1134 if (Cache.count(BDV)) { 1135 assert(isKnownBaseResult(Base) && 1136 "must be something we 'know' is a base pointer"); 1137 // Once we transition from the BDV relation being store in the Cache to 1138 // the base relation being stored, it must be stable 1139 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && 1140 "base relation should be stable"); 1141 } 1142 Cache[BDV] = Base; 1143 } 1144 assert(Cache.count(Def)); 1145 return Cache[Def]; 1146 } 1147 1148 // For a set of live pointers (base and/or derived), identify the base 1149 // pointer of the object which they are derived from. This routine will 1150 // mutate the IR graph as needed to make the 'base' pointer live at the 1151 // definition site of 'derived'. This ensures that any use of 'derived' can 1152 // also use 'base'. This may involve the insertion of a number of 1153 // additional PHI nodes. 1154 // 1155 // preconditions: live is a set of pointer type Values 1156 // 1157 // side effects: may insert PHI nodes into the existing CFG, will preserve 1158 // CFG, will not remove or mutate any existing nodes 1159 // 1160 // post condition: PointerToBase contains one (derived, base) pair for every 1161 // pointer in live. Note that derived can be equal to base if the original 1162 // pointer was a base pointer. 1163 static void 1164 findBasePointers(const StatepointLiveSetTy &live, 1165 MapVector<Value *, Value *> &PointerToBase, 1166 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1167 for (Value *ptr : live) { 1168 Value *base = findBasePointer(ptr, DVCache); 1169 assert(base && "failed to find base pointer"); 1170 PointerToBase[ptr] = base; 1171 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1172 DT->dominates(cast<Instruction>(base)->getParent(), 1173 cast<Instruction>(ptr)->getParent())) && 1174 "The base we found better dominate the derived pointer"); 1175 } 1176 } 1177 1178 /// Find the required based pointers (and adjust the live set) for the given 1179 /// parse point. 1180 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1181 CallSite CS, 1182 PartiallyConstructedSafepointRecord &result) { 1183 MapVector<Value *, Value *> PointerToBase; 1184 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1185 1186 if (PrintBasePointers) { 1187 errs() << "Base Pairs (w/o Relocation):\n"; 1188 for (auto &Pair : PointerToBase) { 1189 errs() << " derived "; 1190 Pair.first->printAsOperand(errs(), false); 1191 errs() << " base "; 1192 Pair.second->printAsOperand(errs(), false); 1193 errs() << "\n";; 1194 } 1195 } 1196 1197 result.PointerToBase = PointerToBase; 1198 } 1199 1200 /// Given an updated version of the dataflow liveness results, update the 1201 /// liveset and base pointer maps for the call site CS. 1202 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1203 CallSite CS, 1204 PartiallyConstructedSafepointRecord &result); 1205 1206 static void recomputeLiveInValues( 1207 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1208 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1209 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1210 // again. The old values are still live and will help it stabilize quickly. 1211 GCPtrLivenessData RevisedLivenessData; 1212 computeLiveInValues(DT, F, RevisedLivenessData); 1213 for (size_t i = 0; i < records.size(); i++) { 1214 struct PartiallyConstructedSafepointRecord &info = records[i]; 1215 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1216 } 1217 } 1218 1219 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1220 // no uses of the original value / return value between the gc.statepoint and 1221 // the gc.relocate / gc.result call. One case which can arise is a phi node 1222 // starting one of the successor blocks. We also need to be able to insert the 1223 // gc.relocates only on the path which goes through the statepoint. We might 1224 // need to split an edge to make this possible. 1225 static BasicBlock * 1226 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1227 DominatorTree &DT) { 1228 BasicBlock *Ret = BB; 1229 if (!BB->getUniquePredecessor()) 1230 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1231 1232 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1233 // from it 1234 FoldSingleEntryPHINodes(Ret); 1235 assert(!isa<PHINode>(Ret->begin()) && 1236 "All PHI nodes should have been removed!"); 1237 1238 // At this point, we can safely insert a gc.relocate or gc.result as the first 1239 // instruction in Ret if needed. 1240 return Ret; 1241 } 1242 1243 // Create new attribute set containing only attributes which can be transferred 1244 // from original call to the safepoint. 1245 static AttributeList legalizeCallAttributes(AttributeList AL) { 1246 if (AL.isEmpty()) 1247 return AL; 1248 1249 // Remove the readonly, readnone, and statepoint function attributes. 1250 AttrBuilder FnAttrs = AL.getFnAttributes(); 1251 FnAttrs.removeAttribute(Attribute::ReadNone); 1252 FnAttrs.removeAttribute(Attribute::ReadOnly); 1253 for (Attribute A : AL.getFnAttributes()) { 1254 if (isStatepointDirectiveAttr(A)) 1255 FnAttrs.remove(A); 1256 } 1257 1258 // Just skip parameter and return attributes for now 1259 LLVMContext &Ctx = AL.getContext(); 1260 return AttributeList::get(Ctx, AttributeList::FunctionIndex, 1261 AttributeSet::get(Ctx, FnAttrs)); 1262 } 1263 1264 /// Helper function to place all gc relocates necessary for the given 1265 /// statepoint. 1266 /// Inputs: 1267 /// liveVariables - list of variables to be relocated. 1268 /// liveStart - index of the first live variable. 1269 /// basePtrs - base pointers. 1270 /// statepointToken - statepoint instruction to which relocates should be 1271 /// bound. 1272 /// Builder - Llvm IR builder to be used to construct new calls. 1273 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1274 const int LiveStart, 1275 ArrayRef<Value *> BasePtrs, 1276 Instruction *StatepointToken, 1277 IRBuilder<> Builder) { 1278 if (LiveVariables.empty()) 1279 return; 1280 1281 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1282 auto ValIt = llvm::find(LiveVec, Val); 1283 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1284 size_t Index = std::distance(LiveVec.begin(), ValIt); 1285 assert(Index < LiveVec.size() && "Bug in std::find?"); 1286 return Index; 1287 }; 1288 Module *M = StatepointToken->getModule(); 1289 1290 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1291 // element type is i8 addrspace(1)*). We originally generated unique 1292 // declarations for each pointer type, but this proved problematic because 1293 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1294 // towards a single unified pointer type anyways, we can just cast everything 1295 // to an i8* of the right address space. A bitcast is added later to convert 1296 // gc_relocate to the actual value's type. 1297 auto getGCRelocateDecl = [&] (Type *Ty) { 1298 assert(isHandledGCPointerType(Ty)); 1299 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1300 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1301 if (auto *VT = dyn_cast<VectorType>(Ty)) 1302 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1303 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1304 {NewTy}); 1305 }; 1306 1307 // Lazily populated map from input types to the canonicalized form mentioned 1308 // in the comment above. This should probably be cached somewhere more 1309 // broadly. 1310 DenseMap<Type*, Value*> TypeToDeclMap; 1311 1312 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1313 // Generate the gc.relocate call and save the result 1314 Value *BaseIdx = 1315 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1316 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1317 1318 Type *Ty = LiveVariables[i]->getType(); 1319 if (!TypeToDeclMap.count(Ty)) 1320 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1321 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1322 1323 // only specify a debug name if we can give a useful one 1324 CallInst *Reloc = Builder.CreateCall( 1325 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1326 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1327 // Trick CodeGen into thinking there are lots of free registers at this 1328 // fake call. 1329 Reloc->setCallingConv(CallingConv::Cold); 1330 } 1331 } 1332 1333 namespace { 1334 1335 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1336 /// avoids having to worry about keeping around dangling pointers to Values. 