1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstIterator.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/Cloning.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 45 46 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 47 48 using namespace llvm; 49 50 // Print the liveset found at the insert location 51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 52 cl::init(false)); 53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 54 cl::init(false)); 55 // Print out the base pointers for debugging 56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 57 cl::init(false)); 58 59 // Cost threshold measuring when it is profitable to rematerialize value instead 60 // of relocating it 61 static cl::opt<unsigned> 62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 63 cl::init(6)); 64 65 #ifdef XDEBUG 66 static bool ClobberNonLive = true; 67 #else 68 static bool ClobberNonLive = false; 69 #endif 70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 71 cl::location(ClobberNonLive), 72 cl::Hidden); 73 74 namespace { 75 struct RewriteStatepointsForGC : public ModulePass { 76 static char ID; // Pass identification, replacement for typeid 77 78 RewriteStatepointsForGC() : ModulePass(ID) { 79 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 80 } 81 bool runOnFunction(Function &F); 82 bool runOnModule(Module &M) override { 83 bool Changed = false; 84 for (Function &F : M) 85 Changed |= runOnFunction(F); 86 87 if (Changed) { 88 // stripDereferenceabilityInfo asserts that shouldRewriteStatepointsIn 89 // returns true for at least one function in the module. Since at least 90 // one function changed, we know that the precondition is satisfied. 91 stripDereferenceabilityInfo(M); 92 } 93 94 return Changed; 95 } 96 97 void getAnalysisUsage(AnalysisUsage &AU) const override { 98 // We add and rewrite a bunch of instructions, but don't really do much 99 // else. We could in theory preserve a lot more analyses here. 100 AU.addRequired<DominatorTreeWrapperPass>(); 101 AU.addRequired<TargetTransformInfoWrapperPass>(); 102 } 103 104 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 105 /// dereferenceability that are no longer valid/correct after 106 /// RewriteStatepointsForGC has run. This is because semantically, after 107 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 108 /// heap. stripDereferenceabilityInfo (conservatively) restores correctness 109 /// by erasing all attributes in the module that externally imply 110 /// dereferenceability. 111 /// 112 void stripDereferenceabilityInfo(Module &M); 113 114 // Helpers for stripDereferenceabilityInfo 115 void stripDereferenceabilityInfoFromBody(Function &F); 116 void stripDereferenceabilityInfoFromPrototype(Function &F); 117 }; 118 } // namespace 119 120 char RewriteStatepointsForGC::ID = 0; 121 122 ModulePass *llvm::createRewriteStatepointsForGCPass() { 123 return new RewriteStatepointsForGC(); 124 } 125 126 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 127 "Make relocations explicit at statepoints", false, false) 128 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 129 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 130 "Make relocations explicit at statepoints", false, false) 131 132 namespace { 133 struct GCPtrLivenessData { 134 /// Values defined in this block. 135 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 136 /// Values used in this block (and thus live); does not included values 137 /// killed within this block. 138 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 139 140 /// Values live into this basic block (i.e. used by any 141 /// instruction in this basic block or ones reachable from here) 142 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 143 144 /// Values live out of this basic block (i.e. live into 145 /// any successor block) 146 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 147 }; 148 149 // The type of the internal cache used inside the findBasePointers family 150 // of functions. From the callers perspective, this is an opaque type and 151 // should not be inspected. 152 // 153 // In the actual implementation this caches two relations: 154 // - The base relation itself (i.e. this pointer is based on that one) 155 // - The base defining value relation (i.e. before base_phi insertion) 156 // Generally, after the execution of a full findBasePointer call, only the 157 // base relation will remain. Internally, we add a mixture of the two 158 // types, then update all the second type to the first type 159 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 160 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 161 typedef DenseMap<Instruction *, Value *> RematerializedValueMapTy; 162 163 struct PartiallyConstructedSafepointRecord { 164 /// The set of values known to be live across this safepoint 165 StatepointLiveSetTy liveset; 166 167 /// Mapping from live pointers to a base-defining-value 168 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 169 170 /// The *new* gc.statepoint instruction itself. This produces the token 171 /// that normal path gc.relocates and the gc.result are tied to. 172 Instruction *StatepointToken; 173 174 /// Instruction to which exceptional gc relocates are attached 175 /// Makes it easier to iterate through them during relocationViaAlloca. 176 Instruction *UnwindToken; 177 178 /// Record live values we are rematerialized instead of relocating. 179 /// They are not included into 'liveset' field. 180 /// Maps rematerialized copy to it's original value. 181 RematerializedValueMapTy RematerializedValues; 182 }; 183 } 184 185 /// Compute the live-in set for every basic block in the function 186 static void computeLiveInValues(DominatorTree &DT, Function &F, 187 GCPtrLivenessData &Data); 188 189 /// Given results from the dataflow liveness computation, find the set of live 190 /// Values at a particular instruction. 191 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 192 StatepointLiveSetTy &out); 193 194 // TODO: Once we can get to the GCStrategy, this becomes 195 // Optional<bool> isGCManagedPointer(const Value *V) const override { 196 197 static bool isGCPointerType(Type *T) { 198 if (auto *PT = dyn_cast<PointerType>(T)) 199 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 200 // GC managed heap. We know that a pointer into this heap needs to be 201 // updated and that no other pointer does. 202 return (1 == PT->getAddressSpace()); 203 return false; 204 } 205 206 // Return true if this type is one which a) is a gc pointer or contains a GC 207 // pointer and b) is of a type this code expects to encounter as a live value. 208 // (The insertion code will assert that a type which matches (a) and not (b) 209 // is not encountered.) 210 static bool isHandledGCPointerType(Type *T) { 211 // We fully support gc pointers 212 if (isGCPointerType(T)) 213 return true; 214 // We partially support vectors of gc pointers. The code will assert if it 215 // can't handle something. 216 if (auto VT = dyn_cast<VectorType>(T)) 217 if (isGCPointerType(VT->getElementType())) 218 return true; 219 return false; 220 } 221 222 #ifndef NDEBUG 223 /// Returns true if this type contains a gc pointer whether we know how to 224 /// handle that type or not. 225 static bool containsGCPtrType(Type *Ty) { 226 if (isGCPointerType(Ty)) 227 return true; 228 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 229 return isGCPointerType(VT->getScalarType()); 230 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 231 return containsGCPtrType(AT->getElementType()); 232 if (StructType *ST = dyn_cast<StructType>(Ty)) 233 return std::any_of( 234 ST->subtypes().begin(), ST->subtypes().end(), 235 [](Type *SubType) { return containsGCPtrType(SubType); }); 236 return false; 237 } 238 239 // Returns true if this is a type which a) is a gc pointer or contains a GC 240 // pointer and b) is of a type which the code doesn't expect (i.e. first class 241 // aggregates). Used to trip assertions. 242 static bool isUnhandledGCPointerType(Type *Ty) { 243 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 244 } 245 #endif 246 247 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 248 if (a->hasName() && b->hasName()) { 249 return -1 == a->getName().compare(b->getName()); 250 } else if (a->hasName() && !b->hasName()) { 251 return true; 252 } else if (!a->hasName() && b->hasName()) { 253 return false; 254 } else { 255 // Better than nothing, but not stable 256 return a < b; 257 } 258 } 259 260 // Conservatively identifies any definitions which might be live at the 261 // given instruction. The analysis is performed immediately before the 262 // given instruction. Values defined by that instruction are not considered 263 // live. Values used by that instruction are considered live. 264 static void analyzeParsePointLiveness( 265 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 266 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 267 Instruction *inst = CS.getInstruction(); 268 269 StatepointLiveSetTy liveset; 270 findLiveSetAtInst(inst, OriginalLivenessData, liveset); 271 272 if (PrintLiveSet) { 273 // Note: This output is used by several of the test cases 274 // The order of elements in a set is not stable, put them in a vec and sort 275 // by name 276 SmallVector<Value *, 64> Temp; 277 Temp.insert(Temp.end(), liveset.begin(), liveset.end()); 278 std::sort(Temp.begin(), Temp.end(), order_by_name); 279 errs() << "Live Variables:\n"; 280 for (Value *V : Temp) 281 dbgs() << " " << V->getName() << " " << *V << "\n"; 282 } 283 if (PrintLiveSetSize) { 284 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 285 errs() << "Number live values: " << liveset.size() << "\n"; 286 } 287 result.liveset = liveset; 288 } 289 290 static Value *findBaseDefiningValue(Value *I); 291 292 /// Return a base defining value for the 'Index' element of the given vector 293 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 294 /// 'I'. As an optimization, this method will try to determine when the 295 /// element is known to already be a base pointer. If this can be established, 296 /// the second value in the returned pair will be true. Note that either a 297 /// vector or a pointer typed value can be returned. For the former, the 298 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 299 /// If the later, the return pointer is a BDV (or possibly a base) for the 300 /// particular element in 'I'. 301 static std::pair<Value *, bool> 302 findBaseDefiningValueOfVector(Value *I, Value *Index = nullptr) { 303 assert(I->getType()->isVectorTy() && 304 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 305 "Illegal to ask for the base pointer of a non-pointer type"); 306 307 // Each case parallels findBaseDefiningValue below, see that code for 308 // detailed motivation. 309 310 if (isa<Argument>(I)) 311 // An incoming argument to the function is a base pointer 312 return std::make_pair(I, true); 313 314 // We shouldn't see the address of a global as a vector value? 315 assert(!isa<GlobalVariable>(I) && 316 "unexpected global variable found in base of vector"); 317 318 // inlining could possibly introduce phi node that contains 319 // undef if callee has multiple returns 320 if (isa<UndefValue>(I)) 321 // utterly meaningless, but useful for dealing with partially optimized 322 // code. 323 return std::make_pair(I, true); 324 325 // Due to inheritance, this must be _after_ the global variable and undef 326 // checks 327 if (Constant *Con = dyn_cast<Constant>(I)) { 328 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 329 "order of checks wrong!"); 330 assert(Con->isNullValue() && "null is the only case which makes sense"); 331 return std::make_pair(Con, true); 332 } 333 334 if (isa<LoadInst>(I)) 335 return std::make_pair(I, true); 336 337 // For an insert element, we might be able to look through it if we know 338 // something about the indexes. 339 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(I)) { 340 if (Index) { 341 Value *InsertIndex = IEI->getOperand(2); 342 // This index is inserting the value, look for its BDV 343 if (InsertIndex == Index) 344 return std::make_pair(findBaseDefiningValue(IEI->getOperand(1)), false); 345 // Both constant, and can't be equal per above. This insert is definitely 346 // not relevant, look back at the rest of the vector and keep trying. 347 if (isa<ConstantInt>(Index) && isa<ConstantInt>(InsertIndex)) 348 return findBaseDefiningValueOfVector(IEI->getOperand(0), Index); 349 } 350 351 // We don't know whether this vector contains entirely base pointers or 352 // not. To be conservatively correct, we treat it as a BDV and will 353 // duplicate code as needed to construct a parallel vector of bases. 354 return std::make_pair(IEI, false); 355 } 356 357 if (isa<ShuffleVectorInst>(I)) 358 // We don't know whether this vector contains entirely base pointers or 359 // not. To be conservatively correct, we treat it as a BDV and will 360 // duplicate code as needed to construct a parallel vector of bases. 361 // TODO: There a number of local optimizations which could be applied here 362 // for particular sufflevector patterns. 