1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/Cloning.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 46 47 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 48 49 using namespace llvm; 50 51 // Print the liveset found at the insert location 52 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 53 cl::init(false)); 54 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 55 cl::init(false)); 56 // Print out the base pointers for debugging 57 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 58 cl::init(false)); 59 60 // Cost threshold measuring when it is profitable to rematerialize value instead 61 // of relocating it 62 static cl::opt<unsigned> 63 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 64 cl::init(6)); 65 66 #ifdef XDEBUG 67 static bool ClobberNonLive = true; 68 #else 69 static bool ClobberNonLive = false; 70 #endif 71 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 72 cl::location(ClobberNonLive), 73 cl::Hidden); 74 75 static cl::opt<bool> UseDeoptBundles("rs4gc-use-deopt-bundles", cl::Hidden, 76 cl::init(false)); 77 static cl::opt<bool> 78 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 79 cl::Hidden, cl::init(true)); 80 81 /// Should we split vectors of pointers into their individual elements? This 82 /// is known to be buggy, but the alternate implementation isn't yet ready. 83 /// This is purely to provide a debugging and dianostic hook until the vector 84 /// split is replaced with vector relocations. 85 static cl::opt<bool> UseVectorSplit("rs4gc-split-vector-values", cl::Hidden, 86 cl::init(true)); 87 88 namespace { 89 struct RewriteStatepointsForGC : public ModulePass { 90 static char ID; // Pass identification, replacement for typeid 91 92 RewriteStatepointsForGC() : ModulePass(ID) { 93 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 94 } 95 bool runOnFunction(Function &F); 96 bool runOnModule(Module &M) override { 97 bool Changed = false; 98 for (Function &F : M) 99 Changed |= runOnFunction(F); 100 101 if (Changed) { 102 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 103 // returns true for at least one function in the module. Since at least 104 // one function changed, we know that the precondition is satisfied. 105 stripNonValidAttributes(M); 106 } 107 108 return Changed; 109 } 110 111 void getAnalysisUsage(AnalysisUsage &AU) const override { 112 // We add and rewrite a bunch of instructions, but don't really do much 113 // else. We could in theory preserve a lot more analyses here. 114 AU.addRequired<DominatorTreeWrapperPass>(); 115 AU.addRequired<TargetTransformInfoWrapperPass>(); 116 } 117 118 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 119 /// dereferenceability that are no longer valid/correct after 120 /// RewriteStatepointsForGC has run. This is because semantically, after 121 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 122 /// heap. stripNonValidAttributes (conservatively) restores correctness 123 /// by erasing all attributes in the module that externally imply 124 /// dereferenceability. 125 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 126 /// can touch the entire heap including noalias objects. 127 void stripNonValidAttributes(Module &M); 128 129 // Helpers for stripNonValidAttributes 130 void stripNonValidAttributesFromBody(Function &F); 131 void stripNonValidAttributesFromPrototype(Function &F); 132 }; 133 } // namespace 134 135 char RewriteStatepointsForGC::ID = 0; 136 137 ModulePass *llvm::createRewriteStatepointsForGCPass() { 138 return new RewriteStatepointsForGC(); 139 } 140 141 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 142 "Make relocations explicit at statepoints", false, false) 143 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 144 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 145 "Make relocations explicit at statepoints", false, false) 146 147 namespace { 148 struct GCPtrLivenessData { 149 /// Values defined in this block. 150 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 151 /// Values used in this block (and thus live); does not included values 152 /// killed within this block. 153 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 154 155 /// Values live into this basic block (i.e. used by any 156 /// instruction in this basic block or ones reachable from here) 157 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 158 159 /// Values live out of this basic block (i.e. live into 160 /// any successor block) 161 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 162 }; 163 164 // The type of the internal cache used inside the findBasePointers family 165 // of functions. From the callers perspective, this is an opaque type and 166 // should not be inspected. 167 // 168 // In the actual implementation this caches two relations: 169 // - The base relation itself (i.e. this pointer is based on that one) 170 // - The base defining value relation (i.e. before base_phi insertion) 171 // Generally, after the execution of a full findBasePointer call, only the 172 // base relation will remain. Internally, we add a mixture of the two 173 // types, then update all the second type to the first type 174 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 175 typedef DenseSet<Value *> StatepointLiveSetTy; 176 typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>> 177 RematerializedValueMapTy; 178 179 struct PartiallyConstructedSafepointRecord { 180 /// The set of values known to be live across this safepoint 181 StatepointLiveSetTy LiveSet; 182 183 /// Mapping from live pointers to a base-defining-value 184 DenseMap<Value *, Value *> PointerToBase; 185 186 /// The *new* gc.statepoint instruction itself. This produces the token 187 /// that normal path gc.relocates and the gc.result are tied to. 188 Instruction *StatepointToken; 189 190 /// Instruction to which exceptional gc relocates are attached 191 /// Makes it easier to iterate through them during relocationViaAlloca. 192 Instruction *UnwindToken; 193 194 /// Record live values we are rematerialized instead of relocating. 195 /// They are not included into 'LiveSet' field. 196 /// Maps rematerialized copy to it's original value. 197 RematerializedValueMapTy RematerializedValues; 198 }; 199 } 200 201 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 202 assert(UseDeoptBundles && "Should not be called otherwise!"); 203 204 Optional<OperandBundleUse> DeoptBundle = CS.getOperandBundle("deopt"); 205 206 if (!DeoptBundle.hasValue()) { 207 assert(AllowStatepointWithNoDeoptInfo && 208 "Found non-leaf call without deopt info!"); 209 return None; 210 } 211 212 return DeoptBundle.getValue().Inputs; 213 } 214 215 /// Compute the live-in set for every basic block in the function 216 static void computeLiveInValues(DominatorTree &DT, Function &F, 217 GCPtrLivenessData &Data); 218 219 /// Given results from the dataflow liveness computation, find the set of live 220 /// Values at a particular instruction. 221 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 222 StatepointLiveSetTy &out); 223 224 // TODO: Once we can get to the GCStrategy, this becomes 225 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 226 227 static bool isGCPointerType(Type *T) { 228 if (auto *PT = dyn_cast<PointerType>(T)) 229 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 230 // GC managed heap. We know that a pointer into this heap needs to be 231 // updated and that no other pointer does. 232 return (1 == PT->getAddressSpace()); 233 return false; 234 } 235 236 // Return true if this type is one which a) is a gc pointer or contains a GC 237 // pointer and b) is of a type this code expects to encounter as a live value. 238 // (The insertion code will assert that a type which matches (a) and not (b) 239 // is not encountered.) 240 static bool isHandledGCPointerType(Type *T) { 241 // We fully support gc pointers 242 if (isGCPointerType(T)) 243 return true; 244 // We partially support vectors of gc pointers. The code will assert if it 245 // can't handle something. 246 if (auto VT = dyn_cast<VectorType>(T)) 247 if (isGCPointerType(VT->getElementType())) 248 return true; 249 return false; 250 } 251 252 #ifndef NDEBUG 253 /// Returns true if this type contains a gc pointer whether we know how to 254 /// handle that type or not. 255 static bool containsGCPtrType(Type *Ty) { 256 if (isGCPointerType(Ty)) 257 return true; 258 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 259 return isGCPointerType(VT->getScalarType()); 260 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 261 return containsGCPtrType(AT->getElementType()); 262 if (StructType *ST = dyn_cast<StructType>(Ty)) 263 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 264 containsGCPtrType); 265 return false; 266 } 267 268 // Returns true if this is a type which a) is a gc pointer or contains a GC 269 // pointer and b) is of a type which the code doesn't expect (i.e. first class 270 // aggregates). Used to trip assertions. 271 static bool isUnhandledGCPointerType(Type *Ty) { 272 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 273 } 274 #endif 275 276 static bool order_by_name(Value *a, Value *b) { 277 if (a->hasName() && b->hasName()) { 278 return -1 == a->getName().compare(b->getName()); 279 } else if (a->hasName() && !b->hasName()) { 280 return true; 281 } else if (!a->hasName() && b->hasName()) { 282 return false; 283 } else { 284 // Better than nothing, but not stable 285 return a < b; 286 } 287 } 288 289 // Return the name of the value suffixed with the provided value, or if the 290 // value didn't have a name, the default value specified. 291 static std::string suffixed_name_or(Value *V, StringRef Suffix, 292 StringRef DefaultName) { 293 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 294 } 295 296 // Conservatively identifies any definitions which might be live at the 297 // given instruction. The analysis is performed immediately before the 298 // given instruction. Values defined by that instruction are not considered 299 // live. Values used by that instruction are considered live. 300 static void analyzeParsePointLiveness( 301 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 302 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 303 Instruction *inst = CS.getInstruction(); 304 305 StatepointLiveSetTy LiveSet; 306 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet); 307 308 if (PrintLiveSet) { 309 // Note: This output is used by several of the test cases 310 // The order of elements in a set is not stable, put them in a vec and sort 311 // by name 312 SmallVector<Value *, 64> Temp; 313 Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end()); 314 std::sort(Temp.begin(), Temp.end(), order_by_name); 315 errs() << "Live Variables:\n"; 316 for (Value *V : Temp) 317 dbgs() << " " << V->getName() << " " << *V << "\n"; 318 } 319 if (PrintLiveSetSize) { 320 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 321 errs() << "Number live values: " << LiveSet.size() << "\n"; 322 } 323 result.LiveSet = LiveSet; 324 } 325 326 static bool isKnownBaseResult(Value *V); 327 namespace { 328 /// A single base defining value - An immediate base defining value for an 329 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 330 /// For instructions which have multiple pointer [vector] inputs or that 331 /// transition between vector and scalar types, there is no immediate base 332 /// defining value. The 'base defining value' for 'Def' is the transitive 333 /// closure of this relation stopping at the first instruction which has no 334 /// immediate base defining value. The b.d.v. might itself be a base pointer, 335 /// but it can also be an arbitrary derived pointer. 336 struct BaseDefiningValueResult { 337 /// Contains the value which is the base defining value. 338 Value * const BDV; 339 /// True if the base defining value is also known to be an actual base 340 /// pointer. 341 const bool IsKnownBase; 342 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 343 : BDV(BDV), IsKnownBase(IsKnownBase) { 344 #ifndef NDEBUG 345 // Check consistency between new and old means of checking whether a BDV is 346 // a base. 347 bool MustBeBase = isKnownBaseResult(BDV); 348 assert(!MustBeBase || MustBeBase == IsKnownBase); 349 #endif 350 } 351 }; 352 } 353 354 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 355 356 /// Return a base defining value for the 'Index' element of the given vector 357 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 358 /// 'I'. As an optimization, this method will try to determine when the 359 /// element is known to already be a base pointer. If this can be established, 360 /// the second value in the returned pair will be true. Note that either a 361 /// vector or a pointer typed value can be returned. For the former, the 362 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 363 /// If the later, the return pointer is a BDV (or possibly a base) for the 364 /// particular element in 'I'. 365 static BaseDefiningValueResult 366 findBaseDefiningValueOfVector(Value *I) { 367 // Each case parallels findBaseDefiningValue below, see that code for 368 // detailed motivation. 369 370 if (isa<Argument>(I)) 371 // An incoming argument to the function is a base pointer 372 return BaseDefiningValueResult(I, true); 373 374 // We shouldn't see the address of a global as a vector value? 375 assert(!isa<GlobalVariable>(I) && 376 "unexpected global variable found in base of vector"); 377 378 // inlining could possibly introduce phi node that contains 379 // undef if callee has multiple returns 380 if (isa<UndefValue>(I)) 381 // utterly meaningless, but useful for dealing with partially optimized 382 // code. 383 return BaseDefiningValueResult(I, true); 384 385 // Due to inheritance, this must be _after_ the global variable and undef 386 // checks 387 if (Constant *Con = dyn_cast<Constant>(I)) { 388 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 389 "order of checks wrong!"); 390 assert(Con->isNullValue() && "null is the only case which makes sense"); 391 return BaseDefiningValueResult(Con, true); 392 } 393 394 if (isa<LoadInst>(I)) 395 return BaseDefiningValueResult(I, true); 396 397 if (isa<InsertElementInst>(I)) 398 // We don't know whether this vector contains entirely base pointers or 399 // not. To be conservatively correct, we treat it as a BDV and will 400 // duplicate code as needed to construct a parallel vector of bases. 