1337 class DeferredReplacement { 1338 AssertingVH<Instruction> Old; 1339 AssertingVH<Instruction> New; 1340 bool IsDeoptimize = false; 1341 1342 DeferredReplacement() = default; 1343 1344 public: 1345 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1346 assert(Old != New && Old && New && 1347 "Cannot RAUW equal values or to / from null!"); 1348 1349 DeferredReplacement D; 1350 D.Old = Old; 1351 D.New = New; 1352 return D; 1353 } 1354 1355 static DeferredReplacement createDelete(Instruction *ToErase) { 1356 DeferredReplacement D; 1357 D.Old = ToErase; 1358 return D; 1359 } 1360 1361 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1362 #ifndef NDEBUG 1363 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1364 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1365 "Only way to construct a deoptimize deferred replacement"); 1366 #endif 1367 DeferredReplacement D; 1368 D.Old = Old; 1369 D.IsDeoptimize = true; 1370 return D; 1371 } 1372 1373 /// Does the task represented by this instance. 1374 void doReplacement() { 1375 Instruction *OldI = Old; 1376 Instruction *NewI = New; 1377 1378 assert(OldI != NewI && "Disallowed at construction?!"); 1379 assert((!IsDeoptimize || !New) && 1380 "Deoptimize intrinsics are not replaced!"); 1381 1382 Old = nullptr; 1383 New = nullptr; 1384 1385 if (NewI) 1386 OldI->replaceAllUsesWith(NewI); 1387 1388 if (IsDeoptimize) { 1389 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1390 // not necessarily be followed by the matching return. 1391 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1392 new UnreachableInst(RI->getContext(), RI); 1393 RI->eraseFromParent(); 1394 } 1395 1396 OldI->eraseFromParent(); 1397 } 1398 }; 1399 1400 } // end anonymous namespace 1401 1402 static StringRef getDeoptLowering(CallSite CS) { 1403 const char *DeoptLowering = "deopt-lowering"; 1404 if (CS.hasFnAttr(DeoptLowering)) { 1405 // FIXME: CallSite has a *really* confusing interface around attributes 1406 // with values. 1407 const AttributeList &CSAS = CS.getAttributes(); 1408 if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering)) 1409 return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering) 1410 .getValueAsString(); 1411 Function *F = CS.getCalledFunction(); 1412 assert(F && F->hasFnAttribute(DeoptLowering)); 1413 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1414 } 1415 return "live-through"; 1416 } 1417 1418 static void 1419 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1420 const SmallVectorImpl<Value *> &BasePtrs, 1421 const SmallVectorImpl<Value *> &LiveVariables, 1422 PartiallyConstructedSafepointRecord &Result, 1423 std::vector<DeferredReplacement> &Replacements) { 1424 assert(BasePtrs.size() == LiveVariables.size()); 1425 1426 // Then go ahead and use the builder do actually do the inserts. We insert 1427 // immediately before the previous instruction under the assumption that all 1428 // arguments will be available here. We can't insert afterwards since we may 1429 // be replacing a terminator. 1430 Instruction *InsertBefore = CS.getInstruction(); 1431 IRBuilder<> Builder(InsertBefore); 1432 1433 ArrayRef<Value *> GCArgs(LiveVariables); 1434 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1435 uint32_t NumPatchBytes = 0; 1436 uint32_t Flags = uint32_t(StatepointFlags::None); 1437 1438 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1439 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1440 ArrayRef<Use> TransitionArgs; 1441 if (auto TransitionBundle = 1442 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1443 Flags |= uint32_t(StatepointFlags::GCTransition); 1444 TransitionArgs = TransitionBundle->Inputs; 1445 } 1446 1447 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1448 // with a return value, we lower then as never returning calls to 1449 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1450 bool IsDeoptimize = false; 1451 1452 StatepointDirectives SD = 1453 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1454 if (SD.NumPatchBytes) 1455 NumPatchBytes = *SD.NumPatchBytes; 1456 if (SD.StatepointID) 1457 StatepointID = *SD.StatepointID; 1458 1459 // Pass through the requested lowering if any. The default is live-through. 1460 StringRef DeoptLowering = getDeoptLowering(CS); 1461 if (DeoptLowering.equals("live-in")) 1462 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1463 else { 1464 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1465 } 1466 1467 Value *CallTarget = CS.getCalledValue(); 1468 if (Function *F = dyn_cast<Function>(CallTarget)) { 1469 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1470 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1471 // __llvm_deoptimize symbol. We want to resolve this now, since the 1472 // verifier does not allow taking the address of an intrinsic function. 1473 1474 SmallVector<Type *, 8> DomainTy; 1475 for (Value *Arg : CallArgs) 1476 DomainTy.push_back(Arg->getType()); 1477 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1478 /* isVarArg = */ false); 1479 1480 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1481 // calls to @llvm.experimental.deoptimize with different argument types in 1482 // the same module. This is fine -- we assume the frontend knew what it 1483 // was doing when generating this kind of IR. 1484 CallTarget = 1485 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1486 1487 IsDeoptimize = true; 1488 } 1489 } 1490 1491 // Create the statepoint given all the arguments 1492 Instruction *Token = nullptr; 1493 if (CS.isCall()) { 1494 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1495 CallInst *Call = Builder.CreateGCStatepointCall( 1496 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1497 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1498 1499 Call->setTailCallKind(ToReplace->getTailCallKind()); 1500 Call->setCallingConv(ToReplace->getCallingConv()); 1501 1502 // Currently we will fail on parameter attributes and on certain 1503 // function attributes. In case if we can handle this set of attributes - 1504 // set up function attrs directly on statepoint and return attrs later for 1505 // gc_result intrinsic. 1506 Call->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1507 1508 Token = Call; 1509 1510 // Put the following gc_result and gc_relocate calls immediately after the 1511 // the old call (which we're about to delete) 1512 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1513 Builder.SetInsertPoint(ToReplace->getNextNode()); 1514 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1515 } else { 1516 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1517 1518 // Insert the new invoke into the old block. We'll remove the old one in a 1519 // moment at which point this will become the new terminator for the 1520 // original block. 1521 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1522 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1523 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1524 GCArgs, "statepoint_token"); 1525 1526 Invoke->setCallingConv(ToReplace->getCallingConv()); 1527 1528 // Currently we will fail on parameter attributes and on certain 1529 // function attributes. In case if we can handle this set of attributes - 1530 // set up function attrs directly on statepoint and return attrs later for 1531 // gc_result intrinsic. 1532 Invoke->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1533 1534 Token = Invoke; 1535 1536 // Generate gc relocates in exceptional path 1537 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1538 assert(!isa<PHINode>(UnwindBlock->begin()) && 1539 UnwindBlock->getUniquePredecessor() && 1540 "can't safely insert in this block!"); 1541 1542 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1543 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1544 1545 // Attach exceptional gc relocates to the landingpad. 1546 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1547 Result.UnwindToken = ExceptionalToken; 1548 1549 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1550 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1551 Builder); 1552 1553 // Generate gc relocates and returns for normal block 1554 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1555 assert(!isa<PHINode>(NormalDest->begin()) && 1556 NormalDest->getUniquePredecessor() && 1557 "can't safely insert in this block!"); 1558 1559 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1560 1561 // gc relocates will be generated later as if it were regular call 1562 // statepoint 1563 } 1564 assert(Token && "Should be set in one of the above branches!"); 1565 1566 if (IsDeoptimize) { 1567 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1568 // transform the tail-call like structure to a call to a void function 1569 // followed by unreachable to get better codegen. 