363 return std::make_pair(I, false); 364 365 // A PHI or Select is a base defining value. The outer findBasePointer 366 // algorithm is responsible for constructing a base value for this BDV. 367 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 368 "unknown vector instruction - no base found for vector element"); 369 return std::make_pair(I, false); 370 } 371 372 static bool isKnownBaseResult(Value *V); 373 374 /// Helper function for findBasePointer - Will return a value which either a) 375 /// defines the base pointer for the input, b) blocks the simple search 376 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 377 /// from pointer to vector type or back. 378 static Value *findBaseDefiningValue(Value *I) { 379 if (I->getType()->isVectorTy()) 380 return findBaseDefiningValueOfVector(I).first; 381 382 assert(I->getType()->isPointerTy() && 383 "Illegal to ask for the base pointer of a non-pointer type"); 384 385 if (isa<Argument>(I)) 386 // An incoming argument to the function is a base pointer 387 // We should have never reached here if this argument isn't an gc value 388 return I; 389 390 if (isa<GlobalVariable>(I)) 391 // base case 392 return I; 393 394 // inlining could possibly introduce phi node that contains 395 // undef if callee has multiple returns 396 if (isa<UndefValue>(I)) 397 // utterly meaningless, but useful for dealing with 398 // partially optimized code. 399 return I; 400 401 // Due to inheritance, this must be _after_ the global variable and undef 402 // checks 403 if (Constant *Con = dyn_cast<Constant>(I)) { 404 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 405 "order of checks wrong!"); 406 // Note: Finding a constant base for something marked for relocation 407 // doesn't really make sense. The most likely case is either a) some 408 // screwed up the address space usage or b) your validating against 409 // compiled C++ code w/o the proper separation. The only real exception 410 // is a null pointer. You could have generic code written to index of 411 // off a potentially null value and have proven it null. We also use 412 // null pointers in dead paths of relocation phis (which we might later 413 // want to find a base pointer for). 414 assert(isa<ConstantPointerNull>(Con) && 415 "null is the only case which makes sense"); 416 return Con; 417 } 418 419 if (CastInst *CI = dyn_cast<CastInst>(I)) { 420 Value *Def = CI->stripPointerCasts(); 421 // If we find a cast instruction here, it means we've found a cast which is 422 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 423 // handle int->ptr conversion. 424 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 425 return findBaseDefiningValue(Def); 426 } 427 428 if (isa<LoadInst>(I)) 429 return I; // The value loaded is an gc base itself 430 431 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 432 // The base of this GEP is the base 433 return findBaseDefiningValue(GEP->getPointerOperand()); 434 435 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 436 switch (II->getIntrinsicID()) { 437 case Intrinsic::experimental_gc_result_ptr: 438 default: 439 // fall through to general call handling 440 break; 441 case Intrinsic::experimental_gc_statepoint: 442 case Intrinsic::experimental_gc_result_float: 443 case Intrinsic::experimental_gc_result_int: 444 llvm_unreachable("these don't produce pointers"); 445 case Intrinsic::experimental_gc_relocate: { 446 // Rerunning safepoint insertion after safepoints are already 447 // inserted is not supported. It could probably be made to work, 448 // but why are you doing this? There's no good reason. 449 llvm_unreachable("repeat safepoint insertion is not supported"); 450 } 451 case Intrinsic::gcroot: 452 // Currently, this mechanism hasn't been extended to work with gcroot. 453 // There's no reason it couldn't be, but I haven't thought about the 454 // implications much. 455 llvm_unreachable( 456 "interaction with the gcroot mechanism is not supported"); 457 } 458 } 459 // We assume that functions in the source language only return base 460 // pointers. This should probably be generalized via attributes to support 461 // both source language and internal functions. 462 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 463 return I; 464 465 // I have absolutely no idea how to implement this part yet. It's not 466 // necessarily hard, I just haven't really looked at it yet. 467 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 468 469 if (isa<AtomicCmpXchgInst>(I)) 470 // A CAS is effectively a atomic store and load combined under a 471 // predicate. From the perspective of base pointers, we just treat it 472 // like a load. 473 return I; 474 475 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 476 "binary ops which don't apply to pointers"); 477 478 // The aggregate ops. Aggregates can either be in the heap or on the 479 // stack, but in either case, this is simply a field load. As a result, 480 // this is a defining definition of the base just like a load is. 481 if (isa<ExtractValueInst>(I)) 482 return I; 483 484 // We should never see an insert vector since that would require we be 485 // tracing back a struct value not a pointer value. 486 assert(!isa<InsertValueInst>(I) && 487 "Base pointer for a struct is meaningless"); 488 489 // An extractelement produces a base result exactly when it's input does. 490 // We may need to insert a parallel instruction to extract the appropriate 491 // element out of the base vector corresponding to the input. Given this, 492 // it's analogous to the phi and select case even though it's not a merge. 493 if (auto *EEI = dyn_cast<ExtractElementInst>(I)) { 494 Value *VectorOperand = EEI->getVectorOperand(); 495 Value *Index = EEI->getIndexOperand(); 496 std::pair<Value *, bool> pair = 497 findBaseDefiningValueOfVector(VectorOperand, Index); 498 Value *VectorBase = pair.first; 499 if (VectorBase->getType()->isPointerTy()) 500 // We found a BDV for this specific element with the vector. This is an 501 // optimization, but in practice it covers most of the useful cases 502 // created via scalarization. Note: The peephole optimization here is 503 // currently needed for correctness since the general algorithm doesn't 504 // yet handle insertelements. That will change shortly. 505 return VectorBase; 506 else { 507 assert(VectorBase->getType()->isVectorTy()); 508 // Otherwise, we have an instruction which potentially produces a 509 // derived pointer and we need findBasePointers to clone code for us 510 // such that we can create an instruction which produces the 511 // accompanying base pointer. 512 return EEI; 513 } 514 } 515 516 // The last two cases here don't return a base pointer. Instead, they 517 // return a value which dynamically selects from among several base 518 // derived pointers (each with it's own base potentially). It's the job of 519 // the caller to resolve these. 520 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 521 "missing instruction case in findBaseDefiningValing"); 522 return I; 523 } 524 525 /// Returns the base defining value for this value. 526 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 527 Value *&Cached = Cache[I]; 528 if (!Cached) { 529 Cached = findBaseDefiningValue(I); 530 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 531 << Cached->getName() << "\n"); 532 } 533 assert(Cache[I] != nullptr); 534 return Cached; 535 } 536 537 /// Return a base pointer for this value if known. Otherwise, return it's 538 /// base defining value. 539 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 540 Value *Def = findBaseDefiningValueCached(I, Cache); 541 auto Found = Cache.find(Def); 542 if (Found != Cache.end()) { 543 // Either a base-of relation, or a self reference. Caller must check. 544 return Found->second; 545 } 546 // Only a BDV available 547 return Def; 548 } 549 550 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 551 /// is it known to be a base pointer? Or do we need to continue searching. 552 static bool isKnownBaseResult(Value *V) { 553 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && !isa<ExtractElementInst>(V)) { 554 // no recursion possible 555 return true; 556 } 557 if (isa<Instruction>(V) && 558 cast<Instruction>(V)->getMetadata("is_base_value")) { 559 // This is a previously inserted base phi or select. We know 560 // that this is a base value. 561 return true; 562 } 563 564 // We need to keep searching 565 return false; 566 } 567 568 namespace { 569 /// Models the state of a single base defining value in the findBasePointer 570 /// algorithm for determining where a new instruction is needed to propagate 571 /// the base of this BDV. 572 class BDVState { 573 public: 574 enum Status { Unknown, Base, Conflict }; 575 576 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 577 assert(status != Base || b); 578 } 579 explicit BDVState(Value *b) : status(Base), base(b) {} 580 BDVState() : status(Unknown), base(nullptr) {} 581 582 Status getStatus() const { return status; } 583 Value *getBase() const { return base; } 584 585 bool isBase() const { return getStatus() == Base; } 586 bool isUnknown() const { return getStatus() == Unknown; } 587 bool isConflict() const { return getStatus() == Conflict; } 588 589 bool operator==(const BDVState &other) const { 590 return base == other.base && status == other.status; 591 } 592 593 bool operator!=(const BDVState &other) const { return !(*this == other); } 594 595 LLVM_DUMP_METHOD 596 void dump() const { print(dbgs()); dbgs() << '\n'; } 597 598 void print(raw_ostream &OS) const { 599 switch (status) { 600 case Unknown: 601 OS << "U"; 602 break; 603 case Base: 604 OS << "B"; 605 break; 606 case Conflict: 607 OS << "C"; 608 break; 609 }; 610 OS << " (" << base << " - " 611 << (base ? base->getName() : "nullptr") << "): "; 612 } 613 614 private: 615 Status status; 616 Value *base; // non null only if status == base 617 }; 618 } 619 620 #ifndef NDEBUG 621 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 622 State.print(OS); 623 return OS; 624 } 625 #endif 626 627 namespace { 628 typedef DenseMap<Value *, BDVState> ConflictStateMapTy; 629 // Values of type BDVState form a lattice, and this is a helper 630 // class that implementes the meet operation. The meat of the meet 631 // operation is implemented in MeetBDVStates::pureMeet 632 class MeetBDVStates { 633 public: 634 /// Initializes the currentResult to the TOP state so that if can be met with 635 /// any other state to produce that state. 636 MeetBDVStates() {} 637 638 // Destructively meet the current result with the given BDVState 639 void meetWith(BDVState otherState) { 640 currentResult = meet(otherState, currentResult); 641 } 642 643 BDVState getResult() const { return currentResult; } 644 645 private: 646 BDVState currentResult; 647 648 /// Perform a meet operation on two elements of the BDVState lattice. 649 static BDVState meet(BDVState LHS, BDVState RHS) { 650 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 651 "math is wrong: meet does not commute!"); 652 BDVState Result = pureMeet(LHS, RHS); 653 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 654 << " produced " << Result << "\n"); 655 return Result; 656 } 657 658 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 659 switch (stateA.getStatus()) { 660 case BDVState::Unknown: 661 return stateB; 662 663 case BDVState::Base: 664 assert(stateA.getBase() && "can't be null"); 665 if (stateB.isUnknown()) 666 return stateA; 667 668 if (stateB.isBase()) { 669 if (stateA.getBase() == stateB.getBase()) { 670 assert(stateA == stateB && "equality broken!"); 671 return stateA; 672 } 673 return BDVState(BDVState::Conflict); 674 } 675 assert(stateB.isConflict() && "only three states!"); 676 return BDVState(BDVState::Conflict); 677 678 case BDVState::Conflict: 679 return stateA; 680 } 681 llvm_unreachable("only three states!"); 682 } 683 }; 684 } 685 686 687 /// For a given value or instruction, figure out what base ptr it's derived 688 /// from. For gc objects, this is simply itself. On success, returns a value 689 /// which is the base pointer. (This is reliable and can be used for 690 /// relocation.) On failure, returns nullptr. 691 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 692 Value *def = findBaseOrBDV(I, cache); 693 694 if (isKnownBaseResult(def)) { 695 return def; 696 } 697 698 // Here's the rough algorithm: 699 // - For every SSA value, construct a mapping to either an actual base 700 // pointer or a PHI which obscures the base pointer. 701 // - Construct a mapping from PHI to unknown TOP state. Use an 702 // optimistic algorithm to propagate base pointer information. Lattice 703 // looks like: 704 // UNKNOWN 705 // b1 b2 b3 b4 706 // CONFLICT 707 // When algorithm terminates, all PHIs will either have a single concrete 708 // base or be in a conflict state. 709 // - For every conflict, insert a dummy PHI node without arguments. Add 710 // these to the base[Instruction] = BasePtr mapping. For every 711 // non-conflict, add the actual base. 712 // - For every conflict, add arguments for the base[a] of each input 713 // arguments. 714 // 715 // Note: A simpler form of this would be to add the conflict form of all 716 // PHIs without running the optimistic algorithm. This would be 717 // analogous to pessimistic data flow and would likely lead to an 718 // overall worse solution. 