401 return BaseDefiningValueResult(I, false); 402 403 if (isa<ShuffleVectorInst>(I)) 404 // We don't know whether this vector contains entirely base pointers or 405 // not. To be conservatively correct, we treat it as a BDV and will 406 // duplicate code as needed to construct a parallel vector of bases. 407 // TODO: There a number of local optimizations which could be applied here 408 // for particular sufflevector patterns. 409 return BaseDefiningValueResult(I, false); 410 411 // A PHI or Select is a base defining value. The outer findBasePointer 412 // algorithm is responsible for constructing a base value for this BDV. 413 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 414 "unknown vector instruction - no base found for vector element"); 415 return BaseDefiningValueResult(I, false); 416 } 417 418 /// Helper function for findBasePointer - Will return a value which either a) 419 /// defines the base pointer for the input, b) blocks the simple search 420 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 421 /// from pointer to vector type or back. 422 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 423 assert(I->getType()->isPtrOrPtrVectorTy() && 424 "Illegal to ask for the base pointer of a non-pointer type"); 425 426 if (I->getType()->isVectorTy()) 427 return findBaseDefiningValueOfVector(I); 428 429 if (isa<Argument>(I)) 430 // An incoming argument to the function is a base pointer 431 // We should have never reached here if this argument isn't an gc value 432 return BaseDefiningValueResult(I, true); 433 434 if (isa<Constant>(I)) 435 // We assume that objects with a constant base (e.g. a global) can't move 436 // and don't need to be reported to the collector because they are always 437 // live. All constants have constant bases. Besides global references, all 438 // kinds of constants (e.g. undef, constant expressions, null pointers) can 439 // be introduced by the inliner or the optimizer, especially on dynamically 440 // dead paths. See e.g. test4 in constants.ll. 441 return BaseDefiningValueResult(I, true); 442 443 if (CastInst *CI = dyn_cast<CastInst>(I)) { 444 Value *Def = CI->stripPointerCasts(); 445 // If stripping pointer casts changes the address space there is an 446 // addrspacecast in between. 447 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 448 cast<PointerType>(CI->getType())->getAddressSpace() && 449 "unsupported addrspacecast"); 450 // If we find a cast instruction here, it means we've found a cast which is 451 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 452 // handle int->ptr conversion. 453 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 454 return findBaseDefiningValue(Def); 455 } 456 457 if (isa<LoadInst>(I)) 458 // The value loaded is an gc base itself 459 return BaseDefiningValueResult(I, true); 460 461 462 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 463 // The base of this GEP is the base 464 return findBaseDefiningValue(GEP->getPointerOperand()); 465 466 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 467 switch (II->getIntrinsicID()) { 468 default: 469 // fall through to general call handling 470 break; 471 case Intrinsic::experimental_gc_statepoint: 472 llvm_unreachable("statepoints don't produce pointers"); 473 case Intrinsic::experimental_gc_relocate: { 474 // Rerunning safepoint insertion after safepoints are already 475 // inserted is not supported. It could probably be made to work, 476 // but why are you doing this? There's no good reason. 477 llvm_unreachable("repeat safepoint insertion is not supported"); 478 } 479 case Intrinsic::gcroot: 480 // Currently, this mechanism hasn't been extended to work with gcroot. 481 // There's no reason it couldn't be, but I haven't thought about the 482 // implications much. 483 llvm_unreachable( 484 "interaction with the gcroot mechanism is not supported"); 485 } 486 } 487 // We assume that functions in the source language only return base 488 // pointers. This should probably be generalized via attributes to support 489 // both source language and internal functions. 490 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 491 return BaseDefiningValueResult(I, true); 492 493 // I have absolutely no idea how to implement this part yet. It's not 494 // necessarily hard, I just haven't really looked at it yet. 495 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 496 497 if (isa<AtomicCmpXchgInst>(I)) 498 // A CAS is effectively a atomic store and load combined under a 499 // predicate. From the perspective of base pointers, we just treat it 500 // like a load. 501 return BaseDefiningValueResult(I, true); 502 503 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 504 "binary ops which don't apply to pointers"); 505 506 // The aggregate ops. Aggregates can either be in the heap or on the 507 // stack, but in either case, this is simply a field load. As a result, 508 // this is a defining definition of the base just like a load is. 509 if (isa<ExtractValueInst>(I)) 510 return BaseDefiningValueResult(I, true); 511 512 // We should never see an insert vector since that would require we be 513 // tracing back a struct value not a pointer value. 514 assert(!isa<InsertValueInst>(I) && 515 "Base pointer for a struct is meaningless"); 516 517 // An extractelement produces a base result exactly when it's input does. 518 // We may need to insert a parallel instruction to extract the appropriate 519 // element out of the base vector corresponding to the input. Given this, 520 // it's analogous to the phi and select case even though it's not a merge. 521 if (isa<ExtractElementInst>(I)) 522 // Note: There a lot of obvious peephole cases here. This are deliberately 523 // handled after the main base pointer inference algorithm to make writing 524 // test cases to exercise that code easier. 525 return BaseDefiningValueResult(I, false); 526 527 // The last two cases here don't return a base pointer. Instead, they 528 // return a value which dynamically selects from among several base 529 // derived pointers (each with it's own base potentially). It's the job of 530 // the caller to resolve these. 531 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 532 "missing instruction case in findBaseDefiningValing"); 533 return BaseDefiningValueResult(I, false); 534 } 535 536 /// Returns the base defining value for this value. 537 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 538 Value *&Cached = Cache[I]; 539 if (!Cached) { 540 Cached = findBaseDefiningValue(I).BDV; 541 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 542 << Cached->getName() << "\n"); 543 } 544 assert(Cache[I] != nullptr); 545 return Cached; 546 } 547 548 /// Return a base pointer for this value if known. Otherwise, return it's 549 /// base defining value. 550 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 551 Value *Def = findBaseDefiningValueCached(I, Cache); 552 auto Found = Cache.find(Def); 553 if (Found != Cache.end()) { 554 // Either a base-of relation, or a self reference. Caller must check. 555 return Found->second; 556 } 557 // Only a BDV available 558 return Def; 559 } 560 561 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 562 /// is it known to be a base pointer? Or do we need to continue searching. 563 static bool isKnownBaseResult(Value *V) { 564 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 565 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 566 !isa<ShuffleVectorInst>(V)) { 567 // no recursion possible 568 return true; 569 } 570 if (isa<Instruction>(V) && 571 cast<Instruction>(V)->getMetadata("is_base_value")) { 572 // This is a previously inserted base phi or select. We know 573 // that this is a base value. 574 return true; 575 } 576 577 // We need to keep searching 578 return false; 579 } 580 581 namespace { 582 /// Models the state of a single base defining value in the findBasePointer 583 /// algorithm for determining where a new instruction is needed to propagate 584 /// the base of this BDV. 585 class BDVState { 586 public: 587 enum Status { Unknown, Base, Conflict }; 588 589 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 590 assert(status != Base || b); 591 } 592 explicit BDVState(Value *b) : status(Base), base(b) {} 593 BDVState() : status(Unknown), base(nullptr) {} 594 595 Status getStatus() const { return status; } 596 Value *getBase() const { return base; } 597 598 bool isBase() const { return getStatus() == Base; } 599 bool isUnknown() const { return getStatus() == Unknown; } 600 bool isConflict() const { return getStatus() == Conflict; } 601 602 bool operator==(const BDVState &other) const { 603 return base == other.base && status == other.status; 604 } 605 606 bool operator!=(const BDVState &other) const { return !(*this == other); } 607 608 LLVM_DUMP_METHOD 609 void dump() const { print(dbgs()); dbgs() << '\n'; } 610 611 void print(raw_ostream &OS) const { 612 switch (status) { 613 case Unknown: 614 OS << "U"; 615 break; 616 case Base: 617 OS << "B"; 618 break; 619 case Conflict: 620 OS << "C"; 621 break; 622 }; 623 OS << " (" << base << " - " 624 << (base ? base->getName() : "nullptr") << "): "; 625 } 626 627 private: 628 Status status; 629 AssertingVH<Value> base; // non null only if status == base 630 }; 631 } 632 633 #ifndef NDEBUG 634 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 635 State.print(OS); 636 return OS; 637 } 638 #endif 639 640 namespace { 641 // Values of type BDVState form a lattice, and this is a helper 642 // class that implementes the meet operation. The meat of the meet 643 // operation is implemented in MeetBDVStates::pureMeet 644 class MeetBDVStates { 645 public: 646 /// Initializes the currentResult to the TOP state so that if can be met with 647 /// any other state to produce that state. 648 MeetBDVStates() {} 649 650 // Destructively meet the current result with the given BDVState 651 void meetWith(BDVState otherState) { 652 currentResult = meet(otherState, currentResult); 653 } 654 655 BDVState getResult() const { return currentResult; } 656 657 private: 658 BDVState currentResult; 659 660 /// Perform a meet operation on two elements of the BDVState lattice. 661 static BDVState meet(BDVState LHS, BDVState RHS) { 662 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 663 "math is wrong: meet does not commute!"); 664 BDVState Result = pureMeet(LHS, RHS); 665 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 666 << " produced " << Result << "\n"); 667 return Result; 668 } 669 670 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 671 switch (stateA.getStatus()) { 672 case BDVState::Unknown: 673 return stateB; 674 675 case BDVState::Base: 676 assert(stateA.getBase() && "can't be null"); 677 if (stateB.isUnknown()) 678 return stateA; 679 680 if (stateB.isBase()) { 681 if (stateA.getBase() == stateB.getBase()) { 682 assert(stateA == stateB && "equality broken!"); 683 return stateA; 684 } 685 return BDVState(BDVState::Conflict); 686 } 687 assert(stateB.isConflict() && "only three states!"); 688 return BDVState(BDVState::Conflict); 689 690 case BDVState::Conflict: 691 return stateA; 692 } 693 llvm_unreachable("only three states!"); 694 } 695 }; 696 } 697 698 699 /// For a given value or instruction, figure out what base ptr it's derived 700 /// from. For gc objects, this is simply itself. On success, returns a value 701 /// which is the base pointer. (This is reliable and can be used for 702 /// relocation.) On failure, returns nullptr. 703 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 704 Value *def = findBaseOrBDV(I, cache); 705 706 if (isKnownBaseResult(def)) { 707 return def; 708 } 709 710 // Here's the rough algorithm: 711 // - For every SSA value, construct a mapping to either an actual base 712 // pointer or a PHI which obscures the base pointer. 713 // - Construct a mapping from PHI to unknown TOP state. Use an 714 // optimistic algorithm to propagate base pointer information. Lattice 715 // looks like: 716 // UNKNOWN 717 // b1 b2 b3 b4 718 // CONFLICT 719 // When algorithm terminates, all PHIs will either have a single concrete 720 // base or be in a conflict state. 721 // - For every conflict, insert a dummy PHI node without arguments. Add 722 // these to the base[Instruction] = BasePtr mapping. For every 723 // non-conflict, add the actual base. 724 // - For every conflict, add arguments for the base[a] of each input 725 // arguments. 726 // 727 // Note: A simpler form of this would be to add the conflict form of all 728 // PHIs without running the optimistic algorithm. This would be 729 // analogous to pessimistic data flow and would likely lead to an 730 // overall worse solution. 731 732 #ifndef NDEBUG 733 auto isExpectedBDVType = [](Value *BDV) { 734 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 735 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 736 }; 737 #endif 738 739 // Once populated, will contain a mapping from each potentially non-base BDV 740 // to a lattice value (described above) which corresponds to that BDV. 741 // We use the order of insertion (DFS over the def/use graph) to provide a 742 // stable deterministic ordering for visiting DenseMaps (which are unordered) 743 // below. This is important for deterministic compilation. 