1570 Replacements.push_back( 1571 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1572 } else { 1573 Token->setName("statepoint_token"); 1574 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1575 StringRef Name = 1576 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1577 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1578 GCResult->setAttributes( 1579 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1580 CS.getAttributes().getRetAttributes())); 1581 1582 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1583 // live set of some other safepoint, in which case that safepoint's 1584 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1585 // llvm::Instruction. Instead, we defer the replacement and deletion to 1586 // after the live sets have been made explicit in the IR, and we no longer 1587 // have raw pointers to worry about. 1588 Replacements.emplace_back( 1589 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1590 } else { 1591 Replacements.emplace_back( 1592 DeferredReplacement::createDelete(CS.getInstruction())); 1593 } 1594 } 1595 1596 Result.StatepointToken = Token; 1597 1598 // Second, create a gc.relocate for every live variable 1599 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1600 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1601 } 1602 1603 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1604 // which make the relocations happening at this safepoint explicit. 1605 // 1606 // WARNING: Does not do any fixup to adjust users of the original live 1607 // values. That's the callers responsibility. 1608 static void 1609 makeStatepointExplicit(DominatorTree &DT, CallSite CS, 1610 PartiallyConstructedSafepointRecord &Result, 1611 std::vector<DeferredReplacement> &Replacements) { 1612 const auto &LiveSet = Result.LiveSet; 1613 const auto &PointerToBase = Result.PointerToBase; 1614 1615 // Convert to vector for efficient cross referencing. 1616 SmallVector<Value *, 64> BaseVec, LiveVec; 1617 LiveVec.reserve(LiveSet.size()); 1618 BaseVec.reserve(LiveSet.size()); 1619 for (Value *L : LiveSet) { 1620 LiveVec.push_back(L); 1621 assert(PointerToBase.count(L)); 1622 Value *Base = PointerToBase.find(L)->second; 1623 BaseVec.push_back(Base); 1624 } 1625 assert(LiveVec.size() == BaseVec.size()); 1626 1627 // Do the actual rewriting and delete the old statepoint 1628 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1629 } 1630 1631 // Helper function for the relocationViaAlloca. 1632 // 1633 // It receives iterator to the statepoint gc relocates and emits a store to the 1634 // assigned location (via allocaMap) for the each one of them. It adds the 1635 // visited values into the visitedLiveValues set, which we will later use them 1636 // for sanity checking. 1637 static void 1638 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1639 DenseMap<Value *, Value *> &AllocaMap, 1640 DenseSet<Value *> &VisitedLiveValues) { 1641 for (User *U : GCRelocs) { 1642 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1643 if (!Relocate) 1644 continue; 1645 1646 Value *OriginalValue = Relocate->getDerivedPtr(); 1647 assert(AllocaMap.count(OriginalValue)); 1648 Value *Alloca = AllocaMap[OriginalValue]; 1649 1650 // Emit store into the related alloca 1651 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1652 // the correct type according to alloca. 1653 assert(Relocate->getNextNode() && 1654 "Should always have one since it's not a terminator"); 1655 IRBuilder<> Builder(Relocate->getNextNode()); 1656 Value *CastedRelocatedValue = 1657 Builder.CreateBitCast(Relocate, 1658 cast<AllocaInst>(Alloca)->getAllocatedType(), 1659 suffixed_name_or(Relocate, ".casted", "")); 1660 1661 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1662 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1663 1664 #ifndef NDEBUG 1665 VisitedLiveValues.insert(OriginalValue); 1666 #endif 1667 } 1668 } 1669 1670 // Helper function for the "relocationViaAlloca". Similar to the 1671 // "insertRelocationStores" but works for rematerialized values. 1672 static void insertRematerializationStores( 1673 const RematerializedValueMapTy &RematerializedValues, 1674 DenseMap<Value *, Value *> &AllocaMap, 1675 DenseSet<Value *> &VisitedLiveValues) { 1676 for (auto RematerializedValuePair: RematerializedValues) { 1677 Instruction *RematerializedValue = RematerializedValuePair.first; 1678 Value *OriginalValue = RematerializedValuePair.second; 1679 1680 assert(AllocaMap.count(OriginalValue) && 1681 "Can not find alloca for rematerialized value"); 1682 Value *Alloca = AllocaMap[OriginalValue]; 1683 1684 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1685 Store->insertAfter(RematerializedValue); 1686 1687 #ifndef NDEBUG 1688 VisitedLiveValues.insert(OriginalValue); 1689 #endif 1690 } 1691 } 1692 1693 /// Do all the relocation update via allocas and mem2reg 1694 static void relocationViaAlloca( 1695 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1696 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1697 #ifndef NDEBUG 1698 // record initial number of (static) allocas; we'll check we have the same 1699 // number when we get done. 1700 int InitialAllocaNum = 0; 1701 for (Instruction &I : F.getEntryBlock()) 1702 if (isa<AllocaInst>(I)) 1703 InitialAllocaNum++; 1704 #endif 1705 1706 // TODO-PERF: change data structures, reserve 1707 DenseMap<Value *, Value *> AllocaMap; 1708 SmallVector<AllocaInst *, 200> PromotableAllocas; 1709 // Used later to chack that we have enough allocas to store all values 1710 std::size_t NumRematerializedValues = 0; 1711 PromotableAllocas.reserve(Live.size()); 1712 1713 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1714 // "PromotableAllocas" 1715 const DataLayout &DL = F.getParent()->getDataLayout(); 1716 auto emitAllocaFor = [&](Value *LiveValue) { 1717 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 1718 DL.getAllocaAddrSpace(), "", 1719 F.getEntryBlock().getFirstNonPHI()); 1720 AllocaMap[LiveValue] = Alloca; 1721 PromotableAllocas.push_back(Alloca); 1722 }; 1723 1724 // Emit alloca for each live gc pointer 1725 for (Value *V : Live) 1726 emitAllocaFor(V); 1727 1728 // Emit allocas for rematerialized values 1729 for (const auto &Info : Records) 1730 for (auto RematerializedValuePair : Info.RematerializedValues) { 1731 Value *OriginalValue = RematerializedValuePair.second; 1732 if (AllocaMap.count(OriginalValue) != 0) 1733 continue; 1734 1735 emitAllocaFor(OriginalValue); 1736 ++NumRematerializedValues; 1737 } 1738 1739 // The next two loops are part of the same conceptual operation. We need to 1740 // insert a store to the alloca after the original def and at each 1741 // redefinition. We need to insert a load before each use. These are split 1742 // into distinct loops for performance reasons. 1743 1744 // Update gc pointer after each statepoint: either store a relocated value or 1745 // null (if no relocated value was found for this gc pointer and it is not a 1746 // gc_result). This must happen before we update the statepoint with load of 1747 // alloca otherwise we lose the link between statepoint and old def. 1748 for (const auto &Info : Records) { 1749 Value *Statepoint = Info.StatepointToken; 1750 1751 // This will be used for consistency check 1752 DenseSet<Value *> VisitedLiveValues; 1753 1754 // Insert stores for normal statepoint gc relocates 1755 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1756 1757 // In case if it was invoke statepoint 1758 // we will insert stores for exceptional path gc relocates. 