719 720 #ifndef NDEBUG 721 auto isExpectedBDVType = [](Value *BDV) { 722 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || isa<ExtractElementInst>(BDV); 723 }; 724 #endif 725 726 // Once populated, will contain a mapping from each potentially non-base BDV 727 // to a lattice value (described above) which corresponds to that BDV. 728 ConflictStateMapTy states; 729 // Recursively fill in all phis & selects reachable from the initial one 730 // for which we don't already know a definite base value for 731 /* scope */ { 732 DenseSet<Value *> Visited; 733 SmallVector<Value*, 16> Worklist; 734 Worklist.push_back(def); 735 Visited.insert(def); 736 while (!Worklist.empty()) { 737 Value *Current = Worklist.pop_back_val(); 738 assert(!isKnownBaseResult(Current) && "why did it get added?"); 739 740 auto visitIncomingValue = [&](Value *InVal) { 741 Value *Base = findBaseOrBDV(InVal, cache); 742 if (isKnownBaseResult(Base)) 743 // Known bases won't need new instructions introduced and can be 744 // ignored safely 745 return; 746 assert(isExpectedBDVType(Base) && "the only non-base values " 747 "we see should be base defining values"); 748 if (Visited.insert(Base).second) 749 Worklist.push_back(Base); 750 }; 751 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 752 for (Value *InVal : Phi->incoming_values()) 753 visitIncomingValue(InVal); 754 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 755 visitIncomingValue(Sel->getTrueValue()); 756 visitIncomingValue(Sel->getFalseValue()); 757 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 758 visitIncomingValue(EE->getVectorOperand()); 759 } else { 760 // There are two classes of instructions we know we don't handle. 761 assert(isa<ShuffleVectorInst>(Current) || 762 isa<InsertElementInst>(Current)); 763 llvm_unreachable("unimplemented instruction case"); 764 } 765 } 766 // The frontier of visited instructions are the ones we might need to 767 // duplicate, so fill in the starting state for the optimistic algorithm 768 // that follows. 769 for (Value *BDV : Visited) { 770 states[BDV] = BDVState(); 771 } 772 } 773 774 #ifndef NDEBUG 775 DEBUG(dbgs() << "States after initialization:\n"); 776 for (auto Pair : states) { 777 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 778 } 779 #endif 780 781 // Return a phi state for a base defining value. We'll generate a new 782 // base state for known bases and expect to find a cached state otherwise. 783 auto getStateForBDV = [&](Value *baseValue) { 784 if (isKnownBaseResult(baseValue)) 785 return BDVState(baseValue); 786 auto I = states.find(baseValue); 787 assert(I != states.end() && "lookup failed!"); 788 return I->second; 789 }; 790 791 bool progress = true; 792 while (progress) { 793 #ifndef NDEBUG 794 size_t oldSize = states.size(); 795 #endif 796 progress = false; 797 // We're only changing keys in this loop, thus safe to keep iterators 798 for (auto Pair : states) { 799 Value *v = Pair.first; 800 assert(!isKnownBaseResult(v) && "why did it get added?"); 801 802 // Given an input value for the current instruction, return a BDVState 803 // instance which represents the BDV of that value. 804 auto getStateForInput = [&](Value *V) mutable { 805 Value *BDV = findBaseOrBDV(V, cache); 806 return getStateForBDV(BDV); 807 }; 808 809 MeetBDVStates calculateMeet; 810 if (SelectInst *select = dyn_cast<SelectInst>(v)) { 811 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 812 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 813 } else if (PHINode *Phi = dyn_cast<PHINode>(v)) { 814 for (Value *Val : Phi->incoming_values()) 815 calculateMeet.meetWith(getStateForInput(Val)); 816 } else { 817 // The 'meet' for an extractelement is slightly trivial, but it's still 818 // useful in that it drives us to conflict if our input is. 819 auto *EE = cast<ExtractElementInst>(v); 820 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 821 } 822 823 824 BDVState oldState = states[v]; 825 BDVState newState = calculateMeet.getResult(); 826 if (oldState != newState) { 827 progress = true; 828 states[v] = newState; 829 } 830 } 831 832 assert(oldSize <= states.size()); 833 assert(oldSize == states.size() || progress); 834 } 835 836 #ifndef NDEBUG 837 DEBUG(dbgs() << "States after meet iteration:\n"); 838 for (auto Pair : states) { 839 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 840 } 841 #endif 842 843 // Insert Phis for all conflicts 844 // We want to keep naming deterministic in the loop that follows, so 845 // sort the keys before iteration. This is useful in allowing us to 846 // write stable tests. Note that there is no invalidation issue here. 847 SmallVector<Value *, 16> Keys; 848 Keys.reserve(states.size()); 849 for (auto Pair : states) { 850 Value *V = Pair.first; 851 Keys.push_back(V); 852 } 853 std::sort(Keys.begin(), Keys.end(), order_by_name); 854 // TODO: adjust naming patterns to avoid this order of iteration dependency 855 for (Value *V : Keys) { 856 Instruction *I = cast<Instruction>(V); 857 BDVState State = states[I]; 858 assert(!isKnownBaseResult(I) && "why did it get added?"); 859 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 860 861 // extractelement instructions are a bit special in that we may need to 862 // insert an extract even when we know an exact base for the instruction. 863 // The problem is that we need to convert from a vector base to a scalar 864 // base for the particular indice we're interested in. 865 if (State.isBase() && isa<ExtractElementInst>(I) && 866 isa<VectorType>(State.getBase()->getType())) { 867 auto *EE = cast<ExtractElementInst>(I); 868 // TODO: In many cases, the new instruction is just EE itself. We should 869 // exploit this, but can't do it here since it would break the invariant 870 // about the BDV not being known to be a base. 871 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 872 EE->getIndexOperand(), 873 "base_ee", EE); 874 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 875 states[I] = BDVState(BDVState::Base, BaseInst); 876 } 877 878 if (!State.isConflict()) 879 continue; 880 881 /// Create and insert a new instruction which will represent the base of 882 /// the given instruction 'I'. 883 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 884 if (isa<PHINode>(I)) { 885 BasicBlock *BB = I->getParent(); 886 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 887 assert(NumPreds > 0 && "how did we reach here"); 888 std::string Name = I->hasName() ? 889 (I->getName() + ".base").str() : "base_phi"; 890 return PHINode::Create(I->getType(), NumPreds, Name, I); 891 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 892 // The undef will be replaced later 893 UndefValue *Undef = UndefValue::get(Sel->getType()); 894 std::string Name = I->hasName() ? 895 (I->getName() + ".base").str() : "base_select"; 896 return SelectInst::Create(Sel->getCondition(), Undef, 897 Undef, Name, Sel); 898 } else { 899 auto *EE = cast<ExtractElementInst>(I); 900 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 901 std::string Name = I->hasName() ? 902 (I->getName() + ".base").str() : "base_ee"; 903 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 904 EE); 905 } 906 }; 907 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 908 // Add metadata marking this as a base value 909 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 910 states[I] = BDVState(BDVState::Conflict, BaseInst); 911 } 912 913 // Fixup all the inputs of the new PHIs 914 for (auto Pair : states) { 915 Instruction *v = cast<Instruction>(Pair.first); 916 BDVState state = Pair.second; 917 918 assert(!isKnownBaseResult(v) && "why did it get added?"); 919 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); 920 if (!state.isConflict()) 921 continue; 922 923 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { 924 PHINode *phi = cast<PHINode>(v); 925 unsigned NumPHIValues = phi->getNumIncomingValues(); 926 for (unsigned i = 0; i < NumPHIValues; i++) { 927 Value *InVal = phi->getIncomingValue(i); 928 BasicBlock *InBB = phi->getIncomingBlock(i); 929 930 // If we've already seen InBB, add the same incoming value 931 // we added for it earlier. The IR verifier requires phi 932 // nodes with multiple entries from the same basic block 933 // to have the same incoming value for each of those 934 // entries. If we don't do this check here and basephi 935 // has a different type than base, we'll end up adding two 936 // bitcasts (and hence two distinct values) as incoming 937 // values for the same basic block. 938 939 int blockIndex = basephi->getBasicBlockIndex(InBB); 940 if (blockIndex != -1) { 941 Value *oldBase = basephi->getIncomingValue(blockIndex); 942 basephi->addIncoming(oldBase, InBB); 943 #ifndef NDEBUG 944 Value *base = findBaseOrBDV(InVal, cache); 945 if (!isKnownBaseResult(base)) { 946 // Either conflict or base. 947 assert(states.count(base)); 948 base = states[base].getBase(); 949 assert(base != nullptr && "unknown BDVState!"); 950 } 951 952 // In essence this assert states: the only way two 953 // values incoming from the same basic block may be 954 // different is by being different bitcasts of the same 955 // value. A cleanup that remains TODO is changing 956 // findBaseOrBDV to return an llvm::Value of the correct 957 // type (and still remain pure). This will remove the 958 // need to add bitcasts. 959 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && 960 "sanity -- findBaseOrBDV should be pure!"); 961 #endif 962 continue; 963 } 964 965 // Find either the defining value for the PHI or the normal base for 966 // a non-phi node 967 Value *base = findBaseOrBDV(InVal, cache); 968 if (!isKnownBaseResult(base)) { 969 // Either conflict or base. 970 assert(states.count(base)); 971 base = states[base].getBase(); 972 assert(base != nullptr && "unknown BDVState!"); 973 } 974 assert(base && "can't be null"); 975 // Must use original input BB since base may not be Instruction 976 // The cast is needed since base traversal may strip away bitcasts 977 if (base->getType() != basephi->getType()) { 978 base = new BitCastInst(base, basephi->getType(), "cast", 979 InBB->getTerminator()); 980 } 981 basephi->addIncoming(base, InBB); 982 } 983 assert(basephi->getNumIncomingValues() == NumPHIValues); 984 } else if (SelectInst *basesel = dyn_cast<SelectInst>(state.getBase())) { 985 SelectInst *sel = cast<SelectInst>(v); 986 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 987 // something more safe and less hacky. 988 for (int i = 1; i <= 2; i++) { 989 Value *InVal = sel->getOperand(i); 990 // Find either the defining value for the PHI or the normal base for 991 // a non-phi node 992 Value *base = findBaseOrBDV(InVal, cache); 993 if (!isKnownBaseResult(base)) { 994 // Either conflict or base. 995 assert(states.count(base)); 996 base = states[base].getBase(); 997 assert(base != nullptr && "unknown BDVState!"); 998 } 999 assert(base && "can't be null"); 1000 // Must use original input BB since base may not be Instruction 1001 // The cast is needed since base traversal may strip away bitcasts 1002 if (base->getType() != basesel->getType()) { 1003 base = new BitCastInst(base, basesel->getType(), "cast", basesel); 1004 } 1005 basesel->setOperand(i, base); 1006 } 1007 } else { 1008 auto *BaseEE = cast<ExtractElementInst>(state.getBase()); 1009 Value *InVal = cast<ExtractElementInst>(v)->getVectorOperand(); 1010 Value *Base = findBaseOrBDV(InVal, cache); 1011 if (!isKnownBaseResult(Base)) { 1012 // Either conflict or base. 1013 assert(states.count(Base)); 1014 Base = states[Base].getBase(); 1015 assert(Base != nullptr && "unknown BDVState!"); 1016 } 1017 assert(Base && "can't be null"); 1018 BaseEE->setOperand(0, Base); 1019 } 1020 } 1021 1022 // Now that we're done with the algorithm, see if we can optimize the 1023 // results slightly by reducing the number of new instructions needed. 1024 // Arguably, this should be integrated into the algorithm above, but 1025 // doing as a post process step is easier to reason about for the moment. 1026 DenseMap<Value *, Value *> ReverseMap; 1027 SmallPtrSet<Instruction *, 16> NewInsts; 1028 SmallSetVector<AssertingVH<Instruction>, 16> Worklist; 1029 for (auto Item : states) { 1030 Value *V = Item.first; 1031 Value *Base = Item.second.getBase(); 1032 assert(V && Base); 1033 assert(!isKnownBaseResult(V) && "why did it get added?"); 1034 assert(isKnownBaseResult(Base) && 1035 "must be something we 'know' is a base pointer"); 1036 if (!Item.second.isConflict()) 1037 continue; 1038 1039 ReverseMap[Base] = V; 1040 if (auto *BaseI = dyn_cast<Instruction>(Base)) { 1041 NewInsts.insert(BaseI); 1042 Worklist.insert(BaseI); 1043 } 1044 } 1045 auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI, 1046 Value *Replacement) { 1047 // Add users which are new instructions (excluding self references) 1048 for (User *U : BaseI->users()) 1049 if (auto *UI = dyn_cast<Instruction>(U)) 1050 if (NewInsts.count(UI) && UI != BaseI) 1051 Worklist.insert(UI); 1052 // Then do the actual replacement 1053 NewInsts.erase(BaseI); 1054 ReverseMap.erase(BaseI); 1055 BaseI->replaceAllUsesWith(Replacement); 1056 BaseI->eraseFromParent(); 1057 assert(states.count(BDV)); 1058 assert(states[BDV].isConflict() && states[BDV].getBase() == BaseI); 1059 states[BDV] = BDVState(BDVState::Conflict, Replacement); 1060 }; 1061 const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout(); 1062 while (!Worklist.empty()) { 1063 Instruction *BaseI = Worklist.pop_back_val(); 1064 assert(NewInsts.count(BaseI)); 1065 Value *Bdv = ReverseMap[BaseI]; 1066 if (auto *BdvI = dyn_cast<Instruction>(Bdv)) 1067 if (BaseI->isIdenticalTo(BdvI)) { 1068 DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n"); 1069 ReplaceBaseInstWith(Bdv, BaseI, Bdv); 1070 continue; 1071 } 1072 if (Value *V = SimplifyInstruction(BaseI, DL)) { 1073 DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n"); 1074 ReplaceBaseInstWith(Bdv, BaseI, V); 1075 continue; 1076 } 1077 } 1078 1079 // Cache all of our results so we can cheaply reuse them 1080 // NOTE: This is actually two caches: one of the base defining value 1081 // relation and one of the base pointer relation! FIXME 1082 for (auto item : states) { 1083 Value *v = item.first; 1084 Value *base = item.second.getBase(); 1085 assert(v && base); 1086 1087 std::string fromstr = 1088 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") 1089 : "none"; 1090 DEBUG(dbgs() << "Updating base value cache" 1091 << " for: " << (v->hasName() ? v->getName() : "") 1092 << " from: " << fromstr 1093 << " to: " << (base->hasName() ? base->getName() : "") << "\n"); 1094 1095 if (cache.count(v)) { 1096 // Once we transition from the BDV relation being store in the cache to 1097 // the base relation being stored, it must be stable 1098 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && 1099 "base relation should be stable"); 1100 } 1101 cache[v] = base; 1102 } 1103 assert(cache.find(def) != cache.end()); 1104 return cache[def]; 1105 } 1106 1107 // For a set of live pointers (base and/or derived), identify the base 1108 // pointer of the object which they are derived from. This routine will 1109 // mutate the IR graph as needed to make the 'base' pointer live at the 1110 // definition site of 'derived'. This ensures that any use of 'derived' can 1111 // also use 'base'. This may involve the insertion of a number of 1112 // additional PHI nodes. 