744 MapVector<Value *, BDVState> States; 745 746 // Recursively fill in all base defining values reachable from the initial 747 // one for which we don't already know a definite base value for 748 /* scope */ { 749 SmallVector<Value*, 16> Worklist; 750 Worklist.push_back(def); 751 States.insert(std::make_pair(def, BDVState())); 752 while (!Worklist.empty()) { 753 Value *Current = Worklist.pop_back_val(); 754 assert(!isKnownBaseResult(Current) && "why did it get added?"); 755 756 auto visitIncomingValue = [&](Value *InVal) { 757 Value *Base = findBaseOrBDV(InVal, cache); 758 if (isKnownBaseResult(Base)) 759 // Known bases won't need new instructions introduced and can be 760 // ignored safely 761 return; 762 assert(isExpectedBDVType(Base) && "the only non-base values " 763 "we see should be base defining values"); 764 if (States.insert(std::make_pair(Base, BDVState())).second) 765 Worklist.push_back(Base); 766 }; 767 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 768 for (Value *InVal : Phi->incoming_values()) 769 visitIncomingValue(InVal); 770 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 771 visitIncomingValue(Sel->getTrueValue()); 772 visitIncomingValue(Sel->getFalseValue()); 773 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 774 visitIncomingValue(EE->getVectorOperand()); 775 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 776 visitIncomingValue(IE->getOperand(0)); // vector operand 777 visitIncomingValue(IE->getOperand(1)); // scalar operand 778 } else { 779 // There is one known class of instructions we know we don't handle. 780 assert(isa<ShuffleVectorInst>(Current)); 781 llvm_unreachable("unimplemented instruction case"); 782 } 783 } 784 } 785 786 #ifndef NDEBUG 787 DEBUG(dbgs() << "States after initialization:\n"); 788 for (auto Pair : States) { 789 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 790 } 791 #endif 792 793 // Return a phi state for a base defining value. We'll generate a new 794 // base state for known bases and expect to find a cached state otherwise. 795 auto getStateForBDV = [&](Value *baseValue) { 796 if (isKnownBaseResult(baseValue)) 797 return BDVState(baseValue); 798 auto I = States.find(baseValue); 799 assert(I != States.end() && "lookup failed!"); 800 return I->second; 801 }; 802 803 bool progress = true; 804 while (progress) { 805 #ifndef NDEBUG 806 const size_t oldSize = States.size(); 807 #endif 808 progress = false; 809 // We're only changing values in this loop, thus safe to keep iterators. 810 // Since this is computing a fixed point, the order of visit does not 811 // effect the result. TODO: We could use a worklist here and make this run 812 // much faster. 813 for (auto Pair : States) { 814 Value *BDV = Pair.first; 815 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 816 817 // Given an input value for the current instruction, return a BDVState 818 // instance which represents the BDV of that value. 819 auto getStateForInput = [&](Value *V) mutable { 820 Value *BDV = findBaseOrBDV(V, cache); 821 return getStateForBDV(BDV); 822 }; 823 824 MeetBDVStates calculateMeet; 825 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) { 826 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 827 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 828 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) { 829 for (Value *Val : Phi->incoming_values()) 830 calculateMeet.meetWith(getStateForInput(Val)); 831 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 832 // The 'meet' for an extractelement is slightly trivial, but it's still 833 // useful in that it drives us to conflict if our input is. 834 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 835 } else { 836 // Given there's a inherent type mismatch between the operands, will 837 // *always* produce Conflict. 838 auto *IE = cast<InsertElementInst>(BDV); 839 calculateMeet.meetWith(getStateForInput(IE->getOperand(0))); 840 calculateMeet.meetWith(getStateForInput(IE->getOperand(1))); 841 } 842 843 BDVState oldState = States[BDV]; 844 BDVState newState = calculateMeet.getResult(); 845 if (oldState != newState) { 846 progress = true; 847 States[BDV] = newState; 848 } 849 } 850 851 assert(oldSize == States.size() && 852 "fixed point shouldn't be adding any new nodes to state"); 853 } 854 855 #ifndef NDEBUG 856 DEBUG(dbgs() << "States after meet iteration:\n"); 857 for (auto Pair : States) { 858 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 859 } 860 #endif 861 862 // Insert Phis for all conflicts 863 // TODO: adjust naming patterns to avoid this order of iteration dependency 864 for (auto Pair : States) { 865 Instruction *I = cast<Instruction>(Pair.first); 866 BDVState State = Pair.second; 867 assert(!isKnownBaseResult(I) && "why did it get added?"); 868 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 869 870 // extractelement instructions are a bit special in that we may need to 871 // insert an extract even when we know an exact base for the instruction. 872 // The problem is that we need to convert from a vector base to a scalar 873 // base for the particular indice we're interested in. 874 if (State.isBase() && isa<ExtractElementInst>(I) && 875 isa<VectorType>(State.getBase()->getType())) { 876 auto *EE = cast<ExtractElementInst>(I); 877 // TODO: In many cases, the new instruction is just EE itself. We should 878 // exploit this, but can't do it here since it would break the invariant 879 // about the BDV not being known to be a base. 880 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 881 EE->getIndexOperand(), 882 "base_ee", EE); 883 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 884 States[I] = BDVState(BDVState::Base, BaseInst); 885 } 886 887 // Since we're joining a vector and scalar base, they can never be the 888 // same. As a result, we should always see insert element having reached 889 // the conflict state. 890 if (isa<InsertElementInst>(I)) { 891 assert(State.isConflict()); 892 } 893 894 if (!State.isConflict()) 895 continue; 896 897 /// Create and insert a new instruction which will represent the base of 898 /// the given instruction 'I'. 899 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 900 if (isa<PHINode>(I)) { 901 BasicBlock *BB = I->getParent(); 902 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 903 assert(NumPreds > 0 && "how did we reach here"); 904 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 905 return PHINode::Create(I->getType(), NumPreds, Name, I); 906 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 907 // The undef will be replaced later 908 UndefValue *Undef = UndefValue::get(Sel->getType()); 909 std::string Name = suffixed_name_or(I, ".base", "base_select"); 910 return SelectInst::Create(Sel->getCondition(), Undef, 911 Undef, Name, Sel); 912 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 913 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 914 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 915 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 916 EE); 917 } else { 918 auto *IE = cast<InsertElementInst>(I); 919 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 920 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 921 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 922 return InsertElementInst::Create(VecUndef, ScalarUndef, 923 IE->getOperand(2), Name, IE); 924 } 925 926 }; 927 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 928 // Add metadata marking this as a base value 929 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 930 States[I] = BDVState(BDVState::Conflict, BaseInst); 931 } 932 933 // Returns a instruction which produces the base pointer for a given 934 // instruction. The instruction is assumed to be an input to one of the BDVs 935 // seen in the inference algorithm above. As such, we must either already 936 // know it's base defining value is a base, or have inserted a new 937 // instruction to propagate the base of it's BDV and have entered that newly 938 // introduced instruction into the state table. In either case, we are 939 // assured to be able to determine an instruction which produces it's base 940 // pointer. 941 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 942 Value *BDV = findBaseOrBDV(Input, cache); 943 Value *Base = nullptr; 944 if (isKnownBaseResult(BDV)) { 945 Base = BDV; 946 } else { 947 // Either conflict or base. 948 assert(States.count(BDV)); 949 Base = States[BDV].getBase(); 950 } 951 assert(Base && "can't be null"); 952 // The cast is needed since base traversal may strip away bitcasts 953 if (Base->getType() != Input->getType() && 954 InsertPt) { 955 Base = new BitCastInst(Base, Input->getType(), "cast", 956 InsertPt); 957 } 958 return Base; 959 }; 960 961 // Fixup all the inputs of the new PHIs. Visit order needs to be 962 // deterministic and predictable because we're naming newly created 963 // instructions. 964 for (auto Pair : States) { 965 Instruction *BDV = cast<Instruction>(Pair.first); 966 BDVState State = Pair.second; 967 968 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 969 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 970 if (!State.isConflict()) 971 continue; 972 973 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) { 974 PHINode *phi = cast<PHINode>(BDV); 975 unsigned NumPHIValues = phi->getNumIncomingValues(); 976 for (unsigned i = 0; i < NumPHIValues; i++) { 977 Value *InVal = phi->getIncomingValue(i); 978 BasicBlock *InBB = phi->getIncomingBlock(i); 979 980 // If we've already seen InBB, add the same incoming value 981 // we added for it earlier. The IR verifier requires phi 982 // nodes with multiple entries from the same basic block 983 // to have the same incoming value for each of those 984 // entries. If we don't do this check here and basephi 985 // has a different type than base, we'll end up adding two 986 // bitcasts (and hence two distinct values) as incoming 987 // values for the same basic block. 988 989 int blockIndex = basephi->getBasicBlockIndex(InBB); 990 if (blockIndex != -1) { 991 Value *oldBase = basephi->getIncomingValue(blockIndex); 992 basephi->addIncoming(oldBase, InBB); 993 994 #ifndef NDEBUG 995 Value *Base = getBaseForInput(InVal, nullptr); 996 // In essence this assert states: the only way two 997 // values incoming from the same basic block may be 998 // different is by being different bitcasts of the same 999 // value. A cleanup that remains TODO is changing 1000 // findBaseOrBDV to return an llvm::Value of the correct 1001 // type (and still remain pure). This will remove the 1002 // need to add bitcasts. 1003 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() && 1004 "sanity -- findBaseOrBDV should be pure!"); 1005 #endif 1006 continue; 1007 } 1008 1009 // Find the instruction which produces the base for each input. We may 1010 // need to insert a bitcast in the incoming block. 1011 // TODO: Need to split critical edges if insertion is needed 1012 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1013 basephi->addIncoming(Base, InBB); 1014 } 1015 assert(basephi->getNumIncomingValues() == NumPHIValues); 1016 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) { 1017 SelectInst *Sel = cast<SelectInst>(BDV); 1018 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 1019 // something more safe and less hacky. 1020 for (int i = 1; i <= 2; i++) { 1021 Value *InVal = Sel->getOperand(i); 1022 // Find the instruction which produces the base for each input. We may 1023 // need to insert a bitcast. 1024 Value *Base = getBaseForInput(InVal, BaseSel); 1025 BaseSel->setOperand(i, Base); 1026 } 1027 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 1028 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1029 // Find the instruction which produces the base for each input. We may 1030 // need to insert a bitcast. 1031 Value *Base = getBaseForInput(InVal, BaseEE); 1032 BaseEE->setOperand(0, Base); 1033 } else { 1034 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 1035 auto *BdvIE = cast<InsertElementInst>(BDV); 1036 auto UpdateOperand = [&](int OperandIdx) { 1037 Value *InVal = BdvIE->getOperand(OperandIdx); 1038 Value *Base = getBaseForInput(InVal, BaseIE); 1039 BaseIE->setOperand(OperandIdx, Base); 1040 }; 1041 UpdateOperand(0); // vector operand 1042 UpdateOperand(1); // scalar operand 1043 } 1044 1045 } 1046 1047 // Now that we're done with the algorithm, see if we can optimize the 1048 // results slightly by reducing the number of new instructions needed. 1049 // Arguably, this should be integrated into the algorithm above, but 1050 // doing as a post process step is easier to reason about for the moment. 1051 DenseMap<Value *, Value *> ReverseMap; 1052 SmallPtrSet<Instruction *, 16> NewInsts; 1053 SmallSetVector<AssertingVH<Instruction>, 16> Worklist; 1054 // Note: We need to visit the states in a deterministic order. We uses the 1055 // Keys we sorted above for this purpose. Note that we are papering over a 1056 // bigger problem with the algorithm above - it's visit order is not 1057 // deterministic. A larger change is needed to fix this. 1058 for (auto Pair : States) { 1059 auto *BDV = Pair.first; 1060 auto State = Pair.second; 1061 Value *Base = State.getBase(); 1062 assert(BDV && Base); 1063 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1064 assert(isKnownBaseResult(Base) && 1065 "must be something we 'know' is a base pointer"); 1066 if (!State.isConflict()) 1067 continue; 1068 1069 ReverseMap[Base] = BDV; 1070 if (auto *BaseI = dyn_cast<Instruction>(Base)) { 1071 NewInsts.insert(BaseI); 1072 Worklist.insert(BaseI); 1073 } 1074 } 1075 auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI, 1076 Value *Replacement) { 1077 // Add users which are new instructions (excluding self references) 1078 for (User *U : BaseI->users()) 1079 if (auto *UI = dyn_cast<Instruction>(U)) 1080 if (NewInsts.count(UI) && UI != BaseI) 1081 Worklist.insert(UI); 1082 // Then do the actual replacement 1083 NewInsts.erase(BaseI); 1084 ReverseMap.erase(BaseI); 1085 BaseI->replaceAllUsesWith(Replacement); 1086 assert(States.count(BDV)); 1087 assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI); 1088 States[BDV] = BDVState(BDVState::Conflict, Replacement); 1089 BaseI->eraseFromParent(); 1090 }; 1091 const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout(); 1092 while (!Worklist.empty()) { 1093 Instruction *BaseI = Worklist.pop_back_val(); 1094 assert(NewInsts.count(BaseI)); 1095 Value *Bdv = ReverseMap[BaseI]; 1096 if (auto *BdvI = dyn_cast<Instruction>(Bdv)) 1097 if (BaseI->isIdenticalTo(BdvI)) { 1098 DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n"); 1099 ReplaceBaseInstWith(Bdv, BaseI, Bdv); 1100 continue; 1101 } 1102 if (Value *V = SimplifyInstruction(BaseI, DL)) { 1103 DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n"); 1104 ReplaceBaseInstWith(Bdv, BaseI, V); 1105 continue; 1106 } 1107 } 1108 1109 // Cache all of our results so we can cheaply reuse them 1110 // NOTE: This is actually two caches: one of the base defining value 1111 // relation and one of the base pointer relation! FIXME 1112 for (auto Pair : States) { 1113 auto *BDV = Pair.first; 1114 Value *base = Pair.second.getBase(); 1115 assert(BDV && base); 1116 1117 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none"; 1118 DEBUG(dbgs() << "Updating base value cache" 1119 << " for: " << BDV->getName() 1120 << " from: " << fromstr 1121 << " to: " << base->getName() << "\n"); 1122 1123 if (cache.count(BDV)) { 1124 // Once we transition from the BDV relation being store in the cache to 1125 // the base relation being stored, it must be stable 1126 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) && 1127 "base relation should be stable"); 1128 } 1129 cache[BDV] = base; 1130 } 1131 assert(cache.count(def)); 1132 return cache[def]; 1133 } 1134 1135 // For a set of live pointers (base and/or derived), identify the base 1136 // pointer of the object which they are derived from. This routine will 1137 // mutate the IR graph as needed to make the 'base' pointer live at the 1138 // definition site of 'derived'. This ensures that any use of 'derived' can 1139 // also use 'base'. This may involve the insertion of a number of 1140 // additional PHI nodes. 