1759 if (isa<InvokeInst>(Statepoint)) { 1760 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1761 VisitedLiveValues); 1762 } 1763 1764 // Do similar thing with rematerialized values 1765 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1766 VisitedLiveValues); 1767 1768 if (ClobberNonLive) { 1769 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1770 // the gc.statepoint. This will turn some subtle GC problems into 1771 // slightly easier to debug SEGVs. Note that on large IR files with 1772 // lots of gc.statepoints this is extremely costly both memory and time 1773 // wise. 1774 SmallVector<AllocaInst *, 64> ToClobber; 1775 for (auto Pair : AllocaMap) { 1776 Value *Def = Pair.first; 1777 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1778 1779 // This value was relocated 1780 if (VisitedLiveValues.count(Def)) { 1781 continue; 1782 } 1783 ToClobber.push_back(Alloca); 1784 } 1785 1786 auto InsertClobbersAt = [&](Instruction *IP) { 1787 for (auto *AI : ToClobber) { 1788 auto PT = cast<PointerType>(AI->getAllocatedType()); 1789 Constant *CPN = ConstantPointerNull::get(PT); 1790 StoreInst *Store = new StoreInst(CPN, AI); 1791 Store->insertBefore(IP); 1792 } 1793 }; 1794 1795 // Insert the clobbering stores. These may get intermixed with the 1796 // gc.results and gc.relocates, but that's fine. 1797 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1798 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1799 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1800 } else { 1801 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1802 } 1803 } 1804 } 1805 1806 // Update use with load allocas and add store for gc_relocated. 1807 for (auto Pair : AllocaMap) { 1808 Value *Def = Pair.first; 1809 Value *Alloca = Pair.second; 1810 1811 // We pre-record the uses of allocas so that we dont have to worry about 1812 // later update that changes the user information.. 1813 1814 SmallVector<Instruction *, 20> Uses; 1815 // PERF: trade a linear scan for repeated reallocation 1816 Uses.reserve(Def->getNumUses()); 1817 for (User *U : Def->users()) { 1818 if (!isa<ConstantExpr>(U)) { 1819 // If the def has a ConstantExpr use, then the def is either a 1820 // ConstantExpr use itself or null. In either case 1821 // (recursively in the first, directly in the second), the oop 1822 // it is ultimately dependent on is null and this particular 1823 // use does not need to be fixed up. 1824 Uses.push_back(cast<Instruction>(U)); 1825 } 1826 } 1827 1828 llvm::sort(Uses); 1829 auto Last = std::unique(Uses.begin(), Uses.end()); 1830 Uses.erase(Last, Uses.end()); 1831 1832 for (Instruction *Use : Uses) { 1833 if (isa<PHINode>(Use)) { 1834 PHINode *Phi = cast<PHINode>(Use); 1835 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1836 if (Def == Phi->getIncomingValue(i)) { 1837 LoadInst *Load = new LoadInst( 1838 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1839 Phi->setIncomingValue(i, Load); 1840 } 1841 } 1842 } else { 1843 LoadInst *Load = new LoadInst(Alloca, "", Use); 1844 Use->replaceUsesOfWith(Def, Load); 1845 } 1846 } 1847 1848 // Emit store for the initial gc value. Store must be inserted after load, 1849 // otherwise store will be in alloca's use list and an extra load will be 1850 // inserted before it. 1851 StoreInst *Store = new StoreInst(Def, Alloca); 1852 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1853 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1854 // InvokeInst is a TerminatorInst so the store need to be inserted 1855 // into its normal destination block. 1856 BasicBlock *NormalDest = Invoke->getNormalDest(); 1857 Store->insertBefore(NormalDest->getFirstNonPHI()); 1858 } else { 1859 assert(!Inst->isTerminator() && 1860 "The only TerminatorInst that can produce a value is " 1861 "InvokeInst which is handled above."); 1862 Store->insertAfter(Inst); 1863 } 1864 } else { 1865 assert(isa<Argument>(Def)); 1866 Store->insertAfter(cast<Instruction>(Alloca)); 1867 } 1868 } 1869 1870 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1871 "we must have the same allocas with lives"); 1872 if (!PromotableAllocas.empty()) { 1873 // Apply mem2reg to promote alloca to SSA 1874 PromoteMemToReg(PromotableAllocas, DT); 1875 } 1876 1877 #ifndef NDEBUG 1878 for (auto &I : F.getEntryBlock()) 1879 if (isa<AllocaInst>(I)) 1880 InitialAllocaNum--; 1881 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1882 #endif 1883 } 1884 1885 /// Implement a unique function which doesn't require we sort the input 1886 /// vector. Doing so has the effect of changing the output of a couple of 1887 /// tests in ways which make them less useful in testing fused safepoints. 1888 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1889 SmallSet<T, 8> Seen; 1890 Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }), 1891 Vec.end()); 1892 } 1893 1894 /// Insert holders so that each Value is obviously live through the entire 1895 /// lifetime of the call. 1896 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1897 SmallVectorImpl<CallInst *> &Holders) { 1898 if (Values.empty()) 1899 // No values to hold live, might as well not insert the empty holder 1900 return; 1901 1902 Module *M = CS.getInstruction()->getModule(); 1903 // Use a dummy vararg function to actually hold the values live 1904 Function *Func = cast<Function>(M->getOrInsertFunction( 1905 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1906 if (CS.isCall()) { 1907 // For call safepoints insert dummy calls right after safepoint 1908 Holders.push_back(CallInst::Create(Func, Values, "", 1909 &*++CS.getInstruction()->getIterator())); 1910 return; 1911 } 1912 // For invoke safepooints insert dummy calls both in normal and 1913 // exceptional destination blocks 1914 auto *II = cast<InvokeInst>(CS.getInstruction()); 1915 Holders.push_back(CallInst::Create( 1916 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1917 Holders.push_back(CallInst::Create( 1918 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1919 } 1920 1921 static void findLiveReferences( 1922 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1923 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1924 GCPtrLivenessData OriginalLivenessData; 1925 computeLiveInValues(DT, F, OriginalLivenessData); 1926 for (size_t i = 0; i < records.size(); i++) { 1927 struct PartiallyConstructedSafepointRecord &info = records[i]; 1928 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1929 } 1930 } 1931 1932 // Helper function for the "rematerializeLiveValues". It walks use chain 1933 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 1934 // the base or a value it cannot process. Only "simple" values are processed 1935 // (currently it is GEP's and casts). The returned root is examined by the 1936 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 1937 // with all visited values. 1938 static Value* findRematerializableChainToBasePointer( 1939 SmallVectorImpl<Instruction*> &ChainToBase, 1940 Value *CurrentValue) { 1941 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1942 ChainToBase.push_back(GEP); 1943 return findRematerializableChainToBasePointer(ChainToBase, 1944 GEP->getPointerOperand()); 1945 } 1946 1947 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1948 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1949 return CI; 1950 1951 ChainToBase.push_back(CI); 1952 return findRematerializableChainToBasePointer(ChainToBase, 1953 CI->getOperand(0)); 1954 } 1955 1956 // We have reached the root of the chain, which is either equal to the base or 1957 // is the first unsupported value along the use chain. 1958 return CurrentValue; 1959 } 1960 1961 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1962 // chain we are going to rematerialize. 1963 static unsigned 1964 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1965 TargetTransformInfo &TTI) { 1966 unsigned Cost = 0; 1967 1968 for (Instruction *Instr : Chain) { 1969 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1970 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1971 "non noop cast is found during rematerialization"); 1972 1973 Type *SrcTy = CI->getOperand(0)->getType(); 1974 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI); 1975 1976 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1977 // Cost of the address calculation 1978 Type *ValTy = GEP->getSourceElementType(); 1979 Cost += TTI.getAddressComputationCost(ValTy); 1980 1981 // And cost of the GEP itself 1982 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1983 // allowed for the external usage) 1984 if (!GEP->hasAllConstantIndices()) 1985 Cost += 2; 1986 1987 } else { 1988 llvm_unreachable("unsupported instruction type during rematerialization"); 1989 } 1990 } 1991 1992 return Cost; 1993 } 1994 1995 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 1996 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 1997 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 1998 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 1999 return false; 2000 // Map of incoming values and their corresponding basic blocks of 2001 // OrigRootPhi. 