1113 // 1114 // preconditions: live is a set of pointer type Values 1115 // 1116 // side effects: may insert PHI nodes into the existing CFG, will preserve 1117 // CFG, will not remove or mutate any existing nodes 1118 // 1119 // post condition: PointerToBase contains one (derived, base) pair for every 1120 // pointer in live. Note that derived can be equal to base if the original 1121 // pointer was a base pointer. 1122 static void 1123 findBasePointers(const StatepointLiveSetTy &live, 1124 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 1125 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1126 // For the naming of values inserted to be deterministic - which makes for 1127 // much cleaner and more stable tests - we need to assign an order to the 1128 // live values. DenseSets do not provide a deterministic order across runs. 1129 SmallVector<Value *, 64> Temp; 1130 Temp.insert(Temp.end(), live.begin(), live.end()); 1131 std::sort(Temp.begin(), Temp.end(), order_by_name); 1132 for (Value *ptr : Temp) { 1133 Value *base = findBasePointer(ptr, DVCache); 1134 assert(base && "failed to find base pointer"); 1135 PointerToBase[ptr] = base; 1136 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1137 DT->dominates(cast<Instruction>(base)->getParent(), 1138 cast<Instruction>(ptr)->getParent())) && 1139 "The base we found better dominate the derived pointer"); 1140 1141 // If you see this trip and like to live really dangerously, the code should 1142 // be correct, just with idioms the verifier can't handle. You can try 1143 // disabling the verifier at your own substantial risk. 1144 assert(!isa<ConstantPointerNull>(base) && 1145 "the relocation code needs adjustment to handle the relocation of " 1146 "a null pointer constant without causing false positives in the " 1147 "safepoint ir verifier."); 1148 } 1149 } 1150 1151 /// Find the required based pointers (and adjust the live set) for the given 1152 /// parse point. 1153 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1154 const CallSite &CS, 1155 PartiallyConstructedSafepointRecord &result) { 1156 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 1157 findBasePointers(result.liveset, PointerToBase, &DT, DVCache); 1158 1159 if (PrintBasePointers) { 1160 // Note: Need to print these in a stable order since this is checked in 1161 // some tests. 1162 errs() << "Base Pairs (w/o Relocation):\n"; 1163 SmallVector<Value *, 64> Temp; 1164 Temp.reserve(PointerToBase.size()); 1165 for (auto Pair : PointerToBase) { 1166 Temp.push_back(Pair.first); 1167 } 1168 std::sort(Temp.begin(), Temp.end(), order_by_name); 1169 for (Value *Ptr : Temp) { 1170 Value *Base = PointerToBase[Ptr]; 1171 errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() 1172 << "\n"; 1173 } 1174 } 1175 1176 result.PointerToBase = PointerToBase; 1177 } 1178 1179 /// Given an updated version of the dataflow liveness results, update the 1180 /// liveset and base pointer maps for the call site CS. 1181 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1182 const CallSite &CS, 1183 PartiallyConstructedSafepointRecord &result); 1184 1185 static void recomputeLiveInValues( 1186 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1187 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1188 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1189 // again. The old values are still live and will help it stabilize quickly. 1190 GCPtrLivenessData RevisedLivenessData; 1191 computeLiveInValues(DT, F, RevisedLivenessData); 1192 for (size_t i = 0; i < records.size(); i++) { 1193 struct PartiallyConstructedSafepointRecord &info = records[i]; 1194 const CallSite &CS = toUpdate[i]; 1195 recomputeLiveInValues(RevisedLivenessData, CS, info); 1196 } 1197 } 1198 1199 // When inserting gc.relocate calls, we need to ensure there are no uses 1200 // of the original value between the gc.statepoint and the gc.relocate call. 1201 // One case which can arise is a phi node starting one of the successor blocks. 1202 // We also need to be able to insert the gc.relocates only on the path which 1203 // goes through the statepoint. We might need to split an edge to make this 1204 // possible. 1205 static BasicBlock * 1206 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1207 DominatorTree &DT) { 1208 BasicBlock *Ret = BB; 1209 if (!BB->getUniquePredecessor()) { 1210 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1211 } 1212 1213 // Now that 'ret' has unique predecessor we can safely remove all phi nodes 1214 // from it 1215 FoldSingleEntryPHINodes(Ret); 1216 assert(!isa<PHINode>(Ret->begin())); 1217 1218 // At this point, we can safely insert a gc.relocate as the first instruction 1219 // in Ret if needed. 1220 return Ret; 1221 } 1222 1223 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1224 auto itr = std::find(livevec.begin(), livevec.end(), val); 1225 assert(livevec.end() != itr); 1226 size_t index = std::distance(livevec.begin(), itr); 1227 assert(index < livevec.size()); 1228 return index; 1229 } 1230 1231 // Create new attribute set containing only attributes which can be transferred 1232 // from original call to the safepoint. 1233 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1234 AttributeSet ret; 1235 1236 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1237 unsigned index = AS.getSlotIndex(Slot); 1238 1239 if (index == AttributeSet::ReturnIndex || 1240 index == AttributeSet::FunctionIndex) { 1241 1242 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1243 ++it) { 1244 Attribute attr = *it; 1245 1246 // Do not allow certain attributes - just skip them 1247 // Safepoint can not be read only or read none. 1248 if (attr.hasAttribute(Attribute::ReadNone) || 1249 attr.hasAttribute(Attribute::ReadOnly)) 1250 continue; 1251 1252 ret = ret.addAttributes( 1253 AS.getContext(), index, 1254 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1255 } 1256 } 1257 1258 // Just skip parameter attributes for now 1259 } 1260 1261 return ret; 1262 } 1263 1264 /// Helper function to place all gc relocates necessary for the given 1265 /// statepoint. 1266 /// Inputs: 1267 /// liveVariables - list of variables to be relocated. 1268 /// liveStart - index of the first live variable. 1269 /// basePtrs - base pointers. 1270 /// statepointToken - statepoint instruction to which relocates should be 1271 /// bound. 1272 /// Builder - Llvm IR builder to be used to construct new calls. 1273 static void CreateGCRelocates(ArrayRef<llvm::Value *> LiveVariables, 1274 const int LiveStart, 1275 ArrayRef<llvm::Value *> BasePtrs, 1276 Instruction *StatepointToken, 1277 IRBuilder<> Builder) { 1278 if (LiveVariables.empty()) 1279 return; 1280 1281 // All gc_relocate are set to i8 addrspace(1)* type. We originally generated 1282 // unique declarations for each pointer type, but this proved problematic 1283 // because the intrinsic mangling code is incomplete and fragile. Since 1284 // we're moving towards a single unified pointer type anyways, we can just 1285 // cast everything to an i8* of the right address space. A bitcast is added 1286 // later to convert gc_relocate to the actual value's type. 1287 Module *M = StatepointToken->getModule(); 1288 auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace(); 1289 Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)}; 1290 Value *GCRelocateDecl = 1291 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); 1292 1293 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1294 // Generate the gc.relocate call and save the result 1295 Value *BaseIdx = 1296 Builder.getInt32(LiveStart + find_index(LiveVariables, BasePtrs[i])); 1297 Value *LiveIdx = 1298 Builder.getInt32(LiveStart + find_index(LiveVariables, LiveVariables[i])); 1299 1300 // only specify a debug name if we can give a useful one 1301 CallInst *Reloc = Builder.CreateCall( 1302 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1303 LiveVariables[i]->hasName() ? LiveVariables[i]->getName() + ".relocated" 1304 : ""); 1305 // Trick CodeGen into thinking there are lots of free registers at this 1306 // fake call. 1307 Reloc->setCallingConv(CallingConv::Cold); 1308 } 1309 } 1310 1311 static void 1312 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1313 const SmallVectorImpl<llvm::Value *> &basePtrs, 1314 const SmallVectorImpl<llvm::Value *> &liveVariables, 1315 Pass *P, 1316 PartiallyConstructedSafepointRecord &result) { 1317 assert(basePtrs.size() == liveVariables.size()); 1318 assert(isStatepoint(CS) && 1319 "This method expects to be rewriting a statepoint"); 1320 1321 BasicBlock *BB = CS.getInstruction()->getParent(); 1322 assert(BB); 1323 Function *F = BB->getParent(); 1324 assert(F && "must be set"); 1325 Module *M = F->getParent(); 1326 (void)M; 1327 assert(M && "must be set"); 1328 1329 // We're not changing the function signature of the statepoint since the gc 1330 // arguments go into the var args section. 1331 Function *gc_statepoint_decl = CS.getCalledFunction(); 1332 1333 // Then go ahead and use the builder do actually do the inserts. We insert 1334 // immediately before the previous instruction under the assumption that all 1335 // arguments will be available here. We can't insert afterwards since we may 1336 // be replacing a terminator. 1337 Instruction *insertBefore = CS.getInstruction(); 1338 IRBuilder<> Builder(insertBefore); 1339 // Copy all of the arguments from the original statepoint - this includes the 1340 // target, call args, and deopt args 1341 SmallVector<llvm::Value *, 64> args; 1342 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1343 // TODO: Clear the 'needs rewrite' flag 1344 1345 // add all the pointers to be relocated (gc arguments) 1346 // Capture the start of the live variable list for use in the gc_relocates 1347 const int live_start = args.size(); 1348 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1349 1350 // Create the statepoint given all the arguments 1351 Instruction *token = nullptr; 1352 AttributeSet return_attributes; 1353 if (CS.isCall()) { 1354 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1355 CallInst *call = 1356 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1357 call->setTailCall(toReplace->isTailCall()); 1358 call->setCallingConv(toReplace->getCallingConv()); 1359 1360 // Currently we will fail on parameter attributes and on certain 1361 // function attributes. 1362 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1363 // In case if we can handle this set of attributes - set up function attrs 1364 // directly on statepoint and return attrs later for gc_result intrinsic. 1365 call->setAttributes(new_attrs.getFnAttributes()); 1366 return_attributes = new_attrs.getRetAttributes(); 1367 1368 token = call; 1369 1370 // Put the following gc_result and gc_relocate calls immediately after the 1371 // the old call (which we're about to delete) 1372 BasicBlock::iterator next(toReplace); 1373 assert(BB->end() != next && "not a terminator, must have next"); 1374 next++; 1375 Instruction *IP = &*(next); 1376 Builder.SetInsertPoint(IP); 1377 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1378 1379 } else { 1380 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1381 1382 // Insert the new invoke into the old block. We'll remove the old one in a 1383 // moment at which point this will become the new terminator for the 1384 // original block. 1385 InvokeInst *invoke = InvokeInst::Create( 1386 gc_statepoint_decl, toReplace->getNormalDest(), 1387 toReplace->getUnwindDest(), args, "statepoint_token", toReplace->getParent()); 1388 invoke->setCallingConv(toReplace->getCallingConv()); 1389 1390 // Currently we will fail on parameter attributes and on certain 1391 // function attributes. 1392 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1393 // In case if we can handle this set of attributes - set up function attrs 1394 // directly on statepoint and return attrs later for gc_result intrinsic. 