1141 // 1142 // preconditions: live is a set of pointer type Values 1143 // 1144 // side effects: may insert PHI nodes into the existing CFG, will preserve 1145 // CFG, will not remove or mutate any existing nodes 1146 // 1147 // post condition: PointerToBase contains one (derived, base) pair for every 1148 // pointer in live. Note that derived can be equal to base if the original 1149 // pointer was a base pointer. 1150 static void 1151 findBasePointers(const StatepointLiveSetTy &live, 1152 DenseMap<Value *, Value *> &PointerToBase, 1153 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1154 // For the naming of values inserted to be deterministic - which makes for 1155 // much cleaner and more stable tests - we need to assign an order to the 1156 // live values. DenseSets do not provide a deterministic order across runs. 1157 SmallVector<Value *, 64> Temp; 1158 Temp.insert(Temp.end(), live.begin(), live.end()); 1159 std::sort(Temp.begin(), Temp.end(), order_by_name); 1160 for (Value *ptr : Temp) { 1161 Value *base = findBasePointer(ptr, DVCache); 1162 assert(base && "failed to find base pointer"); 1163 PointerToBase[ptr] = base; 1164 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1165 DT->dominates(cast<Instruction>(base)->getParent(), 1166 cast<Instruction>(ptr)->getParent())) && 1167 "The base we found better dominate the derived pointer"); 1168 1169 // If you see this trip and like to live really dangerously, the code should 1170 // be correct, just with idioms the verifier can't handle. You can try 1171 // disabling the verifier at your own substantial risk. 1172 assert(!isa<ConstantPointerNull>(base) && 1173 "the relocation code needs adjustment to handle the relocation of " 1174 "a null pointer constant without causing false positives in the " 1175 "safepoint ir verifier."); 1176 } 1177 } 1178 1179 /// Find the required based pointers (and adjust the live set) for the given 1180 /// parse point. 1181 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1182 const CallSite &CS, 1183 PartiallyConstructedSafepointRecord &result) { 1184 DenseMap<Value *, Value *> PointerToBase; 1185 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1186 1187 if (PrintBasePointers) { 1188 // Note: Need to print these in a stable order since this is checked in 1189 // some tests. 1190 errs() << "Base Pairs (w/o Relocation):\n"; 1191 SmallVector<Value *, 64> Temp; 1192 Temp.reserve(PointerToBase.size()); 1193 for (auto Pair : PointerToBase) { 1194 Temp.push_back(Pair.first); 1195 } 1196 std::sort(Temp.begin(), Temp.end(), order_by_name); 1197 for (Value *Ptr : Temp) { 1198 Value *Base = PointerToBase[Ptr]; 1199 errs() << " derived "; 1200 Ptr->printAsOperand(errs(), false); 1201 errs() << " base "; 1202 Base->printAsOperand(errs(), false); 1203 errs() << "\n";; 1204 } 1205 } 1206 1207 result.PointerToBase = PointerToBase; 1208 } 1209 1210 /// Given an updated version of the dataflow liveness results, update the 1211 /// liveset and base pointer maps for the call site CS. 1212 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1213 const CallSite &CS, 1214 PartiallyConstructedSafepointRecord &result); 1215 1216 static void recomputeLiveInValues( 1217 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1218 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1219 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1220 // again. The old values are still live and will help it stabilize quickly. 1221 GCPtrLivenessData RevisedLivenessData; 1222 computeLiveInValues(DT, F, RevisedLivenessData); 1223 for (size_t i = 0; i < records.size(); i++) { 1224 struct PartiallyConstructedSafepointRecord &info = records[i]; 1225 const CallSite &CS = toUpdate[i]; 1226 recomputeLiveInValues(RevisedLivenessData, CS, info); 1227 } 1228 } 1229 1230 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1231 // no uses of the original value / return value between the gc.statepoint and 1232 // the gc.relocate / gc.result call. One case which can arise is a phi node 1233 // starting one of the successor blocks. We also need to be able to insert the 1234 // gc.relocates only on the path which goes through the statepoint. We might 1235 // need to split an edge to make this possible. 1236 static BasicBlock * 1237 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1238 DominatorTree &DT) { 1239 BasicBlock *Ret = BB; 1240 if (!BB->getUniquePredecessor()) 1241 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1242 1243 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1244 // from it 1245 FoldSingleEntryPHINodes(Ret); 1246 assert(!isa<PHINode>(Ret->begin()) && 1247 "All PHI nodes should have been removed!"); 1248 1249 // At this point, we can safely insert a gc.relocate or gc.result as the first 1250 // instruction in Ret if needed. 1251 return Ret; 1252 } 1253 1254 // Create new attribute set containing only attributes which can be transferred 1255 // from original call to the safepoint. 1256 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1257 AttributeSet Ret; 1258 1259 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1260 unsigned Index = AS.getSlotIndex(Slot); 1261 1262 if (Index == AttributeSet::ReturnIndex || 1263 Index == AttributeSet::FunctionIndex) { 1264 1265 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { 1266 1267 // Do not allow certain attributes - just skip them 1268 // Safepoint can not be read only or read none. 1269 if (Attr.hasAttribute(Attribute::ReadNone) || 1270 Attr.hasAttribute(Attribute::ReadOnly)) 1271 continue; 1272 1273 // These attributes control the generation of the gc.statepoint call / 1274 // invoke itself; and once the gc.statepoint is in place, they're of no 1275 // use. 1276 if (Attr.hasAttribute("statepoint-num-patch-bytes") || 1277 Attr.hasAttribute("statepoint-id")) 1278 continue; 1279 1280 Ret = Ret.addAttributes( 1281 AS.getContext(), Index, 1282 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); 1283 } 1284 } 1285 1286 // Just skip parameter attributes for now 1287 } 1288 1289 return Ret; 1290 } 1291 1292 /// Helper function to place all gc relocates necessary for the given 1293 /// statepoint. 1294 /// Inputs: 1295 /// liveVariables - list of variables to be relocated. 1296 /// liveStart - index of the first live variable. 1297 /// basePtrs - base pointers. 1298 /// statepointToken - statepoint instruction to which relocates should be 1299 /// bound. 1300 /// Builder - Llvm IR builder to be used to construct new calls. 1301 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1302 const int LiveStart, 1303 ArrayRef<Value *> BasePtrs, 1304 Instruction *StatepointToken, 1305 IRBuilder<> Builder) { 1306 if (LiveVariables.empty()) 1307 return; 1308 1309 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1310 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val); 1311 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1312 size_t Index = std::distance(LiveVec.begin(), ValIt); 1313 assert(Index < LiveVec.size() && "Bug in std::find?"); 1314 return Index; 1315 }; 1316 Module *M = StatepointToken->getModule(); 1317 1318 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1319 // element type is i8 addrspace(1)*). We originally generated unique 1320 // declarations for each pointer type, but this proved problematic because 1321 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1322 // towards a single unified pointer type anyways, we can just cast everything 1323 // to an i8* of the right address space. A bitcast is added later to convert 1324 // gc_relocate to the actual value's type. 1325 auto getGCRelocateDecl = [&] (Type *Ty) { 1326 assert(isHandledGCPointerType(Ty)); 1327 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1328 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1329 if (auto *VT = dyn_cast<VectorType>(Ty)) 1330 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1331 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1332 {NewTy}); 1333 }; 1334 1335 // Lazily populated map from input types to the canonicalized form mentioned 1336 // in the comment above. This should probably be cached somewhere more 1337 // broadly. 1338 DenseMap<Type*, Value*> TypeToDeclMap; 1339 1340 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1341 // Generate the gc.relocate call and save the result 1342 Value *BaseIdx = 1343 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1344 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1345 1346 Type *Ty = LiveVariables[i]->getType(); 1347 if (!TypeToDeclMap.count(Ty)) 1348 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1349 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1350 1351 // only specify a debug name if we can give a useful one 1352 CallInst *Reloc = Builder.CreateCall( 1353 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1354 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1355 // Trick CodeGen into thinking there are lots of free registers at this 1356 // fake call. 1357 Reloc->setCallingConv(CallingConv::Cold); 1358 } 1359 } 1360 1361 namespace { 1362 1363 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1364 /// avoids having to worry about keeping around dangling pointers to Values. 1365 class DeferredReplacement { 1366 AssertingVH<Instruction> Old; 1367 AssertingVH<Instruction> New; 1368 1369 public: 1370 explicit DeferredReplacement(Instruction *Old, Instruction *New) : 1371 Old(Old), New(New) { 1372 assert(Old != New && "Not allowed!"); 1373 } 1374 1375 /// Does the task represented by this instance. 1376 void doReplacement() { 1377 Instruction *OldI = Old; 1378 Instruction *NewI = New; 1379 1380 assert(OldI != NewI && "Disallowed at construction?!"); 1381 1382 Old = nullptr; 1383 New = nullptr; 1384 1385 if (NewI) 1386 OldI->replaceAllUsesWith(NewI); 1387 OldI->eraseFromParent(); 1388 } 1389 }; 1390 } 1391 1392 static void 1393 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1394 const SmallVectorImpl<Value *> &BasePtrs, 1395 const SmallVectorImpl<Value *> &LiveVariables, 1396 PartiallyConstructedSafepointRecord &Result, 1397 std::vector<DeferredReplacement> &Replacements) { 1398 assert(BasePtrs.size() == LiveVariables.size()); 1399 assert((UseDeoptBundles || isStatepoint(CS)) && 1400 "This method expects to be rewriting a statepoint"); 1401 1402 // Then go ahead and use the builder do actually do the inserts. We insert 1403 // immediately before the previous instruction under the assumption that all 1404 // arguments will be available here. We can't insert afterwards since we may 1405 // be replacing a terminator. 1406 Instruction *InsertBefore = CS.getInstruction(); 1407 IRBuilder<> Builder(InsertBefore); 1408 1409 ArrayRef<Value *> GCArgs(LiveVariables); 1410 uint64_t StatepointID = 0xABCDEF00; 1411 uint32_t NumPatchBytes = 0; 1412 uint32_t Flags = uint32_t(StatepointFlags::None); 1413 1414 ArrayRef<Use> CallArgs; 1415 ArrayRef<Use> DeoptArgs; 1416 ArrayRef<Use> TransitionArgs; 1417 1418 Value *CallTarget = nullptr; 1419 1420 if (UseDeoptBundles) { 1421 CallArgs = {CS.arg_begin(), CS.arg_end()}; 1422 DeoptArgs = GetDeoptBundleOperands(CS); 1423 // TODO: we don't fill in TransitionArgs or Flags in this branch, but we 1424 // could have an operand bundle for that too. 1425 AttributeSet OriginalAttrs = CS.getAttributes(); 1426 1427 Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex, 1428 "statepoint-id"); 1429 if (AttrID.isStringAttribute()) 1430 AttrID.getValueAsString().getAsInteger(10, StatepointID); 1431 1432 Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute( 1433 AttributeSet::FunctionIndex, "statepoint-num-patch-bytes"); 1434 if (AttrNumPatchBytes.isStringAttribute()) 1435 AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes); 1436 1437 CallTarget = CS.getCalledValue(); 1438 } else { 1439 // This branch will be gone soon, and we will soon only support the 1440 // UseDeoptBundles == true configuration. 1441 Statepoint OldSP(CS); 1442 StatepointID = OldSP.getID(); 1443 NumPatchBytes = OldSP.getNumPatchBytes(); 1444 Flags = OldSP.getFlags(); 1445 1446 CallArgs = {OldSP.arg_begin(), OldSP.arg_end()}; 1447 DeoptArgs = {OldSP.vm_state_begin(), OldSP.vm_state_end()}; 1448 TransitionArgs = {OldSP.gc_transition_args_begin(), 1449 OldSP.gc_transition_args_end()}; 1450 CallTarget = OldSP.getCalledValue(); 1451 } 1452 1453 // Create the statepoint given all the arguments 1454 Instruction *Token = nullptr; 1455 AttributeSet ReturnAttrs; 1456 if (CS.isCall()) { 1457 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1458 CallInst *Call = Builder.CreateGCStatepointCall( 1459 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1460 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1461 1462 Call->setTailCall(ToReplace->isTailCall()); 1463 Call->setCallingConv(ToReplace->getCallingConv()); 1464 1465 // Currently we will fail on parameter attributes and on certain 1466 // function attributes. 