2002 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 2003 for (unsigned i = 0; i < PhiNum; i++) 2004 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 2005 OrigRootPhi.getIncomingBlock(i); 2006 2007 // Both current and base PHIs should have same incoming values and 2008 // the same basic blocks corresponding to the incoming values. 2009 for (unsigned i = 0; i < PhiNum; i++) { 2010 auto CIVI = 2011 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2012 if (CIVI == CurrentIncomingValues.end()) 2013 return false; 2014 BasicBlock *CurrentIncomingBB = CIVI->second; 2015 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2016 return false; 2017 } 2018 return true; 2019 } 2020 2021 // From the statepoint live set pick values that are cheaper to recompute then 2022 // to relocate. Remove this values from the live set, rematerialize them after 2023 // statepoint and record them in "Info" structure. Note that similar to 2024 // relocated values we don't do any user adjustments here. 2025 static void rematerializeLiveValues(CallSite CS, 2026 PartiallyConstructedSafepointRecord &Info, 2027 TargetTransformInfo &TTI) { 2028 const unsigned int ChainLengthThreshold = 10; 2029 2030 // Record values we are going to delete from this statepoint live set. 2031 // We can not di this in following loop due to iterator invalidation. 2032 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2033 2034 for (Value *LiveValue: Info.LiveSet) { 2035 // For each live pointer find its defining chain 2036 SmallVector<Instruction *, 3> ChainToBase; 2037 assert(Info.PointerToBase.count(LiveValue)); 2038 Value *RootOfChain = 2039 findRematerializableChainToBasePointer(ChainToBase, 2040 LiveValue); 2041 2042 // Nothing to do, or chain is too long 2043 if ( ChainToBase.size() == 0 || 2044 ChainToBase.size() > ChainLengthThreshold) 2045 continue; 2046 2047 // Handle the scenario where the RootOfChain is not equal to the 2048 // Base Value, but they are essentially the same phi values. 2049 if (RootOfChain != Info.PointerToBase[LiveValue]) { 2050 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2051 PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]); 2052 if (!OrigRootPhi || !AlternateRootPhi) 2053 continue; 2054 // PHI nodes that have the same incoming values, and belonging to the same 2055 // basic blocks are essentially the same SSA value. When the original phi 2056 // has incoming values with different base pointers, the original phi is 2057 // marked as conflict, and an additional `AlternateRootPhi` with the same 2058 // incoming values get generated by the findBasePointer function. We need 2059 // to identify the newly generated AlternateRootPhi (.base version of phi) 2060 // and RootOfChain (the original phi node itself) are the same, so that we 2061 // can rematerialize the gep and casts. This is a workaround for the 2062 // deficiency in the findBasePointer algorithm. 2063 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2064 continue; 2065 // Now that the phi nodes are proved to be the same, assert that 2066 // findBasePointer's newly generated AlternateRootPhi is present in the 2067 // liveset of the call. 2068 assert(Info.LiveSet.count(AlternateRootPhi)); 2069 } 2070 // Compute cost of this chain 2071 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2072 // TODO: We can also account for cases when we will be able to remove some 2073 // of the rematerialized values by later optimization passes. I.e if 2074 // we rematerialized several intersecting chains. Or if original values 2075 // don't have any uses besides this statepoint. 2076 2077 // For invokes we need to rematerialize each chain twice - for normal and 2078 // for unwind basic blocks. Model this by multiplying cost by two. 2079 if (CS.isInvoke()) { 2080 Cost *= 2; 2081 } 2082 // If it's too expensive - skip it 2083 if (Cost >= RematerializationThreshold) 2084 continue; 2085 2086 // Remove value from the live set 2087 LiveValuesToBeDeleted.push_back(LiveValue); 2088 2089 // Clone instructions and record them inside "Info" structure 2090 2091 // Walk backwards to visit top-most instructions first 2092 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2093 2094 // Utility function which clones all instructions from "ChainToBase" 2095 // and inserts them before "InsertBefore". Returns rematerialized value 2096 // which should be used after statepoint. 2097 auto rematerializeChain = [&ChainToBase]( 2098 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 2099 Instruction *LastClonedValue = nullptr; 2100 Instruction *LastValue = nullptr; 2101 for (Instruction *Instr: ChainToBase) { 2102 // Only GEP's and casts are supported as we need to be careful to not 2103 // introduce any new uses of pointers not in the liveset. 2104 // Note that it's fine to introduce new uses of pointers which were 2105 // otherwise not used after this statepoint. 2106 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2107 2108 Instruction *ClonedValue = Instr->clone(); 2109 ClonedValue->insertBefore(InsertBefore); 2110 ClonedValue->setName(Instr->getName() + ".remat"); 2111 2112 // If it is not first instruction in the chain then it uses previously 2113 // cloned value. We should update it to use cloned value. 2114 if (LastClonedValue) { 2115 assert(LastValue); 2116 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2117 #ifndef NDEBUG 2118 for (auto OpValue : ClonedValue->operand_values()) { 2119 // Assert that cloned instruction does not use any instructions from 2120 // this chain other than LastClonedValue 2121 assert(!is_contained(ChainToBase, OpValue) && 2122 "incorrect use in rematerialization chain"); 2123 // Assert that the cloned instruction does not use the RootOfChain 2124 // or the AlternateLiveBase. 2125 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2126 } 2127 #endif 2128 } else { 2129 // For the first instruction, replace the use of unrelocated base i.e. 2130 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2131 // live set. They have been proved to be the same PHI nodes. Note 2132 // that the *only* use of the RootOfChain in the ChainToBase list is 2133 // the first Value in the list. 2134 if (RootOfChain != AlternateLiveBase) 2135 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2136 } 2137 2138 LastClonedValue = ClonedValue; 2139 LastValue = Instr; 2140 } 2141 assert(LastClonedValue); 2142 return LastClonedValue; 2143 }; 2144 2145 // Different cases for calls and invokes. For invokes we need to clone 2146 // instructions both on normal and unwind path. 2147 if (CS.isCall()) { 2148 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2149 assert(InsertBefore); 2150 Instruction *RematerializedValue = rematerializeChain( 2151 InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2152 Info.RematerializedValues[RematerializedValue] = LiveValue; 2153 } else { 2154 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2155 2156 Instruction *NormalInsertBefore = 2157 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2158 Instruction *UnwindInsertBefore = 2159 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2160 2161 Instruction *NormalRematerializedValue = rematerializeChain( 2162 NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2163 Instruction *UnwindRematerializedValue = rematerializeChain( 2164 UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2165 2166 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2167 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2168 } 2169 } 2170 2171 // Remove rematerializaed values from the live set 2172 for (auto LiveValue: LiveValuesToBeDeleted) { 2173 Info.LiveSet.remove(LiveValue); 2174 } 2175 } 2176 2177 static bool insertParsePoints(Function &F, DominatorTree &DT, 2178 TargetTransformInfo &TTI, 2179 SmallVectorImpl<CallSite> &ToUpdate) { 2180 #ifndef NDEBUG 2181 // sanity check the input 2182 std::set<CallSite> Uniqued; 2183 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2184 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2185 2186 for (CallSite CS : ToUpdate) 2187 assert(CS.getInstruction()->getFunction() == &F); 2188 #endif 2189 2190 // When inserting gc.relocates for invokes, we need to be able to insert at 2191 // the top of the successor blocks. See the comment on 2192 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2193 // may restructure the CFG. 2194 for (CallSite CS : ToUpdate) { 2195 if (!CS.isInvoke()) 2196 continue; 2197 auto *II = cast<InvokeInst>(CS.getInstruction()); 2198 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2199 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2200 } 2201 2202 // A list of dummy calls added to the IR to keep various values obviously 2203 // live in the IR. We'll remove all of these when done. 2204 SmallVector<CallInst *, 64> Holders; 2205 2206 // Insert a dummy call with all of the deopt operands we'll need for the 2207 // actual safepoint insertion as arguments. This ensures reference operands 2208 // in the deopt argument list are considered live through the safepoint (and 2209 // thus makes sure they get relocated.) 