1395 invoke->setAttributes(new_attrs.getFnAttributes()); 1396 return_attributes = new_attrs.getRetAttributes(); 1397 1398 token = invoke; 1399 1400 // Generate gc relocates in exceptional path 1401 BasicBlock *unwindBlock = toReplace->getUnwindDest(); 1402 assert(!isa<PHINode>(unwindBlock->begin()) && 1403 unwindBlock->getUniquePredecessor() && 1404 "can't safely insert in this block!"); 1405 1406 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1407 Builder.SetInsertPoint(IP); 1408 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1409 1410 // Extract second element from landingpad return value. We will attach 1411 // exceptional gc relocates to it. 1412 const unsigned idx = 1; 1413 Instruction *exceptional_token = 1414 cast<Instruction>(Builder.CreateExtractValue( 1415 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1416 result.UnwindToken = exceptional_token; 1417 1418 CreateGCRelocates(liveVariables, live_start, basePtrs, 1419 exceptional_token, Builder); 1420 1421 // Generate gc relocates and returns for normal block 1422 BasicBlock *normalDest = toReplace->getNormalDest(); 1423 assert(!isa<PHINode>(normalDest->begin()) && 1424 normalDest->getUniquePredecessor() && 1425 "can't safely insert in this block!"); 1426 1427 IP = &*(normalDest->getFirstInsertionPt()); 1428 Builder.SetInsertPoint(IP); 1429 1430 // gc relocates will be generated later as if it were regular call 1431 // statepoint 1432 } 1433 assert(token); 1434 1435 // Take the name of the original value call if it had one. 1436 token->takeName(CS.getInstruction()); 1437 1438 // The GCResult is already inserted, we just need to find it 1439 #ifndef NDEBUG 1440 Instruction *toReplace = CS.getInstruction(); 1441 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1442 "only valid use before rewrite is gc.result"); 1443 assert(!toReplace->hasOneUse() || 1444 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1445 #endif 1446 1447 // Update the gc.result of the original statepoint (if any) to use the newly 1448 // inserted statepoint. This is safe to do here since the token can't be 1449 // considered a live reference. 1450 CS.getInstruction()->replaceAllUsesWith(token); 1451 1452 result.StatepointToken = token; 1453 1454 // Second, create a gc.relocate for every live variable 1455 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1456 } 1457 1458 namespace { 1459 struct name_ordering { 1460 Value *base; 1461 Value *derived; 1462 bool operator()(name_ordering const &a, name_ordering const &b) { 1463 return -1 == a.derived->getName().compare(b.derived->getName()); 1464 } 1465 }; 1466 } 1467 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1468 SmallVectorImpl<Value *> &livevec) { 1469 assert(basevec.size() == livevec.size()); 1470 1471 SmallVector<name_ordering, 64> temp; 1472 for (size_t i = 0; i < basevec.size(); i++) { 1473 name_ordering v; 1474 v.base = basevec[i]; 1475 v.derived = livevec[i]; 1476 temp.push_back(v); 1477 } 1478 std::sort(temp.begin(), temp.end(), name_ordering()); 1479 for (size_t i = 0; i < basevec.size(); i++) { 1480 basevec[i] = temp[i].base; 1481 livevec[i] = temp[i].derived; 1482 } 1483 } 1484 1485 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1486 // which make the relocations happening at this safepoint explicit. 1487 // 1488 // WARNING: Does not do any fixup to adjust users of the original live 1489 // values. That's the callers responsibility. 1490 static void 1491 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1492 PartiallyConstructedSafepointRecord &result) { 1493 auto liveset = result.liveset; 1494 auto PointerToBase = result.PointerToBase; 1495 1496 // Convert to vector for efficient cross referencing. 1497 SmallVector<Value *, 64> basevec, livevec; 1498 livevec.reserve(liveset.size()); 1499 basevec.reserve(liveset.size()); 1500 for (Value *L : liveset) { 1501 livevec.push_back(L); 1502 assert(PointerToBase.count(L)); 1503 Value *base = PointerToBase[L]; 1504 basevec.push_back(base); 1505 } 1506 assert(livevec.size() == basevec.size()); 1507 1508 // To make the output IR slightly more stable (for use in diffs), ensure a 1509 // fixed order of the values in the safepoint (by sorting the value name). 1510 // The order is otherwise meaningless. 1511 stablize_order(basevec, livevec); 1512 1513 // Do the actual rewriting and delete the old statepoint 1514 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1515 CS.getInstruction()->eraseFromParent(); 1516 } 1517 1518 // Helper function for the relocationViaAlloca. 1519 // It receives iterator to the statepoint gc relocates and emits store to the 1520 // assigned 1521 // location (via allocaMap) for the each one of them. 1522 // Add visited values into the visitedLiveValues set we will later use them 1523 // for sanity check. 1524 static void 1525 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1526 DenseMap<Value *, Value *> &AllocaMap, 1527 DenseSet<Value *> &VisitedLiveValues) { 1528 1529 for (User *U : GCRelocs) { 1530 if (!isa<IntrinsicInst>(U)) 1531 continue; 1532 1533 IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U); 1534 1535 // We only care about relocates 1536 if (RelocatedValue->getIntrinsicID() != 1537 Intrinsic::experimental_gc_relocate) { 1538 continue; 1539 } 1540 1541 GCRelocateOperands RelocateOperands(RelocatedValue); 1542 Value *OriginalValue = 1543 const_cast<Value *>(RelocateOperands.getDerivedPtr()); 1544 assert(AllocaMap.count(OriginalValue)); 1545 Value *Alloca = AllocaMap[OriginalValue]; 1546 1547 // Emit store into the related alloca 1548 // All gc_relocate are i8 addrspace(1)* typed, and it must be bitcasted to 1549 // the correct type according to alloca. 1550 assert(RelocatedValue->getNextNode() && "Should always have one since it's not a terminator"); 1551 IRBuilder<> Builder(RelocatedValue->getNextNode()); 1552 Value *CastedRelocatedValue = 1553 Builder.CreateBitCast(RelocatedValue, cast<AllocaInst>(Alloca)->getAllocatedType(), 1554 RelocatedValue->hasName() ? RelocatedValue->getName() + ".casted" : ""); 1555 1556 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1557 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1558 1559 #ifndef NDEBUG 1560 VisitedLiveValues.insert(OriginalValue); 1561 #endif 1562 } 1563 } 1564 1565 // Helper function for the "relocationViaAlloca". Similar to the 1566 // "insertRelocationStores" but works for rematerialized values. 1567 static void 1568 insertRematerializationStores( 1569 RematerializedValueMapTy RematerializedValues, 1570 DenseMap<Value *, Value *> &AllocaMap, 1571 DenseSet<Value *> &VisitedLiveValues) { 1572 1573 for (auto RematerializedValuePair: RematerializedValues) { 1574 Instruction *RematerializedValue = RematerializedValuePair.first; 1575 Value *OriginalValue = RematerializedValuePair.second; 1576 1577 assert(AllocaMap.count(OriginalValue) && 1578 "Can not find alloca for rematerialized value"); 1579 Value *Alloca = AllocaMap[OriginalValue]; 1580 1581 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1582 Store->insertAfter(RematerializedValue); 1583 1584 #ifndef NDEBUG 1585 VisitedLiveValues.insert(OriginalValue); 1586 #endif 1587 } 1588 } 1589 1590 /// do all the relocation update via allocas and mem2reg 1591 static void relocationViaAlloca( 1592 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1593 ArrayRef<struct PartiallyConstructedSafepointRecord> Records) { 1594 #ifndef NDEBUG 1595 // record initial number of (static) allocas; we'll check we have the same 1596 // number when we get done. 1597 int InitialAllocaNum = 0; 1598 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1599 I++) 1600 if (isa<AllocaInst>(*I)) 1601 InitialAllocaNum++; 1602 #endif 1603 1604 // TODO-PERF: change data structures, reserve 1605 DenseMap<Value *, Value *> AllocaMap; 1606 SmallVector<AllocaInst *, 200> PromotableAllocas; 1607 // Used later to chack that we have enough allocas to store all values 1608 std::size_t NumRematerializedValues = 0; 1609 PromotableAllocas.reserve(Live.size()); 1610 1611 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1612 // "PromotableAllocas" 1613 auto emitAllocaFor = [&](Value *LiveValue) { 1614 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1615 F.getEntryBlock().getFirstNonPHI()); 1616 AllocaMap[LiveValue] = Alloca; 1617 PromotableAllocas.push_back(Alloca); 1618 }; 1619 1620 // emit alloca for each live gc pointer 1621 for (unsigned i = 0; i < Live.size(); i++) { 1622 emitAllocaFor(Live[i]); 1623 } 1624 1625 // emit allocas for rematerialized values 1626 for (size_t i = 0; i < Records.size(); i++) { 1627 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1628 1629 for (auto RematerializedValuePair : Info.RematerializedValues) { 1630 Value *OriginalValue = RematerializedValuePair.second; 1631 if (AllocaMap.count(OriginalValue) != 0) 1632 continue; 1633 1634 emitAllocaFor(OriginalValue); 1635 ++NumRematerializedValues; 1636 } 1637 } 1638 1639 // The next two loops are part of the same conceptual operation. We need to 1640 // insert a store to the alloca after the original def and at each 1641 // redefinition. We need to insert a load before each use. These are split 1642 // into distinct loops for performance reasons. 1643 1644 // update gc pointer after each statepoint 1645 // either store a relocated value or null (if no relocated value found for 1646 // this gc pointer and it is not a gc_result) 1647 // this must happen before we update the statepoint with load of alloca 1648 // otherwise we lose the link between statepoint and old def 1649 for (size_t i = 0; i < Records.size(); i++) { 1650 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1651 Value *Statepoint = Info.StatepointToken; 1652 1653 // This will be used for consistency check 1654 DenseSet<Value *> VisitedLiveValues; 1655 1656 // Insert stores for normal statepoint gc relocates 1657 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1658 1659 // In case if it was invoke statepoint 1660 // we will insert stores for exceptional path gc relocates. 1661 if (isa<InvokeInst>(Statepoint)) { 1662 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1663 VisitedLiveValues); 1664 } 1665 1666 // Do similar thing with rematerialized values 1667 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1668 VisitedLiveValues); 1669 1670 if (ClobberNonLive) { 1671 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1672 // the gc.statepoint. This will turn some subtle GC problems into 1673 // slightly easier to debug SEGVs. Note that on large IR files with 1674 // lots of gc.statepoints this is extremely costly both memory and time 1675 // wise. 1676 SmallVector<AllocaInst *, 64> ToClobber; 1677 for (auto Pair : AllocaMap) { 1678 Value *Def = Pair.first; 1679 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1680 1681 // This value was relocated 1682 if (VisitedLiveValues.count(Def)) { 1683 continue; 1684 } 1685 ToClobber.push_back(Alloca); 1686 } 1687 1688 auto InsertClobbersAt = [&](Instruction *IP) { 1689 for (auto *AI : ToClobber) { 1690 auto AIType = cast<PointerType>(AI->getType()); 1691 auto PT = cast<PointerType>(AIType->getElementType()); 1692 Constant *CPN = ConstantPointerNull::get(PT); 1693 StoreInst *Store = new StoreInst(CPN, AI); 1694 Store->insertBefore(IP); 1695 } 1696 }; 1697 1698 // Insert the clobbering stores. These may get intermixed with the 1699 // gc.results and gc.relocates, but that's fine. 1700 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1701 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1702 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1703 } else { 1704 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1705 Next++; 1706 InsertClobbersAt(Next); 1707 } 1708 } 1709 } 1710 // update use with load allocas and add store for gc_relocated 1711 for (auto Pair : AllocaMap) { 1712 Value *Def = Pair.first; 1713 Value *Alloca = Pair.second; 1714 1715 // we pre-record the uses of allocas so that we dont have to worry about 1716 // later update 1717 // that change the user information. 1718 SmallVector<Instruction *, 20> Uses; 1719 // PERF: trade a linear scan for repeated reallocation 1720 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1721 for (User *U : Def->users()) { 1722 if (!isa<ConstantExpr>(U)) { 1723 // If the def has a ConstantExpr use, then the def is either a 1724 // ConstantExpr use itself or null. In either case 1725 // (recursively in the first, directly in the second), the oop 1726 // it is ultimately dependent on is null and this particular 1727 // use does not need to be fixed up. 1728 Uses.push_back(cast<Instruction>(U)); 1729 } 1730 } 1731 1732 std::sort(Uses.begin(), Uses.end()); 1733 auto Last = std::unique(Uses.begin(), Uses.end()); 1734 Uses.erase(Last, Uses.end()); 1735 1736 for (Instruction *Use : Uses) { 1737 if (isa<PHINode>(Use)) { 1738 PHINode *Phi = cast<PHINode>(Use); 1739 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1740 if (Def == Phi->getIncomingValue(i)) { 1741 LoadInst *Load = new LoadInst( 1742 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1743 Phi->setIncomingValue(i, Load); 1744 } 1745 } 1746 } else { 1747 LoadInst *Load = new LoadInst(Alloca, "", Use); 1748 Use->replaceUsesOfWith(Def, Load); 1749 } 1750 } 1751 1752 // emit store for the initial gc value 1753 // store must be inserted after load, otherwise store will be in alloca's 1754 // use list and an extra load will be inserted before it 1755 StoreInst *Store = new StoreInst(Def, Alloca); 1756 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1757 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1758 // InvokeInst is a TerminatorInst so the store need to be inserted 1759 // into its normal destination block. 