1467 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1468 // In case if we can handle this set of attributes - set up function attrs 1469 // directly on statepoint and return attrs later for gc_result intrinsic. 1470 Call->setAttributes(NewAttrs.getFnAttributes()); 1471 ReturnAttrs = NewAttrs.getRetAttributes(); 1472 1473 Token = Call; 1474 1475 // Put the following gc_result and gc_relocate calls immediately after the 1476 // the old call (which we're about to delete) 1477 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1478 Builder.SetInsertPoint(ToReplace->getNextNode()); 1479 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1480 } else { 1481 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1482 1483 // Insert the new invoke into the old block. We'll remove the old one in a 1484 // moment at which point this will become the new terminator for the 1485 // original block. 1486 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1487 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1488 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1489 GCArgs, "statepoint_token"); 1490 1491 Invoke->setCallingConv(ToReplace->getCallingConv()); 1492 1493 // Currently we will fail on parameter attributes and on certain 1494 // function attributes. 1495 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1496 // In case if we can handle this set of attributes - set up function attrs 1497 // directly on statepoint and return attrs later for gc_result intrinsic. 1498 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1499 ReturnAttrs = NewAttrs.getRetAttributes(); 1500 1501 Token = Invoke; 1502 1503 // Generate gc relocates in exceptional path 1504 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1505 assert(!isa<PHINode>(UnwindBlock->begin()) && 1506 UnwindBlock->getUniquePredecessor() && 1507 "can't safely insert in this block!"); 1508 1509 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1510 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1511 1512 // Attach exceptional gc relocates to the landingpad. 1513 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1514 Result.UnwindToken = ExceptionalToken; 1515 1516 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1517 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1518 Builder); 1519 1520 // Generate gc relocates and returns for normal block 1521 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1522 assert(!isa<PHINode>(NormalDest->begin()) && 1523 NormalDest->getUniquePredecessor() && 1524 "can't safely insert in this block!"); 1525 1526 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1527 1528 // gc relocates will be generated later as if it were regular call 1529 // statepoint 1530 } 1531 assert(Token && "Should be set in one of the above branches!"); 1532 1533 if (UseDeoptBundles) { 1534 Token->setName("statepoint_token"); 1535 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1536 StringRef Name = 1537 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1538 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1539 GCResult->setAttributes(CS.getAttributes().getRetAttributes()); 1540 1541 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1542 // live set of some other safepoint, in which case that safepoint's 1543 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1544 // llvm::Instruction. Instead, we defer the replacement and deletion to 1545 // after the live sets have been made explicit in the IR, and we no longer 1546 // have raw pointers to worry about. 1547 Replacements.emplace_back(CS.getInstruction(), GCResult); 1548 } else { 1549 Replacements.emplace_back(CS.getInstruction(), nullptr); 1550 } 1551 } else { 1552 assert(!CS.getInstruction()->hasNUsesOrMore(2) && 1553 "only valid use before rewrite is gc.result"); 1554 assert(!CS.getInstruction()->hasOneUse() || 1555 isGCResult(cast<Instruction>(*CS.getInstruction()->user_begin()))); 1556 1557 // Take the name of the original statepoint token if there was one. 1558 Token->takeName(CS.getInstruction()); 1559 1560 // Update the gc.result of the original statepoint (if any) to use the newly 1561 // inserted statepoint. This is safe to do here since the token can't be 1562 // considered a live reference. 1563 CS.getInstruction()->replaceAllUsesWith(Token); 1564 CS.getInstruction()->eraseFromParent(); 1565 } 1566 1567 Result.StatepointToken = Token; 1568 1569 // Second, create a gc.relocate for every live variable 1570 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1571 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1572 } 1573 1574 namespace { 1575 struct NameOrdering { 1576 Value *Base; 1577 Value *Derived; 1578 1579 bool operator()(NameOrdering const &a, NameOrdering const &b) { 1580 return -1 == a.Derived->getName().compare(b.Derived->getName()); 1581 } 1582 }; 1583 } 1584 1585 static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec, 1586 SmallVectorImpl<Value *> &LiveVec) { 1587 assert(BaseVec.size() == LiveVec.size()); 1588 1589 SmallVector<NameOrdering, 64> Temp; 1590 for (size_t i = 0; i < BaseVec.size(); i++) { 1591 NameOrdering v; 1592 v.Base = BaseVec[i]; 1593 v.Derived = LiveVec[i]; 1594 Temp.push_back(v); 1595 } 1596 1597 std::sort(Temp.begin(), Temp.end(), NameOrdering()); 1598 for (size_t i = 0; i < BaseVec.size(); i++) { 1599 BaseVec[i] = Temp[i].Base; 1600 LiveVec[i] = Temp[i].Derived; 1601 } 1602 } 1603 1604 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1605 // which make the relocations happening at this safepoint explicit. 1606 // 1607 // WARNING: Does not do any fixup to adjust users of the original live 1608 // values. That's the callers responsibility. 1609 static void 1610 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, 1611 PartiallyConstructedSafepointRecord &Result, 1612 std::vector<DeferredReplacement> &Replacements) { 1613 const auto &LiveSet = Result.LiveSet; 1614 const auto &PointerToBase = Result.PointerToBase; 1615 1616 // Convert to vector for efficient cross referencing. 1617 SmallVector<Value *, 64> BaseVec, LiveVec; 1618 LiveVec.reserve(LiveSet.size()); 1619 BaseVec.reserve(LiveSet.size()); 1620 for (Value *L : LiveSet) { 1621 LiveVec.push_back(L); 1622 assert(PointerToBase.count(L)); 1623 Value *Base = PointerToBase.find(L)->second; 1624 BaseVec.push_back(Base); 1625 } 1626 assert(LiveVec.size() == BaseVec.size()); 1627 1628 // To make the output IR slightly more stable (for use in diffs), ensure a 1629 // fixed order of the values in the safepoint (by sorting the value name). 1630 // The order is otherwise meaningless. 1631 StabilizeOrder(BaseVec, LiveVec); 1632 1633 // Do the actual rewriting and delete the old statepoint 1634 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1635 } 1636 1637 // Helper function for the relocationViaAlloca. 1638 // 1639 // It receives iterator to the statepoint gc relocates and emits a store to the 1640 // assigned location (via allocaMap) for the each one of them. It adds the 1641 // visited values into the visitedLiveValues set, which we will later use them 1642 // for sanity checking. 1643 static void 1644 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1645 DenseMap<Value *, Value *> &AllocaMap, 1646 DenseSet<Value *> &VisitedLiveValues) { 1647 1648 for (User *U : GCRelocs) { 1649 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1650 if (!Relocate) 1651 continue; 1652 1653 Value *OriginalValue = const_cast<Value *>(Relocate->getDerivedPtr()); 1654 assert(AllocaMap.count(OriginalValue)); 1655 Value *Alloca = AllocaMap[OriginalValue]; 1656 1657 // Emit store into the related alloca 1658 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1659 // the correct type according to alloca. 1660 assert(Relocate->getNextNode() && 1661 "Should always have one since it's not a terminator"); 1662 IRBuilder<> Builder(Relocate->getNextNode()); 1663 Value *CastedRelocatedValue = 1664 Builder.CreateBitCast(Relocate, 1665 cast<AllocaInst>(Alloca)->getAllocatedType(), 1666 suffixed_name_or(Relocate, ".casted", "")); 1667 1668 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1669 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1670 1671 #ifndef NDEBUG 1672 VisitedLiveValues.insert(OriginalValue); 1673 #endif 1674 } 1675 } 1676 1677 // Helper function for the "relocationViaAlloca". Similar to the 1678 // "insertRelocationStores" but works for rematerialized values. 1679 static void 1680 insertRematerializationStores( 1681 RematerializedValueMapTy RematerializedValues, 1682 DenseMap<Value *, Value *> &AllocaMap, 1683 DenseSet<Value *> &VisitedLiveValues) { 1684 1685 for (auto RematerializedValuePair: RematerializedValues) { 1686 Instruction *RematerializedValue = RematerializedValuePair.first; 1687 Value *OriginalValue = RematerializedValuePair.second; 1688 1689 assert(AllocaMap.count(OriginalValue) && 1690 "Can not find alloca for rematerialized value"); 1691 Value *Alloca = AllocaMap[OriginalValue]; 1692 1693 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1694 Store->insertAfter(RematerializedValue); 1695 1696 #ifndef NDEBUG 1697 VisitedLiveValues.insert(OriginalValue); 1698 #endif 1699 } 1700 } 1701 1702 /// Do all the relocation update via allocas and mem2reg 1703 static void relocationViaAlloca( 1704 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1705 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1706 #ifndef NDEBUG 1707 // record initial number of (static) allocas; we'll check we have the same 1708 // number when we get done. 1709 int InitialAllocaNum = 0; 1710 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1711 I++) 1712 if (isa<AllocaInst>(*I)) 1713 InitialAllocaNum++; 1714 #endif 1715 1716 // TODO-PERF: change data structures, reserve 1717 DenseMap<Value *, Value *> AllocaMap; 1718 SmallVector<AllocaInst *, 200> PromotableAllocas; 1719 // Used later to chack that we have enough allocas to store all values 1720 std::size_t NumRematerializedValues = 0; 1721 PromotableAllocas.reserve(Live.size()); 1722 1723 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1724 // "PromotableAllocas" 1725 auto emitAllocaFor = [&](Value *LiveValue) { 1726 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1727 F.getEntryBlock().getFirstNonPHI()); 1728 AllocaMap[LiveValue] = Alloca; 1729 PromotableAllocas.push_back(Alloca); 1730 }; 1731 1732 // Emit alloca for each live gc pointer 1733 for (Value *V : Live) 1734 emitAllocaFor(V); 1735 1736 // Emit allocas for rematerialized values 1737 for (const auto &Info : Records) 1738 for (auto RematerializedValuePair : Info.RematerializedValues) { 1739 Value *OriginalValue = RematerializedValuePair.second; 1740 if (AllocaMap.count(OriginalValue) != 0) 1741 continue; 1742 1743 emitAllocaFor(OriginalValue); 1744 ++NumRematerializedValues; 1745 } 1746 1747 // The next two loops are part of the same conceptual operation. We need to 1748 // insert a store to the alloca after the original def and at each 1749 // redefinition. We need to insert a load before each use. These are split 1750 // into distinct loops for performance reasons. 1751 1752 // Update gc pointer after each statepoint: either store a relocated value or 1753 // null (if no relocated value was found for this gc pointer and it is not a 1754 // gc_result). This must happen before we update the statepoint with load of 1755 // alloca otherwise we lose the link between statepoint and old def. 1756 for (const auto &Info : Records) { 1757 Value *Statepoint = Info.StatepointToken; 1758 1759 // This will be used for consistency check 1760 DenseSet<Value *> VisitedLiveValues; 1761 1762 // Insert stores for normal statepoint gc relocates 1763 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1764 1765 // In case if it was invoke statepoint 1766 // we will insert stores for exceptional path gc relocates. 1767 if (isa<InvokeInst>(Statepoint)) { 1768 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1769 VisitedLiveValues); 1770 } 1771 1772 // Do similar thing with rematerialized values 1773 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1774 VisitedLiveValues); 1775 1776 if (ClobberNonLive) { 1777 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1778 // the gc.statepoint. This will turn some subtle GC problems into 1779 // slightly easier to debug SEGVs. Note that on large IR files with 1780 // lots of gc.statepoints this is extremely costly both memory and time 1781 // wise. 1782 SmallVector<AllocaInst *, 64> ToClobber; 1783 for (auto Pair : AllocaMap) { 1784 Value *Def = Pair.first; 1785 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1786 1787 // This value was relocated 1788 if (VisitedLiveValues.count(Def)) { 1789 continue; 1790 } 1791 ToClobber.push_back(Alloca); 1792 } 1793 1794 auto InsertClobbersAt = [&](Instruction *IP) { 1795 for (auto *AI : ToClobber) { 1796 auto AIType = cast<PointerType>(AI->getType()); 1797 auto PT = cast<PointerType>(AIType->getElementType()); 1798 Constant *CPN = ConstantPointerNull::get(PT); 1799 StoreInst *Store = new StoreInst(CPN, AI); 1800 Store->insertBefore(IP); 1801 } 1802 }; 1803 1804 // Insert the clobbering stores. These may get intermixed with the 1805 // gc.results and gc.relocates, but that's fine. 1806 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1807 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1808 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1809 } else { 1810 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1811 } 1812 } 1813 } 1814 1815 // Update use with load allocas and add store for gc_relocated. 1816 for (auto Pair : AllocaMap) { 1817 Value *Def = Pair.first; 1818 Value *Alloca = Pair.second; 1819 1820 // We pre-record the uses of allocas so that we dont have to worry about 1821 // later update that changes the user information.. 