2210 for (CallSite CS : ToUpdate) { 2211 SmallVector<Value *, 64> DeoptValues; 2212 2213 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2214 assert(!isUnhandledGCPointerType(Arg->getType()) && 2215 "support for FCA unimplemented"); 2216 if (isHandledGCPointerType(Arg->getType())) 2217 DeoptValues.push_back(Arg); 2218 } 2219 2220 insertUseHolderAfter(CS, DeoptValues, Holders); 2221 } 2222 2223 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2224 2225 // A) Identify all gc pointers which are statically live at the given call 2226 // site. 2227 findLiveReferences(F, DT, ToUpdate, Records); 2228 2229 // B) Find the base pointers for each live pointer 2230 /* scope for caching */ { 2231 // Cache the 'defining value' relation used in the computation and 2232 // insertion of base phis and selects. This ensures that we don't insert 2233 // large numbers of duplicate base_phis. 2234 DefiningValueMapTy DVCache; 2235 2236 for (size_t i = 0; i < Records.size(); i++) { 2237 PartiallyConstructedSafepointRecord &info = Records[i]; 2238 findBasePointers(DT, DVCache, ToUpdate[i], info); 2239 } 2240 } // end of cache scope 2241 2242 // The base phi insertion logic (for any safepoint) may have inserted new 2243 // instructions which are now live at some safepoint. The simplest such 2244 // example is: 2245 // loop: 2246 // phi a <-- will be a new base_phi here 2247 // safepoint 1 <-- that needs to be live here 2248 // gep a + 1 2249 // safepoint 2 2250 // br loop 2251 // We insert some dummy calls after each safepoint to definitely hold live 2252 // the base pointers which were identified for that safepoint. We'll then 2253 // ask liveness for _every_ base inserted to see what is now live. Then we 2254 // remove the dummy calls. 2255 Holders.reserve(Holders.size() + Records.size()); 2256 for (size_t i = 0; i < Records.size(); i++) { 2257 PartiallyConstructedSafepointRecord &Info = Records[i]; 2258 2259 SmallVector<Value *, 128> Bases; 2260 for (auto Pair : Info.PointerToBase) 2261 Bases.push_back(Pair.second); 2262 2263 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2264 } 2265 2266 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2267 // need to rerun liveness. We may *also* have inserted new defs, but that's 2268 // not the key issue. 2269 recomputeLiveInValues(F, DT, ToUpdate, Records); 2270 2271 if (PrintBasePointers) { 2272 for (auto &Info : Records) { 2273 errs() << "Base Pairs: (w/Relocation)\n"; 2274 for (auto Pair : Info.PointerToBase) { 2275 errs() << " derived "; 2276 Pair.first->printAsOperand(errs(), false); 2277 errs() << " base "; 2278 Pair.second->printAsOperand(errs(), false); 2279 errs() << "\n"; 2280 } 2281 } 2282 } 2283 2284 // It is possible that non-constant live variables have a constant base. For 2285 // example, a GEP with a variable offset from a global. In this case we can 2286 // remove it from the liveset. We already don't add constants to the liveset 2287 // because we assume they won't move at runtime and the GC doesn't need to be 2288 // informed about them. The same reasoning applies if the base is constant. 2289 // Note that the relocation placement code relies on this filtering for 2290 // correctness as it expects the base to be in the liveset, which isn't true 2291 // if the base is constant. 2292 for (auto &Info : Records) 2293 for (auto &BasePair : Info.PointerToBase) 2294 if (isa<Constant>(BasePair.second)) 2295 Info.LiveSet.remove(BasePair.first); 2296 2297 for (CallInst *CI : Holders) 2298 CI->eraseFromParent(); 2299 2300 Holders.clear(); 2301 2302 // In order to reduce live set of statepoint we might choose to rematerialize 2303 // some values instead of relocating them. This is purely an optimization and 2304 // does not influence correctness. 2305 for (size_t i = 0; i < Records.size(); i++) 2306 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2307 2308 // We need this to safely RAUW and delete call or invoke return values that 2309 // may themselves be live over a statepoint. For details, please see usage in 2310 // makeStatepointExplicitImpl. 2311 std::vector<DeferredReplacement> Replacements; 2312 2313 // Now run through and replace the existing statepoints with new ones with 2314 // the live variables listed. We do not yet update uses of the values being 2315 // relocated. We have references to live variables that need to 2316 // survive to the last iteration of this loop. (By construction, the 2317 // previous statepoint can not be a live variable, thus we can and remove 2318 // the old statepoint calls as we go.) 2319 for (size_t i = 0; i < Records.size(); i++) 2320 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2321 2322 ToUpdate.clear(); // prevent accident use of invalid CallSites 2323 2324 for (auto &PR : Replacements) 2325 PR.doReplacement(); 2326 2327 Replacements.clear(); 2328 2329 for (auto &Info : Records) { 2330 // These live sets may contain state Value pointers, since we replaced calls 2331 // with operand bundles with calls wrapped in gc.statepoint, and some of 2332 // those calls may have been def'ing live gc pointers. Clear these out to 2333 // avoid accidentally using them. 2334 // 2335 // TODO: We should create a separate data structure that does not contain 2336 // these live sets, and migrate to using that data structure from this point 2337 // onward. 2338 Info.LiveSet.clear(); 2339 Info.PointerToBase.clear(); 2340 } 2341 2342 // Do all the fixups of the original live variables to their relocated selves 2343 SmallVector<Value *, 128> Live; 2344 for (size_t i = 0; i < Records.size(); i++) { 2345 PartiallyConstructedSafepointRecord &Info = Records[i]; 2346 2347 // We can't simply save the live set from the original insertion. One of 2348 // the live values might be the result of a call which needs a safepoint. 2349 // That Value* no longer exists and we need to use the new gc_result. 2350 // Thankfully, the live set is embedded in the statepoint (and updated), so 2351 // we just grab that. 2352 Statepoint Statepoint(Info.StatepointToken); 2353 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2354 Statepoint.gc_args_end()); 2355 #ifndef NDEBUG 2356 // Do some basic sanity checks on our liveness results before performing 2357 // relocation. Relocation can and will turn mistakes in liveness results 2358 // into non-sensical code which is must harder to debug. 2359 // TODO: It would be nice to test consistency as well 2360 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2361 "statepoint must be reachable or liveness is meaningless"); 2362 for (Value *V : Statepoint.gc_args()) { 2363 if (!isa<Instruction>(V)) 2364 // Non-instruction values trivial dominate all possible uses 2365 continue; 2366 auto *LiveInst = cast<Instruction>(V); 2367 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2368 "unreachable values should never be live"); 2369 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2370 "basic SSA liveness expectation violated by liveness analysis"); 2371 } 2372 #endif 2373 } 2374 unique_unsorted(Live); 2375 2376 #ifndef NDEBUG 2377 // sanity check 2378 for (auto *Ptr : Live) 2379 assert(isHandledGCPointerType(Ptr->getType()) && 2380 "must be a gc pointer type"); 2381 #endif 2382 2383 relocationViaAlloca(F, DT, Live, Records); 2384 return !Records.empty(); 2385 } 2386 2387 // Handles both return values and arguments for Functions and CallSites. 