1760 BasicBlock *NormalDest = Invoke->getNormalDest(); 1761 Store->insertBefore(NormalDest->getFirstNonPHI()); 1762 } else { 1763 assert(!Inst->isTerminator() && 1764 "The only TerminatorInst that can produce a value is " 1765 "InvokeInst which is handled above."); 1766 Store->insertAfter(Inst); 1767 } 1768 } else { 1769 assert(isa<Argument>(Def)); 1770 Store->insertAfter(cast<Instruction>(Alloca)); 1771 } 1772 } 1773 1774 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1775 "we must have the same allocas with lives"); 1776 if (!PromotableAllocas.empty()) { 1777 // apply mem2reg to promote alloca to SSA 1778 PromoteMemToReg(PromotableAllocas, DT); 1779 } 1780 1781 #ifndef NDEBUG 1782 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1783 I++) 1784 if (isa<AllocaInst>(*I)) 1785 InitialAllocaNum--; 1786 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1787 #endif 1788 } 1789 1790 /// Implement a unique function which doesn't require we sort the input 1791 /// vector. Doing so has the effect of changing the output of a couple of 1792 /// tests in ways which make them less useful in testing fused safepoints. 1793 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1794 SmallSet<T, 8> Seen; 1795 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1796 return !Seen.insert(V).second; 1797 }), Vec.end()); 1798 } 1799 1800 /// Insert holders so that each Value is obviously live through the entire 1801 /// lifetime of the call. 1802 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1803 SmallVectorImpl<CallInst *> &Holders) { 1804 if (Values.empty()) 1805 // No values to hold live, might as well not insert the empty holder 1806 return; 1807 1808 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1809 // Use a dummy vararg function to actually hold the values live 1810 Function *Func = cast<Function>(M->getOrInsertFunction( 1811 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1812 if (CS.isCall()) { 1813 // For call safepoints insert dummy calls right after safepoint 1814 BasicBlock::iterator Next(CS.getInstruction()); 1815 Next++; 1816 Holders.push_back(CallInst::Create(Func, Values, "", Next)); 1817 return; 1818 } 1819 // For invoke safepooints insert dummy calls both in normal and 1820 // exceptional destination blocks 1821 auto *II = cast<InvokeInst>(CS.getInstruction()); 1822 Holders.push_back(CallInst::Create( 1823 Func, Values, "", II->getNormalDest()->getFirstInsertionPt())); 1824 Holders.push_back(CallInst::Create( 1825 Func, Values, "", II->getUnwindDest()->getFirstInsertionPt())); 1826 } 1827 1828 static void findLiveReferences( 1829 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1830 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1831 GCPtrLivenessData OriginalLivenessData; 1832 computeLiveInValues(DT, F, OriginalLivenessData); 1833 for (size_t i = 0; i < records.size(); i++) { 1834 struct PartiallyConstructedSafepointRecord &info = records[i]; 1835 const CallSite &CS = toUpdate[i]; 1836 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1837 } 1838 } 1839 1840 /// Remove any vector of pointers from the liveset by scalarizing them over the 1841 /// statepoint instruction. Adds the scalarized pieces to the liveset. It 1842 /// would be preferable to include the vector in the statepoint itself, but 1843 /// the lowering code currently does not handle that. Extending it would be 1844 /// slightly non-trivial since it requires a format change. Given how rare 1845 /// such cases are (for the moment?) scalarizing is an acceptable compromise. 1846 static void splitVectorValues(Instruction *StatepointInst, 1847 StatepointLiveSetTy &LiveSet, 1848 DenseMap<Value *, Value *>& PointerToBase, 1849 DominatorTree &DT) { 1850 SmallVector<Value *, 16> ToSplit; 1851 for (Value *V : LiveSet) 1852 if (isa<VectorType>(V->getType())) 1853 ToSplit.push_back(V); 1854 1855 if (ToSplit.empty()) 1856 return; 1857 1858 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1859 1860 Function &F = *(StatepointInst->getParent()->getParent()); 1861 1862 DenseMap<Value *, AllocaInst *> AllocaMap; 1863 // First is normal return, second is exceptional return (invoke only) 1864 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1865 for (Value *V : ToSplit) { 1866 AllocaInst *Alloca = 1867 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1868 AllocaMap[V] = Alloca; 1869 1870 VectorType *VT = cast<VectorType>(V->getType()); 1871 IRBuilder<> Builder(StatepointInst); 1872 SmallVector<Value *, 16> Elements; 1873 for (unsigned i = 0; i < VT->getNumElements(); i++) 1874 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1875 ElementMapping[V] = Elements; 1876 1877 auto InsertVectorReform = [&](Instruction *IP) { 1878 Builder.SetInsertPoint(IP); 1879 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1880 Value *ResultVec = UndefValue::get(VT); 1881 for (unsigned i = 0; i < VT->getNumElements(); i++) 1882 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1883 Builder.getInt32(i)); 1884 return ResultVec; 1885 }; 1886 1887 if (isa<CallInst>(StatepointInst)) { 1888 BasicBlock::iterator Next(StatepointInst); 1889 Next++; 1890 Instruction *IP = &*(Next); 1891 Replacements[V].first = InsertVectorReform(IP); 1892 Replacements[V].second = nullptr; 1893 } else { 1894 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 1895 // We've already normalized - check that we don't have shared destination 1896 // blocks 1897 BasicBlock *NormalDest = Invoke->getNormalDest(); 1898 assert(!isa<PHINode>(NormalDest->begin())); 1899 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 1900 assert(!isa<PHINode>(UnwindDest->begin())); 1901 // Insert insert element sequences in both successors 1902 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 1903 Replacements[V].first = InsertVectorReform(IP); 1904 IP = &*(UnwindDest->getFirstInsertionPt()); 1905 Replacements[V].second = InsertVectorReform(IP); 1906 } 1907 } 1908 1909 for (Value *V : ToSplit) { 1910 AllocaInst *Alloca = AllocaMap[V]; 1911 1912 // Capture all users before we start mutating use lists 1913 SmallVector<Instruction *, 16> Users; 1914 for (User *U : V->users()) 1915 Users.push_back(cast<Instruction>(U)); 1916 1917 for (Instruction *I : Users) { 1918 if (auto Phi = dyn_cast<PHINode>(I)) { 1919 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 1920 if (V == Phi->getIncomingValue(i)) { 1921 LoadInst *Load = new LoadInst( 1922 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1923 Phi->setIncomingValue(i, Load); 1924 } 1925 } else { 1926 LoadInst *Load = new LoadInst(Alloca, "", I); 1927 I->replaceUsesOfWith(V, Load); 1928 } 1929 } 1930 1931 // Store the original value and the replacement value into the alloca 1932 StoreInst *Store = new StoreInst(V, Alloca); 1933 if (auto I = dyn_cast<Instruction>(V)) 1934 Store->insertAfter(I); 1935 else 1936 Store->insertAfter(Alloca); 1937 1938 // Normal return for invoke, or call return 1939 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 1940 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1941 // Unwind return for invoke only 1942 Replacement = cast_or_null<Instruction>(Replacements[V].second); 1943 if (Replacement) 1944 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1945 } 1946 1947 // apply mem2reg to promote alloca to SSA 1948 SmallVector<AllocaInst *, 16> Allocas; 1949 for (Value *V : ToSplit) 1950 Allocas.push_back(AllocaMap[V]); 1951 PromoteMemToReg(Allocas, DT); 1952 1953 // Update our tracking of live pointers and base mappings to account for the 1954 // changes we just made. 1955 for (Value *V : ToSplit) { 1956 auto &Elements = ElementMapping[V]; 1957 1958 LiveSet.erase(V); 1959 LiveSet.insert(Elements.begin(), Elements.end()); 1960 // We need to update the base mapping as well. 1961 assert(PointerToBase.count(V)); 1962 Value *OldBase = PointerToBase[V]; 1963 auto &BaseElements = ElementMapping[OldBase]; 1964 PointerToBase.erase(V); 1965 assert(Elements.size() == BaseElements.size()); 1966 for (unsigned i = 0; i < Elements.size(); i++) { 1967 Value *Elem = Elements[i]; 1968 PointerToBase[Elem] = BaseElements[i]; 1969 } 1970 } 1971 } 1972 1973 // Helper function for the "rematerializeLiveValues". It walks use chain 1974 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1975 // values are visited (currently it is GEP's and casts). Returns true if it 1976 // successfully reached "BaseValue" and false otherwise. 1977 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1978 // recorded. 1979 static bool findRematerializableChainToBasePointer( 1980 SmallVectorImpl<Instruction*> &ChainToBase, 1981 Value *CurrentValue, Value *BaseValue) { 1982 1983 // We have found a base value 1984 if (CurrentValue == BaseValue) { 1985 return true; 1986 } 1987 1988 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1989 ChainToBase.push_back(GEP); 1990 return findRematerializableChainToBasePointer(ChainToBase, 1991 GEP->getPointerOperand(), 1992 BaseValue); 1993 } 1994 1995 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1996 Value *Def = CI->stripPointerCasts(); 1997 1998 // This two checks are basically similar. First one is here for the 1999 // consistency with findBasePointers logic. 2000 assert(!isa<CastInst>(Def) && "not a pointer cast found"); 2001 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2002 return false; 2003 2004 ChainToBase.push_back(CI); 2005 return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue); 2006 } 2007 2008 // Not supported instruction in the chain 2009 return false; 2010 } 2011 2012 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2013 // chain we are going to rematerialize. 2014 static unsigned 2015 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 2016 TargetTransformInfo &TTI) { 2017 unsigned Cost = 0; 2018 2019 for (Instruction *Instr : Chain) { 2020 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2021 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2022 "non noop cast is found during rematerialization"); 2023 2024 Type *SrcTy = CI->getOperand(0)->getType(); 2025 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 2026 2027 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2028 // Cost of the address calculation 2029 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); 2030 Cost += TTI.getAddressComputationCost(ValTy); 2031 2032 // And cost of the GEP itself 2033 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2034 // allowed for the external usage) 2035 if (!GEP->hasAllConstantIndices()) 2036 Cost += 2; 2037 2038 } else { 2039 llvm_unreachable("unsupported instruciton type during rematerialization"); 2040 } 2041 } 2042 2043 return Cost; 2044 } 2045 2046 // From the statepoint liveset pick values that are cheaper to recompute then to 2047 // relocate. Remove this values from the liveset, rematerialize them after 2048 // statepoint and record them in "Info" structure. Note that similar to 2049 // relocated values we don't do any user adjustments here. 2050 static void rematerializeLiveValues(CallSite CS, 2051 PartiallyConstructedSafepointRecord &Info, 2052 TargetTransformInfo &TTI) { 2053 const unsigned int ChainLengthThreshold = 10; 2054 2055 // Record values we are going to delete from this statepoint live set. 2056 // We can not di this in following loop due to iterator invalidation. 2057 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2058 2059 for (Value *LiveValue: Info.liveset) { 2060 // For each live pointer find it's defining chain 2061 SmallVector<Instruction *, 3> ChainToBase; 2062 assert(Info.PointerToBase.count(LiveValue)); 2063 bool FoundChain = 2064 findRematerializableChainToBasePointer(ChainToBase, 2065 LiveValue, 2066 Info.PointerToBase[LiveValue]); 2067 // Nothing to do, or chain is too long 2068 if (!FoundChain || 2069 ChainToBase.size() == 0 || 2070 ChainToBase.size() > ChainLengthThreshold) 2071 continue; 2072 2073 // Compute cost of this chain 2074 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2075 // TODO: We can also account for cases when we will be able to remove some 2076 // of the rematerialized values by later optimization passes. I.e if 2077 // we rematerialized several intersecting chains. Or if original values 2078 // don't have any uses besides this statepoint. 2079 2080 // For invokes we need to rematerialize each chain twice - for normal and 2081 // for unwind basic blocks. Model this by multiplying cost by two. 2082 if (CS.isInvoke()) { 2083 Cost *= 2; 2084 } 2085 // If it's too expensive - skip it 2086 if (Cost >= RematerializationThreshold) 2087 continue; 2088 2089 // Remove value from the live set 2090 LiveValuesToBeDeleted.push_back(LiveValue); 2091 2092 // Clone instructions and record them inside "Info" structure 2093 2094 // Walk backwards to visit top-most instructions first 2095 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2096 2097 // Utility function which clones all instructions from "ChainToBase" 2098 // and inserts them before "InsertBefore". Returns rematerialized value 2099 // which should be used after statepoint. 