1822 1823 SmallVector<Instruction *, 20> Uses; 1824 // PERF: trade a linear scan for repeated reallocation 1825 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1826 for (User *U : Def->users()) { 1827 if (!isa<ConstantExpr>(U)) { 1828 // If the def has a ConstantExpr use, then the def is either a 1829 // ConstantExpr use itself or null. In either case 1830 // (recursively in the first, directly in the second), the oop 1831 // it is ultimately dependent on is null and this particular 1832 // use does not need to be fixed up. 1833 Uses.push_back(cast<Instruction>(U)); 1834 } 1835 } 1836 1837 std::sort(Uses.begin(), Uses.end()); 1838 auto Last = std::unique(Uses.begin(), Uses.end()); 1839 Uses.erase(Last, Uses.end()); 1840 1841 for (Instruction *Use : Uses) { 1842 if (isa<PHINode>(Use)) { 1843 PHINode *Phi = cast<PHINode>(Use); 1844 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1845 if (Def == Phi->getIncomingValue(i)) { 1846 LoadInst *Load = new LoadInst( 1847 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1848 Phi->setIncomingValue(i, Load); 1849 } 1850 } 1851 } else { 1852 LoadInst *Load = new LoadInst(Alloca, "", Use); 1853 Use->replaceUsesOfWith(Def, Load); 1854 } 1855 } 1856 1857 // Emit store for the initial gc value. Store must be inserted after load, 1858 // otherwise store will be in alloca's use list and an extra load will be 1859 // inserted before it. 1860 StoreInst *Store = new StoreInst(Def, Alloca); 1861 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1862 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1863 // InvokeInst is a TerminatorInst so the store need to be inserted 1864 // into its normal destination block. 1865 BasicBlock *NormalDest = Invoke->getNormalDest(); 1866 Store->insertBefore(NormalDest->getFirstNonPHI()); 1867 } else { 1868 assert(!Inst->isTerminator() && 1869 "The only TerminatorInst that can produce a value is " 1870 "InvokeInst which is handled above."); 1871 Store->insertAfter(Inst); 1872 } 1873 } else { 1874 assert(isa<Argument>(Def)); 1875 Store->insertAfter(cast<Instruction>(Alloca)); 1876 } 1877 } 1878 1879 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1880 "we must have the same allocas with lives"); 1881 if (!PromotableAllocas.empty()) { 1882 // Apply mem2reg to promote alloca to SSA 1883 PromoteMemToReg(PromotableAllocas, DT); 1884 } 1885 1886 #ifndef NDEBUG 1887 for (auto &I : F.getEntryBlock()) 1888 if (isa<AllocaInst>(I)) 1889 InitialAllocaNum--; 1890 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1891 #endif 1892 } 1893 1894 /// Implement a unique function which doesn't require we sort the input 1895 /// vector. Doing so has the effect of changing the output of a couple of 1896 /// tests in ways which make them less useful in testing fused safepoints. 1897 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1898 SmallSet<T, 8> Seen; 1899 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1900 return !Seen.insert(V).second; 1901 }), Vec.end()); 1902 } 1903 1904 /// Insert holders so that each Value is obviously live through the entire 1905 /// lifetime of the call. 1906 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1907 SmallVectorImpl<CallInst *> &Holders) { 1908 if (Values.empty()) 1909 // No values to hold live, might as well not insert the empty holder 1910 return; 1911 1912 Module *M = CS.getInstruction()->getModule(); 1913 // Use a dummy vararg function to actually hold the values live 1914 Function *Func = cast<Function>(M->getOrInsertFunction( 1915 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1916 if (CS.isCall()) { 1917 // For call safepoints insert dummy calls right after safepoint 1918 Holders.push_back(CallInst::Create(Func, Values, "", 1919 &*++CS.getInstruction()->getIterator())); 1920 return; 1921 } 1922 // For invoke safepooints insert dummy calls both in normal and 1923 // exceptional destination blocks 1924 auto *II = cast<InvokeInst>(CS.getInstruction()); 1925 Holders.push_back(CallInst::Create( 1926 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1927 Holders.push_back(CallInst::Create( 1928 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1929 } 1930 1931 static void findLiveReferences( 1932 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1933 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1934 GCPtrLivenessData OriginalLivenessData; 1935 computeLiveInValues(DT, F, OriginalLivenessData); 1936 for (size_t i = 0; i < records.size(); i++) { 1937 struct PartiallyConstructedSafepointRecord &info = records[i]; 1938 const CallSite &CS = toUpdate[i]; 1939 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1940 } 1941 } 1942 1943 /// Remove any vector of pointers from the live set by scalarizing them over the 1944 /// statepoint instruction. Adds the scalarized pieces to the live set. It 1945 /// would be preferable to include the vector in the statepoint itself, but 1946 /// the lowering code currently does not handle that. Extending it would be 1947 /// slightly non-trivial since it requires a format change. Given how rare 1948 /// such cases are (for the moment?) scalarizing is an acceptable compromise. 1949 static void splitVectorValues(Instruction *StatepointInst, 1950 StatepointLiveSetTy &LiveSet, 1951 DenseMap<Value *, Value *>& PointerToBase, 1952 DominatorTree &DT) { 1953 SmallVector<Value *, 16> ToSplit; 1954 for (Value *V : LiveSet) 1955 if (isa<VectorType>(V->getType())) 1956 ToSplit.push_back(V); 1957 1958 if (ToSplit.empty()) 1959 return; 1960 1961 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1962 1963 Function &F = *(StatepointInst->getParent()->getParent()); 1964 1965 DenseMap<Value *, AllocaInst *> AllocaMap; 1966 // First is normal return, second is exceptional return (invoke only) 1967 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1968 for (Value *V : ToSplit) { 1969 AllocaInst *Alloca = 1970 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1971 AllocaMap[V] = Alloca; 1972 1973 VectorType *VT = cast<VectorType>(V->getType()); 1974 IRBuilder<> Builder(StatepointInst); 1975 SmallVector<Value *, 16> Elements; 1976 for (unsigned i = 0; i < VT->getNumElements(); i++) 1977 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1978 ElementMapping[V] = Elements; 1979 1980 auto InsertVectorReform = [&](Instruction *IP) { 1981 Builder.SetInsertPoint(IP); 1982 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1983 Value *ResultVec = UndefValue::get(VT); 1984 for (unsigned i = 0; i < VT->getNumElements(); i++) 1985 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1986 Builder.getInt32(i)); 1987 return ResultVec; 1988 }; 1989 1990 if (isa<CallInst>(StatepointInst)) { 1991 BasicBlock::iterator Next(StatepointInst); 1992 Next++; 1993 Instruction *IP = &*(Next); 1994 Replacements[V].first = InsertVectorReform(IP); 1995 Replacements[V].second = nullptr; 1996 } else { 1997 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 1998 // We've already normalized - check that we don't have shared destination 1999 // blocks 2000 BasicBlock *NormalDest = Invoke->getNormalDest(); 2001 assert(!isa<PHINode>(NormalDest->begin())); 2002 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 2003 assert(!isa<PHINode>(UnwindDest->begin())); 2004 // Insert insert element sequences in both successors 2005 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 2006 Replacements[V].first = InsertVectorReform(IP); 2007 IP = &*(UnwindDest->getFirstInsertionPt()); 2008 Replacements[V].second = InsertVectorReform(IP); 2009 } 2010 } 2011 2012 for (Value *V : ToSplit) { 2013 AllocaInst *Alloca = AllocaMap[V]; 2014 2015 // Capture all users before we start mutating use lists 2016 SmallVector<Instruction *, 16> Users; 2017 for (User *U : V->users()) 2018 Users.push_back(cast<Instruction>(U)); 2019 2020 for (Instruction *I : Users) { 2021 if (auto Phi = dyn_cast<PHINode>(I)) { 2022 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 2023 if (V == Phi->getIncomingValue(i)) { 2024 LoadInst *Load = new LoadInst( 2025 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 2026 Phi->setIncomingValue(i, Load); 2027 } 2028 } else { 2029 LoadInst *Load = new LoadInst(Alloca, "", I); 2030 I->replaceUsesOfWith(V, Load); 2031 } 2032 } 2033 2034 // Store the original value and the replacement value into the alloca 2035 StoreInst *Store = new StoreInst(V, Alloca); 2036 if (auto I = dyn_cast<Instruction>(V)) 2037 Store->insertAfter(I); 2038 else 2039 Store->insertAfter(Alloca); 2040 2041 // Normal return for invoke, or call return 2042 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 2043 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 2044 // Unwind return for invoke only 2045 Replacement = cast_or_null<Instruction>(Replacements[V].second); 2046 if (Replacement) 2047 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 2048 } 2049 2050 // apply mem2reg to promote alloca to SSA 2051 SmallVector<AllocaInst *, 16> Allocas; 2052 for (Value *V : ToSplit) 2053 Allocas.push_back(AllocaMap[V]); 2054 PromoteMemToReg(Allocas, DT); 2055 2056 // Update our tracking of live pointers and base mappings to account for the 2057 // changes we just made. 2058 for (Value *V : ToSplit) { 2059 auto &Elements = ElementMapping[V]; 2060 2061 LiveSet.erase(V); 2062 LiveSet.insert(Elements.begin(), Elements.end()); 2063 // We need to update the base mapping as well. 2064 assert(PointerToBase.count(V)); 2065 Value *OldBase = PointerToBase[V]; 2066 auto &BaseElements = ElementMapping[OldBase]; 2067 PointerToBase.erase(V); 2068 assert(Elements.size() == BaseElements.size()); 2069 for (unsigned i = 0; i < Elements.size(); i++) { 2070 Value *Elem = Elements[i]; 2071 PointerToBase[Elem] = BaseElements[i]; 2072 } 2073 } 2074 } 2075 2076 // Helper function for the "rematerializeLiveValues". It walks use chain 2077 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 2078 // values are visited (currently it is GEP's and casts). Returns true if it 2079 // successfully reached "BaseValue" and false otherwise. 2080 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 2081 // recorded. 2082 static bool findRematerializableChainToBasePointer( 2083 SmallVectorImpl<Instruction*> &ChainToBase, 2084 Value *CurrentValue, Value *BaseValue) { 2085 2086 // We have found a base value 2087 if (CurrentValue == BaseValue) { 2088 return true; 2089 } 2090 2091 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2092 ChainToBase.push_back(GEP); 2093 return findRematerializableChainToBasePointer(ChainToBase, 2094 GEP->getPointerOperand(), 2095 BaseValue); 2096 } 2097 2098 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2099 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2100 return false; 2101 2102 ChainToBase.push_back(CI); 2103 return findRematerializableChainToBasePointer(ChainToBase, 2104 CI->getOperand(0), BaseValue); 2105 } 2106 2107 // Not supported instruction in the chain 2108 return false; 2109 } 2110 2111 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2112 // chain we are going to rematerialize. 2113 static unsigned 2114 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 2115 TargetTransformInfo &TTI) { 2116 unsigned Cost = 0; 2117 2118 for (Instruction *Instr : Chain) { 2119 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2120 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2121 "non noop cast is found during rematerialization"); 2122 2123 Type *SrcTy = CI->getOperand(0)->getType(); 2124 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 2125 2126 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2127 // Cost of the address calculation 2128 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); 2129 Cost += TTI.getAddressComputationCost(ValTy); 2130 2131 // And cost of the GEP itself 2132 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2133 // allowed for the external usage) 2134 if (!GEP->hasAllConstantIndices()) 2135 Cost += 2; 2136 2137 } else { 2138 llvm_unreachable("unsupported instruciton type during rematerialization"); 2139 } 2140 } 2141 2142 return Cost; 2143 } 2144 2145 // From the statepoint live set pick values that are cheaper to recompute then 2146 // to relocate. Remove this values from the live set, rematerialize them after 2147 // statepoint and record them in "Info" structure. Note that similar to 2148 // relocated values we don't do any user adjustments here. 2149 static void rematerializeLiveValues(CallSite CS, 2150 PartiallyConstructedSafepointRecord &Info, 2151 TargetTransformInfo &TTI) { 2152 const unsigned int ChainLengthThreshold = 10; 2153 2154 // Record values we are going to delete from this statepoint live set. 2155 // We can not di this in following loop due to iterator invalidation. 2156 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2157 2158 for (Value *LiveValue: Info.LiveSet) { 2159 // For each live pointer find it's defining chain 2160 SmallVector<Instruction *, 3> ChainToBase; 2161 assert(Info.PointerToBase.count(LiveValue)); 2162 bool FoundChain = 2163 findRematerializableChainToBasePointer(ChainToBase, 2164 LiveValue, 2165 Info.PointerToBase[LiveValue]); 2166 // Nothing to do, or chain is too long 2167 if (!FoundChain || 2168 ChainToBase.size() == 0 || 2169 ChainToBase.size() > ChainLengthThreshold) 2170 continue; 2171 2172 // Compute cost of this chain 2173 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2174 // TODO: We can also account for cases when we will be able to remove some 2175 // of the rematerialized values by later optimization passes. I.e if 2176 // we rematerialized several intersecting chains. Or if original values 2177 // don't have any uses besides this statepoint. 2178 2179 // For invokes we need to rematerialize each chain twice - for normal and 2180 // for unwind basic blocks. Model this by multiplying cost by two. 2181 if (CS.isInvoke()) { 2182 Cost *= 2; 2183 } 2184 // If it's too expensive - skip it 2185 if (Cost >= RematerializationThreshold) 2186 continue; 2187 2188 // Remove value from the live set 2189 LiveValuesToBeDeleted.push_back(LiveValue); 2190 2191 // Clone instructions and record them inside "Info" structure 2192 2193 // Walk backwards to visit top-most instructions first 2194 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2195 2196 // Utility function which clones all instructions from "ChainToBase" 2197 // and inserts them before "InsertBefore". Returns rematerialized value 2198 // which should be used after statepoint. 2199 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 2200 Instruction *LastClonedValue = nullptr; 2201 Instruction *LastValue = nullptr; 2202 for (Instruction *Instr: ChainToBase) { 2203 // Only GEP's and casts are suported as we need to be careful to not 2204 // introduce any new uses of pointers not in the liveset. 