2388 template <typename AttrHolder> 2389 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2390 unsigned Index) { 2391 AttrBuilder R; 2392 if (AH.getDereferenceableBytes(Index)) 2393 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2394 AH.getDereferenceableBytes(Index))); 2395 if (AH.getDereferenceableOrNullBytes(Index)) 2396 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2397 AH.getDereferenceableOrNullBytes(Index))); 2398 if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias)) 2399 R.addAttribute(Attribute::NoAlias); 2400 2401 if (!R.empty()) 2402 AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R)); 2403 } 2404 2405 static void stripNonValidAttributesFromPrototype(Function &F) { 2406 LLVMContext &Ctx = F.getContext(); 2407 2408 for (Argument &A : F.args()) 2409 if (isa<PointerType>(A.getType())) 2410 RemoveNonValidAttrAtIndex(Ctx, F, 2411 A.getArgNo() + AttributeList::FirstArgIndex); 2412 2413 if (isa<PointerType>(F.getReturnType())) 2414 RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex); 2415 } 2416 2417 /// Certain metadata on instructions are invalid after running RS4GC. 2418 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2419 /// optimize functions. We drop such metadata on the instruction. 2420 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2421 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2422 return; 2423 // These are the attributes that are still valid on loads and stores after 2424 // RS4GC. 2425 // The metadata implying dereferenceability and noalias are (conservatively) 2426 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2427 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2428 // touch the entire heap including noalias objects. Note: The reasoning is 2429 // same as stripping the dereferenceability and noalias attributes that are 2430 // analogous to the metadata counterparts. 2431 // We also drop the invariant.load metadata on the load because that metadata 2432 // implies the address operand to the load points to memory that is never 2433 // changed once it became dereferenceable. This is no longer true after RS4GC. 2434 // Similar reasoning applies to invariant.group metadata, which applies to 2435 // loads within a group. 2436 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2437 LLVMContext::MD_range, 2438 LLVMContext::MD_alias_scope, 2439 LLVMContext::MD_nontemporal, 2440 LLVMContext::MD_nonnull, 2441 LLVMContext::MD_align, 2442 LLVMContext::MD_type}; 2443 2444 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2445 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2446 } 2447 2448 static void stripNonValidDataFromBody(Function &F) { 2449 if (F.empty()) 2450 return; 2451 2452 LLVMContext &Ctx = F.getContext(); 2453 MDBuilder Builder(Ctx); 2454 2455 // Set of invariantstart instructions that we need to remove. 2456 // Use this to avoid invalidating the instruction iterator. 2457 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2458 2459 for (Instruction &I : instructions(F)) { 2460 // invariant.start on memory location implies that the referenced memory 2461 // location is constant and unchanging. This is no longer true after 2462 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2463 // which frees the entire heap and the presence of invariant.start allows 2464 // the optimizer to sink the load of a memory location past a statepoint, 2465 // which is incorrect. 2466 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2467 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2468 InvariantStartInstructions.push_back(II); 2469 continue; 2470 } 2471 2472 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2473 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2474 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2475 } 2476 2477 stripInvalidMetadataFromInstruction(I); 2478 2479 if (CallSite CS = CallSite(&I)) { 2480 for (int i = 0, e = CS.arg_size(); i != e; i++) 2481 if (isa<PointerType>(CS.getArgument(i)->getType())) 2482 RemoveNonValidAttrAtIndex(Ctx, CS, i + AttributeList::FirstArgIndex); 2483 if (isa<PointerType>(CS.getType())) 2484 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeList::ReturnIndex); 2485 } 2486 } 2487 2488 // Delete the invariant.start instructions and RAUW undef. 2489 for (auto *II : InvariantStartInstructions) { 2490 II->replaceAllUsesWith(UndefValue::get(II->getType())); 2491 II->eraseFromParent(); 2492 } 2493 } 2494 2495 /// Returns true if this function should be rewritten by this pass. The main 2496 /// point of this function is as an extension point for custom logic. 2497 static bool shouldRewriteStatepointsIn(Function &F) { 2498 // TODO: This should check the GCStrategy 2499 if (F.hasGC()) { 2500 const auto &FunctionGCName = F.getGC(); 2501 const StringRef StatepointExampleName("statepoint-example"); 2502 const StringRef CoreCLRName("coreclr"); 2503 return (StatepointExampleName == FunctionGCName) || 2504 (CoreCLRName == FunctionGCName); 2505 } else 2506 return false; 2507 } 2508 2509 static void stripNonValidData(Module &M) { 2510 #ifndef NDEBUG 2511 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2512 #endif 2513 2514 for (Function &F : M) 2515 stripNonValidAttributesFromPrototype(F); 2516 2517 for (Function &F : M) 2518 stripNonValidDataFromBody(F); 2519 } 2520 2521 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 2522 TargetTransformInfo &TTI, 2523 const TargetLibraryInfo &TLI) { 2524 assert(!F.isDeclaration() && !F.empty() && 2525 "need function body to rewrite statepoints in"); 2526 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 2527 2528 auto NeedsRewrite = [&TLI](Instruction &I) { 2529 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2530 return !callsGCLeafFunction(CS, TLI) && !isStatepoint(CS); 2531 return false; 2532 }; 2533 2534 2535 // Delete any unreachable statepoints so that we don't have unrewritten 2536 // statepoints surviving this pass. This makes testing easier and the 2537 // resulting IR less confusing to human readers. 2538 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 2539 bool MadeChange = removeUnreachableBlocks(F, nullptr, &DTU); 2540 // Flush the Dominator Tree. 2541 DTU.getDomTree(); 2542 2543 // Gather all the statepoints which need rewritten. Be careful to only 2544 // consider those in reachable code since we need to ask dominance queries 2545 // when rewriting. We'll delete the unreachable ones in a moment. 2546 SmallVector<CallSite, 64> ParsePointNeeded; 2547 for (Instruction &I : instructions(F)) { 2548 // TODO: only the ones with the flag set! 2549 if (NeedsRewrite(I)) { 2550 // NOTE removeUnreachableBlocks() is stronger than 2551 // DominatorTree::isReachableFromEntry(). In other words 2552 // removeUnreachableBlocks can remove some blocks for which 2553 // isReachableFromEntry() returns true. 2554 assert(DT.isReachableFromEntry(I.getParent()) && 2555 "no unreachable blocks expected"); 2556 ParsePointNeeded.push_back(CallSite(&I)); 2557 } 2558 } 2559 2560 // Return early if no work to do. 2561 if (ParsePointNeeded.empty()) 2562 return MadeChange; 2563 2564 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2565 // These are created by LCSSA. They have the effect of increasing the size 2566 // of liveness sets for no good reason. It may be harder to do this post 2567 // insertion since relocations and base phis can confuse things. 2568 for (BasicBlock &BB : F) 2569 if (BB.getUniquePredecessor()) { 2570 MadeChange = true; 2571 FoldSingleEntryPHINodes(&BB); 2572 } 2573 2574 // Before we start introducing relocations, we want to tweak the IR a bit to 2575 // avoid unfortunate code generation effects. The main example is that we 2576 // want to try to make sure the comparison feeding a branch is after any 2577 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2578 // values feeding a branch after relocation. This is semantically correct, 2579 // but results in extra register pressure since both the pre-relocation and 2580 // post-relocation copies must be available in registers. For code without 2581 // relocations this is handled elsewhere, but teaching the scheduler to 2582 // reverse the transform we're about to do would be slightly complex. 2583 // Note: This may extend the live range of the inputs to the icmp and thus 2584 // increase the liveset of any statepoint we move over. This is profitable 2585 // as long as all statepoints are in rare blocks. If we had in-register 2586 // lowering for live values this would be a much safer transform. 2587 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2588 if (auto *BI = dyn_cast<BranchInst>(TI)) 2589 if (BI->isConditional()) 2590 return dyn_cast<Instruction>(BI->getCondition()); 2591 // TODO: Extend this to handle switches 2592 return nullptr; 2593 }; 2594 for (BasicBlock &BB : F) { 2595 TerminatorInst *TI = BB.getTerminator(); 2596 if (auto *Cond = getConditionInst(TI)) 2597 // TODO: Handle more than just ICmps here. We should be able to move 2598 // most instructions without side effects or memory access. 