2100 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 2101 Instruction *LastClonedValue = nullptr; 2102 Instruction *LastValue = nullptr; 2103 for (Instruction *Instr: ChainToBase) { 2104 // Only GEP's and casts are suported as we need to be careful to not 2105 // introduce any new uses of pointers not in the liveset. 2106 // Note that it's fine to introduce new uses of pointers which were 2107 // otherwise not used after this statepoint. 2108 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2109 2110 Instruction *ClonedValue = Instr->clone(); 2111 ClonedValue->insertBefore(InsertBefore); 2112 ClonedValue->setName(Instr->getName() + ".remat"); 2113 2114 // If it is not first instruction in the chain then it uses previously 2115 // cloned value. We should update it to use cloned value. 2116 if (LastClonedValue) { 2117 assert(LastValue); 2118 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2119 #ifndef NDEBUG 2120 // Assert that cloned instruction does not use any instructions from 2121 // this chain other than LastClonedValue 2122 for (auto OpValue : ClonedValue->operand_values()) { 2123 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2124 ChainToBase.end() && 2125 "incorrect use in rematerialization chain"); 2126 } 2127 #endif 2128 } 2129 2130 LastClonedValue = ClonedValue; 2131 LastValue = Instr; 2132 } 2133 assert(LastClonedValue); 2134 return LastClonedValue; 2135 }; 2136 2137 // Different cases for calls and invokes. For invokes we need to clone 2138 // instructions both on normal and unwind path. 2139 if (CS.isCall()) { 2140 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2141 assert(InsertBefore); 2142 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2143 Info.RematerializedValues[RematerializedValue] = LiveValue; 2144 } else { 2145 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2146 2147 Instruction *NormalInsertBefore = 2148 Invoke->getNormalDest()->getFirstInsertionPt(); 2149 Instruction *UnwindInsertBefore = 2150 Invoke->getUnwindDest()->getFirstInsertionPt(); 2151 2152 Instruction *NormalRematerializedValue = 2153 rematerializeChain(NormalInsertBefore); 2154 Instruction *UnwindRematerializedValue = 2155 rematerializeChain(UnwindInsertBefore); 2156 2157 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2158 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2159 } 2160 } 2161 2162 // Remove rematerializaed values from the live set 2163 for (auto LiveValue: LiveValuesToBeDeleted) { 2164 Info.liveset.erase(LiveValue); 2165 } 2166 } 2167 2168 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 2169 SmallVectorImpl<CallSite> &toUpdate) { 2170 #ifndef NDEBUG 2171 // sanity check the input 2172 std::set<CallSite> uniqued; 2173 uniqued.insert(toUpdate.begin(), toUpdate.end()); 2174 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 2175 2176 for (size_t i = 0; i < toUpdate.size(); i++) { 2177 CallSite &CS = toUpdate[i]; 2178 assert(CS.getInstruction()->getParent()->getParent() == &F); 2179 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 2180 } 2181 #endif 2182 2183 // When inserting gc.relocates for invokes, we need to be able to insert at 2184 // the top of the successor blocks. See the comment on 2185 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2186 // may restructure the CFG. 2187 for (CallSite CS : toUpdate) { 2188 if (!CS.isInvoke()) 2189 continue; 2190 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 2191 normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(), 2192 DT); 2193 normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(), 2194 DT); 2195 } 2196 2197 // A list of dummy calls added to the IR to keep various values obviously 2198 // live in the IR. We'll remove all of these when done. 2199 SmallVector<CallInst *, 64> holders; 2200 2201 // Insert a dummy call with all of the arguments to the vm_state we'll need 2202 // for the actual safepoint insertion. This ensures reference arguments in 2203 // the deopt argument list are considered live through the safepoint (and 2204 // thus makes sure they get relocated.) 2205 for (size_t i = 0; i < toUpdate.size(); i++) { 2206 CallSite &CS = toUpdate[i]; 2207 Statepoint StatepointCS(CS); 2208 2209 SmallVector<Value *, 64> DeoptValues; 2210 for (Use &U : StatepointCS.vm_state_args()) { 2211 Value *Arg = cast<Value>(&U); 2212 assert(!isUnhandledGCPointerType(Arg->getType()) && 2213 "support for FCA unimplemented"); 2214 if (isHandledGCPointerType(Arg->getType())) 2215 DeoptValues.push_back(Arg); 2216 } 2217 insertUseHolderAfter(CS, DeoptValues, holders); 2218 } 2219 2220 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 2221 records.reserve(toUpdate.size()); 2222 for (size_t i = 0; i < toUpdate.size(); i++) { 2223 struct PartiallyConstructedSafepointRecord info; 2224 records.push_back(info); 2225 } 2226 assert(records.size() == toUpdate.size()); 2227 2228 // A) Identify all gc pointers which are statically live at the given call 2229 // site. 2230 findLiveReferences(F, DT, P, toUpdate, records); 2231 2232 // B) Find the base pointers for each live pointer 2233 /* scope for caching */ { 2234 // Cache the 'defining value' relation used in the computation and 2235 // insertion of base phis and selects. This ensures that we don't insert 2236 // large numbers of duplicate base_phis. 2237 DefiningValueMapTy DVCache; 2238 2239 for (size_t i = 0; i < records.size(); i++) { 2240 struct PartiallyConstructedSafepointRecord &info = records[i]; 2241 CallSite &CS = toUpdate[i]; 2242 findBasePointers(DT, DVCache, CS, info); 2243 } 2244 } // end of cache scope 2245 2246 // The base phi insertion logic (for any safepoint) may have inserted new 2247 // instructions which are now live at some safepoint. The simplest such 2248 // example is: 2249 // loop: 2250 // phi a <-- will be a new base_phi here 2251 // safepoint 1 <-- that needs to be live here 2252 // gep a + 1 2253 // safepoint 2 2254 // br loop 2255 // We insert some dummy calls after each safepoint to definitely hold live 2256 // the base pointers which were identified for that safepoint. We'll then 2257 // ask liveness for _every_ base inserted to see what is now live. Then we 2258 // remove the dummy calls. 2259 holders.reserve(holders.size() + records.size()); 2260 for (size_t i = 0; i < records.size(); i++) { 2261 struct PartiallyConstructedSafepointRecord &info = records[i]; 2262 CallSite &CS = toUpdate[i]; 2263 2264 SmallVector<Value *, 128> Bases; 2265 for (auto Pair : info.PointerToBase) { 2266 Bases.push_back(Pair.second); 2267 } 2268 insertUseHolderAfter(CS, Bases, holders); 2269 } 2270 2271 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2272 // need to rerun liveness. We may *also* have inserted new defs, but that's 2273 // not the key issue. 2274 recomputeLiveInValues(F, DT, P, toUpdate, records); 2275 2276 if (PrintBasePointers) { 2277 for (size_t i = 0; i < records.size(); i++) { 2278 struct PartiallyConstructedSafepointRecord &info = records[i]; 2279 errs() << "Base Pairs: (w/Relocation)\n"; 2280 for (auto Pair : info.PointerToBase) { 2281 errs() << " derived %" << Pair.first->getName() << " base %" 2282 << Pair.second->getName() << "\n"; 2283 } 2284 } 2285 } 2286 for (size_t i = 0; i < holders.size(); i++) { 2287 holders[i]->eraseFromParent(); 2288 holders[i] = nullptr; 2289 } 2290 holders.clear(); 2291 2292 // Do a limited scalarization of any live at safepoint vector values which 2293 // contain pointers. This enables this pass to run after vectorization at 2294 // the cost of some possible performance loss. TODO: it would be nice to 2295 // natively support vectors all the way through the backend so we don't need 2296 // to scalarize here. 2297 for (size_t i = 0; i < records.size(); i++) { 2298 struct PartiallyConstructedSafepointRecord &info = records[i]; 2299 Instruction *statepoint = toUpdate[i].getInstruction(); 2300 splitVectorValues(cast<Instruction>(statepoint), info.liveset, 2301 info.PointerToBase, DT); 2302 } 2303 2304 // In order to reduce live set of statepoint we might choose to rematerialize 2305 // some values instead of relocating them. This is purely an optimization and 2306 // does not influence correctness. 2307 TargetTransformInfo &TTI = 2308 P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2309 2310 for (size_t i = 0; i < records.size(); i++) { 2311 struct PartiallyConstructedSafepointRecord &info = records[i]; 2312 CallSite &CS = toUpdate[i]; 2313 2314 rematerializeLiveValues(CS, info, TTI); 2315 } 2316 2317 // Now run through and replace the existing statepoints with new ones with 2318 // the live variables listed. We do not yet update uses of the values being 2319 // relocated. We have references to live variables that need to 2320 // survive to the last iteration of this loop. (By construction, the 2321 // previous statepoint can not be a live variable, thus we can and remove 2322 // the old statepoint calls as we go.) 2323 for (size_t i = 0; i < records.size(); i++) { 2324 struct PartiallyConstructedSafepointRecord &info = records[i]; 2325 CallSite &CS = toUpdate[i]; 2326 makeStatepointExplicit(DT, CS, P, info); 2327 } 2328 toUpdate.clear(); // prevent accident use of invalid CallSites 2329 2330 // Do all the fixups of the original live variables to their relocated selves 2331 SmallVector<Value *, 128> live; 2332 for (size_t i = 0; i < records.size(); i++) { 2333 struct PartiallyConstructedSafepointRecord &info = records[i]; 2334 // We can't simply save the live set from the original insertion. One of 2335 // the live values might be the result of a call which needs a safepoint. 2336 // That Value* no longer exists and we need to use the new gc_result. 2337 // Thankfully, the liveset is embedded in the statepoint (and updated), so 2338 // we just grab that. 2339 Statepoint statepoint(info.StatepointToken); 2340 live.insert(live.end(), statepoint.gc_args_begin(), 2341 statepoint.gc_args_end()); 2342 #ifndef NDEBUG 2343 // Do some basic sanity checks on our liveness results before performing 2344 // relocation. Relocation can and will turn mistakes in liveness results 2345 // into non-sensical code which is must harder to debug. 2346 // TODO: It would be nice to test consistency as well 2347 assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) && 2348 "statepoint must be reachable or liveness is meaningless"); 2349 for (Value *V : statepoint.gc_args()) { 2350 if (!isa<Instruction>(V)) 2351 // Non-instruction values trivial dominate all possible uses 2352 continue; 2353 auto LiveInst = cast<Instruction>(V); 2354 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2355 "unreachable values should never be live"); 2356 assert(DT.dominates(LiveInst, info.StatepointToken) && 2357 "basic SSA liveness expectation violated by liveness analysis"); 2358 } 2359 #endif 2360 } 2361 unique_unsorted(live); 2362 2363 #ifndef NDEBUG 2364 // sanity check 2365 for (auto ptr : live) { 2366 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 2367 } 2368 #endif 2369 2370 relocationViaAlloca(F, DT, live, records); 2371 return !records.empty(); 2372 } 2373 2374 // Handles both return values and arguments for Functions and CallSites. 2375 template <typename AttrHolder> 2376 static void RemoveDerefAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2377 unsigned Index) { 2378 AttrBuilder R; 2379 if (AH.getDereferenceableBytes(Index)) 2380 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2381 AH.getDereferenceableBytes(Index))); 2382 if (AH.getDereferenceableOrNullBytes(Index)) 2383 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2384 AH.getDereferenceableOrNullBytes(Index))); 2385 2386 if (!R.empty()) 2387 AH.setAttributes(AH.getAttributes().removeAttributes( 2388 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2389 } 2390 2391 void 2392 RewriteStatepointsForGC::stripDereferenceabilityInfoFromPrototype(Function &F) { 2393 LLVMContext &Ctx = F.getContext(); 2394 2395 for (Argument &A : F.args()) 2396 if (isa<PointerType>(A.getType())) 2397 RemoveDerefAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2398 2399 if (isa<PointerType>(F.getReturnType())) 2400 RemoveDerefAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2401 } 2402 2403 void RewriteStatepointsForGC::stripDereferenceabilityInfoFromBody(Function &F) { 2404 if (F.empty()) 2405 return; 2406 2407 LLVMContext &Ctx = F.getContext(); 2408 MDBuilder Builder(Ctx); 2409 2410 for (Instruction &I : instructions(F)) { 2411 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2412 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2413 bool IsImmutableTBAA = 2414 MD->getNumOperands() == 4 && 2415 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2416 2417 if (!IsImmutableTBAA) 2418 continue; // no work to do, MD_tbaa is already marked mutable 2419 2420 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2421 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2422 uint64_t Offset = 2423 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2424 2425 MDNode *MutableTBAA = 2426 Builder.createTBAAStructTagNode(Base, Access, Offset); 2427 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2428 } 2429 2430 if (CallSite CS = CallSite(&I)) { 2431 for (int i = 0, e = CS.arg_size(); i != e; i++) 2432 if (isa<PointerType>(CS.getArgument(i)->getType())) 2433 RemoveDerefAttrAtIndex(Ctx, CS, i + 1); 2434 if (isa<PointerType>(CS.getType())) 2435 RemoveDerefAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2436 } 2437 } 2438 } 2439 2440 /// Returns true if this function should be rewritten by this pass. The main 2441 /// point of this function is as an extension point for custom logic. 