2205 // Note that it's fine to introduce new uses of pointers which were 2206 // otherwise not used after this statepoint. 2207 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2208 2209 Instruction *ClonedValue = Instr->clone(); 2210 ClonedValue->insertBefore(InsertBefore); 2211 ClonedValue->setName(Instr->getName() + ".remat"); 2212 2213 // If it is not first instruction in the chain then it uses previously 2214 // cloned value. We should update it to use cloned value. 2215 if (LastClonedValue) { 2216 assert(LastValue); 2217 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2218 #ifndef NDEBUG 2219 // Assert that cloned instruction does not use any instructions from 2220 // this chain other than LastClonedValue 2221 for (auto OpValue : ClonedValue->operand_values()) { 2222 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2223 ChainToBase.end() && 2224 "incorrect use in rematerialization chain"); 2225 } 2226 #endif 2227 } 2228 2229 LastClonedValue = ClonedValue; 2230 LastValue = Instr; 2231 } 2232 assert(LastClonedValue); 2233 return LastClonedValue; 2234 }; 2235 2236 // Different cases for calls and invokes. For invokes we need to clone 2237 // instructions both on normal and unwind path. 2238 if (CS.isCall()) { 2239 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2240 assert(InsertBefore); 2241 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2242 Info.RematerializedValues[RematerializedValue] = LiveValue; 2243 } else { 2244 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2245 2246 Instruction *NormalInsertBefore = 2247 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2248 Instruction *UnwindInsertBefore = 2249 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2250 2251 Instruction *NormalRematerializedValue = 2252 rematerializeChain(NormalInsertBefore); 2253 Instruction *UnwindRematerializedValue = 2254 rematerializeChain(UnwindInsertBefore); 2255 2256 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2257 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2258 } 2259 } 2260 2261 // Remove rematerializaed values from the live set 2262 for (auto LiveValue: LiveValuesToBeDeleted) { 2263 Info.LiveSet.erase(LiveValue); 2264 } 2265 } 2266 2267 static bool insertParsePoints(Function &F, DominatorTree &DT, 2268 TargetTransformInfo &TTI, 2269 SmallVectorImpl<CallSite> &ToUpdate) { 2270 #ifndef NDEBUG 2271 // sanity check the input 2272 std::set<CallSite> Uniqued; 2273 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2274 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2275 2276 for (CallSite CS : ToUpdate) { 2277 assert(CS.getInstruction()->getParent()->getParent() == &F); 2278 assert((UseDeoptBundles || isStatepoint(CS)) && 2279 "expected to already be a deopt statepoint"); 2280 } 2281 #endif 2282 2283 // When inserting gc.relocates for invokes, we need to be able to insert at 2284 // the top of the successor blocks. See the comment on 2285 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2286 // may restructure the CFG. 2287 for (CallSite CS : ToUpdate) { 2288 if (!CS.isInvoke()) 2289 continue; 2290 auto *II = cast<InvokeInst>(CS.getInstruction()); 2291 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2292 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2293 } 2294 2295 // A list of dummy calls added to the IR to keep various values obviously 2296 // live in the IR. We'll remove all of these when done. 2297 SmallVector<CallInst *, 64> Holders; 2298 2299 // Insert a dummy call with all of the arguments to the vm_state we'll need 2300 // for the actual safepoint insertion. This ensures reference arguments in 2301 // the deopt argument list are considered live through the safepoint (and 2302 // thus makes sure they get relocated.) 2303 for (CallSite CS : ToUpdate) { 2304 SmallVector<Value *, 64> DeoptValues; 2305 2306 iterator_range<const Use *> DeoptStateRange = 2307 UseDeoptBundles 2308 ? iterator_range<const Use *>(GetDeoptBundleOperands(CS)) 2309 : iterator_range<const Use *>(Statepoint(CS).vm_state_args()); 2310 2311 for (Value *Arg : DeoptStateRange) { 2312 assert(!isUnhandledGCPointerType(Arg->getType()) && 2313 "support for FCA unimplemented"); 2314 if (isHandledGCPointerType(Arg->getType())) 2315 DeoptValues.push_back(Arg); 2316 } 2317 2318 insertUseHolderAfter(CS, DeoptValues, Holders); 2319 } 2320 2321 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2322 2323 // A) Identify all gc pointers which are statically live at the given call 2324 // site. 2325 findLiveReferences(F, DT, ToUpdate, Records); 2326 2327 // B) Find the base pointers for each live pointer 2328 /* scope for caching */ { 2329 // Cache the 'defining value' relation used in the computation and 2330 // insertion of base phis and selects. This ensures that we don't insert 2331 // large numbers of duplicate base_phis. 2332 DefiningValueMapTy DVCache; 2333 2334 for (size_t i = 0; i < Records.size(); i++) { 2335 PartiallyConstructedSafepointRecord &info = Records[i]; 2336 findBasePointers(DT, DVCache, ToUpdate[i], info); 2337 } 2338 } // end of cache scope 2339 2340 // The base phi insertion logic (for any safepoint) may have inserted new 2341 // instructions which are now live at some safepoint. The simplest such 2342 // example is: 2343 // loop: 2344 // phi a <-- will be a new base_phi here 2345 // safepoint 1 <-- that needs to be live here 2346 // gep a + 1 2347 // safepoint 2 2348 // br loop 2349 // We insert some dummy calls after each safepoint to definitely hold live 2350 // the base pointers which were identified for that safepoint. We'll then 2351 // ask liveness for _every_ base inserted to see what is now live. Then we 2352 // remove the dummy calls. 2353 Holders.reserve(Holders.size() + Records.size()); 2354 for (size_t i = 0; i < Records.size(); i++) { 2355 PartiallyConstructedSafepointRecord &Info = Records[i]; 2356 2357 SmallVector<Value *, 128> Bases; 2358 for (auto Pair : Info.PointerToBase) 2359 Bases.push_back(Pair.second); 2360 2361 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2362 } 2363 2364 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2365 // need to rerun liveness. We may *also* have inserted new defs, but that's 2366 // not the key issue. 2367 recomputeLiveInValues(F, DT, ToUpdate, Records); 2368 2369 if (PrintBasePointers) { 2370 for (auto &Info : Records) { 2371 errs() << "Base Pairs: (w/Relocation)\n"; 2372 for (auto Pair : Info.PointerToBase) { 2373 errs() << " derived "; 2374 Pair.first->printAsOperand(errs(), false); 2375 errs() << " base "; 2376 Pair.second->printAsOperand(errs(), false); 2377 errs() << "\n"; 2378 } 2379 } 2380 } 2381 2382 // It is possible that non-constant live variables have a constant base. For 2383 // example, a GEP with a variable offset from a global. In this case we can 2384 // remove it from the liveset. We already don't add constants to the liveset 2385 // because we assume they won't move at runtime and the GC doesn't need to be 2386 // informed about them. The same reasoning applies if the base is constant. 2387 // Note that the relocation placement code relies on this filtering for 2388 // correctness as it expects the base to be in the liveset, which isn't true 2389 // if the base is constant. 2390 for (auto &Info : Records) 2391 for (auto &BasePair : Info.PointerToBase) 2392 if (isa<Constant>(BasePair.second)) 2393 Info.LiveSet.erase(BasePair.first); 2394 2395 for (CallInst *CI : Holders) 2396 CI->eraseFromParent(); 2397 2398 Holders.clear(); 2399 2400 // Do a limited scalarization of any live at safepoint vector values which 2401 // contain pointers. This enables this pass to run after vectorization at 2402 // the cost of some possible performance loss. Note: This is known to not 2403 // handle updating of the side tables correctly which can lead to relocation 2404 // bugs when the same vector is live at multiple statepoints. We're in the 2405 // process of implementing the alternate lowering - relocating the 2406 // vector-of-pointers as first class item and updating the backend to 2407 // understand that - but that's not yet complete. 2408 if (UseVectorSplit) 2409 for (size_t i = 0; i < Records.size(); i++) { 2410 PartiallyConstructedSafepointRecord &Info = Records[i]; 2411 Instruction *Statepoint = ToUpdate[i].getInstruction(); 2412 splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet, 2413 Info.PointerToBase, DT); 2414 } 2415 2416 // In order to reduce live set of statepoint we might choose to rematerialize 2417 // some values instead of relocating them. This is purely an optimization and 2418 // does not influence correctness. 2419 for (size_t i = 0; i < Records.size(); i++) 2420 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2421 2422 // We need this to safely RAUW and delete call or invoke return values that 2423 // may themselves be live over a statepoint. For details, please see usage in 2424 // makeStatepointExplicitImpl. 2425 std::vector<DeferredReplacement> Replacements; 2426 2427 // Now run through and replace the existing statepoints with new ones with 2428 // the live variables listed. We do not yet update uses of the values being 2429 // relocated. We have references to live variables that need to 2430 // survive to the last iteration of this loop. (By construction, the 2431 // previous statepoint can not be a live variable, thus we can and remove 2432 // the old statepoint calls as we go.) 2433 for (size_t i = 0; i < Records.size(); i++) 2434 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2435 2436 ToUpdate.clear(); // prevent accident use of invalid CallSites 2437 2438 for (auto &PR : Replacements) 2439 PR.doReplacement(); 2440 2441 Replacements.clear(); 2442 2443 for (auto &Info : Records) { 2444 // These live sets may contain state Value pointers, since we replaced calls 2445 // with operand bundles with calls wrapped in gc.statepoint, and some of 2446 // those calls may have been def'ing live gc pointers. Clear these out to 2447 // avoid accidentally using them. 2448 // 2449 // TODO: We should create a separate data structure that does not contain 2450 // these live sets, and migrate to using that data structure from this point 2451 // onward. 2452 Info.LiveSet.clear(); 2453 Info.PointerToBase.clear(); 2454 } 2455 2456 // Do all the fixups of the original live variables to their relocated selves 2457 SmallVector<Value *, 128> Live; 2458 for (size_t i = 0; i < Records.size(); i++) { 2459 PartiallyConstructedSafepointRecord &Info = Records[i]; 2460 2461 // We can't simply save the live set from the original insertion. One of 2462 // the live values might be the result of a call which needs a safepoint. 2463 // That Value* no longer exists and we need to use the new gc_result. 2464 // Thankfully, the live set is embedded in the statepoint (and updated), so 2465 // we just grab that. 2466 Statepoint Statepoint(Info.StatepointToken); 2467 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2468 Statepoint.gc_args_end()); 2469 #ifndef NDEBUG 2470 // Do some basic sanity checks on our liveness results before performing 2471 // relocation. Relocation can and will turn mistakes in liveness results 2472 // into non-sensical code which is must harder to debug. 2473 // TODO: It would be nice to test consistency as well 2474 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2475 "statepoint must be reachable or liveness is meaningless"); 2476 for (Value *V : Statepoint.gc_args()) { 2477 if (!isa<Instruction>(V)) 2478 // Non-instruction values trivial dominate all possible uses 2479 continue; 2480 auto *LiveInst = cast<Instruction>(V); 2481 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2482 "unreachable values should never be live"); 2483 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2484 "basic SSA liveness expectation violated by liveness analysis"); 2485 } 2486 #endif 2487 } 2488 unique_unsorted(Live); 2489 2490 #ifndef NDEBUG 2491 // sanity check 2492 for (auto *Ptr : Live) 2493 assert(isHandledGCPointerType(Ptr->getType()) && 2494 "must be a gc pointer type"); 2495 #endif 2496 2497 relocationViaAlloca(F, DT, Live, Records); 2498 return !Records.empty(); 2499 } 2500 2501 // Handles both return values and arguments for Functions and CallSites. 2502 template <typename AttrHolder> 2503 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2504 unsigned Index) { 2505 AttrBuilder R; 2506 if (AH.getDereferenceableBytes(Index)) 2507 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2508 AH.getDereferenceableBytes(Index))); 2509 if (AH.getDereferenceableOrNullBytes(Index)) 2510 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2511 AH.getDereferenceableOrNullBytes(Index))); 2512 if (AH.doesNotAlias(Index)) 2513 R.addAttribute(Attribute::NoAlias); 2514 2515 if (!R.empty()) 2516 AH.setAttributes(AH.getAttributes().removeAttributes( 2517 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2518 } 2519 2520 void 2521 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2522 LLVMContext &Ctx = F.getContext(); 2523 2524 for (Argument &A : F.args()) 2525 if (isa<PointerType>(A.getType())) 2526 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2527 2528 if (isa<PointerType>(F.getReturnType())) 2529 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2530 } 2531 2532 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2533 if (F.empty()) 2534 return; 2535 2536 LLVMContext &Ctx = F.getContext(); 2537 MDBuilder Builder(Ctx); 2538 2539 for (Instruction &I : instructions(F)) { 2540 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2541 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2542 bool IsImmutableTBAA = 2543 MD->getNumOperands() == 4 && 2544 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2545 2546 if (!IsImmutableTBAA) 2547 continue; // no work to do, MD_tbaa is already marked mutable 2548 2549 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2550 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2551 uint64_t Offset = 2552 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2553 2554 MDNode *MutableTBAA = 2555 Builder.createTBAAStructTagNode(Base, Access, Offset); 2556 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2557 } 2558 2559 if (CallSite CS = CallSite(&I)) { 2560 for (int i = 0, e = CS.arg_size(); i != e; i++) 2561 if (isa<PointerType>(CS.getArgument(i)->getType())) 2562 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); 2563 if (isa<PointerType>(CS.getType())) 2564 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2565 } 2566 } 2567 } 2568 2569 /// Returns true if this function should be rewritten by this pass. The main 2570 /// point of this function is as an extension point for custom logic. 