2599 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2600 MadeChange = true; 2601 Cond->moveBefore(TI); 2602 } 2603 } 2604 2605 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2606 return MadeChange; 2607 } 2608 2609 // liveness computation via standard dataflow 2610 // ------------------------------------------------------------------- 2611 2612 // TODO: Consider using bitvectors for liveness, the set of potentially 2613 // interesting values should be small and easy to pre-compute. 2614 2615 /// Compute the live-in set for the location rbegin starting from 2616 /// the live-out set of the basic block 2617 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 2618 BasicBlock::reverse_iterator End, 2619 SetVector<Value *> &LiveTmp) { 2620 for (auto &I : make_range(Begin, End)) { 2621 // KILL/Def - Remove this definition from LiveIn 2622 LiveTmp.remove(&I); 2623 2624 // Don't consider *uses* in PHI nodes, we handle their contribution to 2625 // predecessor blocks when we seed the LiveOut sets 2626 if (isa<PHINode>(I)) 2627 continue; 2628 2629 // USE - Add to the LiveIn set for this instruction 2630 for (Value *V : I.operands()) { 2631 assert(!isUnhandledGCPointerType(V->getType()) && 2632 "support for FCA unimplemented"); 2633 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2634 // The choice to exclude all things constant here is slightly subtle. 2635 // There are two independent reasons: 2636 // - We assume that things which are constant (from LLVM's definition) 2637 // do not move at runtime. For example, the address of a global 2638 // variable is fixed, even though it's contents may not be. 2639 // - Second, we can't disallow arbitrary inttoptr constants even 2640 // if the language frontend does. Optimization passes are free to 2641 // locally exploit facts without respect to global reachability. This 2642 // can create sections of code which are dynamically unreachable and 2643 // contain just about anything. (see constants.ll in tests) 2644 LiveTmp.insert(V); 2645 } 2646 } 2647 } 2648 } 2649 2650 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2651 for (BasicBlock *Succ : successors(BB)) { 2652 for (auto &I : *Succ) { 2653 PHINode *PN = dyn_cast<PHINode>(&I); 2654 if (!PN) 2655 break; 2656 2657 Value *V = PN->getIncomingValueForBlock(BB); 2658 assert(!isUnhandledGCPointerType(V->getType()) && 2659 "support for FCA unimplemented"); 2660 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 2661 LiveTmp.insert(V); 2662 } 2663 } 2664 } 2665 2666 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2667 SetVector<Value *> KillSet; 2668 for (Instruction &I : *BB) 2669 if (isHandledGCPointerType(I.getType())) 2670 KillSet.insert(&I); 2671 return KillSet; 2672 } 2673 2674 #ifndef NDEBUG 2675 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2676 /// sanity check for the liveness computation. 2677 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2678 TerminatorInst *TI, bool TermOkay = false) { 2679 for (Value *V : Live) { 2680 if (auto *I = dyn_cast<Instruction>(V)) { 2681 // The terminator can be a member of the LiveOut set. LLVM's definition 2682 // of instruction dominance states that V does not dominate itself. As 2683 // such, we need to special case this to allow it. 2684 if (TermOkay && TI == I) 2685 continue; 2686 assert(DT.dominates(I, TI) && 2687 "basic SSA liveness expectation violated by liveness analysis"); 2688 } 2689 } 2690 } 2691 2692 /// Check that all the liveness sets used during the computation of liveness 2693 /// obey basic SSA properties. This is useful for finding cases where we miss 2694 /// a def. 2695 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2696 BasicBlock &BB) { 2697 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2698 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2699 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2700 } 2701 #endif 2702 2703 static void computeLiveInValues(DominatorTree &DT, Function &F, 2704 GCPtrLivenessData &Data) { 2705 SmallSetVector<BasicBlock *, 32> Worklist; 2706 2707 // Seed the liveness for each individual block 2708 for (BasicBlock &BB : F) { 2709 Data.KillSet[&BB] = computeKillSet(&BB); 2710 Data.LiveSet[&BB].clear(); 2711 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2712 2713 #ifndef NDEBUG 2714 for (Value *Kill : Data.KillSet[&BB]) 2715 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2716 #endif 2717 2718 Data.LiveOut[&BB] = SetVector<Value *>(); 2719 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2720 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2721 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2722 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2723 if (!Data.LiveIn[&BB].empty()) 2724 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 2725 } 2726 2727 // Propagate that liveness until stable 2728 while (!Worklist.empty()) { 2729 BasicBlock *BB = Worklist.pop_back_val(); 2730 2731 // Compute our new liveout set, then exit early if it hasn't changed despite 2732 // the contribution of our successor. 2733 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2734 const auto OldLiveOutSize = LiveOut.size(); 2735 for (BasicBlock *Succ : successors(BB)) { 2736 assert(Data.LiveIn.count(Succ)); 2737 LiveOut.set_union(Data.LiveIn[Succ]); 2738 } 2739 // assert OutLiveOut is a subset of LiveOut 2740 if (OldLiveOutSize == LiveOut.size()) { 2741 // If the sets are the same size, then we didn't actually add anything 2742 // when unioning our successors LiveIn. Thus, the LiveIn of this block 2743 // hasn't changed. 2744 continue; 2745 } 2746 Data.LiveOut[BB] = LiveOut; 2747 2748 // Apply the effects of this basic block 2749 SetVector<Value *> LiveTmp = LiveOut; 2750 LiveTmp.set_union(Data.LiveSet[BB]); 2751 LiveTmp.set_subtract(Data.KillSet[BB]); 2752 2753 assert(Data.LiveIn.count(BB)); 2754 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2755 // assert: OldLiveIn is a subset of LiveTmp 2756 if (OldLiveIn.size() != LiveTmp.size()) { 2757 Data.LiveIn[BB] = LiveTmp; 2758 Worklist.insert(pred_begin(BB), pred_end(BB)); 2759 } 2760 } // while (!Worklist.empty()) 2761 2762 #ifndef NDEBUG 2763 // Sanity check our output against SSA properties. This helps catch any 2764 // missing kills during the above iteration. 2765 for (BasicBlock &BB : F) 2766 checkBasicSSA(DT, Data, BB); 2767 #endif 2768 } 2769 2770 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2771 StatepointLiveSetTy &Out) { 2772 BasicBlock *BB = Inst->getParent(); 2773 2774 // Note: The copy is intentional and required 2775 assert(Data.LiveOut.count(BB)); 2776 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2777 2778 // We want to handle the statepoint itself oddly. It's 2779 // call result is not live (normal), nor are it's arguments 2780 // (unless they're used again later). This adjustment is 2781 // specifically what we need to relocate 2782 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 2783 LiveOut); 2784 LiveOut.remove(Inst); 2785 Out.insert(LiveOut.begin(), LiveOut.end()); 2786 } 2787 2788 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2789 CallSite CS, 2790 PartiallyConstructedSafepointRecord &Info) { 2791 Instruction *Inst = CS.getInstruction(); 2792 StatepointLiveSetTy Updated; 2793 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2794 2795 // We may have base pointers which are now live that weren't before. We need 2796 // to update the PointerToBase structure to reflect this. 2797 for (auto V : Updated) 2798 if (Info.PointerToBase.insert({V, V}).second) { 2799 assert(isKnownBaseResult(V) && 2800 "Can't find base for unexpected live value!"); 2801 continue; 2802 } 2803 2804 #ifndef NDEBUG 2805 for (auto V : Updated) 2806 assert(Info.PointerToBase.count(V) && 2807 "Must be able to find base for live value!"); 2808 #endif 2809 2810 // Remove any stale base mappings - this can happen since our liveness is 2811 // more precise then the one inherent in the base pointer analysis. 2812 DenseSet<Value *> ToErase; 2813 for (auto KVPair : Info.PointerToBase) 2814 if (!Updated.count(KVPair.first)) 2815 ToErase.insert(KVPair.first); 2816 2817 for (auto *V : ToErase) 2818 Info.PointerToBase.erase(V); 2819 2820 #ifndef NDEBUG 2821 for (auto KVPair : Info.PointerToBase) 2822 assert(Updated.count(KVPair.first) && "record for non-live value"); 2823 #endif 2824 2825 Info.LiveSet = Updated; 2826 } 2827