2442 static bool shouldRewriteStatepointsIn(Function &F) { 2443 // TODO: This should check the GCStrategy 2444 if (F.hasGC()) { 2445 const char *FunctionGCName = F.getGC(); 2446 const StringRef StatepointExampleName("statepoint-example"); 2447 const StringRef CoreCLRName("coreclr"); 2448 return (StatepointExampleName == FunctionGCName) || 2449 (CoreCLRName == FunctionGCName); 2450 } else 2451 return false; 2452 } 2453 2454 void RewriteStatepointsForGC::stripDereferenceabilityInfo(Module &M) { 2455 #ifndef NDEBUG 2456 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2457 "precondition!"); 2458 #endif 2459 2460 for (Function &F : M) 2461 stripDereferenceabilityInfoFromPrototype(F); 2462 2463 for (Function &F : M) 2464 stripDereferenceabilityInfoFromBody(F); 2465 } 2466 2467 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2468 // Nothing to do for declarations. 2469 if (F.isDeclaration() || F.empty()) 2470 return false; 2471 2472 // Policy choice says not to rewrite - the most common reason is that we're 2473 // compiling code without a GCStrategy. 2474 if (!shouldRewriteStatepointsIn(F)) 2475 return false; 2476 2477 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2478 2479 // Gather all the statepoints which need rewritten. Be careful to only 2480 // consider those in reachable code since we need to ask dominance queries 2481 // when rewriting. We'll delete the unreachable ones in a moment. 2482 SmallVector<CallSite, 64> ParsePointNeeded; 2483 bool HasUnreachableStatepoint = false; 2484 for (Instruction &I : instructions(F)) { 2485 // TODO: only the ones with the flag set! 2486 if (isStatepoint(I)) { 2487 if (DT.isReachableFromEntry(I.getParent())) 2488 ParsePointNeeded.push_back(CallSite(&I)); 2489 else 2490 HasUnreachableStatepoint = true; 2491 } 2492 } 2493 2494 bool MadeChange = false; 2495 2496 // Delete any unreachable statepoints so that we don't have unrewritten 2497 // statepoints surviving this pass. This makes testing easier and the 2498 // resulting IR less confusing to human readers. Rather than be fancy, we 2499 // just reuse a utility function which removes the unreachable blocks. 2500 if (HasUnreachableStatepoint) 2501 MadeChange |= removeUnreachableBlocks(F); 2502 2503 // Return early if no work to do. 2504 if (ParsePointNeeded.empty()) 2505 return MadeChange; 2506 2507 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2508 // These are created by LCSSA. They have the effect of increasing the size 2509 // of liveness sets for no good reason. It may be harder to do this post 2510 // insertion since relocations and base phis can confuse things. 2511 for (BasicBlock &BB : F) 2512 if (BB.getUniquePredecessor()) { 2513 MadeChange = true; 2514 FoldSingleEntryPHINodes(&BB); 2515 } 2516 2517 // Before we start introducing relocations, we want to tweak the IR a bit to 2518 // avoid unfortunate code generation effects. The main example is that we 2519 // want to try to make sure the comparison feeding a branch is after any 2520 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2521 // values feeding a branch after relocation. This is semantically correct, 2522 // but results in extra register pressure since both the pre-relocation and 2523 // post-relocation copies must be available in registers. For code without 2524 // relocations this is handled elsewhere, but teaching the scheduler to 2525 // reverse the transform we're about to do would be slightly complex. 2526 // Note: This may extend the live range of the inputs to the icmp and thus 2527 // increase the liveset of any statepoint we move over. This is profitable 2528 // as long as all statepoints are in rare blocks. If we had in-register 2529 // lowering for live values this would be a much safer transform. 2530 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2531 if (auto *BI = dyn_cast<BranchInst>(TI)) 2532 if (BI->isConditional()) 2533 return dyn_cast<Instruction>(BI->getCondition()); 2534 // TODO: Extend this to handle switches 2535 return nullptr; 2536 }; 2537 for (BasicBlock &BB : F) { 2538 TerminatorInst *TI = BB.getTerminator(); 2539 if (auto *Cond = getConditionInst(TI)) 2540 // TODO: Handle more than just ICmps here. We should be able to move 2541 // most instructions without side effects or memory access. 2542 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2543 MadeChange = true; 2544 Cond->moveBefore(TI); 2545 } 2546 } 2547 2548 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); 2549 return MadeChange; 2550 } 2551 2552 // liveness computation via standard dataflow 2553 // ------------------------------------------------------------------- 2554 2555 // TODO: Consider using bitvectors for liveness, the set of potentially 2556 // interesting values should be small and easy to pre-compute. 2557 2558 /// Compute the live-in set for the location rbegin starting from 2559 /// the live-out set of the basic block 2560 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2561 BasicBlock::reverse_iterator rend, 2562 DenseSet<Value *> &LiveTmp) { 2563 2564 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2565 Instruction *I = &*ritr; 2566 2567 // KILL/Def - Remove this definition from LiveIn 2568 LiveTmp.erase(I); 2569 2570 // Don't consider *uses* in PHI nodes, we handle their contribution to 2571 // predecessor blocks when we seed the LiveOut sets 2572 if (isa<PHINode>(I)) 2573 continue; 2574 2575 // USE - Add to the LiveIn set for this instruction 2576 for (Value *V : I->operands()) { 2577 assert(!isUnhandledGCPointerType(V->getType()) && 2578 "support for FCA unimplemented"); 2579 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2580 // The choice to exclude all things constant here is slightly subtle. 2581 // There are two independent reasons: 2582 // - We assume that things which are constant (from LLVM's definition) 2583 // do not move at runtime. For example, the address of a global 2584 // variable is fixed, even though it's contents may not be. 2585 // - Second, we can't disallow arbitrary inttoptr constants even 2586 // if the language frontend does. Optimization passes are free to 2587 // locally exploit facts without respect to global reachability. This 2588 // can create sections of code which are dynamically unreachable and 2589 // contain just about anything. (see constants.ll in tests) 2590 LiveTmp.insert(V); 2591 } 2592 } 2593 } 2594 } 2595 2596 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2597 2598 for (BasicBlock *Succ : successors(BB)) { 2599 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2600 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2601 PHINode *Phi = cast<PHINode>(&*I); 2602 Value *V = Phi->getIncomingValueForBlock(BB); 2603 assert(!isUnhandledGCPointerType(V->getType()) && 2604 "support for FCA unimplemented"); 2605 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2606 LiveTmp.insert(V); 2607 } 2608 } 2609 } 2610 } 2611 2612 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2613 DenseSet<Value *> KillSet; 2614 for (Instruction &I : *BB) 2615 if (isHandledGCPointerType(I.getType())) 2616 KillSet.insert(&I); 2617 return KillSet; 2618 } 2619 2620 #ifndef NDEBUG 2621 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2622 /// sanity check for the liveness computation. 2623 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2624 TerminatorInst *TI, bool TermOkay = false) { 2625 for (Value *V : Live) { 2626 if (auto *I = dyn_cast<Instruction>(V)) { 2627 // The terminator can be a member of the LiveOut set. LLVM's definition 2628 // of instruction dominance states that V does not dominate itself. As 2629 // such, we need to special case this to allow it. 2630 if (TermOkay && TI == I) 2631 continue; 2632 assert(DT.dominates(I, TI) && 2633 "basic SSA liveness expectation violated by liveness analysis"); 2634 } 2635 } 2636 } 2637 2638 /// Check that all the liveness sets used during the computation of liveness 2639 /// obey basic SSA properties. This is useful for finding cases where we miss 2640 /// a def. 2641 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2642 BasicBlock &BB) { 2643 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2644 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2645 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2646 } 2647 #endif 2648 2649 static void computeLiveInValues(DominatorTree &DT, Function &F, 2650 GCPtrLivenessData &Data) { 2651 2652 SmallSetVector<BasicBlock *, 200> Worklist; 2653 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2654 // We use a SetVector so that we don't have duplicates in the worklist. 2655 Worklist.insert(pred_begin(BB), pred_end(BB)); 2656 }; 2657 auto NextItem = [&]() { 2658 BasicBlock *BB = Worklist.back(); 2659 Worklist.pop_back(); 2660 return BB; 2661 }; 2662 2663 // Seed the liveness for each individual block 2664 for (BasicBlock &BB : F) { 2665 Data.KillSet[&BB] = computeKillSet(&BB); 2666 Data.LiveSet[&BB].clear(); 2667 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2668 2669 #ifndef NDEBUG 2670 for (Value *Kill : Data.KillSet[&BB]) 2671 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2672 #endif 2673 2674 Data.LiveOut[&BB] = DenseSet<Value *>(); 2675 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2676 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2677 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2678 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2679 if (!Data.LiveIn[&BB].empty()) 2680 AddPredsToWorklist(&BB); 2681 } 2682 2683 // Propagate that liveness until stable 2684 while (!Worklist.empty()) { 2685 BasicBlock *BB = NextItem(); 2686 2687 // Compute our new liveout set, then exit early if it hasn't changed 2688 // despite the contribution of our successor. 2689 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2690 const auto OldLiveOutSize = LiveOut.size(); 2691 for (BasicBlock *Succ : successors(BB)) { 2692 assert(Data.LiveIn.count(Succ)); 2693 set_union(LiveOut, Data.LiveIn[Succ]); 2694 } 2695 // assert OutLiveOut is a subset of LiveOut 2696 if (OldLiveOutSize == LiveOut.size()) { 2697 // If the sets are the same size, then we didn't actually add anything 2698 // when unioning our successors LiveIn Thus, the LiveIn of this block 2699 // hasn't changed. 2700 continue; 2701 } 2702 Data.LiveOut[BB] = LiveOut; 2703 2704 // Apply the effects of this basic block 2705 DenseSet<Value *> LiveTmp = LiveOut; 2706 set_union(LiveTmp, Data.LiveSet[BB]); 2707 set_subtract(LiveTmp, Data.KillSet[BB]); 2708 2709 assert(Data.LiveIn.count(BB)); 2710 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2711 // assert: OldLiveIn is a subset of LiveTmp 2712 if (OldLiveIn.size() != LiveTmp.size()) { 2713 Data.LiveIn[BB] = LiveTmp; 2714 AddPredsToWorklist(BB); 2715 } 2716 } // while( !worklist.empty() ) 2717 2718 #ifndef NDEBUG 2719 // Sanity check our output against SSA properties. This helps catch any 2720 // missing kills during the above iteration. 2721 for (BasicBlock &BB : F) { 2722 checkBasicSSA(DT, Data, BB); 2723 } 2724 #endif 2725 } 2726 2727 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2728 StatepointLiveSetTy &Out) { 2729 2730 BasicBlock *BB = Inst->getParent(); 2731 2732 // Note: The copy is intentional and required 2733 assert(Data.LiveOut.count(BB)); 2734 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2735 2736 // We want to handle the statepoint itself oddly. It's 2737 // call result is not live (normal), nor are it's arguments 2738 // (unless they're used again later). This adjustment is 2739 // specifically what we need to relocate 2740 BasicBlock::reverse_iterator rend(Inst); 2741 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2742 LiveOut.erase(Inst); 2743 Out.insert(LiveOut.begin(), LiveOut.end()); 2744 } 2745 2746 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2747 const CallSite &CS, 2748 PartiallyConstructedSafepointRecord &Info) { 2749 Instruction *Inst = CS.getInstruction(); 2750 StatepointLiveSetTy Updated; 2751 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2752 2753 #ifndef NDEBUG 2754 DenseSet<Value *> Bases; 2755 for (auto KVPair : Info.PointerToBase) { 2756 Bases.insert(KVPair.second); 2757 } 2758 #endif 2759 // We may have base pointers which are now live that weren't before. We need 2760 // to update the PointerToBase structure to reflect this. 2761 for (auto V : Updated) 2762 if (!Info.PointerToBase.count(V)) { 2763 assert(Bases.count(V) && "can't find base for unexpected live value"); 2764 Info.PointerToBase[V] = V; 2765 continue; 2766 } 2767 2768 #ifndef NDEBUG 2769 for (auto V : Updated) { 2770 assert(Info.PointerToBase.count(V) && 2771 "must be able to find base for live value"); 2772 } 2773 #endif 2774 2775 // Remove any stale base mappings - this can happen since our liveness is 2776 // more precise then the one inherent in the base pointer analysis 2777 DenseSet<Value *> ToErase; 2778 for (auto KVPair : Info.PointerToBase) 2779 if (!Updated.count(KVPair.first)) 2780 ToErase.insert(KVPair.first); 2781 for (auto V : ToErase) 2782 Info.PointerToBase.erase(V); 2783 2784 #ifndef NDEBUG 2785 for (auto KVPair : Info.PointerToBase) 2786 assert(Updated.count(KVPair.first) && "record for non-live value"); 2787 #endif 2788 2789 Info.liveset = Updated; 2790 } 2791