2571 static bool shouldRewriteStatepointsIn(Function &F) { 2572 // TODO: This should check the GCStrategy 2573 if (F.hasGC()) { 2574 const auto &FunctionGCName = F.getGC(); 2575 const StringRef StatepointExampleName("statepoint-example"); 2576 const StringRef CoreCLRName("coreclr"); 2577 return (StatepointExampleName == FunctionGCName) || 2578 (CoreCLRName == FunctionGCName); 2579 } else 2580 return false; 2581 } 2582 2583 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2584 #ifndef NDEBUG 2585 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2586 "precondition!"); 2587 #endif 2588 2589 for (Function &F : M) 2590 stripNonValidAttributesFromPrototype(F); 2591 2592 for (Function &F : M) 2593 stripNonValidAttributesFromBody(F); 2594 } 2595 2596 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2597 // Nothing to do for declarations. 2598 if (F.isDeclaration() || F.empty()) 2599 return false; 2600 2601 // Policy choice says not to rewrite - the most common reason is that we're 2602 // compiling code without a GCStrategy. 2603 if (!shouldRewriteStatepointsIn(F)) 2604 return false; 2605 2606 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2607 TargetTransformInfo &TTI = 2608 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2609 2610 auto NeedsRewrite = [](Instruction &I) { 2611 if (UseDeoptBundles) { 2612 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2613 return !callsGCLeafFunction(CS); 2614 return false; 2615 } 2616 2617 return isStatepoint(I); 2618 }; 2619 2620 // Gather all the statepoints which need rewritten. Be careful to only 2621 // consider those in reachable code since we need to ask dominance queries 2622 // when rewriting. We'll delete the unreachable ones in a moment. 2623 SmallVector<CallSite, 64> ParsePointNeeded; 2624 bool HasUnreachableStatepoint = false; 2625 for (Instruction &I : instructions(F)) { 2626 // TODO: only the ones with the flag set! 2627 if (NeedsRewrite(I)) { 2628 if (DT.isReachableFromEntry(I.getParent())) 2629 ParsePointNeeded.push_back(CallSite(&I)); 2630 else 2631 HasUnreachableStatepoint = true; 2632 } 2633 } 2634 2635 bool MadeChange = false; 2636 2637 // Delete any unreachable statepoints so that we don't have unrewritten 2638 // statepoints surviving this pass. This makes testing easier and the 2639 // resulting IR less confusing to human readers. Rather than be fancy, we 2640 // just reuse a utility function which removes the unreachable blocks. 2641 if (HasUnreachableStatepoint) 2642 MadeChange |= removeUnreachableBlocks(F); 2643 2644 // Return early if no work to do. 2645 if (ParsePointNeeded.empty()) 2646 return MadeChange; 2647 2648 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2649 // These are created by LCSSA. They have the effect of increasing the size 2650 // of liveness sets for no good reason. It may be harder to do this post 2651 // insertion since relocations and base phis can confuse things. 2652 for (BasicBlock &BB : F) 2653 if (BB.getUniquePredecessor()) { 2654 MadeChange = true; 2655 FoldSingleEntryPHINodes(&BB); 2656 } 2657 2658 // Before we start introducing relocations, we want to tweak the IR a bit to 2659 // avoid unfortunate code generation effects. The main example is that we 2660 // want to try to make sure the comparison feeding a branch is after any 2661 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2662 // values feeding a branch after relocation. This is semantically correct, 2663 // but results in extra register pressure since both the pre-relocation and 2664 // post-relocation copies must be available in registers. For code without 2665 // relocations this is handled elsewhere, but teaching the scheduler to 2666 // reverse the transform we're about to do would be slightly complex. 2667 // Note: This may extend the live range of the inputs to the icmp and thus 2668 // increase the liveset of any statepoint we move over. This is profitable 2669 // as long as all statepoints are in rare blocks. If we had in-register 2670 // lowering for live values this would be a much safer transform. 2671 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2672 if (auto *BI = dyn_cast<BranchInst>(TI)) 2673 if (BI->isConditional()) 2674 return dyn_cast<Instruction>(BI->getCondition()); 2675 // TODO: Extend this to handle switches 2676 return nullptr; 2677 }; 2678 for (BasicBlock &BB : F) { 2679 TerminatorInst *TI = BB.getTerminator(); 2680 if (auto *Cond = getConditionInst(TI)) 2681 // TODO: Handle more than just ICmps here. We should be able to move 2682 // most instructions without side effects or memory access. 2683 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2684 MadeChange = true; 2685 Cond->moveBefore(TI); 2686 } 2687 } 2688 2689 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2690 return MadeChange; 2691 } 2692 2693 // liveness computation via standard dataflow 2694 // ------------------------------------------------------------------- 2695 2696 // TODO: Consider using bitvectors for liveness, the set of potentially 2697 // interesting values should be small and easy to pre-compute. 2698 2699 /// Compute the live-in set for the location rbegin starting from 2700 /// the live-out set of the basic block 2701 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2702 BasicBlock::reverse_iterator rend, 2703 DenseSet<Value *> &LiveTmp) { 2704 2705 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2706 Instruction *I = &*ritr; 2707 2708 // KILL/Def - Remove this definition from LiveIn 2709 LiveTmp.erase(I); 2710 2711 // Don't consider *uses* in PHI nodes, we handle their contribution to 2712 // predecessor blocks when we seed the LiveOut sets 2713 if (isa<PHINode>(I)) 2714 continue; 2715 2716 // USE - Add to the LiveIn set for this instruction 2717 for (Value *V : I->operands()) { 2718 assert(!isUnhandledGCPointerType(V->getType()) && 2719 "support for FCA unimplemented"); 2720 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2721 // The choice to exclude all things constant here is slightly subtle. 2722 // There are two independent reasons: 2723 // - We assume that things which are constant (from LLVM's definition) 2724 // do not move at runtime. For example, the address of a global 2725 // variable is fixed, even though it's contents may not be. 2726 // - Second, we can't disallow arbitrary inttoptr constants even 2727 // if the language frontend does. Optimization passes are free to 2728 // locally exploit facts without respect to global reachability. This 2729 // can create sections of code which are dynamically unreachable and 2730 // contain just about anything. (see constants.ll in tests) 2731 LiveTmp.insert(V); 2732 } 2733 } 2734 } 2735 } 2736 2737 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2738 2739 for (BasicBlock *Succ : successors(BB)) { 2740 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2741 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2742 PHINode *Phi = cast<PHINode>(&*I); 2743 Value *V = Phi->getIncomingValueForBlock(BB); 2744 assert(!isUnhandledGCPointerType(V->getType()) && 2745 "support for FCA unimplemented"); 2746 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2747 LiveTmp.insert(V); 2748 } 2749 } 2750 } 2751 } 2752 2753 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2754 DenseSet<Value *> KillSet; 2755 for (Instruction &I : *BB) 2756 if (isHandledGCPointerType(I.getType())) 2757 KillSet.insert(&I); 2758 return KillSet; 2759 } 2760 2761 #ifndef NDEBUG 2762 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2763 /// sanity check for the liveness computation. 2764 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2765 TerminatorInst *TI, bool TermOkay = false) { 2766 for (Value *V : Live) { 2767 if (auto *I = dyn_cast<Instruction>(V)) { 2768 // The terminator can be a member of the LiveOut set. LLVM's definition 2769 // of instruction dominance states that V does not dominate itself. As 2770 // such, we need to special case this to allow it. 2771 if (TermOkay && TI == I) 2772 continue; 2773 assert(DT.dominates(I, TI) && 2774 "basic SSA liveness expectation violated by liveness analysis"); 2775 } 2776 } 2777 } 2778 2779 /// Check that all the liveness sets used during the computation of liveness 2780 /// obey basic SSA properties. This is useful for finding cases where we miss 2781 /// a def. 2782 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2783 BasicBlock &BB) { 2784 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2785 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2786 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2787 } 2788 #endif 2789 2790 static void computeLiveInValues(DominatorTree &DT, Function &F, 2791 GCPtrLivenessData &Data) { 2792 2793 SmallSetVector<BasicBlock *, 200> Worklist; 2794 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2795 // We use a SetVector so that we don't have duplicates in the worklist. 2796 Worklist.insert(pred_begin(BB), pred_end(BB)); 2797 }; 2798 auto NextItem = [&]() { 2799 BasicBlock *BB = Worklist.back(); 2800 Worklist.pop_back(); 2801 return BB; 2802 }; 2803 2804 // Seed the liveness for each individual block 2805 for (BasicBlock &BB : F) { 2806 Data.KillSet[&BB] = computeKillSet(&BB); 2807 Data.LiveSet[&BB].clear(); 2808 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2809 2810 #ifndef NDEBUG 2811 for (Value *Kill : Data.KillSet[&BB]) 2812 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2813 #endif 2814 2815 Data.LiveOut[&BB] = DenseSet<Value *>(); 2816 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2817 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2818 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2819 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2820 if (!Data.LiveIn[&BB].empty()) 2821 AddPredsToWorklist(&BB); 2822 } 2823 2824 // Propagate that liveness until stable 2825 while (!Worklist.empty()) { 2826 BasicBlock *BB = NextItem(); 2827 2828 // Compute our new liveout set, then exit early if it hasn't changed 2829 // despite the contribution of our successor. 2830 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2831 const auto OldLiveOutSize = LiveOut.size(); 2832 for (BasicBlock *Succ : successors(BB)) { 2833 assert(Data.LiveIn.count(Succ)); 2834 set_union(LiveOut, Data.LiveIn[Succ]); 2835 } 2836 // assert OutLiveOut is a subset of LiveOut 2837 if (OldLiveOutSize == LiveOut.size()) { 2838 // If the sets are the same size, then we didn't actually add anything 2839 // when unioning our successors LiveIn Thus, the LiveIn of this block 2840 // hasn't changed. 2841 continue; 2842 } 2843 Data.LiveOut[BB] = LiveOut; 2844 2845 // Apply the effects of this basic block 2846 DenseSet<Value *> LiveTmp = LiveOut; 2847 set_union(LiveTmp, Data.LiveSet[BB]); 2848 set_subtract(LiveTmp, Data.KillSet[BB]); 2849 2850 assert(Data.LiveIn.count(BB)); 2851 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2852 // assert: OldLiveIn is a subset of LiveTmp 2853 if (OldLiveIn.size() != LiveTmp.size()) { 2854 Data.LiveIn[BB] = LiveTmp; 2855 AddPredsToWorklist(BB); 2856 } 2857 } // while( !worklist.empty() ) 2858 2859 #ifndef NDEBUG 2860 // Sanity check our output against SSA properties. This helps catch any 2861 // missing kills during the above iteration. 2862 for (BasicBlock &BB : F) { 2863 checkBasicSSA(DT, Data, BB); 2864 } 2865 #endif 2866 } 2867 2868 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2869 StatepointLiveSetTy &Out) { 2870 2871 BasicBlock *BB = Inst->getParent(); 2872 2873 // Note: The copy is intentional and required 2874 assert(Data.LiveOut.count(BB)); 2875 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2876 2877 // We want to handle the statepoint itself oddly. It's 2878 // call result is not live (normal), nor are it's arguments 2879 // (unless they're used again later). This adjustment is 2880 // specifically what we need to relocate 2881 BasicBlock::reverse_iterator rend(Inst->getIterator()); 2882 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2883 LiveOut.erase(Inst); 2884 Out.insert(LiveOut.begin(), LiveOut.end()); 2885 } 2886 2887 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2888 const CallSite &CS, 2889 PartiallyConstructedSafepointRecord &Info) { 2890 Instruction *Inst = CS.getInstruction(); 2891 StatepointLiveSetTy Updated; 2892 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2893 2894 #ifndef NDEBUG 2895 DenseSet<Value *> Bases; 2896 for (auto KVPair : Info.PointerToBase) { 2897 Bases.insert(KVPair.second); 2898 } 2899 #endif 2900 // We may have base pointers which are now live that weren't before. We need 2901 // to update the PointerToBase structure to reflect this. 2902 for (auto V : Updated) 2903 if (!Info.PointerToBase.count(V)) { 2904 assert(Bases.count(V) && "can't find base for unexpected live value"); 2905 Info.PointerToBase[V] = V; 2906 continue; 2907 } 2908 2909 #ifndef NDEBUG 2910 for (auto V : Updated) { 2911 assert(Info.PointerToBase.count(V) && 2912 "must be able to find base for live value"); 2913 } 2914 #endif 2915 2916 // Remove any stale base mappings - this can happen since our liveness is 2917 // more precise then the one inherent in the base pointer analysis 2918 DenseSet<Value *> ToErase; 2919 for (auto KVPair : Info.PointerToBase) 2920 if (!Updated.count(KVPair.first)) 2921 ToErase.insert(KVPair.first); 2922 for (auto V : ToErase) 2923 Info.PointerToBase.erase(V); 2924 2925 #ifndef NDEBUG 2926 for (auto KVPair : Info.PointerToBase) 2927 assert(Updated.count(KVPair.first) && "record for non-live value"); 2928 #endif 2929 2930 Info.LiveSet = Updated; 2931 } 2932